Long distance quantum communication using continuous variable encoding
NASA Astrophysics Data System (ADS)
Li, Linshu; Albert, Victor; Michael, Marios; Muralidharan, Sreraman; Zou, Changling; Jiang, Liang
Quantum communication enables faithful quantum state transfer between different parties and protocols for cryptographic purposes. However, quantum communication over long distances (>1000km) remains challenging due to optical channel attenuation. This calls for investigation on developing novel encoding schemes that correct photon loss errors efficiently. In this talk, we introduce the generalization of multi-component Schrödinger cat states and propose to encode quantum information in these cat states for ultrafast quantum repeaters. We detail the quantum error correction procedures at each repeater station and characterize the performance of this novel encoding scheme given practical imperfections, such as coupling loss. A comparison with other quantum error correcting codes for bosonic modes will be discussed.
Spectral-temporal-polarization encoding of photons for multi-user secure quantum communication
NASA Astrophysics Data System (ADS)
Donkor, Eric
2014-05-01
We describe a Quantum Key Distribution protocol that combines temporal-, spectraland polarization-encoding of photons for secure communication over an interconnected network of users. Temporal encoding is used to identify a user's location or address on the network. Polarization encoding is used to generate private cryptographic key. Polarization encoded information is locally and randomly generated by users and exchanged only over a dedicated secure channel. Spectral encoding allows for the detection of eavesdropping and tampering by a malicious agent. Temporal-spectral signals sent from the network administrator (Alice) to a user are bright light source. On the other hand spectral-temporal signal from a network user (Bob) to the administrator (Alice) are single photons. Signals are sent across the network as ordered light pairs. The ordering format is randomly chosen and are revealed only at the time of key selection between the parties so that a secure one-time cryptographic pad can be generated
NASA Astrophysics Data System (ADS)
Porzio, A.; D'Auria, V.; Aniello, P.; Paris, M. G. A.; Solimeno, S.
2007-04-01
We present a continuous variable quantum communication protocol based on bright continuous-wave twin-beams generated by a type-II OPO. Intensity correlation between the beams is used in conjunction with a binary randomization of polarization to guarantee security and reveal eavesdropping actions. The scheme presented is asymmetric. Bob (the receiver) retains one of the beams and sends the other one to Alice after a random rotation of its polarization. The cryptographic key elements are encoded through amplitude modulation by Alice, who sends back her beam to Bob after a second rotation of the polarization. Eventually, the beams are detected by Bob after a further random polarization rotation. The security of the system and the possibility of revealing the eavesdropping action in the case of an individual attack are demonstrated by evaluating the bit error rates.
Quantum Spread Spectrum Communication
Humble, Travis S
2010-01-01
We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.
Quantum repeater with continuous variable encoding
NASA Astrophysics Data System (ADS)
Li, Linshu; Albert, Victor V.; Michael, Marios; Muralidharan, Sreraman; Zou, Changling; Jiang, Liang
2016-05-01
Quantum communication enables faithful quantum state transfer between different parties and protocols for cryptographic purposes. However, quantum communication over long distances (>1000km) remains challenging due to optical channel attenuation. This calls for investigation on developing novel encoding schemes that correct photon loss errors efficiently. In this talk, we introduce the generalization of multi-component Schrödinger cat states and propose to encode quantum information in these cat states for ultrafast quantum repeaters. We detail the quantum error correction procedures at each repeater station and characterize the performance of this novel encoding scheme given practical imperfections, such as coupling loss. A comparison with other quantum error correcting codes for bosonic modes will be discussed.
Xavier, G B; Vilela de Faria, G; Temporão, G P; von der Weid, J P
2008-02-04
A real-time polarization control system employing two non-orthogonal reference signals multiplexed in either time or wavelength with the data signal is presented. It is shown, theoretically and experimentally, that complete control of multiple polarization states can be attained employing polarization controllers in closed-loop configuration. Experimental results on the wavelength multiplexing setup show that negligible added penalties, corresponding to an average added optical Quantum Bit Error Rate of 0.044%, can be achieved with response times smaller than 10 ms, without significant introduction of noise counts in the quantum channel.
Relativistic Quantum Communication
NASA Astrophysics Data System (ADS)
Hosler, Dominic
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.
Experimental Satellite Quantum Communications.
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-24
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Experimental Satellite Quantum Communications
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-01
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Advanced quantum communication systems
NASA Astrophysics Data System (ADS)
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Engineering quantum communication systems
NASA Astrophysics Data System (ADS)
Pinto, Armando N.; Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; Martins, Luis M.
2012-06-01
Quantum communications can provide almost perfect security through the use of quantum laws to detect any possible leak of information. We discuss critical issues in the implementation of quantum communication systems over installed optical fibers. We use stimulated four-wave mixing to generate single photons inside optical fibers, and by tuning the separation between the pump and the signal we adjust the average number of photons per pulse. We report measurements of the source statistics and show that it goes from a thermal to Poisson distribution with the increase of the pump power. We generate entangled photons pairs through spontaneous four-wave mixing. We report results for different type of fibers to approach the maximum value of the Bell inequality. We model the impact of polarization rotation, attenuation and Raman scattering and present optimum configurations to increase the degree of entanglement. We encode information in the photons polarization and assess the use of wavelength and time division multiplexing based control systems to compensate for the random rotation of the polarization during transmission. We show that time division multiplexing systems provide a more robust solution considering the values of PMD of nowadays installed fibers. We evaluate the impact on the quantum channel of co-propagating classical channels, and present guidelines for adding quantum channels to installed WDM optical communication systems without strongly penalizing the performance of the quantum channel. We discuss the process of retrieving information from the photons polarization. We identify the major impairments that limit the speed and distance of the quantum channel. Finally, we model theoretically the QBER and present results of an experimental performance assessment of the system quality through QBER measurements.
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Scarani, Valerio
2016-12-01
We extend covert communication to the quantum regime by showing that covert quantum communication is possible over optical channels with noise arising either from the environment or from the sender's lab. In particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a coherent state encoding. We study the possibility of performing covert quantum key distribution (QKD) and show that positive key rates and covertness can be achieved simultaneously. Covert communication requires a secret key between the sender and receiver, which raises the problem of how this key can be regenerated covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the security of the covert communication is at least as strong as the security of the PRNG.
Arrazola, Juan Miguel; Scarani, Valerio
2016-12-16
We extend covert communication to the quantum regime by showing that covert quantum communication is possible over optical channels with noise arising either from the environment or from the sender's lab. In particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a coherent state encoding. We study the possibility of performing covert quantum key distribution (QKD) and show that positive key rates and covertness can be achieved simultaneously. Covert communication requires a secret key between the sender and receiver, which raises the problem of how this key can be regenerated covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the security of the covert communication is at least as strong as the security of the PRNG.
NASA Astrophysics Data System (ADS)
Jackson, Judy; Calder, Neil
2007-11-01
Few would dispute that the science of particle physics in the United States has reached a crossroads. Policies, decisions, and events of the coming decade will be critical in determining whether the United States continues to carry out a competitive program of leadership in this field of fundamental science. The field of particle physics has responded to this reality by fundamentally changing its model of communication from “business as usual” to a strategic and collaborative method that is clearly focused on achieving a healthy future for the science. Over the past half-dozen years, the particle physics community has gone from being an oft-cited example of how not to communicate effectively, to a frequently cited—and emulated—model for science communication. This review outlines the new approach toward communication in particle physics and then goes into detail about three case studies.
Measurement-based quantum communication
NASA Astrophysics Data System (ADS)
Zwerger, M.; Briegel, H. J.; Dür, W.
2016-03-01
We review and discuss the potential of using measurement-based elements in quantum communication schemes, where certain tasks are realized with the help of entangled resource states that are processed by measurements. We consider long-range quantum communication based on the transmission of encoded quantum states, where encoding, decoding and syndrome readout are implemented using small-scale resource states. We also discuss entanglement-based schemes and consider measurement-based quantum repeaters. An important element in these schemes is entanglement purification, which can also be implemented in a measurement-based way. We analyze the influence of noise and imperfections in these schemes and show that measurement-based implementation allows for very large error thresholds of the order of 10 % noise per qubit and more. We show how to obtain optimal resource states for different tasks and discuss first experimental realizations of measurement-based quantum error correction using trapped ions and photons.
Hybrid architecture for encoded measurement-based quantum computation
Zwerger, M.; Briegel, H. J.; Dür, W.
2014-01-01
We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906
Advanced Quantum Communication Protocols
2005-12-17
theoretically optimal configuration, and compared hyperentangled and multi-pair encoding. Table of Contents: Summary 2 Relativistic Quantum Cryptography ( RQC ...error rates, for 4- and 6-state RQC 4. Intensity pulses to generate uniform time-interval probability distributions 5. Schematic of photon-arrival...Protocols: Scientific Progress and Accomplishments “Relativistic” Quantum Cryptography We have implemented relativistic quantum cryptography ( RQC ) using
Quantum Communication with Photons
NASA Astrophysics Data System (ADS)
Krenn, Mario; Malik, Mehul; Scheidl, Thomas; Ursin, Rupert; Zeilinger, Anton
The secure communication of information plays an ever increasing role in our society today. Classical methods of encryption inherently rely on the difficulty of solving a problem such as finding prime factors of large numbers and can, in principle, be cracked by a fast enough machine. The burgeoning field of quantum communication relies on the fundamental laws of physics to offer unconditional information security. Here we introduce the key concepts of quantum superposition and entanglement as well as the no-cloning theorem that form the basis of this field. Then, we review basic quantum communication schemes with single and entangled photons and discuss recent experimental progress in ground and space-based quantum communication. Finally, we discuss the emerging field of high-dimensional quantum communication, which promises increased data rates and higher levels of security than ever before. We discuss recent experiments that use the orbital angular momentum of photons for sharing large amounts of information in a secure fashion.
Quantum Secure Direct Communication Without Using Perfect Quantum Channel
NASA Astrophysics Data System (ADS)
Wang, Jian; Zhang, Quan; Tang, Chaojing
Most of the quantum secure direct communication protocol needs a pre-established secure quantum channel. Only after insuring the security of quantum channel, could the sender encode the secret message and send them to the receiver through the secure channel. In this paper, we present a quantum secure direct communication protocol using Einstein-Podolsky-Rosen pairs without insuring the security of quantum channel before transmitting the secret message. Compared with the protocol proposed by Deng et al. [Phys. Rev. A 68, 042317 (2003)] and the scheme proposed by Yan et al. [ Euro. Phys. J. B 41, 75 (2004)], the present protocol provides higher efficiency.
Secret key rates for an encoded quantum repeater
NASA Astrophysics Data System (ADS)
Bratzik, Sylvia; Kampermann, Hermann; Bruß, Dagmar
2014-03-01
We investigate secret key rates for the quantum repeater using encoding [L. Jiang et al., Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325] and compare them to the standard repeater scheme by Briegel, Dür, Cirac, and Zoller. The former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-off in the secret key rate between the communication time and the required resources. For this purpose we introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity smaller than one, in contrast to the model given by L. Jiang et al. [Phys. Rev. A 79, 032325 (2009), 10.1103/PhysRevA.79.032325]. We show that one can correct additional errors in the encoded connection procedure of this repeater and develop a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum repeater using encoding and give the minimal parameter values (gate quality and initial fidelity) for establishing a nonzero secret key. We find that the generic quantum repeater is optimal regarding the secret key rate per memory per second and show that the encoded quantum repeater using the simple three-qubit repetition code can even have an advantage with respect to the resources compared to other recent quantum repeater schemes with encoding.
2008-03-15
0603048 (2006) [3] Q. Zhang et al, Experimental Quantum Teleportation of a Two-Qubit Composite System, quant-ph/0609129 (2006) [4] G. Y. Xiang et...AFOSR project “ Quantum Communication Systems” University of Oxford and UMK Torun Final Report 15 March 2008 Summary This document...temporal characterization by interference with a local oscillator and the theoretical study of their propagation in lossy quantum channels. Also, their
Surface code quantum communication.
Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L
2010-05-07
Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.
Quantum Information, Computation and Communication
NASA Astrophysics Data System (ADS)
Jones, Jonathan A.; Jaksch, Dieter
2012-07-01
Part I. Quantum Information: 1. Quantum bits and quantum gates; 2. An atom in a laser field; 3. Spins in magnetic fields; 4. Photon techniques; 5. Two qubits and beyond; 6. Measurement and entanglement; Part II. Quantum Computation: 7. Principles of quantum computing; 8. Elementary quantum algorithms; 9. More advanced quantum algorithms; 10. Trapped atoms and ions; 11. Nuclear magnetic resonance; 12. Large scale quantum computers; Part III. Quantum Communication: 13. Basics of information theory; 14. Quantum information; 15. Quantum communication; 16. Testing EPR; 17. Quantum cryptography; Appendixes; References; Index.
Quantum Secure Direct Communication with Quantum Memory
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-01
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Strong connections between quantum encodings, nonlocality, and quantum cryptography
NASA Astrophysics Data System (ADS)
Sikora, Jamie; Chailloux, André; Kerenidis, Iordanis
2014-02-01
Encoding information in quantum systems can offer surprising advantages but at the same time there are limitations that arise from the fact that measuring an observable may disturb the state of the quantum system. In our work, we provide an in-depth analysis of a simple question: What happens when we perform two measurements sequentially on the same quantum system? This question touches upon some fundamental properties of quantum mechanics, namely the uncertainty principle and the complementarity of quantum measurements. Our results have interesting consequences, for example, they can provide a simple proof of the optimal quantum strategy in the famous Clauser-Horne-Shimony-Holt game. Moreover, we show that the way information is encoded in quantum systems can provide a different perspective in understanding other fundamental aspects of quantum information, like nonlocality and quantum cryptography. We prove some strong equivalences between these notions and provide a number of applications in all areas.
Quantum entanglement, quantum communication and the limits of quantum computing
NASA Astrophysics Data System (ADS)
Ambainis, Andris
Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.
Encoding entanglement-assisted quantum stabilizer codes
NASA Astrophysics Data System (ADS)
Wang, Yun-Jiang; Bai, Bao-Ming; Li, Zhuo; Peng, Jin-Ye; Xiao, He-Ling
2012-02-01
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
Quantum gloves: Quantum states that encode as much as possible chirality and nothing else
Collins, D.; Diosi, L.; Gisin, N.; Massar, S.; Popescu, S.
2005-08-15
Communicating a physical quantity cannot be done using information only - i.e., using abstract cbits and/or qubits. Rather one needs appropriate physical realizations of cbits and/or qubits. We illustrate this by considering the problem of communicating chirality. We discuss in detail the physical resources this necessitates and introduce the natural concept of quantum gloves - i.e., rotationally invariant quantum states that encode as much as possible the concept of chirality and nothing more.
Practical secure quantum communications
NASA Astrophysics Data System (ADS)
Diamanti, Eleni
2015-05-01
We review recent advances in the field of quantum cryptography, focusing in particular on practical implementations of two central protocols for quantum network applications, namely key distribution and coin flipping. The former allows two parties to share secret messages with information-theoretic security, even in the presence of a malicious eavesdropper in the communication channel, which is impossible with classical resources alone. The latter enables two distrustful parties to agree on a random bit, again with information-theoretic security, and with a cheating probability lower than the one that can be reached in a classical scenario. Our implementations rely on continuous-variable technology for quantum key distribution and on a plug and play discrete-variable system for coin flipping, and necessitate a rigorous security analysis adapted to the experimental schemes and their imperfections. In both cases, we demonstrate the protocols with provable security over record long distances in optical fibers and assess the performance of our systems as well as their limitations. The reported advances offer a powerful toolbox for practical applications of secure communications within future quantum networks.
Complete experimental toolbox for alignment-free quantum communication.
D'Ambrosio, Vincenzo; Nagali, Eleonora; Walborn, Stephen P; Aolita, Leandro; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio
2012-07-17
Quantum communication employs the counter-intuitive features of quantum physics for tasks that are impossible in the classical world. It is crucial for testing the foundations of quantum theory and promises to revolutionize information and communication technologies. However, to execute even the simplest quantum transmission, one must establish, and maintain, a shared reference frame. This introduces a considerable overhead in resources, particularly if the parties are in motion or rotating relative to each other. Here we experimentally show how to circumvent this problem with the transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum information in such photonic qubits, we demonstrate the feasibility of alignment-free quantum key-distribution, and perform proof-of-principle demonstrations of alignment-free entanglement distribution and Bell-inequality violation. The scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication.
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Satellite-based quantum communications
NASA Astrophysics Data System (ADS)
Hughes, Richard
2011-05-01
Single-photon quantum communications offers the attractive feature of ``future proof'' security rooted in the laws of quantum physics for the transfer of cryptographic keys. Secure distribution of keys is necessary for the encryption and authentication of conventional communications. Ground-based quantum communications experiments in optical fiber have attained transmission ranges in excess of 200 km, but for larger distances to become feasible we proposed a methodology that would make satellite-to-ground quantum communications possible. Satellite feasibility studies have been published by research groups in the US, Europe, Japan and China, and collaborations in several countries have published conceptual experimental plans. In this talk we will review the main features required for low-earth orbit satellite-toground quantum communications, and describe the results of ground-based quantum communications experiments across atmospheric paths conducted by our team over the past decade. Using these results as an anchor, we will describe a link model, incorporating photon transmission, loss and background physical processes, for estimating satellite-to-ground quantum communications performance. We will show results from this model for the projected performance of a hypothetical quantum communications terminal on the International Space Station, with a hypothetical ground terminal in Los Alamos, NM. In collaboration with Jane Nordholt, Los Alamos National Laboratory.
Experimental quantum multiparty communication protocols
NASA Astrophysics Data System (ADS)
Smania, Massimiliano; Elhassan, Ashraf M.; Tavakoli, Armin; Bourennane, Mohamed
2016-06-01
Quantum information science breaks limitations of conventional information transfer, cryptography and computation by using quantum superpositions or entanglement as resources for information processing. Here we report on the experimental realisation of three-party quantum communication protocols using single three-level quantum system (qutrit) communication: secret-sharing, detectable Byzantine agreement and communication complexity reduction for a three-valued function. We have implemented these three schemes using the same optical fibre interferometric setup. Our realisation is easily scalable without compromising on detection efficiency or generating extremely complex many-particle entangled states.
Photonic channels for quantum communication
van Enk SJ; Cirac; Zoller
1998-01-09
A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.
Network-Centric Quantum Communications
NASA Astrophysics Data System (ADS)
Hughes, Richard
2014-03-01
Single-photon quantum communications (QC) offers ``future-proof'' cryptographic security rooted in the laws of physics. Today's quantum-secured communications cannot be compromised by unanticipated future technological advances. But to date, QC has only existed in point-to-point instantiations that have limited ability to address the cyber security challenges of our increasingly networked world. In my talk I will describe a fundamentally new paradigm of network-centric quantum communications (NQC) that leverages the network to bring scalable, QC-based security to user groups that may have no direct user-to-user QC connectivity. With QC links only between each of N users and a trusted network node, NQC brings quantum security to N2 user pairs, and to multi-user groups. I will describe a novel integrated photonics quantum smartcard (``QKarD'') and its operation in a multi-node NQC test bed. The QKarDs are used to implement the quantum cryptographic protocols of quantum identification, quantum key distribution and quantum secret splitting. I will explain how these cryptographic primitives are used to provide key management for encryption, authentication, and non-repudiation for user-to-user communications. My talk will conclude with a description of a recent demonstration that QC can meet both the security and quality-of-service (latency) requirements for electric grid control commands and data. These requirements cannot be met simultaneously with present-day cryptography.
A model of quantum communication device for quantum hashing
NASA Astrophysics Data System (ADS)
Vasiliev, A.
2016-02-01
In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols.
Reliable quantum communication over a quantum relay channel
Gyongyosi, Laszlo; Imre, Sandor
2014-12-04
We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Houshmand, Monireh; Hosseini-Khayat, Saied
2011-02-15
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.
Entanglement purification for quantum communication.
Pan, J W; Simon, C; Brukner, C; Zeilinger, A
2001-04-26
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.
Quantum communication with coherent states of light.
Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd
2017-08-06
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Quantum communication with coherent states of light
NASA Astrophysics Data System (ADS)
Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd
2017-06-01
Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.
Anonymous Quantum Communication
NASA Astrophysics Data System (ADS)
Brassard, Gilles; Broadbent, Anne; Fitzsimons, Joseph; Gambs, Sébastien; Tapp, Alain
We introduce the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver is perfectly preserved, and the privacy of the quantum state is protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).
Entanglement enhances security in quantum communication
Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej
2009-07-15
Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.
Eavesdropping of quantum communication from a noninertial frame
Bradler, K.
2007-02-15
We introduce a relativistic version of the quantum encryption protocol by considering two inertial observers who wish to securely transmit quantum information encoded in a free scalar quantum field state forming Minkowski particles. In a nonrelativistic setting a certain amount of shared classical resources is necessary to perfectly encrypt the state. We show that in the case of a uniformly accelerated eavesdropper the communicating parties need to share (asymptotically in the limit of infinite acceleration) just half of the classical resources.
Quantum communication and information processing
NASA Astrophysics Data System (ADS)
Beals, Travis Roland
Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.
Quantum direct communication with authentication
Lee, Hwayean; Lim, Jongin; Yang, HyungJin
2006-04-15
We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.
Noise-enhanced classical and quantum capacities in communication networks.
Caruso, Filippo; Huelga, Susana F; Plenio, Martin B
2010-11-05
The unavoidable presence of noise is thought to be one of the major problems to solve in order to pave the way for implementing quantum information technologies in realistic physical platforms. However, here we show a clear example in which noise, in terms of dephasing, may enhance the capability of transmitting not only classical but also quantum information, encoded in quantum systems, through communication networks. In particular, we find analytically and numerically the quantum and classical capacities for a large family of quantum channels and show that these information transmission rates can be strongly enhanced by introducing dephasing noise in the complex network dynamics.
Quantum Communications Systems
2012-09-21
X.- M . Jin, B.J. Smith, M.B. Plenio , and I.A. Walmsley, Mapping coherence in measurement via full quantum tomog- raphy of a hybrid optical detector...K. C. Lee, B . J. Sussman, M . R. Sprague, P. Michelberger,K. F. Reim,J. Nunn, N. K. Lang- ford,P. J. Bustard, D. Jaksch, and I. A. Walmsley...Macroscopic non-classical states and tera- hertz quantum processing in room-temperature diamond, Nature Photonics 6, 41 (2011) [15] K. C. Lee, M . R. Sprague, B
Probabilistic direct counterfactual quantum communication
NASA Astrophysics Data System (ADS)
Zhang, Sheng
2017-02-01
It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters. Project supported by the National Natural Science Foundation of China (Grant No. 61300203).
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
NASA Astrophysics Data System (ADS)
Lau, Hoi-Kwan; Plenio, Martin B.
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-02
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Quantum communication with coherent states and linear optics
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Lütkenhaus, Norbert
2014-10-01
We introduce a general mapping for encoding quantum communication protocols involving pure states of multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ a coherent state of light in a linear combination of optical modes, linear-optics transformations, and measurements with single-photon threshold detectors. This provides a general framework for transforming protocols in quantum communication into a form in which they can be implemented with current technology. We explore the similarity between properties of the original qubit protocols and the coherent-state protocols obtained from the mapping and make use of the mapping to construct additional protocols in the context of quantum communication complexity and quantum digital signatures. Our results have the potential of bringing a wide class of quantum communication protocols closer to their experimental demonstration.
Secure direct communication with a quantum one-time pad
Deng Fuguo; Long Guilu
2004-05-01
Quantum secure direct communication is the direct communication of secret messages without first producing a shared secret key. It may be used in some urgent circumstances. Here we propose a quantum secure direct communication protocol using single photons. The protocol uses batches of single photons prepared randomly in one of four different states. These single photons serve as a one-time pad which is used directly to encode the secret messages in one communication process. We also show that it is unconditionally secure. The protocol is feasible with present-day technique.
Supersonic Quantum Communication
NASA Astrophysics Data System (ADS)
Eisert, J.; Gross, D.
2009-06-01
When locally exciting a quantum lattice model, the excitation will propagate through the lattice. This effect is responsible for a wealth of nonequilibrium phenomena, and has been exploited to transmit quantum information. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite “speed of sound”. Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are essentially limited to a causal cone. We show that for meaningful translationally invariant bosonic models with nearest-neighbor interactions (addressing the challenging aspect of an experimental realization) this belief is incorrect: We prove that one can encounter accelerating excitations under the natural dynamics that allow for reliable transmission of information faster than any finite speed of sound. It also implies that the simulation of dynamics of strongly correlated bosonic models may be much harder than that of spin chains even in the low-energy sector.
Supersonic quantum communication.
Eisert, J; Gross, D
2009-06-19
When locally exciting a quantum lattice model, the excitation will propagate through the lattice. This effect is responsible for a wealth of nonequilibrium phenomena, and has been exploited to transmit quantum information. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are essentially limited to a causal cone. We show that for meaningful translationally invariant bosonic models with nearest-neighbor interactions (addressing the challenging aspect of an experimental realization) this belief is incorrect: We prove that one can encounter accelerating excitations under the natural dynamics that allow for reliable transmission of information faster than any finite speed of sound. It also implies that the simulation of dynamics of strongly correlated bosonic models may be much harder than that of spin chains even in the low-energy sector.
Secure communications using quantum cryptography
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.
1997-08-01
The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.
Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm
NASA Astrophysics Data System (ADS)
Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Niu, Xin-Xin; Yang, Yi-Xian
2015-07-01
Based on the properties of two-qubit Grover's quantum search algorithm, we propose two quantum direct communication protocols, including a deterministic secure quantum communication and a quantum secure direct communication protocol. Secret messages can be directly sent from the sender to the receiver by using two-qubit unitary operations and the single photon measurement with one of the proposed protocols. Theoretical analysis shows that the security of the proposed protocols can be highly ensured.
Metrology for industrial quantum communications: the MIQC project
NASA Astrophysics Data System (ADS)
Rastello, M. L.; Degiovanni, I. P.; Sinclair, A. G.; Kück, S.; Chunnilall, C. J.; Porrovecchio, G.; Smid, M.; Manoocheri, F.; Ikonen, E.; Kubarsepp, T.; Stucki, D.; Hong, K. S.; Kim, S. K.; Tosi, A.; Brida, G.; Meda, A.; Piacentini, F.; Traina, P.; Natsheh, A. Al; Cheung, J. Y.; Müller, I.; Klein, R.; Vaigu, A.
2014-12-01
The ‘Metrology for Industrial Quantum Communication Technologies’ project (MIQC) is a metrology framework that fosters development and market take-up of quantum communication technologies and is aimed at achieving maximum impact for the European industry in this area. MIQC is focused on quantum key distribution (QKD) technologies, the most advanced quantum-based technology towards practical application. QKD is a way of sending cryptographic keys with absolute security. It does this by exploiting the ability to encode in a photon's degree of freedom specific quantum states that are noticeably disturbed if an eavesdropper trying to decode it is present in the communication channel. The MIQC project has started the development of independent measurement standards and definitions for the optical components of QKD system, since one of the perceived barriers to QKD market success is the lack of standardization and quality assurance.
NASA Astrophysics Data System (ADS)
Hwang, Tzonelih; Luo, Yi-Ping; Yang, Chun-Wei; Lin, Tzu-Han
2014-04-01
This work proposes a new direction in quantum cryptography called quantum authencryption. Quantum authencryption (QA), a new term to distinguish from authenticated quantum secure direct communications, is used to describe the technique of combining quantum encryption and quantum authentication into one process for off-line communicants. QA provides a new way of quantum communications without the presence of a receiver on line, and thus makes many applications depending on secure one-way quantum communications, such as quantum E-mail systems, possible. An example protocol using single photons and one-way hash functions is presented to realize the requirements on QA.
Quantum communication with zero-capacity channels.
Smith, Graeme; Yard, Jon
2008-09-26
Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not completely specify a channel's ability to transmit quantum information.
Ultrafast Long-Distance Quantum Communication with Static Linear Optics
NASA Astrophysics Data System (ADS)
Ewert, Fabian; Bergmann, Marcel; van Loock, Peter
2016-11-01
We propose a projection measurement onto encoded Bell states with a static network of linear optical elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show that all-optical quantum communication over large distances with communication rates similar to those of classical communication is possible solely based on local state teleportations using optical sources of encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application, generalizing state teleportation to gate teleportation for quantum computation, we find that in order to achieve universality the intrinsic loss tolerance must be sacrificed and a minimal amount of feedforward has to be added.
Ultrafast Long-Distance Quantum Communication with Static Linear Optics.
Ewert, Fabian; Bergmann, Marcel; van Loock, Peter
2016-11-18
We propose a projection measurement onto encoded Bell states with a static network of linear optical elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show that all-optical quantum communication over large distances with communication rates similar to those of classical communication is possible solely based on local state teleportations using optical sources of encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application, generalizing state teleportation to gate teleportation for quantum computation, we find that in order to achieve universality the intrinsic loss tolerance must be sacrificed and a minimal amount of feedforward has to be added.
Enabling quantum communications through accurate photons polarization control
NASA Astrophysics Data System (ADS)
Almeida, Álvaro J.; Muga, Nelson J.; Silva, Nuno A.; Stojanovic, Aleksandar D.; André, Paulo S.; Pinto, Armando N.; Mora, José; Capmany, José
2013-11-01
The rapid increase on the information sharing around the world, leads to an utmost requirement for capacity and bandwidth. However, the need for security in the transmission and storage of information is also of major importance. The use of quantum technologies provides a practical solution for secure communications systems. Quantum key distribution (QKD) was the first practical application of quantum mechanics, and nowadays it is the most developed one. In order to share secret keys between two parties can be used several methods of encoding. Due to its simplicity, the encoding into polarization is one of the most used. However, when we use optical fibers as transmission channels, the polarization suffers random rotations that may change the state of polarization (SOP) of the light initially sent to the fiber to a new one at the output. Thus, in order to enable real-time communication using this encoding method it is required the use of a dynamic control system. We describe a scheme of transmission of quantum information, which is based in the polarization encoding, and that allows to share secret keys through optical fibers without interruption. The dynamic polarization control system used in such scheme is described, both theoretically and experimentally. Their advantages and limitations for the use in quantum communications are presented and discussed.
Integrated source and channel encoded digital communications system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.
1974-01-01
Studies on the digital communication system for the direct communication links from ground to space shuttle and the links involving the Tracking and Data Relay Satellite (TDRS). Three main tasks were performed:(1) Channel encoding/decoding parameter optimization for forward and reverse TDRS links,(2)integration of command encoding/decoding and channel encoding/decoding; and (3) modulation coding interface study. The general communication environment is presented to provide the necessary background for the tasks and to provide an understanding of the implications of the results of the studies.
Satellite-Based Quantum Communications
Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P; Newell, Raymond T; Peterson, Charles G
2010-09-20
Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secret keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.
Enhanced sensing and communication via quantum networks
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-05-01
A network based on quantum information has been developed to improve sensing and communications capabilities. Quantum teleportation offers features for communicating information not found in classical procedures. It is fundamental to the quantum network approach. A version of quantum teleportation based on hyper-entanglement is used to bring about these improvements. Recently invented methods of improving sensing and communication via quantum information based on hyper-entanglement are discussed. These techniques offer huge improvements in the SNR, signal to interference ratio, and time-on-target of various sensors including RADAR and LADAR. Hyper-entanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, orbital angular momentum (OAM), etc. The quantum network makes use of quantum memory located in each node of the network, thus the network forms a quantum repeater. The quantum repeater facilitates the use of quantum teleportation, and superdense coding. Superdense coding refers to the ability to incorporate more than one classical bit into each transmitted qubit. The network of sensors and/or communication devices has an enhanced resistance to interference sources. The repeater has the potential for greatly reducing loss in communications and sensor systems related to the effect of the atmosphere on fragile quantum states. Measures of effectiveness (MOEs) are discussed that show the utility of the network for improving sensing and communications in the presence of loss and noise. The quantum repeater will reduce overall size, weight, power and cost (SWAPC) of fielded components of systems.
Simultaneous classical communication and quantum key distribution using continuous variables*
NASA Astrophysics Data System (ADS)
Qi, Bing
2016-10-01
Presently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters show that both deterministic classical communication with a bit error rate of 10-9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.
Simultaneous classical communication and quantum key distribution using continuous variables
Qi, Bing
2016-10-26
Currently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters show that both deterministic classical communication with a bit error rate of 10^{–9} and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.
Quantum Communication and Quantum Multivariate Polynomial Interpolation
NASA Astrophysics Data System (ADS)
Diep, Do Ngoc; Giang, Do Hoang
2017-09-01
The paper is devoted to the problem of multivariate polynomial interpolation and its application to quantum secret sharing. We show that using quantum Fourier transform one can produce the protocol for quantum secret sharing distribution.
Recent advances on integrated quantum communications
NASA Astrophysics Data System (ADS)
Orieux, Adeline; Diamanti, Eleni
2016-08-01
In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.
Multiparty controlled quantum secure direct communication based on quantum search algorithm
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Hwang, Tzonelih
2013-12-01
In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger-Horne-Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.
Intracity Quantum Communication via Thermal Microwave Networks
NASA Astrophysics Data System (ADS)
Xiang, Ze-Liang; Zhang, Mengzhen; Jiang, Liang; Rabl, Peter
2017-01-01
Communication over proven-secure quantum channels is potentially one of the most wide-ranging applications of currently developed quantum technologies. It is generally envisioned that in future quantum networks, separated nodes containing stationary solid-state or atomic qubits are connected via the exchange of optical photons over large distances. In this work, we explore an intriguing alternative for quantum communication via all-microwave networks. To make this possible, we describe a general protocol for sending quantum states through thermal channels, even when the number of thermal photons in the channel is much larger than 1. The protocol can be implemented with state-of-the-art superconducting circuits and enables the transfer of quantum states over distances of about 100 m via microwave transmission lines cooled to only T =4 K . This opens up new possibilities for quantum communication within and across buildings and, consequently, for the implementation of intracity quantum networks based on microwave technology only.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
Classical noise, quantum noise and secure communication
NASA Astrophysics Data System (ADS)
Tannous, C.; Langlois, J.
2016-01-01
Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.
Spatially encoded multiple-quantum excitation.
Ridge, Clark D; Borvayeh, Leila; Walls, Jamie D
2013-05-28
In this work, we present a simple method to spatially encode the transition frequencies of nuclear spin transitions and to read out these frequencies within a single scan. The experiment works by combining pulsed field gradients with an excitation sequence that selectively excites spin transitions within certain sample regions. After the initial excitation, imaging the resulting ẑ-magnetization is used to determine the locations where the excitations occurred, from which the corresponding transition frequencies are determined. Simple experimental demonstrations of this technique on one- and two-spin systems are presented.
Long distance quantum communication using quantum error correction
NASA Technical Reports Server (NTRS)
Gingrich, R. M.; Lee, H.; Dowling, J. P.
2004-01-01
We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.
Long distance quantum communication using quantum error correction
NASA Technical Reports Server (NTRS)
Gingrich, R. M.; Lee, H.; Dowling, J. P.
2004-01-01
We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.
Ultrafast and fault-tolerant quantum communication across long distances.
Muralidharan, Sreraman; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang
2014-06-27
Quantum repeaters (QRs) provide a way of enabling long distance quantum communication by establishing entangled qubits between remote locations. In this Letter, we investigate a new approach to QRs in which quantum information can be faithfully transmitted via a noisy channel without the use of long distance teleportation, thus eliminating the need to establish remote entangled links. Our approach makes use of small encoding blocks to fault-tolerantly correct both operational and photon loss errors. We describe a way to optimize the resource requirement for these QRs with the aim of the generation of a secure key. Numerical calculations indicate that the number of quantum memory bits at each repeater station required for the generation of one secure key has favorable polylogarithmic scaling with the distance across which the communication is desired.
Quantum communication with an accelerated partner
NASA Astrophysics Data System (ADS)
Downes, T. G.; Ralph, T. C.; Walk, N.
2013-01-01
An unsolved problem in relativistic quantum information research is how to model efficient, directional quantum communication between localized parties in a fully quantum field-theoretical framework. We propose a tractable approach to this problem based on calculating expectation values of localized field observables in the Heisenberg picture. We illustrate our approach by analyzing, and obtaining approximate analytical solutions to, the problem of communicating coherent states between an inertial sender, Alice, and an accelerated receiver, Rob. We use these results to determine the efficiency with which continuous variable quantum key distribution could be carried out over such a communication channel.
Optimal architectures for long distance quantum communication
Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D.; Jiang, Liang
2016-01-01
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances. PMID:26876670
Optimal architectures for long distance quantum communication.
Muralidharan, Sreraman; Li, Linshu; Kim, Jungsang; Lütkenhaus, Norbert; Lukin, Mikhail D; Jiang, Liang
2016-02-15
Despite the tremendous progress of quantum cryptography, efficient quantum communication over long distances (≥ 1000 km) remains an outstanding challenge due to fiber attenuation and operation errors accumulated over the entire communication distance. Quantum repeaters (QRs), as a promising approach, can overcome both photon loss and operation errors, and hence significantly speedup the communication rate. Depending on the methods used to correct loss and operation errors, all the proposed QR schemes can be classified into three categories (generations). Here we present the first systematic comparison of three generations of quantum repeaters by evaluating the cost of both temporal and physical resources, and identify the optimized quantum repeater architecture for a given set of experimental parameters for use in quantum key distribution. Our work provides a roadmap for the experimental realizations of highly efficient quantum networks over transcontinental distances.
Experimental test of single-system steering and application to quantum communication
NASA Astrophysics Data System (ADS)
Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can
2017-02-01
Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.
Recent progress of quantum communication in China (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Qiang
2016-04-01
Quantum communication, based on the quantum physics, can provide information theoretical security. Building a global quantum network is one ultimate goal for the research of quantum information. Here, this talk will review the progress for quantum communication in China, including quantum key distribution over metropolitan area with untrustful relay, field test of quantum entanglement swapping over metropolitan network, the 2000 km quantum key distribution main trunk line, and satellite based quantum communication.
Secure quantum communication using classical correlated channel
NASA Astrophysics Data System (ADS)
Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.
2016-10-01
We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.
Communications: quantum teleportation across the Danube.
Ursin, Rupert; Jennewein, Thomas; Aspelmeyer, Markus; Kaltenbaek, Rainer; Lindenthal, Michael; Walther, Philip; Zeilinger, Anton
2004-08-19
Efficient long-distance quantum teleportation is crucial for quantum communication and quantum networking schemes. Here we describe the high-fidelity teleportation of photons over a distance of 600 metres across the River Danube in Vienna, with the optimal efficiency that can be achieved using linear optics. Our result is a step towards the implementation of a quantum repeater, which will enable pure entanglement to be shared between distant parties in a public environment and eventually on a worldwide scale.
Secure communication via quantum illumination
NASA Astrophysics Data System (ADS)
Shapiro, Jeffrey H.; Zhang, Zheshen; Wong, Franco N. C.
2014-10-01
In the quantum illumination protocol for secure communication, Alice prepares entangled signal and idler beams via spontaneous parametric downconversion. She sends the signal beam to Bob, while retaining the idler. Bob imposes message modulation on the beam he receives from Alice, amplifies it, and sends it back to her. Alice then decodes Bob's information by making a joint quantum measurement on the light she has retained and the light she has received from him. The basic performance analysis for this protocol—which demonstrates its immunity to passive eavesdropping, in which Eve can only listen to Alice and Bob's transmissions—is reviewed, along with the results of its first proof-of-principle experiment. Further analysis is then presented, showing that secure data rates in excess of 1 Gbps may be possible over 20-km-long fiber links with technology that is available or under development. Finally, an initial scheme for thwarting active eavesdropping, in which Eve injects her own light into Bob's terminal, is proposed and analyzed.
Quantum communication between remote mechanical resonators
NASA Astrophysics Data System (ADS)
Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.
2017-02-01
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.
Quantum dot optical encoded polystyrene beads for DNA detection.
Cao, Yuan-Cheng; Liu, Tian-Cai; Hua, Xiao-Feng; Zhu, Xiao-Xia; Wang, Hai-Qiao; Huang, Zhen-Li; Zhao, Yuan-Di; Liu, Man-Xi; Luo, Qing-Ming
2006-01-01
A novel multiplex analysis technology based on quantum dot (QD) optical encoded beads was studied. Carboxyl functionalized polystyrene beads, about 100 microm in size, were precisely encoded by the various ratios of two types of QDs whose emission wavelengths are 576 and 628 nm, respectively. Then the different encoded beads were covalently immobilized with different probes in the existing of sulfo-NHS and 1-[3-(Dimethylamino) propyl]-3-ethylcarbodiimide methiodide, and the probe density could reach to 3.1 mmol/g. These probe-linked encoded beads were used to detect the target DNA sequences in complex DNA solution by hybridization. Hybridization was visualized using fluorescein isothiocynate-labeled DNA sequences. The results show that the QDs and target signals can be obviously identified from a single-bead-level spectrum. This technology can detect DNA targets effectively with a detection limit of 0.2 microg/mL in complex solution.
Quantum communications: Teleportation becomes streetwise
NASA Astrophysics Data System (ADS)
Grosshans, Frédéric
2016-10-01
Quantum teleportation is at the heart of many quantum information protocols. Two teams have now performed it over several kilometres of metropolitan fibre networks, paving the way for future quantum technologies on the city scale.
Quantum-dots-encoded-microbeads based molecularly imprinted polymer.
Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui
2016-03-15
Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.
Long-distance quantum communication over noisy networks without long-time quantum memory
NASA Astrophysics Data System (ADS)
Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Łodyga, Justyna; Pankowski, Łukasz; PrzysieŻna, Anna
2014-12-01
The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008), 10.1103/PhysRevA.78.062324] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission of quantum information in a D +1 -dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.
Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.
Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu
2016-12-01
Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.
Multiplexed Sequence Encoding: A Framework for DNA Communication
Zakeri, Bijan; Carr, Peter A.; Lu, Timothy K.
2016-01-01
Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication—data encoding, data transfer & data extraction—and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system—Multiplexed Sequence Encoding (MuSE)—that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages. To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA. PMID:27050646
Exponential communication gap between weak and strong classical simulations of quantum communication
NASA Astrophysics Data System (ADS)
Montina, Alberto
2013-04-01
The most trivial way to simulate classically the communication of a quantum state is to transmit the classical description of the quantum state itself. However, this requires an infinite amount of classical communication if the simulation is exact. A more intriguing and potentially less demanding strategy would encode the full information about the quantum state into the probability distribution of the communicated variables so that this information is never sent in each single shot. This kind of simulation is called weak, as opposed to strong simulations, where the quantum state is communicated in individual shots. In this paper, we introduce a bounded-error weak protocol for simulating the communication of an arbitrary number of qubits and a subsequent two-outcome measurement consisting of an arbitrary pure state projector and its complement. This protocol requires an amount of classical communication independent of the number of qubits and proportional to Δ-1, where Δ is the error and a free parameter of the protocol. Conversely, a bounded-error strong protocol requires an amount of classical communication growing exponentially with the number of qubits for a fixed error. Our result improves a previous protocol, based on the Johnson-Lindenstrauss lemma, with communication cost scaling as Δ-2lnΔ-1.
Entanglement swapping secures multiparty quantum communication
NASA Astrophysics Data System (ADS)
Lee, Juhui; Lee, Soojoon; Kim, Jaewan; Oh, Sung Dahm
2004-09-01
Extending the eavesdropping strategy devised by Zhang, Li, and Guo [
Entanglement-Based Quantum Cryptography and Quantum Communication
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2007-03-01
Quantum entanglement, to Erwin Schroedinger the essential feature of quantum mechanics, has become a central resource in various quantum communication protocols including quantum cryptography and quantum teleportation. From a fundamental point of view what is exploited in these experiments is the very fact which led Schroedinger to his statement namely that in entangled states joint properties of the entangled systems may be well defined while the individual subsystems may carry no information at all. In entanglement-based quantum cryptography it leads to the most elegant possible solution of the classic key distribution problem. It implies that the key comes into existence at spatially distant location at the same time and does not need to be transported. A number recent developments include for example highly efficient, robust and stable sources of entangled photons with a broad bandwidth of desired features. Also, entanglement-based quantum cryptography is successfully joining other methods in the work towards demonstrating quantum key distribution networks. Along that line recently decoy-state quantum cryptography over a distance of 144 km between two Canary Islands was demonstrated successfully. Such experiments also open up the possibility of quantum communication on a really large scale using LEO satellites. Another important possible future branch of quantum communication involves quantum repeaters in order to cover larger distances with entangled states. Recently the connection of two fully independent lasers in an entanglement swapping experiment did demonstrate that the timing control of such systems on a femtosecond time scale is possible. A related development includes recent demonstrations of all-optical one-way quantum computation schemes with the extremely short cycle time of only 100 nanoseconds.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
The Holy Grail of quantum optical communication
García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.
2014-12-04
Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels.
Directional coupling for quantum computing and communication.
Nikolopoulos, Georgios M
2008-11-14
We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.
Data detection algorithms for multiplexed quantum dot encoding.
Goss, Kelly C; Messier, Geoff G; Potter, Mike E
2012-02-27
A group of quantum dots can be designed to have a unique spectral emission by varying the size of the quantum dots (wavelength) and number of quantum dots (intensity). This technique has been previously proposed for biological tags and object identification. The potential of this system lies in the ability to have a large number of distinguishable wavelengths and intensity levels. This paper presents a communications system model for MxQDs including the interference between neighbouring QD colours and detector noise. An analytical model of the signal-to-noise ratio of a Charge-Coupled Device (CCD) spectrometer is presented and confirmed with experimental results. We then apply a communications system perspective and propose data detection algorithms that increase the readability of the quantum dots tags. It is demonstrated that multiplexed quantum dot barcodes can be read with 99.7% accuracy using the proposed data detection algorithms in a system with 6 colours and 6 intensity values resulting in 46,655 unique spectral codes.
Controller-independent bidirectional quantum direct communication
NASA Astrophysics Data System (ADS)
Mohapatra, Amit Kumar; Balakrishnan, S.
2017-06-01
Recently, Chang et al. (Quantum Inf Process 14:3515-3522, 2015) proposed a controlled bidirectional quantum direct communication protocol using Bell states. In this work, the significance of Bell states, which are being used as initial states in Chang et al. protocol, is elucidated. The possibility of preparing initial state based on the secret message of the communicants is explored. In doing so, the controller-independent bidirectional quantum direct communication protocol has evolved naturally. It is shown that any communicant cannot read the secret message without knowing the initial states generated by the other communicant. Further, intercept-and-resend attack and information leakage can be avoided. The proposed protocol is like a conversion between two persons without the help of any third person with high-level security.
Quantum communication with macroscopically bright nonclassical states.
Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim
2015-11-30
We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light.
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.
2005-12-01
An alternative physical way of communication, communication by the inherent background noise, is proposed which does not need net energy transfer in the information channel. The communicator devices do dissipate energy; however, they do not emit net energy into the channel, instead of that, they modulate the parameters of inherent spontaneous fluctuations in the channel. The method can use two different mechanisms, thermal noise (Johnson-Nyquist noise) for classical communication, and vacuum fluctuations/zero-point energy (quantum uncertainty noise) for quantum communication. The strongest advantage of the method is that it is apparently the most hidden (stealth) way of communication, because it is using the inherent background noise for communication. Therefore, it is extremely difficult or impossible to discover its presence. With proper wave-based arrangements and specific conditions, the sender and the receiver can easily detect eavesdropper activities, so that the eavesdropper is detected as soon as she extracts a single bit of information, thus the security of the method is comparable to the security of quantum communication/quantum key distribution schemes. Finally, concerning practical applications, environmental noise, out of the fundamental/inherent fluctuations, can also be used for this kind of communication provided that is sufficiently stationary.
Fundamental limits of repeaterless quantum communications
Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo
2017-01-01
Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624
Fundamental limits of repeaterless quantum communications.
Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo
2017-04-26
Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.
Communication: Quantum mechanics without wavefunctions
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.
Exponentially enhanced quantum communication rate by multiplexing continuous-variable teleportation
NASA Astrophysics Data System (ADS)
Christ, Andreas; Lupo, Cosmo; Silberhorn, Christine
2012-08-01
A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols that encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode versus multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, leading to an exponential increase in the achievable quantum communication rates in comparison to single-mode coding, but also yields an improved loss resilience. However, as reliable quantum information transfer is only achieved for entanglement values above a certain threshold a careful optimization of the number of coding modes is needed to obtain the optimal quantum channel capacity.
An exactly solvable model for quantum communications.
Smith, Graeme; Smolin, John A
2013-12-12
Information theory establishes the ultimate limits on performance for noisy communication systems. Accurate models of physical communication devices must include quantum effects, but these typically make the theory intractable. As a result, communication capacities--the maximum possible rates of data transmission--are not known, even for transmission between two users connected by an electromagnetic waveguide with Gaussian noise. Here we present an exactly solvable model of communication with a fully quantum electromagnetic field. This gives explicit expressions for all point-to-point capacities of noisy quantum channels, with implications for quantum key distribution and fibre-optic communications. We also develop a theory of quantum communication networks by solving some rudimentary models including broadcast and multiple-access channels. We compare the predictions of our model with the orthodox Gaussian model and in all cases find agreement to within a few bits. At high signal-to-noise ratios, our simple model captures the relevant physics while remaining amenable to exact solution.
Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication
NASA Astrophysics Data System (ADS)
Walleczek, Jan; Grössing, Gerhard
2016-09-01
It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time
Direct counterfactual communication via quantum Zeno effect.
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-09
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics-wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
Direct counterfactual communication via quantum Zeno effect
NASA Astrophysics Data System (ADS)
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-01
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
Computational approach to quantum encoder design for purity optimization
Yamamoto, Naoki; Fazel, Maryam
2007-07-15
In this paper, we address the problem of designing a quantum encoder that maximizes the minimum output purity of a given decohering channel, where the minimum is taken over all possible pure inputs. This problem is cast as a max-min optimization problem with a rank constraint on an appropriately defined matrix variable. The problem is computationally very hard because it is nonconvex with respect to both the objective function (output purity) and the rank constraint. Despite this difficulty, we provide a tractable computational algorithm that produces the exact optimal solution for codespace of dimension 2. Moreover, this algorithm is easily extended to cover the general class of codespaces, in which case the solution is suboptimal in the sense that the suboptimized output purity serves as a lower bound of the exact optimal purity. The algorithm consists of a sequence of semidefinite programmings and can be performed easily. Two typical quantum error channels are investigated to illustrate the effectiveness of our method.
Controlled Bidirectional Quantum Secure Direct Communication
Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan
2014-01-01
We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596
Controlled bidirectional quantum secure direct communication.
Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan
2014-01-01
We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages.
Quantum Communication Using Coherent Rejection Sampling
NASA Astrophysics Data System (ADS)
Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul
2017-09-01
Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.
Namiki, Ryo; Hirano, Takuya
2006-09-15
We propose efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. By these phase encodings, the probability of basis mismatch is reduced and total efficiency is increased. We also propose mixed-state protocols by omitting a part of classical communication steps in the efficient-phase-encoding protocols. The omission implies a reduction of information to an eavesdropper and possibly enhances the security of the protocols. We investigate the security of the protocols against individual beam splitting attack.
Simultaneous classical communication and quantum key distribution using continuous variables
Qi, Bing
2016-10-26
Currently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters showmore » that both deterministic classical communication with a bit error rate of 10–9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.« less
Enhanced quantum communication via optical refocusing
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2011-07-15
We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.
Enhanced quantum communication via optical refocusing
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2011-07-01
We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.
Repeated quantum error correction on a continuously encoded qubit by real-time feedback.
Cramer, J; Kalb, N; Rol, M A; Hensen, B; Blok, M S; Markham, M; Twitchen, D J; Hanson, R; Taminiau, T H
2016-05-05
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
Repeated quantum error correction on a continuously encoded qubit by real-time feedback
NASA Astrophysics Data System (ADS)
Cramer, J.; Kalb, N.; Rol, M. A.; Hensen, B.; Blok, M. S.; Markham, M.; Twitchen, D. J.; Hanson, R.; Taminiau, T. H.
2016-05-01
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.
Secure quantum private information retrieval using phase-encoded queries
Olejnik, Lukasz
2011-08-15
We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.
Secure quantum private information retrieval using phase-encoded queries
NASA Astrophysics Data System (ADS)
Olejnik, Lukasz
2011-08-01
We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.230502 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-01-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223
Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa
2015-11-24
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
NASA Astrophysics Data System (ADS)
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-11-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
Quantum holographic encoding in a two-dimensional electron gas
Moon, Christopher
2010-05-26
The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.
Air-to-ground quantum communication
NASA Astrophysics Data System (ADS)
Nauerth, Sebastian; Moll, Florian; Rau, Markus; Fuchs, Christian; Horwath, Joachim; Frick, Stefan; Weinfurter, Harald
2013-05-01
Quantum key distribution (QKD) is the first commercial application in the new field of quantum information, with first routine applications in government and financial sectors and with successful demonstrations of trusted node networks. Today, the main goal is efficient long-range key distribution via either quantum repeaters or satellites, with a view to enabling global secure communication. En route to achieving QKD via satellites, a free-space demonstration of secure key distribution was performed between two ground stations, over a distance of 144 km. This scenario is comparable to links between satellites in low Earth orbit and ground stations with respect to both attenuation and fluctuations. However, key exchange with rapidly moving platforms remained to be demonstrated. Here, we prove, for the first time, the feasibility of BB84 QKD between an aeroplane and a ground station. By establishing a stable and low-noise quantum communication channel with the aeroplane moving at 290 km h-1 at a distance of 20 km--that is, 4 mrad s-1--our results are representative of typical communication links to satellites or to high-altitude platforms.
Industrial application for global quantum communication
NASA Astrophysics Data System (ADS)
Mirza, A.; Petruccione, F.
2012-09-01
In the last decade the quantum communication community has witnessed great advances in photonic quantum cryptography technology with the research, development and commercialization of automated Quantum Key Distribution (QKD) devices. These first generation devices are however bottlenecked by the achievable spatial coverage. This is due to the intrinsic absorption of the quantum particle into the communication medium. As QKD is of paramount importance in the future ICT landscape, various innovative solutions have been developed and tested to expand the spatial coverage of these networks such as the Quantum City initiative in Durban, South Africa. To expand this further into a global QKD-secured network, recent efforts have focussed on high-altitude free-space techniques through the use of satellites. This couples the QKD-secured Metropolitan Area Networks (MANs) with secured ground-tosatellite links as access points to a global network. Such a solution, however, has critical limitations that reduce its commercial feasibility. As parallel step to the development of satellitebased global QKD networks, we investigate the use of the commercial aircrafts' network as secure transport mechanisms in a global QKD network. This QKD-secured global network will provide a robust infrastructure to create, distribute and manage encryption keys between the MANs of the participating cities.
Clean Quantum and Classical Communication Protocols.
Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen
2016-12-02
By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n-bit strings, showing that (in the absence of preshared entanglement) at most n+3 qubits or n+O(sqrt[n]) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.
Clean Quantum and Classical Communication Protocols
NASA Astrophysics Data System (ADS)
Buhrman, Harry; Christandl, Matthias; Perry, Christopher; Zuiddam, Jeroen
2016-12-01
By how much must the communication complexity of a function increase if we demand that the parties not only correctly compute the function but also return all registers (other than the one containing the answer) to their initial states at the end of the communication protocol? Protocols that achieve this are referred to as clean and the associated cost as the clean communication complexity. Here we present clean protocols for calculating the inner product of two n -bit strings, showing that (in the absence of preshared entanglement) at most n +3 qubits or n +O (√{n }) bits of communication are required. The quantum protocol provides inspiration for obtaining the optimal method to implement distributed cnot gates in parallel while minimizing the amount of quantum communication. For more general functions, we show that nearly all Boolean functions require close to 2 n bits of classical communication to compute and close to n qubits if the parties have access to preshared entanglement. Both of these values are maximal for their respective paradigms.
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Sheng, Zhi-Wei
2013-06-01
A multiparty controlled bidirectional quantum secure direct communication and authentication protocol is proposed based on EPR pair and entanglement swapping. The legitimate identities of communicating parties are encoded to Bell states which act as a detection sequence. Secret messages are transmitted by using the classical XOR operation, which serves as a one-time-pad. No photon with secret information transmits in the quantum channel. Compared with the protocols proposed by Wang et al. [Acta Phys. Sin. 56 (2007) 673; Opt. Commun. 266 (2006) 732], the protocol in this study implements bidirectional communication and authentication, which defends most attacks including the ‘man-in-the-middle’ attack efficiently.
Experimental demonstration of counterfactual quantum communication.
Liu, Yang; Ju, Lei; Liang, Xiao-Lei; Tang, Shi-Biao; Tu, Guo-Liang Shen; Zhou, Lei; Peng, Cheng-Zhi; Chen, Kai; Chen, Teng-Yun; Chen, Zeng-Bing; Pan, Jian-Wei
2012-07-20
Quantum effects, besides offering substantial superiority in many tasks over classical methods, are also expected to provide interesting ways to establish secret keys between remote parties. A striking scheme called "counterfactual quantum cryptography" proposed by Noh [Phys. Rev. Lett. 103, 230501 (2009).] allows one to maintain secure key distributions, in which particles carrying secret information are seemingly not being transmitted through quantum channels. We have experimentally demonstrated, for the first time, a faithful implementation for such a scheme with an on-table realization operating at telecom wavelengths. To verify its feasibility for extension over a long distance, we have furthermore reported an illustration on a 1 km fiber. In both cases, high visibilities of more than 98% are achieved through active stabilization of interferometers. Our demonstration is crucial as a direct verification of such a remarkable application, and this procedure can become a key communication module for revealing fundamental physics through counterfactuals.
Quantum Communication Using Macroscopic Phase Entangled States
2015-12-10
goals of our program was to investigate several different ways in which to implement the Kerr medium that allows a single photon to change the phase ...E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 1 i. Quantum Communication Using Macroscopic Phase Entangled States Final Report Reporting...media that can produce a shift in the phase of a laser pulse provided that a single photon from another source and at a different frequency is also
Coherent communication with continuous quantum variables
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-15
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Coherent communication with continuous quantum variables
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Software-defined quantum communication systems
NASA Astrophysics Data System (ADS)
Humble, Travis S.; Sadlier, Ronald J.
2014-08-01
Quantum communication (QC) systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for QC engineering is designing and prototyping these systems to evaluate the proposed capabilities. We apply the paradigm of software-defined communication for engineering QC systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose QC terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the superdense coding protocol as an example, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We conclude that the software-defined QC provides a robust framework in which to explore the large design space offered by this new regime of communication.
Time-reversal-symmetric single-photon wave packets for free-space quantum communication.
Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G
2015-05-01
Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.
NASA Astrophysics Data System (ADS)
Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong
2017-10-01
Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
Quantum limiting factors contributed by the transmitter, the optical channel, and the receiver of a space-to-ground optical communications link are described. Approaches to move toward the ultimate quantum limit are discussed.
PREFACE: Quantum Information, Communication, Computation and Cryptography
NASA Astrophysics Data System (ADS)
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable
Frequency-encoded photonic qubits for scalable quantum information processing
Lukens, Joseph M.; Lougovski, Pavel
2016-12-21
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel on multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.
Repeated quantum error correction on a continuously encoded qubit by real-time feedback
Cramer, J.; Kalb, N.; Rol, M. A.; Hensen, B.; Blok, M. S.; Markham, M.; Twitchen, D. J.; Hanson, R.; Taminiau, T. H.
2016-01-01
Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing. PMID:27146630
Quantum counterfactual communication without a weak trace
NASA Astrophysics Data System (ADS)
Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.
2016-12-01
The classical theories of communication rely on the assumption that there has to be a flow of particles from Bob to Alice in order for him to send a message to her. We develop a quantum protocol that allows Alice to perceive Bob's message "counterfactually"; that is, without Alice receiving any particles that have interacted with Bob. By utilizing a setup built on results from interaction-free measurements, we outline a communication protocol whereby the information travels in the opposite direction of the emitted particles. In comparison to previous attempts on such protocols, this one is such that a weak measurement at the message source would not leave a weak trace that could be detected by Alice's receiver. While some interaction-free schemes require a large number of carefully aligned beam splitters, our protocol is realizable with two or more beam splitters. We demonstrate this protocol by numerically solving the time-dependent Schrödinger equation for a Hamiltonian that implements this quantum counterfactual phenomenon.
Efficient quantum computation in a network with probabilistic gates and logical encoding
NASA Astrophysics Data System (ADS)
Borregaard, J.; Sørensen, A. S.; Cirac, J. I.; Lukin, M. D.
2017-04-01
An approach to efficient quantum computation with probabilistic gates is proposed and analyzed in both a local and nonlocal setting. It combines heralded gates previously studied for atom or atomlike qubits with logical encoding from linear optical quantum computation in order to perform high-fidelity quantum gates across a quantum network. The error-detecting properties of the heralded operations ensure high fidelity while the encoding makes it possible to correct for failed attempts such that deterministic and high-quality gates can be achieved. Importantly, this is robust to photon loss, which is typically the main obstacle to photonic-based quantum information processing. Overall this approach opens a path toward quantum networks with atomic nodes and photonic links.
Quantum-dot cluster-state computing with encoded qubits
Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy
2005-08-15
A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection.
Quantum Darwinism Requires an Extra-Theoretical Assumption of Encoding Redundancy
NASA Astrophysics Data System (ADS)
Fields, Chris
2010-10-01
Observers restricted to the observation of pointer states of apparatus cannot conclusively demonstrate that the pointer of an apparatus mathcal{A} registers the state of a system of interest S without perturbing S. Observers cannot, therefore, conclusively demonstrate that the states of a system S are redundantly encoded by pointer states of multiple independent apparatus without destroying the redundancy of encoding. The redundancy of encoding required by quantum Darwinism must, therefore, be assumed from outside the quantum-mechanical formalism and without the possibility of experimental demonstration.
Deterministic secure quantum communication using a single d-level system
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-01-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557
Deterministic secure quantum communication using a single d-level system
NASA Astrophysics Data System (ADS)
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
Deterministic secure quantum communication using a single d-level system.
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-22
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
Multiple channel secure communication using chaotic system encoding
Miller, S.L.
1996-12-31
fA new method to encrypt signals using chaotic systems has been developed that offers benefits over conventional chaotic encryption methods. The method simultaneously encodes multiple plaintext streams using a chaotic system; a key is required to extract the plaintext from the chaotic cipertext. A working prototype demonstrates feasibility of the method by simultaneously encoding and decoding multiple audio signals using electrical circuits.
Quantum issues in optical communication. [noise reduction in signal reception
NASA Technical Reports Server (NTRS)
Kennedy, R. S.
1973-01-01
Various approaches to the problem of controlling quantum noise, the dominant noise in an optical communications system, are discussed. It is shown that, no matter which way the problem is approached, there always remain uncertainties. These uncertainties exist because, to date, only very few communication problems have been solved in their full quantum form.
Frequency-encoded photonic qubits for scalable quantum information processing
Lukens, Joseph M.; Lougovski, Pavel
2016-12-21
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Frequency-encoded photonic qubits for scalable quantum information processing
Lukens, Joseph M.; Lougovski, Pavel
2016-12-21
Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less
Quantum communication complexity advantage implies violation of a Bell inequality.
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-22
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs.
Quantum communication complexity advantage implies violation of a Bell inequality
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-01-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Quantum communication complexity advantage implies violation of a Bell inequality
NASA Astrophysics Data System (ADS)
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs.
Multiplexed communication over a high-speed quantum channel
Heurs, M.; Webb, J. G.; Dunlop, A. E.; Harb, C. C.; Huntington, E. H.; Ralph, T. C.
2010-03-15
In quantum information systems it is of particular interest to consider the best way in which to use the nonclassical resources consumed by that system. Quantum communication protocols are integral to quantum information systems and are among the most promising near-term applications of quantum information science. Here we show that a multiplexed, digital quantum communications system supported by a comb of vacuum squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analog band width. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4-GHz comb of vacuum squeezing produced by a subthreshold optical parametric oscillator, as required for such a quantum communications channel. We also demonstrate multiplexed communication on that channel.
Effects of nonequilibrium noise on a quantum memory encoded in Majorana zero modes
NASA Astrophysics Data System (ADS)
Konschelle, François; Hassler, Fabian
2013-08-01
In order to increase the coherence time of topological quantum memories in systems with Majorana zero modes, it has recently been proposed to encode the logical qubit states in nonlocal Majorana operators which are immune to localized excitations involving the unpaired Majorana modes. In this encoding, a logical error only happens when the quasiparticles, subsequent to their excitation, travel a distance of the order of the spacing between the Majorana modes. Here, we study the decay time of a quantum memory encoded in a clean topological nanowire interacting with an environment with a particular emphasis on the propagation of the quasiparticles above the gap. We show that the nonlocal encoding does not provide a significantly longer coherence time than the local encoding. In particular, the characteristic speed of propagation is of the order of the Fermi velocity of the nanowire and not given by the much slower group velocity of quasiparticles which are excited just above the gap.
Fault-tolerant Remote Quantum Entanglement Establishment for Secure Quantum Communications
NASA Astrophysics Data System (ADS)
Tsai, Chia-Wei; Lin, Jason
2016-07-01
This work presents a strategy for constructing long-distance quantum communications among a number of remote users through collective-noise channel. With the assistance of semi-honest quantum certificate authorities (QCAs), the remote users can share a secret key through fault-tolerant entanglement swapping. The proposed protocol is feasible for large-scale distributed quantum networks with numerous users. Each pair of communicating parties only needs to establish the quantum channels and the classical authenticated channels with his/her local QCA. Thus, it enables any user to communicate freely without point-to-point pre-establishing any communication channels, which is efficient and feasible for practical environments.
Discord as a quantum resource for bi-partite communication
Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Lam, Ping Koy; Gu, Mile; Modi, Kavan; Vedral, Vlatko; Ralph, Timothy C.
2014-12-04
Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this ‘quantum advantage’.
Quantum receiver beyond the standard quantum limit of coherent optical communication.
Tsujino, Kenji; Fukuda, Daiji; Fujii, Go; Inoue, Shuichiro; Fujiwara, Mikio; Takeoka, Masahiro; Sasaki, Masahide
2011-06-24
The most efficient modern optical communication is known as coherent communication, and its standard quantum limit is almost reachable with current technology. Though it has been predicted for a long time that this standard quantum limit could be overcome via quantum mechanically optimized receivers, such a performance has not been experimentally realized so far. Here we demonstrate the first unconditional evidence surpassing the standard quantum limit of coherent optical communication. We implement a quantum receiver with a simple linear optics configuration and achieve more than 90% of the total detection efficiency of the system. Such an efficient quantum receiver will provide a new way of extending the distance of amplification-free channels, as well as of realizing quantum information protocols based on coherent states and the loophole-free test of quantum mechanics.
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-02
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
One half of Professor Xiong's effort will investigate robust timing synchronization schemes for dynamically varying characteristics of aviation communication channels. The other half of his time will focus on efficient modulation and coding study for the emerging quantum communications.
Quantum coordinated multi-point communication based on entanglement swapping
NASA Astrophysics Data System (ADS)
Du, Gang; Shang, Tao; Liu, Jian-wei
2017-05-01
In a quantum network, adjacent nodes can communicate with each other point to point by using pre-shared Einsten-Podolsky-Rosen (EPR) pairs, and furthermore remote nodes can establish entanglement channels by using quantum routing among intermediate nodes. However, with the rapid development of quantum networks, the demand of various message transmission among nodes inevitably emerges. In order to realize this goal and extend quantum networks, we propose a quantum coordinated multi-point communication scheme based on entanglement swapping. The scheme takes full advantage of EPR pairs between adjacent nodes and performs multi-party entanglement swapping to transmit messages. Considering various demands of communication, all nodes work cooperatively to realize different message transmission modes, including one to many, many to one and one to some. Scheme analysis shows that the proposed scheme can flexibly organize a coordinated group and efficiently use EPR resources, while it meets basic security requirement under the condition of coordinated communication.
Dimensional discontinuity in quantum communication complexity at dimension seven
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed
2017-02-01
Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.
Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
Goto, Hayato
2014-12-16
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.
Step-by-step magic state encoding for efficient fault-tolerant quantum computation
Goto, Hayato
2014-01-01
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Udalov, S.
1974-01-01
This study investigated the configuration and integration of a wideband communication system with a Ku-band rendezvous radar system. The goal of the study was to provide as much commonality between the two systems as possible. The antenna design was described with the only change being the requirement for dual polarization (linear for the radar system and circular for the communication system).
Satellite quantum communication towards GEO distances
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; Dequal, Daniele; Tomasin, M.; Schiavon, M.; Vedovato, F.; Bacco, Davide; Gaiarin, Simone; Bianco, Giuseppe; Luceri, Vincenza; Villoresi, Paolo
2016-04-01
We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.
Long-distance measurement-device-independent multiparty quantum communication.
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-06
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.
Long-Distance Measurement-Device-Independent Multiparty Quantum Communication
NASA Astrophysics Data System (ADS)
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-01
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.
Quantum image encryption based on generalized Arnold transform and double random-phase encoding
NASA Astrophysics Data System (ADS)
Zhou, Nan Run; Hua, Tian Xiang; Gong, Li Hua; Pei, Dong Ju; Liao, Qing Hong
2015-04-01
A quantum realization of the generalized Arnold transform is designed. A novel quantum image encryption algorithm based on generalized Arnold transform and double random-phase encoding is proposed. The pixels are scrambled by the generalized Arnold transform, and the gray-level information of images is encoded by the double random-phase operations. The keys of the encryption algorithm include the independent parameters of coefficients matrix, iterative times and classical binary sequences, and thus, the key space is extremely large. Numerical simulations and theoretical analyses demonstrate that the proposed algorithm with good feasibility and effectiveness has lower computational complexity than its classical counterpart.
Comment on "Secure quantum private information retrieval using phase-encoded queries"
NASA Astrophysics Data System (ADS)
Shi, Run-hua; Mu, Yi; Zhong, Hong; Zhang, Shun
2016-12-01
In this Comment, we reexamine the security of phase-encoded quantum private query (QPQ). We find that the current phase-encoded QPQ protocols, including their applications, are vulnerable to a probabilistic entangle-and-measure attack performed by the owner of the database. Furthermore, we discuss how to overcome this security loophole and present an improved cheat-sensitive QPQ protocol without losing the good features of the original protocol.
A two-step quantum secure direct communication protocol with hyperentanglement
NASA Astrophysics Data System (ADS)
Gu, Bin; Huang, Yu-Gai; Fang, Xia; Zhang, Cheng-Yi
2011-10-01
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
Transfer and teleportation of quantum states encoded in decoherence-free subspace
Wei Hua; Deng Zhijao; Zhang Xiaolong; Feng Mang
2007-11-15
Quantum state transfer and teleportation, with qubits encoded in internal states of atoms in cavities, among spatially separated nodes of a quantum network in a decoherence-free subspace are proposed, based on a cavity-assisted interaction with single-photon pulses. We show in detail the implementation of a logic-qubit Hadamard gate and a two-logic-qubit conditional gate, and discuss the experimental feasibility of our scheme.
Lossless quantum data compression and secure direct communication
NASA Astrophysics Data System (ADS)
Boström, Kim
2004-07-01
This thesis deals with the encoding and transmission of information through a quantum channel. A quantum channel is a quantum mechanical system whose state is manipulated by a sender and read out by a receiver. The individual state of the channel represents the message. The two topics of the thesis comprise 1) the possibility of compressing a message stored in a quantum channel without loss of information and 2) the possibility to communicate a message directly from one party to another in a secure manner, that is, a third party is not able to eavesdrop the message without being detected. The main results of the thesis are the following. A general framework for variable-length quantum codes is worked out. These codes are necessary to make lossless compression possible. Due to the quantum nature of the channel, the encoded messages are in general in a superposition of different lengths. It is found to be impossible to compress a quantum message without loss of information if the message is not apriori known to the sender. In the other case it is shown that lossless quantum data compression is possible and a lower bound on the compression rate is derived. Furthermore, an explicit compression scheme is constructed that works for arbitrarily given source message ensembles. A quantum cryptographic protocol - the “ping-pong protocol” - is presented that realizes the secure direct communication of classical messages through a quantum channel. The security of the protocol against arbitrary eavesdropping attacks is proven for the case of an ideal quantum channel. In contrast to other quantum cryptographic protocols, the ping-pong protocol is deterministic and can thus be used to transmit a random key as well as a composed message. The protocol is perfectly secure for the transmission of a key, and it is quasi-secure for the direct transmission of a message. The latter means that the probability of successful eavesdropping exponentially decreases with the length
Quantum communication complexity of establishing a shared reference frame.
Rudolph, Terry; Grover, Lov
2003-11-21
We discuss the aligning of spatial reference frames from a quantum communication complexity perspective. This enables us to analyze multiple rounds of communication and give several simple examples demonstrating tradeoffs between the number of rounds and the type of communication. Using a distributed variant of a quantum computational algorithm, we give an explicit protocol for aligning spatial axes via the exchange of spin-1/2 particles which makes no use of either exchanged entangled states, or of joint measurements. This protocol achieves a worst-case fidelity for the problem of "direction finding" that is asymptotically equivalent to the optimal average case fidelity achievable via a single forward communication of entangled states.
Quantum Sensing and Communications Being Developed for Nanotechnology
NASA Technical Reports Server (NTRS)
Lekki, John D.; Nguyen, Quang-Viet
2005-01-01
An interdisciplinary quantum communications and sensing research effort for application in microdevices has been underway at the NASA Glenn Research Center since 2000. Researchers in Glenn's Instrumentation and Controls, Communications Technology, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that utilize quantum effects for sensing and communications. The emerging technology provides an innovative way to communicate faster and farther using less power and to sense, measure, and image environmental properties in ways that are not possible with existing technology.
Epistemic view of quantum states and communication complexity of quantum channels.
Montina, Alberto
2012-09-14
The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality. This special class has attracted strong interest very recently. The communication cost of each derived simulation is given by the mutual information between the quantum state and the classical state of the parent hidden variable theory. Finally, we find that the communication complexity for single qubits is smaller than 1.28 bits. The previous known upper bound was 1.85 bits.
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Alem, W. K.; Huth, G. K.; Simon, M. K.
1978-01-01
The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.
Quantum Cryptography, Quantum Communication, and Quantum Computer in a Noisy Environment
NASA Astrophysics Data System (ADS)
Nagata, Koji; Nakamura, Tadao
2017-07-01
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch's algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f( x). So we have another noisy function g( x). The relation between them is g( x) = f( x) ± O( 𝜖). Here O( 𝜖) ≪ 1 is the noise term. The goal is to determine the noisy function g( x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.
Nearly deterministic Bell measurement using quantum communication bus
NASA Astrophysics Data System (ADS)
Wang, Jia-Ming; Zhu, Meng-zheng; Wang, Dong; Ye, Liu
2017-03-01
We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.
Efficient deterministic secure quantum communication protocols using multipartite entangled states
NASA Astrophysics Data System (ADS)
Joy, Dintomon; Surendran, Supin P.; Sabir, M.
2017-06-01
We propose two deterministic secure quantum communication protocols employing three-qubit GHZ-like states and five-qubit Brown states as quantum channels for secure transmission of information in units of two bits and three bits using multipartite teleportation schemes developed here. In these schemes, the sender's capability in selecting quantum channels and the measuring bases leads to improved qubit efficiency of the protocols.
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Trumpis, B. D.; Udalov, S.
1975-01-01
Various aspects of space shuttle communication systems were studied. The following major areas were investigated: burst error correction for shuttle command channels; performance optimization and design considerations for Costas receivers with and without bandpass limiting; experimental techniques for measuring low level spectral components of microwave signals; and potential modulation and coding techniques for the Ku-band return link. Results are presented.
Quantum Encoding and Entanglement in Terms of Phase Operators Associated with Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Singh, Manu Pratap; Rajput, B. S.
2016-10-01
Realization of qudit quantum computation has been presented in terms of number operator and phase operators associated with one-dimensional harmonic oscillator and it has been demonstrated that the representations of generalized Pauli group, viewed in harmonic oscillator operators, allow the qudits to be explicitly encoded in such systems. The non-Hermitian quantum phase operators contained in decomposition of the annihilation and creation operators associated with harmonic oscillator have been analysed in terms of semi unitary transformations (SUT) and it has been shown that the non-vanishing analytic index for harmonic oscillator leads to an alternative class of quantum anomalies. Choosing unitary transformation and the Hermitian phase operator free from quantum anomalies, the truncated annihilation and creation operators have been obtained for harmonic oscillator and it has been demonstrated that any attempt of removal of quantum anomalies leads to absence of minimum uncertainty.
Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2016-02-01
In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.
Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.
Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J
2010-03-15
Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.
Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit.
Ulanov, Alexander E; Sychev, Demid; Pushkina, Anastasia A; Fedorov, Ilya A; Lvovsky, A I
2017-04-21
The transfer of quantum information between physical systems of a different nature is a central matter in quantum technologies. Particularly challenging is the transfer between discrete and continuous degrees of freedom of various harmonic oscillator systems. Here we implement a protocol for teleporting a continuous-variable optical qubit, encoded by means of low-amplitude coherent states, onto a discrete-variable, single-rail qubit-a superposition of the vacuum and single-photon optical states-via a hybrid entangled resource. We test our protocol on a one-dimensional manifold of the input qubit space and demonstrate the mapping onto the equator of the teleported qubit's Bloch sphere with an average fidelity of 0.83±0.04. Our work opens up the way to the wide application of quantum information processing techniques where discrete- and continuous-variable encodings are combined within the same optical circuit.
Quantum Teleportation Between Discrete and Continuous Encodings of an Optical Qubit
NASA Astrophysics Data System (ADS)
Ulanov, Alexander E.; Sychev, Demid; Pushkina, Anastasia A.; Fedorov, Ilya A.; Lvovsky, A. I.
2017-04-01
The transfer of quantum information between physical systems of a different nature is a central matter in quantum technologies. Particularly challenging is the transfer between discrete and continuous degrees of freedom of various harmonic oscillator systems. Here we implement a protocol for teleporting a continuous-variable optical qubit, encoded by means of low-amplitude coherent states, onto a discrete-variable, single-rail qubit—a superposition of the vacuum and single-photon optical states—via a hybrid entangled resource. We test our protocol on a one-dimensional manifold of the input qubit space and demonstrate the mapping onto the equator of the teleported qubit's Bloch sphere with an average fidelity of 0.83 ±0.04 . Our work opens up the way to the wide application of quantum information processing techniques where discrete- and continuous-variable encodings are combined within the same optical circuit.
Quantum communication in the presence of a horizon
NASA Astrophysics Data System (ADS)
Su, Daiqin; Ralph, T. C.
2014-10-01
Based on homodyne detection, we discuss how the presence of an event horizon affects quantum communication between an inertial partner, Alice, and a uniformly accelerated partner, Rob. We show that there exists a low frequency cutoff for Rob's homodyne detector that maximizes the signal to noise ratio and it approximately corresponds to the Unruh frequency. In addition, the low frequency cutoff which minimizes the conditional variance between Alice's input state and Rob's output state is also approximately equal to the Unruh frequency. Thus the Unruh frequency provides a natural low frequency cutoff in order to optimize quantum communication of both classical and quantum information between Alice and Rob.
Quantum data locking for high-rate private communication
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Lloyd, Seth
2015-03-01
We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.
Quantum error correction assisted by two-way noisy communication.
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H
2014-11-26
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Doubly infinite separation of quantum information and communication
NASA Astrophysics Data System (ADS)
Liu, Zi-Wen; Perry, Christopher; Zhu, Yechao; Koh, Dax Enshan; Aaronson, Scott
2016-01-01
We prove the existence of (one-way) communication tasks with a subconstant versus superconstant asymptotic gap, which we call "doubly infinite," between their quantum information and communication complexities. We do so by studying the exclusion game [C. Perry et al., Phys. Rev. Lett. 115, 030504 (2015), 10.1103/PhysRevLett.115.030504] for which there exist instances where the quantum information complexity tends to zero as the size of the input n increases. By showing that the quantum communication complexity of these games scales at least logarithmically in n , we obtain our result. We further show that the established lower bounds and gaps still hold even if we allow a small probability of error. However in this case, the n -qubit quantum message of the zero-error strategy can be compressed polynomially.
Noiseless loss suppression in quantum optical communication.
Mičuda, M; Straka, I; Miková, M; Dušek, M; Cerf, N J; Fiurášek, J; Ježek, M
2012-11-02
We propose a protocol for conditional suppression of losses in direct quantum state transmission over a lossy quantum channel. The method works by noiselessly attenuating the input state prior to transmission through a lossy channel followed by noiseless amplification of the output state. The procedure does not add any noise; hence, it keeps quantum coherence. We experimentally demonstrate it in the subspace spanned by vacuum and single-photon states, and consider its general applicability.
Optimal approach to quantum communication using dynamic programming
Jiang, Liang; Taylor, Jacob M.; Khaneja, Navin; Lukin, Mikhail D.
2007-01-01
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states. PMID:17959783
Practical repeaters for ultralong-distance quantum communication
NASA Astrophysics Data System (ADS)
Vinay, Scott E.; Kok, Pieter
2017-05-01
Quantum repeaters enable long-range quantum communication in the presence of attenuation. Here we propose a method to construct a robust quantum repeater network using only existing technology. We combine the ideas of brokered graph-state construction with double-heralded entanglement generation to form a system that is able to perform all parts of the procedure in a way that is highly tolerant to photon loss and imperfections in detectors. We show that when used in quantum key distribution this leads to secure kilohertz bit rates over intercontinental distances.
A universal quantum information processor for scalable quantum communication and networks.
Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao
2014-10-15
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks.
A universal quantum information processor for scalable quantum communication and networks
Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao
2014-01-01
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Udalov, S.; Huth, G. K.
1977-01-01
The analysis of the forward link signal structure for the shuttle orbiter Ku-band communication system was carried out, based on the assumptions of a 3.03 Mcps PN code. It is shown that acquisition requirements for the forward link can be met at the acquisition threshold C/N0 sub 0 value of about 60 dB-Hz, which corresponds to a bit error rate (BER) of about 0.001. It is also shown that the tracking threshold for the forward link is at about 57 dB-Hz. The analysis of the bent pipe concept for the orbiter was carried out, along with the comparative analysis of the empirical data. The complexity of the analytical approach warrants further investigation to reconcile the empirical and theoretical results. Techniques for incorporating a text and graphics capability into the forward link data stream are considered and a baseline configuration is described.
Error filtration and entanglement purification for quantum communication
Gisin, N.; Linden, N.; Massar, S.; Popescu, S.
2005-07-15
The key realization that led to the emergence of the new field of quantum information processing is that quantum mechanics, the theory that describes microscopic particles, allows the processing of information in fundamentally new ways. But just as in classical information processing, errors occur in quantum information processing, and these have to be corrected. A fundamental breakthrough was the realization that quantum error correction is in fact possible. However, most work so far has not been concerned with technological feasibility, but rather with proving that quantum error correction is possible in principle. Here we describe a method for filtering out errors and entanglement purification which is particularly suitable for quantum communication. Our method is conceptually new, and, crucially, it is easy to implement in a wide variety of physical systems with present-day technology and should therefore be of wide applicability.
Quantum ratchets for quantum communication with optical superlattices
Romero-Isart, Oriol; Garcia-Ripoll, Juan Jose
2007-11-15
We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits us to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.
NASA Astrophysics Data System (ADS)
Gao, Gan
2014-12-01
Recently, a communication protocol called controlled bidirectional quantum secret direct communication for mobile networks was proposed by Chou et al (2014 Mobile Netw. Appl. 19 121). We study the security of the proposed communication protocol and find that it is not secure. The controller, Telecom Company, may eavesdrop secret messages from mobile devices without being detected. Finally, we give a possible improvement of the communication protocol.
Optimization of Communication in Noisy Quantum Channels
2002-09-30
University Press, 2000). [47] Niu and Griffiths, “Two Qubit Copying Machine for Economical Quantum Eaves- dropping” quant-ph/9810008 [48] M . Ohya , D. Petz...and N. Watanabe, “On capacities of quantum channels” Prob. Math. Stats. 17, 170–196 (1997). 15 [49] M . Ohya and D. Petz, Quantum Entropy and Its Use...32, 62] that this behavior is generic for non-unital channels. Recently, the P.I. (with C. King and M . Nathanson) [31] showed that there are also
Encoding quantum information in a stabilized manifold of a superconducting cavity
NASA Astrophysics Data System (ADS)
Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.
Memory assisted free space quantum communication
NASA Astrophysics Data System (ADS)
Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden
2016-05-01
A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.
Communication theory of quantum systems. Ph.D. Thesis, 1970
NASA Technical Reports Server (NTRS)
Yuen, H. P. H.
1971-01-01
Communication theory problems incorporating quantum effects for optical-frequency applications are discussed. Under suitable conditions, a unique quantum channel model corresponding to a given classical space-time varying linear random channel is established. A procedure is described by which a proper density-operator representation applicable to any receiver configuration can be constructed directly from the channel output field. Some examples illustrating the application of our methods to the development of optical quantum channel representations are given. Optimizations of communication system performance under different criteria are considered. In particular, certain necessary and sufficient conditions on the optimal detector in M-ary quantum signal detection are derived. Some examples are presented. Parameter estimation and channel capacity are discussed briefly.
Quantum secure direct communication with frequency coding scheme
NASA Astrophysics Data System (ADS)
Zhao, Xue-Liang; Ruan, Dong
2016-11-01
Quantum secure direct communication (QSDC) is an important branch of quantum cryptography. It can transmit secret information directly without establishing a key first, unlike quantum key distribution which requires this precursive event. One of the most highlighted QSDC protocol is the Two-step protocol. This paper will focus on proposing a frequency coding scheme in the Two-step protocol, while retaining other contents of the QSDC protocol. This new coding scheme will significantly increase the protocol's ability against channel noise and loss, and provides an efficient protocol for secure direct quantum communication in a noisy environment. Besides, the frequency coding technology is also easy to understand and highly practical. After numerically simulating the performance of the protocol in a noisy channel, the results showed that the scheme was robust against channel noise and loss.
Intrinsic quantum correlations of weak coherent states for quantum communication
Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook
2011-03-15
Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.
Improved Protocols of Secure Quantum Communication Using W States
NASA Astrophysics Data System (ADS)
Shukla, Chitra; Banerjee, Anindita; Pathak, Anirban
2013-06-01
Recently, Hwang et al. (Eur. Phys. J. D 61:785, 2011) and Yuan et al. (Int. J. Theor. Phys. 50:2403, 2011) have proposed two efficient protocols of secure quantum communication using 3-qubit and 4-qubit symmetric W state respectively. These two dense coding based protocols are generalized and their efficiencies are considerably improved. Simple bounds on the qubit efficiency of deterministic secure quantum communication (DSQC) and quantum secure direct communication (QSDC) protocols are obtained and it is shown that dense coding is not essential for designing of maximally efficient DSQC and QSDC protocols. This fact is used to design maximally efficient protocols of DSQC and QSDC using 3-qubit and 4-qubit W states.
Minimal classical communication and measurement complexity for quantum information splitting
NASA Astrophysics Data System (ADS)
Zhang, Zhan-jun; Cheung, Chi-Yee
2008-01-01
We present two quantum information splitting schemes using respectively tripartite GHZ and asymmetric W states as quantum channels. We show that if the secret state is chosen from a special ensemble and known to the sender (Alice), then she can split and distribute it to the receivers Bob and Charlie by performing only a single-qubit measurement and broadcasting a one-cbit message. It is clear that no other schemes could possibly achieve the same goal with simpler measurement and less classical communication. In comparison, existing schemes work for arbitrary quantum states which need not be known to Alice; however she is required to perform a two-qubit Bell measurement and communicate a two-cbit message. Hence there is a trade-off between flexibility and measurement complexity plus classical resource. In situations where our schemes are applicable, they will greatly reduce the measurement complexity and at the same time cut the communication overhead by one half.
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
NASA Astrophysics Data System (ADS)
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2017-04-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Efficient Quantum Private Communication Based on Dynamic Control Code Sequence
NASA Astrophysics Data System (ADS)
Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin
2016-12-01
Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.
Communication: Fully coherent quantum state hopping
Martens, Craig C.
2015-10-14
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Communication: Fully coherent quantum state hopping.
Martens, Craig C
2015-10-14
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) "probability" of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Experimental characterization of Gaussian quantum-communication channels
Di Guglielmo, James; Hage, Boris; Franzen, Alexander; Schnabel, Roman; Fiurasek, Jaromir
2007-07-15
We present a full experimental characterization of continuous-variable quantum-communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states, and the logarithmic negativity and purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.
Natural Mode Entanglement as a Resource for Quantum Communication
Heaney, Libby; Vedral, Vlatko
2009-11-13
Natural particle-number entanglement resides between spatial modes in coherent ultracold atomic gases. However, operations on the modes are restricted by a superselection rule that forbids coherent superpositions of different particle numbers. This seemingly prevents mode entanglement being used as a resource for quantum communication. In this Letter, we demonstrate that mode entanglement of a single massive particle can be used for dense coding and quantum teleportation despite the superselection rule. In particular, we provide schemes where the dense coding linear photonic channel capacity is reached without a shared reservoir and where the full quantum channel capacity is achieved if both parties share a coherent particle reservoir.
Hybrid-system approach to fault-tolerant quantum communication
NASA Astrophysics Data System (ADS)
Stephens, Ashley M.; Huang, Jingjing; Nemoto, Kae; Munro, William J.
2013-05-01
We present a layered hybrid-system approach to quantum communication that involves the distribution of a topological cluster state throughout a quantum network. Photon loss and other errors are suppressed by optical multiplexing and entanglement purification. The scheme is scalable to large distances, achieving an end-to-end rate of 1 kHz with around 50 qubits per node. We suggest a potentially suitable implementation of an individual node composed of erbium spins (single atom or ensemble) coupled via flux qubits to a microwave resonator, allowing for deterministic local gates, stable quantum memories, and emission of photons in the telecom regime.
NASA Astrophysics Data System (ADS)
Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2012-11-01
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called `one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850nm.
Clarke, Patrick J.; Collins, Robert J.; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2012-01-01
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called ‘one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm. PMID:23132024
Clarke, Patrick J; Collins, Robert J; Dunjko, Vedran; Andersson, Erika; Jeffers, John; Buller, Gerald S
2012-01-01
Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.
A one-way quantum amplifier for long-distance quantum communication
NASA Astrophysics Data System (ADS)
Elemy, Hany
2017-05-01
In this paper, a model for single photon amplification based on cluster-state quantum computation is proposed. A rescaling of the probability amplitudes of a deteriorated qubit in favor of the one-photon component will define the amplifier's gain. Unlike the heralded quantum amplifiers, the probabilistic success of the whole process will not depend on the successful detection of a heralding signal. Instead, the whole procedure will rely upon a single-qubit measurement, which is simpler compared to any two-qubit interaction gate in the heralded quantum amplifiers. The proposed model can be used as a qubit protector against propagation losses in long-distance quantum communication networks.
Authenticated communication from quantum readout of PUFs
NASA Astrophysics Data System (ADS)
Škorić, Boris; Pinkse, Pepijn W. H.; Mosk, Allard P.
2017-08-01
Quantum readout of physical unclonable functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: A verifier can check if received classical data were sent by the PUF holder. We call this modification QR-d or, in the case of the optical-PUF implementation, QSA-d. We discuss how QSA-d can be operated in a parallel way. We also present a protocol for authenticating quantum states.
Communication: quantum dynamics in classical spin baths.
Sergi, Alessandro
2013-07-21
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
Communication: Quantum dynamics in classical spin baths
NASA Astrophysics Data System (ADS)
Sergi, Alessandro
2013-07-01
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
Quantum-secure covert communication on bosonic channels
Bash, Boulat A.; Gheorghe, Andrei H.; Patel, Monika; Habif, Jonathan L.; Goeckel, Dennis; Towsley, Don; Guha, Saikat
2015-01-01
Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth—that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary—for example, thermal noise from blackbody radiation—the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary. PMID:26478089
Quantum-secure covert communication on bosonic channels.
Bash, Boulat A; Gheorghe, Andrei H; Patel, Monika; Habif, Jonathan L; Goeckel, Dennis; Towsley, Don; Guha, Saikat
2015-10-19
Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.
Quantum-secure covert communication on bosonic channels
NASA Astrophysics Data System (ADS)
Bash, Boulat A.; Gheorghe, Andrei H.; Patel, Monika; Habif, Jonathan L.; Goeckel, Dennis; Towsley, Don; Guha, Saikat
2015-10-01
Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.
A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide
NASA Astrophysics Data System (ADS)
Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.
2016-05-01
Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits.
A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide
Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.
2016-01-01
Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits. PMID:27142992
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Li, Xiao-lan; Sang, Ming-huang; Nie, Yi-you; Wang, Zi-sheng
2013-12-01
A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.
High-base vector beam encoding/decoding for visible-light communications.
Zhao, Yifan; Wang, Jian
2015-11-01
Polarization is a basic property of light. Different from well-known linear, circular, and elliptical polarizations, which are spatially homogeneous, a vector light beam with spatially variant polarization states has received increasing interest for its expanded functionalities. In this Letter, we present a visible-light communication link exploiting high-base vector beam encoding/decoding. Using a single phase-only spatial light modulator, we generate 16 states of vector beams representing hexadecimal numbers. In the visible-light communication link experiment, we transmit a random high-base number sequence with 10,000 hexadecimal numbers and a 64×64 pixel Lena gray image with 8192 hexadecimal numbers. The bit error rate is evaluated, and zero error among all received hexadecimal numbers is achieved, showing favorable link communication performance using the high-base vector beam encoding/decoding.
Protocol for direct counterfactual quantum communication.
Salih, Hatim; Li, Zheng-Hong; Al-Amri, M; Zubairy, M Suhail
2013-04-26
It has long been assumed in physics that for information to travel between two parties in empty space, "Alice" and "Bob," physical particles have to travel between them. Here, using the "chained" quantum Zeno effect, we show how, in the ideal asymptotic limit, information can be transferred between Alice and Bob without any physical particles traveling between them.
Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, ShiBin; Li, Jian; Yan, LiLi
2014-10-01
This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states (termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.
Photon Pairs for Scalable Quantum Communication with Atomic Ensembles
NASA Astrophysics Data System (ADS)
Kuzmich, A.; Bowen, W. P.; Boozer, A. D.; Boca, A.; Chou, C.; Duan, L.-M.; Kimble, H. J.
2003-05-01
Quantum information science attempts to exploit capabilities from the quantum realm to accomplish tasks that are otherwise impossible in the classical domain. In this regard, a significant advance is the invention of a protocol by Duan, Lukin, Cirac, and Zoller (DLCZ) for the realization of scalable long distance quantum communication and the distribution of entanglement over quantum networks [1]. Here we report the first enabling step in the realization of the protocol of DLCZ, namely the observation of quantum correlations for photon pairs generated in the collective emission from an atomic ensemble. An optically thick sample of three-level atoms in a lambda-configuration is exploited to produce correlated photons. The atomic sample for our experiment is provided by Cesium atoms in a magneto-optical trap (MOT). We find a significant violation of the Cauchy-Schwarz inequality clearly demonstrating the nonclassical character of the correlations between the two photons generated by sequential (write,read) beams. Moreover, the measured coincidence rates clearly demonstrate the cooperative nature of the emission process. These capabilities should help to enable other advances in the field of quantum information, including the implementation of quantum memory and fully controllable single-photon sources, which, combined together, pave the avenue for realization of universal quantum computation. [1] L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
Free-space quantum cryptography with quantum and telecom communication channels
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Takayama, Yoshihisa; Klaus, Werner; Kunimori, Hiroo; Fujiwara, Mikio; Sasaki, Masahide
2008-07-01
Quantum cryptography is a new technique that uses the laws of physics to transmit information securely. In such systems, the vehicle to transfer quantum information is a single photon. However, the transmission distance is limited by the absorption of photons in an optical fiber in which the maximum demonstrated range is about 100 km. Free-space quantum cryptography between a ground station and a satellite is a way of sending the quantum information further distances than that with optical fibers since there is no birefringence effect in the atmosphere. At the National Institute of Information and Communications Technology (NICT), the laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. For such space communication links, free-space quantum cryptography is considered to be an important application in the future. We have developed a prototype system for free-space quantum cryptography using a weak coherent light and a telecom communication channel. The preliminary results are presented.
Measurement-based noiseless linear amplification for quantum communication
NASA Astrophysics Data System (ADS)
Chrzanowski, Helen M.; Walk, Nathan; Assad, Syed M.; Janousek, Jiri; Hosseini, Sara; Ralph, Timothy C.; Symul, Thomas; Lam, Ping Koy
2014-04-01
Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require advanced experimental techniques such as noiseless amplification. Recently, it was shown that the benefits of noiseless amplification could be extracted by performing a post-selective filtering of the measurement record to improve the performance of quantum key distribution. We apply this protocol to entanglement degraded by transmission loss of up to the equivalent of 100 km of optical fibre. We measure an effective entangled resource stronger than that achievable by even a maximally entangled resource passively transmitted through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime. The measurement-based noiseless linear amplifier offers two advantages over its physical counterpart: ease of implementation and near-optimal probability of success. It should provide an effective and versatile tool for a broad class of entanglement-based quantum communication protocols.
Relativistic quantum channel of communication through field quanta
Cliche, M.; Kempf, A.
2010-01-15
Setups in which a system Alice emits field quanta that a system Bob receives are prototypical for wireless communication and have been extensively studied. In the most basic setup, Alice and Bob are modeled as Unruh-DeWitt detectors for scalar quanta, and the only noise in their communication is due to quantum fluctuations. For this basic setup, we construct the corresponding information-theoretic quantum channel. We calculate the classical channel capacity as a function of the spacetime separation, and we confirm that the classical as well as the quantum channel capacity are strictly zero for spacelike separations. We show that this channel can be used to entangle Alice and Bob instantaneously. Alice and Bob are shown to extract this entanglement from the vacuum through a Casimir-Polder effect.
Protocol for Direct Counterfactual Quantum Communication
NASA Astrophysics Data System (ADS)
Salih, Hatim; Li, Zheng-Hong; Al-Amri, M.; Zubairy, M. Suhail
2013-04-01
It has long been assumed in physics that for information to travel between two parties in empty space, “Alice” and “Bob,” physical particles have to travel between them. Here, using the “chained” quantum Zeno effect, we show how, in the ideal asymptotic limit, information can be transferred between Alice and Bob without any physical particles traveling between them.
Quantum communication network utilizing quadripartite entangled states of optical field
Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde
2009-10-15
We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.
Quantum Sensing and Communications Being Developed for Nanotechnology
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Seibert, Marc A.
2003-01-01
An interdisciplinary quantum communications and sensing research effort has been underway at the NASA Glenn Research Center since the summer of 2000. Researchers in the Communications Technology, Instrumentation and Controls, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that use the principle of quantum entanglement (QE). This work is supported principally by the Nanotechnology Base R&T program at Glenn. As applied to communications and sensing, QE is an emerging technology that holds promise as a new and innovative way to communicate faster and farther, and to sense, measure, and image environmental properties in ways that are not possible with existing technology. Quantum entangled photons are "inseparable" as described by a wave function formalism. For two entangled photons, the term "inseparable" means that one cannot describe one photon without completely describing the other. This inseparability gives rise to what appears as "spooky," or nonintuitive, behavior because of the quantum nature of the process. For example, two entangled photons of lower energy can be created simultaneously from a single photon of higher energy in a process called spontaneous parametric down-conversion. Our research is focused on the use of polarization-entangled photons generated by passing a high-energy (blue) photon through a nonlinear beta barium borate crystal to generate two red photons that have orthogonal, but entangled, polarization states. Although the actual polarization state of any one photon is not known until it is measured, the act of measuring the polarization of one photon completely determines the polarization state of its twin because of entanglement. This unique relationship between the photons provides extra information about the system. For example, entanglement makes it easy to distinguish entangled photons from other photons impinging on a detector. For many other applications, ranging from quantum
High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits
NASA Astrophysics Data System (ADS)
Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan
2016-11-01
Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.
NASA Astrophysics Data System (ADS)
Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong
2014-05-01
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.
Towards communication-efficient quantum oblivious key distribution
NASA Astrophysics Data System (ADS)
Panduranga Rao, M. V.; Jakobi, M.
2013-01-01
Symmetrically private information retrieval, a fundamental problem in the field of secure multiparty computation, is defined as follows: A database D of N bits held by Bob is queried by a user Alice who is interested in the bit Db in such a way that (1) Alice learns Db and only Db and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.022301 83, 022301 (2011)] proposed a protocol for oblivious transfer using well-known quantum key device (QKD) techniques to establish an oblivious key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like the impossibility of perfectly distinguishing nonorthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of the Scarani-Acin-Ribordy-Gisin 2004 protocol). However, their quantum oblivious key distribution (QOKD) protocol requires a communication complexity of O(NlogN). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.
Three-party quantum secure direct communication against collective noise
NASA Astrophysics Data System (ADS)
He, Ye-Feng; Ma, Wen-Ping
2017-10-01
Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.
An Online Banking System Based on Quantum Cryptography Communication
NASA Astrophysics Data System (ADS)
Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng
2014-07-01
In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.
Impact of turbulence in long range quantum and classical communications.
Capraro, Ivan; Tomaello, Andrea; Dall'Arche, Alberto; Gerlin, Francesca; Ursin, Ruper; Vallone, Giuseppe; Villoresi, Paolo
2012-11-16
The study of the free-space distribution of quantum correlations is necessary for any future application of quantum and classical communication aiming to connect two remote locations. Here we study the propagation of a coherent laser beam over 143 km (between Tenerife and La Palma Islands of the Canary archipelagos). By attenuating the beam we also studied the propagation at the single photon level. We investigated the statistic of arrival of the incoming photons and the scintillation of the beam. From the analysis of the data, we propose the exploitation of turbulence to improve the signal to noise ratio of the signal.
Partitioned-Interval Quantum Optical Communications Receiver
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.
2013-01-01
The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.
Measurement-based quantum communication with resource states generated by entanglement purification
NASA Astrophysics Data System (ADS)
Wallnöfer, J.; Dür, W.
2017-01-01
We investigate measurement-based quantum communication with noisy resource states that are generated by entanglement purification. We consider the transmission of encoded information via noisy quantum channels using a measurement-based implementation of encoding, error correction, and decoding. We show that such an approach offers advantages over direct transmission, gate-based error correction, and measurement-based schemes with direct generation of resource states. We analyze the noise structure of resource states generated by entanglement purification and show that a local error model, i.e., noise acting independently on all qubits of the resource state, is a good approximation in general, and provides an exact description for Greenberger-Horne-Zeilinger states. The latter are resources for a measurement-based implementation of error-correction codes for bit-flip or phase-flip errors. This provides an approach to link the recently found very high thresholds for fault-tolerant measurement-based quantum information processing based on local error models for resource states with error thresholds for gate-based computational models.
Quantum communication using a multiqubit entangled channel
NASA Astrophysics Data System (ADS)
Ghose, Shohini; Hamel, Angele
2015-12-01
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Quantum communication using a multiqubit entangled channel
Ghose, Shohini; Hamel, Angele
2015-12-31
We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.
Communication Tasks with Infinite Quantum-Classical Separation.
Perry, Christopher; Jain, Rahul; Oppenheim, Jonathan
2015-07-17
Quantum resources can be more powerful than classical resources-a quantum computer can solve certain problems exponentially faster than a classical computer, and computing a function of two parties' inputs can be done with exponentially less communication with quantum messages than with classical ones. Here we consider a task between two players, Alice and Bob where quantum resources are infinitely more powerful than their classical counterpart. Alice is given a string of length n, and Bob's task is to exclude certain combinations of bits that Alice might have. If Alice must send classical messages, then she must reveal nearly n bits of information to Bob, but if she is allowed to send quantum bits, the amount of information she must reveal goes to zero with increasing n. Next, we consider a version of the task where the parties may have access to entanglement. With this assistance, Alice only needs to send a constant number of bits, while without entanglement, the number of bits Alice must send grows linearly with n. The task is related to the Pusey-Barrett-Rudolph theorem which arises in the context of the foundations of quantum theory.
General bounds for sender-receiver capacities in multipoint quantum communications
NASA Astrophysics Data System (ADS)
Laurenza, Riccardo; Pirandola, Stefano
2017-09-01
We investigate the maximum rates for transmitting quantum information, distilling entanglement, and distributing secret keys between a sender and a receiver in a multipoint communication scenario, with the assistance of unlimited two-way classical communication involving all parties. First we consider the case where a sender communicates with an arbitrary number of receivers, a so-called quantum broadcast channel. Here we also provide a simple analysis in the bosonic setting where we consider quantum broadcasting through a sequence of beamsplitters. Then, we consider the opposite case where an arbitrary number of senders communicate with a single receiver, a so-called quantum multiple-access channel. Finally, we study the general case of all-in-all quantum communication where an arbitrary number of senders communicate with an arbitrary number of receivers. Since our bounds are formulated for quantum systems of arbitrary dimension, they can be applied to many different physical scenarios involving multipoint quantum communication.
Fast quantum communication in linear networks
NASA Astrophysics Data System (ADS)
Jacobs, Kurt; Wu, Rebing; Wang, Xiaoting; Ashhab, Sahel; Chen, Qi-Ming; Rabitz, Herschel
2016-05-01
Here we consider the speed at which quantum information can be transferred between the nodes of a linear network. Because such nodes are linear oscillators, this speed is also important in the cooling and state preparation of mechanical oscillators, as well as in frequency conversion. We show that if there is no restriction on the size of the linear coupling between two oscillators, then there exist control protocols that will swap their respective states with high fidelity within a time much shorter than a single oscillation period. Standard gradient search methods fail to find these fast protocols. We were able to do so by augmenting standard search methods with a path-tracing technique, demonstrating that this technique has remarkable power to solve time-optimal control problems, as well as confirming the highly challenging nature of these problems. As a further demonstration of the power of path tracing, first introduced by Moore Tibbets et al. (Phys. Rev. A, 86 (2012) 062309), we apply it to the generation of entanglement in a linear network.
Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay
Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt
2003-01-01
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378
Experimental bit commitment based on quantum communication and special relativity.
Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H
2013-11-01
Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.
Quantum cryptography for secure free-space communications
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.
1999-03-01
The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg`s uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of {approximately}1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD.
Quantum cryptography for secure free-space communications
NASA Astrophysics Data System (ADS)
Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Lamoreaux, Steve K.; Luther, Gabriel G.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen
1999-04-01
The secure distribution of the secret random bit sequences known as 'key' material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non- orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. We have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of approximately 1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.
Experimental multiplexing of quantum key distribution with classical optical communication
NASA Astrophysics Data System (ADS)
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei
2015-02-01
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.
Experimental multiplexing of quantum key distribution with classical optical communication
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun Pan, Jian-Wei
2015-02-23
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.
Free-space optical communications using encoding of data on different orbital-angular-momentum modes
NASA Astrophysics Data System (ADS)
Willner, Asher J.; Ren, Yongxiong; Xie, Guodong; Li, Long; Cao, Yinwen; Zhao, Zhe; Liao, Peicheng; Wang, Zhe; Yan, Yan; Ahmed, Nisar; Liu, Cong; Tur, Moshe; Willner, Alan E.
2016-03-01
Free-space optical communications can play a significant role in line-of-sight links. In general, data can be encoded on the amplitude, phase, or temporal position of the optical wave. Importantly, there are environments for which ever-more information is desired for a given amount of optical energy. This can be accomplished if there are more degrees-of-freedom that the wave can occupy to provide higher energy efficiency for a given capacity (i.e., bits/photon). Traditionally, free-space optical links have used only a single beam, such that there was little opportunity for a wave to occupy more than one spatial location, thereby not allowing the spatial domain to be used for data encoding. Recently, space- and mode-multiplexing has been demonstrated to simultaneously transmit multiple data-carrying free-space beams. Each spatially overlapping mode was orthogonal to other modes and carried a unique amount of orbital-angular-momentum (OAM). In this paper, we consider that OAM modes could be a data-encoding domain, such that a beam could uniquely occupy one of many modes, i.e., 4 modes would provide 4 possible states and double the bits of information for the same amount of energy. In the past, such OAM-based encoding was shown at kHz data rates. We will present the architecture and experimental results for OAM-based data encoding for a free-space 1.55-μm data link under different system parameters. Key features of the results include: (a) encoding on several modes is accomplished using a fast switch, and (b) low bit-error-rates are achieved at >Gbit/s, which is orders-of-magnitude faster than previous results.
Fault tolerant quantum secure direct communication with quantum encryption against collective noise
NASA Astrophysics Data System (ADS)
Huang, Wei; Wen, Qiao-Yan; Jia, Heng-Yue; Qin, Su-Juan; Gao, Fei
2012-10-01
We present two novel quantum secure direct communication (QSDC) protocols over different collective-noise channels. Different from the previous QSDC schemes over collective-noise channels, which are all source-encrypting protocols, our two protocols are based on channel-encryption. In both schemes, two authorized users first share a sequence of EPR pairs as their reusable quantum key. Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel. In theory, the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks. For checking eavesdropping, the two parties only need to perform two-particle measurements on the decoy states during each round. Finally, we make a security analysis of our two protocols and demonstrate that they are secure.
Design and analysis of communication protocols for quantum repeater networks
NASA Astrophysics Data System (ADS)
Jones, Cody; Kim, Danny; Rakher, Matthew T.; Kwiat, Paul G.; Ladd, Thaddeus D.
2016-08-01
We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on entanglement-distribution rate as a function of hardware parameters. We develop numerical simulations of quantum networks using different protocols, where the repeater hardware is modeled in terms of key performance parameters, such as photon generation rate and collection efficiency. These parameters are motivated by recent experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy centers in diamond. We find that a quantum-dot repeater with the newest protocol (‘MidpointSource’) delivers the highest entanglement-distribution rate for typical cases where there is low probability of establishing entanglement per transmission, and in some cases the rate is orders of magnitude higher than other schemes. Our simulation tools can be used to evaluate communication protocols as part of designing a large-scale quantum network.
Mahfuz, Mohammad U; Makrakis, Dimitrios; Mouftah, Hussein T
2014-09-01
In this paper, a comprehensive analysis of the sampling-based optimum signal detection in ideal (i.e., free) diffusion-based concentration-encoded molecular communication (CEMC) system has been presented. A generalized amplitude-shift keying (ASK)-based CEMC system has been considered in diffusion-based noise and intersymbol interference (ISI) conditions. Information is encoded by modulating the amplitude of the transmission rate of information molecules at the TN. The critical issues involved in the sampling-based receiver thus developed are addressed in detail, and its performance in terms of the number of samples per symbol, communication range, and transmission data rate is evaluated. ISI produced by the residual molecules deteriorates the performance of the CEMC system significantly, which further deteriorates when the communication range and/or the transmission data rate increase(s). In addition, the performance of the optimum receiver depends on the receiver's ability to compute the ISI accurately, thus providing a trade-off between receiver complexity and achievable bit error rate (BER). Exact and approximate detection performances have been derived. Finally, it is found that the sampling-based signal detection scheme thus developed can be applied to both binary and multilevel (M-ary) ASK-based CEMC systems, although M-ary systems suffer more from higher BER.
Using the nonseparability of vector beams to encode information for optical communication.
Milione, Giovanni; Nguyen, Thien An; Leach, Jonathan; Nolan, Daniel A; Alfano, Robert R
2015-11-01
In this work, it is experimentally demonstrated that the nonseparability of vector beams (e.g., radial and azimuthal polarization) can be used to encode information for optical communication. By exploiting the nonseparability of a vector beam's space and polarization degrees of freedom using conventional wave plates, it is shown that 2 bits of information can be encoded when applying the identity and three Pauli operators to its polarization degree of freedom. It is also shown that vector beams can be efficiently decoded with as low as 2.7% cross talk using a Mach-Zehnder interferometer that exploits a higher-order Pancharatnam-Berry phase and liquid crystal q-plates.
An Immune Quantum Communication Model for Dephasing Noise Using Four-Qubit Cluster State
NASA Astrophysics Data System (ADS)
Wang, Rui-jin; Li, Dong-fen; Qin, Zhi-guang
2016-01-01
Quantum secure communication of dephasing in the presence of noise is a hot spot in research in the field of quantum secure communication. Quantum steganography aims is to transfer secret information in public quantum channel. But because effect of annealing phase noise, quantum states which is need to transfer easily delayed or changed. So, quantum steganography is very meaning apply to transmit secret information covertly in quantum noisy channels. The article introduced dephasing noise impact on the physics of quantum state, through the theoretical research, construct the logic of quantum states to back the phase noise immunity, and construct the decoherence free subspace, It can guarantees fidelity secret information exchange through quantum communication model in a noisy environment.
Design the RS(255,239) encoder and interleaving in the space laser communication system
NASA Astrophysics Data System (ADS)
Lang, Yue; Tong, Shou-feng
2013-08-01
Space laser communication is researched by more and more countries. Space laser communication deserves to be researched. We can acquire higher transmission speed and better transmission quality between satellite and satellite, satellite and earth by setting up laser link. But in the space laser communication system，the reliability is under influences of many factors of atmosphere，detector noise, optical platform jitter and other factors. The intensity of the signal which is attenuated because of the long transmission distance is demanded to have higher intensity to acquire low BER. The channel code technology can enhance the anti-interference ability of the system. The theory of channel coding technology is that some redundancies is added to information codes. So it can make use of the checkout polynomial to correct errors at the sink port. It help the system to get low BER rate and coding gain. Reed-Solomon (RS) code is one of the channel code, and it is one kind of multi-ary BCH code, and it can correct both burst errors and random errors, and it is widely used in the error-control schemes. The new method of the RS encoder and interleaving based on the FPGA is proposed, aiming at satisfying the needs of the widely-used error control technology in the space laser communication field. An improved method for Finite Galois Field multiplier of encoding is proposed, and it is suitable for FPGA implementation. Comparison of the XOR gates cost between the optimization and original, the number of XOR gates is lessen more than 40% .Then give a new structure of interleaving by using the FPGA. By controlling the in-data stream and out-data stream of encoder, the asynchronous process of the whole frame is accomplished, while by using multi-level pipeline, the real-time transfer of the data is achieved. By controlling the read-address and write-address of the block RAM, the interleaving operation of the arbitrary depth is synchronously implemented. Compared with the normal
Long-distance quantum communication with neutral atoms
Razavi, Mohsen; Shapiro, Jeffrey H.
2006-04-15
The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT and NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT-NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with nonresolving detectors are 1/2 and 2/3, respectively.
Probabilistic authenticated quantum dialogue
NASA Astrophysics Data System (ADS)
Hwang, Tzonelih; Luo, Yi-Ping
2015-12-01
This work proposes a probabilistic authenticated quantum dialogue (PAQD) based on Bell states with the following notable features. (1) In our proposed scheme, the dialogue is encoded in a probabilistic way, i.e., the same messages can be encoded into different quantum states, whereas in the state-of-the-art authenticated quantum dialogue (AQD), the dialogue is encoded in a deterministic way; (2) the pre-shared secret key between two communicants can be reused without any security loophole; (3) each dialogue in the proposed PAQD can be exchanged within only one-step quantum communication and one-step classical communication. However, in the state-of-the-art AQD protocols, both communicants have to run a QKD protocol for each dialogue and each dialogue requires multiple quantum as well as classical communicational steps; (4) nevertheless, the proposed scheme can resist the man-in-the-middle attack, the modification attack, and even other well-known attacks.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Dialpoint Communications Corp., Pacel Corp., Quantum Group, Inc. (The), and Tradequest... accurate information concerning the securities of Quantum Group, Inc. (The) because it has not filed...
Landau-Zener transitions in spin qubit encoded in three quantum dots
NASA Astrophysics Data System (ADS)
Łuczak, Jakub; Bułka, Bogdan R.
2017-01-01
We study generation and dynamics of an exchange spin qubit encoded in three coherently coupled quantum dots with three electrons. For two geometries of the system, a linear and a triangular one, the creation and coherent control of the qubit states are performed by the Landau-Zener transitions. In the triangular case, both the qubit states are equivalent and can be easily generated for particular symmetries of the system. If one of the dots is smaller than the others, one can observe Rabi oscillations that can be used for coherent manipulation of the qubit states. The linear system is easier to fabricate; however, then the qubit states are not equivalent, making qubit operations more difficult to control.
NASA Astrophysics Data System (ADS)
Deng, Xiaowei; Hao, Shuhong; Tian, Caixing; Su, Xiaolong; Xie, Changde; Peng, Kunchi
2016-02-01
Squeezed state can increase the signal-to-noise ratio in quantum communication and quantum measurement. However, losses and noises existing in real communication channels will reduce or even totally destroy the squeezing. The phenomenon of disappearance of the squeezing will result in the failure of quantum communication. In this letter, we present the experimental demonstrations on the disappearance and revival of the squeezing in quantum communication with squeezed state. The experimental results show that the squeezed light is robust (squeezing never disappears) in a pure lossy but noiseless channel. While in a noisy channel, the excess noise will lead to the disappearance of the squeezing, and the squeezing can be revived by the use of a correlated noisy channel (non-Markovian environment). The channel capacity of quantum communication is increased after the squeezing is revived. The presented results provide useful technical references for quantum communication with squeezed light.
Reply to 'Comment on 'Secure direct communication with a quantum one-time-pad''
Deng Fuguo; Long Guilu
2005-07-15
We reply to the preceding comment which focused on whether there exists a quantum privacy amplification technique for purifying the unknown single-photon states transmitted. In this Reply, we will show that quantum privacy amplification is principally possible, and a specific scheme for direct communication protocol based on single photons has been constructed and will be published elsewhere. Then the secure direct quantum communication is secure against the attack strategy in the preceding comment by using quantum privacy amplification directly.
Dynamic (2, 3) Threshold Quantum Secret Sharing of Secure Direct Communication
NASA Astrophysics Data System (ADS)
Lai, Hong; Orgun, A. Mehmet; Xiao, Jing-Hua; Pieprzyk, Josef; Xue, Li-Yin
2015-04-01
In this paper, we show that a (2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised by first placing the shares of smaller secret pieces into the shares of the largest secret piece, converting the shares of the largest secret piece into corresponding quantum state sequences, inserting nonorthogonal state particles into the quantum state sequences with the purpose of detecting eavesdropping, and finally sending the new quantum state sequences to the three participants respectively. Consequently, every particle can on average carry up to 1.5-bit messages due to the use of recurrence. The control codes are randomly prepared using the way to generate fountain codes with pre-shared source codes between Alice and Bob, making three participants can detect eavesdropping by themselves without sending classical messages to Alice. Due to the flexible encoding, our scheme is also dynamic, which means that it allows the participants to join and leave freely. Supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES), Australian Research Council Grant DP0987734. This work is also supported by the National Basic Research Program of China (973 Program) under Grant No. 2010CB923200, the National Natural Science Foundation of China under No. 61377067, Fund of State Key Laboratory of Information Photonics and Optical Communications Beijing University of Posts and Telecommunications, China, National Natural Science Foundation of China under Grant Nos. 61202362, 61262057, 61472433, and China Postdoctora Science Foundation under Grant No. 2013M542560
Complete hyperentangled-Bell-state analysis for quantum communication
Sheng Yubo; Deng Fuguo; Long Guilu
2010-09-15
It is impossible to unambiguously distinguish the four Bell states in polarization, resorting to linear optical elements only. Recently, the hyperentangled Bell state, the simultaneous entanglement in more than one degree of freedom, has been used to assist in the complete Bell-state analysis of the four Bell states. However, if the additional degree of freedom is qubitlike, one can only distinguish 7 from the group of 16 states. Here we present a way to distinguish the hyperentangled Bell states completely with the help of cross-Kerr nonlinearity. Also, we discuss its application in the quantum teleportation of a particle in an unknown state in two different degrees of freedom and in the entanglement swapping of hyperentangled states. These applications will increase the channel capacity of long-distance quantum communication.
Quantum memory receiver for superadditive communication using binary coherent states
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-01-01
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet. PMID:27695200
Quantum memory receiver for superadditive communication using binary coherent states.
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-11-12
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett.2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.
Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui
2015-05-19
We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.
Quantum dot diode lasers for optical communication systems
Zhukov, A E; Kovsh, A R
2008-05-31
Basic technological and physical aspects of injection lasers based on arrays of self-organised InAs/InGaAs quantum dots on GaAs substrates for optical communication systems in the 1.2-1.3 {mu}m spectral range are considered. The possibility of simultaneous lasing at a great number of longitudinal modes at a high power level and low noise is demonstrated. The use of these lasers in wavelength-division-multiplexing systems based on the spectral separation of the laser output spectrum is substantiated. (invited paper)
Quantum secret sharing via local operations and classical communication
Yang, Ying-Hui; Gao, Fei; Wu, Xia; Qin, Su-Juan; Zuo, Hui-Juan; Wen, Qiao-Yan
2015-01-01
We investigate the distinguishability of orthogonal multipartite entangled states in d-qudit system by restricted local operations and classical communication. According to these properties, we propose a standard (2, n)-threshold quantum secret sharing scheme (called LOCC-QSS scheme), which solves the open question in [Rahaman et al., Phys. Rev. A, 91, 022330 (2015)]. On the other hand, we find that all the existing (k, n)-threshold LOCC-QSS schemes are imperfect (or “ramp”), i.e., unauthorized groups can obtain some information about the shared secret. Furthermore, we present a (3, 4)-threshold LOCC-QSS scheme which is close to perfect. PMID:26586412
Quantum secret sharing via local operations and classical communication.
Yang, Ying-Hui; Gao, Fei; Wu, Xia; Qin, Su-Juan; Zuo, Hui-Juan; Wen, Qiao-Yan
2015-11-20
We investigate the distinguishability of orthogonal multipartite entangled states in d-qudit system by restricted local operations and classical communication. According to these properties, we propose a standard (2, n)-threshold quantum secret sharing scheme (called LOCC-QSS scheme), which solves the open question in [Rahaman et al., Phys. Rev. A, 91, 022330 (2015)]. On the other hand, we find that all the existing (k, n)-threshold LOCC-QSS schemes are imperfect (or "ramp"), i.e., unauthorized groups can obtain some information about the shared secret. Furthermore, we present a (3, 4)-threshold LOCC-QSS scheme which is close to perfect.
Quantum secret sharing via local operations and classical communication
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Gao, Fei; Wu, Xia; Qin, Su-Juan; Zuo, Hui-Juan; Wen, Qiao-Yan
2015-11-01
We investigate the distinguishability of orthogonal multipartite entangled states in d-qudit system by restricted local operations and classical communication. According to these properties, we propose a standard (2, n)-threshold quantum secret sharing scheme (called LOCC-QSS scheme), which solves the open question in [Rahaman et al., Phys. Rev. A, 91, 022330 (2015)]. On the other hand, we find that all the existing (k, n)-threshold LOCC-QSS schemes are imperfect (or “ramp”), i.e., unauthorized groups can obtain some information about the shared secret. Furthermore, we present a (3, 4)-threshold LOCC-QSS scheme which is close to perfect.
Metropolitan all-pass and inter-city quantum communication network.
Chen, Teng-Yun; Wang, Jian; Liang, Hao; Liu, Wei-Yue; Liu, Yang; Jiang, Xiao; Wang, Yuan; Wan, Xu; Cai, Wei-Qi; Ju, Lei; Chen, Luo-Kan; Wang, Liu-Jun; Gao, Yuan; Chen, Kai; Peng, Cheng-Zhi; Chen, Zeng-Bing; Pan, Jian-Wei
2010-12-20
We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.
NASA Astrophysics Data System (ADS)
Yadav, Preeti; Srikanth, R.; Pathak, Anirban
2014-12-01
The Goldenberg-Vaidman (GV) protocol for quantum key distribution uses orthogonal encoding states of a particle. Its security arises because operations accessible to Eve are insufficient to distinguish the two states encoding the secret bit. We propose a two-particle cryptographic protocol for quantum secure direct communication, wherein orthogonal states encode the secret, and security arises from restricting Eve from accessing any two-particle operations. However, there is a non-trivial difference between the two cases. While the encoding states are perfectly indistinguishable in GV, they are partially distinguishable in the bipartite case, leading to a qualitatively different kind of information-versus-disturbance trade-off and also options for Eve in the two cases.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Quantum Secure Direct Communication in a noisy environment: Theory and Experiment
NASA Astrophysics Data System (ADS)
Long, Gui Lu
Quantum communication holds promise for absolutely security in secret message transmission. Quantum secure direct communication (QSDC) is an important branch of the quantum communication in which secret messages are sent directly over a quantum channel with security[Phys. Rev. A 65 , 032302 (2002)]. QSDC offers higher security and is instantaneous in communication, and is a great improvement to the classical communication mode. It is also a powerful basic quantum communication primitive for constructing many other quantum communication tasks such as quantum bidding, quantum signature and quantum dialogue and so on. Since the first QSDC protocol proposed in 2000, it has become one of the extensive research focuses. In this talk, the basic ideas of QSDC will be reviewed, and major QSDC protocols will be described, such as the efficient-QSDC protocol, the two-step QSDC protocol, the one-time-pad QSDC protocol, the high-dimensional QSDC protocol and so on. Experimental progress is also developing steadily, and will also be reviewed. In particular, the quantum one-time-pad QSDC protocol has recently been successfully demonstrated experimentally[arXiv:1503.00451]. Work supported by China National Natural Science Foundation, the Ministry of Science and Technology of China.
Information trade-offs for optical quantum communication.
Wilde, Mark M; Hayden, Patrick; Guha, Saikat
2012-04-06
Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels.
Information Trade-Offs for Optical Quantum Communication
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Hayden, Patrick; Guha, Saikat
2012-04-01
Recent work has precisely characterized the achievable trade-offs between three key information processing tasks—classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels.
Characterization of measurements in quantum communication. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chan, V. W. S.
1975-01-01
A characterization of quantum measurements by operator valued measures is presented. The generalized measurements include simultaneous approximate measurement of noncommuting observables. This characterization is suitable for solving problems in quantum communication. Two realizations of such measurements are discussed. The first is by adjoining an apparatus to the system under observation and performing a measurement corresponding to a self-adjoint operator in the tensor-product Hilbert space of the system and apparatus spaces. The second realization is by performing, on the system alone, sequential measurements that correspond to self-adjoint operators, basing the choice of each measurement on the outcomes of previous measurements. Simultaneous generalized measurements are found to be equivalent to a single finer grain generalized measurement, and hence it is sufficient to consider the set of single measurements. An alternative characterization of generalized measurement is proposed. It is shown to be equivalent to the characterization by operator-values measures, but it is potentially more suitable for the treatment of estimation problems. Finally, a study of the interaction between the information-carrying system and a measurement apparatus provides clues for the physical realizations of abstractly characterized quantum measurements.
Quantum trade-off coding for bosonic communication
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Hayden, Patrick; Guha, Saikat
2012-12-01
The trade-off capacity region of a quantum channel characterizes the optimal net rates at which a sender can communicate classical, quantum, and entangled bits to a receiver by exploiting many independent uses of the channel, along with the help of the same resources. Similarly, one can consider a trade-off capacity region when the noiseless resources are public, private, and secret-key bits. We identified [see Wilde, Hayden, and Guha, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.140501 108, 140501 (2012)] these trade-off rate regions for the pure-loss bosonic channel and proved that they are optimal provided that a long-standing minimum-output entropy conjecture is true. Additionally, we showed that the performance gains of a trade-off coding strategy when compared to a time-sharing strategy can be quite significant. In this paper, we provide detailed derivations of the results announced there, and we extend the application of these ideas to thermal-noise and amplifying bosonic channels. We also derive a “rule of thumb” for trade-off coding, which determines how to allocate photons in a coding strategy if a large mean photon number is available at the channel input. Our results on the amplifying bosonic channel also apply to the “Unruh channel” considered in the context of relativistic quantum information theory.
Mahfuz, Mohammad Upal; Makrakis, Dimitrios; Mouftah, Hussein T
2016-09-01
Unlike normal diffusion, in anomalous diffusion, the movement of a molecule is described by the correlated random walk model where the mean square displacement of a molecule depends on the power law of time. In molecular communication (MC), there are many scenarios when the propagation of molecules cannot be described by normal diffusion process, where anomalous diffusion is a better fit. In this paper, the effects of anomalous subdiffusion on concentration-encoded molecular communication (CEMC) are investigated. Although classical (i.e., normal) diffusion is a widely-used model of diffusion in molecular communication (MC) research, anomalous subdiffusion is quite common in biological media involving bio-nanomachines, yet inadequately addressed as a research issue so far. Using the fractional diffusion approach, the molecular propagation effects in the case of pure subdiffusion occurring in an unbounded three-dimensional propagation medium have been shown in detail in terms of temporal dispersion parameters of the impulse response of the subdiffusive channel. Correspondingly, the bit error rate (BER) performance of a CEMC system is investigated with sampling-based (SD) and strength (i.e., energy)-based (ED) signal detection methods. It is found that anomalous subdiffusion has distinctive time-dispersive properties that play a vital role in accurately designing a subdiffusive CEMC system. Unlike normal diffusion, to detect information symbols in subdiffusive CEMC, a receiver requires larger memory size to operate correctly and hence a more complex structure. An in-depth analysis has been made on the performances of SD and ED optimum receiver models under diffusion noise and intersymbol interference (ISI) scenarios when communication range, transmission data rate, and memory size vary. In subdiffusive CEMC, the SD method.
NASA Astrophysics Data System (ADS)
Thapliyal, Kishore; Verma, Amit; Pathak, Anirban
2015-12-01
Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using n-qubit entangled states (nin {5,6,7}) as quantum channel. Here, we propose a general method of selecting multiqubit (n>4) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST form only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation. Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation and controlled quantum dialogue, are also provided.
Optical implementation of quantum orienteering.
Jeffrey, Evan R; Altepeter, Joseph B; Colci, Madalina; Kwiat, Paul G
2006-04-21
We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin- particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.
Optical Implementation of Quantum Orienteering
NASA Astrophysics Data System (ADS)
Jeffrey, Evan R.; Altepeter, Joseph B.; Colci, Madalina; Kwiat, Paul G.
2006-04-01
We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin-1/2 particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
Leuenberger, Michael N; Flatté, Michael E; Awschalom, D D
2005-03-18
We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.
Ultrafast fault-tolerant long-distance quantum communication with static linear optics
NASA Astrophysics Data System (ADS)
Ewert, Fabian; van Loock, Peter
2017-01-01
We present an in-depth analysis regarding the error resistance and optimization of our all-optical Bell measurement and ultrafast long-distance quantum communication scheme proposed by Ewert, Bergmann, and van Loock [Phys. Rev. Lett. 117, 210501 (2016), 10.1103/PhysRevLett.117.210501]. In order to promote our previous proposal from loss to fault tolerance, we introduce a general and compact formalism that can also be applied to other related schemes {including non-all-optical ones such as that of Muralidharan et al. [Phys. Rev. Lett. 112, 250501 (2014), 10.1103/PhysRevLett.112.250501]}. With the help of this new representation we show that our communication protocol does not only counteract the inevitable photon loss during channel transmission, but is also able to resist common experimental errors such as Pauli-type errors (bit and phase flips) and detector inefficiencies (losses and dark counts). Furthermore, we demonstrate that on the physical level of photonic qubits the choice of the standard linear optical Bell measurement with its limited efficiency is optimal for our setting in the sense that, apart from their potential use in state preparation, more advanced Bell measurements yield only a small decrease in resource consumption. We devise two state generation schemes that provide the required ancillary encoded Bell states (quasi-)on-demand at every station. The schemes are either based on nonlinear optics or on linear optics with multiplexing and exhibit resource costs that scale linearly or less than quadratic with the number of photons per encoded qubit, respectively. Finally, we show that it is possible to operate our communication scheme with on-off detectors instead of employing photon-number-resolving detectors.
NASA Technical Reports Server (NTRS)
Harger, R. O.
1974-01-01
Abstracts are reported relating to the techniques used in the research concerning optical transmission of information. Communication through the turbulent atmosphere, quantum mechanics, and quantum communication theory are discussed along with the results.
Efficient bounds on quantum-communication rates via their reduced variants
Nowakowski, Marcin L.; Horodecki, Pawel
2010-10-15
We investigate one-way communication scenarios where Bob operating on his component can transfer some subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by means of their reduced versions. It is shown that in some cases they drastically improve their estimation.
Measurement-based noiseless linear amplification for quantum communication
NASA Astrophysics Data System (ADS)
Chrzanowski, H. M.; Walk, N.; Haw, J. Y.; Thearle, O.; Assad, S. M.; Janousek, J.; Hosseini, S.; Ralph, T. C.; Symul, T.; Lam, P. K.
2014-11-01
Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require non-trivial experimental techniques such as noiseless amplification. We show that noiseless amplification could be achieved by performing a post-selective filtering of measurement outcomes. We termed this protocol measurement-based noiseless linear amplification (MBNLA). We apply this protocol to entanglement that suffers transmission loss of up to the equivalent of 100km of optical fibre and show that it is capable of distilling entanglement to a level stronger than that achievable by transmitting a maximally entangled state through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime via MBNLA. Compared to its physical counterpart, MBNLA not only is easier in term of implementation, but also allows one to achieve near optimal probability of success.
Role of chaos in quantum communication through a dynamical dephasing channel
Barreto Lemos, Gabriela; Benenti, Giuliano
2010-06-15
In this article we treat the subject of chaotic environments with few degrees of freedom in quantum communication by investigating a conservative dynamical map as a model of a dephasing quantum channel. When the channel's dynamics is chaotic, we investigate the model's semi-classical limit and show that the entropy exchange grows at a constant rate which depends on a single parameter (the interaction strength), analogous to stochastic models of dephasing channels. We analyze memory effects in the channel and present strong physical arguments to support that the present model is forgetful in the chaotic regime while memory effects in general cannot be ignored when channel dynamics is regular. In order to render the nonchaotic channel forgetful, it becomes necessary to apply a reset to the channel and this reset can efficiently be modeled by application of a chaotic map. We may then refer to encoding theorems (valid in the case of forgetful channels) to present evidence of a transition from noiseless to noisy channel due to the environment's transition from regular to chaotic dynamics.
Yuan, Pingfan; Ma, Qiang; Meng, Rizeng; Wang, Chao; Dou, Wenchao; Wang, Guannan; Su, Xingguang
2009-05-01
Semiconductor nanocrystals (or quantum dots, QDs) have the potential to overcome some of the limitations encountered by traditional fluorophores in fluorescence labeling applications. The unique spectroscopic properties of QDs make them hold immense promise as versatile labels for biological applications. In this work, we employ the layer-by-layer (LbL) method for the construction of bio-functional multicolor QD-encoded microspheres. Polystyrene microspheres with diameter of 3 microm were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers. Two different antigens, Chicken newcastle disease (CND) antigen and goat pox virus (GPV) antigen, were conjugated to two kinds of biofunctional multicolor microspheres with different optical encoding. The multicolor microspheres can capture corresponding antibodies labeled with QDs, QDs-CND antibody and QDs-GPV antibody in the fluoroimmunoassays. The microspheres can be distinguished from each other based on their optical encoding.
NASA Astrophysics Data System (ADS)
Kao, Shih-Hung; Yang, Chun-Wei; Hwang, Tzonelih
2016-11-01
This paper proposes two new fault-tolerant controlled deterministic secure quantum communication (CDSQC) protocols based only on Einstein-Podolsky-Rosen (EPR) entangled states. The proposed protocols are designed to be robust against the collective-dephasing noise and the collective-rotation noise, respectively. Compared to the existing fault-tolerant controlled quantum communication protocols, the proposed protocols not only can do without a quantum channel between the receiver and the controller as the state-of-the-art protocols do, but also have the advantage that the number of quantum particles required in the CDSQC protocols is reduced owing to the use of the simplest entangled states.
NASA Astrophysics Data System (ADS)
Yan, Sen-Lin
2007-11-01
A scheme of synchronized injection multi-quantum-well (MQW) laser system using optical coupling-feedback is presented for performing chaotic dual-directional secure communication. The performance characterization of chaos masking is investigated theoretically, the equation of synchronization demodulation is deduced and its root is also given. Chaos masking encoding with a rate of 5Gbit/s and a modulation frequency of 1GHz, chaos modulation with a rate of 0.2Gbit/s and a modulation frequency of 0.2 GHz and chaos shifting key with a rate of 0.2Gbit/s are numerically simulated, separately. The ratio of the signal to the absolute synchronous error and the time for achieving synchronous demodulation are analysed in detail. The results illustrate that the system has stronger privacy and good performances so that it can be applied in chaotic dual-directional high rate secure communications.
Highly Efficient Long-Distance Quantum Communication: a Blueprint for Implementation
NASA Astrophysics Data System (ADS)
Li, Linshu; Muralidharan, Sreraman; Kim, Jungsang; Lutkenhaus, Norbert; Lukin, Mikhail; Jiang, Liang
2015-03-01
Quantum repeaters provide a way for long distance quantum communication through optical fiber networks. Transmission losses and operation errors are two major challenges to the implementation of quantum repeaters. At each intermediate repeater station, transmission losses can be overcome using either heralded entanglement generation or quantum error correction, while operation errors can be corrected via entanglement purification or quantum error correction. Depending on the mechanisms used to correct loss and operation errors respectively, three generations of quantum repeaters have been proposed. We present a quantitative comparison of different quantum repeater schemes by evaluating the time- and qubit-resource consumed simultaneously. We can identify the most efficient scheme for given technological capabilities, which are characterized by fiber coupling efficiency, local gate fidelity, and local gate speed. Our work provides a roadmap for high-speed quantum networks across continental distances. Linshu and Sreraman contributed equally to this work.
Ultra-High Speed Optical Communication and Switching via Novel Quantum Devices.
1995-09-01
A joint theoretical experimental research program was undertaken to initiate the development of novel quantum devices for greatly improved optical ... communication and switching in both local network and long haul applications. Specifically, Northwest University theoretically investigated and
Quantum secure direct communication of digital and analog signals using continuum coherent states
NASA Astrophysics Data System (ADS)
Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana
2016-11-01
In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Su, Qian; Guo, Ying; Huang, Dazu
2013-02-01
We demonstrate an anonymous quantum communication (AQC) via the non-maximally entanglement state analysis (NESA) based on the dining cryptographer problem (DCP). The security of the present AQC is ensured due to the quantum-mechanical impossibility of local unitary transformations between non-maximally entanglement states, which provides random numbers for the secure AQC. The analysis shows that the DCP-based AQC can be performed without intractability through the NESA in the multi-photon entangled quantum system.
Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations
He Guangqiang; Zhu Jun; Zeng Guihua
2006-01-15
A quantum secure communication protocol using correlations of continuous variable Einstein-Podolsky-Rosen (EPR) pairs is proposed. The proposed protocol may implement both quantum key distribution and quantum message encryption by using a nondegenerate optical parametric amplifier (NOPA). The general Gaussian-cloner attack strategy is investigated in detail by employing Shannon information theory. Results show that the proposed scheme is secure, which is guaranteed physically by the correlations of the continuous variable EPR entanglement pairs generated by the NOPA.
NASA Astrophysics Data System (ADS)
Czajkowski, Jan; Jarzyna, Marcin; Demkowicz-Dobrzański, Rafał
2017-07-01
We point out a contrasting role the entanglement plays in communication and estimation scenarios. In the first case it brings noticeable benefits at the measurement stage (output super-additivity), whereas in the latter it is the entanglement of the input probes that enables significant performance enhancement (input super-additivity). We identify a weak estimation regime where a strong connection between concepts crucial to the two fields is demonstrated; the accessible information and the Holevo quantity on one side and the quantum Fisher information related quantities on the other. This allows us to shed new light on the problem of super-additivity in communication using the concepts of quantum estimation theory.
NASA Astrophysics Data System (ADS)
Song, Xian-Hua; Niu, Xia-Mu
2014-06-01
In this letter, we have pointed out some problems existed in (Yang et al. in Quantum Inf Process 12(11):3477-3493,
Secure multi-party communication with quantum key distribution managed by trusted authority
Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen
2015-01-06
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
Secure multi-party communication with quantum key distribution managed by trusted authority
Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen
2013-07-09
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
Secure multi-party communication with quantum key distribution managed by trusted authority
Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen
2017-06-14
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
Zhang, Pengfei; He, Yuan; Ruan, Zhi; Chen, Fanqing Frank; Yang, Jun
2012-11-01
Monodispersed quantum dots (QDs)-encoded polymer microbeads were generated using a simple capillary fluidic device (CFD). The polymer and QDs solution was emulsified into monodispersed microdroplets by the CFD and obtained droplets were solidified via solvent evaporation. Polymer microbeads can be fabricated in a range of different sizes through changing the flow rates of the two immiscible phases, and have a highly narrow size distribution and uniform shape. QDs-encoding capacity of the microbeads was investigated through adjusting the concentrations and ratios of QDs in the polymer solution. Mono-color encoded microbeads with five intensities and a dual-color QDs-encoded 5×5 microbeads array were obtained, and the spectral profiles of the microbeads were examined by a fluorescent microscope coupled with a spectral imaging system. QDs-tagged microbeads prepared with this method were more stable than the porous beads swollen with QDs in the buffer with various pH and crosslinking chemicals. Finally, the application of such microbeads for biomolecule detection was demonstrated by conjugation of rabbit IgG molecules on the surface of the microbeads via carboxyl groups, which were then detected by fluorophores-labeled goat-anti-rabbit IgG antibodies.
NASA Astrophysics Data System (ADS)
Song, Jie; Zhu, Ai-Dong; Zhang, Shou
2007-03-01
This paper presents a modified secure direct communication protocol by using the blind polarization bases and particles' random transmitting order. In our protocol, a sender (Alice) encodes secret messages by rotating a random polarization angle of particle and then the receiver (Bob) sends back these particles as a random sequence. This ensures the security of communication.
Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao
2017-09-07
We present an interaction-free measurement with quantum Zeno effect and a high efficiency η = 74.6% ± 0.15%. As a proof-of-principle demonstration, this measurement can be used to implement a quantum counterfactual-like communication protocol. Instead of a single photon state, we use a coherent light as the input source and show that the output agrees with the proposed quantum counterfactual communication protocol according to Salih et al. Although the counterfactuality is not achieved due to the presence of a few photons in the public channel, we show that the signal light is nearly absent in the public channel, which exhibits a proof-of-principle quantum counterfactual-like property of communication.
Detection and compensation of basis deviation in satellite-to-ground quantum communications.
Zhang, Ming; Zhang, Liang; Wu, Jincai; Yang, Shiji; Wan, Xiong; He, Zhiping; Jia, Jianjun; Citrin, D S; Wang, Jianyu
2014-04-21
Basis deviation is the reference-frame deviation between a sender and receiver caused by satellite motion in satellite-to-ground quantum communications. It increases the quantum-bit error ratio of the system and must be compensated for to guarantee reliable quantum communications. We present a new scheme for compensating for basis deviation that employs a BB84 decoding module to detect basis deviation and half-wave plate to provide compensation. Based on this detection scheme, we design a basis-deviation compensation approach and test its feasibility in a voyage experiment. Unlike other polarization-correction schemes, this compensation scheme is simple, convenient, and can be easily implemented in satellite-to-ground quantum communications without increased burden to the satellite.
NASA Astrophysics Data System (ADS)
Xu, Ke; Kuang, Hongyan; Guo, Ying
2013-10-01
We demonstrate two explicit cooperative two-way quantum communications based on the Brown state in a forward-and-backward fashion. One realizes the duplex exchange of an arbitrary unknown state and a certain state between Alice and Bob with the aid of the trusty Charlie via the partial entanglement analysis. The other realizes the half-duplex exchange of arbitrary unknown states. Their securities are both guaranteed due to the fact that each participant either faithfully recovers the transmitted unknown states after performing some suitable unitary operations in a deterministic way or, in a case of any irregularity, generates no results. In addition, the present half-duplex cooperative quantum communication can be similarly extended for transmitting arbitrary unknown states via the two-way quantum teleportation based on the generalized Brown-like state in a probabilistic way.
Field test of a practical secure communication network with decoy-state quantum cryptography.
Chen, Teng-Yun; Liang, Hao; Liu, Yang; Cai, Wen-Qi; Ju, Lei; Liu, Wei-Yue; Wang, Jian; Yin, Hao; Chen, Kai; Chen, Zeng-Bing; Peng, Cheng-Zhi; Pan, Jian-Wei
2009-04-13
We present a secure network communication system that operated with decoy-state quantum cryptography in a real-world application scenario. The full key exchange and application protocols were performed in real time among three nodes, in which two adjacent nodes were connected by approximate 20 km of commercial telecom optical fiber. The generated quantum keys were immediately employed and demonstrated for communication applications, including unbreakable real-time voice telephone between any two of the three communication nodes, or a broadcast from one node to the other two nodes by using one-time pad encryption.
Lower bound on the communication cost of simulating bipartite quantum correlations
NASA Astrophysics Data System (ADS)
Vértesi, T.; Bene, E.
2009-12-01
Suppose Alice and Bob share a maximally entangled state of any finite dimension and each perform two-outcome measurements on the respective part of the state. It is known, due to the recent result of Regev and Toner, that if a classical model is augmented with two bits of communication, then all the quantum correlations arising from these measurements can be reproduced. Here, we show that two bits of communication are in fact necessary for the perfect simulation. In particular, we prove that a pair of maximally entangled four-dimensional quantum systems cannot be simulated by a classical model augmented by only one bit of communication.
Lower bound on the communication cost of simulating bipartite quantum correlations
Vertesi, T.; Bene, E.
2009-12-15
Suppose Alice and Bob share a maximally entangled state of any finite dimension and each perform two-outcome measurements on the respective part of the state. It is known, due to the recent result of Regev and Toner, that if a classical model is augmented with two bits of communication, then all the quantum correlations arising from these measurements can be reproduced. Here, we show that two bits of communication are in fact necessary for the perfect simulation. In particular, we prove that a pair of maximally entangled four-dimensional quantum systems cannot be simulated by a classical model augmented by only one bit of communication.
Quantum Physics Principles and Communication in the Acute Healthcare Setting: A Pilot Study.
Helgeson, Heidi L; Peyerl, Colleen Kraft; Solheim-Witt, Marit
This pilot study explores whether clinician awareness of quantum physics principles could facilitate open communication between patients and providers. In the spirit of action research, this study was conceptualized with a holistic view of human health, using a mixed method design of grounded theory as an emergent method. Instrumentation includes surveys and a focus group discussion with twelve registered nurses working in an acute care hospital setting. Findings document that the preliminary core phenomenon, energy as information, influences communication in the healthcare environment. Key emergent themes include awareness, language, validation, open communication, strategies, coherence, incoherence and power. Research participants indicate that quantum physics principles provide a language and conceptual framework for improving their awareness of communication and interactions in the healthcare environment. Implications of this pilot study support the feasibility of future research and education on awareness of quantum physics principles in other clinical settings. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Integrated source and channel encoded digital communication system design study. [for space shuttles
NASA Technical Reports Server (NTRS)
Huth, G. K.
1976-01-01
The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.
Deterministically encoding quantum information using 100-photon Schrödinger cat states.
Vlastakis, Brian; Kirchmair, Gerhard; Leghtas, Zaki; Nigg, Simon E; Frunzio, Luigi; Girvin, S M; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J
2013-11-01
In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences provided one has the ability to generate and manipulate complex multiphoton states. We demonstrate multiphoton control by using a superconducting transmon qubit coupled to a waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous manipulation of hundreds of photons. With a tool set of conditional qubit-photon logic, we mapped an arbitrary qubit state to a superposition of coherent states, known as a "cat state." We created cat states as large as 111 photons and extended this protocol to create superpositions of up to four coherent states. This control creates a powerful interface between discrete and continuous variable quantum computation and could enable applications in metrology and quantum information processing.
Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis
Lamoureux, L.-P.; Cerf, N. J.; Bechmann-Pasquinucci, H.; Gisin, N.; Macchiavello, C.
2006-03-15
We consider the cloning of sequences of qubits prepared in the states used in the BB84 or six-state quantum cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits are prepared in the same basis. This result is only valid provided that the sequences are much shorter than the total key. It is of great importance for practical quantum cryptosystems because it reduces the need for high-speed random number generation without impairing on the security against finite-size cloning attacks.
Xiang, Yun; Zhang, Yuyong; Chang, Yue; Chai, Yaqin; Wang, Joseph; Yuan, Ruo
2010-02-01
Reproducible electrochemically encoded quantum dot (QD) barcodes were prepared using the reverse-micelle synthetic approach. The encoding elements, Zn(2+), Cd(2+), and Pb(2+), were confined within a single QD, which eliminates the cumbersome encapsulation process used by other common nanoparticle-based barcode preparation schemes. The distinct voltammetric stripping patterns of Zn(2+), Cd(2+) and Pb(2+) at distinguishable potentials with controllable current intensities offer excellent encoding capability for the prepared electrochemical (EC) QDs. Additionally, the simultaneous modification of the QD barcode surface with organic ligands during the preparation process make them potentially useful in biomedical research. For proof of concept of their application in bioassays, the EC QD barcodes were further employed as tags for an immunoassay of a cancer marker, carcinoembryonic antigen (CEA). The voltammetric stripping response of the dissolved bardcode tags was proportional to log[CEA] in the range from 0.01 to 80 ng mL(-1), with a detection limit of 3.3 pg mL(-1). The synthesized EC QD barcodes hold considerable potential in biodetection, encrypted information, and product tracking.
Xiang, Yun; Zhang, Yuyong; Chang, Yue; Chai, Yaqin; Wang, Joseph; Yuan, Ruo
2010-01-01
Reproducible electrochemically encoded quantum dot (QD) barcodes were prepared by using the reverse-micelle synthetic approach. The encoding elements, Zn2+, Cd2+, Pb2+ were confined within a single QD, which eliminates the cumbersome encapsulation process used by other common nanoparticle-based barcode preparation schemes. The distinct voltammetric stripping patterns of Zn2+, Cd2+, Pb2+ at distinguishable potentials with controllable current intensities offer excellent encoding capability for the prepared electrochemical (EC) QDs. Additionally, the simultaneous modification of the QD barcode surface with organic ligands during the preparation process make them potentially useful in biomedical research. For proof of concept of their application in bioassays, the EC QD barcodes were further employed as tags for an immunoassay of a cancer marker, carcinoembryonic antigen (CEA). The voltammetric stripping response of the dissolved bardcode tags was proportional to log[CEA] in the range from 0.01 ng mL−1 to 80 ng mL−1, with a detection limit of 3.3 pg mL−1. The synthesized EC QD barcodes hold considerable potentials in biodetection, encrypted information and product tracking. PMID:20067269
Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin
2012-08-01
Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.
Practical Quantum Cryptography for Secure Free-Space Communications
Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.
1999-02-01
Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.
2007-03-14
solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit ) is 6 Final Report for Award N00014-02-1-0599...between the cavity and ensemble qubit can be achieved. We discussed basic quantum information protocols, including a swap from the cavity photon bus to...Zibrov, P.R. Hemmer, F. Jelesko, J.Wrachtrup, M.D. Lukin, " Quantum control of electron and nuclear spin qubits in the solid-state," Atomic Physics
(3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2017-05-01
We apply the recently suggested strategy to lift state spaces and operators for (2 + 1)-dimensional topological quantum field theories to state spaces and operators for a (3 + 1)-dimensional TQFT with defects. We start from the (2 + 1)-dimensional TuraevViro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects.
Quantum-dot-encoded microbeads for multiplexed genetic detection of non-amplified DNA samples.
Gao, Yali; Stanford, William L; Chan, Warren C W
2011-01-03
Barcoding technologies have become the basis for a new generation of molecular diagnostic platforms for measuring biomarkers in a high-throughput, rapid, and sensitive manner. Thus far, researchers have mainly focused on preparing different types of barcodes but, in order to use them optimally in genomic- and proteomic-based applications, there is a need to understand the effect of barcode and assay parameters on their performance. Herein, quantum-dot barcodes are systematically characterized for the detection of non-amplified DNA sequences. The effect of capture probes, reporter probes, and target DNA sequence lengths are studied, as well as the effect of the amount of noncomplementary sequences on the hybridization kinetics and efficiency. From DNA denaturation to signal detection, quantum-dot-barcode assays require less than one hour to detect a target DNA sequence with a linear dynamic range of 0.02-100 fmol. Three optically distinct quantum-dot barcodes are used to demonstrate the multiplexing capability of these barcodes for genomic detection. These results suggest that quantum-dot barcodes are an excellent platform for multiplex, rapid, and sensitive genetic detection.
Quantum Steganography for Multi-party Covert Communication
NASA Astrophysics Data System (ADS)
Liu, Lin; Tang, Guang-Ming; Sun, Yi-Feng; Yan, Shu-Fan
2016-01-01
A novel multi-party quantum steganography protocol based on quantum secret sharing is proposed in this paper. Hidden channels are built in HBB and improved HBB quantum secret sharing protocols for secret messages transmitting, via the entanglement swapping of GHZ states and Bell measurement. Compared with the original protocol, there are only a few different GHZ sates transmitted in the proposed protocol, making the hidden channel with good imperceptibility. Moreover, the secret messages keep secure even when the hidden channel is under the attack from the dishonest participators, for the sub-secretmessages distributed randomly to different participators. With good imperceptibility and security, the capacity of proposed protocol is higher than previous multi-party quantum steganography protocol.
Measurement-device-independent quantum communication with an untrusted source
NASA Astrophysics Data System (ADS)
Xu, Feihu
2015-07-01
Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.
NASA Astrophysics Data System (ADS)
Kurpiers, Philipp; Frey, Tobias; Wallraff, Andreas
In circuit quantum electrodynamics (QED) systems quantum communication over distances beyond chip-scale requires low-loss waveguides. We measure the loss per unit length and the phase stability of commercially available waveguide technologies down to Millikelvin temperatures and single photon levels. More specifically, we characterize the frequency dependent attenuation and dispersion properties of a range of semi-rigid microwave cables and waveguides. We study the properties of various, commonly used conducting and dielectric materials with high accuracy in resonant structures to extract the internal quality factor which is inversely proportional to the loss per unit length. Furthermore, we compare our data with corresponding loss models. The results of our characterization are relevant to applications in which quantum communication is needed between nodes of a small network, e.g. between quantum circuits realized on different chips within the same or in distinct cryogenic systems.
Cryptanalysis and improvement of a quantum communication-based online shopping mechanism
NASA Astrophysics Data System (ADS)
Huang, Wei; Yang, Ying-Hui; Jia, Heng-Yue
2015-06-01
Recently, Chou et al. (Electron Commer Res 14:349-367, 2014) presented a novel controlled quantum secure direct communication protocol which can be used for online shopping. The authors claimed that their protocol was immune to the attacks from both external eavesdropper and internal betrayer. However, we find that this protocol is vulnerable to the attack from internal betrayer. In this paper, we analyze the security of this protocol to show that the controller in this protocol is able to eavesdrop the secret information of the sender (i.e., the customer's shopping information), which indicates that it cannot be used for secure online shopping as the authors expected. Accordingly, an improvement of this protocol, which could resist the controller's attack, is proposed. In addition, we present another protocol which is more appropriate for online shopping. Finally, a discussion about the difference in detail of the quantum secure direct communication process between regular quantum communications and online shopping is given.
2006-01-01
Multiple quantum well-based modulating retroreflectors for inter- and intra-spacecraft communication Peter G. Goetz, William S. Rabinovich, G...is presented. Keywords: Free-space optics, modulating retroreflector , multiple quantum well, radiation tolerance, FSO, MQW, MRR 1. INTRODUCTION...RETRO-REFLECTORS (MRRS) A MRR couples a passive optical retroreflector such as a corner-cube or a cat’s eye retroreflector with an electro-optic
NASA Astrophysics Data System (ADS)
Cascio, David M.
1988-05-01
States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.
Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality
Cabello, Adan; D'Ambrosio, Vincenzo; Nagali, Eleonora; Sciarrino, Fabio
2011-09-15
Quantum cryptographic protocols based on complementarity are not secure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.
Quantum Key Distribution with Higher-Order Alphabets Using Spatially Encoded Qudits
NASA Astrophysics Data System (ADS)
Walborn, S. P.; Lemelle, D. S.; Almeida, M. P.; Ribeiro, P. H. Souto
2006-03-01
We present a proof of principle demonstration of a quantum key distribution scheme in higher-order d-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an average error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.
Smirr, Jean-Loup; Guilbaud, Sylvain; Ghalbouni, Joe; Frey, Robert; Diamanti, Eleni; Alléaume, Romain; Zaquine, Isabelle
2011-01-17
Fast characterization of pulsed spontaneous parametric down conversion (SPDC) sources is important for applications in quantum information processing and communications. We propose a simple method to perform this task, which only requires measuring the counts on the two output channels and the coincidences between them, as well as modeling the filter used to reduce the source bandwidth. The proposed method is experimentally tested and used for a complete evaluation of SPDC sources (pair emission probability, total losses, and fidelity) of various bandwidths. This method can find applications in the setting up of SPDC sources and in the continuous verification of the quality of quantum communication links.
General model on polarization compensation in satellite-to-ground quantum communication
NASA Astrophysics Data System (ADS)
Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Liu, Yumin; Zhang, Lidong; Yang, Chuanghua
2013-04-01
A general model in satellite-to-ground quantum communication is proposed by investigating the effect of a laser acquisition, pointing, and tracking (APT) system on the polarization state of single photons. The eccentricity of the general model ranges from 0 to 1, which means that a circular orbit can be introduced reasonably. Moreover, the geocentric-equatorial coordinate system, which can utilize the two-line elements, is used in the general model. Two kinds of simulations are performed, and we found that the rotations of polarization state are obviously influenced by the APT system. Our model could be applied in a realistic satellite-to-ground quantum communication system.
Timofeev, A. V.; Pomozov, D. I.; Makkaveev, A. P.; Molotkov, S. N.
2007-05-15
Quantum cryptography systems combine two communication channels: a quantum and a classical one. (They can be physically implemented in the same fiber-optic link, which is employed as a quantum channel when one-photon states are transmitted and as a classical one when it carries classical data traffic.) Both channels are supposed to be insecure and accessible to an eavesdropper. Error correction in raw keys, interferometer balancing, and other procedures are performed by using the public classical channel. A discussion of the requirements to be met by the classical channel is presented.
Improving noiseless linear amplification for optical quantum communication with quadrature squeezing
NASA Astrophysics Data System (ADS)
Yang, Song; Zhang, ShengLi; Zou, XuBo; Bi, SiWen; Lin, XuLing
2013-02-01
Quantum noiseless linear amplification (NLA) is an important tool for long-distance optical quantum communication. In this paper, we show that NLA with linear optics and photon counts can be further improved by applying quadrature squeezing. Moreover, we find that such enhancement through squeezing can be observed even when a photon dichotic on-off detector and a pseudo-single-photon state are applied to the amplification process. Such a result could find more applications in already-known NLA-related quantum information tasks.
NASA Astrophysics Data System (ADS)
Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang
2017-08-01
The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.
ERIC Educational Resources Information Center
Dickson, Esther; Burton, Neil
2011-01-01
This small-scale study reports the findings from an investigation into non-verbal communication. It primarily seeks to analyse whether 9 and 13 year-olds can encode and decode non-verbal communication in the context of classroom behaviour management. This research showed that, in contrast to previous published research, there were no distinct…
ERIC Educational Resources Information Center
Dickson, Esther; Burton, Neil
2011-01-01
This small-scale study reports the findings from an investigation into non-verbal communication. It primarily seeks to analyse whether 9 and 13 year-olds can encode and decode non-verbal communication in the context of classroom behaviour management. This research showed that, in contrast to previous published research, there were no distinct…
A probabilistic quantum communication protocol using mixed entangled channel
NASA Astrophysics Data System (ADS)
Choudhury, Binayak S.; Dhara, Arpan
2016-05-01
Qubits are realized as polarization state of photons or as superpositions of the spin states of electrons. In this paper we propose a scheme to probabilistically teleport an unknown arbitrary two-qubit state using a non-maximally entangled GHZ- like state and a non-maximally Bell state simultaneously as quantum channels. We also discuss the success probability of our scheme. We perform POVM in the protocol which is operationally advantageous. In our scheme we show that the non-maximal quantum resources perform better than maximal resources.
Quantum entanglement and the communication complexity of the inner product function
Cleve, R.; Dam, W. van |; Nielsen, M. |; Tapp, A.
1998-08-01
The authors consider the communication complexity of the binary inner product function in a variation of the two-party scenario where the parties have an a priori supply of particles in an entangled quantum state. They prove linear lower bounds for both exact protocols, as well as for protocols that determine the answer with bounded-error probability. The proofs employ a novel kind of quantum reduction from multibit communication problems to the problem of computing the inner product. The communication required for the former problem can then be bounded by an application of Holevo`s theorem. They also give a specific example of a probabilistic scenario where entanglement reduces the communication complexity of the inner product function by one bit.
Quantum repeaters using continuous-variable teleportation
NASA Astrophysics Data System (ADS)
Dias, Josephine; Ralph, T. C.
2017-02-01
Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
ERIC Educational Resources Information Center
St. Martin, Gail McAllister
In order to investigate the process of nonverbal communication of emotions in a simulated intercultural context, videotapes were made in which two white Americans (one male and one female) responded to paragraphs which evoked the following emotions: sadness, disgust, anger, surprise, happiness, and fear. These portrayals were then viewed by male…
Entanglement preparation and quantum communication with atoms in optical cavities
Xue Peng; Han Chao; Yu Bo; Lin Xiumin; Guo Guangcan
2004-05-01
We propose an experimentally feasible scheme to generate general entangled states between atoms in spatially separate cavities, and then show one of the applications--a secure communication allowing asymptotically key distribution and quasisecure direct communication. The scheme involves laser manipulation of atoms in a high-Q cavity, adjustable quarter- and half-wave plates, beam splitter, polarizing beam splitters, and single-photon detectors, and well fits the status of the current experimental technology.
NASA Astrophysics Data System (ADS)
Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.
2015-11-01
In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.
Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.
2015-01-01
In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N − 1 disjointed users u1, u2, …, uN−1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N − 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N − 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement. PMID:26577473
Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A
2015-11-18
In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.
Bylicka, B; Chruściński, D; Maniscalco, S
2014-07-21
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-01-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763
On the passive probing of fiber optic quantum communication channels
Korol'kov, A. V.; Katamadze, K. G.; Kulik, S. P.; Molotkov, S. N.
2010-04-15
Avalanche photodetectors based on InGaAs:P are the most sensitive and only detectors operating in the telecommunication wavelength range 1.30-1.55 {mu}m in the fiber optic quantum cryptography systems that can operate in the single photon count mode. In contrast to the widely used silicon photodetectors for wavelengths up to 1 {mu}m operating in a waiting mode, these detectors always operate in a gated mode. The production of an electron-hole pair in the process of the absorption of a photon and the subsequent appearance of an avalanche of carriers can be accompanied by the inverse processes of the recombination and emission of photons. Such a backward emission can present a potential serious problem for the stability of fiber optic quantum cryptography systems against passive probing. The results of analyzing the detection of backscattered radiation are reported. The probability of such an emission has been estimated.
Communication: Quantum Zeno-based control mechanism for molecular fragmentation
NASA Astrophysics Data System (ADS)
Sanz-Sanz, C.; Sanz, A. S.; González-Lezana, T.; Roncero, O.; Miret-Artés, S.
2012-03-01
A quantum control mechanism is proposed for molecular fragmentation processes within a scenario grounded on the quantum Zeno effect. In particular, we focus on the van der Waals Ne-Br2 complex, which displays two competing dissociation channels via vibrational and electronic predissociation. Accordingly, realistic three-dimensional wave packet simulations are carried out by using ab initio interaction potentials recently obtained to reproduce available experimental data. Two numerical models to simulate the repeated measurements are reported and analyzed. It is found that the otherwise fast vibrational predissociation is slowed down in favor of the slow electronic (double fragmentation) predissociation, which is enhanced by several orders of magnitude. Based on these theoretical predictions, some hints to experimentalists to confirm their validity are also proposed.
Communication: Heavy atom quantum diffraction by scattering from surfaces.
Moix, Jeremy M; Pollak, Eli
2011-01-07
Typically one expects that when a heavy particle collides with a surface, the scattered angular distribution will follow classical mechanics. The heavy mass usually assures that the coherence length of the incident particle in the direction of the propagation of the particle (the parallel direction) will be much shorter than the characteristic lattice length of the surface, thus leading to a classical description. Recent work on molecular interferometry has shown that extreme collimation of the beam creates a perpendicular coherence length which is sufficiently long so as to observe interference of very heavy species passing through a grating. Here we show, using quantum mechanical simulations, that the same effect will lead to quantum diffraction of heavy particles colliding with a surface. The effect is robust with respect to the incident energy, the angle of incidence, and the mass of the particle.
Communication: Test of quantum chemistry in vibrationally hot hydrogen molecules.
Niu, M L; Salumbides, E J; Ubachs, W
2015-08-28
Precision measurements are performed on highly excited vibrational quantum states of molecular hydrogen. The v = 12, J = 0 - 3 rovibrational levels of H2 (X(1)Σg (+)), lying only 2000 cm(-1) below the first dissociation limit, were populated by photodissociation of H2S and their level energies were accurately determined by two-photon Doppler-free spectroscopy. A comparison between the experimental results on v = 12 level energies with the best ab initio calculations shows a good agreement, where the present experimental accuracy of 3.5 × 10(-3) cm(-1) is more precise than theory, hence providing a gateway to further test theoretical advances in this benchmark quantum system.
Entanglement distillation for quantum communication network with atomic-ensemble memories.
Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo
2014-10-06
Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.
The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Jensen, Chris A.; Terry, John D.
1997-01-01
In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.
NASA Astrophysics Data System (ADS)
Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun
2017-01-01
The point-inclusion problem is an important secure multi-party computation that it involves two parties, where one has a private point and the other has a private area, and they want to determine whether the point is inside the area without revealing their respective private information. All previously proposed point-inclusion protocols are only suitable for a specific area, such as circle, rectangle and convex polygon. In this paper, we present a novel privacy-preserving point-inclusion quantum protocol for an arbitrary area, which is surrounded by any plane geometric figure. Compared to the classical related protocols, our protocol has the advantages of the higher security and the lower communication complexity.
Non-Markovian effects on quantum-communication protocols
Yeo, Ye; Oh, C. H.; An, Jun-Hong
2010-09-15
We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.
Video Encryption and Decryption on Quantum Computers
NASA Astrophysics Data System (ADS)
Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin
2015-08-01
A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.
Continuous-variable quantum-state sharing via quantum disentanglement
Lance, Andrew M.; Symul, Thomas; Lam, Ping Koy; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, T.C.
2005-03-01
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of 'quantum disentangling' protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73{+-}0.02. A result achievable only by using quantum resources.
Sex differences in interhemispheric communication during face identity encoding: evidence from ERPs.
Godard, Ornella; Leleu, Arnaud; Rebaï, Mohamed; Fiori, Nicole
2013-01-01
Sex-related hemispheric lateralization and interhemispheric transmission times (IHTTs) were examined in twenty-four participants at the level of the first visual ERP components (P1 and N170) during face identity encoding in a divided visual-field paradigm. While no lateralization-related and sex-related differences were reflected in the P1 characteristics, these two factors modulated the N170. Indeed, N170 amplitudes indicated a right hemisphere (RH) dominance in men (and a more bilateral functioning in women). N170 latencies and the derived IHTTs confirmed the RH advantage in men but showed the reverse asymmetry in women. Altogether, the results of this study suggest a clear asymmetry in men and a more divided work between the hemispheres in women, with a tendency toward a left hemisphere (LH) advantage. Thus, by extending the pattern to the right-sided face processing, our results generalize previous findings from studies using other materials and indicating longer transfers from the specialized to the non-specialized hemisphere, especially in the male brain. Because asymmetries started from the N170 component, the first electrophysiological index of high-level perceptual processing on face representations, they also suggest a functional account for hemispheric lateralization and sex-related differences rather than a structural one.
Detecting relay attacks on RFID communication systems using quantum bits
NASA Astrophysics Data System (ADS)
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-11-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Secure communications with low-orbit spacecraft using quantum cryptography
Hughes, Richard J.; Buttler, William T.; Kwiat, Paul G.; Luther, Gabriel G.; Morgan, George L; Nordholt, Jane E.; Peterson, Charles G.; Simmons, Charles M.
1999-01-01
Apparatus and method for secure communication between an earth station and spacecraft. A laser outputs single pulses that are split into preceding bright pulses and delayed attenuated pulses, and polarized. A Pockels cell changes the polarization of the polarized delayed attenuated pulses according to a string of random numbers, a first polarization representing a "1," and a second polarization representing a "0." At the receiving station, a beamsplitter randomly directs the preceding bright pulses and the polarized delayed attenuated pulses onto longer and shorter paths, both terminating in a beamsplitter which directs the preceding bright pulses and a first portion of the polarized delayed attenuated pulses to a first detector, and a second portion of the polarized delayed attenuated pulses to a second detector to generate a key for secure communication between the earth station and the spacecraft.
Zimmermann, Tomás; Vanícek, Jirí
2010-06-28
We propose an approximate method for evaluating the importance of non-Born-Oppenheimer effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing representation (DR) of quantum fidelity to several diabatic potential energy surfaces and its computational cost is the cost of dynamics of a classical phase space distribution. It can be implemented easily into any molecular dynamics program and also can utilize on-the-fly ab initio electronic structure information. We test the methodology on three model problems introduced by Tully and on the photodissociation of NaI. The results show that for dynamics close to the diabatic limit, the decay of fidelity due to nondiabatic effects is described accurately by the DR. In this regime, unlike the mixed quantum-classical methods such as surface hopping or Ehrenfest dynamics, the DR can capture more subtle quantum effects than the population transfer between potential energy surfaces. Hence we propose using the DR to estimate the dynamical importance of diabatic, spin-orbit, or other couplings between potential energy surfaces. The acquired information can help reduce the complexity of a studied system without affecting the accuracy of the quantum simulation.
Minimally complex ion traps as modules for quantum communication and computing
NASA Astrophysics Data System (ADS)
Nigmatullin, Ramil; Ballance, Christopher J.; de Beaudrap, Niel; Benjamin, Simon C.
2016-10-01
Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we ‘compile down’ the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the ‘raw’ entangling link as low as 83% (or under 75% if an additional ion is available).
Mahfuz, Mohammad Upal
2016-10-01
In this paper, the expressions of achievable strength-based detection probabilities of concentration-encoded molecular communication (CEMC) system have been derived based on finite pulsewidth (FP) pulse-amplitude modulated (PAM) on-off keying (OOK) modulation scheme and strength threshold. An FP-PAM system is characterized by its duty cycle α that indicates the fraction of the entire symbol duration the transmitter remains on and transmits the signal. Results show that the detection performance of an FP-PAM OOK CEMC system significantly depends on the statistical distribution parameters of diffusion-based propagation noise and intersymbol interference (ISI). Analytical detection performance of an FP-PAM OOK CEMC system under ISI scenario has been explained and compared based on receiver operating characteristics (ROC) for impulse (i.e., spike)-modulated (IM) and FP-PAM CEMC schemes. It is shown that the effects of diffusion noise and ISI on ROC can be explained separately based on their communication range-dependent statistics. With full duty cycle, an FP-PAM scheme provides significantly worse performance than an IM scheme. The paper also analyzes the performance of the system when duty cycle, transmission data rate, and quantity of molecules vary.
NASA Astrophysics Data System (ADS)
Cooney, Tom; Mosonyi, Milán; Wilde, Mark M.
2016-06-01
This paper studies the difficulty of discriminating between an arbitrary quantum channel and a "replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein's lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel {mathcal{N}} as the optimal Type II error exponent when discriminating between a large number of independent instances of {mathcal{N}} and an arbitrary "worst-case" replacer channel chosen from the set of all replacer channels.
Entangled and non-line-of-sight (NLOS) free-space photon quantum communication [Invited
NASA Astrophysics Data System (ADS)
Meyers, Ronald E.; Deacon, Keith S.
2005-09-01
Feature Issue on Optical Wireless Communications (OWC) We present new quantum communication (QC) schemes suitable for free-space (wireless) QC implementation. In particular, we present several entangled QC schemes and propose non-line-of-sight (NLOS) free-space photon QC. It is shown that in the presence of atmospheric scattering media, UV photons can be used for NLOS QC. Non-Poisson quantum fluctuations in an invariance regime can propagate farther than coherent laser speckle. In such situations the non-Poissonian statistics survive over long distances and should be taggable with a polarization signature. Quantum noise observables scale markedly differently with scattering parameters compared to classical noise observables. Variation of the polarization should allow Yuen-Kumar QC using non-Poissonian statistics of the beam as an authentication of the signal. The NLOS communication in the UV would be expected to be possible to at least a range of 1 km and falls under the category of deliberately short-range QC. Applications of importance for this method include military stealth and optical communication in the presence of obstacles such as a forest or urban environment.
Aerospace laser communications technology as enabler for worldwide quantum key distribution
NASA Astrophysics Data System (ADS)
Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian
2016-04-01
A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an
Davis, Ryan M; Zhou, Zijian; Chung, Hyunkoo; Warren, Warren S.
2015-01-01
Purpose Intermolecular multiple quantum coherences (iMQCs) are a source of MR contrast with applications including temperature imaging, anisotropy mapping, and brown fat imaging. Because all applications are limited by SNR, this study develops a pulse sequence that detects iZQCs with improved SNR. Methods A previously developed pulse sequence that detects iMQCs (HOT) is modified with a multi-spin-echo spatial encoding scheme (MSE-HOT). MSE-HOT uses a series of refocusing pulses to generate a stack of images which are averaged in post-processing for higher SNR. MSE-HOT performance is quantified by measuring its temperature accuracy and precision during hyperthermia of ex vivo red bone marrow (RBM) samples. Results MSE-HOT yielded a three-fold improvement in temperature precision relative to previous pulse sequences. Sources of improved precision were 1) echo averaging and 2) suppression of J-coupling in the methylene protons of fat. MSE-HOT measured temperature change with an accuracy of 0.6 °C. Conclusion MSE-HOT improved the temperature accuracy and precision of HOT to a level that is sufficient for hyperthermia of bone marrow. PMID:26077531
Generation of Bi-partite Polarization Correlation using Coherent States for Quantum Communication
NASA Astrophysics Data System (ADS)
Bollen, Viktor; Meng Sua, Yong; Fook Lee, Kim
2010-03-01
We present a novel scheme to generate bi-partite polarization correlation using coherent states for quantum communication. The scheme can be used for entanglement based quantum cryptography, where the bi-partite correlation will be protected by quantum noise. We perform experimental measurement on two independent coherent states with low mean photon numbers. A coherent state with polarization H is mixed with another coherent state with polarization V through a beam splitter. Polarization correlation is manipulated by using a quarter wave plate and a linear polarizer at each output of the beam splitter. The product signal obtained from the output modes contains bi-partite correlation and other noise terms. We obtain the bi-partite correlation function by employing mean-value measurement based on Stapp's formulation on the product signal, where the noise term is then averaged to zero due to randomness of quantum phase noise. The bi-partite correlation obtained by using two coherent states is quantum correlation because coherent states with low mean photon numbers are involved and the correlations are protected by randomness of quantum noise as inherited by mean photon number fluctuation and its associated phase fluctuation. Preparations for four types of coherent-state polarization correlation functions are also outlined.
Carbó-Dorca, Ramon; Besalú, Emili; Mercado, Luz Dary
2011-03-01
This work describes a new procedure to obtain optimal molecular superposition based on quantum similarity (QS): the geometric-quantum similarity molecular superposition (GQSMS) algorithm. It has been inspired by the QS Aufbau principle, already described in a previous work, to build up coherently quantum similarity matrices (QSMs). The cornerstone of the present superposition technique relies upon the fact that quantum similarity integrals (QSIs), defined using a GTO basis set, depend on the squared intermolecular atomic distances. The resulting QSM structure, constructed under the GQSMS algorithm, becomes not only optimal in terms of its QSI elements but can also be arranged to produce a positive definite matrix global structure. Kruskal minimum spanning trees are also discussed as a device to order molecular sets described in turn by means of QSM. Besides the main subject of this work, focused on MS and QS, other practical considerations are also included in this study: essentially the use of elementary Jacobi rotations as QSM refinement tools and inward functions as QSM scaling methods. Copyright © 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tan, Xiaoqing; Zhang, Xiaoqian
2016-05-01
We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.
NASA Astrophysics Data System (ADS)
Nanvakenari, Milad; Houshmand, Monireh
In this paper, a three-party controlled quantum secure direct communication and authentication (QSDCA) protocol is proposed by using four particle cluster states via a quantum one-time pad and local unitary operations. In the present scheme, only under the permission of the controller, the sender and the receiver can implement secure direct communication successfully. But under any circumstances, Charlie cannot obtain the secret message. Eavesdropping detection and identity authentication are achieved with the help of the previously shared reusable base identity strings of users. This protocol is unconditionally secure in both ideal and practical noisy cases. In one transmission, a qubit of each four particle cluster state is used as controller’s permission and the same qubit with another qubit are used to recover two classical bits of information. In the proposed scheme, the efficiency is improved compared with the previous works.
Booth, George H; Chan, Garnet Kin-Lic
2012-11-21
In this communication, we propose a method for obtaining isolated excited states within the full configuration interaction quantum Monte Carlo framework. This method allows for stable sampling with respect to collapse to lower energy states and requires no uncontrolled approximations. In contrast with most previous methods to extract excited state information from quantum Monte Carlo methods, this results from a modification to the underlying propagator, and does not require explicit orthogonalization, analytic continuation, transient estimators, or restriction of the Hilbert space via a trial wavefunction. Furthermore, we show that the propagator can directly yield frequency-domain correlation functions and spectral functions such as the density of states which are difficult to obtain within a traditional quantum Monte Carlo framework. We demonstrate this approach with pilot applications to the neon atom and beryllium dimer.
Alignment and measurement for back-end optical system of quantum communication
NASA Astrophysics Data System (ADS)
Xu, Qi-rui; Fan, Bin
2016-09-01
This paper introduced the method of alignment and measurement for back-end optical system of quantum communication ground station. The alignment methods of important components of system such as 20 constriction multiplicator, single photon detector mechanism and so on were introduced at first. The alignment method of the key receiving optical path and the entanglement receiving optical path which were integrated into coaxial multi optical path with other three optical paths were described in detail. Finally the back-end optical system was tested indoors with an optical power meter and a collimator. The results shows that the quantum key signal (@850nm) receiving efficiency is 27.6%, the average polarization contrast is better than 320:1, the receiving efficiency of quantum entanglement signal (@810nm) was 28.6%, and the average polarization contrast is better than 180:1.
NASA Astrophysics Data System (ADS)
Gilbreath, G. Charmaine; Rabinovich, William S.; Mahon, Rita; Corson, Michael R.; Kline, John F.; Resnick, Joshua H.; Merk, H. C.; Vilcheck, Michael J.
1998-12-01
In this paper, we describe a demonstration using a Multiple Quantum Well modulator combined with an optical retroreflector which supported a high speed free space optical data link. Video images were transmitted over an 859 nanometer link at a rate of 460 kilo bits per second, where rate of modulation was limited by demonstration hardware, not the modulator. Reflection architectures for the modulator were used although transmission architectures have also been investigated but are not discussed in this paper. The modulator was a GaAs/Al0.3Ga0.7As quantum well which was designed and fabricated for use as a shutter at the Naval Research Laboratory. We believe these are the first results reported demonstrating a high speed free space optical data link using multiple quantum well shutters combined with retroreflectors for viable free space optical communications.
Semiquantum secure direct communication using EPR pairs
NASA Astrophysics Data System (ADS)
Zhang, Ming-Hui; Li, Hui-Fang; Xia, Zhao-Qiang; Feng, Xiao-Yi; Peng, Jin-Ye
2017-05-01
Quantum secure direct communication can transmit a secret message directly through quantum channels without first generating a shared secret key. In the most of the existing protocols, quantum secure direct communication is possible only when both communicating participants have quantum capabilities. So what happens if either party of two participants just has classical capabilities? In this paper, we propose a semiquantum secure direct communication protocol with Einstein-Podolsky-Rosen photon pairs in which the classical sender Bob transmits a secret message to quantum Alice directly. After checking the security of quantum channels, Bob encodes his secret message on Alice's code sequence. Then, quantum Alice extracts Bob's secret message by measuring her home qubits and the received code qubits, respectively. In addition, we demonstrate the security of the proposed protocol against some individual eavesdropping attacks. The efficiency analysis shows that our protocol can provide higher efficiency.
Experimental demonstration of graph-state quantum secret sharing.
Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S
2014-11-21
Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.
Experimental demonstration of graph-state quantum secret sharing
NASA Astrophysics Data System (ADS)
Bell, B. A.; Markham, D.; Herrera-Martí, D. A.; Marin, A.; Wadsworth, W. J.; Rarity, J. G.; Tame, M. S.
2014-11-01
Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing—an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.
ERIC Educational Resources Information Center
Morett, Laura M.
2014-01-01
In the interest of clarifying how gesture facilitates L2 word learning, the current study investigates gesture's influence on three interrelated cognitive processes subserving L2 word learning: communication, encoding, and recall. Individuals unfamiliar with Hungarian learned 20 Hungarian words that were either accompanied or unaccompanied by…
ERIC Educational Resources Information Center
Morett, Laura M.
2014-01-01
In the interest of clarifying how gesture facilitates L2 word learning, the current study investigates gesture's influence on three interrelated cognitive processes subserving L2 word learning: communication, encoding, and recall. Individuals unfamiliar with Hungarian learned 20 Hungarian words that were either accompanied or unaccompanied by…
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
Optimum quantum receiver for detecting weak signals in PAM communication systems
NASA Astrophysics Data System (ADS)
Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar
2017-09-01
This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence {I_k}_{k=0}^{N-1} is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence {I_k}_{k=0}^{N-1}. The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.
NASA Astrophysics Data System (ADS)
Zhou, Jian; Guo, Ying
2017-02-01
A continuous-variable measurement-device-independent (CV-MDI) multipartite quantum communication protocol is designed to realize multipartite communication based on the GHZ state analysis using Gaussian coherent states. It can remove detector side attack as the multi-mode measurement is blindly done in a suitable Black Box. The entanglement-based CV-MDI multipartite communication scheme and the equivalent prepare-and-measurement scheme are proposed to analyze the security and guide experiment, respectively. The general eavesdropping and coherent attack are considered for the security analysis. Subsequently, all the attacks are ascribed to coherent attack against imperfect links. The asymptotic key rate of the asymmetric configuration is also derived with the numeric simulations illustrating the performance of the proposed protocol.
Two-channel spin-chain communication line and simple quantum gates
NASA Astrophysics Data System (ADS)
Stolze, J.; Zenchuk, A. I.
2017-08-01
We consider the remote creation of a mixed state in a one-qubit receiver connected to two two-qubit senders via different channels. Channels are assumed to be chains of spins (qubits) with nearest-neighbor interactions, no external fields are being applied. The problem of sharing the creatable region of the receiver's state-space between two senders is considered for a communication line with the receiver located asymmetrically with respect to these senders (asymmetric communication line). An example of a quantum register realizing simple functions is constructed on the basis of a symmetric communication line. In that setup, the initial states of the two senders serve as input and control signals, respectively, while the state of the receiver at a proper time instant is considered as the output signal.
Datta, Nilanjana; Hsieh, Min-Hsiu; Oppenheim, Jonathan
2016-05-15
State redistribution is the protocol in which given an arbitrary tripartite quantum state, with two of the subsystems initially being with Alice and one being with Bob, the goal is for Alice to send one of her subsystems to Bob, possibly with the help of prior shared entanglement. We derive an upper bound on the second order asymptotic expansion for the quantum communication cost of achieving state redistribution with a given finite accuracy. In proving our result, we also obtain an upper bound on the quantum communication cost of this protocol in the one-shot setting, by using the protocol of coherent state merging as a primitive.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Hao; Chen, Han-Wu
2016-08-01
The security of quantum broadcast communication (QBC) and authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) state and quantum one-time pad is analyzed. It is shown that there are some security issues in this protocol. Firstly, an external eavesdropper can take the intercept-measure-resend attack strategy to eavesdrop on 0.369 bit of every bit of the identity string of each receiver without being detected. Meanwhile, 0.524 bit of every bit of the secret message can be eavesdropped on without being detected. Secondly, an inner receiver can take the intercept-measure-resend attack strategy to eavesdrop on half of the identity string of the other’s definitely without being checked. In addition, an alternative attack called the CNOT-operation attack is discussed. As for the multi-party QBC protocol, the attack efficiency increases with the increase of the number of users. Finally, the QBC protocol is improved to a secure one. Project supported by the National Natural Science Foundation of China (Grant Nos. 61502101 and 61170321), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140651), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20110092110024), and the Project Funded by PAPD and CICAEET.
NASA Astrophysics Data System (ADS)
Gol'Tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Sysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman
2005-03-01
We present our progress on the research and development of NbN superconducting single-photon detectors (SSPD's) for ultrafast counting of near-infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon-induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 4-nm-thick NbN films and kept in the 4.2- to 2-K temperature range. The detector experimental quantum efficiency in the photon-counting mode reaches above 40% for the visible light and up to 30% in the 1.3- to 1.55-μm wavelength range with dark counts below 0.01 per second. The experimental real-time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 5 × 10-21 W/Hz1/2 at 1.3 μm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3- to 1.55-μm range.
NASA Astrophysics Data System (ADS)
Han, Lian-Fang; Chen, Yue-Ming; Yuan, Hao
2009-04-01
We propose a deterministic quantum secure direct communication protocol by using dense coding. The two check photon sequences are used to check the securities of the channels between the message sender and the receiver. The continuous variable operations instead of the usual discrete unitary operations are performed on the travel photons so that the security of the present protocol can be enhanced. Therefore some specific attacks such as denial-of-service attack, intercept-measure-resend attack and invisible photon attack can be prevented in ideal quantum channel. In addition, the scheme is still secure in noise channel. Furthurmore, this protocol has the advantage of high capacity and can be realized in the experiment.
Sathe, Tushar R; Agrawal, Amit; Nie, Shuming
2006-08-15
Mesoporous beads are promising materials for embedding functional nanoparticles because of their nanometer-sized pores and large surface areas. Here we report the development of silica microbeads embedded with both semiconductor quantum dots (QD) and iron oxide (Fe3O4) nanocrystals as a new class of dual-function carriers for optical encoding and magnetic separation. The embedding (doping) process is carried out by either simultaneous or sequential addition of quantum dots and iron oxide (Fe3O4) nanocrystals in solution. The doping process is fast and quantitative, but the incorporated iron oxide strongly attenuates the signal intensity of QD fluorescence. We find that this attenuation is not due to conventional fluorescence quenching but is caused by the broad optical absorption spectrum of mixed-valence Fe3O4. For improved biocompatibility and reduced nonspecific binding, the encoded beads are further coated with amphiphilic polymers such as octylamine poly(acrylic acid). The results indicate that the polymer-coated beads are well suited for target capturing and enrichment, yielding magnetic separation efficiencies higher than 99%. By combining the multiplexing capability of QDs with the superparamagnetic properties of iron oxide nanocrystals, this class of encoded beads is expected to find broad applications in high-throughput and multiplexed biomolecular assays.
NASA Astrophysics Data System (ADS)
Helou, Bassam; Chen, Yanbei
2017-08-01
Nonlinear modifications of quantum mechanics have a troubled history. They were initially studied for many promising reasons: resolving the measurement problem, formulating a theory of quantum mechanics and gravity, and understanding the limits of standard quantum mechanics. However, certain non-linear theories have been experimentally tested and failed. More significantly, it has been shown that, in general, deterministic non-linear theories can be used for superluminal communication. We highlight another serious issue: the distribution of measurement results predicted by non-linear quantum mechanics depends on the formulation of quantum mechanics. In other words, Born’s rule cannot be uniquely extended to non-linear quantum mechanics. We present these generalizations of Born’s rule, and then examine whether some exclude superluminal communication. We determine that a large class do not allow for superluminal communication, but many lack a consistent definition. Nonetheless, we find a single extension of Born’s rule with a sound operational definition, and that does not exhibit superluminal communication. The non-linear time-evolution leading to a certain measurement event is driven by the state conditioned on measurements that lie within the past light cone of that event.
Classical communication in the presence of quantum Gaussian noise (Invited Paper)
NASA Astrophysics Data System (ADS)
Shapiro, Jeffrey H.; Yen, Brent J.; Guha, Saikat; Erkmen, Baris I.
2005-05-01
The classical information capacity of channels that are subject to quantum Gaussian noise is studied. Recent work has established the capacity of the pure-loss channel, as well as bounds on and a conjecture for the capacity of the lossy channel with isotropic-Gaussian excess noise. This work is applied to the pure-loss free-space channel that uses multiple Hermite-Gaussian (HG) or Laguerre-Gaussian (LG) spatial modes to communicate between soft-aperture transmit and receive pupils, and to the lossy channel with anisotropic (colored) Gaussian noise.
Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
NASA Astrophysics Data System (ADS)
Cao, Ya; Gao, Fei
2016-11-01
Chang et al. [Chin. Phys. B 23 010305 (2014)] have proposed a quantum broadcast communication and authentication protocol. However, we find that an intercept-resend attack can be preformed successfully by a potential eavesdropper, who will be able to destroy the authentication function. Afterwards, he or she can acquire the secret transmitted message or even modify it while escaping detection, by implementing an efficient man-in-the-middle attack. Furthermore, we show a simple scheme to defend this attack, that is, applying non-reusable identity strings. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272057 and 61170270).
Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs
NASA Astrophysics Data System (ADS)
Wang, Lian-Ying; Chen, Xiu-Bo; Xu, Gang; Yang, Yi-Xian
2011-04-01
In 2007, Wang et al. [M. Y. Wang and F. L. Yan, Chin. Phys. Lett. 24 (2007) 2486] proposed a three-party simultaneous quantum secure direct communication (3P-SQSDC) scheme with EPR pairs. Recently, Chong et al. [S. K. Chong and T. Hwang, Opt. Commun. OPTICS-15438 (2010(online))] proposed an enhancement on Wang et al.'s scheme. The communications in Chong et al.'s 3P-SQSDC can be paralleled and thus their scheme has higher efficiency. However, we find that both of the schemes have the information leakage, because the legitimate parties' secret messages have a strong correlation. This kind of security loophole leads to the consequence that any eavesdropper (Eve) can directly conjecture some information about the secrets without any active attack.
Capacity of optical communication in loss and noise with general quantum Gaussian receivers
NASA Astrophysics Data System (ADS)
Takeoka, Masahiro; Guha, Saikat
2014-04-01
Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated code words with highly nonlinear quantum operations, which are near-impossible to realize using current technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent-state modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may involve arbitrary combinations of Gaussian operations [passive linear optics: beam splitters and phase shifters; second-order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection measurements] and any amount of classical feedforward within the receiver. Under these assumptions, we show that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne detection, or time sharing between the two, depending upon the received power level. In other words, our result shows that to exceed the theoretical limit of conventional coherent optical communication, one has to incorporate non-Gaussian, i.e., third- or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers based on photon counting.
NASA Astrophysics Data System (ADS)
Verevkin, A.; Pearlman, A.; Słysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'Tsman, G. N.; Sobolewski, Roman
2004-09-01
The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3-1.55 µm infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10-18 W/Hz1/2 at 1.3 µm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.
Cohen, Scott M
2017-01-13
We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.
General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication
NASA Astrophysics Data System (ADS)
Cohen, Scott M.
2017-01-01
We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.
NASA Astrophysics Data System (ADS)
Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep; Raghuwanshi, Sanjeev K.
2016-04-01
Encoder is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using encoder and external gates. In this paper, 4 to 2 line encoder is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers
NASA Technical Reports Server (NTRS)
Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun
2007-01-01
One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the
NASA Astrophysics Data System (ADS)
Du, Fang-Fang; Li, Tao; Long, Gui-Lu
2016-12-01
Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed into another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.
Du, Fang-Fang; Li, Tao; Long, Gui-Lu
2016-12-15
Hyperentanglement, defined as the entanglement in multiple degrees of freedom (DOFs) of a photonic quantum system, has attracted much attention recently as it can improve the channel capacity of quantum communication largely. Here we present a refined hyperentanglement purification protocol (hyper-EPP) for two-photon systems in mixed hyperentangled states in both the spatial-mode and polarization DOFs, assisted by cavity quantum electrodynamics. By means of the spatial (polarization) quantum state transfer process, the quantum states that are discarded in the previous hyper-EPPs can be preserved. That is, the spatial (polarization) state of a four-photon system with high fidelity can be transformed into another four-photon system with low fidelity, not disturbing its polarization (spatial) state, which makes this hyper-EPP take the advantage of possessing a higher efficiency.
Quantum coding with finite resources
Tomamichel, Marco; Berta, Mario; Renes, Joseph M.
2016-01-01
The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995
Quantum Security for the Physical Layer
Humble, Travis S
2013-01-01
The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Hao; Chen, Han-Wu; Liu, Wen-Jie
2016-11-01
The information leakage problem in the efficient bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom is pointed out. Next, a way to revise this protocol to a truly secure one is given. We hope people pay more attention to the information leakage problem in order to design truly secure quantum communication protocols.
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.
Distributed Quantum Packet Transmission in Non-maximally Entangled Relay System
NASA Astrophysics Data System (ADS)
Shi, Jinjing; Shi, Ronghua; Peng, Xiaoqi; Li, Yin; Guo, Ying
2015-04-01
A novel distributed quantum packet transmission scheme is proposed with teleportation in the non-maximally entangled relay channel. Quantum signals are encoded as quantum signal packets and transmitted from the source to the destination with assistance of the relay. The TDM (Time Division Multiplexing) technique is applied in order to improve the efficiency of quantum communications. The security depends on the security of signal particles and an upper bound of attackers' intercepting quantum information under their strongest collective attacks is derived. The communication efficiency can be improved to four times of the traditional schemes, and the timesaving percentage may approach to 75 %. It has a wide application in quantum networks as well.
Multiple-Particle Interference and Quantum Error Correction
NASA Astrophysics Data System (ADS)
Steane, Andrew
1996-11-01
The concept of multiple-particle interference is discussed, using insights provided by the classical theory of error correcting codes. This leads to a discussion of error correction in a quantum communication channel or a quantum computer. Methods of error correction in the quantum regime are presented, and their limitations assessed. A quantum channel can recover from arbitrary decoherence of x qubits if K bits of quantum information are encoded using n quantum bits, where K/n can be greater than 1 - 2H (2x/n), but must be less than 1 - 2H (x/n). This implies exponential reduction of decoherence with only a polynomial increase in the computing resources required. Therefore quantum computation can be made free of errors in the presence of physically realistic levels of decoherence. The methods also allow isolation of quantum communication from noise and evesdropping (quantum privacy amplification).
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo
2012-05-01
Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common
Multi-state Quantum Teleportation via One Entanglement State
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee
2008-08-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
NASA Astrophysics Data System (ADS)
Sharma, Vishal; Thapliyal, Kishore; Pathak, Anirban; Banerjee, Subhashish
2016-11-01
The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.
NASA Astrophysics Data System (ADS)
Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad
2016-11-01
The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.
Exactly solvable systems and the quantum Hamilton-Jacobi formalism [rapid communication
NASA Astrophysics Data System (ADS)
Rasinariu, Constantin; Dykla, John J.; Gangopadhyaya, Asim; Mallow, Jeffry V.
2005-05-01
We connect quantum Hamilton Jacobi theory with supersymmetric quantum mechanics (SUSYQM). We show that the shape invariance, which is an integrability condition of SUSYQM, translates into fractional linear relations among the quantum momentum functions.
ERIC Educational Resources Information Center
Strauss, Andre
The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…
Cai, Honghao; Chen, Yushan; Cui, Xiaohong; Cai, Shuhui; Chen, Zhong
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR) spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS) are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1)H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC) technique is explored using fish muscle, fish eggs, and a whole fish as examples. Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater) are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.
Nguyen, Trang; Hossain, Mohammad Arif; Jang, Yeong Min
2016-01-01
This paper presents a modulation scheme in the time domain based on On-Off-Keying and proposes various compatible supports for different types of image sensors. The content of this article is a sub-proposal to the IEEE 802.15.7r1 Task Group (TG7r1) aimed at Optical Wireless Communication (OWC) using an image sensor as the receiver. The compatibility support is indispensable for Image Sensor Communications (ISC) because the rolling shutter image sensors currently available have different frame rates, shutter speeds, sampling rates, and resolutions. However, focusing on unidirectional communications (i.e., data broadcasting, beacons), an asynchronous communication prototype is also discussed in the paper. Due to the physical limitations associated with typical image sensors (including low and varying frame rates, long exposures, and low shutter speeds), the link speed performance is critically considered. Based on the practical measurement of camera response to modulated light, an operating frequency range is suggested along with the similar system architecture, decoding procedure, and algorithms. A significant feature of our novel data frame structure is that it can support both typical frame rate cameras (in the oversampling mode) as well as very low frame rate cameras (in the error detection mode for a camera whose frame rate is lower than the transmission packet rate). A high frame rate camera, i.e., no less than 20 fps, is supported in an oversampling mode in which a majority voting scheme for decoding data is applied. A low frame rate camera, i.e., when the frame rate drops to less than 20 fps at some certain time, is supported by an error detection mode in which any missing data sub-packet is detected in decoding and later corrected by external code. Numerical results and valuable analysis are also included to indicate the capability of the proposed schemes. PMID:27213396
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
NASA Astrophysics Data System (ADS)
Elbaz, Edgard
This book gives a new insight into the interpretation of quantum mechanics (stochastic, integral paths, decoherence), a completely new treatment of angular momentum (graphical spin algebra) and an introduction to Fermion fields (Dirac equation) and Boson fields (e.m. and Higgs) as well as an introduction to QED (quantum electrodynamics), supersymmetry and quantum cosmology.
NASA Astrophysics Data System (ADS)
Fahmi, Akbar
2015-11-01
Bell's theorem states that quantum mechanics is not a locally causal theory. This state is often interpreted as nonlocality in quantum mechanics. Toner and Bacon [Phys. Rev. Lett. 91, 187904 (2003), 10.1103/PhysRevLett.91.187904] have shown that a shared random-variable theory augmented by one bit of classical communication exactly simulates the Bell correlation in a singlet state. In this paper, we show that in Toner and Bacon protocol, one of the parties (Bob) can deduce another party's (Alice) measurement outputs, if she only informs Bob of one of her own outputs. Afterwards, we suggest a nonlocal version of Toner and Bacon protocol wherein classical communications is replaced by nonlocal effects, so that Alice's measurements cause instantaneous effects on Bob's outputs. In the nonlocal version of Toner and Bacon's protocol, we get the same result again. We also demonstrate that the same approach is applicable to Svozil's protocol.
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya
2015-04-01
A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua
2015-08-01
Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province, China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
Muthiah, Muthunarayanan; Park, Seung-Hwan; Nurunnabi, Md; Lee, Jooyoung; Lee, Yong-Kyu; Park, Hansoo; Lee, Byeong-Il; Min, Jung-Joon; Park, In-Kyu
2014-04-01
We have prepared polymeric micelle-encapsulating quantum dots (QDots) for delivering the optically activatable protein Killer Red (KR) as a plasmid to cancer cells. QDots absorb light at a lower wavelength and emit light at a higher wavelength in the cell cytoplasm, activating the expressed KR. Once activated, KR triggers the generation of reactive oxygen species (ROS). We prepared cadmium selenide (CdSe)/zinc sulphide (ZnS) QDots and evaluated their optical properties. Subsequently, we performed morphology studies, elemental analysis, thermogravimetric analysis (TGA), and measurements of particle size and surface charge of prepared QDots encapsulated in PHEA-g-PEG-bPEI (PPP-QDot). Cellular uptake of PPP-QDot and PPP-QDot/KR nanoparticles was confirmed using confocal microscopy, and the cellular toxicity and transfection efficiency associated with uptake of PPP-QDot/KR nanoparticles were analyzed. KR expression in normal cells and cancer cells was confirmed using confocal microscopy and Western blotting. Cellular morphologies before and after intracellular activation of KR were observed using phase contrast, fluorescence, and confocal microscopy. Cell fate after exposure to blue light-emitting diode lighting was determined using apoptosis staining and a cell proliferation assay, confirming a suppression in proliferation and a reduction in metabolic activity. We determined that ROS generation contributed to cellular damage after treatment with PPP-QDot/KR nanoparticles and blue light exposure.
NASA Astrophysics Data System (ADS)
Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio
2017-10-01
Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
NASA Astrophysics Data System (ADS)
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present
NASA Astrophysics Data System (ADS)
Reid, M. D.
2013-12-01
The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data conditioned on detection at Bob's location. I show that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB>1/3 for the teleportation process. The benchmark is obtained if it is shown that Bob can “steer” Alice's record of the qubit as stored by Charlie. EPR steering inequalities involving m measurement settings can also be used to confirm quantum teleportation, for efficiencies ηB>1/m, if one assumes trusted detectors for Charlie and Alice. Using proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the qubit state.
Communication: Spin-free quantum computational simulations and symmetry adapted states.
Whitfield, James Daniel
2013-07-14
The ideas of digital simulation of quantum systems using a quantum computer parallel the original ideas of numerical simulation using a classical computer. In order for quantum computational simulations to advance to a competitive point, many techniques from classical simulations must be imported into the quantum domain. In this article, we consider the applications of symmetry in the context of quantum simulation. Building upon well established machinery, we propose a form of first quantized simulation that only requires the spatial part of the wave function, thereby allowing spin-free quantum computational simulations. We go further and discuss the preparation of N-body states with specified symmetries based on projection techniques. We consider two simple examples, molecular hydrogen and cyclopropenyl cation, to illustrate the ideas. The methods here are the first to explicitly deal with preparing N-body symmetry-adapted states and open the door for future investigations into group theory, chemistry, and quantum simulation.
Communication: Spin-free quantum computational simulations and symmetry adapted states
NASA Astrophysics Data System (ADS)
Whitfield, James Daniel
2013-07-01
The ideas of digital simulation of quantum systems using a quantum computer parallel the original ideas of numerical simulation using a classical computer. In order for quantum computational simulations to advance to a competitive point, many techniques from classical simulations must be imported into the quantum domain. In this article, we consider the applications of symmetry in the context of quantum simulation. Building upon well established machinery, we propose a form of first quantized simulation that only requires the spatial part of the wave function, thereby allowing spin-free quantum computational simulations. We go further and discuss the preparation of N-body states with specified symmetries based on projection techniques. We consider two simple examples, molecular hydrogen and cyclopropenyl cation, to illustrate the ideas. The methods here are the first to explicitly deal with preparing N-body symmetry-adapted states and open the door for future investigations into group theory, chemistry, and quantum simulation.
NASA Astrophysics Data System (ADS)
Malik, Mehul
Over the past three decades, quantum mechanics has allowed the development of technologies that provide unconditionally secure communication. In parallel, the quantum nature of the transverse electromagnetic field has spawned the field of quantum imaging that encompasses technologies such as quantum lithography, quantum ghost imaging, and high-dimensional quantum key distribution (QKD). The emergence of such quantum technologies also highlights the need for the development of accurate and efficient methods of measuring and characterizing the elusive quantum state itself. In this thesis, I present new technologies that use the quantum properties of light for security. The first of these is a technique that extends the principles behind QKD to the field of imaging and optical ranging. By applying the polarization-based BB84 protocol to individual photons in an active imaging system, we obtained images that were secure against any intercept-resend jamming attacks. The second technology presented in this thesis is based on an extension of quantum ghost imaging, a technique that uses position-momentum entangled photons to create an image of an object without directly gaining any spatial information from it. We used a holographic filtering technique to build a quantum ghost image identification system that uses a few pairs of photons to identify an object from a set of known objects. The third technology addressed in this thesis is a high-dimensional QKD system that uses orbital-angular-momentum (OAM) modes of light for encoding. Moving to a high-dimensional state space in QKD allows one to impress more information on each photon, as well as introduce higher levels of security. I discuss the development of two OAM-QKD protocols based on the BB84 and Ekert protocols of QKD. In addition, I present a study characterizing the effects of turbulence on a communication system using OAM modes for encoding. The fourth and final technology presented in this thesis is a relatively
Up-conversion detectors at 1550 nm for quantum communication: review and recent advances
NASA Astrophysics Data System (ADS)
Tournier, M.; Alibart, O.; Doutre, F.; Tascu, S.; de Micheli, M. P.; Ostrowsky, D. B.; Thyagarajan, K.; Tanzilli, S.
Up-conversion, or hybrid, detectors have been investigated in quantum communication experiments to replace Indium-Gallium-Arsenide avalanche photodiodes (InGaAs-APD) for the detection of infrared and telecom single photons. Those detectors are based on the supposedly noise-free process of frequency up-conversion, also called sum-frequency generation (SFG), using a second order (χ^2) non-linear crystal. Powered by an intense pump laser, this process permits transposing with a certain probability the single photons at telecom wavelengths to the visible range where silicon APDs (Si-APD) operate with a much better performance than InGaAs detectors. To date, the literature reports up-conversion detectors having efficiency and noise figures comparable to that of the best commercially available IngaAs-APDs. However, in all of these previous realizations, a pump-induced noise is always observed which was initially expected to be as low as the dark count level of the Si-APDs. Although this additional noise represents a problem for the detection, up-conversion detectors have advantageously replaced InGaAs-APDs in various long-distance quantum cryptography schemes since they offer a continuous regime operation mode instead of a gated mode necessary for InGaAs-APDs, and the possibility of much higher counting rates. Despite attempted explanations, no detailed nor conclusive study of this noise has been reported. The aim of this paper is to offer a definitive explanation for this noise. We first give a review of the state of the art by describing already demonstrated up-conversion detectors. We discuss these realizations especially regarding the choices made for the material, in bulk or guided configurations, the single photon wavelengths, and the pump scheme. Then we describe an original device made of waveguides integrated on periodically poled lithium niobate (PPLN)or on single-domain lithium niobate aimed at investigating the origin of the additional pump-induced noise
Expected number of quantum channels in quantum networks
NASA Astrophysics Data System (ADS)
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-15
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E
2017-03-29
, the vocalizer identity and its distance to the listener, from acoustic signals that have been degraded by long-range propagation in natural conditions. We show, for the first time, that single neurons, in the auditory cortex of zebra finches, are capable of discriminating the individual identity and sound source distance in conspecific communication calls. The discrimination of identity in propagated calls relies on a neural coding that is robust to intensity changes, signals' quality, and decreases in the signal-to-noise ratio.
2017-01-01
information, the vocalizer identity and its distance to the listener, from acoustic signals that have been degraded by long-range propagation in natural conditions. We show, for the first time, that single neurons, in the auditory cortex of zebra finches, are capable of discriminating the individual identity and sound source distance in conspecific communication calls. The discrimination of identity in propagated calls relies on a neural coding that is robust to intensity changes, signals' quality, and decreases in the signal-to-noise ratio. PMID:28235893
Open-loop quantum control as a resource for secure communications
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2016-05-01
Properties of unitary time evolution of quantum systems can be applied to define quantum cryptographic protocols. Dynamics of a qubit can be exploited as a data encryption/decryption procedure by means of timed measurements, implementation of an open-loop control scheme over a qubit increases robustness of a protocol employing this principle.
InAs quantum dot micro-disk lasers grown on (001) Si emitting at communication wavelengths
NASA Astrophysics Data System (ADS)
Lau, Kei May; Shi, Bei; Wan, Yating; Liu, Alan Y.; Li, Qiang; Zhu, Si; Gossard, Arthur C.; Bowers, John E.; Hu, Evelyn L.
2017-02-01
Continuous-wave optically-pumped micro-disk lasers epitaxially grown on silicon with single mode lasing at communication wavelengths from liquid helium to room temperature is reported. Growth of the InAs quantum dots (QDs) gain medium was carried out on high crystalline quality GaAs/InP-on-silicon templates. Special defect filtering techniques have been employed to minimize the impact of the highly lattice-mismatched heteroepitaxial growth on (001) silicon substrates. Compared with quantum wells, the multi-stack InAs QDs are less sensitive to residual defects originated from the hetero-interfaces. Using QDs in a micro-disk resonant cavity with minimized non-radiative surface recombination leads to low-threshold lasing in the micro-disks with a few microns in diameter.
Peng, Cheng-Zhi; Yang, Tao; Bao, Xiao-Hui; Zhang, Jun; Jin, Xian-Min; Feng, Fa-Yong; Yang, Bin; Yang, Jian; Yin, Juan; Zhang, Qiang; Li, Nan; Tian, Bao-Li; Pan, Jian-Wei
2005-04-22
We report free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. It is shown that the desired entanglement can still survive after both entangled photons have passed through the noisy ground atmosphere with a distance beyond the effective thickness of the aerosphere. This is confirmed by observing a spacelike separated violation of Bell inequality of 2.45+/-0.09. On this basis, we exploit the distributed entangled photon source to demonstrate the Bennett-Brassard 1984 quantum cryptography scheme. The distribution distance of entangled photon pairs achieved in the experiment is for the first time well beyond the effective thickness of the aerosphere, hence presenting a significant step towards satellite-based global quantum communication.
Quantum Cryptography for Secure Communications to Low-Earth Orbit Satellites
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.; Twyeffort, E.; Simmons, C.M.; Nordholt, J.E.
1999-06-03
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the quantum transmissions, nor evade detection. Key material is built up using the transmission of a single-photon per bit. We have developed an experimental quantum cryptography system based on the transmission of non-orthogonal single-photon polarization states to generate shared key material over line-of-sight optical links. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on in orbit.
Evidence for quantum annealing with more than one hundred qubits
NASA Astrophysics Data System (ADS)
Boixo, Sergio; Rønnow, Troels F.; Isakov, Sergei V.; Wang, Zhihui; Wecker, David; Lidar, Daniel A.; Martinis, John M.; Troyer, Matthias
2014-03-01
Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards the ground state of a Hamiltonian encoding a given problem. Here, we present results from tests on a 108 qubit D-Wave One device based on superconducting flux qubits. By studying correlations we find that the device performance is inconsistent with classical annealing or that it is governed by classical spin dynamics. In contrast, we find that the device correlates well with simulated quantum annealing. We find further evidence for quantum annealing in the form of small-gap avoided level crossings characterizing the hard problems. To assess the computational power of the device we compare it against optimized classical algorithms.
Carbó-Dorca, R; Besalú, E
2010-10-01
The so-called holographic electron density theorem (HEDT) is analyzed from an algebraic perspective, and a brief analytical point of view is also given. The connection of the HEDT with quantum similarity measures (QSM) over electronic density functions (DF) is studied using GTO functions, atomic ASA DF, and promolecular ASA DF. Restricted integration of QSM over a box of finite side length is discussed for all this DF. This work emphasizes the geometric aspects of HEDT, but for the sake of completeness, some analytical insight based on a general Taylor series expansion is also given at the end. (c) 2010 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yue, Qiu-Ling; Yu, Chao-Hua; Liu, Bin; Wang, Qing-Le
2016-10-01
Recently, Chang et al. [Sci Chin-Phys Mech Astron. 57(10), 1907-1912, 2014] proposed two robust quantum secure communication protocols with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can resist collective noise. In this paper, we analyze the security of their protocols, and show that there is a kind of security flaw in their protocols. By a kind of impersonation attack, the eavesdropper can obtain half of the message on average. Furthermore, an improved method of their protocols is proposed to close the security loophole.
NASA Astrophysics Data System (ADS)
Li, Jian; Li, Lingyun; Jin, Haifei; Li, Ruifan
2013-11-01
Environmental noise is inevitable in non-isolated systems. It is, therefore, necessary to analyze the security of the “Ping-Pong” protocol in a noisy environment. An excellent model for collective-rotation noise is introduced, and information theoretical methods are applied to analyze the security of this protocol. If noise level ε is lower than 11%, an eavesdropper can gain some, but not all, information freely without being detected. Otherwise, the protocol becomes insecure. We conclude that the use of ‘Ping-Pong’ protocol as a quantum secure direct communication (QSDC) protocol is quasi-secure, as declared by the original author when ε⩽11%.
Intrication temporelle et communication quantique
NASA Astrophysics Data System (ADS)
Bussieres, Felix
Quantum communication is the art of transferring a quantum state from one place to another and the study of tasks that can be accomplished with it. This thesis is devoted to the development of tools and tasks for quantum communication in a real-world setting. These were implemented using an underground optical fibre link deployed in an urban environment. The technological and theoretical innovations presented here broaden the range of applications of time-bin entanglement through new methods of manipulating time-bin qubits, a novel model for characterizing sources of photon pairs, new ways of testing non-locality and the design and the first implementation of a new loss-tolerant quantum coin-flipping protocol. Manipulating time-bin qubits. A single photon is an excellent vehicle in which a qubit, the fundamental unit of quantum information, can be encoded. In particular, the time-bin encoding of photonic qubits is well suited for optical fibre transmission. Before this thesis, the applications of quantum communication based on the time-bin encoding were limited due to the lack of methods to implement arbitrary operations and measurements. We have removed this restriction by proposing the first methods to realize arbitrary deterministic operations on time-bin qubits as well as single qubit measurements in an arbitrary basis. We applied these propositions to the specific case of optical measurement-based quantum computing and showed how to implement the feedforward operations, which are essential to this model. This therefore opens new possibilities for creating an optical quantum computer, but also for other quantum communication tasks. Characterizing sources of photon pairs. Experimental quantum communication requires the creation of single photons and entangled photons. These two ingredients can be obtained from a source of photon pairs based on non-linear spontaneous processes. Several tasks in quantum communication require a precise knowledge of the properties
Communication: Momentum-resolved quantum interference in optically excited surface states.
Chan, Wai-Lun; Tritsch, John; Dolocan, Andrei; Ligges, Manuel; Miaja-Avila, Luis; Zhu, X-Y
2011-07-21
Surface states play essential roles in condensed matter physics, e.g., as model two-dimensional (2D) electron gases and as the basis for topological insulators. Here, we demonstrate quantum interference in the optical excitation of 2D surface states using the model system of C(60)/Au(111). These surface states are transiently populated and probed in a femtosecond time- and angle-resolved two-photon photoemission experiment. We observe quantum interference within the excited populations of these surface states as a function of parallel momentum vector. Such quantum interference in momentum space may allow one to control 2D transport properties by optical fields.
Wang, Dong; Chen, Liping; Zheng, Renhui; Wang, Linjun; Shi, Qiang
2010-02-28
We present a nonperturbative quantum master equation to investigate charge carrier transport in organic molecular crystals based on the Liouville space hierarchical equations of motion method, which extends the previous stochastic Liouville equation and generalized master equation methods to a full quantum treatment of the electron-phonon coupling. Diffusive motion of charge carriers in a one-dimensional model in the presence of nonlocal electron-phonon coupling was studied, and two different charge carrier diffusion mechanisms are observed for large and small average intermolecular couplings. The new method can also find applications in calculating spectra and energy transfer in various types of quantum aggregates where the perturbative treatments fail.
NASA Technical Reports Server (NTRS)
Stouffer, Donald D.
1990-01-01
Communication in its many forms is a critical component for an effective Space Grant Program. Good communication is needed within individual Space Grant College/Consortia, for example between consortium affiliates and the consortium program office. Effective communication between the several programs, NASA Headquarters, and NASA field centers also is required. Further, communication among the above program elements, industry, local and state government, and the public also are necessary for meeting program objectives.
ERIC Educational Resources Information Center
Hancock, Alan
An informal introduction to the study of communication deals with the major topics in the field. It presents basic theories of communication and language, reviews how language takes on meaning, explains the stimulus-response and Piaget theories of learning, and presents major theories dealing with communications and society. These theories include…
ERIC Educational Resources Information Center
Hancock, Alan
An informal introduction to the study of communication deals with the major topics in the field. It presents basic theories of communication and language, reviews how language takes on meaning, explains the stimulus-response and Piaget theories of learning, and presents major theories dealing with communications and society. These theories include…
Quantum information processing with electronic and nuclear spins in semiconductors
NASA Astrophysics Data System (ADS)
Klimov, Paul Victor
Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.; Müller, Markus P.
2016-06-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern-Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.
Quantum enigma machine: Experimentally demonstrating quantum data locking
NASA Astrophysics Data System (ADS)
Lum, Daniel J.; Howell, John C.; Allman, M. S.; Gerrits, Thomas; Verma, Varun B.; Nam, Sae Woo; Lupo, Cosmo; Lloyd, Seth
2016-08-01
Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure.
NASA Astrophysics Data System (ADS)
Liu, Zhihao; Chen, Hanwu; Liu, Wenjie
2016-10-01
A new attack strategy, the so-called intercept-selectively-measure-resend attack is put forward. It shows that there are some security issues in the controlled quantum secure direct communication (CQSDC) and authentication protocol based on five-particle cluster states and quantum one-time pad. Firstly, an eavesdropper (Eve) can use this attack to eavesdrop on 0.656 bit of every bit of the identity string of the receiver and 1.406 bits of every couple of the corresponding bits of the secret message without being detected. Also, she can eavesdrop on 0.311 bit of every bit of the identity string of the controller. Secondly, the receiver can also take this attack to obtain 1.311 bits of every couple of the corresponding bits of the secret message without the permission of the controller, which is not allowed in the CQSDC protocols. In fact, there is another security issue in this protocol, that is, one half of the information about the secret is leaked out unconsciously. In addition, an alternative attack strategy which is called as the selective-CNOT-operation attack strategy to attack this protocol is discussed.
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement.
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-10-26
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit.
Robust quantum receivers for coherent state discrimination
NASA Astrophysics Data System (ADS)
Becerra, Francisco Elohim
2014-05-01
Quantum state discrimination is a central task for quantum information and is a fundamental problem in quantum mechanics. Nonorthogonal states, such as coherent states which have intrinsic quantum noise, cannot be discriminated with total certainty because of their intrinsic overlap. This nonorthogonality is at the heart of quantum key distribution for ensuring absolute secure communications between a transmitter and a receiver, and can enable many quantum information protocols based on coherent states. At the same time, while coherent states are used for communications because of their robustness to loss and simplicity of generation and detection, their nonorthogonality inherently produces errors in the process of decoding the information. The minimum error probability in the discrimination of nonorthogonal coherent states measured by an ideal lossless and noiseless conventional receiver is given by the standard quantum limit (SQL). This limit sets strict bounds on the ultimate performance of coherent communications and many coherent-state-based quantum information protocols. However, measurement strategies based on the quantum properties of these states can allow for better measurements that surpass the SQL and approach the ultimate measurement limits allowed by quantum mechanics. These measurement strategies can allow for optimally extracting information encoded in these states for coherent and quantum communications. We present the demonstration of a receiver based on adaptive measurements and single-photon counting that unconditionally discriminates multiple nonorthogonal coherent states below the SQL. We also discuss the potential of photon-number-resolving detection to provide robustness and high sensitivity under realistic conditions for an adaptive coherent receiver with detectors with finite photon-number resolution.
NASA Astrophysics Data System (ADS)
Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R.
2005-09-01
We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.
NASA Astrophysics Data System (ADS)
Huo, Pengfei; Coker, David F.
2011-11-01
An approach for treating dissipative, non-adiabatic quantum dynamics in general model systems at finite temperature based on linearizing the density matrix evolution in the forward-backward path difference for the environment degrees of freedom is presented. We demonstrate that the approach can capture both short time coherent quantum dynamics and long time thermal equilibration in an application to excitation energy transfer in a model photosynthetic light harvesting complex. Results are also presented for some nonadiabatic scattering models which indicate that, even though the method is based on a "mean trajectory" like scheme, it can accurately capture electronic population branching through multiple avoided crossing regions and that the approach offers a robust and reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.
Dehling, Eva; Volkmann, Gerrit; Matern, Julian C J; Dörner, Wolfgang; Alfermann, Jonas; Diecker, Julia; Mootz, Henning D
2016-10-23
Nonribosomal peptide synthetases (NRPSs) are large modular protein templates that assemble bioactive peptides, many of which possess therapeutic importance. Protein-protein interactions between subunits of bacterial NRPSs are essential for proper template formation. The structural basis of the typical subunit interface between epimerization (E) and condensation domains is only poorly understood. Conflicting helix-helix and helix-hand models were previously proposed. Here, the genetically encoded photocrosslinker p-benzoylphenylalanine (BpF) was incorporated into the C-terminal communication-mediating domain (COM) of GrsA. Using the partner elongation module TycB1 to form a dipeptide product, we could correlate the ability to form covalent crosslinks with the functional module interaction. Perturbation of the module interaction with the large side chain of BpF in a scan at 19 positions demonstrated the importance of three hydrophobic residues in an α-helical arrangement. Mapping of covalent crosslinks using tandem mass spectrometry revealed the residues from the interior of the condensation domain as part of the protein interface; a finding not predicted by the helix-helix model. The epimerization domain of GrsA was found to be important for the interaction. Together with multiple sequence analyses and structural modeling, our results suggest an upside-down helix-hand model in which the C-terminal COM-helix is embedded in a hand motif with a hydrophobic core in a reversed orientation compared to a previous proposal. Our results provide a more detailed and the first direct structural understanding of the COM domain interaction and will contribute to successful biocombinatorial engineering attempts in the design of artificial NRPS templates. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Cuihua; Xing, Peng
2015-08-01
In recent years, Chinese service industry is developing rapidly. Compared with developed countries, service quality should be the bottleneck for Chinese service industry. On the background of three major telecommunications service providers in China, the functions of customer perceived utilities are established. With the goal of consumer's perceived utility maximization, the classic Nash equilibrium solution and quantum equilibrium solution are obtained. Then a numerical example is studied and the changing trend of service quality and customer perceived utility is further analyzed by the influence of the entanglement operator. Finally, it is proved that quantum game solution is better than Nash equilibrium solution.
Large-scale quantum networks based on graphs
NASA Astrophysics Data System (ADS)
Epping, Michael; Kampermann, Hermann; Bruß, Dagmar
2016-05-01
Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.
ERIC Educational Resources Information Center
Chase, Stuart
This ten chapter book is designed to provide high school students with an understanding of basic communication processes. The first five chapters include discussions of language development, function, and acquisition in relation to both human and non-human communication. The sixth chapter contains specimen linguistic analyses of speech and…
Cat’s Eye Quantum Well Modulating Retro-Reflectors for Free-Space Optical Communications
2003-01-01
optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link. In operation a conventional free space optical communications terminal, the interrogator, is used on one end of the link to illuminate the MRR on the other end of the link with a cw beam. The MRR imposes a modulation on the interrogating beam and passively retro-reflects it back to the interrogator. These types of systems are attractive for asymmetric communication links for which one end of the link cannot afford the weight, power or expense of a conventional
NASA Technical Reports Server (NTRS)
Griner, James
2010-01-01
NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.
Influence of satellite motion on polarization qubits in a Space-Earth quantum communication link.
Bonato, Cristian; Aspelmeyer, Markus; Jennewein, Thomas; Pernechele, Claudio; Villoresi, Paolo; Zeilinger, Anton
2006-10-16
In a Space quantum-cryptography experiment a satellite pointing system is needed to send single photons emitted by the source on the satellite to the polarization analysis apparatus on Earth. In this paper a simulation is presented regarding how the satellite pointing systems affect the polarization state of the single photons, to help designing a proper compensation system.
Teleporting photonic qudits using multimode quantum scissors
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Konrad, Thomas
2013-12-01
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
Teleporting photonic qudits using multimode quantum scissors.
Goyal, Sandeep K; Konrad, Thomas
2013-12-19
Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme.
Hamiltonian of photons in a single-mode optical fiber for quantum communications protocols
NASA Astrophysics Data System (ADS)
Miroshnichenko, G. P.
2012-05-01
A phenomenological Hamiltonian of photons in a single-mode stochastic inhomogeneous optical fiber (OF) is derived. Quantization of radiation is performed in the basis of an ideal OF with proper calibration that ensures transversality of the electric-field-displacement vector. Stochastic parameters of the Hamiltonian are determined by using the reciprocal tensor of the dielectric permittivity averaged over the OF segment volume. The Hamiltonian is parametrized by three phenomenological parameters and preserves the number of photons. It is assumed that the segment of the OF is divided into random subsegments with optical parameters defined by the Wiener process with respect to the longitudinal coordinate. The temporal dynamics of the single-photon density matrix is analyzed in the basis of states with orthogonal polarizations. The relative quantum beat error rate in the sifted quantum key distributed according to the BB84 protocol with polarization coding of information averaged over the scatter of the OF parameters is calculated.
Hele, Timothy J H; Willatt, Michael J; Muolo, Andrea; Althorpe, Stuart C
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the "Classical Wigner" approximation. Here, we show that the further approximation of this "Matsubara dynamics" gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Ivanov, Sergei D; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik
2010-01-21
Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics.
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion is treated on the same footing.
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos
2014-01-28
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
NASA Astrophysics Data System (ADS)
Futami, Fumio; Kato, Kentaro; Hirota, Osamu
2016-09-01
For protecting physical layer of optical fiber communication systems, quantum stream cipher called Y-00 and Alpha-Eta is promising. So far, we demonstrated secure and high speed optical fiber communication experiments using Y-00 quantum stream cipher. Our theoretical research revealed that the randomization techniques could enhance the security performance. In this work, we fabricated a novel Y-00 transceiver for GbE where the randomization technique was implemented. The transceiver employed the optical intensity modulated Y-00 quantum stream cipher with intensity levels of 4096. An appropriately designed irregular mapping as the randomization technique was experimentally demonstrated. The transceiver was successfully applied to secure optical fiber transmission of GbE signals.
Quantum discord bounds the amount of distributed entanglement.
Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M
2012-08-17
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Secure Communication via Key Generation with Quantum Measurement Advantage in the Telecom Band
2013-10-30
regimes of operation Hong -Ou- Mandel (HOM) interference between single photons that are generated separately from two sources via heralding [11...filtering is used with only linear optical instruments to achieve quantum indistinguishability [11]. Through “heralded” Hong -Ou- Mandel interference...to heralded single-photon generation in any system that employs a parametric nonlinear optical process. III. E: Experiment on two - dimensional
Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture
2013-01-01
P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum key distrubution, integrated photonic circuits Karl Berggren, Jeffrey ...Architecture Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory Wornell Abstract We report on the theoretical and...5 3 Experimental QKD Developments 6 3.1 Implementation of the Franson interferometer-based security check in the PIC 6 3.2 Waveguide -SNSPD
Progress on Ultra-Dense Quantum Communication Using Integrated Photonic Architecture
2012-05-09
quantum information, integrated optics, photonic integrated chip Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory...Integrated Photonic Architecture Dirk Englund, Karl Berggren, Jeffrey Shapiro, Chee Wei Wong, Franco Wong, and Gregory Wornell (Dated: May 9, 2012) The...Ultrahigh Flux Entangled Photon Source & Time-Energy entanglement d-dimensional QKD 6 VI. Waveguide -integrated SNSPD 6 A. Next three months 7 References
2017-03-06
Section G. CONQUEST Budget Questions Regarding “Quantum Key Distribution: Atmospheric Profiles of Extinction and Turbulence” Jeffrey H. Shapiro...Office of Naval Research) has asked his Maritime QKD teams to employ the SPAWAR-provided atmospheric extinction and turbulence data from [1] to assess...prepared a compilation of atmospheric extinction and turbulence data for a 30-km-long maritime path [1]. In particular, they have used atmospheric
NASA Astrophysics Data System (ADS)
Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua
2015-05-01
By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).