Liu, Binyan; Gu, Shiling; Liang, Nengsong; Xiong, Mei; Xue, Qizhen; Lu, Shuguang; Hu, Fuquan; Zhang, Huidong
2016-08-01
Most phages contain DNA polymerases, which are essential for DNA replication and propagation in infected host bacteria. However, our knowledge on phage-encoded DNA polymerases remains limited. This study investigated the function of a novel DNA polymerase of PaP1, which is the lytic phage of Pseudomonas aeruginosa. PaP1 encodes its sole DNA polymerase called Gp90 that was predicted as an A-family DNA polymerase with polymerase and 3'-5' exonuclease activities. The sequence of Gp90 is homologous but not identical to that of other A-family DNA polymerases, such as T7 DNA polymerases (Pol) and DNA Pol I. The purified Gp90 demonstrated a polymerase activity. The processivity of Gp90 in DNA replication and its efficiency in single-dNTP incorporation are similar to those of T7 Pol with processive thioredoxin (T7 Pol/trx). Gp90 can degrade ssDNA and dsDNA in 3'-5' direction at a similar rate, which is considerably lower than that of T7 Pol/trx. The optimized conditions for polymerization were a temperature of 37 °C and a buffer consisting of 40 mM Tris-HCl (pH 8.0), 30 mM MgCl2, and 200 mM NaCl. These studies on DNA polymerase encoded by PaP1 help advance our knowledge on phage-encoded DNA polymerases and elucidate PaP1 propagation in infected P. aeruginosa.
DNA polymerase having modified nucleotide binding site for DNA sequencing
Tabor, Stanley; Richardson, Charles
1997-01-01
Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.
Deep-sea vent phage DNA polymerase specifically initiates DNA synthesis in the absence of primers.
Zhu, Bin; Wang, Longfei; Mitsunobu, Hitoshi; Lu, Xueling; Hernandez, Alfredo J; Yoshida-Takashima, Yukari; Nunoura, Takuro; Tabor, Stanley; Richardson, Charles C
2017-03-21
A DNA polymerase is encoded by the deep-sea vent phage NrS-1. NrS-1 has a unique genome organization containing genes that are predicted to encode a helicase and a single-stranded DNA (ssDNA)-binding protein. The gene for an unknown protein shares weak homology with the bifunctional primase-polymerases (prim-pols) from archaeal plasmids but is missing the zinc-binding domain typically found in primases. We show that this gene product has efficient DNA polymerase activity and is processive in DNA synthesis in the presence of the NrS-1 helicase and ssDNA-binding protein. Remarkably, this NrS-1 DNA polymerase initiates DNA synthesis from a specific template DNA sequence in the absence of any primer. The de novo DNA polymerase activity resides in the N-terminal domain of the protein, whereas the C-terminal domain enhances DNA binding.
DNA polymerase having modified nucleotide binding site for DNA sequencing
Tabor, S.; Richardson, C.
1997-03-25
A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.
Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C
2009-10-30
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.
Leem, S H; Ropp, P A; Sugino, A
1994-08-11
We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.
Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.
2009-01-01
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688
Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian
2013-12-01
Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Cozens, A L; Walker, J E
1986-01-01
The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249
Roux-Michollet, Dad D; Schimel, Joshua P; Holden, Patricia A
2010-12-01
Identifying microorganisms that are active under specific conditions in ecosystems is a challenge in microbial ecology. Recently, the bromodeoxyuridine (BrdU) technique was developed to label actively growing cells. BrdU, a thymidine analog, is incorporated into newly synthesized DNA, and the BrdU-labeled DNA is then isolated from total extractable DNA by immunocapture using a BrdU-specific antibody. Analyzing the BrdU-labeled DNA allows for assessing the actively growing community, which can then be compared to the unlabeled DNA that represents the total community. However, applying the BrdU approach to study soils has been problematic due to low DNA amounts and soil contaminants. To address these challenges, we developed a protocol, optimizing specificity and reproducibility, to amplify BrdU-labeled gene fragments encoding 16S rRNA. We found that the determining factor was the DNA polymerase: among the 13 different polymerases we tested, only 3 provided adequate yields with minimal contamination, and only two of those three produced similar amplification patterns of community DNA. Copyright © 2010 Elsevier B.V. All rights reserved.
Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel
1991-01-01
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Namhai Chua; Kush, A.
1993-02-16
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids.
Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.
1991-03-26
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 figure.
Directed evolution of polymerase function by compartmentalized self-replication.
Ghadessy, F J; Ong, J L; Holliger, P
2001-04-10
We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.
Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome
Wallen, Jamie R.; Zhang, Hao; Weis, Caroline; ...
2017-01-03
The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less
Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallen, Jamie R.; Zhang, Hao; Weis, Caroline
The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. then, the two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerasemore » binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. The collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.« less
Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae
Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.
1987-08-28
A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.
Continuous in vitro evolution of bacteriophage RNA polymerase promoters
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Banerji, A.; Joyce, G. F.
1994-01-01
Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.
Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E
1993-01-01
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138
Andrade, B S; Villela-Dias, C; Gomes, D S; Micheli, F; Góes-Neto, A
2013-06-13
Moniliophthora perniciosa (Stahel) Aime and Phillips-Mora is a hemibiotrophic basidiomycete (Agaricales, Tricholomataceae) that causes witches' broom disease in cocoa (Theobroma cacao L.). This pathogen carries a stable integrated invertron-type linear plasmid in its mitochondrial genome that encodes viral-like DNA and RNA polymerases related to fungal senescence and longevity. After culturing the fungus and obtaining its various stages of development in triplicate, we carried out total RNA extraction and subsequent complementary DNA synthesis. To analyze DNA and RNA polymerase expression levels, we performed real-time reverse transcriptase polymerase chain reaction for various fungal phases of development. Our results showed that DNA and RNA polymerase gene expression in the primordium phase of M. perniciosa is related to a potential defense mechanism against T. cacao oxidative attack.
Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.
Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J
2011-08-01
DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.
Gammon, Don B; Evans, David H
2009-05-01
Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.
Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes
Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas
2014-01-01
The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089
Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants
Santos, M. E.; Drake, J. W.
1994-01-01
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754
Juhas, Mario; Ajioka, James W
2017-11-01
The majority of the good DNA editing techniques have been developed in Escherichia coli; however, Bacillus subtilis is better host for a plethora of synthetic biology and biotechnology applications. Reliable and efficient systems for the transfer of synthetic DNA between E. coli and B. subtilis are therefore of the highest importance. Using synthetic biology approaches, such as streamlined lambda Red recombineering and Gibson Isothermal Assembly, we integrated genetic circuits pT7L123, Repr-ts-1 and pLT7pol encoding the lysis genes of bacteriophages MS2, ΦX174 and lambda, the thermosensitive repressor and the T7 RNA polymerase into the E. coli chromosome. In this system, T7 RNA polymerase regulated by the thermosensitive repressor drives the expression of the phage lysis genes. We showed that T7 RNA polymerase significantly increases efficiency of cell lysis and transfer of the plasmid and bacterial artificial chromosome-encoded DNA from the lysed E. coli into B. subtilis. The T7 RNA polymerase-driven inducible cell lysis system is suitable for the efficient cell lysis and transfer of the DNA engineered in E. coli to other naturally competent hosts, such as B. subtilis. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Role of the C-terminal residue of the DNA polymerase of bacteriophage T7.
Kumar, J K; Tabor, S; Richardson, C C
2001-09-14
The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.
Solving traveling salesman problems with DNA molecules encoding numerical values.
Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak
2004-12-01
We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
Bratic, Ana; Kauppila, Timo E. S.; Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B.; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran
2015-01-01
Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610
Single-Molecule Encoders for Tracking Motor Proteins on DNA
NASA Astrophysics Data System (ADS)
Lipman, Everett A.
2012-02-01
Devices such as inkjet printers and disk drives track position and velocity using optical encoders, which produce periodic signals precisely synchronized with linear or rotational motion. We have implemented this technique at the nanometer scale by labeling DNA with regularly spaced fluorescent dyes. The resulting molecular encoders can be used in several ways for high-resolution continuous tracking of individual motor proteins. These measurements do not require mechanical coupling to macroscopic instrumentation, are automatically calibrated by the underlying structure of DNA, and depend on signal periodicity rather than absolute level. I will describe the synthesis of single-molecule encoders, data from and modeling of experiments on a helicase and a DNA polymerase, and some ideas for future work.
Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P
1997-02-01
The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).
Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan
2017-07-01
Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.
Chénard, Caroline; Wirth, Jennifer F; Suttle, Curtis A
2016-06-14
Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting filamentous freshwater cyanobacteria, revealing that their gene content is unlike that of other cyanophages. In addition to sharing many gene homologues with freshwater cyanobacteria, cyanophage N-1 encodes a CRISPR array and expresses it upon infection. Also, both viruses contain a DNA polymerase B-encoding gene with high similarity to genes found in proteobacterial plasmids of filamentous cyanobacteria. The observation that phages can acquire CRISPRs from their hosts suggests that phages can also move them among hosts, thereby conferring resistance to competing phages. The presence in these cyanophages of CRISPR and DNA polymerase B sequences, as well as a suite of other host-related genes, illustrates the long and complex evolutionary history of these viruses and their hosts. Copyright © 2016 Chénard et al.
Shpakovskiĭ, G V; Lebedenko, E N
1997-05-01
The full-length cDNA of the rpc10+ gene encoding mini-subunit Rpc10, which is common for all three nuclear RNA polymerases of the fission yeast Schizosaccharomyces pombe, was cloned and sequenced. The Rpc10 subunit of Sz. pombe and its homologs from S. cerevisiae and H. sapiens are positively charged proteins with a highly conserved C-terminal region and an invariant zinc-binding domain (Zn-finger) of a typical amino acid composition: YxCx2Cx12RCx2CGxR. Functional tests of heterospecific complementation, using tetrad analysis or plasmid shuffling, showed that the Rpc10 subunit of Sz. pombe can successfully replace the homologous ABC10 alpha subunit in nuclear RNA polymerases I-III of S. cerevisiae.
Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi
2012-01-01
The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.
Bogani, Federica; Boehmer, Paul E.
2008-01-01
Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225
Dunham, S P; Onions, D E
2001-06-21
A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.
Du, Yu-Jie; Hou, Yi-Ling; Hou, Wan-Ru
2013-02-01
The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance.
Synthetic polymers as substrates for a DNA-sliding clamp protein.
van Dongen, S F M; Clerx, J; van den Boomen, O I; Pervaiz, M; Trakselis, M A; Ritschel, T; Schoonen, L; Schoenmakers, D C; Nolte, R J M
2018-04-26
The clamp protein (gp45) of the DNA polymerase III of the bacteriophage T4 is known to bind to DNA and stay attached to it in order to facilitate the process of DNA copying by the polymerase. As part of a project aimed at developing new biomimetic data-encoding systems we have investigated the binding of gp45 to synthetic polymers, that is, rigid, helical polyisocyanopeptides. Molecular modelling studies suggest that the clamp protein may interact with the latter polymers. Experiments aimed at verifying these interactions are presented and discussed. © 2018 The Authors Biopolymers Published by Wiley Periodicals, Inc.
Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S
2011-01-21
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stumpf, Jeffrey D.; Copeland, William C.
2014-01-01
Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities. PMID:25340760
Stumpf, Jeffrey D; Copeland, William C
2014-10-01
Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities.
2011-11-16
protein A (Rpa2), the minichromosome maintenance complex component genes which encode helicases, DNA ligase (Lig1), DNA polymerase e ( Pole and Pole2...and DNA polymerase d ( Pold1 and Pold2 ) are all up-regulated as a result of exposure to chromium (Figure 6), suggesting that there is an increase in...Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line Matthew G
RPO41-independent maintenance of [rho-] mitochondrial DNA in Saccharomyces cerevisiae.
Fangman, W L; Henly, J W; Brewer, B J
1990-01-01
A subset of promoters in the mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae has been proposed to participate in replication initiation, giving rise to a primer through site-specific cleavage of an RNA transcript. To test whether transcription is essential for mtDNA maintenance, we examined two simple mtDNA deletion ([rho-]) genomes in yeast cells. One genome (HS3324) contains a consensus promoter (ATATAAGTA) for the mitochondrial RNA polymerase encoded by the nuclear gene RPO41, and the other genome (4a) does not. As anticipated, in RPO41 cells transcripts from the HS3324 genome were more abundant than were transcripts from the 4a genome. When the RPO41 gene was disrupted, both [rho-] genomes were efficiently maintained. The level of transcripts from HS3324 mtDNA was decreased greater than 400-fold in cells carrying the RPO41 disrupted gene; however, the low-level transcripts from 4a mtDNA were undiminished. These results indicate that replication of [rho-] genomes can be initiated in the absence of wild-type levels of the RPO41-encoded RNA polymerase.
Chénard, Caroline; Wirth, Jennifer F.
2016-01-01
ABSTRACT Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. PMID:27302758
Müller, M; Schnitzler, P; Koonin, E V; Darai, G
1995-05-01
Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family Iridoviridae, which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete EcoRI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the EcoRI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the EcoRI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and Chilo iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil
1993-02-16
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a pu GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.
Andrade, B S; Góes-Neto, A
2015-10-30
The filamentous fungus Moniliophthora perniciosa is a hemibiotrophic basidiomycete that causes witches' broom disease of cacao (Theobroma cacao L.). Many fungal mitochondrial plasmids are DNA and RNA polymerase-encoding invertrons with terminal inverted repeats and 5'-linked proteins. The aim of this study was to carry out comparative and phylogenetic analyses of DNA and RNA polymerases for all known linear mitochondrial plasmids in fungi. We performed these analyses at both gene and protein levels and assessed differences between fungal and viral polymerases in order to test the lateral gene transfer (LGT) hypothesis. We analyzed all mitochondrial plasmids of the invertron type within the fungal clade, including five from Ascomycota, seven from Basidiomycota, and one from Chytridiomycota. All phylogenetic analyses generated similar tree topologies regardless of the methods and datasets used. It is likely that DNA and RNA polymerase genes were inserted into the mitochondrial genomes of the 13 fungal species examined in our study as a result of different LGT events. These findings are important for a better understanding of the evolutionary relationships between fungal mitochondrial plasmids.
Ma, Emilie; Veaute, Xavier; Coïc, Eric
2017-01-01
Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage. PMID:29281621
Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.
1995-01-01
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281
NASA Astrophysics Data System (ADS)
Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman
2017-01-01
Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.
DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis
Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra
2016-01-01
Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227
NASA Astrophysics Data System (ADS)
Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.
2015-06-01
A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.
Recombination of polynucleotide sequences using random or defined primers
Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.
2000-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.
2002-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Recombination of polynucleotide sequences using random or defined primers
Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.
2001-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Masuda, Keiji; Ouchida, Rika; Takeuchi, Arata; Saito, Takashi; Koseki, Haruhiko; Kawamura, Kiyoko; Tagawa, Masatoshi; Tokuhisa, Takeshi; Azuma, Takachika; O-Wang, Jiyang
2005-01-01
Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase η (Polη) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (Polθ) specifically devoid of polymerase activity. Compared with WT mice, Polq-inactive (Polq, the gene encoding Polθ) mice exhibited a reduced level of serum IgM and IgG1. The mutant mice mounted relatively normal primary and secondary immune responses to a T-dependent antigen, but the production of high-affinity specific antibodies was partially impaired. Analysis of the JH4 intronic sequences revealed a slight reduction in the overall mutation frequency in Polq-inactive mice. Remarkably, although mutations at A/T were unaffected, mutations at C/G were significantly decreased, indicating an important, albeit not exclusive, role for Polθ activity. The reduction of C/G mutations was particularly focused on the intrinsic somatic hypermutation hotspots and both transitions and transversions were similarly reduced. These findings, together with the recent observation that Polθ efficiently catalyzes the bypass of abasic sites, lead us to propose that Polθ introduces mutations at C/G by replicating over abasic sites generated via uracil-DNA glycosylase. PMID:16172387
Redrejo-Rodríguez, Modesto; Ordóñez, Carlos D; Berjón-Otero, Mónica; Moreno-González, Juan; Aparicio-Maldonado, Cristian; Forterre, Patrick; Salas, Margarita; Krupovic, Mart
2017-11-07
Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DNA polymerase ι: The long and the short of it!
Frank, Ekaterina G; McLenigan, Mary P; McDonald, John P; Huston, Donald; Mead, Samantha; Woodgate, Roger
2017-10-01
The cDNA encoding human DNA polymerase ι (POLI) was cloned in 1999. At that time, it was believed that the POLI gene encoded a protein of 715 amino acids. Advances in DNA sequencing technologies led to the realization that there is an upstream, in-frame initiation codon that would encode a DNA polymerase ι (polι) protein of 740 amino acids. The extra 25 amino acid region is rich in acidic residues (11/25) and is reasonably conserved in eukaryotes ranging from fish to humans. As a consequence, the curated Reference Sequence (RefSeq) database identified polι as a 740 amino acid protein. However, the existence of the 740 amino acid polι has never been shown experimentally. Using highly specific antibodies to the 25 N-terminal amino acids of polι, we were unable to detect the longer 740 amino acid (ι-long) isoform in western blots. However, trace amounts of the ι-long isoform were detected after enrichment by immunoprecipitation. One might argue that the longer isoform may have a distinct biological function, if it exhibits significant differences in its enzymatic properties from the shorter, well-characterized 715 amino acid polι. We therefore purified and characterized recombinant full-length (740 amino acid) polι-long and compared it to full-length (715 amino acid) polι-short in vitro. The metal ion requirements for optimal catalytic activity differ slightly between ι-long and ι-short, but under optimal conditions, both isoforms exhibit indistinguishable enzymatic properties in vitro. We also report that like ι-short, the ι-long isoform can be monoubiquitinated and polyubiuquitinated in vivo, as well as form damage induced foci in vivo. We conclude that the predominant isoform of DNA polι in human cells is the shorter 715 amino acid protein and that if, or when, expressed, the longer 740 amino acid isoform has identical properties to the considerably more abundant shorter isoform. Published by Elsevier B.V.
Mirzakhanyan, Yeva; Gershon, Paul D
2017-09-01
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size. Copyright © 2017 American Society for Microbiology.
Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.
2013-01-01
Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447
Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis
2007-01-01
Cell type–specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase α of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity. PMID:17873092
Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.
2015-01-01
A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase. PMID:26061191
Walker, J; Tait, A
1997-11-01
A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.
DNA polymerase θ (POLQ) can extend from mismatches and from bases opposite a (6–4) photoproduct
Seki, Mineaki; Wood, Richard D.
2007-01-01
DNA polymerase θ (pol θ) is a nuclear A-family DNA polymerase encoded by the POLQ gene in vertebrate cells. The biochemical properties of pol θ and of Polq-defective mice have suggested that pol θ participates in DNA damage tolerance. For example, pol θ was previously found to be proficient not only in incorporation of a nucleotide opposite a thymine glycol or an abasic site, but also extends a polynucleotide chain efficiently from the base opposite the lesion. We carried out experiments to determine whether this ability to extend from non-standard termini is a more general property of the enzyme. Pol θ extended relatively efficiently from matched termini as well as termini with A:G, A:T, and A:C mismatches, with less descrimination than a well-studied A family DNA polymerase, exonuclease-free pol I from E. coli. Although pol θ was unable to, by itself, bypass a cyclobutane pyrimidine dimer or a (6–4) photoproduct, it could perform some extension from primers with bases placed across from these lesions. When pol θ was combined with DNA polymerase ι , an enzyme that can insert a base opposite a UV-induced (6–4) photoproduct, complete bypass of a (6–4) photoproduct was possible. These data show that in addition to its ability to insert nucleotides opposite some DNA lesions, pol θ is proficient at extension of unpaired termini. These results show the potential of pol θ to act as an extender after incorporation of nucleotides by other DNA polymerases, and aid in understanding the role of pol θ in somatic mutagenesis and genome instability. PMID:17920341
DNA polymerase theta (POLQ) can extend from mismatches and from bases opposite a (6-4) photoproduct.
Seki, Mineaki; Wood, Richard D
2008-01-01
DNA polymerase theta (pol theta) is a nuclear A-family DNA polymerase encoded by the POLQ gene in vertebrate cells. The biochemical properties of pol theta and of Polq-defective mice have suggested that pol theta participates in DNA damage tolerance. For example, pol theta was previously found to be proficient not only in incorporation of a nucleotide opposite a thymine glycol or an abasic site, but also extends a polynucleotide chain efficiently from the base opposite the lesion. We carried out experiments to determine whether this ability to extend from non-standard termini is a more general property of the enzyme. Pol theta extended relatively efficiently from matched termini as well as termini with A:G, A:T and A:C mismatches, with less descrimination than a well-studied A-family DNA polymerase, exonuclease-free pol I from E. coli. Although pol theta was unable to, by itself, bypass a cyclobutane pyrimidine dimer or a (6-4) photoproduct, it could perform some extension from primers with bases placed across from these lesions. When pol theta was combined with DNA polymerase iota, an enzyme that can insert a base opposite a UV-induced (6-4) photoproduct, complete bypass of a (6-4) photoproduct was possible. These data show that in addition to its ability to insert nucleotides opposite some DNA lesions, pol theta is proficient at extension of unpaired termini. These results show the potential of pol theta to act as an extender after incorporation of nucleotides by other DNA polymerases, and aid in understanding the role of pol theta in somatic mutagenesis and genome instability.
Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research
Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in
Kozmin, Stanislav G; Pavlov, Youri I; Kunkel, Thomas A; Sage, Evelyne
2003-08-01
Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase eta (Poleta) and polymerase zeta (Polzeta), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310-1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Delta, rev3Delta and rev3Delta rad30Delta strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6-4) photoproducts derived from studies with UVC. They further suggest that Poleta participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polzeta is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polzeta, Poleta contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, M.A.M.
1985-01-01
The in vitro activities of the purified poliovirus RNA polymerase were investigated in this study. The polymerase was shown to be a strict RNA dependent RNA polymerase. It only copied RNA templates but used either a DNA or RNA primer to initiate RNA synthesis. Partially purified polymerase has some DNA polymerase activities. Additional purification of the enzyme and studies with a mutant poliovirus RNA polymerase indicated that the DNA polymerase activities were due to a cellular polymerase. The fidelity of RNA replication in vitro by the purified poliovirus RNA polymerase was studied by measuring the rate of misincorporation of noncomplementarymore » ribonucleotide monophosphates on synthetic homopolymeric RNA templates. The results showed that the ratio of noncomplementary to complementary ribonucleotides incorporated was 1-5 x 10/sup -3/. The viral polymerase of a poliovirus temperature sensitive RNA-negative mutant, Ts 10, was isolated. This study confirmed that the mutant was viable 33/sup 0/, but was RNA negative at 39/sup 0/. Characterization of the Ts 10 polymerase showed it was significantly more sensitive to heat inactivation than was the old-type polymerase. Highly purified poliovirions were found to contain several noncapsid proteins. At least two of these proteins were labeled by (/sup 35/S)methionine infected cells and appeared to be virally encoded proteins. One of these proteins was immunoprecipitated by anti-3B/sup vpg/ antiserum. This protein had the approximate Mr = 50,000 and appeared to be one of the previously identified 3B/sup vpg/ precursor proteins.« less
Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.
2001-01-01
The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027
Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V
2006-10-15
The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.
Archaeal RNA polymerase arrests transcription at DNA lesions.
Gehring, Alexandra M; Santangelo, Thomas J
2017-01-01
Transcription elongation is not uniform and transcription is often hindered by protein-bound factors or DNA lesions that limit translocation and impair catalysis. Despite the high degree of sequence and structural homology of the multi-subunit RNA polymerases (RNAP), substantial differences in response to DNA lesions have been reported. Archaea encode only a single RNAP with striking structural conservation with eukaryotic RNAP II (Pol II). Here, we demonstrate that the archaeal RNAP from Thermococcus kodakarensis is sensitive to a variety of DNA lesions that pause and arrest RNAP at or adjacent to the site of DNA damage. DNA damage only halts elongation when present in the template strand, and the damage often results in RNAP arresting such that the lesion would be encapsulated with the transcription elongation complex. The strand-specific halt to archaeal transcription elongation on modified templates is supportive of RNAP recognizing DNA damage and potentially initiating DNA repair through a process akin to the well-described transcription-coupled DNA repair (TCR) pathways in Bacteria and Eukarya.
Baños, Benito; Lázaro, José M; Villar, Laurentino; Salas, Margarita; de Vega, Miguel
2008-10-01
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolX(Bs)), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolX(Bs) possesses an intrinsic 3'-5' exonuclease activity specialized in resecting unannealed 3'-termini in a gapped DNA substrate. Biochemical analysis of a PolX(Bs) deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3'-5' exonuclease activity of PolX(Bs) resides in its PHP domain. Furthermore, site-directed mutagenesis of PolX(Bs) His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3'-termini resection by the 3'-5' exonuclease activity of PolX(Bs) in the DNA repair context are discussed.
Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V
2017-02-01
Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.
Shpakovskiĭ, G V; Lebedenko, E N
1996-12-01
The rpb10+ cDNA from the fission yeast Schizosaccharomyces pombe was cloned using two independent approaches (PCR and genetic suppression). The cloned cDNA encoded the Rpb10 subunit common for all three RNA polymerases. Comparison of the deduced amino acid sequence of the Sz. pombe Rbp10 subunit (71 amino acid residues) with those of the homologous subunits of RNA polymerases I, II, and III from Saccharomyces cerevisiae and Home sapiens revealed that heptapeptides RCFT/SCGK (residues 6-12), RYCCRRM (residues 43-49), and HVDLIEK (residues 53-59) were evolutionarily the most conserved structural motifs of these subunits. It is shown that the Rbp10 subunit from Sz. pombe can substitute its homolog (ABC10 beta) in the baker's yeast S. cerevisiae.
Coordinating DNA polymerase traffic during high and low fidelity synthesis.
Sutton, Mark D
2010-05-01
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Meesapyodsuk, Dauenpen; Balsevich, John; Reed, Darwin W.; Covello, Patrick S.
2007-01-01
Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a β-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria. PMID:17172290
Koponen, Jonna K; Turunen, Anna-Mari; Ylä-Herttuala, Seppo
2002-03-01
Real-time PCR is a powerful method for the quantification of gene expression in biological samples. This method uses TaqMan chemistry based on the 5' -exonuclease activity of the AmpliTaq Gold DNA polymerase which releases fluorescence from hybridized probes during synthesis of each new PCR product. Many gene therapy studies use lacZ, encoding Escherichia coli beta-galactosidase, as a marker gene. Our results demonstrate that E. coli DNA contamination in AmpliTaq Gold polymerase interferes with TaqMan analysis of lacZ gene expression and decreases sensitivity of the method below the level required for biodistribution and long-term gene expression studies. In biodistribution analyses the contamination can lead to false-negative results by masking low-level lacZ expression in target and ectopic tissues, and false-positive results if sufficient controls are not used. We conclude that, to get reliable TaqMan results with lacZ, adequate controls should be included in each run to rule out contamination from AmpliTaq Gold polymerase.
CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.
Ramsay, Nicola; Jemth, Ann-Sofie; Brown, Anthony; Crampton, Neal; Dear, Paul; Holliger, Philipp
2010-04-14
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.
Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine.
Tran, Ngoc Q; Rezende, Lisa F; Qimron, Udi; Richardson, Charles C; Tabor, Stanley
2008-07-08
Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT.
Ayyagari, R; Impellizzeri, K J; Yoder, B L; Gary, S L; Burgers, P M
1995-01-01
The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions between repair-specific protein(s) and PCNA, which are distinct from those required for DNA replication. PMID:7623835
Kozmin, Stanislav G.; Pavlov, Youri I.; Kunkel, Thomas A.; Sage, Evelyne
2003-01-01
Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase η (Polη) and polymerase ζ (Polζ), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310–1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Δ, rev3Δ and rev3Δ rad30Δ strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6–4) photoproducts derived from studies with UVC. They further suggest that Polη participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polζ is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polζ, Polη contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine. PMID:12888515
CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNA by an Evolved Polymerase
2010-01-01
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting “CyDNA” displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties. PMID:20235594
Zhong, Xuehua; Hale, Christopher J.; Nguyen, Minh; Ausin, Israel; Groth, Martin; Hetzel, Jonathan; Vashisht, Ajay A.; Henderson, Ian R.; Wohlschlegel, James A.; Jacobsen, Steven E.
2015-01-01
DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase DOMAINS REARRANGED METHYLASE 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation. PMID:25561521
Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast.
Chen, Miao; Gartenberg, Marc R
2014-05-01
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC-tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.
Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast
Chen, Miao; Gartenberg, Marc R.
2014-01-01
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs. PMID:24788517
Baños, Benito; Lázaro, José M.; Villar, Laurentino; de Vega, Miguel
2008-01-01
Bacillus subtilis gene yshC encodes a family X DNA polymerase (PolXBs), whose biochemical features suggest that it plays a role during DNA repair processes. Here, we show that, in addition to the polymerization activity, PolXBs possesses an intrinsic 3′–5′ exonuclease activity specialized in resecting unannealed 3′-termini in a gapped DNA substrate. Biochemical analysis of a PolXBs deletion mutant lacking the C-terminal polymerase histidinol phosphatase (PHP) domain, present in most of the bacterial/archaeal PolXs, as well as of this separately expressed protein region, allow us to state that the 3′–5′ exonuclease activity of PolXBs resides in its PHP domain. Furthermore, site-directed mutagenesis of PolXBs His339 and His341 residues, evolutionary conserved in the PHP superfamily members, demonstrated that the predicted metal binding site is directly involved in catalysis of the exonucleolytic reaction. The implications of the unannealed 3′-termini resection by the 3′–5′ exonuclease activity of PolXBs in the DNA repair context are discussed. PMID:18776221
Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.
Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S
2017-06-01
DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.
Thiffault, Isabelle; Saunders, Carol; Jenkins, Janda; Raje, Nikita; Canty, Kristi; Sharma, Mukta; Grote, Lauren; Welsh, Holly I; Farrow, Emily; Twist, Greyson; Miller, Neil; Zwick, David; Zellmer, Lee; Kingsmore, Stephen F; Safina, Nicole P
2015-05-07
Chromosome instability syndromes are a group of inherited conditions associated with chromosomal instability and breakage, often leading to immunodeficiency, growth retardation and increased risk of malignancy. We performed exome sequencing on a girl with a suspected chromosome instability syndrome that manifested as growth retardation, microcephaly, developmental delay, dysmorphic features, poikiloderma, immune deficiency with pancytopenia, and myelodysplasia. She was homozygous for a previously reported splice variant, c.4444 + 3A > G in the POLE1 gene, which encodes the catalytic subunit of DNA polymerase E. This is the second family with POLE1-deficency, with the affected individual demonstrating a more severe phenotype than previously described.
Benedetti, Michele; Romano, Alessandro; De Castro, Federica; Girelli, Chiara R; Antonucci, Daniela; Migoni, Danilo; Verri, Tiziano; Fanizzi, Francesco P
2016-10-01
In this work, we assessed the capacity of RNA polymerases to use platinated ribonucleotides as substrates for RNA synthesis by testing the incorporation of the model compound [Pt(dien)(N7-5'-GTP)] (dien=diethylenetriamine; GTP=5'-guanosine triphosphate) into a natural RNA sequence. The yield of in vitro transcription operated by T7 RNA polymerase, on the LacZ (Escherichia coli gene encoding for β-galactosidase) sequence, decreases progressively with decreasing the concentration of natural GTP, in favor of the platinated nucleotide, [Pt(dien)(N7-5'-GTP)]. Comparison of the T7 RNA polymerase transcription activities for [Pt(dien)(N7-5'-GTP)] compound incorporation reaction test, with respect to the effect of a decreasing concentration of natural GTP, showed no major differences. A specific inhibitory effect of compound [Pt(dien)(N7-5'-GTP)] (which may pair the complementary base on the DNA strand, without being incorporated in the RNA by the T7 RNA polymerase) was evidenced. Our findings therefore suggest that RNA polymerases, unlike DNA polymerases, are unable to incorporate N7-platinated nucleotides into newly synthesized nucleic acids. In this respect, specifically designed N7-platinated nucleotides based compounds could be used in alternative to the classical platinum based drugs. This approach may offer a possible strategy to target specifically DNA, without affecting RNA, and is potentially able to better modulate pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Pachlopnik Schmid, Jana; Lemoine, Roxane; Nehme, Nadine; Cormier-Daire, Valéry; Revy, Patrick; Debeurme, Franck; Debré, Marianne; Nitschke, Patrick; Bole-Feysot, Christine; Legeai-Mallet, Laurence; Lim, Annick; de Villartay, Jean-Pierre; Picard, Capucine; Durandy, Anne; Fischer, Alain
2012-01-01
DNA polymerase ε (Polε) is a large, four-subunit polymerase that is conserved throughout the eukaryotes. Its primary function is to synthesize DNA at the leading strand during replication. It is also involved in a wide variety of fundamental cellular processes, including cell cycle progression and DNA repair/recombination. Here, we report that a homozygous single base pair substitution in POLE1 (polymerase ε 1), encoding the catalytic subunit of Polε, caused facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”) in a large, consanguineous family. The mutation resulted in alternative splicing in the conserved region of intron 34, which strongly decreased protein expression of Polε1 and also to a lesser extent the Polε2 subunit. We observed impairment in proliferation and G1- to S-phase progression in patients’ T lymphocytes. Polε1 depletion also impaired G1- to S-phase progression in B lymphocytes, chondrocytes, and osteoblasts. Our results evidence the developmental impact of a Polε catalytic subunit deficiency in humans and its causal relationship with a newly recognized, inherited disorder. PMID:23230001
Kawano, Tomonori
2013-03-01
There have been a wide variety of approaches for handling the pieces of DNA as the "unplugged" tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given "passwords" and/or secret numbers using DNA sequences. The "passwords" of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original "passwords." The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed.
Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin
2017-02-14
Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.
Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin
2015-02-27
Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.
Novel Structure of Ty3 Reverse Transcriptase | Center for Cancer Research
Retrotransposons are mobile genetic elements that self amplify via a single-stranded RNA intermediate, which is converted to double-stranded DNA by an encoded reverse transcriptase (RT) with both DNA polymerase (pol) and ribonuclease H (RNase) activities. Categorized by whether they contain flanking long terminal repeat (LTR) sequences, retrotransposons play a critical role in the architecture of eukaryotic genomes and are the evolutionary origin of retroviruses, including human immunodeficiency virus (HIV).
A Pol V–Mediated Silencing, Independent of RNA–Directed DNA Methylation, Applies to 5S rDNA
Douet, Julien; Tutois, Sylvie; Tourmente, Sylvette
2009-01-01
The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. PMID:19834541
Cloning and characterization of a DNA polymerase beta gene from Trypanosoma cruzi.
Venegas, Juan A; Aslund, Lena; Solari, Aldo
2009-06-01
A gene coding for a DNA polymerase beta from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpol beta), using the information from eight peptides of the T. cruzi beta-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-pol beta with mitochondrial pol beta and pol beta-PAK from other trypanosomatids was between 68-80% and 22-30%, respectively. Miranda Tc-pol beta protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata pol beta, which suggests that the TcI-pol beta plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, J.; Sears, J.; Schael, I.P.
1990-08-01
We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated frommore » field studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M.
A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised againstmore » the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.« less
Identification of DNA gyrase inhibitor (GyrI) in Escherichia coli.
Nakanishi, A; Oshida, T; Matsushita, T; Imajoh-Ohmi, S; Ohnuki, T
1998-01-23
DNA gyrase is an essential enzyme in DNA replication in Escherichia coli. It mediates the introduction of negative supercoils near oriC, removal of positive supercoils ahead of the growing DNA fork, and separation of the two daughter duplexes. In the course of purifying DNA gyrase from E. coli KL16, we found an 18-kDa protein that inhibited the supercoiling activity of DNA gyrase, and we coined it DNA gyrase inhibitory protein (GyrI). Its NH2-terminal amino acid sequence of 16 residues was determined to be identical to that of a putative gene product (a polypeptide of 157 amino acids) encoded by yeeB (EMBL accession no. U00009) and sbmC (Baquero, M. R., Bouzon, M., Varea, J., and Moreno, F. (1995) Mol. Microbiol. 18, 301-311) of E. coli. Assuming the identity of the gene (gyrI) encoding GyrI with the previously reported genes yeeB and sbmC, we cloned the gene after amplification by polymerase chain reaction and purified the 18-kDa protein from an E. coli strain overexpressing it. The purified 18-kDa protein was confirmed to inhibit the supercoiling activity of DNA gyrase in vitro. In vivo, both overexpression and antisense expression of the gyrI gene induced filamentous growth of cells and suppressed cell proliferation. GyrI protein is the first identified chromosomally nucleoid-encoded regulatory factor of DNA gyrase in E. coli.
Kawano, Tomonori
2013-01-01
There have been a wide variety of approaches for handling the pieces of DNA as the “unplugged” tools for digital information storage and processing, including a series of studies applied to the security-related area, such as DNA-based digital barcodes, water marks and cryptography. In the present article, novel designs of artificial genes as the media for storing the digitally compressed data for images are proposed for bio-computing purpose while natural genes principally encode for proteins. Furthermore, the proposed system allows cryptographical application of DNA through biochemically editable designs with capacity for steganographical numeric data embedment. As a model case of image-coding DNA technique application, numerically and biochemically combined protocols are employed for ciphering the given “passwords” and/or secret numbers using DNA sequences. The “passwords” of interest were decomposed into single letters and translated into the font image coded on the separate DNA chains with both the coding regions in which the images are encoded based on the novel run-length encoding rule, and the non-coding regions designed for biochemical editing and the remodeling processes revealing the hidden orientation of letters composing the original “passwords.” The latter processes require the molecular biological tools for digestion and ligation of the fragmented DNA molecules targeting at the polymerase chain reaction-engineered termini of the chains. Lastly, additional protocols for steganographical overwriting of the numeric data of interests over the image-coding DNA are also discussed. PMID:23750303
Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.
Konopiński, R; Nowak, R; Siedlecki, J A
1996-10-17
Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.
A polymerase chain reaction strategy for the diagnosis of camelpox.
Balamurugan, Vinayagamurthy; Bhanuprakash, Veerakyathappa; Hosamani, Madhusudhan; Jayappa, Kallesh Danappa; Venkatesan, Gnanavel; Chauhan, Bina; Singh, Raj Kumar
2009-03-01
Camelpox is a contagious viral skin disease that is mostly seen in young camels. The disease is caused by the Camelpox virus (CMLV). In the present study, a polymerase chain reaction (PCR) assay based on the C18L gene (encoding ankyrin repeat protein) and a duplex PCR based on the C18L and DNA polymerase (DNA pol) genes were developed. The former assay yields a specific amplicon of 243 bp of the C18L gene, whereas the duplex PCR yields 243- and 96-bp products of the C18L and DNA pol genes, respectively, in CMLV, and only a 96-bp product of the DNA pol gene in other orthopoxviruses. The limit of detection was as low as 0.4 ng of viral DNA. Both PCR assays were employed successfully for the direct detection and differentiation of CMLV from other orthopoxviruses, capripoxviruses, and parapoxviruses in both cell culture samples and clinical material. Furthermore, a highly sensitive SYBR Green dye-based, real-time PCR was optimized for quantitation of CMLV DNA. In the standard curve of the quantitative assay, the melting temperature of the specific amplicon at 77.6 degrees C with peak measured fluorescence in dissociation plot was observed with an efficiency of 102%. To the authors' knowledge, this is the first report to describe a C18L gene-based PCR for specific diagnosis of camelpox infection.
A PAC containing the human mitochondrial DNA polymerase gamma gene (POLG) maps to chromosome 15q25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, R.L.; Meltzer, P.S.; Anziano, P.
The human mitochondrial DNA (mtDNA) is a closed circular, 16,569-bp double-stranded DNA, encoding 13 genes whose protein products are subunits of the oxidative phosphorylation system required for synthesis of most of the ATP consumed by eukaryotic cells. Point mutations of the mtDNA that cause multi-tissue, loss-of-energy syndromes, called mitochondrial encephalomyopathies (e.g., MERRF and MELAS), have been identified. In addition, large-scale deletions of the human mtDNA have been identified and are the molecular bases for the neonatal and adolescent onset loss-of-energy syndromes Pearson and Kearns-Sayer, respectively. 5 refs., 1 fig.
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J
2015-05-12
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabayov, B.; Akabayov, S; Lee , S
Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one inmore » the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.« less
New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.
Lama, Lodoe; Seidl, Christine I; Ryan, Kevin
2014-01-01
Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.
Evidence for Moonlighting Functions of the θ Subunit of Escherichia coli DNA Polymerase III
Dietrich, M.; Pedró, L.; García, J.; Pons, M.; Hüttener, M.; Paytubi, S.; Madrid, C.
2014-01-01
The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex. PMID:24375106
Sequences of heavy and light chain variable regions from four bovine immunoglobulins.
Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J
1994-12-01
Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.
Shite, Masato; Yamamura, Yoshimi; Hayashi, Toshimitsu; Kurosaki, Fumiya
2008-11-01
A homology-based cloning strategy yielded Sdga, a cDNA clone presumably encoding alpha-subunit of heterotrimeric guanosine 5'-triphosphate-binding protein complex, from leaf tissues of Scoparia dulcis. Phylogenetic tree analysis of G-protein alpha-subunits from various biological sources suggested that, unlike in animal cells, classification of Galpha-proteins into specific subfamilies could not be applicable to the proteins from higher plants. Restriction digests of genomic DNA of S. dulcis showed a single hybridized signal in Southern blot analysis, suggesting that Sdga is a sole gene encoding Galpha-subunit in this plant. The expression level of Sdga appeared to be maintained at almost constant level after exposure of the leaves to methyl jasmonate as analyzed by reverse-transcription polymerase chain reaction. These results suggest that Sdga plays roles in methyl jasmonate-induced responses of S. dulcis without a notable change in the transcriptional level.
Sensitive detection of Treponema pallidum by using the polymerase chain reaction.
Burstain, J M; Grimprel, E; Lukehart, S A; Norgard, M V; Radolf, J D
1991-01-01
We have developed a sensitive assay for Treponema pallidum subsp. pallidum (T. pallidum), the agent of veneral syphilis, based upon the polymerase chain reaction (PCR). A 658-bp portion of the gene encoding the 47-kDa membrane immunogen was amplified, and the PCR products were probed by DNA-DNA hybridization with a 496-bp fragment internal to the amplitifed DNA. The assay detected approximately 0.01 pg of purified T. pallidum DNA, and positive results were obtained routinely from suspensions of treponemes calculated to contain 10 or more organism and from some suspensions calculated to contain a single organism. Specific PCR products were obtained for the closely related agent of yaws, Treponema pallidum subsp. pertenue, but not with human DNA or DNAs from other spirochetes (including Borrelia burgdoferi), skin microorganisms, sexually transmitted disease pathogens, and central nervous system pathogens. T. pallidum DNA was detected in serum, cerebrospinal fluids, and amniotic fluids from syphilis patients but not in in nonsyphilitic controls. T. pallidum DNA was also amplified from paraffin-embedded tissue. The diagnosis of syphillis by using PCR may become a significant addition to the diagnostic armamentarium and a valuable technique for the investigation of syphilis pathogenesis. Images PMID:1993770
Sensitive detection of Treponema pallidum by using the polymerase chain reaction.
Burstain, J M; Grimprel, E; Lukehart, S A; Norgard, M V; Radolf, J D
1991-01-01
We have developed a sensitive assay for Treponema pallidum subsp. pallidum (T. pallidum), the agent of veneral syphilis, based upon the polymerase chain reaction (PCR). A 658-bp portion of the gene encoding the 47-kDa membrane immunogen was amplified, and the PCR products were probed by DNA-DNA hybridization with a 496-bp fragment internal to the amplitifed DNA. The assay detected approximately 0.01 pg of purified T. pallidum DNA, and positive results were obtained routinely from suspensions of treponemes calculated to contain 10 or more organism and from some suspensions calculated to contain a single organism. Specific PCR products were obtained for the closely related agent of yaws, Treponema pallidum subsp. pertenue, but not with human DNA or DNAs from other spirochetes (including Borrelia burgdoferi), skin microorganisms, sexually transmitted disease pathogens, and central nervous system pathogens. T. pallidum DNA was detected in serum, cerebrospinal fluids, and amniotic fluids from syphilis patients but not in in nonsyphilitic controls. T. pallidum DNA was also amplified from paraffin-embedded tissue. The diagnosis of syphillis by using PCR may become a significant addition to the diagnostic armamentarium and a valuable technique for the investigation of syphilis pathogenesis.
Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia
Longley, Matthew J.; Clark, Susanna; Yu Wai Man, Cynthia; Hudson, Gavin; Durham, Steve E.; Taylor, Robert W.; Nightingale, Simon; Turnbull, Douglass M.; Copeland, William C.; Chinnery, Patrick F.
2006-01-01
DNA polymerase γ (pol γ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol γ (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G→A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol γ, that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)–deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype. PMID:16685652
Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.
Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J
1999-01-01
Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.
TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.
Harley, Margaret E; Murina, Olga; Leitch, Andrea; Higgs, Martin R; Bicknell, Louise S; Yigit, Gökhan; Blackford, Andrew N; Zlatanou, Anastasia; Mackenzie, Karen J; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A M; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B; Nürnberg, Peter; Jackson, Stephen P; Hurles, Matthew E; Wollnik, Bernd; Stewart, Grant S; Jackson, Andrew P
2016-01-01
DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cool, D.E.; Tonks, N.K.; Charbonneau, H.
1989-07-01
A human peripheral T-cell cDNA library was screened with two labeled synthetic oligonucleotides encoding regions of a human placenta protein-tyrosine-phosphatase. One positive clone was isolated and the nucleotide sequence was determined. It contained 1,305 base pairs of open reading frame followed by a TAA stop codon and 978 base pairs of 3{prime} untranslated end, although a poly(A){sup +} tail was not found. An initiator methionine residue was predicted at position 61, which would result in a protein of 415 amino acid residues. This was supported by the synthesis of a M{sub r} 48,000 protein in an in vitro reticulocyte lysatemore » translation system using RNA transcribed from the cloned cDNA and T7 RNA polymerase. The deduced amino acid sequence was compared to other known proteins revealing 65% identity to the low M{sub r} PTPase 1B isolated from placenta. In view of the high degree of similarity, the T-cell cDNA likely encodes a newly discovered protein-tyrosine-phosphatase, thus expanding this family of genes.« less
Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C
2001-10-31
Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.
Direct role for the RNA polymerase domain of T7 primase in primer delivery
Zhu, Bin; Lee, Seung-Joo; Richardson, Charles C.
2010-01-01
Gene 4 protein (gp4) encoded by bacteriophage T7 contains a C-terminal helicase and an N-terminal primase domain. After synthesis of tetraribonucleotides, gp4 must transfer them to the polymerase for use as primers to initiate DNA synthesis. In vivo gp4 exists in two molecular weight forms, a 56-kDa form and the full-length 63-kDa form. The 56-kDa gp4 lacks the N-terminal Cys4 zinc-binding motif important in the recognition of primase sites in DNA. The 56-kDa gp4 is defective in primer synthesis but delivers a wider range of primers to initiate DNA synthesis compared to the 63-kDa gp4. Suppressors exist that enable the 56-kDa gp4 to support the growth of T7 phage lacking gene 4 (T7Δ4). We have identified 56-kDa DNA primases defective in primer delivery by screening for their ability to support growth of T7Δ4 phage in the presence of this suppressor. Trp69 is critical for primer delivery. Replacement of Trp69 with lysine in either the 56- or 63-kDa gp4 results in defective primer delivery with other functions unaffected. DNA primase harboring lysine at position 69 fails to stabilize the primer on DNA. Thus, a primase subdomain not directly involved in primer synthesis is involved in primer delivery. The stabilization of the primer by DNA primase is necessary for DNA polymerase to initiate synthesis. PMID:20439755
A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.
Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie
2012-02-07
Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.
Clark, Edward B; Hickinbotham, Simon J; Stepney, Susan
2017-05-01
We present a novel stringmol-based artificial chemistry system modelled on the universal constructor architecture (UCA) first explored by von Neumann. In a UCA, machines interact with an abstract description of themselves to replicate by copying the abstract description and constructing the machines that the abstract description encodes. DNA-based replication follows this architecture, with DNA being the abstract description, the polymerase being the copier, and the ribosome being the principal machine in expressing what is encoded on the DNA. This architecture is semantically closed as the machine that defines what the abstract description means is itself encoded on that abstract description. We present a series of experiments with the stringmol UCA that show the evolution of the meaning of genomic material, allowing the concept of semantic closure and transitions between semantically closed states to be elucidated in the light of concrete examples. We present results where, for the first time in an in silico system, simultaneous evolution of the genomic material, copier and constructor of a UCA, giving rise to viable offspring. © 2017 The Author(s).
McVey, Mitch
2010-01-01
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-03-15
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-01-01
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715
Laquel, P; Litvak, S; Castroviejo, M
1993-01-01
Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta. PMID:7906418
New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III
Lama, Lodoe; Seidl, Christine I; Ryan, Kevin
2014-01-01
Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3′ end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells. PMID:25764216
Recovery of Infectious Pariacoto Virus from cDNA Clones and Identification of Susceptible Cell Lines
Johnson, Karyn N.; Ball, L. Andrew
2001-01-01
Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-Å crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor α. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly. PMID:11711613
Johnson, K N; Ball, L A
2001-12-01
Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-A crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor alpha. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly.
Sutton, Mark D; Duzen, Jill M
2006-03-07
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.
Clinical and Molecular Features of POLG-Related Mitochondrial Disease
Stumpf, Jeffrey D.; Saneto, Russell P.; Copeland, William C.
2013-01-01
The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication. PMID:23545419
Cloning and expression of calmodulin gene in Scoparia dulcis.
Saitoh, Daisuke; Asakura, Yuki; Nkembo, Marguerite Kasidimoko; Shite, Masato; Sugiyama, Ryuji; Lee, Jung-Bum; Hayashi, Toshimitsu; Kurosaki, Fumiya
2007-06-01
A homology-based cloning strategy yielded a cDNA clone, designated Sd-cam, encoding calmodulin protein from Scoparia dulcis. The restriction digests of genomic DNA of S. dulcis showed a single hybridized signal when probed with the fragment of this gene in Southern blot analyses, suggesting that Sd-cam occurs as a sole gene encoding calmodulin in the plant. The reverse-transcription polymerase chain reaction analysis revealed that Sd-cam was appreciably expressed in leaf, root and stem tissues. It appeared that transcription of this gene increased transiently when the leaf cultures of S. dulcis were treated with methyl jasmonate and calcium ionophore A23187. These results suggest that transcriptional activation of Sd-cam is one of the early cellular events of the methyl jasmonate-induced responses of S. dulcis.
CAPNS1 Regulates USP1 Stability and Maintenance of Genome Integrity
Cataldo, Francesca; Peche, Leticia Y.; Klaric, Enio; Brancolini, Claudio; Myers, Michael P.
2013-01-01
Calpains regulate a wide spectrum of biological functions, including migration, adhesion, apoptosis, secretion, and autophagy, through the modulating cleavage of specific substrates. Ubiquitous microcalpain (μ-calpain) and millicalpain (m-calpain) are heterodimers composed of catalytic subunits encoded, respectively, by CAPN1 and CAPN2 and a regulatory subunit encoded by CAPNS1. Here we show that calpain is required for the stability of the deubiquitinating enzyme USP1 in several cell lines. USP1 modulates DNA replication polymerase choice and repair by deubiquitinating PCNA. The ubiquitinated form of the USP1 substrate PCNA is stabilized in CAPNS1-depleted U2OS cells and mouse embryonic fibroblasts (MEFs), favoring polymerase-η loading on chromatin and increased mutagenesis. USP1 degradation directed by the cell cycle regulator APC/Ccdh1, which marks USP1 for destruction in the G1 phase, is upregulated in CAPNS1-depleted cells. USP1 stability can be rescued upon forced expression of calpain-activated Cdk5/p25, previously reported as a cdh1 repressor. These data suggest that calpain stabilizes USP1 by activating Cdk5, which in turn inhibits cdh1 and, consequently, USP1 degradation. Altogether these findings point to a connection between the calpain system and the ubiquitin pathway in the regulation of DNA damage response and place calpain at the interface between cell cycle modulation and DNA repair. PMID:23589330
Cloning and sequencing the genes encoding goldfish and carp ependymin.
Adams, D S; Shashoua, V E
1994-04-20
Ependymins (EPNs) are brain glycoproteins thought to function in optic nerve regeneration and long-term memory consolidation. To date, epn genes have been characterized in two orders of teleost fish. In this study, polymerase chain reactions (PCR) were used to amplify the complete 1.6-kb epn genes, gf-I and cc-I, from genomic DNA of Cypriniformes, goldfish and carp, respectively. Amplified bands were cloned and sequenced. Each gene consists of six exons and five introns. The exon portion of gf-I encodes a predicted 215-amino-acid (aa) protein previously characterized as GF-I, while cc-I encodes a predicted 215-aa protein 95% homologous to GF-I.
Mitochondrial RNA polymerase is an essential enzyme in erythrocytic stages of Plasmodium falciparum.
Ke, Hangjun; Morrisey, Joanne M; Ganesan, Suresh M; Mather, Michael W; Vaidya, Akhil B
2012-09-01
We have shown that transgenic Plasmodium falciparum parasites expressing the yeast DHODH (dihydroorotate dehydrogenase) are independent of the mtETC (mitochondrial electron transport chain), suggesting that they might not need the mitochondrial genome (mtDNA), since it only encodes three protein subunits belonging to the mtETC and fragmentary ribosomal RNA molecules. Disrupting the mitochondrial RNA polymerase (mtRNAP), which is critical for mtDNA replication and transcription, might then cause the generation of a ρ(0) parasite line lacking mtDNA. We made multiple attempts to disrupt the mtRNAP gene by double crossover recombination methods in parasite lines expressing yDHODH either episomally or integrated in the genome, but were unable to produce the desired knockout. We verified that the mtRNAP gene was accessible to recombination by successfully integrating a triple HA tag at the 3' end via single cross-over recombination. These studies suggest that mtRNAP is essential even in mtETC-independent P. falciparum parasites. Copyright © 2012 Elsevier B.V. All rights reserved.
Gene for ataxia-telangiectasia complementation group D (ATDC)
Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.
1995-03-07
Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.
Berthelet, M; Whyte, L G; Greer, C W
1996-04-15
Polyvinylpolypyrrolidone spin columns were used to rapidly purify crude soil DNA extracts from humic materials for polymerase chain reaction (PCR) analysis. The PCR detection limit for the tfdC gene, encoding chlorocatechol dioxygenase from the 2,4-dichlorophenoxyacetic acid degradation pathway, was 10(1)-10(2) cells/g soil in inoculated soils. The procedure could be applied to the amplification of biodegradative genes from indigenous microbial populations from a wide variety of soil types, and the entire analysis could be performed within 8 h.
TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism
Leitch, Andrea; Higgs, Martin R.; Bicknell, Louise S.; Yigit, Gökhan; Blackford, Andrew N.; Zlatanou, Anastasia; Mackenzie, Karen J.; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A. M.; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H.; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B.; Nürnberg, Peter; Jackson, Stephen P.; Hurles, Matthew E.; Wollnik, Bernd; Stewart, Grant S.; Jackson, Andrew P.
2015-01-01
DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism/Seckel syndrome. We establish that TRAIP relocalizes to sites of DNA damage where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to UV irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a novel component of the DNA damage response to replication-blocking DNA lesions. PMID:26595769
A RecA Protein Surface Required for Activation of DNA Polymerase V
Gruber, Angela J.; Erdem, Aysen L.; Sabat, Grzegorz; Karata, Kiyonobu; Jaszczur, Malgorzata M.; Vo, Dan D.; Olsen, Tayla M.; Woodgate, Roger; Goodman, Myron F.; Cox, Michael M.
2015-01-01
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis. PMID:25811184
Bypass of a psoralen DNA interstrand cross-link by DNA polymerases beta, iota, and kappa in vitro
Smith, Leigh A.; Makarova, Alena V.; Samson, Laura; Thiesen, Katherine E.; Dhar, Alok; Bessho, Tadayoshi
2012-01-01
Repair of DNA inter-strand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated in vitro TLS activity of psoralen DNA inter-strand cross-link by three DNA repair polymerases, DNA polymerase beta, kappa and iota. DNA polymerase beta is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase beta knockout mouse embryonic fibroblast showed a reduced bypass activity of the psoralen cross-link and purified DNA polymerase beta restored the bypass activity. In addition, DNA polymerase iota mis-incorporated thymine across the psoralen cross-link and DNA polymerase kappa extended these mis-paired primer ends, suggesting that DNA polymerase iota may serve as an inserter and DNA polymerase kappa may play a role as an extender in the repair of psoralen DNA inter-strand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA inter-strand cross-link repair. PMID:23106263
2013-01-01
Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049
Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.
Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R
2018-07-01
DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50 = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.
Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets
Celada, Lindsay J.; Polosukhin, Vasiliy V.; Atkinson, James B.; Drake, Wonder P.
2016-01-01
Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit β), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher’s test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher’s test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative. PMID:26807608
DeBalsi, Karen L.; Hoff, Kirsten E.; Copeland, William C.
2016-01-01
As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined. PMID:27143693
ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.
Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi
2016-07-15
Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. Copyright © 2016, American Association for the Advancement of Science.
Tabib-Salazar, Aline; Liu, Bing; Shadrin, Andrey; Burchell, Lynn; Wang, Zhexin; Wang, Zhihao; Goren, Moran G.; Yosef, Ido; Qimron, Udi; Severinov, Konstantin
2017-01-01
Abstract Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development. PMID:28486695
Tan, Kang Wei; Pham, Tuan Minh; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi
2015-01-01
The SOS response is a DNA damage response pathway that serves as a general safeguard of genome integrity in bacteria. Extensive studies of the SOS response in Escherichia coli have contributed to establishing the key concepts of cellular responses to DNA damage. However, how the SOS response impacts on the dynamics of DNA replication fork movement remains unknown. We found that inducing the SOS response decreases the mean speed of individual replication forks by 30–50% in E. coli cells, leading to a 20–30% reduction in overall DNA synthesis. dinB and recA belong to a group of genes that are upregulated during the SOS response, and encode the highly conserved proteins DinB (also known as DNA polymerase IV) and RecA, which, respectively, specializes in translesion DNA synthesis and functions as the central recombination protein. Both genes were independently responsible for the SOS-dependent slowdown of replication fork progression. Furthermore, fork speed was reduced when each gene was ectopically expressed in SOS-uninduced cells to the levels at which they are expressed in SOS-induced cells. These results clearly indicate that the increased expression of dinB and recA performs a novel role in restraining the progression of an unperturbed replication fork during the SOS response. PMID:25628359
Inamine, Saki; Onaga, Shoko; Ohnuma, Takayuki; Fukamizo, Tamo; Taira, Toki
2015-01-01
Chitinase-A (EaChiA), molecular mass 36 kDa, was purified from the vegetative stems of a horsetail (Equisetum arvense) using a series of column chromatography. The N-terminal amino acid sequence of EaChiA was similar to the lysin motif (LysM). A cDNA encoding EaChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1320 nucleotides and encoded an open reading frame of 361 amino acid residues. The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family 18, linked by proline-rich regions. EaChiA has strong chitin-binding activity, however, no antifungal activity. This is the first report of a chitinase from Equisetopsida, a class of fern plants, and the second report of a LysM-containing chitinase from a plant.
Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution.
Gahlon, Hailey L; Romano, Louis J; Rueda, David
2017-11-20
Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.
Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity
Niimi, Atsuko; Limsirichaikul, Siripan; Yoshida, Shonen; Iwai, Shigenori; Masutani, Chikahide; Hanaoka, Fumio; Kool, Eric T.; Nishiyama, Yukihiro; Suzuki, Motoshi
2004-01-01
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes. PMID:15024063
Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases
2015-01-01
The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482
Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan
2013-11-15
The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
A Survey of Antiviral Drugs for Bioweapons: Review
2005-01-01
person . An attack with these viruses would result in high morbidity and mortality and cause widespread panic. With the exception of smallpox and...infected cells and are not dependent upon the host cell nucleus. Possible targets for these viruses are the DNA polymerase, virus -encoded immune modulators... person to person . An attack with these viruses would result in high morbidity and mortality and cause widespread panic. With the
Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric
2007-04-01
We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we speculate that Mavericks represent an evolutionary missing link between seemingly disparate invasive DNA elements that include bacteriophages, adenoviruses and eukaryotic linear plasmids.
Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles
Quackenbush, S.L.; Work, Thierry M.; Balazs, George H.; Casey, Rufina N.; Rovnak, J.; Chaves, A.; duToit, L.; Baines, J.D.; Parrish, C.R.; Bowser, Paul R.; Casey, James W.
1998-01-01
Green turtle fibropapillomatosis is a neoplastic disease of increasingly significant threat to the survivability of this species. Degenerate PCR primers that target highly conserved regions of genes encoding herpesvirus DNA polymerases were used to amplify a DNA sequence from fibropapillomas and fibromas from Hawaiian and Florida green turtles. All of the tumors tested (n= 23) were found to harbor viral DNA, whereas no viral DNA was detected in skin biopsies from tumor-negative turtles. The tissue distribution of the green turtle herpesvirus appears to be generally limited to tumors where viral DNA was found to accumulate at approximately two to five copies per cell and is occasionally detected, only by PCR, in some tissues normally associated with tumor development. In addition, herpesviral DNA was detected in fibropapillomas from two loggerhead and four olive ridley turtles. Nucleotide sequencing of a 483-bp fragment of the turtle herpesvirus DNA polymerase gene determined that the Florida green turtle and loggerhead turtle sequences are identical and differ from the Hawaiian green turtle sequence by five nucleotide changes, which results in two amino acid substitutions. The olive ridley sequence differs from the Florida and Hawaiian green turtle sequences by 15 and 16 nucleotide changes, respectively, resulting in four amino acid substitutions, three of which are unique to the olive ridley sequence. Our data suggest that these closely related turtle herpesviruses are intimately involved in the genesis of fibropapillomatosis.
Diray-Arce, Joann; Liu, Bin; Cupp, John D; Hunt, Travis; Nielsen, Brent L
2013-03-04
The Arabidopsis thaliana genome encodes a homologue of the full-length bacteriophage T7 gp4 protein, which is also homologous to the eukaryotic Twinkle protein. While the phage protein has both DNA primase and DNA helicase activities, in animal cells Twinkle is localized to mitochondria and has only DNA helicase activity due to sequence changes in the DNA primase domain. However, Arabidopsis and other plant Twinkle homologues retain sequence homology for both functional domains of the phage protein. The Arabidopsis Twinkle homologue has been shown by others to be dual targeted to mitochondria and chloroplasts. To determine the functional activity of the Arabidopsis protein we obtained the gene for the full-length Arabidopsis protein and expressed it in bacteria. The purified protein was shown to have both DNA primase and DNA helicase activities. Western blot and qRT-PCR analysis indicated that the Arabidopsis gene is expressed most abundantly in young leaves and shoot apex tissue, as expected if this protein plays a role in organelle DNA replication. This expression is closely correlated with the expression of organelle-localized DNA polymerase in the same tissues. Homologues from other plant species show close similarity by phylogenetic analysis. The results presented here indicate that the Arabidopsis phage T7 gp4/Twinkle homologue has both DNA primase and DNA helicase activities and may provide these functions for organelle DNA replication.
Snyder, L.; Jorissen, L.
1988-01-01
Bacteriophage T4 has the substituted base hydroxymethylcytosine in its DNA and presumably shuts off host transcription by specifically blocking transcription of cytosine-containing DNA. When T4 incorporates cytosine into its own DNA, the shutoff mechanism is directed back at T4, blocking its late gene expression and phage production. Mutations which permit T4 multiplication with cytosine DNA should be in genes required for host shutoff. The only such mutations characterized thus far have been in the phage unf/alc gene. The product of this gene is also required for the unfolding of the host nucleoid after infection, hence its dual name unf/alc. As part of our investigation of the mechanism of action of unf/alc, we have isolated Escherichia coli mutants which propagate cytosine T4 even if the phage are genotypically alc(+). These same E. coli mutants are delayed in the T4-induced unfolding of their nucleoid, lending strong support to the conclusion that blocking transcription and unfolding the host nucleoid are but different manifestations of the same activity. We have mapped two of the mutations, called paf mutations for prevent alc function. They both map at about 90 min, probably in the rpoB gene encoding a subunit of RNA polymerase. From the behavior of Paf mutants, we hypothesize that the unf/alc gene product of T4 interacts somehow with the host RNA polymerase to block transcription of cytosine DNA and unfold the host nucleoid. PMID:3282983
Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.
2012-01-01
We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201
Mollusk genes encoding lysine tRNA (UUU) contain introns.
Matsuo, M; Abe, Y; Saruta, Y; Okada, N
1995-11-20
New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.
Muldoon, L. L.; Neuwelt, E. A.; Pagel, M. A.; Weiss, D. L.
1994-01-01
The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8178934
Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L
1994-05-01
The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy.
Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions
Shanbhag, Vinit; Sachdev, Shrikesh; Flores, Jacqueline A.; Modak, Mukund J.; Singh, Kamalendra
2018-01-01
DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 3′-5′ exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes. Here, we review the association of DNA polymerases in cancer from the A and B families, which participate in lesion bypass, and conduct gene replication. We also discuss possible therapeutic interventions that could be used to maneuver the role of these enzymes in tumorigenesis. PMID:29301327
Hu, J C; Gross, C A
1985-01-01
The sigma subunits of bacterial RNA polymerases are required for the selective initiation of transcription. We have isolated and characterized mutations in rpoD, the gene which encodes the major form of sigma in E. coli, which affect the selectivity of transcription. These mutations increase the expression of araBAD up to 12-fold in the absence of CAP-cAMP. Expression of lac is unaffected, while expression of malT-activated operons is decreased. We determined the DNA sequence of 17 independently isolated mutations, and found that they consist of three different changes in a single CGC arginine codon at position 596 in the sigma polypeptide.
Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination.
Boyer, J D; Ugen, K E; Wang, B; Agadjanyan, M; Gilbert, L; Bagarazzi, M L; Chattergoon, M; Frost, P; Javadian, A; Williams, W V; Refaeli, Y; Ciccarelli, R B; McCallus, D; Coney, L; Weiner, D B
1997-05-01
Novel approaches for the generation of more effective vaccines for HIV-1 are of significant importance. In this report we analyze the immunogenicity and efficacy of an HIV-1 DNA vaccine encoding env, rev and gag/pol in a chimpanzee model system. The immunized animals developed specific cellular and humoral immune responses. Animals were challenged with a heterologous chimpanzee titered stock of HIV-1 SF2 virus and followed for 48 weeks after challenge. Polymerase chain reaction coupled with reverse transcription (RT-PCR) results indicated infection in the control animal, whereas those animals vaccinated with the DNA constructs were protected from the establishment of infection. These studies serve as an important benchmark for the use of DNA vaccine technology for the production of protective immune responses.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F. William; Dubendorff, John W.
1998-01-01
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.
Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A
1990-01-01
Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271
Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotch, S.J.; Palant, O.; Gluzman, Y.
1989-01-01
A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer,more » RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, (..cap alpha..-/sup 32/P)UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro.« less
Emergence of DNA Polymerase ε Antimutators That Escape Error-Induced Extinction in Yeast
Williams, Lindsey N.; Herr, Alan J.; Preston, Bradley D.
2013-01-01
DNA polymerases (Pols) ε and δ perform the bulk of yeast leading- and lagging-strand DNA synthesis. Both Pols possess intrinsic proofreading exonucleases that edit errors during polymerization. Rare errors that elude proofreading are extended into duplex DNA and excised by the mismatch repair (MMR) system. Strains that lack Pol proofreading or MMR exhibit a 10- to 100-fold increase in spontaneous mutation rate (mutator phenotype), and inactivation of both Pol δ proofreading (pol3-01) and MMR is lethal due to replication error-induced extinction (EEX). It is unclear whether a similar synthetic lethal relationship exists between defects in Pol ε proofreading (pol2-4) and MMR. Using a plasmid-shuffling strategy in haploid Saccharomyces cerevisiae, we observed synthetic lethality of pol2-4 with alleles that completely abrogate MMR (msh2Δ, mlh1Δ, msh3Δ msh6Δ, or pms1Δ mlh3Δ) but not with partial MMR loss (msh3Δ, msh6Δ, pms1Δ, or mlh3Δ), indicating that high levels of unrepaired Pol ε errors drive extinction. However, variants that escape this error-induced extinction (eex mutants) frequently emerged. Five percent of pol2-4 msh2Δ eex mutants encoded second-site changes in Pol ε that reduced the pol2-4 mutator phenotype between 3- and 23-fold. The remaining eex alleles were extragenic to pol2-4. The locations of antimutator amino-acid changes in Pol ε and their effects on mutation spectra suggest multiple mechanisms of mutator suppression. Our data indicate that unrepaired leading- and lagging-strand polymerase errors drive extinction within a few cell divisions and suggest that there are polymerase-specific pathways of mutator suppression. The prevalence of suppressors extragenic to the Pol ε gene suggests that factors in addition to proofreading and MMR influence leading-strand DNA replication fidelity. PMID:23307893
Ulbegi-Mohyla, H; Hijazin, M; Alber, J; Lämmler, C; Hassan, A A; Abdulmawjood, A; Prenger-Berninghoff, E; Weiss, R; Zschöck, M
2010-09-01
The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F.W.; Dubendorff, J.W.
1998-10-20
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.
Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages
Studier, F.W.; Dubendorff, J.W.
1998-11-03
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.
Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L
2008-10-04
Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases.
Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L
2008-01-01
Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. This article was reviewed by Eugene Koonin and Mark Ragan. PMID:18834537
DNA polymerase preference determines PCR priming efficiency.
Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian
2014-01-30
Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially available DNA polymerases. The results suggest that the interaction of the DNA polymerase with the primer:template junction during the initiation of DNA polymerization is very important in terms of overall amplification bias and has broader implications for both the primer design process and multiplex PCR.
The structure of an RNAi polymerase links RNA silencing and transcription.
Salgado, Paula S; Koivunen, Minni R L; Makeyev, Eugene V; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M
2006-12-01
RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-A resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world.
Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages
Studier, F. William; Dubendorff, John W.
1998-01-01
This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.
Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.
2012-01-01
Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778
cDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil
1999-05-04
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
cDNA encoding a polypeptide including a hev ein sequence
Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil
2000-07-04
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1999-05-04
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.
cDNA encoding a polypeptide including a hevein sequence
Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.
1995-03-21
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insdorf, N.F.; Bogenhagen, D.F.
1989-12-25
DNA polymerase gamma has been purified over 10,000-fold from mitochondria of Xenopus laevis ovaries. We have developed a novel technique which specifically photolabels DNA polymerases. This procedure, the DNA polymerase trap, was used to identify a catalytic subunit of 140,000 Da from X. laevis DNA polymerase gamma. Additional catalytically active polypeptides of 100,000 and 55,000 Da were identified in the highly purified enzyme. These appear to be products of degradation of the 140,000-Da subunit. The DNA polymerase trap, which does not require large amounts of enzyme or renaturation from sodium dodecyl sulfate, is an alternative to the classic activity gel.
New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2
Price, Alan R.; Cook, Sandra J.
1972-01-01
The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224
Morita, Masashi; Stamp, Gordon; Robins, Peter; Dulic, Anna; Rosewell, Ian; Hrivnak, Geza; Daly, Graham; Lindahl, Tomas; Barnes, Deborah E
2004-08-01
TREX1, originally designated DNase III, was isolated as a major nuclear DNA-specific 3'-->5' exonuclease that is widely distributed in both proliferating and nonproliferating mammalian tissues. The cognate cDNA shows homology to the editing subunit of the Escherichia coli replicative DNA polymerase III holoenzyme and encodes an exonuclease which was able to serve a DNA-editing function in vitro, promoting rejoining of a 3' mismatched residue in a reconstituted DNA base excision repair system. Here we report the generation of gene-targeted Trex1(-/-) mice. The null mice are viable and do not show the increase in spontaneous mutation frequency or cancer incidence that would be predicted if Trex1 served an obligatory role of editing mismatched 3' termini generated during DNA repair or DNA replication in vivo. Unexpectedly, Trex1(-/-) mice exhibit a dramatically reduced survival and develop inflammatory myocarditis leading to progressive, often dilated, cardiomyopathy and circulatory failure.
Rock, Jeremy M; Lang, Ulla F; Chase, Michael R; Ford, Christopher B; Gerrick, Elias R; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M; Lamers, Meindert H
2015-06-01
The DNA replication machinery is an important target for antibiotic development in increasingly drug-resistant bacteria, including Mycobacterium tuberculosis. Although blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In Escherichia coli, the proofreading subunit of the replisome, the ɛ exonuclease, is essential for high-fidelity DNA replication; however, we find that the corresponding subunit is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase DnaE1 itself encodes an editing function that proofreads DNA replication, mediated by an intrinsic 3'-5' exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by more than 3,000-fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP domain-mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader.
Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.
Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J
2015-07-28
Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.
Rock, Jeremy M.; Lang, Ulla F.; Chase, Michael R.; Ford, Christopher B.; Gerrick, Elias R.; Gawande, Richa; Coscolla, Mireia; Gagneux, Sebastien; Fortune, Sarah M.; Lamers, Meindert H.
2015-01-01
The DNA replication machinery is an important target for antibiotic development for increasingly drug resistant bacteria including Mycobacterium tuberculosis1. While blocking DNA replication leads to cell death, disrupting the processes used to ensure replication fidelity can accelerate mutation and the evolution of drug resistance. In E. coli, the proofreading subunit of the replisome, the ε-exonuclease, is essential for high fidelity DNA replication2; however, we find that it is completely dispensable in M. tuberculosis. Rather, the mycobacterial replicative polymerase, DnaE1, encodes a novel editing function that proofreads DNA replication, mediated by an intrinsic 3′-5′ exonuclease activity within its PHP domain. Inactivation of the DnaE1 PHP domain increases the mutation rate by greater than 3,000 fold. Moreover, phylogenetic analysis of DNA replication proofreading in the bacterial kingdom suggests that E. coli is a phylogenetic outlier and that PHP-domain mediated proofreading is widely conserved and indeed may be the ancestral prokaryotic proofreader. PMID:25894501
2011-01-01
Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase. PMID:21699732
Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3) in the family Herpesviridae.
Waltzek, Thomas B; Kelley, Garry O; Stone, David M; Way, Keith; Hanson, Larry; Fukuda, Hideo; Hirono, Ikuo; Aoki, Takashi; Davison, Andrew J; Hedrick, Ronald P
2005-06-01
The sequences of four complete genes were analysed in order to determine the relatedness of koi herpesvirus (KHV) to three fish viruses in the family Herpesviridae: carp pox herpesvirus (Cyprinid herpesvirus 1, CyHV-1), haematopoietic necrosis herpesvirus of goldfish (Cyprinid herpesvirus 2, CyHV-2) and channel catfish virus (Ictalurid herpesvirus 1, IcHV-1). The genes were predicted to encode a helicase, an intercapsomeric triplex protein, the DNA polymerase and the major capsid protein. The results showed that KHV is related closely to CyHV-1 and CyHV-2, and that the three cyprinid viruses are related, albeit more distantly, to IcHV-1. Twelve KHV isolates from four diverse geographical areas yielded identical sequences for a region of the DNA polymerase gene. These findings, with previously published morphological and biological data, indicate that KHV should join the group of related lower-vertebrate viruses in the family Herpesviridae under the formal designation Cyprinid herpesvirus 3 (CyHV-3).
Tabib-Salazar, Aline; Liu, Bing; Shadrin, Andrey; Burchell, Lynn; Wang, Zhexin; Wang, Zhihao; Goren, Moran G; Yosef, Ido; Qimron, Udi; Severinov, Konstantin; Matthews, Steve J; Wigneshweraraj, Sivaramesh
2017-07-27
Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation
NASA Astrophysics Data System (ADS)
Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali
2017-11-01
The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.
When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide
Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; ...
2014-11-17
Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2’-deoxyguanosine found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate E. coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerase discriminates between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities,more » nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine (Cy) and 8-oxodGTP(syn) utilizes its Hoogsteen edge to base pair with adenine (Ad). Here in this paper we utilized time-lapse crystallography to follow 8-oxo-dGTP insertion opposite Ad or Cy with human DNA pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxodGTP utilizes charge modulation during insertion that can lead to a blocked DNA repair intermediate.« less
Human DNA polymerase η accommodates RNA for strand extension.
Su, Yan; Egli, Martin; Guengerich, F Peter
2017-11-03
Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η in vivo . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Fricova, Dominika; Valach, Matus; Farkas, Zoltan; Pfeiffer, Ilona; Kucsera, Judit; Tomaska, Lubomir; Nosek, Jozef
2010-01-01
As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast Candida subhashii and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5′ ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of C. subhashii contains essentially the same set of genes as other closely related pathogenic Candida species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element. PMID:20395267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srienc, Friedrich; Jackson, John K.; Somers, David A.
A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.
Method of artificial DNA splicing by directed ligation (SDL).
Lebedenko, E N; Birikh, K R; Plutalov, O V; Berlin YuA
1991-01-01
An approach to directed genetic recombination in vitro has been devised, which allows for joining together, in a predetermined way, a series of DNA segments to give a precisely spliced polynucleotide sequence (DNA splicing by directed ligation, SDL). The approach makes use of amplification, by means of several polymerase chain reactions (PCR), of a chosen set of DNA segments. Primers for the amplifications contain recognition sites of the class IIS restriction endonucleases, which transform blunt ends of the amplification products into protruding ends of unique primary structures, the ends to be used for joining segments together being mutually complementary. Ligation of the mixture of the segments so synthesized gives the desired sequence in an unambiguous way. The suggested approach has been exemplified by the synthesis of a totally processed (intronless) gene encoding human mature interleukin-1 alpha. Images PMID:1662363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velge,P.; Herler, M.; Johansson, J.
2007-01-01
The sequencing of prfA, encoding the transcriptional regulator of virulence genes, in 26 low-virulence field Listeria monocytogenes strains showed that eight strains exhibited the same single amino-acid substitution: PrfAK220T. These strains exhibited no expression of PrfA-regulated proteins and thus no virulence. This substitution inactivated PrfA, since expression of the PrfAK220T mutant gene in an EGD{Delta}prfA strain did not restore the haemolytic and phosphatidylcholine phospholipase C activities, in contrast to the wild-type prfA gene. The substitution of the lysine at position 220 occurred in the helix H. However, the data showed that the PrfAK220T protein is dimerized just as well asmore » its wild-type counterpart, but does not bind to PrfA-boxes. PrfAK220T did not form a PrfA-DNA complex in electrophoretic mobility shift assays, but low concentrations of CI complexes (PrfAK220T-RNA polymerase-DNA complex) were formed by adding RNA polymerase, suggesting that PrfA interacted with RNA polymerase in solution in the absence of DNA. Formation of some transcriptionally active complexes was confirmed by in vitro runoff transcription assays and quantitative RT-PCR. Crystallographic analyses described the structure of native PrfA and highlighted the key role of allosteric changes in the activity of PrfA and especially the role of the Lys220 in the conformation of the helix-turn-helix (HTH) motif.« less
Helix–hairpin–helix motifs confer salt resistance and processivity on chimeric DNA polymerases
Pavlov, Andrey R.; Belova, Galina I.; Kozyavkin, Sergei A.; Slesarev, Alexei I.
2002-01-01
Helix–hairpin–helix (HhH) is a widespread motif involved in sequence-nonspecific DNA binding. The majority of HhH motifs function as DNA-binding modules with typical occurrence of one HhH motif or one or two (HhH)2 domains in proteins. We recently identified 24 HhH motifs in DNA topoisomerase V (Topo V). Although these motifs are dispensable for the topoisomerase activity of Topo V, their removal narrows the salt concentration range for topoisomerase activity tenfold. Here, we demonstrate the utility of Topo V's HhH motifs for modulating DNA-binding properties of the Stoffel fragment of TaqDNA polymerase and Pfu DNA polymerase. Different HhH cassettes fused with either NH2 terminus or COOH terminus of DNA polymerases broaden the salt concentration range of the polymerase activity significantly (up to 0.5 M NaCl or 1.8 M potassium glutamate). We found that anions play a major role in the inhibition of DNA polymerase activity. The resistance of initial extension rates and the processivity of chimeric polymerases to salts depend on the structure of added HhH motifs. Regardless of the type of the construct, the thermal stability of chimeric Taq polymerases increases under the optimal ionic conditions, as compared with that of TaqDNA polymerase or its Stoffel fragment. Our approach to raise the salt tolerance, processivity, and thermostability of Taq and Pfu DNA polymerases may be applied to all pol1- and polB-type polymerases, as well as to other DNA processing enzymes. PMID:12368475
NASA Astrophysics Data System (ADS)
Miles, Jeff; Formosa, Tim
1992-02-01
We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.
Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi
2009-01-01
Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase η, the POLH gene product. A deficiency in DNA polymerase η due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase ζ cooperates with DNA polymerases κ and ι to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases ζ and κ, but not ι, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load. PMID:19564618
Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi
2009-07-14
Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.
General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases.
Yang, Jie; Li, Bianbian; Liu, Xiaoying; Tang, Hong; Zhuang, Xiyao; Yang, Mingqi; Xu, Ying; Zhang, Huidong; Yang, Chun
2018-02-19
DNA replication in cells is performed in the presence of four dNTPs and four rNTPs. In this study, we re-evaluated the fidelity of DNA polymerases using the general misincorporation frequency consisting of three incorrect dNTPs and four rNTPs but not using the traditional special misincorporation frequency with only the three incorrect dNTPs. We analyzed both the general and special misincorporation frequencies of nucleotide incorporation opposite dG, rG, or 8-oxoG by Pseudomonas aeruginosa phage 1 (PaP1) DNA polymerase Gp90 or Sulfolobus solfataricus DNA polymerase Dpo4. Both misincorporation frequencies of other DNA polymerases published were also summarized and analyzed. The general misincorporation frequency is obviously higher than the special misincorporation frequency for many DNA polymerases, indicating the real fidelity of a DNA polymerase should be evaluated using the general misincorporation frequency. Copyright © 2018 Elsevier Inc. All rights reserved.
Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick
2010-01-01
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814
Earl, P L; Jones, E V; Moss, B
1986-01-01
A 5400-base-pair segment of the vaccinia virus genome was sequenced and an open reading frame of 938 codons was found precisely where the DNA polymerase had been mapped by transfer of a phosphonoacetate-resistance marker. A single nucleotide substitution changing glycine at position 347 to aspartic acid accounts for the drug resistance of the mutant vaccinia virus. The 5' end of the DNA polymerase mRNA was located 80 base pairs before the methionine codon initiating the open reading frame. Correspondence between the predicted Mr 108,577 polypeptide and the 110,000 purified enzyme indicates that little or no proteolytic processing occurs. Extensive homology, extending over 435 amino acids, was found upon comparing the DNA polymerase of vaccinia virus and DNA polymerase of Epstein-Barr virus. A highly conserved sequence of 14 amino acids in the carboxyl-terminal regions of the above DNA polymerases is also present at a similar location in adenovirus DNA polymerase. This structure, which is predicted to form a turn flanked by beta-pleated sheets, may form part of an essential binding or catalytic site that accounts for its presence in DNA polymerases of poxviruses, herpesviruses, and adenoviruses. Images PMID:3012524
Rulten, Stuart L.; Rotheray, Amy; Green, Ryan L.; Grundy, Gabrielle J.; Moore, Duncan A. Q.; Gómez-Herreros, Fernando; Hafezparast, Majid; Caldecott, Keith W
2014-01-01
Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS. PMID:24049082
Seco, Elena M.
2017-01-01
Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448
Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1
Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude
1999-01-01
A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715
Optical tweezers reveal how proteins alter replication
NASA Astrophysics Data System (ADS)
Chaurasiya, Kathy
Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.
Repair of Clustered Damage and DNA Polymerase Iota.
Belousova, E A; Lavrik, O I
2015-08-01
Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.
NASA Astrophysics Data System (ADS)
Krupovic, Mart; Koonin, Eugene V.
2014-06-01
Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.
Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J
2014-12-01
A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.
Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.
Haruta, Nami; Kubota, Yoshino; Hishida, Takashi
2012-09-01
UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.
DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli.
Hendler, R W; Pereira, M; Scharff, R
1975-01-01
DNA polymerase I (EC 2.7.7.7; deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase) has been recovered as a complex of about 390,000 molecular weight. The complex displays an ATP-stimulated DNA-synthesizing activity that prefers native to heat-denatured DNA. Genetic evidence indicates that the recBC enzyme is associated with the polymerase in the complex. Preliminary evidence for complexes involving DNA polymerases II and III is also presented. PMID:1094453
Structure of human DNA polymerase iota and the mechanism of DNA synthesis.
Makarova, A V; Kulbachinskiy, A V
2012-06-01
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.
Goetz, Frederick W; Norberg, Birgitta; McCauley, Linda A R; Iliev, Dimitar B
2004-03-01
The full-length cDNA for the cod (Gadus morhua) StAR was cloned by RT-PCR and library screening using ovarian RNA. From the library screening, 2 size classes of cDNA were obtained; a 1577 bp cDNA (cStAR1) and a 2851 bp cDNA (cStAR2). The cStAR1 cDNA presumably encodes a protein of 286 amino acids. The cStAR2 cDNA was composed of 6 separated sequences that contained all of the coding regions of cStAR1 when added together, but also contained 5 noncoding regions not observed in cStAR1. Polymerase chain reactions of cod genomic DNA produced products slightly larger than cStAR2. The sequence of these products were the same as cStAR2 but revealed one additional noncoding region (intron). Thus, the fish StAR gene contains the same number of exons (7) and introns (6) as observed in mammals, but is approximately half the size of the mammalian gene. Using Northern analysis and RT-PCR, cStAR1 expression was observed only in testes, ovaries and head kidneys. Polymerase chain reaction products were also observed using cDNA from steroidogenic tissues and primers designed to regions specific for cStAR2, indicating that cStAR2 is expressed in tissues and may account for the presence of larger transcripts observed on Northern blots.
Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M
1991-01-01
The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142
Ghadessy, Farid J; Holliger, Philipp
2007-01-01
Compartmentalized self-replication (CSR) is a novel method for the directed evolution of enzymes and, in particular, polymerases. In its simplest form, CSR consists of a simple feedback loop involving a polymerase that replicates only its own encoding gene (self-replication). Self-replication occurs in discrete, spatially separate, noncommunicating compartments formed by a heat-stable water-in-oil emulsion. Compartmentalization ensures the linkage of phenotype and genotype (i.e., it ensures that each polymerase replicates only its own encoding gene to the exclusion of those in the other compartments). As a result, adaptive gains by the polymerase directly (and proportionally) translate into genetic amplification of the encoding polymerase gene. CSR has proven to be a useful strategy for the directed evolution of polymerases directly from diverse repertoires of polymerase genes. In this chapter, we describe some of the CSR protocols used successfully to evolve variants of T. aquaticus Pol I (Taq) polymerase with novel and useful properties, such as increased thermostability or resistance to the potent inhibitor, heparin, from a repertoire of randomly mutated Taq polymerase genes.
[DNA-dependent DNA polymerase induced by herpes virus papio (HVP) in producing cells].
D'iachenko, A G; Beriia, L Ia; Matsenko, L D; Kakubava, V V; Kokosh, L V
1980-11-01
A new DNA polymerase was found in the cells of suspension lymphoblastoid cultures, which produce lymphotropic baboon herpes virus (HVP). The enzyme was isolated in a partially purified form. In some properties the enzyme differs from other cellular DNA polymerases. The HVP-induced DNA polymerase has the molecular weight of 1,6 x 10(5) and sedimentation coefficient of about 8S. The enzyme is resistant to high salt concentrations and N-ethylmaleimide, but shows a pronounced sensitivity to phosphonoacetate. The enzyme effectively copies "activated" DNA and synthetic deoxyribohomopolymers. The attempts to detect the DNA polymerase activity in HVP virions were unsuccessful.
Effect of pH on the Misincorporation Rate of DNA Polymerase η.
Nishimoto, Naomi; Suzuki, Motoshi; Izuta, Shunji
2016-01-01
The many known eukaryotic DNA polymerases are classified into four families; A, B, X, and Y. Among them, DNA polymerase η, a Y family polymerase, is a low fidelity enzyme that contributes to translesional synthesis and somatic hypermutation. Although a high mutation frequency is observed in immunoglobulin genes, translesional synthesis occurs with a high accuracy. We determined whether the misincorporation rate of DNA polymerase η varies with ambient conditions. It has been reported that DNA polymerase η is unable to exclude water molecules from the active site. This finding suggests that some ions affect hydrogen bond formation at the active site. We focused on the effect of pH and evaluated the misincorporation rate of deoxyguanosine triphosphate (dGTP) opposite template T by DNA polymerase η at various pH levels with a synthetic template-primer. The misincorporation rate of dGTP by DNA polymerase η drastically increased at pH 8.0-9.0 compared with that at pH 6.5-7.5. Kinetic analysis revealed that the Km value for dGTP on the misincorporation opposite template T was markedly affected by pH. However, this drastic change was not seen with the low fidelity DNA polymerase α.
Wardle, Josephine; Burgers, Peter M J; Cann, Isaac K O; Darley, Kate; Heslop, Pauline; Johansson, Erik; Lin, Li-Jung; McGlynn, Peter; Sanvoisin, Jonathan; Stith, Carrie M; Connolly, Bernard A
2008-02-01
Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.
DNA polymerases in the rat pituitary gland. Effect of oestrogens and sulpiride.
Jahn, G A; Kalbermann, L E; Machiavelli, G; Szijan, I; Burdman, J A
1980-06-01
Changes in the activity of DNA polymerase and [3H]thymidine incorporation into the DNA of the anterior pituitary gland were studied in oestrogenized male and pregnant rats. The activities of DNA polymerases alpha and beta, extracted in Tris--HCl or in sodium phosphate buffer were characterized according to their optimum pH and sensitivity to N-ethyl-maleimide. In the Tris-soluble fraction DNA polymerase activity is almost exclusively alpha, while in the phosphate soluble fraction it is a mixture of alpha and beta. The administration of oestrogens to male rats increases [3H]thymidine incorporation and enhances the activity of DNA polymerases in the Tris-soluble fraction, while the activity of the phosphate-soluble enzyme does not change. Sulpiride administration results in a further increment of [3H]thymidine incorporation and of DNA polymerase activity in the Tris-soluble fraction. In pregnant rats sulpiride also produces an increment of DNA polymerase activity only in the Tris-soluble fraction. Thus, the activity of the Tris-soluble fraction from APG behaves as DNA polymerase alpha. This activity changes in parallel with [3H]thymidine incorporation into DNA which is an indication of cell proliferation in the gland. This is discussed with respect to a negative feedback mechanism between intracellular prolactin concentration and DNA synthesis in the APG.
Nicolas, Emmanuelle; Golemis, Erica A.; Arora, Sanjeevani
2016-01-01
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5’–3’ DNA polymerase and 3’–5’ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions. PMID:27320729
Human DNA polymerase θ grasps the primer terminus to mediate DNA repair
Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...
2015-03-16
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Dyson, Ossie F.; Pagano, Joseph S.
2017-01-01
ABSTRACT Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. PMID:28724765
Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B
2017-10-01
Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. Copyright © 2017 American Society for Microbiology.
Laquel, P.; Litvak, S.; Castroviejo, M.
1994-01-01
DNA primase synthesizes short RNA primers used by DNA polymerases to initiate DNA synthesis. Two proteins of approximately 60 and 50 kD were recognized by specific antibodies raised against yeast primase subunits, suggesting a high degree of analogy between wheat and yeast primase subunits. Gel-filtration chromatography of wheat primase showed two active forms of 60 and 110 to 120 kD. Ultraviolet-induced cross-linking with radioactive oligothymidilate revealed a highly labeled protein of 60 kD. After limited trypsin digestion of wheat (Triticum aestivum L.) primase, a major band of 48 kD and two minor bands of 38 and 17 kD were observed. In the absence of DNA polymerases, the purified primase synthesizes long RNA products. The size of the RNA product synthesized by wheat primase is considerably reduced by the presence of DNA polymerases, suggesting a modulatory effect of the association between these two enzymes. Lowering the primase concentration in the assay also favored short RNA primer synthesis. Several properties of the wheat DNA primase using oligoadenylate [oligo(rA)]-primed or unprimed polythymidilate templates were studied. The ability of wheat primase, without DNA polymerases, to elongate an oligo(rA) primer to long RNA products depends on the primer size, temperature, and the divalent cation concentration. Thus, Mn2+ ions led to long RNA products in a very wide range of concentrations, whereas with Mg2+ long products were observed around 15 mM. We studied the ability of purified wheat DNA polymerases to initiate DNA synthesis from an RNA primer: wheat DNA polymerase A showed the highest activity, followed by DNA polymerases B and CII, whereas DNA polymerase CI was unable to initiate DNA synthesis from an RNA primer. Results are discussed in terms of understanding the role of these polymerases in DNA replication in plants. PMID:12232187
In vitro replication of poliovirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubinski, J.M.
1986-01-01
Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis ofmore » the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' /sup 32/P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed.« less
Determination of ABO genotypes with DNA extracted from formalin-fixed, paraffin-embedded tissues.
Yamada, M; Yamamoto, Y; Tanegashima, A; Kane, M; Ikehara, Y; Fukunaga, T; Nishi, K
1994-01-01
The gene encoding the specific glycosyltransferases which catalyze the conversion of the H antigen to A or B antigens shows a slight but distinct variation in its allelic nucleotide sequence and can be divided into 6 genotypes when digested with specific restriction enzymes. We extracted DNA from formalin-fixed, paraffin-embedded tissues using SDS/proteinase K treatment followed by phenol/chloroform extraction. The sequence of nucleotides for the A, B and O genes was amplified by the polymerase chain reaction (PCR). DNA fragments of 128 bp and 200 bp could be amplified in the second round of PCR, using an aliquot of the first round PCR product as template. Degraded DNA from paraffin blocks stored for up to 10.7 years could be successfully typed. The ABO genotype was deduced from the digestion patterns with an appropriate combination of restriction enzymes and was compatible with the phenotype obtained from the blood sample.
DNA Polymerase Eta and Chemotherapeutic Agents
2011-01-01
Abstract The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed. Antioxid. Redox Signal. 14, 2521–2529. PMID:21050139
Bombyx mori Nucleopolyhedrovirus Encodes a DNA-Binding Protein Capable of Destabilizing Duplex DNA
Mikhailov, Victor S.; Mikhailova, Alla L.; Iwanaga, Masashi; Gomi, Sumiko; Maeda, Susumu
1998-01-01
A DNA-binding protein (designated DBP) with an apparent molecular mass of 38 kDa was purified to homogeneity from BmN cells (derived from Bombyx mori) infected with the B. mori nucleopolyhedrovirus (BmNPV). Six peptides obtained after digestion of the isolated protein with Achromobacter protease I were partially or completely sequenced. The determined amino acid sequences indicated that DBP was encoded by an open reading frame (ORF16) located at nucleotides (nt) 16189 to 17139 in the BmNPV genome (GenBank accession no. L33180). This ORF (designated dbp) is a homolog of Autographa californica multicapsid NPV ORF25, whose product has not been identified. BmNPV DBP is predicted to contain 317 amino acids (calculated molecular mass of 36.7 kDa) and to have an isoelectric point of 7.8. DBP showed a tendency to multimerization in the course of purification and was found to bind preferentially to single-stranded DNA. When bound to oligonucleotides, DBP protected them from hydrolysis by phage T4 DNA polymerase-associated 3′→5′ exonuclease. The sizes of the protected fragments indicated that a binding site size for DBP is about 30 nt per protein monomer. DBP, but not BmNPV LEF-3, was capable of unwinding partial DNA duplexes in an in vitro system. This helix-destabilizing ability is consistent with the prediction that DBP functions as a single-stranded DNA binding protein in virus replication. PMID:9525636
The molecular defect of ferrochelatase in a patient with erythropoietic protoporphyria.
Nakahashi, Y; Fujita, H; Taketani, S; Ishida, N; Kappas, A; Sassa, S
1992-01-01
The molecular basis of an inherited defect of ferrochelatase in a patient with erythropoietic protoporphyria (EPP) was investigated. Ferrochelatase is the terminal enzyme in the heme biosynthetic pathway and catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. In Epstein-Barr virus-transformed lymphoblastoid cells from a proband with EPP, enzyme activity, an immunochemically quantifiable protein, and mRNA content of ferrochelatase were about one-half the normal level. In contrast, the rate of transcription of ferrochelatase mRNA in the proband's cells was normal, suggesting that decreased ferrochelatase mRNA is due to an unstable transcript. cDNA clones encoding ferrochelatase in the proband, isolated by amplification using the polymerase chain reaction, were found to be classified either into those encoding the normal protein or into those encoding an abnormal protein that lacked exon 2 of the ferrochelatase gene, indicating that the proband is heterozygous for the ferrochelatase defect. Genomic DNA analysis revealed that the abnormal allele had a point mutation, C----T, near the acceptor site of intron 1. This point mutation appears to be responsible for the post-transcriptional splicing abnormality resulting in an aberrant transcript of ferrochelatase in this patient. Images PMID:1729699
Ülbegi-Mohyla, H.; Hijazin, M.; Alber, J.; Hassan, A. A.; Abdulmawjood, A.; Prenger-Berninghoff, E.; Weiß, R.; Zschöck, M.
2010-01-01
The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens. PMID:20706035
Rojas, Diego A; Urbina, Fabiola; Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo; Maldonado, Edio
2018-02-01
Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control.
Djachenko, A G; Lapin, B A
1981-01-01
A new DNA-polymerase was found in the cells of suspension lymphoblastoid cultures which produce lymphotropic baboon herpesvirus (HVP). This enzyme was isolated in a partially purified form. Some of its properties vary from those of other cellular DNA-polymerases. HVP-induced DNA-polymerase has a molecule weight of 160,000 and sedimentation coefficient of about 8 S. The enzyme is resistant to high salt concentration and N-ethylmaleimide, but it is very sensitive to phosphonoacetate. It effectively copies "activated" DNA and synthetic deoxyribohomopolymers. Attempts to reveal the DNA-polymerase activity in HVP virions were unsuccessful.
NASA Technical Reports Server (NTRS)
Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.
1999-01-01
Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.
A Polymerase With Potential: The Fe-S Cluster in Human DNA Primase.
Holt, Marilyn E; Salay, Lauren E; Chazin, Walter J
2017-01-01
Replication of DNA in eukaryotes is primarily executed by the combined action of processive DNA polymerases δ and ɛ. These enzymes cannot initiate synthesis of new DNA without the presence of a primer on the template ssDNA. The primers on both the leading and lagging strands are generated by DNA polymerase α-primase (pol-prim). DNA primase is a DNA-dependent RNA polymerase that synthesizes the first ~10 nucleotides and then transfers the substrate to polymerase α to complete primer synthesis. The mechanisms governing the coordination and handoff between primase and polymerase α are largely unknown. Isolated DNA primase contains a [4Fe-4S] 2+ cluster that has been shown to serve as a redox switch modulating DNA binding affinity. This discovery suggests a mechanism for modulating the priming activity of primase and handoff to polymerase α. In this chapter, we briefly discuss the current state of knowledge of primase structure and function, including the role of its iron-sulfur cluster. This is followed by providing the methods for expressing, purifying, and biophysically/structurally characterizing primase and its iron-sulfur cluster-containing domain, p58C. © 2017 Elsevier Inc. All rights reserved.
Lee, M Y; Whyte, W A
1984-05-01
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.
Shpakovski, G V; Acker, J; Wintzerith, M; Lacroix, J F; Thuriaux, P; Vigneron, M
1995-01-01
Four cDNAs encoding human polypeptides hRPB7.0, hRPB7.6, hRPB17, and hRPB14.4 (referred to as Hs10 alpha, Hs10 beta, Hs8, and Hs6, respectively), homologous to the ABC10 alpha, ABC10 beta, ABC14.5, and ABC23 RNA polymerase subunits (referred to as Sc10 alpha, Sc10 beta, Sc8, and Sc6, respectively) of Saccharomyces cerevisiae, were cloned and characterized for their ability to complement defective yeast mutants. Hs10 alpha and the corresponding Sp10 alpha of Schizosaccharomyces pombe can complement an S. cerevisiae mutant (rpc10-delta::HIS3) defective in Sc10 alpha. The peptide sequences are highly conserved in their carboxy-terminal halves, with an invariant motif CX2CX12RCX2CGXR corresponding to a canonical zinc-binding domain. Hs10 beta, Sc10 beta, and the N subunit of archaeal RNA polymerase are homologous. An invariant CX2CGXnCCR motif presumably forms an atypical zinc-binding domain. Hs10 beta, but not the archaeal subunit, complemented an S. cerevisiae mutant (rpb10-delta 1::HIS3) lacking Sc10 beta. Hs8 complemented a yeast mutant (rpb8-delta 1::LYS2) defective in the corresponding Sc8 subunit, although with a strong thermosensitive phenotype. Interspecific complementation also occurred with Hs6 and with the corresponding Dm6 cDNA of Drosophila melanogaster. Hs6 cDNA and the Sp6 cDNA of S. pombe are dosage-dependent suppressors of rpo21-4, a mutation generating a slowly growing yeast defective in the largest subunit of RNA polymerase II. Finally, a doubly chimeric S. cerevisiae strain bearing the Sp6 cDNA and the human Hs10 beta cDNA was also viable. No interspecific complementation was observed for the human hRPB25 (Hs5) homolog of the yeast ABC27 (Sc5) subunit. PMID:7651387
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide
NASA Astrophysics Data System (ADS)
Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.
2015-01-01
Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.
Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently
Yu, Chuanhe; Gan, Haiyun
2017-01-01
ABSTRACT Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal. PMID:28784720
Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian
2015-01-01
SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902
Bypass of a Nick by the Replisome of Bacteriophage T7*
Zhu, Bin; Lee, Seung-Joo; Richardson, Charles C.
2011-01-01
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase·polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick. PMID:21701044
Bypass of a nick by the replisome of bacteriophage T7.
Zhu, Bin; Lee, Seung-Joo; Richardson, Charles C
2011-08-12
DNA polymerase and DNA helicase are essential components of DNA replication. The helicase unwinds duplex DNA to provide single-stranded templates for DNA synthesis by the DNA polymerase. In bacteriophage T7, movement of either the DNA helicase or the DNA polymerase alone terminates upon encountering a nick in duplex DNA. Using a minicircular DNA, we show that the helicase · polymerase complex can bypass a nick, albeit at reduced efficiency of 7%, on the non-template strand to continue rolling circle DNA synthesis. A gap in the non-template strand cannot be bypassed. The efficiency of bypass synthesis depends on the DNA sequence downstream of the nick. A nick on the template strand cannot be bypassed. Addition of T7 single-stranded DNA-binding protein to the complex stimulates nick bypass 2-fold. We propose that the association of helicase with the polymerase prevents dissociation of the helicase upon encountering a nick, allowing the helicase to continue unwinding of the duplex downstream of the nick.
Synthetic transcripts of double-stranded Birnavirus genome are infectious.
Mundt, E; Vakharia, V N
1996-01-01
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines. Images Fig. 2 Fig. 3 Fig. 4 PMID:8855321
Schrell, Adrian M.; Roper, Michael G.
2014-01-01
A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488-nm and 561-nm were modulated at 73- and 137-Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-blind manner using a single photomultiplier tube for detection and demodulated by frequency analysis. The resulting frequency domain signal resolved the contribution from the two fluorophores as well as the background from the IR lamp. The detection method was successfully used to measure amplification of DNA samples containing 104 – 107 starting copies of template producing an amplification efficiency of 96%. The utility of this methodology was further demonstrated by simultaneous amplification of two genes from human genomic DNA using different color TaqMan probes. This method of multiplexing fluorescence detection with IR-qPCR is ideally suited as it allowed isolation of the signals of interest from the background in the frequency domain and is expected to further reduce the complexity of multiplexed microfluidic IR-qPCR instrumentation. PMID:24448431
Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B
1995-01-01
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359
CDNA encoding a polypeptide including a hevein sequence
Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil
1995-03-21
A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.
Moreira-Ramos, Sandra; Castillo, Christian; Kemmerling, Ulrike; Lapier, Michel; Maya, Juan Diego; Solari, Aldo
2018-01-01
Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative stress, leading to damage of several macromolecules such as DNA. There are many DNA repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein complexes detect and eliminate damage to DNA. One group of these proteins is the DNA polymerases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and repair. However, the mechanisms which control its expression under oxidative stress are still unknown. Here we describe the effect of oxidative stress on the expression and function of Tc DNA polymerase β To this end parasite cells (epimastigotes and trypomastigotes) were exposed to peroxide during short periods of time. Tc DNA polymerase β which was associated physically with kinetoplast DNA, showed increased protein levels in response to peroxide damage in both parasite forms analyzed. Two forms of DNA polymerase β were identified and overexpressed after peroxide treatment. One of them was phosphorylated and active in DNA synthesis after renaturation on polyacrylamide electrophoresis gel. This phosphorylated form showed 3-4-fold increase in both parasite forms. Our findings indicate that these increments in protein levels are not under transcriptional control because the level of Tc DNA polymerase β mRNA is maintained or slightly decreased during the exposure to oxidative stress. We propose a mechanism where a DNA repair pathway activates a cascade leading to the increment of expression and phosphorylation of Tc DNA polymerase β in response to oxidative damage, which is discussed in the context of what is known in other trypanosomes which lack transcriptional control. PMID:29432450
Functions of the poly(ADP-ribose) polymerase superfamily in plants.
Lamb, Rebecca S; Citarelli, Matteo; Teotia, Sachin
2012-01-01
Poly(ADP-ribosyl)ation is the covalent attachment of ADP-ribose subunits from NAD(+) to target proteins and was first described in plants in the 1970s. This post-translational modification is mediated by poly(ADP-ribose) polymerases (PARPs) and removed by poly(ADP-ribose) glycohydrolases (PARGs). PARPs have important functions in many biological processes including DNA repair, epigenetic regulation and transcription. However, these roles are not always associated with enzymatic activity. The PARP superfamily has been well studied in animals, but remains under-investigated in plants. Although plants lack the variety of PARP superfamily members found in mammals, they do encode three different types of PARP superfamily proteins, including a group of PARP-like proteins, the SRO family, that are plant specific. In plants, members of the PARP family and/or poly(ADP-ribosyl)ation have been linked to DNA repair, mitosis, innate immunity and stress responses. In addition, members of the SRO family have been shown to be necessary for normal sporophytic development. In this review, we summarize the current state of plant research into poly(ADP-ribosyl)ation and the PARP superfamily in plants.
Chase, D.M.; Elliott, D.G.; Pascho, R.J.
2006-01-01
Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.
Smeal, Steven W; Schmitt, Margaret A; Pereira, Ronnie Rodrigues; Prasad, Ashok; Fisk, John D
2017-01-01
Bacteriophage M13 is a true parasite of bacteria, able to co-opt the infected cell and control the production of progeny across many cellular generations. Here, our genetically-structured simulation of M13 is applied to quantitatively dissect the interplay between the host cellular environment and the controlling interactions governing the phage life cycle during the initial establishment of infection and across multiple cell generations. Multiple simulations suggest that phage-encoded feedback interactions constrain the utilization of host DNA polymerase, RNA polymerase and ribosomes. The simulation reveals the importance of p5 translational attenuation in controlling the production of phage double-stranded DNA and suggests an underappreciated role for p5 translational self-attenuation in resource allocation. The control elements active in a single generation are sufficient to reproduce the experimentally-observed multigenerational curing of the phage infection. Understanding the subtleties of regulation will be important for maximally exploiting M13 particles as scaffolds for nanoscale devices. Copyright © 2016 Elsevier Inc. All rights reserved.
Waqar, M A; Evans, M J; Huberman, J A
1978-01-01
We have studied the effects of the nucleotide analogue, 2',3'-dideoxythymidine-5'-triphosphate (ddTTP) on replicative DNA synthesis in HeLa cell lysates. As previously demonstrated (1), such lysates carry out extensive DNA synthesis in vitro, at rates and in a fashion similar to in vivo DNA replication. We report here that all aspects of DNA synthesis in such lysates (total dNTP incorporation, elongation of continuous nascent strands, and the initiation, elongation, and joining of Okazaki pieces) are only slightly inhibited by concentrations of ddTTP as high as 100-500 micrometer when the dTTP concentration is maintained at 10 micrometer. This finding is consistent with the report by Edenberg, Anderson, and DePamphilis (2) that all aspects of replicative in vitro simian virus 40 DNA synthesis are also resistant to ddTTP. We also find, in agreement with Edenberg, Anderson, and DePamphilis (2), that DNA synthesis catalyzed by DNA polymerases beta or gamma is easily inhibited by ddTTP, while synthesis catalyzed by DNA polymerase alpha is very resistant. These observations suggest that DNA polymerase alpha may be the only DNA polymerase required for all aspects of cellular DNA synthesis. PMID:673840
Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication
Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro
2016-01-01
DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298
Tubeleviciute, Agne; Skirgaila, Remigijus
2010-08-01
The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.
Kuwahara, Masayasu; Obika, Satoshi; Nagashima, Jun-ichi; Ohta, Yuki; Suto, Yoshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki; Imanishi, Takeshi
2008-08-01
In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.
Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui
2016-01-01
Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675
Qi, Yonghe; Gao, Zhenchao; Xu, Guangwei; Peng, Bo; Liu, Chenxuan; Yan, Huan; Yao, Qiyan; Sun, Guoliang; Liu, Yang; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui
2016-10-01
Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.
Tange, N; Jong-Young, L; Mikawa, N; Hirono, I; Aoki, T
1997-12-01
A cDNA clone of rainbow trout (Oncorhynchus mykiss) transferrin was obtained from a liver cDNA library. The 2537-bp cDNA sequence contained an open reading frame encoding 691 amino acids and the 5' and 3' noncoding regions. The amino acid sequences at the iron-binding sites and the two N-linked glycosylation sites, and the cysteine residues were consistent with known, conserved vertebrate transferrin cDNA sequences. Single N-linked glycosylation sites existed on the N- and C-lobe. The deduced amino acid sequence of the rainbow trout transferrin cDNA had 92.9% identities with transferrin of coho salmon (Oncorhynchus kisutch); 85%, Atlantic salmon (Salmo salar); 67.3%, medaka (Oryzias latipes); 61.3% Atlantic cod (Gadus morhua); and 59.7%, Japanese flounder (Paralichthys olivaceus). The long and accurate polymerase chain reaction (LA-PCR) was used to amplify approximately 6.5 kb of the transferrin gene from rainbow trout genomic DNA. Restriction fragment length polymorphisms (RFLPs) of the LA-PCR products revealed three digestion patterns in 22 samples.
Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori
2016-08-01
On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.
Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients
Broughton, Bernard C.; Cordonnier, Agnes; Kleijer, Wim J.; Jaspers, Nicolaas G. J.; Fawcett, Heather; Raams, Anja; Garritsen, Victor H.; Stary, Anne; Avril, Marie-Françoise; Boudsocq, François; Masutani, Chikahide; Hanaoka, Fumio; Fuchs, Robert P.; Sarasin, Alain; Lehmann, Alan R.
2002-01-01
Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase η, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA, the others are likely to disrupt the three-dimensional structure of the protein. There is a wide variability in clinical features among patients, which is not obviously related to the site or type of mutation. PMID:11773631
DNA Polymerase in Virions of a Reptilian Type C Virus
Twardzik, Daniel R.; Papas, Takis S.; Portugal, Frank H.
1974-01-01
A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made. PMID:4129837
Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences
Imashimizu, Masahiko; Afek, Ariel; Takahashi, Hiroki; Lubkowska, Lucyna; Lukatsky, David B.
2016-01-01
In the process of transcription elongation, RNA polymerase (RNAP) pauses at highly nonrandom positions across genomic DNA, broadly regulating transcription; however, molecular mechanisms responsible for the recognition of such pausing positions remain poorly understood. Here, using a combination of statistical mechanical modeling and high-throughput sequencing and biochemical data, we evaluate the effect of thermal fluctuations on the regulation of RNAP pausing. We demonstrate that diffusive backtracking of RNAP, which is biased by repetitive DNA sequence elements, causes transcriptional pausing. This effect stems from the increased microscopic heterogeneity of an elongation complex, and thus is entropy-dominated. This report shows a linkage between repetitive sequence elements encoded in the genome and regulation of RNAP pausing driven by thermal fluctuations. PMID:27830653
Lee, Young-Sam; Lee, Sujin; Demeler, Borries; Molineux, Ian J.; Johnson, Kenneth A.; Yin, Y. Whitney
2010-01-01
The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase. PMID:19858216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahn, Karl E.; Averill, April M.; Aller, Pierre
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Isolation and characterization of high affinity aptamers against DNA polymerase iota.
Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V
2012-02-01
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.
DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.
Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao
2016-04-01
RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.
How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
Wu, Wen-Jin; Su, Mei-I; Wu, Jian-Li; Kumar, Sandeep; Lim, Liang-Hin; Wang, Chun-Wei Eric; Nelissen, Frank H T; Chen, Ming-Chuan Chad; Doreleijers, Jurgen F; Wijmenga, Sybren S; Tsai, Ming-Daw
2014-04-02
A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.
Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities
Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming
2015-01-01
Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351
Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen.
Hsieh, Sue-Er; Tseng, Yi-Hsiung; Lo, Hsueh-Hsia; Chen, Shui-Tu; Wu, Cheng-Nan
2016-02-01
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Inhibition of herpes simplex virus DNA polymerase by purine ribonucleoside monophosphates.
Frank, K B; Cheng, Y C
1986-02-05
Purine ribonucleoside monophosphates were found to inhibit chain elongation catalyzed by herpes simplex virus (HSV) DNA polymerase when DNA template-primer concentrations were rate-limiting. Inhibition was fully competitive with DNA template-primer during chain elongation; however, DNA polymerase-associated exonuclease activity was inhibited noncompetitively with respect to DNA. Combinations of 5'-GMP and phosphonoformate were kinetically mutually exclusive in dual inhibitor studies. Pyrimidine nucleoside monophosphates and deoxynucleoside monophosphates were less inhibitory than purine riboside monophosphates. The monophosphates of 9-beta-D-arabinofuranosyladenine, Virazole (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide), 9-(2-hydroxyethoxymethyl)guanine, and 9-(1,3-dihydroxy-2-propoxymethyl)guanine exerted little or no inhibition. In contrast to HSV DNA polymerase, human DNA polymerase alpha was not inhibited by purine ribonucleoside monophosphates. These studies suggest the possibility of a physiological role of purine ribonucleoside monophosphates as regulators of herpesvirus DNA synthesis and a new approach to developing selective anti-herpesvirus compounds.
Brown, Jessica A.; Pack, Lindsey R.; Fowler, Jason D.; Suo, Zucai
2011-01-01
Antiviral nucleoside analogs have been developed to inhibit the enzymatic activities of the hepatitis B virus (HBV) polymerase, thereby preventing the replication and production of HBV. However, the usage of these analogs can be limited by drug toxicity because the 5′-triphosphates of these nucleoside analogs (nucleotide analogs) are potential substrates for human DNA polymerases to incorporate into host DNA. Although they are poor substrates for human replicative DNA polymerases, it remains to be established whether these nucleotide analogs are substrates for the recently discovered human X- and Y-family DNA polymerases. Using pre-steady state kinetic techniques, we have measured the substrate specificity values for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active forms of the following anti-HBV nucleoside analogs approved for clinical use: adefovir, tenofovir, lamivudine, telbivudine, and entecavir. Compared to the incorporation of a natural nucleotide, most of the nucleotide analogs were incorporated less efficiently (2 to >122,000) by the six human DNA polymerases. In addition, the potential for entecavir and telbivudine, two drugs which possess a 3′-hydroxyl, to become embedded into human DNA was examined by primer extension and DNA ligation assays. These results suggested that telbivudine functions as a chain terminator while entecavir was efficiently extended by the six enzymes and was a substrate for human DNA ligase I. Our findings suggested that incorporation of anti-HBV nucleotide analogs catalyzed by human X- and Y-family polymerases may contribute to clinical toxicity. PMID:22132702
Integrity and Biological Activity of DNA after UV Exposure
NASA Astrophysics Data System (ADS)
Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.
2010-04-01
The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.
Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M
1986-09-01
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.
A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.
Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C
2008-12-01
A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source.
Geranyl diphosphate synthase from mint
Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan
1999-01-01
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.
Geranyl diphosphate synthase from mint
Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.
1999-03-02
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.
Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.
Livneh, Zvi; Ziv, Omer; Shachar, Sigal
2010-02-15
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA synthesis (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as poleta, polkappa or poliota. In contrast, extension is carried out primarily by polzeta. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in poleta, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polkappa and polzeta, and the other poliota and polzeta. These mechanisms may also assist poleta in normal cells under an excessive amount of UV lesions.
Suga, Koushirou; Mark Welch, David B; Tanaka, Yukari; Sakakura, Yoshitaka; Hagiwara, Atsushi
2008-06-01
The monogonont rotifer Brachionus plicatilis is an emerging model system for a diverse array of questions in limnological ecosystem dynamics, the evolution of sexual recombination, cryptic speciation, and the phylogeny of basal metazoans. We sequenced the complete mitochondrial genome of B. plicatilis sensu strictu NH1L and found that it is composed of 2 circular chromosomes, designated mtDNA-I (11,153 bp) and mtDNA-II (12,672 bp). Hybridization to DNA isolated from mitochondria demonstrated that mtDNA-I is present at 4 times the copy number of mtDNA-II. The only nucleotide similarity between the 2 chromosomes is a 4.9-kbp region of 99.5% identity including a transfer RNA (tRNA) gene and an extensive noncoding region that contains putative D-loop and control sequence. The mtDNA-I chromosome encodes 4 proteins (ATP6, COB, NAD1, and NAD2), 13 tRNAs, and the large and small subunit ribosomal RNAs; mtDNA-II encodes 8 proteins (COX1-3, NAD3-6, and NAD4L) and 9 tRNAs. Gene order is not conserved between B. plicatilis and its closest relative with a sequenced mitochondrial genome, the acanthocephalan Leptorhynchoides thecatus, or other sequenced mitochondrial genomes. Polymerase chain reaction assays and Southern hybridization to DNA from 18 strains of Brachionus suggest that the 2-chromosome structure has been stable for millions of years. The novel organization of the B. plicatilis mitochondrial genome into 2 nearly equal chromosomes of 4-fold different copy number may provide insight into the evolution of metazoan mitochondria and the phylogenetics of rotifers and other basal animal phyla.
Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions
Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.
2018-01-01
Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441
Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc
2016-08-22
Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.
Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc
2016-01-01
Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043
POLD3 is haploinsufficient for DNA replication in mice
Murga, Matilde; Lecona, Emilio; Kamileri, Irene; Díaz, Marcos; Lugli, Natalia; Sotiriou, Sotirios K.; Anton, Marta E.; Méndez, Juan; Halazonetis, Thanos D.; Fernandez-Capetillo, Oscar
2016-01-01
Summary The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologues are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizzosaccharomyces pombe orthologue is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress. We report here that POLD3 is essential for mouse development and is also required for viability in adult animals. Strikingly, even Pold3+/- mice were born at sub-Mendelian ratios and, of those born, some presented hydrocephaly and had a reduced lifespan. In cells, POLD3 deficiency led to replication stress and cell death, which were aggravated by expression of activated oncogenes. Finally, we show that Pold3 deletion destabilizes all members of the Polδ complex, explaining its major role in DNA replication and the severe impact of its deficiency. PMID:27524497
DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.
Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele
2016-08-31
DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, G.; Koch, A.; Ranke, M.B.
1995-12-01
Turner`s syndrome patients with Y mosaicism face a high risk of developing gonadoblastoma. Cytogenetic analysis can fail to detect rare cells bearing a normal or structurally abnormal Y chromosome (low level Y mosaicism). We screened 53 individuals with Turner`s syndrome for presence of sex-determining region Y (SRY), the testis-specific protein, Y encoded, gene, and the Y centromeric DYZ3 repeat using nested polymerase chain reaction (PCR). Thirty girls (57%) had the 45,X karyotype, determined through standard analysis of blood lymphocytes. The remaining 23 girls (43%) were mosaics and/or had structural abnormalities in 1 X-chromosome. Genomic DNA from blood leukocytes was amplifiedmore » using 2 rounds of PCR. This method was sensitive enough to detect 0.0001% male DNA on a female background. None of 53 Turner`s syndrome cases was positive for Y-specific loci after the first round of PCR. After the second round, 2 of 53 Turner`s syndrome cases were positive for SRY mapping to the distal short arm of chromosome Y. In 1 SRY-positive subject, the karyotype was 45,X, and in the other, it was 46,Xi(Xq). None of 53 Turner`s syndrome individuals, including the 2 SRY-positive subjects, were positive for the testis-specific protein, Y encoded, gene on the proximal short arm of chromosome Y or the centromeric DYZ3 repeat. These data exclude low level Y mosaicism in almost all Turner`s syndrome cases tested. 35 refs., 3 figs., 1 tab.« less
Wong, T C; Kang, C Y
1978-01-01
Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed. PMID:81319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Mitra, S.
Escherichia coli RNA polymerase binds specifically to the single-stranded circular DNA of coliphage M13 in the presence of a saturating concentration of the bacterial DNA binding protein presumably as an essential step in the synthesis of the RNA primer required for synthesizing the complementary DNA strand in parental replicative-form DNA. The RNA polymerase-protected DNA regions were isolated after extensive digestion with pancreatic DNase, S1 endonuclease of Aspergillus oryzae, and exonuclease I of E. coli. The physicochemical properties of the RNA polymerase-protected segments (called PI and PII) were compared with those of the naturally occurring hairpin regions.
Prasinoviruses reveal a complex evolutionary history and a patchy environmental distribution
NASA Astrophysics Data System (ADS)
Finke, J. F.; Suttle, C.
2016-02-01
Prasinophytes constitute a group of eukaryotic phytoplankton that has a global distribution and is a major component of coastal and oceanic communities. Members of this group are infected by large double-stranded DNA viruses that can be significant agents of mortality, and which show evidence of substantial horizontal transfer of genes from their hosts and other organisms. However, information on the genetic diversity of these viruses and their environmental distribution is limited. This study examines the genetic repertoire, phylogeny and environmental distribution of large double-stranded DNA viruses infecting Micromonas pusilla and other prasinophytes. The genomes of viruses infecting M. pusilla were sequenced and compared to those of viruses infecting other prasinophytes, revealing a relatively small set of core genes and a larger flexible pan genome. Comparing genomes among prasinoviruses highlights their variable genetic content and complex evolutionary history. While some of the pan genome is clearly host derived, many open reading frames are most similar to those found in other eukaryotes and bacteria. Gene content of the viruses is is congruent with phylogenetic analysis of viral DNA polymerase sequences and indicates that two clades of M. pusilla viruses are less related to each other than to other prasinoviruses. Moreover, the environmental distribution of prasinovirus DNA polymerase sequences indicates a complex pattern of virus-host interactions in nature. Ultimately, these patterns are influenced by the genetic repertoire encoded by prasinoviruses, and the distribution of the hosts they infect.
Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L
1980-01-01
The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547
Slow Joining of Newly Replicated DNA Chains in DNA Polymerase I-Deficient Escherichia coli Mutants*
Okazaki, Reiji; Arisawa, Mikio; Sugino, Akio
1971-01-01
In Escherichia coli mutants deficient in DNA polymerase I, newly replicated short DNA is joined at about 10% of the rate in the wild-type strains. It is postulated that DNA polymerase I normally functions in filling gaps between the nascent short segments synthesized by the replication complex. Possible implications of the finding are discussed in relation to other abnormal properties of these mutants. PMID:4943548
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Identification and Analysis of a Gene from Calendula officinalis Encoding a Fatty Acid Conjugase
Qiu, Xiao; Reed, Darwin W.; Hong, Haiping; MacKenzie, Samuel L.; Covello, Patrick S.
2001-01-01
Two homologous cDNAs, CoFad2 and CoFac2, were isolated from a Calendula officinalis developing seed by a polymerase chain reaction-based cloning strategy. Both sequences share similarity to FAD2 desaturases and FAD2-related enzymes. In C. officinalis plants CoFad2 was expressed in all tissues tested, whereas CoFac2 expression was specific to developing seeds. Expression of CoFad2 cDNA in yeast (Saccharomyces cerevisiae) indicated it encodes a Δ12 desaturase that introduces a double bond at the 12 position of 16:1(9Z) and 18:1(9Z). Expression of CoFac2 in yeast revealed that the encoded enzyme acts as a fatty acid conjugase converting 18:2(9Z, 12Z) to calendic acid 18:3(8E, 10E, 12Z). The enzyme also has weak activity on the mono-unsaturates 16:1(9Z) and 18:1(9Z) producing compounds with the properties of 8,10 conjugated dienes. PMID:11161042
Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli
2014-01-01
We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092
Problem-Solving Test: Real-Time Polymerase Chain Reaction
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2009-01-01
Terms to be familiar with before you start to solve the test: polymerase chain reaction, DNA amplification, electrophoresis, breast cancer, "HER2" gene, genomic DNA, "in vitro" DNA synthesis, template, primer, Taq polymerase, 5[prime][right arrow]3[prime] elongation activity, 5[prime][right arrow]3[prime] exonuclease activity, deoxyribonucleoside…
DNA assembly with error correction on a droplet digital microfluidics platform.
Khilko, Yuliya; Weyman, Philip D; Glass, John I; Adams, Mark D; McNeil, Melanie A; Griffin, Peter B
2018-06-01
Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 μL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl 2 , Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb - 1 . We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization.
Inhibition of RNA-Dependent DNA Polymerase of Avian Myeloblastosis Virus by Pyran Copolymer
Papas, Takis S.; Pry, Thomas W.; Chirigos, Michael A.
1974-01-01
Pyran copolymer, a known immunostimulator, was found to be a potent inhibitor of purified DNA polymerase (deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) isolated from avian myeloblastosis virus. Unlike other inhibitors, pyran showed unique features of inhibition. It interacts with the polymerase at a region other than the template site. The inhibitory effect was overcome only by excess enzyme and not affected by excess template. The degree of inhibition was not template specific for the templates tested: 70S RNA from avian myeloblastosis virus, synthetic hybrid poly(rA)·oligo(dT)10, synthetic copolymer poly(dA-dT), and activated calf-thymus DNA. The observed rate of inhibition by pyran was shown to vary with the different polymerases tested. Inhibition was shown with all oncornaviral polymerases and, to a lesser extent, with mammalian polymerases. However, two of the three bacterial polymerases, by contrast, showed a marked activation. PMID:4131275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.J.; Walthers, E.A.; Richmond, K.L.
1997-04-01
PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F. Peter; Zhang, Huidong
2017-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, E. coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. PMID:27234563
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong
2016-01-01
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B Akabayov; A Kulczyk; S Akabayov
2011-12-31
DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-Vmore » distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.« less
Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.
Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J
2011-01-21
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.
1988-10-03
DNA replication showed an average of 2.5 primers per M13 DNA circle. The measurement of the double stranded length from individual replicative intermediates by electron microscopy was within the accuracy of 10% standard deviation. The product length distribution obtained from the HSV-1 DNA polymerase catalyzed replication of M13 DNA primed with a specific pentadecamer and in the presence of E. Coli SSB protein showed a near Poisson distribution. Replication of the same primer-template system or DNA primase primed M13 DNA template by calf thymus DNA polymerase a showed a
Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.
2013-01-01
Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152
High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.
Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H
2017-10-11
High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.
Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.
Montgomery, Jesse L; Wittwer, Carl T
2014-02-01
Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.
Cloning and expression of a cDNA coding for catalase from zebrafish (Danio rerio).
Ken, C F; Lin, C T; Wu, J L; Shaw, J F
2000-06-01
A full-length complementary DNA (cDNA) clone encoding a catalase was amplified by the rapid amplication of cDNA ends-polymerase chain reaction (RACE-PCR) technique from zebrafish (Danio rerio) mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprised a complete open reading frame coding for 526 amino acid residues and that it had a molecular mass of 59 654 Da. The deduced amino acid sequence showed high similarity with the sequences of catalase from swine (86.9%), mouse (85.8%), rat (85%), human (83.7%), fruit fly (75.6%), nematode (71.1%), and yeast (58.6%). The amino acid residues for secondary structures are apparently conserved as they are present in other mammal species. Furthermore, the coding region of zebrafish catalase was introduced into an expression vector, pET-20b(+), and transformed into Escherichia coli expression host BL21(DE3)pLysS. A 60-kDa active catalase protein was expressed and detected by Coomassie blue staining as well as activity staining on polyacrylamide gel followed electrophoresis.
Seligmann, Hervé
2016-07-01
Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.
Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, G.; Kirouac, K.; Shin, Y.J.
2009-09-16
DNA polymerases are co-ordinated by sliding clamps (PCNA/{beta}-clamp) in translesion synthesis. It is unclear how these enzymes assemble on PCNA with geometric and functional compatibility. We report the crystal structure of a full-length Y-family polymerase, Dpo4, in complex with heterodimeric PCNA1-PCNA2 at 2.05 {angstrom} resolution. Dpo4 exhibits an extended conformation that differs from the Dpo4 structures in apo- or DNA-bound form. Two hinges have been identified in Dpo4, which render the multidomain polymerase flexible conformations and orientations relative to PCNA. Dpo4 binds specifically to PCNA1 on the conserved ligand binding site. The C-terminal peptide of Dpo4 becomes structured with amore » 3{sub 10} helix and dominates the specific binding. The Y-family polymerase also contacts PCNA1 with its finger, thumb and little finger domains, which are conformation-dependent protein-protein interactions that diversify the binding mode of Dpo4 on PCNA. The structure reveals a molecular model in which substrate/partner binding-coupled multiple conformations of a Y-family polymerase facilitate its recruitment and co-ordination on the sliding clamp. The conformational flexibility would turn the error-prone Y-family polymerase off when more efficient high-fidelity DNA polymerases work on undamaged DNA and turn it onto DNA templates to perform translesion synthesis when replication forks are stalled by DNA lesions.« less
Lesion bypass by S. cerevisiae Pol ζ alone
Stone, Jana E.; Kumar, Dinesh; Binz, Sara K.; Inase, Aki; Iwai, Shigenori; Chabes, Andrei; Burgers, Peter M.; Kunkel, Thomas A.
2011-01-01
DNA polymerase zeta (Pol ζ) participates in translesion synthesis (TLS) of DNA adducts that stall replication fork progression. Previous studies have led to the suggestion that the primary role of Pol ζ in TLS is to extend primers created when another DNA polymerase inserts nucleotides opposite lesions. Here we test the non-exclusive possibility that Pol ζ can sometimes perform TLS in the absence of any other polymerase. To do so, we quantified the efficiency with which S. cerevisiae Pol ζ bypasses abasic sites, cis-syn cyclobutane pyrimidine dimers and (6-4) photoproducts. In reactions containing dNTP concentrations that mimic those induced by DNA damage, a Pol ζ derivative with phenylalanine substituted for leucine 979 at the polymerase active site bypasses all three lesions at efficiencies between 27–73%. Wild-type Pol ζ also bypasses these lesions, with efficiencies that are lower and depend on the sequence context in which the lesion resides. The results are consistent with the hypothesis that, in addition to extending aberrant termini created by other DNA polymerases, Pol ζ has the potential to be the sole DNA polymerase involved in TLS. PMID:21622032
Brown, Jessica A.; Zhang, Likui; Sherrer, Shanen M.; Taylor, John-Stephen; Burgers, Peter M. J.; Suo, Zucai
2010-01-01
Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase η (yPolη), a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers) in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPolη which contains only the polymerase domain. In the absence of yPolη's C-terminal residues 514–632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPolη may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPolη discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average) than the ground-state binding step (18-fold on average). Blunt-end additions of dATP or pyrene nucleotide 5′-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides. PMID:20798853
Single molecular biology: coming of age in DNA replication.
Liu, Xiao-Jing; Lou, Hui-Qiang
2017-09-20
DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.
Chase, D.M.; Pascho, R.J.
1998-01-01
Nucleic acid-based assays have shown promise for diagnosing Renibacterium salmoninarum in tissues and body fluids of salmonids. DeVelopment of a nested polymerase chain reaction (PCR) method to detect a 320 bp DNA segment of the gene encoding the p57 protein of R. salmoninarum is described. Whereas a conventional PCR for a 383 bp segment of the p57 gene reliably detected 1000 R. salmoninarum cells per reaction in kidney tissue, the nested PCR detected as few as 10 R. salmoninarum per reaction in kidney tissue. Two DNA extraction methods for the nested PCR were compared and the correlation between replicate samples was generally higher in samples extracted by the QIAamp system compared with those extracted by the phenol/chloroform method. The specificity of the nested PCR was confirmed by testing DNA extracts of common bacterial fish pathogens and a panel of bacterial species reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody test (FAT) for R. salmoninarum. Kidney samples from 74 naturally infected chinook Salmon were examined by the nested PCR, the ELISA, and the FAT, and the detected prevalences of R. salmoninarum were 61, 47, and 43%, respectively.
The expanding polymerase universe.
Goodman, M F; Tippin, B
2000-11-01
Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.
Daebeler, Anne; Herbold, Craig W.; Vierheilig, Julia; Sedlacek, Christopher J.; Pjevac, Petra; Albertsen, Mads; Kirkegaard, Rasmus H.; de la Torre, José R.; Daims, Holger; Wagner, Michael
2018-01-01
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one§ enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as “Candidatus Nitrosocaldus islandicus,” is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. “Ca. N. islandicus” encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation§. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as “Ca. N. islandicus” is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that “Ca. N. islandicus” has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes§ – one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA. PMID:29491853
Characterization of human translesion DNA synthesis across a UV-induced DNA lesion
Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J
2016-01-01
Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI: http://dx.doi.org/10.7554/eLife.19788.001 PMID:27770570
Method for introducing unidirectional nested deletions
Dunn, J.J.; Quesada, M.A.; Randesi, M.
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Method for producing labeled single-stranded nucleic acid probes
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-10-19
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry.
Betz, Karin; Malyshev, Denis A; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J; Ordoukhanian, Phillip; Romesberg, Floyd E; Marx, Andreas
2012-07-01
Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
A meiotic DNA polymerase from a mushroom, Agaricus bisporus.
Takami, K; Matsuda, S; Sono, A; Sakaguchi, K
1994-01-01
A meiotic DNA polymerase [DNA nucleotidyltransferase (DNA-directed), EC 2.7.7.7], which likely has a role in meiotic DNA repair, was isolated from a mushroom, Agaricus bisporus. The purified fraction displays three bands in SDS/PAGE, at molecular masses of 72 kDa, 65 kDa and 36 kDa. Optimal activity is at pH 7.0-8.0 in the presence of 5 mM Mg2+ and 50 mM KCl and at 28-30 degrees C, which is the temperature for meiosis. This enzyme is resistant to N-ethylmaleimide and sensitive to 2',3'-dideoxythymidine 5'-triphosphate, suggesting that it is a beta-like DNA polymerase. These characteristics are similar to those of Coprinus DNA polymerase beta [Sakaguchi and Lu (1982) Mol. Cell. Biol. 2, 752-757]. In Western-blot analysis, the antiserum against the Coprinus polymerase reacts only with the 65 kDa band, which coincides with the molecular mass of the Coprinus polymerase. Western-blot analysis also showed that the antiserum could react with crude extracts not only from the Agaricales family, to which Agaricus and Coprinus belong, but also from different mushroom families and Saccharomyces. The Agaricus polymerase activity can be found only in the meiotic-cell-rich fraction, but the enzyme is also present in the somatic cells in an inactive state. Images Figure 2 Figure 5 Figure 6 PMID:8172591
Lerner, D R; Raikhel, N V
1992-06-05
Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706
Kirouac, Kevin N; Basu, Ashis K; Ling, Hong
2013-11-15
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.
DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase
Erdem, Aysen L; Jaszczur, Malgorzata; Bertram, Jeffrey G; Woodgate, Roger; Cox, Michael M; Goodman, Myron F
2014-01-01
Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD′2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase. DOI: http://dx.doi.org/10.7554/eLife.02384.001 PMID:24843026
Schimmel, Joost; Kool, Hanneke; van Schendel, Robin; Tijsterman, Marcel
2017-12-15
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Real-time dynamics of RNA Polymerase II clustering in live human cells
NASA Astrophysics Data System (ADS)
Cisse, Ibrahim
2014-03-01
Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.
Moro, Sean L; Cocco, Melanie J
2015-10-01
The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.
Yamamoto, Junpei; Loakes, David; Masutani, Chikahide; Simmyo, Shizu; Urabe, Kumiko; Hanaoka, Fumio; Holliger, Philipp; Iwai, Shigenori
2008-01-01
We analyzed the translesion synthesis across the UV-induced lesions, the (6-4) photoproduct and its Dewar valence isomer, by using human DNA polymerases eta and iota in vitro. The primer extension experiments revealed that pol eta tended to incorporate dG opposite the 3' component of both lesions, but the incorporation efficiency for the Dewar isomer was higher than that for the (6-4) photoproduct. On the other hand, pol iota was likely to incorporate dA opposite the 3' components of the (6-4) photoproduct and its Dewar isomer with a similar efficiency. Elongation after the incorporation opposite the UV lesions was not observed for these Y-family polymerases. We further analyzed the bypass ability of an engineered polymerase developed from Thermus DNA polymerase for the amplification of ancient DNA. This polymerase could bypass the Dewar isomer more efficiently than the (6-4) photoproduct.
Development of biometric DNA ink for authentication security.
Hashiyada, Masaki
2004-10-01
Among the various types of biometric personal identification systems, DNA provides the most reliable personal identification. It is intrinsically digital and unchangeable while the person is alive, and even after his/her death. Increasing the number of DNA loci examined can enhance the power of discrimination. This report describes the development of DNA ink, which contains synthetic DNA mixed with printing inks. Single-stranded DNA fragments encoding a personalized set of short tandem repeats (STR) were synthesized. The sequence was defined as follows. First, a decimal DNA personal identification (DNA-ID) was established based on the number of STRs in the locus. Next, this DNA-ID was encrypted using a binary, 160-bit algorithm, using a hashing function to protect privacy. Since this function is irreversible, no one can recover the original information from the encrypted code. Finally, the bit series generated above is transformed into base sequences, and double-stranded DNA fragments are amplified by the polymerase chain reaction (PCR) to protect against physical attacks. Synthesized DNA was detected successfully after samples printed in DNA ink were subjected to several resistance tests used to assess the stability of printing inks. Endurance test results showed that this DNA ink would be suitable for practical use as a printing ink and was resistant to 40 hours of ultraviolet exposure, performance commensurate with that of photogravure ink. Copyright 2004 Tohoku University Medical Press
Fenstermacher, Katherine J; Achuthan, Vasudevan; Schneider, Thomas D; DeStefano, Jeffrey J
2018-01-16
DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified Selective Evolution of Ligands by Exponential Enrichment (SELEX) approach. Two Taq -specific primers that bound ∼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. Taq1 contained 8 nucleotides (5' -CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCR reactions. Similarly, exonuclease minus Klenow polymerase also selected a high affinity primer that contained a related core promoter sequence from phage T7 RNAP (5' -ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity suggesting that binding was highly sequence-specific. The results are discussed in the context of possible effects on multi-primer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs. Importance This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function, or be a consequences of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of ancestral DNA polymerases to develop their promotors. Conversely, DNA polymerases could have evolved from related RNA polymerases and retained the intrinsic binding preference despite there being no clear function for such a preference in DNA biology. Copyright © 2018 American Society for Microbiology.
Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N
1994-12-02
Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.
5',5'''-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication.
Baril, E F; Coughlin, S A; Zamecnik, P C
1985-01-01
The proposal that Ap4A acts as an inducer of DNA replication is based primarily on two pieces of evidence (7). The intracellular levels of Ap4A increase ten- to 1000-fold as cells progress into S phase and the introduction of Ap4A into nonproliferating cells stimulated DNA synthesis. There is also some additional suggestive evidence such as the binding of Ap4A to a protein that is associated with multiprotein forms of the replicative DNA polymerase alpha and the ability of this enzyme to use Ap4A as a primer for DNA synthesis in vitro with single-stranded DNA templates. These observations have stimulated interest in the cellular metabolism of Ap4A. This is well since there is a great need for additional experimentation in order to clearly establish Ap4A as an inducer of DNA replication. Microinjection experiments of Ap4A into quiescent cells are needed in order to ascertain if Ap4A will stimulate DNA replication and possibly cell division in intact cells. Studies of the effects of nonhydrolyzable analogs of Ap4A on DNA replication in intact quiescent cells could also prove valuable. Although Ap4A can function as a primer for in vitro DNA synthesis by DNA polymerase alpha this may not be relevant in regard to its in vivo role in DNA replication. Ap4A in vivo could interact with key protein(s) in DNA replication and in this way act as an effector molecule in the initiation of DNA replication. In this regard the interaction of Ap4A with a protein associated with a multiprotein form of DNA polymerase alpha isolated from S-phase cells is of interest. More experiments are required to determine if there is a specific target protein(s) for Ap4A in vivo and what its role in DNA replication is. The cofractionation of tryptophanyl-tRNA synthetase with the replicative DNA polymerase alpha from animal and plant cells is of interest. The DNA polymerase alpha from synchronized animal cells also interacted with Ap4A. Although the plant cell alpha-like DNA polymerase did not interact with Ap4A this DNA polymerase was not a multiprotein form of polymerase alpha and the synchrony of the wheat germ embryos was not known. A possible tie between protein-synthesizing systems and the regulation of proteins involved in DNA replication may exist. The requirement of protein synthesis for the initiation of DNA replication has long been known. Also, it is well established that many temperature-sensitive mutants for tRNA synthetases are also DNA-synthesizing mutants. More investigation in this area may be warranted.(ABSTRACT TRUNCATED AT 400 WORDS)
Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.
Tanasova, Marina; Goeldi, Silvan; Meyer, Fabian; Hanawalt, Philip C; Spivak, Graciela; Sturla, Shana J
2015-05-26
DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heat-mediated activation of affinity-immobilized Taq DNA polymerase.
Nilsson, J; Bosnes, M; Larsen, F; Nygren, P A; Uhlén, M; Lundeberg, J
1997-04-01
A novel strategy for heat-mediated activation of recombinant Taq DNA polymerase is described. A serum albumin binding protein tag is used to affinity-immobilize an E. coli-expressed Taq DNA polymerase fusion protein onto a solid support coated with human serum albumin (HSA). Analysis of heat-mediated elution showed that elevated temperatures (> 70 degrees C) were required to significantly release the fusion protein from the solid support. A primer-extension assay showed that immobilization of the fusion protein resulted in little or no extension product. In contrast, fusion protein released from the HSA ligand by heat showed high polymerase activity. Thus, a heat-mediated release and reactivation of the Taq DNA polymerase fusion protein from the solid support can be obtained to allow for hot-start PCR with improved amplification performance.
Oates, A C; Wollberg, P; Achen, M G; Wilks, A F
1998-08-28
The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.
Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T
1990-01-05
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Ratrie, H. III; Datta, A.K.
E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less
Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I
Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.
2014-01-01
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643
Cloning of the altered mRNA stability (ams) gene of Escherichia coli K-12.
Claverie-Martin, F; Diaz-Torres, M R; Yancey, S D; Kushner, S R
1989-01-01
A temperature-sensitive mutation in the ams gene of Escherichia coli causes an increase in the chemical half-life of pulse-labeled RNA at the nonpermissive temperature. Using lambda clones containing DNA fragments from the 23- to 24-min region on the E. coli chromosome, we have isolated a 5.8-kilobase DNA fragment which, when present in a low-copy-number plasmid, complements the conditional lethality and increased mRNA stability associated with the ams-1 mutation. The approximate initiation site and the direction of transcription of the ams gene were determined from the size of truncated polypeptides produced by Tn1000 insertions and Bal 31 deletions. Overexpression of the ams locus by using a T7 RNA polymerase-promoter system permitted the identification of an ams-encoded polypeptide of 110 kilodaltons. Images PMID:2477358
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca
2018-01-01
Abstract The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases. PMID:29718412
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca; Franco, Elisa
2018-06-01
The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases.
The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.
Williams, Jessica S; Gehle, Daniel B; Kunkel, Thomas A
2017-05-01
Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication. Published by Elsevier B.V.
Synchronization of DNA array replication kinetics
NASA Astrophysics Data System (ADS)
Manturov, Alexey O.; Grigoryev, Anton V.
2016-04-01
In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.
Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L
2018-03-27
The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, Matthew; Rudnicki, Jean; Midkiff, John
2010-04-12
The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less
Sanjuán, Rafael; Domingo-Calap, Pilar
2016-12-01
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.
Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro
2015-04-01
Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leblanc-Fournier, Nathalie; Coutand, Catherine; Crouzet, Jerome; Brunel, Nicole; Lenne, Catherine; Moulia, Bruno; Julien, Jean-Louis
2008-06-01
Plants respond to environmental mechanical stimulation, such as wind, by modifying their growth and development. To study the molecular effects of stem bending on 3-week-old walnut trees, a cDNA-AFLP approach was developed. This study allowed the identification of a cDNA, known as Jr-ZFP2, encoding a Cys2/His2-type two-zinc-fingered transcription factor. Reverse transcriptase-polymerase chain reaction analysis confirmed that Jr-ZFP2 mRNA accumulation is rapidly and transiently induced after mechanical stimulation. After bending, Jr-ZFP2 transcript increase was restricted to the stem, the organ where the mechanical solicitation was applied. Furthermore, other abiotic factors, such as cold or salt, did not modify Jr-ZFP2 mRNA accumulation in walnut stems under our experimental conditions, whereas growth studies demonstrated that salt stress was actually perceived by the plants. These results suggest that the regulation of Jr-ZFP2 expression is more sensitive to mechanical stimulus. This gene will be a good marker for studying the early stages of mechanical perception in woody plants.
Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L
2016-07-29
Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer.
Homouz, Dirar; Joyce-Tan, Kwee Hong; Shahir Shamsir, Mohd; Moustafa, Ibrahim M; Idriss, Haitham
2018-01-01
DNA polymerase β is a 39kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31kDa domain responsible for the polymerase activity and an 8kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S44/55 and S55 phosphorylation were less dramatic than S44 and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is likely the major contributor to structural fluctuations that lead to loss of enzymatic activity. Copyright © 2017. Published by Elsevier Inc.
Qian, Yufeng; Kachroo, Aashiq H.; Yellman, Christopher M.; Marcotte, Edward M.; Johnson, Kenneth A.
2014-01-01
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans. PMID:24398692
Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp
2006-08-18
DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.
Unlocking the sugar "steric gate" of DNA polymerases.
Brown, Jessica A; Suo, Zucai
2011-02-22
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Getting it Right: How DNA Polymerases Select the Right Nucleotide.
Ludmann, Samra; Marx, Andreas
2016-01-01
All living organisms are defined by their genetic code encrypted in their DNA. DNA polymerases are the enzymes that are responsible for all DNA syntheses occurring in nature. For DNA replication, repair and recombination these enzymes have to read the parental DNA and recognize the complementary nucleotide out of a pool of four structurally similar deoxynucleotide triphosphates (dNTPs) for a given template. The selection of the nucleotide is in accordance with the Watson-Crick rule. In this process the accuracy of DNA synthesis is crucial for the maintenance of the genome stability. However, to spur evolution a certain degree of freedom must be allowed. This brief review highlights the mechanistic basis for selecting the right nucleotide by DNA polymerases.
Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing.
Cenni, Vittoria; D'Apice, Maria Rosaria; Garagnani, Paolo; Columbaro, Marta; Novelli, Giuseppe; Franceschi, Claudio; Lattanzi, Giovanna
2018-03-01
Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
DNA Polymerase III Star Requires ATP to Start Synthesis on a Primed DNA†
Wickner, William; Kornberg, Arthur
1973-01-01
DNA polymerase III star replicates a ϕX174 single-stranded, circular DNA primed with a fragment of RNA. This reaction proceeds in two stages. In stage I, a complex is formed requiring DNA polymerase III star, ATP, spermidine, copolymerase III*, and RNA-primed ϕX174 single-stranded, circular DNA. The complex, isolated by gel filtration, contains ADP and inorganic phosphate (the products of a specific ATP cleavage) as well as spermidine, polymerase III star, and copolymerase III star. In stage II, the chain grows upon addition of deoxynucleoside triphosphates; ADP and inorganic phosphate are discharged and chain elongation is resistant to antibody to copolymerase III star. Thus ATP and copolymerase III star are required to initiate chain growth but not to sustain it. Images PMID:4519657
Baldina, S N; Gordon, N Iu; Politov, D V
2008-07-01
Restriction enzyme analysis of the mitochondrial DNA (mtDNA) fragment encoding subunit 1 of the NADH dehydrogenase complex (ND-1) amplified via polymerase chain reaction (PCR) has been used to obtain data on genetic differentiation of muksun Coregonus muksun (Pallas) populations. Population polymorphism with respect to the restriction sites of 18 endonucleases has been described. It has been demonstrated that the muksun is genetically related to the pidschian C. pidschian (Gmelin), its sympatric species in Siberian waters. Analysis of the median network of mtDNA haplotypes has shown that haplotypes of muksun from various Siberian basins form a common group with haplotypes of pidschian of the Arctic Ocean basin, some frequent haplotypes been found in both forms. This raises the question as to the validity of the muksun as a species. Differences within this group of haplotypes are much smaller than those typical of species of the genus Coregonus. The possibility of a hybrid origin of the muksun from a pidschian-like ancestor and species of the cisco-peled (C. sardinella-C. peled) complex is discussed.
Kansara, Seema G.; Sukhodolets, Maxim V.
2011-01-01
In this work, using multiple, dissimilar physico-chemical techniques, we demonstrate that the Escherichia coli RNA polymerase core enzyme obtained through a classic purification procedure forms stable (α2ββ'ω)2 complexes in the presence or absence of short DNA probes. Multiple control experiments indicate that this self-association is unlikely to be mediated by RNA polymerase-associated non-protein molecules. We show that the formation of (α2ββ'ω)2 complexes is subject to regulation by known RNA polymerase interactors, such as the auxiliary SWI/SNF subunit of RNA polymerase RapA, as well as NusA and σ70. We also demonstrate that the separation of the core RNA polymerase and RNA polymerase holoenzyme species during Mono Q chromatography is likely due to oligomerization of the core enzyme. We have analyzed the oligomeric state of the polymerase in the presence or absence of DNA, an aspect that was missing from previous studies. Importantly, our work demonstrates that RNA polymerase oligomerization is compatible with DNA binding. Through in vitro transcription and in vivo experiments (utilizing a RapAR599/Q602 mutant lacking transcription-stimulatory function), we demonstrate that the formation of tandem (α2ββ'ω)2–DNA complexes is likely functionally significant and beneficial for the transcriptional activity of the polymerase. Taken together, our findings suggest a novel structural aspect of the E. coli elongation complex. We hypothesize that transcription by tandem RNA polymerase complexes initiated at hypothetical bidirectional “origins of transcription” may explain recurring switches of the direction of transcription in bacterial genomes. PMID:21533049
Su'udi, Mukhamad; Park, Jong-Mi; Kang, Woo-Ri; Park, Sang-Ryeol; Hwang, Duk-Ju; Ahn, Il-Pyung
2012-12-01
Rice brown leaf spot is a major disease in the rice paddy field. The causal agent Cochliobolus miyabeanus is an ascomycete fungus and a representative necrotrophic pathogen in the investigation of rice-microbe interactions. The aims of this research were to identify a quantitative evaluation method to determine the amount of C. miyabeanus proliferation in planta and determine the method's sensitivity. Real-time polymerase chain reaction (PCR) was employed in combination with the primer pair and Taqman probe specific to CmSCD1, a C. miyabeanus unigene encoding SCYTALONE DEHYDRATASE, which is involved in fungal melanin biosynthesis. Comparative analysis of the nucleotide sequences of CmSCD1 from Korean strains with those from the Japanese and Taiwanese strains revealed some sequence differences. Based on the crossing point (CP) values from Taqman real-time PCR containing a series of increasing concentrations of cloned amplicon or fungal genomic DNA, linear regressions with a high level of reliability (R(2)>0.997) were constructed. This system was able to estimate fungal genomic DNA at the picogram level. The reliability of this equation was further confirmed using DNA samples from both resistant and susceptible cultivars infected with C. miyabeanus. In summary, our quantitative system is a powerful alternative in brown leaf spot forecasting and in the consistent evaluation of disease progression.
Sekimoto, Takayuki; Oda, Tsukasa; Kurashima, Kiminori; Hanaoka, Fumio
2014-01-01
DNA rereplication is a major form of aberrant replication that causes genomic instabilities, such as gene amplification. However, little is known about which DNA polymerases are involved in the process. Here, we report that low-fidelity Y-family polymerases (Y-Pols), Pol η, Pol ι, Pol κ, and REV1, significantly contribute to DNA synthesis during rereplication, while the replicative polymerases, Pol δ and Pol ε, play an important role in rereplication, as expected. When rereplication was induced by depletion of geminin, these polymerases were recruited to rereplication sites in human cell lines. This finding was supported by RNA interference (RNAi)-mediated knockdown of the polymerases, which suppressed rereplication induced by geminin depletion. Interestingly, epistatic analysis indicated that Y-Pols collaborate in a common pathway, independently of replicative polymerases. We also provide evidence for a catalytic role for Pol η and the involvement of Pol η and Pol κ in cyclin E-induced rereplication. Collectively, our findings indicate that, unlike normal S-phase replication, rereplication induced by geminin depletion and oncogene activation requires significant contributions of both Y-Pols and replicative polymerases. These findings offer important mechanistic insights into cancer genomic instability. PMID:25487575
Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E
2013-06-01
Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.
Structure of nascent replicative form DNA of coliphage M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H, unlike the RFI produced either in vivo or from RFII with E. coli DNA polymerase I and E. coli DNA ligase. The ribonucleotides are located at one site and predominantly in one strand ofmore » the nascent RF DNA. Furthermore, these molecules contain multiple small gaps, randomly located, and one large gap in the intracistronic region.« less
Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai
2009-01-01
SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241
PCR performance of a thermostable heterodimeric archaeal DNA polymerase
Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine
2014-01-01
DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315
Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction
Shock, David D.; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.
2017-01-01
DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium. PMID:28759020
Mapping DNA polymerase errors by single-molecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David F.; Lu, Jenny; Chang, Seungwoo
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement
Keith, Brian J.; Jozwiakowski, Stanislaw K.; Connolly, Bernard A.
2013-01-01
A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated–naphthoylated DEAE–cellulose, resulting in a low background mutation frequency (∼1 × 10−4). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system. PMID:23098700
Mapping DNA polymerase errors by single-molecule sequencing
Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...
2016-05-16
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less
Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents Against Lung Cancer
2014-10-01
pol eta when replicating damaged DNA. 1S. SUBJECT TERMS: Mutagenesis, DNA polymerases, nucleoside analogs, chemotherapeutic agents 16. SECURITY ...such as polymerase eta, iota , and kappa that are involved in replicating damaged DNA. Our kinetic data obtained under Task 1B indicates that pol eta
Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.
2014-10-02
The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.
A Transient Kinetic Approach to Investigate Nucleoside Inhibitors of Mitochondrial DNA polymerase γ
Anderson, Karen S.
2010-01-01
Nucleoside analogs play an essential role in treating human immunodeficiency virus (HIV) infection since the beginning of the AIDS epidemic and work by inhibition of HIV-1 reverse transcriptase (RT), a viral polymerase essential for DNA replication. Today, over 90% of all regimens for HIV treatment contain at least one nucleoside. Long-term use of nucleoside analogs has been associated with adverse effects including mitochondrial toxicity due to inhibition of the mitochondrial polymerase, DNA polymerase gamma (mtDNA pol ©). In this review, we describe our efforts to delineate the molecular mechanism of nucleoside inhibition of HIV-1 RT and mtDNA pol © based upon a transient kinetic approach using rapid chemical quench methodology. Using transient kinetic methods, the maximum rate of polymerization (kpol), the dissociation constant for the ground state binding (Kd), and the incorporation efficiency (kpol/Kd) can be determined for the nucleoside analogs and their natural substrates. This analysis allowed us to develop an understanding of the structure activity relationships that allow correlation between the structural and stereochemical features of the nucleoside analog drugs with their mechanistic behavior toward the viral polymerase, RT, and the host cell polymerase, mtDNA pol γ. An in-depth understanding of the mechanisms of inhibition of these enzymes is imperative in overcoming problems associated with toxicity. PMID:20573564
Anderson, Mark G.; Scoggin, Kirsten E. S.; Simbulan-Rosenthal, Cynthia M.; Steadman, Jennifer A.
2000-01-01
Human T-cell leukemia virus type 1 (HTLV-1) encodes a transcriptional activator, Tax, whose activity is believed to contribute significantly to cellular transformation. Tax stimulates transcription from the proviral promoter as well as from promoters for a variety of cellular genes. The mechanism through which Tax communicates to the general transcription factors and RNA polymerase II has not been completely determined. We investigated whether Tax could function directly through the general transcription factors and RNA polymerase II or if other intermediary factors or coactivators were required. Our results show that a system consisting of purified recombinant TFIIA, TFIIB, TFIIE, TFIIF, CREB, and Tax, along with highly purified RNA polymerase II, affinity-purified epitope-tagged TFIID, and semipurified TFIIH, supports basal transcription of the HTLV-1 promoter but is not responsive to Tax. Two additional activities were required for Tax to stimulate transcription. We demonstrate that one of these activities is poly(ADP-ribose) polymerase (PARP), a molecule that has been previously identified to be the transcriptional coactivator PC1. PARP functions as a coactivator in our assays at molar concentrations approximately equal to those of the DNA and equal to or less than those of the transcription factors in the assay. We further demonstrate that PARP stimulates Tax-activated transcription in vivo, demonstrating that this biochemical approach has functionally identified a novel target for the retroviral transcriptional activator Tax. PMID:10666246
Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.
Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir
2005-08-01
To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.
Novel encoding methods for DNA-templated chemical libraries.
Li, Gang; Zheng, Wenlu; Liu, Ying; Li, Xiaoyu
2015-06-01
Among various types of DNA-encoded chemical libraries, DNA-templated library takes advantage of the sequence-specificity of DNA hybridization, enabling not only highly effective DNA-templated chemical reactions, but also high fidelity in library encoding. This brief review summarizes recent advances that have been made on the encoding strategies for DNA-templated libraries, and it also highlights their respective advantages and limitations for the preparation of DNA-encoded libraries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.
Wu, S; Kriz, A L; Widholm, J M
1994-01-01
The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490
Liu, Dong; Liu, Shaojun; You, Cuiping; Chen, Lin; Liu, Zhen; Liu, Liangguo; Wang, Jing; Liu, Yun
2010-04-01
Diploid eggs of allotetraploid hybrids (red crucian carp female symbol x common carp male symbol), when activated by UV-irradiated sperm of scatter scale carp, can develop into diploid progenies without chromosome duplication treatment. Diploid progenies produce diploid eggs, which develop into diploid population by the same way. To understand the molecular mechanism underlying the production of diploid eggs by the diploid fish, we constructed a forward suppression subtractive hybridization complementary DNA (cDNA) library. The cDNAs from the ovary in proliferation phase were employed as the "tester," and those in growth phase were used as the "driver." Seventy-three cDNA clones that are specifically expressed in proliferation phase were detected by dot-blot hybridization. Sequencing analyses revealed that several of these cDNAs have high homologies to the known sequences in the NCBI database. Their encoded proteins include the protein preventing mitosis catastrophe (PMC), the signal recognition particle 9, the ATP-binding cassette transporter, the glucanase-xylanase fusion protein, and others. These genes were confirmed by reverse transcriptase-polymerase chain reaction. The expression profile of the PMC gene at different time points was analyzed by quantitative real-time polymerase chain reaction. The results indicated that the expression of this suppression subtractive hybridization-identified gene changed during the time course, corresponding with the cellular phenomenon in the ovary development. Our studies provide insights into the molecular mechanism underlying the ovary development of diploid gynogenetic fish.
Biochemical analysis of human POLG2 variants associated with mitochondrial disease
Young, Matthew J.; Longley, Matthew J.; Li, Fang-Yuan; Kasiviswanathan, Rajesh; Wong, Lee-Jun; Copeland, William C.
2011-01-01
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic. PMID:21555342
A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.
Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S
2003-06-01
The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.
Wang, Yu; Dou, Ying; Wang, Rui; Guan, Xuelian; Hu, Zenghui; Zheng, Jian
2017-11-30
The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko
1994-07-15
The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less
Aboussekhra, A; Chanet, R; Zgaga, Z; Cassier-Chauvat, C; Heude, M; Fabre, F
1989-09-25
A new type of radiation-sensitive mutant of S. cerevisiae is described. The recessive radH mutation sensitizes to the lethal effect of UV radiations haploids in the G1 but not in the G2 mitotic phase. Homozygous diploids are as sensitive as G1 haploids. The UV-induced mutagenesis is depressed, while the induction of gene conversion is increased. The mutation is believed to channel the repair of lesions engaged in the mutagenic pathway into a recombination process, successful if the events involve sister-chromatids but lethal if they involve homologous chromosomes. The sequence of the RADH gene reveals that it may code for a DNA helicase, with a Mr of 134 kDa. All the consensus domains of known DNA helicases are present. Besides these consensus regions, strong homologies with the Rep and UvrD helicases of E. coli were found. The RadH putative helicase appears to belong to the set of proteins involved in the error-prone repair mechanism, at least for UV-induced lesions, and could act in coordination with the Rev3 error-prone DNA polymerase.
Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai
2012-01-01
N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544
Refolding Active Human DNA Polymerase ν from Inclusion Bodies
Arana, Mercedes E.; Powell, Gary K.; Edwards, Lori L.; Kunkel, Thomas A.; Petrovich, Robert M.
2017-01-01
Human DNA polymerase ν (Pol ν) is a conserved family A DNA polymerase of uncertain biological function. Physical and biochemical characterization aimed at understanding Pol ν function is hindered by the fact that, when over-expressed in E. coli, Pol ν is largely insoluble, and the small amount of soluble protein is difficult to purify. Here we describe the use of high hydrostatic pressure to refold Pol ν from inclusion bodies, in soluble and active form. The refolded Pol ν has properties comparable to those of the small amount of Pol ν that was purified from the soluble fraction. The approach described here may be applicable to other DNA polymerases that are expressed as insoluble inclusion bodies in E. coli. PMID:19853037
Polymerase Gamma Disease through the Ages
ERIC Educational Resources Information Center
Saneto, Russell P.; Naviaux, Robert K.
2010-01-01
The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…
Fixing the model for transcription: the DNA moves, not the polymerase.
Papantonis, Argyris; Cook, Peter R
2011-01-01
The traditional model for transcription sees active polymerases tracking along their templates. An alternative (controversial) model has active enzymes immobilized in "factories." Recent evidence supports the idea that the DNA moves, not the polymerase, and points to alternative explanations of how regulatory motifs like enhancers and silencers work.
Heyduk, T; Niedziela-Majka, A
Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.
Role of the putative structural protein Sed1p in mitochondrial genome maintenance.
Phadnis, Naina; Ayres Sia, Elaine
2004-09-24
The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.
Kinetics and thermodynamics of exonuclease-deficient DNA polymerases
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
Donigan, Katherine A; McLenigan, Mary P; Yang, Wei; Goodman, Myron F; Woodgate, Roger
2014-03-28
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A "steric gate" pol ι mutant is considerably more active in the presence of Mn(2+) compared with Mg(2+) and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be "at risk" for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.
Bharti, Sanjay Kumar; Sommers, Joshua A; Awate, Sanket; Bellani, Marina A; Khan, Irfan; Bradley, Lynda; King, Graeme A; Seol, Yeonee; Vidhyasagar, Venkatasubramanian; Wu, Yuliang; Abe, Takuye; Kobayashi, Koji; Shin-Ya, Kazuo; Kitao, Hiroyuki; Wold, Marc S; Branzei, Dana; Neuman, Keir C; Brosh, Robert M
2018-05-21
Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.
Shin, Seung-Yong; Lee, Haeng-Soon; Kwon, Suk-Yoon; Kwon, Soon-Tae; Kwak, Sang-Soo
2005-01-01
Superoxide dismutase (SOD) cDNA, mSOD2, encoding cytosolic copper/zinc SOD (CuZnSOD) cDNA was isolated from suspension-cultured cells of cassava (Manihot esculenta Crantz) by cDNA library screening, and its expression was investigated in relation to environmental stress. mSOD2 is 774 bp in length with an open reading frame (ORF) of 152 amino acids, corresponding to a protein of predicted molecular mass 15 kDa and a pI of 5.22. One copy of the mSOD2 gene was found to be present in the cassava genome by Southern analysis using an mSOD2 cDNA-specific probe. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed diverse expression patterns for the mSOD2 gene in various tissues of intact cassava plants, at various stages of the growth in suspension cultures, and in the leaf tissues exposed to different stresses. The mSOD2 gene was highly expressed in suspension-cultured cells and in the stems of intact plants. However, it was expressed at low levels in leaves and roots. During suspension cell growth, the mSOD2 transcript progressively increased during culture. Moreover, the mSOD2 gene in excised cassava leaves responded to various stresses in different ways. In particular, it was highly induced in leaf tissue by several abiotic stresses, including high temperature (37 degrees C), chilling (4 degrees C), methyl viologen (MV) exposure, and wounding treatment. These results indicate that the mSOD2 gene is involved in the antioxidative process triggered by oxidative stress induced by environmental change.
Dong, J G; Kim, W T; Yip, W K; Thompson, G A; Li, L; Bennett, A B; Yang, S F
1991-08-01
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)(+) RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3'-end was intact, it lacked a portion of sequence at the 5'-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5'-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue
2016-01-01
DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962
Definition of RNA polymerase II CoTC terminator elements in the human genome.
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J
2013-04-25
Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
De Palma, Armando; Morren, Marie-Anne; Ged, Cécile; Pouvelle, Caroline; Taïeb, Alain; Aoufouchi, Said; Sarasin, Alain
2017-09-01
We describe the characterization of Xeroderma Pigmentosum variant (XPV) in a young Caucasian patient with phototype I, who exhibited a high sensitivity to sunburn and multiple cutaneous tumors at the age of 15 years. Two novel mutations in the POLH gene, which encodes the translesion DNA polymerase η, with loss of function due to two independent exon skippings, are reported to be associated as a compound heterozygous state in the patient. Western blot analysis performed on proteins from dermal fibroblasts derived from the patient and analysis of the mutation spectrum on immunoglobulin genes produced during the somatic hypermutation process in his memory B cells, show the total absence of translesion polymerase η activity in the patient. The total lack of Polη activity, necessary to bypass in an error-free manner UVR-induced pyrimidine dimers following sun exposure, explains the early unusual clinical appearance of this patient. © 2017 Wiley Periodicals, Inc.
Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji
2009-04-01
The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.
Schermerhorn, Kelly M.; Gardner, Andrew F.
2015-01-01
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179
Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy
NASA Astrophysics Data System (ADS)
Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.
2016-03-01
We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e
Familial cleidocranial dysplasia misdiagnosed as rickets over three generations.
Franceschi, Roberto; Maines, Evelina; Fedrizzi, Michela; Piemontese, Maria Rosaria; De Bonis, Patrizia; Agarwal, Nivedita; Bellizzi, Maria; Di Palma, Annunziata
2015-10-01
Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia characterized by hypoplastic clavicles, late closure of the fontanels, dental problems and other skeletal features. CCD is caused by mutations, deletions or duplications in runt-related transcription factor 2 (RUNX2), which encodes for a protein essential for osteoblast differentiation and chondrocyte maturation. We describe three familial cases of CCD, misdiagnosed as rickets over three generations. No mutations were detected on standard DNA sequencing of RUNX2, but a novel deletion was identified on quantitative polymerase chain reaction (qPCR) and multiple ligation-dependent probe amplification (MLPA). The present cases indicate that CCD could be misdiagnosed as rickets, leading to inappropriate treatment, and confirm that mutations in RUNX2 are not able to be identified on standard DNA sequencing in all CCD patients, but can be identified on qPCR and MLPA. © 2015 Japan Pediatric Society.
Fujiwara, Mikio; Miyamoto, Shin'ichi; Iguchi, Kouta; Matsunaka, Toshihiro; Sakashita, Hiromi; Tsuruyama, Tatsuaki; Kanegane, Hirokazu; Marusawa, Hiroyuki; Nakase, Hiroshi; Chiba, Tsutomu
2009-12-01
Primary Epstein-Barr virus (EBV) infection is usually a self-limiting disease. Although it is sometimes accompanied by severe complications such as thrombocytopenia, hemolytic anemia, and splenic rupture, predominantly gastrointestinal complications are rarely reported. We studied an unusual case of primary EBV infection associated with severe hemorrhagic gastroenteritis. EBV infection was confirmed in the biopsy specimen by demonstrating the presence of EBV DNA by polymerase chain reaction, and of EBV-encoded small RNA (EBER)-positive cells by in-situ hybridization. Our patient was suspected of having primary EBV infection from the serological findings-EBV-viral capsid antigen IgM (+) and EBV nuclear antigen (-)-but he did not show typical clinical features of infectious mononucleosis such as lymph node swelling, pharyngitis, liver dysfunction, and splenomegaly. A definite diagnosis of primary EBV infection was made using biopsy specimens by demonstrating the presence of EBV DNA and EBER-positive cells.
Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.
2016-01-01
Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524
Functional Architecture of T7 RNA Polymerase Transcription Complexes
Nayak, Dhananjaya; Guo, Qing; Sousa, Rui
2007-01-01
Summary T7 RNA polymerase is the best-characterized member of a widespread family of single-subunit RNA polymerases. Crystal structures of T7 RNA polymerase initiation and elongation complexes have provided a wealth of detailed information on RNA polymerase interactions with the promoter and transcription bubble, but the absence of DNA downstream of the melted region of the template in the initiation complex structure, and the absence of DNA upstream of the transcription bubble in the elongation complex structure means that our picture of the functional architecture of T7 RNA polymerase transcription complexes remains incomplete. Here we use the site-specifically tethered chemical nucleases and functional characterization of directed T7 RNAP mutants to both reveal the architecture of the duplex DNA that flanks the transcription bubble in the T7 RNAP initiation and elongation complexes, and to define the function of the interactions made by these duplex elements. We find that downstream duplex interactions made with a cluster of lysines (K711/K713/K714) are present during both elongation and initiation where they contribute to stabilizing a bend in the downstream DNA that is important for promoter opening. The upstream DNA in the elongation complex is also found to be sharply bent at the upstream edge of the transcription bubble, thereby allowing formation of upstream duplex:polymerase interactions that contribute to elongation complex stability. PMID:17580086
Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells.
Yoshimura, M; Cooper, D M
1992-01-01
A cDNA that encodes an adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] has been cloned from NCB-20 cells, in which adenylyl cyclase activity is inhibited by Ca2+ at physiological concentrations. The cDNA clone (5.8 kilobases) was isolated by polymerase chain reaction (PCR) using degenerate primers designed by comparison of three adenylyl cyclase sequences (types I, II, and III) and subsequent library screening. Northern analysis revealed expression of mRNA (6.1 kilobases) corresponding to this cDNA in cardiac tissue, which is a prominent source of Ca(2+)-inhibitable adenylyl cyclase. The clone encodes a protein of 1165 amino acids, whose hydrophilicity profile was very similar to those of other mammalian adenylyl cyclases that have recently been cloned. A noticeable difference between this protein and other adenylyl cyclases was a lengthy aminoterminal region before the first transmembrane span. Transient expression of this cDNA in the human embryonic kidney cell line 293 revealed a 3-fold increase in cAMP production in response to forskolin compared with control transfected cells. In purified plasma membranes from transfected cells, increased adenylyl cyclase activity was also detected, which was susceptible to inhibition by submicromolar Ca2+. Thus, this adenylyl cyclase seems to represent the Ca(2+)-inhibitable form that is encountered in NCB-20 cells, cardiac tissue, and elsewhere. Its identification should permit a determination of the structural features that determine the mode of regulation of adenylyl cyclase by Ca2+. Images PMID:1379717
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.
DNA of a Human Hepatitis B Virus Candidate
Robinson, William S.; Clayton, David A.; Greenman, Richard L.
1974-01-01
Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 μm in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-μm circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 μm, in addition to the 0.78-μm circles were found. These results suggest that the 0.78-μm circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 ± 0.09 μm which would correspond to a molecular weight of around 1.6 × 106. The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%. Images PMID:4847328
deWit, D; Wootton, M; Allan, B; Steyn, L
1993-01-01
A simple method for the production of internal control DNA for two well-established Mycobacterium tuberculosis polymerase chain reaction assays is described. The internal controls were produced from Mycobacterium kansasii DNA with the same primers but at a lower annealing temperature than that used in the standard assays. In both assays, therefore, the internal control DNA has the same primer-binding sequences at the target DNA. One-microgram quantities of internal control DNA which was not contaminated with target DNA could easily be produced by this method. The inclusion of the internal control in the reaction mixture did not affect the efficiency of amplification of the target DNA. The method is simple and rapid and should be adaptable to most M. tuberculosis polymerase chain reaction assays. Images PMID:8370752
1988-10-10
identify by block number) FIELD GROUP S OUP - Archaebacteria , Halobacteria, Proteins Nucleic Acids, 08 RNA Polymerase-DNA Interactionsi R soimal operons...objectives of our program are to isolate and characterize a fully active DNA dependent RNA polymerase from the extremely halophilic archaebacteria from...Woese and his colleagues to suggest that all living organisms can be classified into three phylogenetic kingdoms : the eukaryotes, the eubacterla and
Techniques used to study the DNA polymerase reaction pathway
Joyce, Catherine M.
2009-01-01
Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596
d'Ambrosio, E; Furano, A V
1987-01-01
An approximately equal to 150-bp GC-rich (approximately equal to 60%) region is at the right end of rat long interspersed repeated DNA (LINE or L1Rn) family members. We report here that one of the DNA strands from this region contains several non-palindromic sites that strongly arrest DNA synthesis in vitro by the prokaryotic Klenow and T4 DNA polymerases, the eukaryotic alpha polymerase, and AMV reverse transcriptase. The strongest arrest sites are G-rich (approximately equal to 70%) homopurine stretches of 18 or more residues. Shorter homopurine stretches (12 residues or fewer) did not arrest DNA synthesis even if the stretch contains 11/12 G residues. Arrest of the prokaryotic polymerases was not affected by their respective single strand binding proteins or polymerase accessory proteins. The region of duplex DNA which contains DNA synthesis arrest sites reacts with bromoacetaldehyde when present in negatively supercoiled molecules. By contrast, homopurine stretches that do not arrest DNA synthesis do not react with bromoacetaldehyde. The presence of bromoacetaldehyde-reactive bases in a G-rich homopurine-containing duplex under torsional stress is thought to be caused by base stacking in the homopurine strand. Therefore, we suggest that base-stacked regions of the template arrest DNA synthesis. Images PMID:2436148
Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).
Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli
2018-02-26
Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.
Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C.M.; Jansen, Jacob G.; Hogenbirk, Marc A.; de Wind, Niels; Jacobs, Heinz
2015-01-01
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. PMID:25505145
Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis
Suo, Zucai
2014-01-01
Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been done to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer (FRET) to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550
Boehm, Elizabeth M.; Powers, Kyle T.; Kondratick, Christine M.; Spies, Maria; Houtman, Jon C. D.; Washington, M. Todd
2016-01-01
Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed. PMID:26903512
NASA Astrophysics Data System (ADS)
Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich
2015-07-01
The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.
Measuring ribonucleotide incorporation into DNA in vitro and in vivo.
Clausen, Anders R; Williams, Jessica S; Kunkel, Thomas A
2015-01-01
Ribonucleotides are incorporated into genomes by DNA polymerases, they can be removed, and if not removed, they can have deleterious and beneficial consequences. Here, we describe an assay to quantify stable ribonucleotide incorporation by DNA polymerases in vitro, and an assay to probe for ribonucleotides in each of the two DNA strands of the yeast nuclear genome.
Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H
2011-03-01
Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.
Akopiants, Konstantin; Zhou, Rui-Zhe; Mohapatra, Susovan; Valerie, Kristoffer; Lees-Miller, Susan P; Lee, Kyung-Jong; Chen, David J; Revy, Patrick; de Villartay, Jean-Pierre; Povirk, Lawrence F
2009-07-01
XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.
Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.
Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K
2015-01-01
To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.
Bjedov, Ivana; Dasgupta, Chitralekha Nag; Slade, Dea; Le Blastier, Sophie; Selva, Marjorie; Matic, Ivan
2007-01-01
Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polκ, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment. PMID:17483416
Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.
Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K
2017-01-01
Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.
The replisome uses mRNA as a primer after colliding with RNA polymerase.
Pomerantz, Richard T; O'Donnell, Mike
2008-12-11
Replication forks are impeded by DNA damage and protein-nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, K.H.; /Ohio State U.; Niebuhr, M.
2009-04-30
We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less
Zahurancik, Walter J.; Klein, Seth J.; Suo, Zucai
2014-01-01
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation. PMID:25414327
Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente
2001-01-01
We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814
Wu, Eugene Y.; Beese, Lorena S.
2011-01-01
To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established “open” and “closed” states. In this “ajar” conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation. PMID:21454515
Mechanism for priming DNA synthesis by yeast DNA Polymerase α
Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca
2013-01-01
The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase.
Takahashi, Shuntaro; Brazier, John A; Sugimoto, Naoki
2017-09-05
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.
Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase
Takahashi, Shuntaro; Brazier, John A.; Sugimoto, Naoki
2017-01-01
Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases. PMID:28827350
Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.
2009-01-01
Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079
Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
Backbone assignment of the little finger domain of a Y-family DNA polymerase.
Ma, Dejian; Fowler, Jason D; Suo, Zucai
2011-10-01
Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.
Donigan, Katherine A.; McLenigan, Mary P.; Yang, Wei; Goodman, Myron F.; Woodgate, Roger
2014-01-01
Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations. PMID:24532793
Siebler, Hollie M.; Lada, Artem G.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Pavlov, Youri I.
2014-01-01
Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. Mechanisms of TLS are lesion- and species-specific, with a prominent role of specialized DNA polymerases with relaxed active sites. After nucleotide(s) are incorporated across from the altered base(s), the aberrant primer termini are typically extended by DNA polymerase ζ (pol ζ). As a result, pol ζ is responsible for most DNA damage-induced mutations. The mechanisms of sequential DNA polymerase switches in vivo remain unclear. The major replicative DNA polymerase δ (pol δ) shares two accessory subunits, called Pol31/Pol32 in yeast, with pol ζ. Inclusion of Pol31/Pol32 in the pol δ/pol ζ holoenzymes requires a [4Fe–4S] cluster in C-termini of the catalytic subunits. Disruption of this cluster in Pol ζ or deletion of POL32 attenuates induced mutagenesis. Here we describe a novel mutation affecting the catalytic subunit of pol ζ, rev3ΔC, which provides insight into the regulation of pol switches. Strains with Rev3ΔC, lacking the entire C-terminal domain and therefore the platform for Pol31/Pol32 binding, are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests an additional role of Pol32 in TLS, beyond being a pol ζ subunit, related to pol δ. In search for members of this regulatory pathway, we examined the effects of Maintenance of Genome Stability 1 (Mgs1) protein on mutagenesis in the absence of Rev3–Pol31/Pol32 interaction. Mgs1 may compete with Pol32 for binding to PCNA. Mgs1 overproduction suppresses induced mutagenesis, but had no effect on UV-mutagenesis in the rev3ΔC strain, suggesting that Mgs1 exerts its inhibitory effect by acting specifically on Pol32 bound to pol ζ. The evidence for differential regulation of Pol32 in pol δ and pol ζ emphasizes the complexity of polymerase switches. PMID:24819597
Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong
2016-01-01
DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288
Optimization and evaluation of single-cell whole-genome multiple displacement amplification.
Spits, C; Le Caignec, C; De Rycke, M; Van Haute, L; Van Steirteghem, A; Liebaers, I; Sermon, K
2006-05-01
The scarcity of genomic DNA can be a limiting factor in some fields of genetic research. One of the methods developed to overcome this difficulty is whole genome amplification (WGA). Recently, multiple displacement amplification (MDA) has proved very efficient in the WGA of small DNA samples and pools of cells, the reaction being catalyzed by the phi29 or the Bst DNA polymerases. The aim of the present study was to develop a reliable, efficient, and fast protocol for MDA at the single-cell level. We first compared the efficiency of phi29 and Bst polymerases on DNA samples and single cells. The phi29 polymerase generated accurately, in a short time and from a single cell, sufficient DNA for a large set of tests, whereas the Bst enzyme showed a low efficiency and a high error rate. A single-cell protocol was optimized using the phi29 polymerase and was evaluated on 60 single cells; the DNA obtained DNA was assessed by 22 locus-specific PCRs. This new protocol can be useful for many applications involving minute quantities of starting material, such as forensic DNA analysis, prenatal and preimplantation genetic diagnosis, or cancer research. (c) 2006 Wiley-Liss, Inc.
Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P
2012-12-01
Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ren, Zhong
2016-09-06
DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Spiering, Michelle M.; Hanoian, Philip; Gannavaram, Swathi; Benkovic, Stephen J.
2017-01-01
The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior—that is, the signaling mechanism—have not been definitively identified. We examined the role of RNA primer–primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer–primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer–primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer–primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes. PMID:28507156
Spiering, Michelle M; Hanoian, Philip; Gannavaram, Swathi; Benkovic, Stephen J
2017-05-30
The opposite strand polarity of duplex DNA necessitates that the leading strand is replicated continuously whereas the lagging strand is replicated in discrete segments known as Okazaki fragments. The lagging-strand polymerase sometimes recycles to begin the synthesis of a new Okazaki fragment before finishing the previous fragment, creating a gap between the Okazaki fragments. The mechanism and signal that initiate this behavior-that is, the signaling mechanism-have not been definitively identified. We examined the role of RNA primer-primase complexes left on the lagging ssDNA from primer synthesis in initiating early lagging-strand polymerase recycling. We show for the T4 bacteriophage DNA replication system that primer-primase complexes have a residence time similar to the timescale of Okazaki fragment synthesis and the ability to block a holoenzyme synthesizing DNA and stimulate the dissociation of the holoenzyme to trigger polymerase recycling. The collision with primer-primase complexes triggering the early termination of Okazaki fragment synthesis has distinct advantages over those previously proposed because this signal requires no transmission to the lagging-strand polymerase through protein or DNA interactions, the mechanism for rapid dissociation of the holoenzyme is always collision, and no unique characteristics need to be assigned to either identical polymerase in the replisome. We have modeled repeated cycles of Okazaki fragment initiation using a collision with a completed Okazaki fragment or primer-primase complexes as the recycling mechanism. The results reproduce experimental data, providing insights into events related to Okazaki fragment initiation and the overall functioning of DNA replisomes.
Suntrarachun, S; Pakmanee, N; Tirawatnapong, T; Chanhome, L; Sitprija, V
2001-07-01
A PCR technique was used in this study to identify and distinguish monocellate cobra snake bites using snake venoms and swab specimens from snake bite-sites in mice from bites by other common Thai snakes. The sequences of nucleotide primers were selected for the cobrotoxin-encoding gene from the Chinese cobra (Naja atra) since the sequences of monocellate cobra (Naja kaouthia) venom are still unknown. However, the 113-bp fragment of cDNA of the cobrotoxin-encoding gene was detected in the monocellate cobra venom using RT-PCR. This gene was not found in the venoms of Ophiophagus hannah (king cobra), Bungarus fasciatus (banded krait), Daboia russelii siamensis (Siamese Russell's Viper, and Calloselasma rhodostoma (Malayan pit viper). Moreover, direct PCR could detect a 665-bp fragment of the cobrotoxin-encoding gene in the monocellate cobra venom but not the other snake venoms. Likewise, this gene was only observed in swab specimens from cobra snake bite-sites in mice. This is the first report demonstrating the ability of PCR to detect the cobrotoxin-encoding gene from snake venoms and swab specimens. Further studies are required for identification of this and other snakes from the bite-sites on human skin.
Taguchi, Takahiko; Kurata, Sumiko; Ohashi, Mochihiko
2002-09-01
Putrescine biosynthesis is elevated before DNA replication, and a stimulation of DNA synthesis by 20 mM putrescine has been found using an in vitro DNA synthesizing system. Furthermore, this stimulation of DNA synthesis by putrescine involves a particular factor (factor PA). This factor PA stimulates DNA polymerases alpha, beta, and gamma, and is present in nuclei and mitochondria but not in cytoplasm. Factor PA loses about 80% of its activity by heating at 45 degrees C for 15 min or by hydrolysis with 100 mg ml(-1) Enzygel trypsin. These properties indicate that factor PA is a protein. Its size is estimated to be about 2.1 S. DNA synthesis in nuclear and mitochondrial DNA polymerase extracts from tumour tissues and host livers of tumour-bearing rats are not stimulated by 20 mM putrescine. However, the addition of excess factor PA to DNA synthesizing systems using DNA polymerase extracts from proliferative tissues again results in a stimulation of DNA synthesis by exogenous putrescine. These findings indicate that the stimulatory effect of DNA synthesis in vitro by exogenous putrescine is controlled by the ratio between factor PA and endogenously synthesized putrescine in proliferative tissues or that sent by the bloodstream from proliferative tissues. These results suggest that a non-stimulatory effect of putrescine on DNA synthesis may be diagnostic in tumour-bearing patients. Copyright 2002 John Wiley & Sons, Ltd.
Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*
Su, Yan; Egli, Martin; Guengerich, F. Peter
2016-01-01
Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629
Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5′-flaps
Koc, Katrina N.; Stodola, Joseph L.; Burgers, Peter M.; Galletto, Roberto
2015-01-01
The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo− to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities. PMID:25813050
Structural basis for the D-stereoselectivity of human DNA polymerase β
Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.
2017-01-01
Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499
Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai
2010-01-01
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705
Kuschal, Christiane; Botta, Elena; Orioli, Donata; Digiovanna, John J.; Seneca, Sara; Keymolen, Kathelijn; Tamura, Deborah; Heller, Elizabeth; Khan, Sikandar G.; Caligiuri, Giuseppina; Lanzafame, Manuela; Nardo, Tiziana; Ricotti, Roberta; Peverali, Fiorenzo A.; Stephens, Robert; Zhao, Yongmei; Lehmann, Alan R.; Baranello, Laura; Levens, David; Kraemer, Kenneth H.; Stefanini, Miria
2016-01-01
The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP. PMID:26996949
Jevtuševskaja, Jekaterina; Krõlov, Katrin; Tulp, Indrek; Langel, Ülo
2017-04-01
The use of rapid amplification methods to detect pathogens in biological samples is mainly limited by the amount of pathogens present in the sample and the presence of inhibiting substances. Inhibitors can affect the amplification efficiency by either binding to the polymerase, interacting with the DNA, or interacting with the polymerase during primer extension. Amplification is performed using DNA polymerase enzymes and even small changes in their activity can influence the sensitivity and robustness of molecular assays Methods: The main purpose of this research was to examine which compounds present in urine inhibit polymerases with strand displacement activity. To quantify the inhibition, we employed quantitative loop-mediated isothermal amplification Results: The authors found that the presence of BSA, Mg 2+, and urea at physiologically relevant concentrations, as well as acidic or alkaline conditions did not affect the activity of any of the tested polymerases. However, addition of salt significantly affected the activity of the tested polymerases. These findings may aid in the development of more sensitive, robust, cost effective isothermal amplification based molecular assays suitable for both point-of-care testing and on-site screening of pathogens directly from unprocessed urine which avoid the need for long and tedious DNA purification steps prior to amplification.
Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H
2017-08-15
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
Transient expression and activity of human DNA polymerase iota in loach embryos.
Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E
2012-02-01
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C M; Jansen, Jacob G; Hogenbirk, Marc A; de Wind, Niels; Jacobs, Heinz
2015-01-01
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nanoparticle based bio-bar code technology for trace analysis of aflatoxin B1 in Chinese herbs.
Yu, Yu-Yan; Chen, Yuan-Yuan; Gao, Xuan; Liu, Yuan-Yuan; Zhang, Hong-Yan; Wang, Tong-Ying
2018-04-01
A novel and sensitive assay for aflatoxin B1 (AFB1) detection has been developed by using bio-bar code assay (BCA). The method that relies on polyclonal antibodies encoded with DNA modified gold nanoparticle (NP) and monoclonal antibodies modified magnetic microparticle (MMP), and subsequent detection of amplified target in the form of bio-bar code using a fluorescent quantitative polymerase chain reaction (FQ-PCR) detection method. First, NP probes encoded with DNA that was unique to AFB1, MMP probes with monoclonal antibodies that bind AFB1 specifically were prepared. Then, the MMP-AFB1-NP sandwich compounds were acquired, dehybridization of the oligonucleotides on the nanoparticle surface allows the determination of the presence of AFB1 by identifying the oligonucleotide sequence released from the NP through FQ-PCR detection. The bio-bar code techniques system for detecting AFB1 was established, and the sensitivity limit was about 10 -8 ng/mL, comparable ELISA assays for detecting the same target, it showed that we can detect AFB1 at low attomolar levels with the bio-bar-code amplification approach. This is also the first demonstration of a bio-bar code type assay for the detection of AFB1 in Chinese herbs. Copyright © 2017. Published by Elsevier B.V.
Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A
1992-06-01
Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.
Lv, LingLing; Duan, Jun; Xie, JiangHui; Wei, ChangBin; Liu, YuGe; Liu, ShengHui; Sun, GuangMing
2012-09-01
FLOWERING LOCUS T (FT)-like genes are crucial regulators of flowering in angiosperms. A homolog of FT, designated as AcFT (GenBank ID: HQ343233), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcFT is 915 bp in length and contains an ORF of 534 bp, which encodes a protein of 177 aa. Molecular weight was 19.9 kDa and isoelectric point was 6.96. The deduced protein sequence of AcFT was 84% and 82% identical to homologs encoded by CgFT in Cymbidium goeringii and OgFT in Oncidium Gower Ramsey respectively. Quantitative real-time PCR (qRT-PCR) analyses showed that the expression of AcFT was high in flesh and none in leaves. qRT-PCR analyses in different stages indicated that the expression of AcFT reached the highest level on 40 d after flower inducing, when the multiple fruit and floral organs were forming. The 35S::AcFT transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W
Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.
Gene encoding the collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Ruiz, E.; Armesilla, A.L.; Sanchez-Madrid, F.
The human CD36 is a member of a gene family of structurally related glycoproteins and functions as a receptor for collagen type I and thrombospondin. CD36 also binds to red blood cells infected with the human malaria parasite Plasmodium falciparum. In the present study, the CD36 gene was assigned to chromosome 7 by using the polymerase chain reaction with DNA from human-hamster somatic cell hybrids. Furthermore, the use of a CD36 genomic probe has allowed the localization of the CD36 locus to the 7q11.2 band by fluorescence in situ hybridization coupled with GTG-banding. 14 refs., 2 figs.
Mizuno, Kouichi; Okuda, Akira; Kato, Misako; Yoneyama, Naho; Tanaka, Hiromi; Ashihara, Hiroshi; Fujimura, Tatsuhito
2003-01-16
In coffee and tea plants, caffeine is synthesized from xanthosine via a pathway that includes three methylation steps. We report the isolation of a bifunctional coffee caffeine synthase (CCS1) clone from coffee endosperm by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique using previously reported sequence information for theobromine synthases (CTSs). The predicted amino acid sequences of CCS1 are more than 80% identical to CTSs and are about 40% similar to those of tea caffeine synthase (TCS1). Interestingly, CCS1 has dual methylation activity like tea TCS1.
Regulation and Modulation of Human DNA Polymerase δ Activity and Function
Wang, Xiaoxiao; Zhang, Sufang; Zhang, Zhongtao; Lee, Ernest Y. C.
2017-01-01
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4). PMID:28737709
DNA encoding a DNA repair protein
Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick
2006-08-15
An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
Aldridge, Matthew; Facey, Paul; Francis, Lewis; Bayliss, Sion; Del Sol, Ricardo; Dyson, Paul
2013-01-01
Antibiotic-producing Streptomyces are complex bacteria that remodel global transcription patterns and their nucleoids during development. Here, we describe a novel developmentally regulated nucleoid-associated protein, DdbA, of the genus that consists of an N-terminal DNA-binding histone H1-like domain and a C-terminal DksA-like domain that can potentially modulate RNA polymerase activity in conjunction with ppGpp. Owing to its N-terminal domain, the protein can efficiently bind and condense DNA in vitro. Loss of function of this DNA-binding protein results in changes in both DNA condensation during development and the ability to adjust DNA supercoiling in response to osmotic stress. Initial analysis of the DksA-like activity of DdbA indicates that overexpression of the protein suppresses a conditional deficiency in antibiotic production of relA mutants that are unable to synthesise ppGpp, just as DksA overexpression in Escherichia coli can suppress ppGpp0 phenotypes. The null mutant is also sensitive to oxidative stress owing to impaired upregulation of transcription of sigR, encoding an alternative sigma factor. Consequently, we propose this bifunctional histone-like protein as a candidate that could structurally couple changes in DNA conformation and transcription during the streptomycete life-cycle and in response to stress. PMID:23525459
CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.
Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo
2017-06-25
Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.
Zhao, A; Guo, A; Liu, Z; Pape, L
1997-01-01
The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645
Palin, Eino JH; Lesonen, Annamari; Farr, Carol L; Euro, Liliya; Suomalainen, Anu; Kaguni, Laurie S
2010-01-01
Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings. PMID:20153822
Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.
Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong
2018-06-14
DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
Leis, Jonathan P.; Hurwitz, Jerard
1972-01-01
The role of ribonucleic acid (RNA) in deoxyribonucleic acid (DNA) synthesis with the purified DNA polymerase from the avian myeloblastosis virus has been studied. The polymerase catalyzes the synthesis of DNA in the presence of four deoxynucleoside triphosphates, Mg2+, and a variety of RNA templates including those isolated from avian myeloblastosis, Rous sarcoma, and Rauscher leukemia viruses; phages f2, MS2, and Qβ; and synthetic homopolymers such as polyadenylate·polyuridylic acid. The enzyme does not initiate the synthesis of new chains but incorporates deoxynucleotides at 3′ hydroxyl ends of primer strands. The product is an RNA·DNA hybrid in which the two polynucleotide components are covalently linked. Free DNA has not been detected among the products formed with the purified enzyme in vitro. The DNA synthesized with avian myeloblastosis virus RNA after alkaline hydrolysis has a sedimentation coefficient of 6 to 7S. PMID:4333539
Mechanism of Microhomology-Mediated End-Joining Promoted by Human DNA Polymerase Theta
Kent, Tatiana; Chandramouly, Gurushankar; McDevitt, Shane Michael; Ozdemir, Ahmet Y.; Pomerantz, Richard T.
2014-01-01
Microhomology-mediated end-joining (MMEJ) is an error-prone alternative double-strand break repair pathway that utilizes sequence microhomology to recombine broken DNA. Although MMEJ is implicated in cancer development, the mechanism of this pathway is unknown. We demonstrate that purified human DNA polymerase θ (Polθ) performs MMEJ of DNA containing 3’ single-strand DNA overhangs with two or more base-pairs of homology, including DNA modeled after telomeres, and show that MMEJ is dependent on Polθ in human cells. Our data support a mechanism whereby Polθ facilitates end-joining and microhomology annealing then utilizes the opposing overhang as a template in trans which stabilizes the DNA synapse. Polθ exhibits a preference for DNA containing a 5’-terminal phosphate, similar to polymerases involved in non-homologous end-joining. Lastly, we identify a conserved loop domain that is essential for MMEJ and higher-order structures of Polθ which likely promote DNA synapse formation. PMID:25643323
Wang, Lijiang; Liu, Qingjun; Hu, Zhaoying; Zhang, Yuanfan; Wu, Chunsheng; Yang, Mo; Wang, Ping
2009-05-15
A novel biosensor based on single-stranded DNA (ssDNA) probe functionalized aluminum anodized oxide (AAO) nanopore membranes was demonstrated for Escherichia coli O157:H7 DNA detection. An original and dynamic polymerase-extending (PE) DNA hybridization procedure is proposed, where hybridization happens in the existence of Taq DNA polymerase and dNTPs under controlled reaction temperature. The probe strand would be extended as long as the target DNA strand, then the capability to block the ionic flow in the pores has been prominently enhanced by the double strand complex. We have investigated the variation of ionic conductivity during the fabrication of the film and the hybridization using cyclic voltammetry and impedance spectroscopy. The present approach provides low detection limit for DNA (a few hundreds of pmol), rapid label-free and easy-to-use bacteria detection, which holds the potential for future use in various ss-DNA analyses by integrated into a self-contained biochip.
Characteristics of Deoxyribonucleic Acid Polymerase Isolated from Spores of Rhizopus stolonifer1
Gong, Cheng-Shung; Dunkle, Larry D.; Van Etten, James L.
1973-01-01
Deoxyribonucleic acid (DNA)-dependent DNA polymerase was purified several hundredfold from germinated and ungerminated spores of the fungus Rhizopus stolonifer. The partially purified enzymes from both spore stages exhibited identical characteristics; incorporation of [3H]deoxythymidine monophosphate into DNA required Mg2+, DNA, a reducing agent, and the simultaneous presence of deoxyguanosine triphosphate, deoxycytidine triphosphate, and deoxyadenosine triphosphate. Heat-denatured and activated DNAs were better templates than were native DNAs. The buoyant density of the radioactive product of the reaction was similar to that of the template DNA. The enzyme is probably composed of a single polypeptide chain with an S value of 5.12 and an estimated molecular weight of 70,000 to 75,000. During the early stages of purification, the enzyme fraction from ungerminated spores required exogenous DNA for maximum activity, whereas the corresponding enzyme fraction from germinated spores did not require added DNA. Apparently DNA polymerase from germinated spores was more tightly bound to endogenous DNA than was the enzyme from ungerminated spores. PMID:4728271
Katoh, Hiroshi; Miyata, Shin-ichi; Inoue, Hiromitsu; Iwanami, Toru
2014-01-01
Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. americanus’, and ‘Ca. L. africanus’. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol), in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative ‘Ca. L. asiaticus’ Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from ‘Ca. L. asiaticus’-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other ‘Ca. L. asiaticus’ strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region. PMID:25180586
Kinetic Analysis of the Bypass of a Bulky DNA Lesion Catalyzed by Human Y-family DNA Polymerases
Sherrer, Shanen M.; Sanman, Laura E.; Xia, Cynthia X.; Bolin, Eric R.; Malik, Chanchal K.; Efthimiopoulos, Georgia; Basu, Ashis K.; Suo, Zucai
2012-01-01
1-Nitropyrene (1-NP), a mutagen and potential carcinogen, is the most abundant nitro polyaromatic hydrocarbon in diesel exhaust, which reacts with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). If not repaired, this DNA lesion is presumably bypassed in vivo by any of human Y-family DNA polymerases kappa (hPolκ), iota (hPolτ), eta (hPolη), and Rev1 (hRev1). Our running start assays demonstrated that each of these enzymes was indeed capable of traversing a site-specifically placed dGAP on a synthetic DNA template but hRev1 was stopped after lesion bypass. The time required to bypass 50% of the dGAP sites (t50bypass ) encountered by hPolη, hPolκ and hPolτ was determined to be 2.5 s, 4.1 s, and 106.5 s, respectively. The efficiency order of catalyzing translesion synthesis of dGAP (hPolη > hPolκ > hPolτ >> hRev1) is the same as the order for these human Y-family enzymes to elongate undamaged DNA. Although hPolη bypassed dGAP efficiently, replication by both hPolκ and hPolτ was strongly stalled at the lesion site and at a site immediately downstream from dGAP. By employing pre-steady state kinetic methods, a kinetic basis was established for polymerase pausing at these DNA template sites. Besides efficiency of bypass, the fidelity of those low-fidelity polymerases at these pause sites was also significantly decreased. Thus, if the translesion DNA synthesis of dGAP in vivo is catalyzed by a human Y-family DNA polymerase, e.g. hPolη, the process is certainly mutagenic. PMID:22324639
2013-01-01
Background Mitochondrial DNA (mtDNA) is present in multiple copies per cell and undergoes dramatic amplification during development. The impacts of mtDNA damage incurred early in development are not well understood, especially in the case of types of mtDNA damage that are irreparable, such as ultraviolet C radiation (UVC)-induced photodimers. Methods We exposed first larval stage nematodes to UVC using a protocol that results in accumulated mtDNA damage but permits nuclear DNA (nDNA) repair. We then measured the transcriptional response, as well as oxygen consumption, ATP levels, and mtDNA copy number through adulthood. Results Although the mtDNA damage persisted to the fourth larval stage, we observed only a relatively minor ~40% decrease in mtDNA copy number. Transcriptomic analysis suggested an inhibition of aerobic metabolism and developmental processes; mRNA levels for mtDNA-encoded genes were reduced ~50% at 3 hours post-treatment, but recovered and, in some cases, were upregulated at 24 and 48 hours post-exposure. The mtDNA polymerase γ was also induced ~8-fold at 48 hours post-exposure. Moreover, ATP levels and oxygen consumption were reduced in response to UVC exposure, with marked reductions of ~50% at the later larval stages. Conclusions These results support the hypothesis that early life exposure to mitochondrial genotoxicants could result in mitochondrial dysfunction at later stages of life, thereby highlighting the potential health hazards of time-delayed effects of these genotoxicants in the environment. PMID:23374645
Gowda, A S Prakasha; Spratt, Thomas E
2016-03-21
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.
Floriano, B; Herrero, A; Flores, E
1994-01-01
A cloned DNA fragment from Anabaena sp. strain PCC 7120 that complements an arginine auxotrophic mutant from the same organism was found to include an open reading frame encoding a 427-residue polypeptide that is homologous to N-acetylornithine aminotransferase from Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. The gene encoding N-acetylornithine aminotransferase in bacteria has been named argD. The expression of Anabaena sp. strain PCC 7120 argD, as well as of argC, was analyzed at the mRNA level. Both genes were transcribed as monocistronic mRNAs, and their expression was not affected by exogenously added arginine. Primer extension analysis identified transcription start points for both genes which were preceded by sequences similar to that of the E. coli RNA polymerase sigma 70 consensus promoter. A second transcription start point for the argD gene that is not preceded by a sigma 70 consensus promoter was detected in dinitrogen-grown cultures. Images PMID:7929012
A murC gene from coryneform bacteria.
Wachi, M; Wijayarathna, C D; Teraoka, H; Nagai, K
1999-02-01
The upstream flanking region of the ftsQ and ftsZ genes of Brevibacterium flavum MJ233, which belongs to the coryneform bacteria, was amplified by the inverse polymerase chain reaction method and cloned in Escherichia coli. Complementation analysis of E. coli mutant with a defective cell-wall synthesis mechanism with the cloned fragment and its DNA sequencing indicated the presence of the murC gene, encoding UDP-N-acetylmuramate:L-alanine ligase involved in peptidoglycan synthesis, just upstream from the ftsQ gene. The B. flavum murC gene could encode a protein of 486 amino acid residues with a calculated molecular mass of 51 198 Da. A 50-kDa protein was synthesized by the B. flavum murC gene in an in vitro transcription/translation system using E. coli S30 lysate. These results indicate that the genes responsible for cell-wall synthesis and cell division are located as a cluster in B. flavum similar to the E. coli mra region.
RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure
Pannunzio, Nicholas R.; Lieber, Michael R.
2016-01-01
Summary The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription, but arrived at different conclusions as to which is more detrimental and why. The issue turns on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases? PMID:27153532
Gu, Shoujin; Li, Wenjuan; Zhang, Hongtai; Fleming, Joy; Yang, Weiqiang; Wang, Shihua; Wei, Wenjing; Zhou, Jie; Zhu, Guofeng; Deng, Jiaoyu; Hou, Jian; Zhou, Ying; Lin, Shiqiang; Zhang, Xian-En; Bi, Lijun
2016-01-01
DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb. PMID:26822057
Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA
NASA Astrophysics Data System (ADS)
Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.
2016-06-01
The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.
Conformational transitions in DNA polymerase I revealed by single-molecule FRET
Santoso, Yusdi; Joyce, Catherine M.; Potapova, Olga; Le Reste, Ludovic; Hohlbein, Johannes; Torella, Joseph P.; Grindley, Nigel D. F.; Kapanidis, Achillefs N.
2010-01-01
The remarkable fidelity of most DNA polymerases depends on a series of early steps in the reaction pathway which allow the selection of the correct nucleotide substrate, while excluding all incorrect ones, before the enzyme is committed to the chemical step of nucleotide incorporation. The conformational transitions that are involved in these early steps are detectable with a variety of fluorescence assays and include the fingers-closing transition that has been characterized in structural studies. Using DNA polymerase I (Klenow fragment) labeled with both donor and acceptor fluorophores, we have employed single-molecule fluorescence resonance energy transfer to study the polymerase conformational transitions that precede nucleotide addition. Our experiments clearly distinguish the open and closed conformations that predominate in Pol-DNA and Pol-DNA-dNTP complexes, respectively. By contrast, the unliganded polymerase shows a broad distribution of FRET values, indicating a high degree of conformational flexibility in the protein in the absence of its substrates; such flexibility was not anticipated on the basis of the available crystallographic structures. Real-time observation of conformational dynamics showed that most of the unliganded polymerase molecules sample the open and closed conformations in the millisecond timescale. Ternary complexes formed in the presence of mismatched dNTPs or complementary ribonucleotides show unique FRET species, which we suggest are relevant to kinetic checkpoints that discriminate against these incorrect substrates. PMID:20080740
Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi
2016-01-01
DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. PMID:26400504
Brown, K B; Nelson, N F; Brown, D G
1975-01-01
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro. Images PLATE 1 PMID:1218090
Brown, K B; Nelson, N F; Brown, D G
1975-12-01
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro.
López-Rubio, José Juan; Padmanabhan, S; Lázaro, Jose María; Salas, Margarita; Murillo, Francisco José; Elías-Arnanz, Montserrat
2004-07-09
The carB operon encodes all except one of the enzymes involved in light-induced carotenogenesis in Myxococcus xanthus. Expression of its promoter (P(B)) is repressed in the dark by sequence-specific DNA binding of CarA to a palindrome (pI) located between positions -47 and -64 relative to the transcription start site. This promotes subsequent binding of CarA to additional sites that remain to be defined. CarS, produced in the light, interacts physically with CarA, abrogates CarA-DNA binding, and thereby derepresses P(B). In this study, we delineate the operator design that exists for CarA by precisely mapping out the second operator element. For this, we examined how stepwise deletions and site-directed mutagenesis in the region between the palindrome and the transcription start site affect CarA binding around P(B) in vitro and expression of P(B) in vivo. These revealed the second operator element to be an imperfect interrupted palindrome (pII) spanning positions -26 to -40. In vitro assays using purified M. xanthus RNA polymerase showed that CarA abolishes P(B)-RNA polymerase binding and runoff transcription and that both were restored by CarS, thus rationalizing the observations in vivo. CarA binding to pII (after association with pI) effectively occludes RNA polymerase from P(B) and so provides the operative mechanism for the repression of the carB operon by CarA. The bipartite operator design, whereby transcription is blocked by the low affinity CarA-pII binding and is readily restored by CarS, may have evolved to match the needs for a rapid and an effective response to light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aller, Pierre; Duclos, Stéphanie; Wallace, Susan S.
2012-06-27
Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. and Doublie S. (2007). A structural rationale for stalling of a replicative DNA polymerase atmore » the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors - including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg - influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.« less
Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi
2018-03-01
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Bernhoff, E; Gutteberg, T J; Sandvik, K; Hirsch, H H; Rinaldo, C H
2008-07-01
The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by >90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development.
Problem-Solving Test: Pyrosequencing
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2013-01-01
Terms to be familiar with before you start to solve the test: Maxam-Gilbert sequencing, Sanger sequencing, gel electrophoresis, DNA synthesis reaction, polymerase chain reaction, template, primer, DNA polymerase, deoxyribonucleoside triphosphates, orthophosphate, pyrophosphate, nucleoside monophosphates, luminescence, acid anhydride bond,…
Jeppesen, C; Nielsen, P E
1989-01-01
Employing a newly developed uranyl photofootprinting technique (Nielsen et al. (1988) FEBS Lett. 235, 122), we have analyzed the structure of the E. coli RNA polymerase deoP1 promoter open complex. The results show strong polymerase DNA backbone contacts in the -40, -10, and most notably in the +10 region. These results suggest that unwinding of the -12 to +3 region of the promoter in the open complex is mediated through polymerase DNA backbone contacts on both sides of this region. The pattern of bases that are hyperreactive towards KMnO4 or uranyl within the -12 to +3 region furthermore argues against a model in which this region is simply unwound and/or single stranded. The results indicate specific protein contacts and/or a fixed DNA conformation within the -12 to +3 region. Images PMID:2503811
Stephen, Alexa A; Leone, Angelique M; Toplon, David E; Archer, Linda L; Wellehan, James F X
2016-12-01
A juvenile female bald eagle ( Haliaeetus leucocephalus ) was presented with emaciation and proliferative periocular lesions. The eagle did not respond to supportive therapy and was euthanatized. Histopathologic examination of the skin lesions revealed plaques of marked epidermal hyperplasia parakeratosis, marked acanthosis and spongiosis, and eosinophilic intracytoplasmic inclusion bodies. Novel polymerase chain reaction (PCR) assays were done to amplify and sequence DNA polymerase and rpo147 genes. The 4b gene was also analyzed by a previously developed assay. Bayesian and maximum likelihood phylogenetic analyses of the obtained sequences found it to be poxvirus of the genus Avipoxvirus and clustered with other raptor isolates. Better phylogenetic resolution was found in rpo147 rather than the commonly used DNA polymerase. The novel consensus rpo147 PCR assay will create more accurate phylogenic trees and allow better insight into poxvirus history.
Biological Characterization of Novel Inhibitors of the Gram-Positive DNA Polymerase IIIC Enzyme
Kuhl, Alexander; Svenstrup, Niels; Ladel, Christoph; Otteneder, Michael; Binas, Annegret; Schiffer, Guido; Brands, Michael; Lampe, Thomas; Ziegelbauer, Karl; Rübsamen-Waigmann, Helga; Haebich, Dieter; Ehlert, Kerstin
2005-01-01
Novel N-3-alkylated 6-anilinouracils have been identified as potent and selective inhibitors of bacterial DNA polymerase IIIC, the enzyme essential for the replication of chromosomal DNA in gram-positive bacteria. A nonradioactive assay measuring the enzymatic activity of the DNA polymerase IIIC in gram-positive bacteria has been assembled. The 6-anilinouracils described inhibited the polymerase IIIC enzyme at concentrations in the nanomolar range in this assay and displayed good in vitro activity (according to their MICs) against staphylococci, streptococci, and enterococci. The MICs of the most potent derivatives were about 4 μg/ml for this panel of bacteria. The 50% effective dose of the best compound (6-[(3-ethyl-4-methylphenyl)amino]-3-{[1-(isoxazol-5-ylcarbonyl)piperidin-4-yl]methyl}uracil) was 10 mg/kg of body weight after intravenous application in a staphylococcal sepsis model in mice, from which in vivo pharmacokinetic data were also acquired. PMID:15728893
Jin, Zhinan; Johnson, Kenneth A.
2011-01-01
A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284
Johnstone, E M; Chaney, M O; Norris, F H; Pascual, R; Little, S P
1991-07-01
Neuritic plaque and cerebrovascular amyloid deposits have been detected in the aged monkey, dog, and polar bear and have rarely been found in aged rodents (Biochem. Biophy. Res. Commun., 12 (1984) 885-890; Proc. Natl. Acad. Sci. U.S.A., 82 (1985) 4245-4249). To determine if the primary structure of the 42-43 residue amyloid peptide is conserved in species that accumulate plaques, the region of the amyloid precursor protein (APP) cDNA that encodes the peptide region was amplified by the polymerase chain reaction and sequenced. The deduced amino acid sequence was compared to those species where amyloid accumulation has not been detected. The DNA sequences of dog, polar bear, rabbit, cow, sheep, pig and guinea pig were compared and a phylogenetic tree was generated. We conclude that the amino acid sequence of dog and polar bear and other mammals which may form amyloid plaques is conserved and the species where amyloid has not been detected (mouse, rat) may be evolutionarily a distinct group. In addition, the predicted secondary structure of mouse and rat amyloid that differs from that of amyloid bearing species is its lack of propensity to form a beta sheeted structure. Thus, a cross-species examination of the amyloid peptide may suggest what is essential for amyloid deposition.
Detecting the Lyme Disease Spirochete, Borrelia Burgdorferi, in Ticks Using Nested PCR.
Wills, Melanie K B; Kirby, Andrea M; Lloyd, Vett K
2018-02-04
Lyme disease is a serious vector-borne infection that is caused by the Borrelia burgdorferi sensu lato family of spirochetes, which are transmitted to humans through the bite of infected Ixodes ticks. The primary etiological agent in North America is Borrelia burgdorferi sensu stricto. As geographic risk regions expand, it is prudent to support robust surveillance programs that can measure tick infection rates, and communicate findings to clinicians, veterinarians, and the general public. The molecular technique of nested polymerase chain reaction (nPCR) has long been used for this purpose, and it remains a central, inexpensive, and robust approach in the detection of Borrelia in both ticks and wildlife. This article demonstrates the application of nPCR to tick DNA extracts to identify infected specimens. Two independent B. burgdorferi targets, genes encoding Flagellin B (FlaB) and Outer surface protein A (OspA), have been used extensively with this technique. The protocol involves tick collection, DNA extraction, and then an initial round of PCR to detect each of the two Borrelia-specific loci. Subsequent polymerase chain reaction (PCR) uses the product of the first reaction as a new template to generate smaller, internal amplification fragments. The nested approach improves upon both the specificity and sensitivity of conventional PCR. A tick is considered positive for the pathogen when inner amplicons from both Borrelia genes can be detected by agarose gel electrophoresis.
Tovpeko, Yanina
2014-01-01
Competence for genetic transformation in the genus Streptococcus depends on an alternative sigma factor, σX, for coordinated synthesis of 23 proteins, which together establish the X state by permitting lysis of incompetent streptococci, uptake of DNA fragments, and integration of strands of that DNA into the resident genome. Initiation of transient accumulation of high levels of σX is coordinated between cells by transcription factors linked to peptide pheromone signals. In Streptococcus pneumoniae, elevated σX is insufficient for development of full competence without coexpression of a second competence-specific protein, ComW. ComW, shared by eight species in the Streptococcus mitis and Streptococcus anginosus groups, is regulated by the same pheromone circuit that controls σX, but its role in expression of the σX regulon is unknown. Using the strong, but not absolute, dependence of transformation on comW as a selective tool, we collected 27 independent comW bypass mutations and mapped them to 10 single-base transitions, all within rpoD, encoding the primary sigma factor subunit of RNA polymerase, σA. Eight mapped to sites in rpoD region 4 that are implicated in interaction with the core β subunit, indicating that ComW may act to facilitate competition of the alternative sigma factor σX for access to core polymerase. PMID:25112479
DNA polymerase γ and disease: what we have learned from yeast
Lodi, Tiziana; Dallabona, Cristina; Nolli, Cecilia; Goffrini, Paola; Donnini, Claudia; Baruffini, Enrico
2015-01-01
Mip1 is the Saccharomyces cerevisiae DNA polymerase γ (Pol γ), which is responsible for the replication of mitochondrial DNA (mtDNA). It belongs to the family A of the DNA polymerases and it is orthologs to human POLGA. In humans, mutations in POLG(1) cause many mitochondrial pathologies, such as progressive external ophthalmoplegia (PEO), Alpers' syndrome, and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in (i) validating the pathological mutations found in human POLG and modeled in MIP1, (ii) determining the molecular defects caused by these mutations and (iii) finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol γ holoenzyme is expressed in yeast and complements the loss of Mip1. PMID:25852747
Lawler, Jessica L; Mukherjee, Purba; Coen, Donald M
2018-03-01
The catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3'-to-5' exonuclease of Pol or whether it is a separate activity, possibly acting on 5' RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3'-to-5' exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3'-to-5' exonuclease activity, and RNase H activity in vitro Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5' or 3' RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3'-to-5' exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3' or 5' terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3' RNA terminus in a 3'-to-5' direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3'-to-5' exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a member of the Herpesviridae family of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5'-to-3' RNase H activity intrinsic to this enzyme that could remove RNA primers from Okazaki fragments has been particularly controversial. In this study, we were unable to identify RNase H activity of HSV-1 DNA polymerase on RNA-DNA hybrids with 5' RNA termini. We detected RNase H activity on hybrids with 3' termini, but this was due to the 3'-to-5' exonuclease. Thus, HSV-1 is unlikely to use this method to remove RNA primers during DNA replication but may use pathways similar to those used in eukaryotic Okazaki fragment maturation. Copyright © 2018 American Society for Microbiology.
Balintová, Jana; Simonova, Anna; Białek-Pietras, Magdalena; Olejniczak, Agnieszka; Lesnikowski, Zbigniew J; Hocek, Michal
2017-11-01
5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases. Copyright © 2017 Elsevier Ltd. All rights reserved.
The p21 and PCNA partnership: a new twist for an old plot.
Prives, Carol; Gottifredi, Vanesa
2008-12-15
The contribution of error-prone DNA polymerases to the DNA damage response has been a subject of great interest in the last decade. Error-prone polymerases are required for translesion DNA synthesis (TLS), a process that involves synthesis past a DNA lesion. Under certain circumstances, TLS polymerases can achieve bypass with good efficiency and fidelity. However, they can also in some cases be mutagenic, and so negative regulators of TLS polymerases would have the important function of inhibiting their recruitment to undamaged DNA templates. Recent work from Livneh's and our groups have provided evidence regarding the role of the cyclin kinase inhibitor p21 as a negative regulator of TLS. Interestingly, both the cyclin dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) binding domains of p21 are involved in different aspects of the modulation of TLS, affecting both the interaction between PCNA and the TLS-specific pol eta as well as PCNA ubiquitination status. In line with this, p21 was shown to reduce the efficiency but increase the accuracy of TLS. Hence, in absence of DNA damage p21 may work to impede accidental loading of pol eta to undamaged DNA and avoid consequential mutagenesis. After UV irradiation, when TLS plays a decisive role, p21 is progressively degraded. This might allow gradual release of replication fork blockage by TLS polymerases. For these reasons, in higher eukaryotes p21 might represent a key regulator of the equilibrium between mutagenesis and cell survival.