Science.gov

Sample records for encoding human bradykinin

  1. Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B{sub 2} receptor

    SciTech Connect

    Jian-Xing Ma; Dan-Zhao Wang; Limei Chen

    1994-09-15

    The bradykinin B{sub 2} receptor (BDKRB2) has high affinity for the intact kinins, which mediate a wide spectrum of biological effects, including pain, inflammation, vasodilation, and smooth muscle contraction and relaxation. In the present study, the authors have cloned and sequenced the gene encoding human bradykinin B{sub 2} receptor from a human genomic library. The B{sub 2} receptor gene contains three exons separated by two introns. The first and second exons are noncoding, while the third exon contains the full-length coding region, which encodes a protein of 364 amino acids forming 7 transmembrane domains. The human B{sub 2} gene shares high sequence identity with rat and mouse B{sub 2} receptor genes and significant similarity with the gene encoding the angiotensin II type I receptor in the nucleotide sequence and exon-intron arrangement. In the 5` flanking region, a consensus TATA box and several putative transcription factor-binding sites have been identified. Genomic Southern blot analysis showed that the B{sub 2} receptor is encoded by a single-copy gene that was localized to chromosome 14q32 by in situ hybridization. In a Southern blot analysis following reverse transcription and polymerase chain reaction, the human B{sub 2} receptor was found to be expressed in most human tissues. 30 refs., 7 figs.

  2. Human bradykinin B2 receptor: Nucleotide sequence analysis and assignment to chromosome 14

    SciTech Connect

    Powell, S.J.; Slynn, G.; Thomas, C.; Hopkins, B.; Briggs, I.; Graham, A. )

    1993-02-01

    Functional cDNA clones for human bradykinin B2 receptor were isolated from uterus RNA by a polymerase chain reaction (PCR)-based method and by screening a human cosmid library with rat bradykinin B2 receptor probe. We isolated several overlapping clones from the cosmid library, each of which encodes the entire protein-coding sequence. The human bradykinin B2 receptor gene codes for a 364-amino-acid protein with a molecular mass of 41,442 Da that is highly homologous to rat bradykinin B2 receptor cDNA (81%). The entire human cDNA sequence was cloned into an expression vector and mRNA was synthesised by in vitro transcription. Applications of bradykinin caused membrane current responses in Xenopus oocytes injected with the in vitro-synthesized mRNA. Preincubation with the potent B2 antagonist, HOE140, prevented this response. The genomic clone is intronless, and we have identified an upstream promoter region and a downstream polyadenylation signal. The human bradykinin B2 receptor gene has been mapped to chromosome 14 using PCR to specifically amplify DNA from somatic cell hybrids. 10 refs., 1 fig., 1 tab.

  3. Staphylococcus aureus Induces Release of Bradykinin in Human Plasma

    PubMed Central

    Mattsson, Eva; Herwald, Heiko; Cramer, Henning; Persson, Kristin; Sjöbring, Ulf; Björck, Lars

    2001-01-01

    Staphylococcus aureus is a prominent human pathogen. Here we report that intact S. aureus bacteria activate the contact system in human plasma in vitro, resulting in a massive release of the potent proinflammatory and vasoactive peptide bradykinin. In contrast, no such effect was recorded with Streptococcus pneumoniae. In the activation of the contact system, blood coagulation factor XII and plasma kallikrein play central roles, and a specific inhibitor of these serine proteinases inhibited the release of bradykinin by S. aureus in human plasma. Furthermore, fragments of the cofactor H-kininogen of the contact system efficiently blocked bradykinin release. The results suggest that activation of the contact system at the surface of S. aureus and the subsequent release of bradykinin could contribute to the hypovolemic hypotension seen in patients with severe S. aureus sepsis. The data also suggest that the contact system could be used as a target in the treatment of S. aureus infections. PMID:11349054

  4. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    PubMed Central

    2011-01-01

    Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies. PMID:21729302

  5. Acute electrophysiological responses of bradykinin-stimulated human fibroblasts.

    PubMed

    Estacion, M

    1991-05-01

    1. Acute responses to bradykinin in human dermal fibroblasts were studied at 20-24 degrees C using both the patch-clamp technique to monitor ion currents and Fura-2 fluorescence to monitor [Ca2+]i. 2. During subconfluent culture, human dermal fibroblasts can express a diversity of ion channels as described in the preceding paper. 3. When GTP (1 mM) was included in the pipette solution, two additional ion channel populations were transiently augmented in response to bradykinin stimulation. 4. The first is a component of outwardly rectifying current which reached maximal induction within 10-15 s after bradykinin addition (1 microM) and then decayed back to near baseline over 60 s. 5. Ion substitution experiments combined with tail current analysis indicate that the outward current is carried predominantly by K+. 6. Video imaging of single-cell Fura-2 fluorescence from both intact cells and patch-clamped cells showed temporal correlation of the K+ current modulation and the Ca2+ transients in response to bradykinin stimulation. 7. The calcium ionophore, ionomycin, caused both an increase in intracellular calcium and the augmentation of the outward K+ current. The amount of additional K+ current was correlated with [Ca2+]i levels and could be elicited even without the presence of GTP in the pipette. 8. Apamin, a blocker of Ca(2+)-activated K+ channels, inhibited (at 1 microM) the ionomycin-induced modulation of K+ current. 9. In addition, an inward current was transiently induced in response to bradykinin. This current was strictly dependent on the presence of GTP in the pipette solution. This current showed little voltage dependence, as evidenced by a linear current vs. voltage relation, and a reversal potential near but measurably more positive than 0 mV. 10. This current could be decoupled from the Ca2+ transient and be irreversibly induced by including GTP gamma S (100 microM) in the pipette solution. 11. Ion substitution experiments show that this is a non

  6. Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis.

    PubMed

    Bras, Grazyna; Bochenska, Oliwia; Rapala-Kozik, Maria; Guevara-Lora, Ibeth; Faussner, Alexander; Kamysz, Wojciech; Kozik, Andrzej

    2013-10-01

    In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors. PMID:23954712

  7. Attenuation of human nasal airway responses to bradykinin and histamine by inhibitors of nitric oxide synthase.

    PubMed Central

    Dear, J. W.; Ghali, S.; Foreman, J. C.

    1996-01-01

    1. The effects of inhibitors of nitric oxide synthase and local anaesthetics were studied on changes in human nasal airway patency and albumin extravasation in response to bradykinin and histamine, in vivo. 2. Compared with the action of the vasoconstrictor, ephedrine, 2.5 mumol, NG-nitro-L-arginine methyl ester (L-NAME), 1 mumol alone, did not change the resting value of the minimal cross-sectional area (A min) of the human nasal airway. L-NAME, 0.1 to 10 mumol, produced a dose-related inhibition of the reduction in A min caused by bradykinin, 300 micrograms. NG-monomethyl-L-arginine (L-NMMA), 1 mumol, similarly reduced the effect of bradykinin, 300 micrograms, on A min, but NG-nitro-D-arginine methyl ester (D-NAME), had no effect. L-NAME, 0.1 to 10 mumol, or L-NMMA, 10 mumol, failed to inhibit the effect of histamine, 300 micrograms on A min. 3. The inhibition by L-NAME, 1 mumol of the action of bradykinin, 300 micrograms on A min was maximal between 15 and 30 min after pretreatment with L-NAME. 4. L-NAME, 1 and 10 mumol, inhibited the extravasation of albumin into the nasal cavity induced by bradykinin, 300 micrograms, and also by histamine, 300 micrograms. D-NAME, 1 and 10 mumol had no effect on the extravasation of albumin in response to bradykinin or histamine. 5. L-Arginine, 30 mumol, reversed the effect of L-NAME, 1 mumol, on the bradykinin- and histamine-induced albumin extravasation into the nasal airway. 6. Local anaesthesia of the nasal airway with lignocaine, 10 mg, or benzocaine, 10 mg, failed to inhibit the reduction in A min or the albumin extravasation induced by either bradykinin, 300 micrograms, and histamine, 300 micrograms. 7. We conclude that the extravasation of plasma albumin caused by bradykinin and by histamine involves the generation of nitric oxide. The nasal blockage induced by bradykinin involves nitric oxide generation but the nasal blockage induced by histamine does not. PMID:8818341

  8. [Effect of bradykinin on systemic and pulmonary hemodynamics in the human].

    PubMed

    Bönner, G; Schunk, U; Preis, S; Wambach, G; Toussaint, T

    1989-11-01

    In our studies we investigated the vasodepressor effects of bradykinin in vivo in normotensive and hypertensive subjects. Bradykinin was injected intravenously and intraarterially (40-6050 pM/kg) respectively was infused intraarterially (40-6050 pM/kg/min). The investigations were performed in 21 normotensives and 15 hypertensives. Bradykinin injections were performed after the following pharmacological interventions: salt restriction (10 mmol Na/d), salt loading (300 mmol Na/d), captopril (50 mg), ramipril (5 mg), lisinopril (20 mg), ketotifen (2 x 1 mg), indomethacin (2 x 50 mg), and propranolol (80 mg). The results show that bradykinin lowers blood pressure dose related by marked reduction in peripheral vascular resistance. The blood pressure reduction was strongly correlated with the increase in kinin concentration. This effect of bradykinin appears to be independent of changes in sodium metabolism, of beta adrenoceptors, of histamine-1 receptors, and of prostaglandins. ACE-inhibitors potentiate the blood pressure lowering effect of bradykinin about 20- to 50-fold. In case of an intraarterial injection of bradykinin in only 2-5% o the intravenously used dose of bradykinin are needed to produce an identical fall in blood pressure. From this experiments a pulmonary clearance rate of bradykinin over 95% can be calculated. In the pulmonary arteries bradykinin has no effect on the vascular resistance. In patients suffering from primary or renovascular hypertension the blood pressure response to bradykinin was enhanced. The bradykinin potentiating effect of the ACE-inhibitors was not altered in the hypertensives. In patients suffering from bradykinin hypertension or primary hyperaldosteronism bradykinin developed the same blood pressure lowering effect as in the normotensives. PMID:2586015

  9. Absorption of kininogen from human plasma by Streptococcus pyogenes is followed by the release of bradykinin.

    PubMed Central

    Ben Nasr, A; Herwald, H; Sjöbring, U; Renné, T; Müller-Esterl, W; Björck, L

    1997-01-01

    H-kininogen (high-molecular-mass kininogen, HK) is the precursor of the vasoactive peptide hormone bradykinin (BK). Previous work has demonstrated that HK binds to Streptococcus pyogenes through M-proteins, fibrous surface proteins and important virulence factors of these bacteria. Here we find that M-protein-expressing bacteria absorb HK from human plasma. The HK bound to the bacteria was found to be cleaved, and analysis of the degradation pattern suggested that the cleavage of HK at the bacterial surface is associated with the release of BK. Moreover, addition of activated plasma prekallikrein to bacteria preincubated with human plasma, resulted in BK release. This mechanism, by which a potent vasoactive and proinflammatory peptide is generated at the site of infection, should influence the host-parasite relationship during S. pyogenes infections. PMID:9307013

  10. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation

    PubMed Central

    2013-01-01

    Background Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2-octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors. PMID

  11. Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses.

    PubMed

    Errasti, A E; Rey-Ares, V; Daray, F M; Rogines-Velo, M P; Sardi, S P; Paz, C; Podestá, E J; Rothlin, R P

    2001-08-01

    In isolated human umbilical vein (HUV), the contractile response to des-Arg9-bradykinin (des-Arg9-BK), selective BK B1 receptor agonist, increases as a function of the incubation time. Here, we evaluated whether cyclooxygenase (COX) pathway is involved in BK B1-sensitized response obtained in 5-h incubated HUV rings. The effect of different concentrations of indomethacin, sodium salicylate, ibuprofen, meloxicam, lysine clonixinate or NS-398 administrated 30 min before concentration-response curves (CRC) was studied. All treatments produced a significant rightward shift of the CRC to des-Arg9-BK in a concentration-dependent manner, which provides pharmacological evidence that COX pathway is involved in the BK B1 responses. Moreover, in this tissue, the NS-398 pKb (5.2) observed suggests that COX-2 pathway is the most relevant. The strong correlation between published pIC50 for COX-2 and the NSAIDs' pKbs estimated further supports the hypothesis that COX-2 metabolites are involved in BK B1 receptor-mediated responses. In other rings, indomethacin (30, 100 micromol/l) or NS-398 (10, 30 micromol/l) produced a significant rightward shift of the CRC to BK, selective BK B2 agonist, and its pKbs were similar to the values to inhibit BK B1 receptor responses, suggesting that COX-2 pathway also is involved in BK B2 receptor responses. Western blot analysis shows that COX-1 and COX-2 isoenzymes are present before and after 5-h in vitro incubation and apparently COX-2 does not suffer additional induction. PMID:11534854

  12. Ferritin binds to light chain of human H-kininogen and inhibits kallikrein-mediated bradykinin release.

    PubMed Central

    Parthasarathy, Narayanan; Torti, Suzy V; Torti, Frank M

    2002-01-01

    Ferritin is an iron-storage protein that exists in both intracellular and extracellular compartments. We have previously identified H-kininogen (high-molecular-weight kininogen) as a ferritin-binding protein [Torti and Torti (1998) J. Biol. Chem. 273, 13630-13635]. H-Kininogen is a precursor of the potent pro-inflammatory peptide bradykinin, which is released from H-kininogen following cleavage of H-kininogen by the serine protease kallikrein. In this report, we demonstrate that binding of ferritin to H-kininogen occurs via the modified light chain of H-kininogen, and that ferritin binds preferentially to activated H-kininogen. We further demonstrate that binding of ferritin to H-kininogen retards the proteolytic cleavage of H-kininogen by kallikrein and its subsequent release of bradykinin from H-kininogen. Ferritin does not interfere with the ability of kallikrein to digest a synthetic substrate, suggesting that ferritin specifically impedes the ability of kallikrein to digest H-kininogen, perhaps by steric hindrance. Based on these results, we propose a model of sequential H-kininogen cleavage and ferritin binding. These results are consistent with the hypothesis that the binding of ferritin to H-kininogen may serve to modulate bradykinin release. PMID:12071855

  13. Bradykinin-mediated angioedema.

    PubMed

    Obtułowicz, Krystyna

    2016-02-01

    Angioedema and urticaria often constitute a challenge in daily clinical practice. They may either co- -occur or present as independent conditions. They are characterized by a complex pathomechanism, and their symptoms may be triggered by diverse factors. These differences are crucial for developing a successful treatment regimen. Both conditions may have an allergic origin (immunoglobulin [Ig] E and non-IgE-related), usually induced by histamine, or a nonallergic one, such as bradykinin-mediated angioedema in patients with C1 inhibitor (C1-INH) deficiency or angioedema induced by certain drugs (eg, angiotensin-converting enzyme inhibitors). Currently, we distinguish 5 types of nonallergic angioedema: hereditary angioedema (HAE) due to C1-INH deficiency, acquired angioedema (AAE), and angioedema induced by the renin-angiotensin-aldosterone system, all of which are mediated by bradykinin, as well as pseudoallergic angioedema and idiopathic angioedema. Bradykinin-mediated angioedema (eg, laryngeal angioedema) may be life-threatening because of resistance to corticosteroids and antihistamine drugs. C1-INH concentrates are the drugs of choice in the treatment of HAE and AAE. In recent years, some new drugs have been introduced in the treatment of bradykinin-mediated angioedema, such as bradykinin B2-receptor antagonist, icatibant, and kallikrein inhibitor, ecallantide, which allow to improve treatment outcomes. PMID:26842379

  14. [Bradykinin mediated angioedema].

    PubMed

    Bouillet, L; Boccon-Gibod, I; Massot, C

    2011-04-01

    Bradykinin angioedema (AE) are characterized by acute recurrent episodes of localized swelling. They are not associated with pruritus or erythema, and are short-lived (24 to 72 hours), disappearing without any sequelae. Corticosteroids are useless. Skin or mucous membranes (upper respiratory and intestinal) could be affected. Bradykinin AE can be secondary to: (1) AE associated with C1 inhibitor deficiency (hereditary or acquired); (2) drug-induced AE (converting enzyme inhibitors…); (3) type III AE type (oestrogen dependant) without C1 inhibitor deficiency. These type III AE can be associated with a gain of function mutation that markedly increases factor XII activity. Prognosis depends on the laryngeal attacks (resulting in 25 % of death in the absence of specific treatment). In case of severe attacks, icatibant (bradykinin receptor antagonist) or C1 inhibitor concentrate can be used. In case of frequent attacks, long-term therapy with danazol or tranexamic acid is effective. PMID:20538389

  15. Bradykinin-mediated diseases.

    PubMed

    Kaplan, Allen P

    2014-01-01

    Diseases which have been demonstrated to be caused by increased plasma levels of bradykinin all have angioedema as the common major clinical manifestation. Angioedema due to therapy with angiotensin-converting enzyme (ACE) inhibitors is caused by suppressed bradykinin degradation so that it accumulates. This occurs because ACE metabolizes bradykinin by removal of Phe-Arg from the C-terminus, which inactivates it. By contrast, angioedema due to C1 inhibitor deficiency (either hereditary types I and II, or acquired) is caused by bradykinin overproduction. C1 inhibitor inhibits factor XIIa, kallikrein and activity associated with the prekallikrein-HK (high-molecular-weight kininogen) complex. In its absence, uncontrolled activation of the plasma bradykinin cascade is seen once there has been an initiating stimulus. C4 levels are low in all types of C1 inhibitor deficiency due to the instability of C1 (C1r, in particular) such that some activated C1 always circulates and depletes C4. In the hereditary disorder, formation of factor XIIf (factor XII fragment) during attacks of swelling causes C4 levels to drop toward zero, and C2 levels decline. A kinin-like molecule, once thought to be a cleavage product derived from C2 that contributes to the increased vascular permeability seen in hereditary angioedema (HAE), is now thought to be an artifact, i.e. no such molecule is demonstrable. The acquired C1 inhibitor deficiency is associated with clonal disorders of B cell hyperreactivity, including lymphoma and monoclonal gammopathy. Most cases have an IgG autoantibody to C1 inhibitor which inactivates it so that the presentation is strikingly similar to type I HAE. New therapies for types I and II HAE include C1 inhibitor replacement therapy, ecallantide, a kallikrein antagonist, and icatibant, a B2 receptor antagonist. A newly described type III HAE has normal C1 inhibitor, although it is thought to be mediated by bradykinin, as is an antihistamine-resistant subpopulation of

  16. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  17. Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulphaphenazole.

    PubMed

    Passauer, Jens; Büssemaker, Eckhart; Lässig, Grit; Pistrosch, Frank; Fauler, Joachim; Gross, Peter; Fleming, Ingrid

    2003-10-01

    A substantial portion of the vasodilator response elicited by bradykinin in the human forearm is unaffected by the combined inhibition of nitric oxide (NO) synthases and cyclo-oxygenases. The cytochrome P450 (CYP) 2C9 inhibitor sulphaphenazole was recently identified as a potent inhibitor of NO- and prostacyclin (PGI2)-independent relaxation in porcine coronary arteries. The aim of the present study was to determine the effect of sulphaphenazole on basal and bradykinin-induced NO/PGI2-independent changes in the forearm blood flow (FBF) of healthy subjects. Eleven healthy male volunteers participated in this placebo-controlled study. Test agents were infused into the brachial artery and FBF was measured by bilateral venous occlusion plethysmography. Sulphaphenazole (0.02-2 mg/min) alone did not affect basal blood flow. Inhibition of the NO synthases by NG-monomethyl-L-arginine (L-NMMA; 4 micromol/min) and cyclo-oxygenases by ibuprofen (1200 mg, orally) reduced FBF to 48 +/- 7% in the absence and 50 +/- 8% in the presence of sulphaphenazole (2 mg/min; P=not significant). After pretreatment with L-NMMA (16 micromol/min) and ibuprofen (1200 mg, orally), sulphaphenazole (6 mg/min) did not substantially inhibit bradykinin-induced vasodilation. We conclude that CYP2C9-derived metabolites (i) are not involved in the regulation of baseline blood flow, and (ii) do not mediate bradykinin-induced NO/PGI2-independent vasorelaxation in the human forearm. However, determining the contribution of this enzyme to regulation of blood flow in pathological conditions associated with endothelial dysfunction requires further studies. PMID:12826020

  18. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  19. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  20. Antagonism of Bradykinin B2 Receptor Prevents Inflammatory Responses in Human Endothelial Cells by Quenching the NF-kB Pathway Activation

    PubMed Central

    Terzuoli, Erika; Meini, Stefania; Cucchi, Paola; Catalani, Claudio; Cialdai, Cecilia; Maggi, Carlo Alberto; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra

    2014-01-01

    Background Bradykinin (BK) induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects. Methodology We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC) and circulating pro-angiogenic cells (PACs), in producing cell permeability (paracellular flux), migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay) and in vivo in mice (matrigel plug) and in rat model of experimental osteoarthritis (OA). We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2), prostaglandin E-2 and vascular endothelial growth factor (VEGF). Principal findings HUVEC, exposed to BK (1–10 µM), showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor. Conclusion This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation. PMID:24392129

  1. Involvement of B2 Receptor in Bradykinin-Induced Proliferation and Proinflammatory Effects in Human Nasal Mucosa-Derived Fibroblasts Isolated from Chronic Rhinosinusitis Patients

    PubMed Central

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Lin, Brian J.; Wu, Wen-Bin

    2015-01-01

    Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa either accompanied by polyp formation (CRSwNP) or without polyps (CRSsNP). CRSsNP accounts for the majority of CRS cases and is characterized by fibrosis and neutrophilic inflammation. However, the pathogenesis of CRS, especially CRSsNP, remains unclear. Immunohistochemistry of CRSsNP specimens in the present study showed that the submucosa, perivascular areas, and the mucous glands were abundant in fibroblasts. Therefore, we investigated the effects bradykinin (BK), an autacoid known to participate in inflammation, on human CRSsNP nasal mucosa-derived fibroblasts (NMDFs). BK increased CXCL1 and -8 secretion and mRNA expression with EC50 ranging from 0.15~0.35 μM. Moreover, BK enhanced cell proliferation and upregulated the expressions of proinflammatory molecules, including cell adhesion molecules (CAMs) and cyclooxygenase (COX)-1 and -2. These functionally caused an increase in monocyte adhesion to fibroblast monolayer. Using pharmacological intervention and BKR siRNA knockdown, we demonstrated that the BK-induced CXCL chemokine release, cell proliferation and COX and CAM expressions were mainly through the B2 receptor (B2R). Accordingly, the B2R was preferentially expressed in the NMDFs than B1R. The B2R was highly expressed in the CRSsNP than the control specimens, while the B1R and kininogen (KNG)/BK expression slightly increased in the CRSsNP mucosa. Collectively, we report here for the first time that fibroblasts, KNG/BK, and BKRs are overexpressed in CRSsNP mucosa and BK upregulates chemokine expression, proliferation, and proinflammatory molecule expression in NMDFs via B2R activation, which lead to a functional increase in monocyte-fibroblast interaction. Our findings reveal a critical role of fibroblast, KNG/BK, and BKRs in the development of CRSsNP. PMID:25970620

  2. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  3. Circular dichroism of bradykinin and related peptides

    PubMed Central

    Brady, A. H.; Ryan, J. W.; Stewart, J. M.

    1971-01-01

    1. The circular dichroism of bradykinin and a number of its analogues and homologues was measured over the spectral range 200–300nm. All of the biologically active peptides showed maxima at 220nm and minima at 235nm. The spectra were independent of solvent and temperature. The vibronic transitions of phenylalanyl residues in the 250–280nm range showed no evidence of intra- or inter-molecular interactions. We take this as evidence that bradykinin and its biologically active analogues and homologues exist in solution as disordered chains. 2. None of the analogues with spectra unlike bradykinin possessed biological activity. However, peptides such as retro-bradykinin, des-6-serine-bradykinin, des-1-arginine-bradykinin and des-9-arginine-bradykinin produced spectra like that of bradykinin but were devoid of biological activity. Although we could not identify spectral features that were clearly correlated with biological activity, it appears unlikely that highly ordered peptides of the same amino acid composition as bradykinin would possess bradykinin-like effects. PMID:5117026

  4. Phonetic Feature Encoding in Human Superior Temporal Gyrus

    PubMed Central

    Mesgarani, Nima; Cheung, Connie; Johnson, Keith; Chang, Edward F.

    2015-01-01

    During speech perception, linguistic elements such as consonants and vowels are extracted from a complex acoustic speech signal. The superior temporal gyrus (STG) participates in high-order auditory processing of speech, but how it encodes phonetic information is poorly understood. We used high-density direct cortical surface recordings in humans while they listened to natural, continuous speech to reveal the STG representation of the entire English phonetic inventory. At single electrodes, we found response selectivity to distinct phonetic features. Encoding of acoustic properties was mediated by a distributed population response. Phonetic features could be directly related to tuning for spectrotemporal acoustic cues, some of which were encoded in a nonlinear fashion or by integration of multiple cues. These findings demonstrate the acoustic-phonetic representation of speech in human STG. PMID:24482117

  5. The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs

    PubMed Central

    d’Acremont, Mathieu; Schultz, Wolfram; Bossaerts, Peter

    2015-01-01

    To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge. During fMRI, young adults acquired prior knowledge regarding uncertain events, repeatedly observed evidence in the form of stimuli, and estimated event probabilities. Participants combined prior knowledge with factual evidence using Bayesian principles. Expected reward inferred from prior knowledge was encoded in striatum. BOLD response in specific nodes of the default mode network (angular gyri, posterior cingulate, and medial prefrontal cortex) encoded the actual frequency of stimuli, unaffected by prior knowledge. In this network, activity increased with frequencies and thus reflected the accumulation of evidence. In contrast, Bayesian posterior probabilities, computed from prior knowledge and stimulus frequencies, were encoded in bilateral inferior frontal gyrus. Here activity increased for improbable events and thus signaled the violation of Bayesian predictions. Thus, subjective beliefs and stimulus frequencies were encoded in separate cortical regions. The advantage of such a separation is that objective evidence can be recombined with newly acquired knowledge when a reinterpretation of the evidence is called for. Overall this study reveals the coexistence in the brain of an experience-based system of inference and a knowledge-based system of inference. PMID:23804108

  6. Genetically encoded optical activation of DNA recombination in human cells.

    PubMed

    Luo, J; Arbely, E; Zhang, J; Chou, C; Uprety, R; Chin, J W; Deiters, A

    2016-06-30

    We developed two tightly regulated, light-activated Cre recombinase enzymes through site-specific incorporation of two genetically-encoded photocaged amino acids in human cells. Excellent optical off to on switching of DNA recombination was achieved. Furthermore, we demonstrated precise spatial control of Cre recombinase through patterned illumination. PMID:27277957

  7. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  8. Bradykinin-induced proinflammatory signaling mechanisms.

    PubMed

    Shigematsu, Sakuji; Ishida, Shuji; Gute, Dean C; Korthuis, Ronald J

    2002-12-01

    Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B(2)-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B(2) receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration. PMID:12388246

  9. [ENCODE apophenia or a panglossian analysis of the human genome].

    PubMed

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world. PMID:26152174

  10. Differential Encoding of Losses and Gains in the Human Striatum

    PubMed Central

    Seymour, Ben; Daw, Nathaniel; Dayan, Peter; Singer, Tania; Dolan, Ray

    2009-01-01

    Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain. PMID:17475790

  11. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  12. Human cytoplasmic actin proteins are encoded by a multigene family

    SciTech Connect

    Engel, J.; Gunning, P.; Kedes, L.

    1982-06-01

    The authors characterized nine human actin genes that they isolated from a library of cloned human DNA. Measurements of the thermal stability of hybrids formed between each cloned actin gene and ..cap alpha..-, ..beta..-, and ..gamma..-actin mRNA demonstrated that only one of the clones is most homologous to sarcomeric actin mRNA, whereas the remaining eight clones are most homologous to cytoplasmic actin mRNA. By the following criteria they show that these nine clones represent nine different actin gene loci rather than different alleles or different parts of a single gene: (i) the restriction enzyme maps of the coding regions are dissimilar; (ii) each clone contains sufficient coding region to encode all or most of an entire actin gene; and (iii) each clone contains sequences homologous to both the 5' and 3' ends of the coding region of a cloned chicken ..beta..-actin cDNA. They conclude, therefore, that the human cytoplasmic actin proteins are encoded by a multigene family.

  13. A neural circuit encoding sexual preference in humans.

    PubMed

    Poeppl, Timm B; Langguth, Berthold; Rupprecht, Rainer; Laird, Angela R; Eickhoff, Simon B

    2016-09-01

    Sexual preference determines mate choice for reproduction and hence guarantees conservation of species in mammals. Despite this fundamental role in human behavior, current knowledge on its target-specific neurofunctional substrate is based on lesion studies and therefore limited. We used meta-analytic remodeling of neuroimaging data from 364 human subjects with diverse sexual interests during sexual stimulation to quantify neural regions associated with sexual preference manipulations. We found that sexual preference is encoded by four phylogenetically old, subcortical brain structures. More specifically, sexual preference is controlled by the anterior and preoptic area of the hypothalamus, the anterior and mediodorsal thalamus, the septal area, and the perirhinal parahippocampus including the dentate gyrus. In contrast, sexual non-preference is regulated by the substantia innominata. We anticipate the identification of a core neural circuit for sexual preferences to be a starting point for further sophisticated investigations into the neural principles of sexual behavior and particularly of its aberrations. PMID:27339689

  14. EGASP: the human ENCODE Genome Annotation Assessment Project

    PubMed Central

    Guigó, Roderic; Flicek, Paul; Abril, Josep F; Reymond, Alexandre; Lagarde, Julien; Denoeud, France; Antonarakis, Stylianos; Ashburner, Michael; Bajic, Vladimir B; Birney, Ewan; Castelo, Robert; Eyras, Eduardo; Ucla, Catherine; Gingeras, Thomas R; Harrow, Jennifer; Hubbard, Tim; Lewis, Suzanna E; Reese, Martin G

    2006-01-01

    Background We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. Results The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. Conclusion This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence. PMID:16925836

  15. Endogenous Nitric Oxide Contributes to Bradykinin-Stimulated Glucose Uptake but Attenuates Vascular Tissue-Type Plasminogen Activator Release

    PubMed Central

    Brown, Nancy J.

    2010-01-01

    Bradykinin causes vasodilation, stimulates tissue-type plasminogen activator (t-PA) release and, in rodents, increases muscle glucose uptake. Although bradykinin causes vasodilation partly by activating nitric-oxide synthase (NOS), the role of nitric oxide in regulating bradykinin-stimulated t-PA release is uncertain. This study examined the effect of high-dose NOS inhibition on bradykinin-stimulated t-PA release and glucose uptake in humans. We studied 24 healthy (12 women and 12 men), overweight and obese (body mass index >25 kg/m2), normotensive, nondiabetic subjects with normal cholesterol. We measured the effect of intra-arterial Nω-monomethyl-l-arginine (l-NMMA, 12 μmol/min) on forearm blood flow (FBF), net t-PA release, and glucose uptake at baseline and in response to intra-arterial bradykinin (50–200 ng/min) in subjects pretreated with the cyclooxygenase inhibitor aspirin. Measurements were repeated after isosorbide dinitrate (ISDN; 5 mg) or sildenafil (50 mg). l-NMMA decreased baseline FBF (P < 0.001), increased baseline forearm vascular resistance (P < 0.001), and increased the t-PA arterial-venous gradient (P = 0.04) without affecting baseline net t-PA release or glucose uptake. During l-NMMA, ISDN tended to decrease baseline net t-PA release (P = 0.06). l-NMMA blunted bradykinin-stimulated vasodilation (P < 0.001 for FBF and FVR). Bradykinin increased net glucose extraction (from −80 ± 23 to −320 ± 97 μg/min/100 ml at 200 ng/min bradykinin, P = 0.02), and l-NMMA (−143 ± 50 μg/min/100 ml at 200 ng/min, P = 0.045) attenuated this effect. In contrast, l-NMMA enhanced bradykinin-stimulated t-PA release (39.9 ± 7.0 ng/min/100 ml versus 30.0 ± 4.2 ng/min/100 ml at 200 ng/min, P = 0.04 for l-NMMA). In gender-stratified analyses, l-NMMA significantly increased bradykinin-stimulated t-PA release in women (F = 6.7, P = 0.02) but not in men. Endogenous NO contributes to bradykinin-stimulated vasodilation and glucose uptake but attenuates the

  16. Expression cloning of genes encoding human peroxisomal proteins

    SciTech Connect

    Spathaky, J.M.; Tate, A.W.; Cox, T.M.

    1994-09-01

    Numerous metabolic disorders associated with diverse peroxisomal defects have been identified but their molecular characterization has been hampered by difficulties associated with the purification of proteins from this fragile organelle. We have utilized antibodies directed against the C-terminal tripeptide peroxisomal targeting signal to detect hitherto unknown peroxisomal proteins in tissue fractions and to isolate genes encoding peroxisonal proteins from human expression libraries. We immunized rabbits with a peptide conjugate encompassing the C-terminal nine amino acids of rat peroxisomal acyl CoA oxidase. Immunoprecipitation assays using radio-labelled peptide showed that the antibody specifically recognizes the terminal SKL motif as well as C-terminal SHL and SRL but not SHL at an internal position. Affinity-purified antibody was used to probe Western blots of crude and peroxisome-enriched monkey liver preparations and detected 8-10 proteins specifically in the peroxisome fractions. 100 positive clones were identified on screening a human liver cDNA expression library in {lambda}-gt11. Sequence analysis has confirmed the identity of cDNA clones for human acyl CoA oxidase and epoxide hydrolase. Four clones show no sequence identity and their putative role in the human peroxisome is being explored.

  17. Encoding of Sensory Prediction Errors in the Human Cerebellum

    PubMed Central

    Schlerf, John; Ivry, Richard B.; Diedrichsen, Jörn

    2015-01-01

    A central tenet of motor neuroscience is that the cerebellum learns from sensory prediction errors. Surprisingly, neuroimaging studies have not revealed definitive signatures of error processing in the cerebellum. Furthermore, neurophysiologic studies suggest an asymmetry, such that the cerebellum may encode errors arising from unexpected sensory events, but not errors reflecting the omission of expected stimuli. We conducted an imaging study to compare the cerebellar response to these two types of errors. Participants made fast out-and-back reaching movements, aiming either for an object that delivered a force pulse if intersected or for a gap between two objects, either of which delivered a force pulse if intersected. Errors (missing the target) could therefore be signaled either through the presence or absence of a force pulse. In an initial analysis, the cerebellar BOLD response was smaller on trials with errors compared with trials without errors. However, we also observed an error-related decrease in heart rate. After correcting for variation in heart rate, increased activation during error trials was observed in the hand area of lobules V and VI. This effect was similar for the two error types. The results provide evidence for the encoding of errors resulting from either the unexpected presence or unexpected absence of sensory stimulation in the human cerebellum. PMID:22492047

  18. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans

    PubMed Central

    Schulz, Enrico; May, Elisabeth S.; Postorino, Martina; Tiemann, Laura; Nickel, Moritz M.; Witkovsky, Viktor; Schmidt, Paul; Gross, Joachim; Ploner, Markus

    2015-01-01

    Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain. PMID:25754338

  19. Auditory modulation of visual stimulus encoding in human retinotopic cortex

    PubMed Central

    de Haas, Benjamin; Schwarzkopf, D. Samuel; Urner, Maren; Rees, Geraint

    2013-01-01

    Sounds can modulate visual perception as well as neural activity in retinotopic cortex. Most studies in this context investigated how sounds change neural amplitude and oscillatory phase reset in visual cortex. However, recent studies in macaque monkeys show that congruence of audio-visual stimuli also modulates the amount of stimulus information carried by spiking activity of primary auditory and visual neurons. Here, we used naturalistic video stimuli and recorded the spatial patterns of functional MRI signals in human retinotopic cortex to test whether the discriminability of such patterns varied with the presence and congruence of co-occurring sounds. We found that incongruent sounds significantly impaired stimulus decoding from area V2 and there was a similar trend for V3. This effect was associated with reduced inter-trial reliability of patterns (i.e. higher levels of noise), but was not accompanied by any detectable modulation of overall signal amplitude. We conclude that sounds modulate naturalistic stimulus encoding in early human retinotopic cortex without affecting overall signal amplitude. Subthreshold modulation, oscillatory phase reset and dynamic attentional modulation are candidate neural and cognitive mechanisms mediating these effects. PMID:23296187

  20. Bioinformatics Annotation of Human Y Chromosome-Encoded Protein Pathways and Interactions.

    PubMed

    Rengaraj, Deivendran; Kwon, Woo-Sung; Pang, Myung-Geol

    2015-09-01

    We performed a comprehensive analysis of human Y chromosome-encoded proteins, their pathways, and their interactions using bioinformatics tools. From the NCBI annotation release 107 of human genome, we retrieved a total of 66 proteins encoded on Y chromosome. Most of the retrieved proteins were also matched with the proteins listed in the core databases of the Human Proteome Project including neXtProt, PeptideAtlas, and the Human Protein Atlas. When we examined the pathways of human Y-encoded proteins through KEGG database and Pathway Studio software, many of proteins fall into the categories related to cell signaling pathways. Using the STRING program, we found a total of 49 human Y-encoded proteins showing strong/medium interaction with each other. While using the Pathway studio software, we found that a total of 16 proteins interact with other chromosome-encoded proteins. In particular, the SRY protein interacted with 17 proteins encoded on other chromosomes. Additionally, we aligned the sequences of human Y-encoded proteins with the sequences of chimpanzee and mouse Y-encoded proteins using the NCBI BLAST program. This analysis resulted in a significant number of orthologous proteins between human, chimpanzee, and mouse. Collectively, our findings provide the scientific community with additional information on the human Y chromosome-encoded proteins. PMID:26279084

  1. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    PubMed

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. PMID:27000801

  2. Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway.

    PubMed Central

    Liebmann, C; Graness, A; Ludwig, B; Adomeit, A; Boehmer, A; Boehmer, F D; Nürnberg, B; Wetzker, R

    1996-01-01

    Cell membranes of the human epidermoid cell line A431 express classical bradykinin (BK) B2 receptors, as assessed by [3H]BK binding studies. Furthermore, stimulation by BK induced a time-dependent modulation of protein kinase C (PKC) activity in A431 cells: a rapid activation (t1/2 approximately 1 min) is followed by a slow inhibition (t1/2 approximately 20 min) of PKC translocation measured by [3H]phorbol 12,13-dibutyrate binding. In addition, BK stimulated both adenylate cyclase activity in A431 membranes and accumulation of intracellular cyclic AMP (cAMP) in intact cells in a retarded manner. A possible BK-induced activation of the cAMP pathway mediated via PKC, phospholipase D, prostaglandins or Ca2+/calmodulin was excluded. A 35 kDa protein was found in A431 membranes to be specifically phosphorylated in the presence of both BK and protein kinase A (PKA). An anti-alpha s-antibody, AS 348, abolished stimulation of adenylate cyclase activity in response to BK, cholera toxin and isoprenaline, strongly suggesting the involvement of Gs proteins in the BK action. The BK-activated cAMP signalling system might be important for the observed inactivation of PKC slowly evoked by BK: the BK-induced rapid activation of PKC is decreased by dibutyryl cAMP, and the slow inhibition of PKC is prevented by an inhibitor of PKA, adenosine 3':5'-monophosphothioate (cyclic, Rp isomer). The inhibition of PKC translocation might be exerted directly at the level of PKC activation, since stimulation of phosphoinositide hydrolysis by BK was affected by neither dibutyryl cAMP nor forskolin. Thus our results provide the first evidence that A431 cells BK is able to activate two independent signal-transduction pathways via a single class of B2 receptors but two different G proteins. The lagging stimulation of the cAMP signalling pathway via Gs might serve to switch off PKC, which is rapidly activated via Gq-mediated stimulation of phosphoinositide hydrolysis. PMID:8546671

  3. Ornithokinin (avian bradykinin) from the skin of the Chinese bamboo odorous frog, Odorrana versabilis.

    PubMed

    Lyu, Peng; Ge, Lilin; Wang, Lei; Guo, Xiaoxiao; Zhang, Huiling; Li, Yihan; Zhou, Yu; Zhou, Mei; Chen, Tianbao; Shaw, Chris

    2014-08-01

    One of the most widespread and abundant families of pharmacologically active peptides in amphibian defensive skin secretions is the bradykinins and related peptides. Despite retaining certain primary structural attributes that assign them to this peptide family, bradykinins and related peptides are unique among amphibian skin peptides in that they exhibit a wide range of primary structural variations, post-translational modifications and/or N-terminal or C-terminal extensions. Initially it was believed that their high degree of primary structural heterogeneity was reflective of random gene mutations within species, but latterly, there is an increasing body of evidence that the spectrum of structural modifications found within this peptide family is reflective of the vertebrate predator spectrum of individual species. Here we report the discovery of ornithokinin (avian bradykinin - Thr(6) , Leu(8) -bradykinin) in the skin secretion of the Chinese bamboo odorous frog, Odorrana versabilis. Molecular cloning of its biosynthetic precursor-encoding cDNA from a skin secretion-derived cDNA library revealed a deduced open-reading frame of 86 amino acid residues, encoding a single copy of ornithokinin towards its C-terminus. The domain architecture of this ornithokinin precursor protein was consistent with that of a typical amphibian skin peptide and quite different to that of the ornithokininogen from chicken plasma. Ornithokinin was reported to induce hypotension in the chicken and to contract the chicken oviduct but to have no obvious effect on the rat uterus. However, in this study, synthetic ornithokinin was found to contract the rat ileum (EC50  = 539 nM) and to increase contraction frequency in the rat uterus (EC50  = 1.87 μM). PMID:24771465

  4. Involvement of Bradykinin Generation in Intravascular Dissemination of Vibrio vulnificus and Prevention of Invasion by a Bradykinin Antagonist

    PubMed Central

    Maruo, Keishi; Akaike, Takaaki; Ono, Tomomichi; Maeda, Hiroshi

    1998-01-01

    Involvement of bradykinin generation in bacterial invasion was examined by using a gram-negative bacillus, Vibrio vulnificus, which is known to invade the blood circulatory system and cause septicemia. V. vulnificus was injected intraperitoneally (i.p.) into mice with or without bradykinin or a bradykinin (B2 receptor) antagonist. Dissemination of V. vulnificus from peritoneal septic foci to the circulating blood was assessed by counting of viable bacteria in venous blood by use of the colony-forming assay. Intravascular dissemination of V. vulnificus in mice was significantly potentiated by simultaneous injection with bradykinin but was markedly reduced by coadministration with the B2 antagonist d-Arg,[Hyp3, Thi5,8, d-Phe7]-bradykinin. Furthermore, V. vulnificus lethality was significantly increased when bradykinin was administered simultaneously with the bacillus, whereas it was definitely suppressed by treatment with d-Arg,[Hyp3, Thi5,8, d-Phe7]-bradykinin. Similarly, ovomacroglobulin, a potent inhibitor of the V. vulnificus protease, showed a strong suppressive effect on the V. vulnificus septicemia. We also confirmed appreciable bradykinin production in the primary septic foci in the mouse peritoneal cavity after i.p. inoculation with V. vulnificus. It is thus concluded that bradykinin generation in infectious foci is critically involved in facilitation of intravascular dissemination of V. vulnificus. PMID:9453658

  5. Human jagged polypeptide, encoding nucleic acids and methods of use

    DOEpatents

    Li, Linheng; Hood, Leroy

    2000-01-01

    The present invention provides an isolated polypeptide exhibiting substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the polypeptide does not have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. The invention further provides an isolated nucleic acid molecule containing a nucleotide sequence encoding substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the nucleotide sequence does not encode the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. Also provided herein is a method of inhibiting differentiation of hematopoietic progenitor cells by contacting the progenitor cells with an isolated JAGGED polypeptide, or active fragment thereof. The invention additionally provides a method of diagnosing Alagille Syndrome in an individual. The method consists of detecting an Alagille Syndrome disease-associated mutation linked to a JAGGED locus.

  6. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    PubMed

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling. PMID:27260014

  7. Non-histaminergic angioedema: focus on bradykinin-mediated angioedema.

    PubMed

    Busse, P J; Buckland, M S

    2013-04-01

    Angioedema is a result of increased vascular permeability, with subsequent extravasation of intravascular fluid into the surrounding tissues. Angioedema may be mediated by histamine, bradykinin or other mediators. Histaminergic angioedema generally presents with urticaria and/or pruritus and will respond to conventional treatment with antihistamines, corticosteroids or epinephrine. Bradykinin-mediated angioedema, which includes hereditary angioedema (HAE types I, II and III), acquired C1-INH deficiency, and angiotensin-converting enzyme inhibitor-induced angioedema does not typically present with urticaria/weals and does not respond to conventional agents such as antihistamines or corticosteroids. In recent years, several agents that prevent the generation or activity of bradykinin have been developed for the treatment of HAE types I and II and are also being evaluated in other types of bradykinin-mediated angioedema. These agents have the potential to improve outcomes for patients with different forms of bradykinin-mediated angioedema. PMID:23517034

  8. Human xeroderma pigmentosum group G gene encodes a DNA endonuclease.

    PubMed Central

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1994-01-01

    Because of defective nucleotide excision repair of ultraviolet damaged DNA, xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers. Cell fusion studies have identified seven XP complementation groups, A to G. Previous studies have implicated the products of these seven XP genes in the recognition of ultraviolet-induced DNA damage and in incision of the damage-containing DNA strand. Here, we express the XPG-encoded protein in Sf9 insect cells and purify it to homogeneity. We demonstrate that XPG is a single-strand specific DNA endonuclease, thus identifying the catalytic role of the protein in nucleotide excision repair. We suggest that XPG nuclease acts on the single-stranded region created as a result of the combined action of the XPB helicase and XPD helicase at the DNA damage site. Images PMID:8078765

  9. Lung peptidases, including carboxypeptidase, modulate airway reactivity to intravenous bradykinin.

    PubMed

    Chodimella, V; Skidgel, R A; Krowiak, E J; Murlas, C G

    1991-10-01

    We investigated the effect of inhibition of carboxypeptidase, neutral endopeptidase, or angiotensin converting enzyme on airway reactivity to intravenous bradykinin in guinea pigs. Bradykinin reactivity in intact, unanesthetized, spontaneously breathing animals was determined by measuring specific airway resistance in response to increasing doses of intravenous bradykinin or acetylcholine. We found that phosphoramidon and/or captopril (specific antagonists of neutral endopeptidase and angiotensin converting enzyme, respectively) increased airway reactivity to bradykinin, but the combination had no effect on muscarinic reactivity. Although 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGTA, a carboxypeptidase inhibitor) alone did not alter bradykinin reactivity, MGTA in the presence of both phosphoramidon and captopril significantly potentiated bradykinin-induced airway reactivity. In comparison, this did not affect reactivity to acetylcholine. Having found that carboxypeptidase inhibition could augment kinin-induced airway reactivity, we subsequently assayed for and identified carboxypeptidase M activity in guinea pig lung. We found considerable carboxypeptidase M activity in guinea pig lung subcellular fractions, the 100,000 x g membrane pellet having the highest specific activity. Our data indicate that airway reactivity to intravenous bradykinin is modulated by the activity of endogenous neutral endopeptidase, angiotensin converting enzyme, and carboxypeptidase, all of which are present in lung cell membranes. This study also suggests that the influence of carboxypeptidase per se may be substantially enhanced if endogenous pulmonary neutral endopeptidase and angiotensin converting enzyme activities are reduced. PMID:1928964

  10. Effect of an inhaled neutral endopeptidase inhibitor, phosphoramidon, on baseline airway calibre and bronchial responsiveness to bradykinin in asthma.

    PubMed Central

    Crimi, N.; Polosa, R.; Pulvirenti, G.; Magrì, S.; Santonocito, G.; Prosperini, G.; Mastruzzo, C.; Mistretta, A.

    1995-01-01

    .09-15.21) mg/ml obtained after phosphoramidon. CONCLUSIONS--The small increase in bronchial reactivity to bradykinin after phosphoramidon exposure suggests that endogenous airway NEP may play a modulatory role in the airways response to inflammatory peptides in human asthma. PMID:7597662

  11. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions

    SciTech Connect

    Steranka, L.R.; Manning, D.C.; DeHaas, C.J.; Ferkany, J.W.; Borosky, S.A.; Connor, J.R.; Vavrek, R.J.; Stewart, J.M.; Snyder, S.H.

    1988-05-01

    Autoradiographic studies localize (/sup 3/H)bradykinin receptor binding sites to the substantia gelatinosa, dorsal root, and a subset of small cells in both the dorsal root and trigeminal ganglia of the guinea pig. (/sup 3/H)Bradykinin labeling is also observed over myocardinal/coronary visceral afferent fibers. The localization of (/sup 3/H)bradykinin receptors to nociceptive pathways supports a role for bradykinin in pain mediation. Several bradkykinin antagonists block bradykinin-induced acute vascular pain in the rat. The bradykinin antagonists also relieve bradykinin- and urate-induced hyperalgesia in the rat paw. These results indicate that bradykinin is a physiologic mediator of pain and that bradykinin antagonists have analgesic activity in both acute and chronic pain models.

  12. Encoding of Physics Concepts: Concreteness and Presentation Modality Reflected by Human Brain Dynamics

    PubMed Central

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class. PMID:22848602

  13. GENCODE: The reference human genome annotation for The ENCODE Project

    PubMed Central

    Harrow, Jennifer; Frankish, Adam; Gonzalez, Jose M.; Tapanari, Electra; Diekhans, Mark; Kokocinski, Felix; Aken, Bronwen L.; Barrell, Daniel; Zadissa, Amonida; Searle, Stephen; Barnes, If; Bignell, Alexandra; Boychenko, Veronika; Hunt, Toby; Kay, Mike; Mukherjee, Gaurab; Rajan, Jeena; Despacio-Reyes, Gloria; Saunders, Gary; Steward, Charles; Harte, Rachel; Lin, Michael; Howald, Cédric; Tanzer, Andrea; Derrien, Thomas; Chrast, Jacqueline; Walters, Nathalie; Balasubramanian, Suganthi; Pei, Baikang; Tress, Michael; Rodriguez, Jose Manuel; Ezkurdia, Iakes; van Baren, Jeltje; Brent, Michael; Haussler, David; Kellis, Manolis; Valencia, Alfonso; Reymond, Alexandre; Gerstein, Mark; Guigó, Roderic; Hubbard, Tim J.

    2012-01-01

    The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers. PMID:22955987

  14. GENCODE: the reference human genome annotation for The ENCODE Project.

    PubMed

    Harrow, Jennifer; Frankish, Adam; Gonzalez, Jose M; Tapanari, Electra; Diekhans, Mark; Kokocinski, Felix; Aken, Bronwen L; Barrell, Daniel; Zadissa, Amonida; Searle, Stephen; Barnes, If; Bignell, Alexandra; Boychenko, Veronika; Hunt, Toby; Kay, Mike; Mukherjee, Gaurab; Rajan, Jeena; Despacio-Reyes, Gloria; Saunders, Gary; Steward, Charles; Harte, Rachel; Lin, Michael; Howald, Cédric; Tanzer, Andrea; Derrien, Thomas; Chrast, Jacqueline; Walters, Nathalie; Balasubramanian, Suganthi; Pei, Baikang; Tress, Michael; Rodriguez, Jose Manuel; Ezkurdia, Iakes; van Baren, Jeltje; Brent, Michael; Haussler, David; Kellis, Manolis; Valencia, Alfonso; Reymond, Alexandre; Gerstein, Mark; Guigó, Roderic; Hubbard, Tim J

    2012-09-01

    The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers. PMID:22955987

  15. Human TOP3: a single-copy gene encoding DNA topoisomerase III.

    PubMed Central

    Hanai, R; Caron, P R; Wang, J C

    1996-01-01

    A human cDNA encoding a protein homologous to the Escherichia coli DNA topoisomerase I subfamily of enzymes has been identified through cloning and sequencing. Expressing the cloned human cDNA in yeast (delta)top1 cells lacking endogenous DNA topoisomerase I yielded an activity in cell extracts that specifically reduces the number of supercoils in a highly negatively supercoiled DNA. On the basis of these results, the human gene containing the cDNA sequence has been denoted TOP3, and the protein it encodes has been denoted DNA topoisomerase III. Screening of a panel of human-rodent somatic hybrids and fluorescence in situ hybridization of cloned TOP3 genomic DNA to metaphase chromosomes indicate that human TOP3 is a single-copy gene located at chromosome 17p11.2-12. Images Fig. 2 PMID:8622991

  16. ACE inhibitor potentiation of bradykinin-induced venoconstriction

    PubMed Central

    Hecker, Markus; Blaukat, Andree; Bara, Agnieszka T; Müller-Esterl, Werner; Busse, Rudi

    1997-01-01

    Angiotensin-converting enzyme (ACE) inhibitors exert their cardiovascular effects not only by preventing the formation of angiotensin II (AII), but also by promoting the accumulation of bradykinin in or at the vessel wall. In addition, certain ACE inhibitors have been shown to augment the vasodilator response to bradykinin, presumably by an interaction at the level of the B2 receptor. We have investigated whether this is a specific effect of the ACE inhibitor class of compounds in isolated endothelium-denuded segments of the rabbit jugular vein where bradykinin elicits a constrictor response which is exclusively mediated by activation of the B2 receptor. Moexiprilat and ramiprilat (⩽ 3 nM) enhanced the constrictor response to bradykinin three to four fold. Captopril and enalaprilat were less active by approximately one and quinaprilat by two orders of magnitude. Moexiprilat and ramiprilat, on the other hand, had no effect on the constrictor response to AII or the dilator response to acetylcholine. The bradykinin-potentiating effect of the ACE inhibitors was not mimicked by inhibitors of amino-, carboxy-, metallo- or serine peptidases or the synthetic ACE substrate, hippuryl-L-histidyl-L-leucine, at a concentration which almost abolished the residual ACE activity in the vessel wall. In contrast, angiotensin-(1–7) (10 μM), an angiotensin I metabolite, significantly enhanced the constrictor response to bradykinin. Ramiprilat did not alter the binding of [3H]-bradykinin to a membrane fraction prepared from endothelium-denuded rabbit jugular veins or to cultured fibroblasts, and there was no ACE inhibitor-sensitive, bradykinin-induced cleavage of the B2 receptor in cultured endothelial cells. These findings demonstrate that ACE inhibitors selectively potentiate the B2 receptor-mediated vascular effects of bradykinin. Their relative efficacy appears to be independent of their ACE-inhibiting properties and might be related to differences in molecule structure

  17. Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?

    PubMed

    Cichy, Radoslaw Martin; Ramirez, Fernando Mario; Pantazis, Dimitrios

    2015-11-01

    It is a principal open question whether noninvasive imaging methods in humans can decode information encoded at a spatial scale as fine as the basic functional unit of cortex: cortical columns. We addressed this question in five magnetoencephalography (MEG) experiments by investigating a columnar-level encoded visual feature: contrast edge orientation. We found that MEG signals contained orientation-specific information as early as approximately 50 ms after stimulus onset even when controlling for confounds, such as overrepresentation of particular orientations, stimulus edge interactions, and global form-related signals. Theoretical modeling confirmed the plausibility of this empirical result. An essential consequence of our results is that information encoded in the human brain at the level of cortical columns should in general be accessible by multivariate analysis of electrophysiological signals. PMID:26162550

  18. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  19. Perceptual biases are inconsistent with Bayesian encoding of speed in the human visual system.

    PubMed

    Hassan, Omar; Hammett, Stephen T

    2015-01-01

    The notion that Bayesian processes are fundamental to brain function and sensory processing has recently received much support, and a number of Bayesian accounts of how the brain encodes the speed of moving objects have been proposed that challenge earlier mechanistic models. We measured the perceived speed of low contrast patterns at both low (2.5 cd m(-2)) and high (25 cd m(-2)) luminance in order to assess these competing models of how the human visual system encodes speed. At both luminance levels low contrast stimuli are perceptually biased such that they appear slower at slow (< 8 Hz) speeds but faster at higher (16 Hz) speeds. However, we find that the reversal of the perceptual bias from under- to overestimation occurred at slower speeds at low luminance. We also found that the bias was greater at slow speeds at high luminance but greater at fast speeds at low luminance. Moreover, discrimination thresholds were found to be similar at high and low luminance. These findings can be predicted by models in which speed is encoded by the relative activity within two broadly tuned temporal channels but are inconsistent with Bayesian models of speed encoding. We conclude that Bayesian processes cannot adequately account for speed encoding in the human visual system. PMID:25761348

  20. The release of bradykinin in bovine mastitis.

    PubMed

    Eshraghi, H R; Zeitlin, I J; Fitzpatrick, J L; Ternent, H; Logue, D

    1999-01-01

    The kinin peptides are released during inflammation and are amongst the most potent known mediators of vasodilatation, pain and oedema. Despite early reports of the presence of kinins in milk, no previous study has investigated the role of the kinin system in bovine mastitis. The present study indicated that mastitis was accompanied by raised levels of bradykinin (BK) in milk and the increased levels of BK correlated with the severity of mastitis. Raised BK levels in mastitic milk were not dependent on the presence of inflammatory cells, nor were they secondary to changes in blood levels of BK. In milk from sub-clinically inflamed quarters, BK was raised in those milks where Staphylococcus aureus (S. aureus) was isolated but not in those milks where no pathogen was isolated. Increasing S. aureus artificially, also caused an increase in the milk BK. Increases in milk BK were not restricted only to the mastitic quarters of the udder. In udders in which mastitis was detected in one or more quarters, BK increases were also detected in the apparently uninvolved quarters. PMID:10328527

  1. Bradykinin mediates cardiac preconditioning at a distance.

    PubMed

    Schoemaker, R G; van Heijningen, C L

    2000-05-01

    Preconditioning the heart by brief coronary (CAO) or mesenteric artery occlusion (MAO) can protect against damage during subsequent prolonged CAO and reperfusion. The role of bradykinin (BK) in remote cardiac preconditioning by MAO is investigated by antagonizing the BK B(2) receptor [Hoechst 140 (HOE-140)] or simulating local BK release by mesenteric intra-arterial infusion. Anesthetized male Wistar rats (n = 6-8) were treated with HOE-140 or saline before starting the preconditioning protocol, CAO, MAO, or non-preconditioned control. Infarct size related to risk area [ratio of infarct area to area at risk (IA/AR)] was determined after 3 h of reperfusion following a 60-min CAO. IA/AR was 62 +/- 5% in controls and not affected by HOE-140 (58 +/- 6%). CAO as well as MAO significantly protected the heart (IA/AR, 37 +/- 3 and 35 +/- 5%), which was prevented by HOE-140 (IA/AR, 71 +/- 6 and 65 +/- 7%, respectively). Brief intramesenteric BK infusion mimicked MAO (IA/AR, 26 +/- 3%). Pretreatment with hexamethonium could abolish this protection (IA/AR, 67 +/- 4%). These data indicate an important role for BK in remote preconditioning by MAO. Results support the hypothesis that remote preconditioning acts through sensory nerve stimulation in the ischemic organ. PMID:10775135

  2. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  3. Generation of a panel of antibodies against proteins encoded on human chromosome 21

    PubMed Central

    2010-01-01

    Background Down syndrome (DS) is caused by trisomy of all or part of chromosome 21. To further understanding of DS we are working with a mouse model, the Tc1 mouse, which carries most of human chromosome 21 in addition to the normal mouse chromosome complement. This mouse is a model for human DS and recapitulates many of the features of the human syndrome such as specific heart defects, and cerebellar neuronal loss. The Tc1 mouse is mosaic for the human chromosome such that not all cells in the model carry it. Thus to help our investigations we aimed to develop a method to identify cells that carry human chromosome 21 in the Tc1 mouse. To this end, we have generated a panel of antibodies raised against proteins encoded by genes on human chromosome 21 that are known to be expressed in the adult brain of Tc1 mice Results We attempted to generate human specific antibodies against proteins encoded by human chromosome 21. We selected proteins that are expressed in the adult brain of Tc1 mice and contain regions of moderate/low homology with the mouse ortholog. We produced antibodies to seven human chromosome 21 encoded proteins. Of these, we successfully generated three antibodies that preferentially recognise human compared with mouse SOD1 and RRP1 proteins on western blots. However, these antibodies did not specifically label cells which carry a freely segregating copy of Hsa21 in the brains of our Tc1 mouse model of DS. Conclusions Although we have successfully isolated new antibodies to SOD1 and RRP1 for use on western blots, in our hands these antibodies have not been successfully used for immunohistochemistry studies. These antibodies are freely available to other researchers. Our data high-light the technical difficulty of producing species-specific antibodies for both western blotting and immunohistochemistry. PMID:20727138

  4. Effects of acute methamphetamine on emotional memory formation in humans: encoding vs consolidation.

    PubMed

    Ballard, Michael E; Weafer, Jessica; Gallo, David A; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  5. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    PubMed Central

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  6. Bradyzide, a potent non-peptide B2 bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia

    PubMed Central

    Burgess, Gillian M; Perkins, Martin N; Rang, Humphrey P; Campbell, Elizabeth A; Brown, Michael C; McIntyre, Peter; Urban, Laszlo; Dziadulewicz, Edward K; Ritchie, Timothy J; Hallett, Allan; Snell, Christopher R; Wrigglesworth, Roger; Lee, Wai; Davis, Clare; Phagoo, Steve B; Davis, Andrew J; Phillips, Elsa; Drake, Gillian S; Hughes, Glyn A; Dunstan, Andrew; Bloomfield, Graham C

    2000-01-01

    Bradyzide is from a novel class of rodent-selective non-peptide B2 bradykinin antagonists (1-(2-Nitrophenyl)thiosemicarbazides). Bradyzide has high affinity for the rodent B2 receptor, displacing [3H]-bradykinin binding in NG108-15 cells and in Cos-7 cells expressing the rat receptor with KI values of 0.51±0.18 nM (n=3) and 0.89±0.27 nM (n=3), respectively. Bradyzide is a competitive antagonist, inhibiting B2 receptor-induced 45Ca efflux from NG108-15 cells with a pKB of 8.0±0.16 (n=5) and a Schild slope of 1.05. In the rat spinal cord and tail preparation, bradyzide inhibits bradykinin-induced ventral root depolarizations (IC50 value; 1.6±0.05 nM (n=3)). Bradyzide is much less potent at the human than at the rodent B2 receptor, displacing [3H]-bradykinin binding in human fibroblasts and in Cos-7 cells expressing the human B2 receptor with KI values of 393±90 nM (n=3) and 772±144 nM (n=3), respectively. Bradyzide inhibits bradykinin-induced [3H]-inositol trisphosphate (IP3) formation with IC50 values of 11.6±1.4 nM (n=3) at the rat and 2.4±0.3 μM (n=3) at the human receptor. Bradyzide does not interact with a range of other receptors, including human and rat B1 bradykinin receptors. Bradyzide is orally available and blocks bradykinin-induced hypotension and plasma extravasation. Bradyzide shows long-lasting oral activity in rodent models of inflammatory hyperalgesia, reversing Freund's complete adjuvant (FCA)-induced mechanical hyperalgesia in the rat knee joint (ED50, 0.84 μmol kg−1; duration of action >4 h). It is equipotent with morphine and diclofenac, and 1000 times more potent than paracetamol, its maximal effect exceeding that of the non-steroidal anti-inflammatory drugs (NSAIDs). Bradyzide does not exhibit tolerance when administered over 6 days. In summary, bradyzide is a potent, orally active, antagonist of the B2 bradykinin receptor, with selectivity for the rodent over the human receptor. PMID:10694205

  7. Bradykinin actively modulates pulmonary vascular pressure-cardiac index relationships.

    PubMed

    Nyhan, D P; Clougherty, P W; Goll, H M; Murray, P A

    1987-07-01

    Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3114215

  8. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

    PubMed Central

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca2+-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels. PMID:27445816

  9. Genomic organization of the human NSP gene, prototype of a novel gene family encoding reticulons

    SciTech Connect

    Roebroek, A.J.M.; Ayoubi, T.A.Y.; Velde, H.J.K. van de; Schoenmakers, E.F.P.M.; Pauli, I.G.L.; Van De Ven, W.J.M.

    1996-03-01

    Recently, cDNA cloning and expression of three mRNA variants of the human NSP gene were described. This neuroendocrine-specific gene encodes three NSP protein isoforms with unique amino-terminal parts, but common carboxy-terminal parts. The proteins, with yet unknown function, are associated with the endoplasmic reticulum and therefore are named NSP reticulons. Potentially, these proteins are neuroendocrine markers of a novel category in human lung cancer diagnosis. Here, the genomic organization of this gene was studied by analysis of genomic clones isolated from lambda phage and YAC libraries. The NSP exons were found to be dispersed over a genomic region of about 275 kb. The present elucidation of the genomic organization of the NSP gene explains the generation of NSP mRNA variants encoding NSP protein isoforms. Multiple promoters rather than alternative splicing of internal exons seem to be involved in this diversity. Furthermore, comparison of NSP genomic and cDNA sequences with databank nucleotide sequences resulted in the discovery of other human members of this novel family of reticulons encoding genes. 25 refs., 4 figs.

  10. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  11. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  12. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  13. Bradykinin stimulates bone resorption and lysosomal-enzyme release in cultured mouse calvaria.

    PubMed Central

    Gustafson, G T; Lerner, U

    1984-01-01

    The effect of bradykinin on bone resorption was studied in cultures of newborn-mouse calvaria. Bradykinin (0.03 microM, 1 microM) stimulated the release of 45Ca2+ from bones dissected out from mice prelabelled in vivo with 45Ca. Bradykinin (1 microM) also augmented the release of stable calcium ( 40Ca ), Pi and the lysosomal enzyme beta-glucuronidase. The stimulatory effect of bradykinin on mineral mobilization and lysosmal -enzyme release could be blocked by indomethacin. It is speculated that concomitant generation of thrombin and bradykinin in areas of trauma and inflammation may induce resorption of nearby bone tissue. PMID:6721862

  14. An NMR study of the interaction of 15N-labelled bradykinin with an antibody mimic of the bradykinin B2 receptor.

    PubMed

    Ottleben, H; Haasemann, M; Ramachandran, R; Görlach, M; Müller-Esterl, W; Brown, L R

    1997-03-01

    An isotope-edited NMR study of the peptide hormone bradykinin (RPPGFSPFR) bound to the Fab fragment of a monoclonal antibody against bradykinin (MBK3) is reported. MBK3 was previously shown to provide a binding site model of the B2 bradykinin receptor [Haasemann, M., Buschko, J., Faussner, A., Roscher, A. A., Hoebeke, J., Burch, R. M. & Muller-Esterl, W. (1991) Anti-idiotypic antibodies bearing the internal image of a bradykinin epitope, J. Immunol. 147, 3882-3892]. Bradykinin was obtained in a uniformly 15N-labelled form using recombinant expression of a fusion protein consisting of the glutathione-binding domain of glutathione S-transferase fused to residues 354-375 of the high-molecular-mass kininogen from which bradykinin was released by proteolytic digestion with its natural protease plasma kallikrein. Bradykinin forms a complex with the Fab fragment of MBK3 which exchanges slowly on the NMR time scale. The 15N and 1H resonances of the tightly bound residues of bradykinin show appreciable changes in chemical shift with respect to the free form, while the 15N and 1H linewidths indicate that the hydrodynamic behaviour of bound bradykinin is dominated by the high-molecular-mass Fab fragment. The NMR data indicate that essentially the entire nonapeptide is involved in binding. The kinetics of the ligand-exchange process, together with resonance assignments obtained via exchange spectroscopy. indicate that bradykinin binds to MBK3 only in the all-trans conformation at all three Xaa-Pro amide bonds. NH-NH NOE connectivities suggest that bradykinin is bound in an extended conformation. The spectroscopic data obtained from this study are compared to recently proposed computational models of the conformation of bradykinin bound to the B2 receptor. PMID:9119014

  15. Population-level expression variability of mitochondrial DNA-encoded genes in humans

    PubMed Central

    Wang, Gang; Yang, Ence; Mandhan, Ishita; Brinkmeyer-Langford, Candice L; Cai, James J

    2014-01-01

    Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions. PMID:24398800

  16. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1

    SciTech Connect

    Lin, F.; Worman, H.J.

    1995-05-20

    The authors have determined the structural organization of the human gene (LMNB1) that encodes nuclear lamin B1, an intermediate filament protein of the nuclear envelope. The transcription unit spans more than 45 kb and the transcription start site is 348 nucleotides upstream from the translation initiation codon. Lamin B1 is encoded by 11 exons. Exon 1 codes for the amino-terminal head domain and the first portion of the central rod domain, exons 2 through 6 the central rod domain, and exons 7 through 11 the carboxyl-terminal tail domain of this intermediate filament protein. Intron positions are conserved in other lamin genes from frogs, mice, and humans but different in lamin genes from Drosophila melanogaster and Caenorhabditis elegans. In the region encoding the central rod domain, intron positions are also similar to those in the gene for an invertebrate nonneuronal cytoplasmic intermediate filament protein and the genes for most vertebrate cytoplasmic intermediate filament proteins except neurofilaments and nestin. 51 refs., 3 figs.

  17. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  18. The Novelty of Human Cancer/Testis Antigen Encoding Genes in Evolution

    PubMed Central

    Dobrynin, Pavel; Matyunina, Ekaterina; Malov, S. V.; Kozlov, A. P.

    2013-01-01

    In order to be inherited in progeny generations, novel genes should originate in germ cells. Here, we suggest that the testes may play a special “catalyst” role in the birth and evolution of new genes. Cancer/testis antigen encoding genes (CT genes) are predominantly expressed both in testes and in a variety of tumors. By the criteria of evolutionary novelty, the CT genes are, indeed, novel genes. We performed homology searches for sequences similar to human CT in various animals and established that most of the CT genes are either found in humans only or are relatively recent in their origin. A majority of all human CT genes originated during or after the origin of Eutheria. These results suggest relatively recent origin of human CT genes and align with the hypothesis of the special role of the testes in the evolution of the gene families. PMID:23691492

  19. Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy

    PubMed Central

    Kahle, Kristopher T; Merner, Nancy D; Friedel, Perrine; Silayeva, Liliya; Liang, Bo; Khanna, Arjun; Shang, Yuze; Lachance-Touchette, Pamela; Bourassa, Cynthia; Levert, Annie; Dion, Patrick A; Walcott, Brian; Spiegelman, Dan; Dionne-Laporte, Alexandre; Hodgkinson, Alan; Awadalla, Philip; Nikbakht, Hamid; Majewski, Jacek; Cossette, Patrick; Deeb, Tarek Z; Moss, Stephen J; Medina, Igor; Rouleau, Guy A

    2014-01-01

    The KCC2 cotransporter establishes the low neuronal Cl− levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl−-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EGly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE. PMID:24928908

  20. Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue

    PubMed Central

    2015-01-01

    The existence of nonannotated protein-coding human short open reading frames (sORFs) has been revealed through the direct detection of their sORF-encoded polypeptide (SEP) products. The discovery of novel SEPs increases the size of the genome and the proteome and provides insights into the molecular biology of mammalian cells, such as the prevalent usage of non-AUG start codons. Through modifications of the existing SEP-discovery workflow, we discover an additional 195 SEPs in K562 cells and extend this methodology to identify novel human SEPs in additional cell lines and human tissue for a final tally of 237 new SEPs. These results continue to expand the human genome and proteome and demonstrate that SEPs are a ubiquitous class of nonannotated polypeptides that require further investigation. PMID:24490786

  1. Bradykinin metabolism in rat and sheep nasal secretions.

    PubMed

    Chung, F Y; Donovan, M D

    1995-07-01

    The nasal secretions are the first barrier that nasally administered drugs encounter. Therefore, the characterization of peptide metabolism in the nasal secretions is essential to predict nasal peptide bioavailability. Metabolism of bradykinin was measured in rat and sheep nasal secretions to estimate the extent of degradation of nasally administered peptide compounds. A single-pass, in situ nasal perfusion technique was employed to collect secretions for the investigation of peptide metabolism in rat nasal secretions. The protein content, mucin concentration, and degree of bradykinin metabolism in perfusate aliquots collected over a 2-h period showed that the early perfusate fractions contained most of the active secretory materials. Evidence of continuous mucus secretion and plasma extravasation was found in the nasal perfusate throughout the entire collection period. Sheep nasal secretions were collected with a cotton pledget inserted into the nasal cavity. Bradykinin and its fragments were degraded by carboxypeptidases and endopeptidases present in both rat and sheep nasal secretions. Hydrolysis of Phe5-Ser6 was the major metabolism pathway of bradykinin in the rat nasal perfusate, whereas in sheep nasal secretions, hydrolysis of the Pro7-Phe8 and Phe8-Arg9 bonds also occurred. Evidence of angiotensin converting enzyme, carboxypeptide N, and aminopeptidase activity was identified in the rat nasal perfusate with specific substrates and inhibitors. The activity of these and other enzymes in the nasal secretions may significantly limit the bioavailability of nasally administered peptide drugs prior to their exposure to the nasal mucosal tissues. PMID:7562432

  2. Bradykinin-induced venodilation is not different in blacks

    PubMed Central

    Vajo, Zoltan; McDonald, Mark; Takahashi, Bruce; Zafar, Haider; Srivathsan, Komandor; Dachman, William D.

    1997-01-01

    Aims The aim of this study was to determine whether young, normotensive blacks who have been recently demonstrated to have a venodilator response to isoprenaline decreased compared with whites, also have an decreased vasodilatory response to bradykinin. Methods Eleven black and 11 white subjects were studied. Full dose-response curves to bradykinin (dosing range 0.5–500 ng min−1 ) were generated in hand veins preconstricted with phenylephrine (dosing range 20–6800 ng min−1 ). Results The groups had a similar maximal response to bradykinin (57.6±32.2%vs 67.8±49.3%, P=NS 95% confidence interval for the difference (CI): −47.3, 26.8). Also, the log of the dose that produced half maximal response to bradykinin was similar for the two groups (0.89±0.58 vs 0.78±0.61 ng min−1, P=NS, 95% CI: −0.42, 0.64). There was no difference between the two groups in the log dose of phenylephrine necessary to produce 80% constriction of the hand vein. Conclusion Diminished vasodilatory response to endothelium-derived relaxing factor (EDRF) does not seem to be associated with the increased prevalence of hypertension in blacks. PMID:9296324

  3. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. PMID:26880543

  4. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    SciTech Connect

    Crozet, F.; El Amraoui, Z.; Blanchard, S.

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  5. Expression of the gene encoding growth hormone in the human mammary gland

    SciTech Connect

    Mol, J.A.; Misdorp, W.; Rijnberk, A.

    1995-10-01

    Progestins cause a syndrome of growth hormone (GH) excess and enhanced mammary tumorigenesis in the dog. This has been regarded as being specific for the dog. Recently we reported that progestin-induced GH excess originates from foci of hyperplastic ductular epithelium of the mammary gland in the dog. In the present report we demonstrate by reverse-transcriptase PCR and immunohistochemistry that a main factor involved in tissue growth, i.e. GH, is also expressed in normal and neoplastic human mammary glands. The gene expressed in the human mammary gland proved to be identical to the gene encoding GH in the pituitary gland. The role of progesterone in the GH expression of the human mammary gland needs, however, to be proven. It is hypothesized that this locally produced hGH may play a pathogenetic role in breast cancer. 21 refs., 2 figs., 1 tab.

  6. Promoter for the human ferritin heavy chain-encoding gene (FERH): structural and functional characterization.

    PubMed

    Bevilacqua, M A; Giordano, M; D'Agostino, P; Santoro, C; Cimino, F; Costanzo, F

    1992-02-15

    We conducted a functional analysis of the promoter for the human ferritin heavy chain-encoding gene (pFERH) in HepG2 and HeLa cells. The activity of pFERH is equivalent in both cell types, despite their different ferritin (Fer) isotypes. Transfections of a series of 5'-deletion mutants indicate that pFERH activity is essentially dependent on two motifs. One of them, accounting for about 50% of the total transcriptional activity, is recognized by the RNA polymerase II transcription factor, Sp1, and the other by a low-affinity factor present in both the cell types analyzed. PMID:1541403

  7. Epistatic interaction of genetic depression risk variants in the human subgenual cingulate cortex during memory encoding

    PubMed Central

    Schott, B H; Assmann, A; Schmierer, P; Soch, J; Erk, S; Garbusow, M; Mohnke, S; Pöhland, L; Romanczuk-Seiferth, N; Barman, A; Wüstenberg, T; Haddad, L; Grimm, O; Witt, S; Richter, S; Klein, M; Schütze, H; Mühleisen, T W; Cichon, S; Rietschel, M; Noethen, M M; Tost, H; Gundelfinger, E D; Düzel, E; Heinz, A; Meyer-Lindenberg, A; Seidenbecher, C I; Walter, H

    2014-01-01

    Recent genome-wide association studies have pointed to single-nucleotide polymorphisms (SNPs) in genes encoding the neuronal calcium channel CaV1.2 (CACNA1C; rs1006737) and the presynaptic active zone protein Piccolo (PCLO; rs2522833) as risk factors for affective disorders, particularly major depression. Previous neuroimaging studies of depression-related endophenotypes have highlighted the role of the subgenual cingulate cortex (CG25) in negative mood and depressive psychopathology. Here, we aimed to assess how recently associated PCLO and CACNA1C depression risk alleles jointly affect memory-related CG25 activity as an intermediate phenotype in clinically healthy humans. To investigate the combined effects of rs1006737 and rs2522833 on the CG25 response, we conducted three functional magnetic resonance imaging studies of episodic memory formation in three independent cohorts (N=79, 300, 113). An epistatic interaction of PCLO and CACNA1C risk alleles in CG25 during memory encoding was observed in all groups, with carriers of no risk allele and of both risk alleles showing higher CG25 activation during encoding when compared with carriers of only one risk allele. Moreover, PCLO risk allele carriers showed lower memory performance and reduced encoding-related hippocampal activation. In summary, our results point to region-specific epistatic effects of PCLO and CACNA1C risk variants in CG25, potentially related to episodic memory. Our data further suggest that genetic risk factors on the SNP level do not necessarily have additive effects but may show complex interactions. Such epistatic interactions might contribute to the ‘missing heritability' of complex phenotypes. PMID:24643163

  8. Functional reconstitution of receptors for bradykinin and des argZ-bradykinin from pulmonary artery membranes

    SciTech Connect

    Cahill, M.C.; Polgar, P.; Dickey, B.F.; Fishman, J.B.

    1987-05-01

    Bradykinin (BK) is a vasoactive peptide which mediates a number of vascular functions, including activation of prostaglandin biosynthesis and modulation of vasomotor tone. BK and its kinase II metabolite, des argZ-BK, have been reported to activate the B2 and B1 receptors, respectively. The authors prepared membranes from the bovine pulmonary artery and solubilized membrane proteins using the zwitterionic detergent CHAPS (3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate). The solubilized proteins were reconstituted into liposomes via a gel filtration method. The vesicles specifically bound both TH-BK and TH-des argZ-BK, although the latter bound with significantly lower affinity. The binding of TH-BK was inhibited 65% by guanosine 5'-0-thiotriphosphate S while the binding of TH-des argZ-BK was unaffected. This suggests that the receptor for BK was associated with a guanine-nucleotide binding protein whereas the receptor for des argZ-BK was not. Since des argZ-BK has recently been reported to be considerably less potent than BK at activating the turnover of phosphatidylinositol, the authors data suggest that this is due to the des argZ-BK receptor not being coupled to a G-protein. Further work towards characterizing these receptors is now underway.

  9. Influences of low sodium diets on vascular effects of bradykinin and on bradykinin receptors in the uterine smooth muscle in the rats.

    PubMed

    Yasujima, M; Matthews, P G; Johnston, C I; Abe, K; Yoshinaga, K

    1982-05-01

    A low sodium diet for 7 days in the rat induced an enhancement of the vascular effects of bradykinin, determined as the blood pressure response, by 56%. However, this enhancement reverted after 28 days of a low sodium diet. A sustained increase in the number of uterine smooth muscle bradykinin receptors during low sodium diets was observed, 1.3 times of the control on the 7th day and 1.7 times on the 28th day. No change in binding affinity was found in any of the studies. These results suggest that the vascular effects of bradykinin after low sodium diets may be regulated by homeostatic mechanisms via the change in the number of vascular smooth muscle bradykinin receptors at subcellular levels, and that the number of uterine smooth muscle bradykinin receptors may be affected by sodium status per se. PMID:6122746

  10. Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein

    SciTech Connect

    Hickey, E.; Brandon, S.E.; Weber, L.A.; Lloyd, D.

    1989-06-01

    Vertebrate cells synthesize two forms of the 82- to 90-kilodalton heat shock protein that are encoded by distinct gene families. In HeLa cells, both proteins (hsp89/alpha/ and hspio/beta/) are abundant under normal growth conditions and are synthesized at increased rates in response to heat stress. Only the larger form, hsp89/alpha/, is induced by the adenovirus E1A gene product. The authors have isolated a human hsp89/alpha/ gene that shows complete sequence identity with heat- and E1A-inducible cDNA used as a hybridization probe. The 5'-flanking region contained overlapping and inverted consensus heat shock control elements that can confer heat-inducible expression n a /beta/-globin reporter gene. The gene contained 10 intervening sequences. The first intron was located adjacent to the translation start codon, an arrangement also found in the Drosophila hsp82 gene. The spliced mRNA sequence contained a single open reading frame encoding an 84,564-dalton polypeptide showing high homology with the hsp82 to hsp90 proteins of other organisms. The deduced hsp89/alpha/ protein sequence differed from the human hsp89/beta/ sequence reported elsewhere in at least 99 out of the 732 amino acids. Transcription of the hsp89/alpha/ gene was induced by serum during normal cell growth, but expression did not appear to be restricted to a particular stage of the cell cycles. hsp89/alpha/ mRNA was considerably more stable than the mRNA encoding hsp70, which can account for the higher constitutive rate of hsp89 synthesis in unstressed cells.

  11. Host Cell Invasion by TRYPANOSOMA cRUZI Is Potentiated by Activation of Bradykinin B2 Receptors

    PubMed Central

    Scharfstein, Julio; Schmitz, Veronica; Morandi, Veronica; Capella, Marcia M. A.; Lima, Ana Paula C. A.; Morrot, Alexandre; Juliano, Luiz; Müller-Esterl, Werner

    2000-01-01

    The parasitic protozoan Trypanosoma cruzi employs multiple molecular strategies to invade a broad range of nonphagocytic cells. Here we demonstrate that the invasion of human primary umbilical vein endothelial cells (HUVECs) or Chinese hamster ovary (CHO) cells overexpressing the B2 type of bradykinin receptor (CHO-B2R) by tissue culture trypomastigotes is subtly modulated by the combined activities of kininogens, kininogenases, and kinin-degrading peptidases. The presence of captopril, an inhibitor of bradykinin degradation by kininase II, drastically potentiated parasitic invasion of HUVECs and CHO-B2R, but not of mock-transfected CHO cells, whereas the B2R antagonist HOE 140 or monoclonal antibody MBK3 to bradykinin blocked these effects. Invasion competence correlated with the parasites' ability to liberate the short-lived kinins from cell-bound kininogen and to elicit vigorous intracellular free calcium ([Ca2+]i) transients through B2R. Invasion was impaired by membrane-permeable cysteine proteinase inhibitors such as Z-(SBz)Cys-Phe-CHN2 but not by the hydrophilic inhibitor 1-trans-epoxysuccinyl-l-leucyl-amido-(4-guanidino) butane or cystatin C, suggesting that kinin release is confined to secluded spaces formed by juxtaposition of host cell and parasite plasma membranes. Analysis of trypomastigote transfectants expressing various cysteine proteinase isoforms showed that invasion competence is linked to the kinin releasing activity of cruzipain, herein proposed as a factor of virulence in Chagas' disease. PMID:11067878

  12. Interaction between the human cytomegalovirus‑encoded UL142 and cellular Snapin proteins.

    PubMed

    Liu, Chang; Qi, Ying; Ma, Yanping; He, Rong; Sun, Zhengrong; Huang, Yujing; Ji, Yaohua; Ruan, Qiang

    2015-02-01

    Human cytomegalovirus (HCMV) infection can cause severe illness in immunocompromised and immunodeficient individuals. As a novel HCMV‑encoded major histocompatibility complex class I‑related molecule, the UL142‑encoded protein (pUL142) is capable of suppressing natural killer (NK) cell recognition in the course of infection. However, no host factors that directly interact with HCMV pUL142 have been reported so far. In order to understand the interactions between HCMV pUL142 and host proteins, the current study used yeast two‑hybrid screening, a GST pull‑down assay and an immunofluorescence assay. A host protein, the SNARE‑associated protein Snapin, was identified to directly interact and colocalize with HCMV pUL142 in transfected human embryonic kidney‑293 cells. Snapin is abundantly expressed in the majority of cells and mediates the release of neurotransmitters through vesicular transport in the nervous system and vesicle fusion in non‑neuronal cells. It is hypothesized that HCMV pUL142 may have an impact on the neurotransmitter release process and viral dissemination via interaction with Snapin. PMID:25369979

  13. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins.

    PubMed

    Bankmann, M; Prakash, L; Prakash, S

    1992-02-01

    Xeroderma pigmentosum (XP), a human autosomal recessive disorder, is characterized by extreme sensitivity to sunlight and high incidence of skin cancers. XP cells are defective in the incision step of excision repair of DNA damaged by ultraviolet light. Cell fusion studies have defined seven XP complementation groups, XP-A to XP-G. Similar genetic complexity of excision repair is observed in the yeast Saccharomyces cerevisiae. Mutations in any one of five yeast genes, RAD1, RAD2, RAD3, RAD4, and RAD10, cause a total defect in incision and an extreme sensitivity to ultraviolet light. Here we report the characterization of the yeast RAD14 gene. The available rad14 point mutant is only moderately ultraviolet-sensitive, and it performs a substantial amount of incision of damaged DNA. Our studies with the rad14 deletion (delta) mutation indicate an absolute requirement of RAD14 in incision. RAD14 encodes a highly hydrophilic protein of 247 amino acids containing zinc-finger motifs, and it is similar to the protein encoded by the human XPAC gene that complements XP group A cell lines. PMID:1741034

  14. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers.

    PubMed Central

    Chardin, P; Courtois, G; Mattei, M G; Gisselbrecht, S

    1991-01-01

    We have isolated a human cDNA (kup), encoding a new protein with two distantly spaced zinc fingers of the C2H2 type. This gene is highly conserved in mammals and is expressed mainly in hematopoietic cells and testis. Its expression was not higher in the various transformed cells tested than in the normal corresponding tissues. The kup gene is located in region q23-q24 of the long arm of human chromosome 14. The kup protein is 433 a.a. long, has a M.W. close to 50 kD and binds to DNA. Although the structure of the kup protein is unusual, the isolated fingers resemble closely those of the Krüppel family, suggesting that this protein is also a transcription factor. The precise function and DNA motif recognized by the kup protein remain to be determined. Images PMID:2027750

  15. The habenula encodes negative motivational value associated with primary punishment in humans

    PubMed Central

    Lawson, Rebecca P.; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J.; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P.

    2014-01-01

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans. PMID:25071182

  16. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  17. Role of Broca's area in encoding sequential human actions: a virtual lesion study.

    PubMed

    Clerget, Emeline; Winderickx, Aline; Fadiga, Luciano; Olivier, Etienne

    2009-10-28

    The exact contribution of Broca's area to motor cognition is still controversial. Here we used repetitive transcranial magnetic stimulation (5 Hz, five pulses) to interfere transiently with the function of left BA44 in 13 healthy individuals; the task consisted of reordering human actions or nonbiological events based on three pictures presented on a computer screen and extracted from a video showing the entire sequence beforehand. We found that a virtual lesion of left BA44 impairs individual performance only for biological actions, and more specifically for object-oriented syntactic actions. Our finding provides evidence that Broca's area plays a crucial role in encoding complex human movements, a process which may be crucial for understanding and/or programming actions. PMID:19809371

  18. Human antisera detect a Plasmodium falciparum genomic clone encoding a nonapeptide repeat.

    PubMed

    Koenen, M; Scherf, A; Mercereau, O; Langsley, G; Sibilli, L; Dubois, P; Pereira da Silva, L; Müller-Hill, B

    Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer. PMID:6090935

  19. Alternative splicing of the mRNA encoding the human cholesteryl ester transfer protein

    SciTech Connect

    Inazu, Akihiro; Quinet, E.M.; Suke Wang; Brown, M.L.; Stevenson, S.; Barr, M.L.; Moulin, P.; Tall, A.R. )

    1992-03-03

    The plasma cholesteryl ester transfer protein (CETP) is known to facilitate the transfer of lipids between plasma lipoproteins. The human CETP gene is a complex locus encompassing 16 exons. The CETP mRNA is found in liver and small intestine as well as in a variety of peripheral tissues. While the CETP cDNA from human adipose tissue was being cloned, a variant CETP cDNA was discovered which excluded the complete sequence encoded by exon 9, but which was otherwise identical to the full-length CETP cDNA, suggesting modification of the CETP gene transcript by an alternative RNA splicing mechanism. RNase protection analysis of tissue RNA confirmed the presence of exon 9 deleted transcripts and showed that they represented a variable proportion of the total CETP mRNA in various human tissues including adipose tissue (25%), liver (33%), and spleen (46%). Transient expression of the exon 9 deleted cDNA in COS cells or stable expression in CHO cells showed that the protein encoded by the alternatively spliced transcript was inactive in neutral lipid transfer, smaller, and poorly secreted compared to the protein derived from the full-length cDNA. Endo H digestion suggested that the inactive, cell-associated protein was present within the endoplasmic reticulum. The experiments show that the expression of the human CETP gene is modified by alternative splicing of the ninth exon, in a tissue-specific fashion. The function of alternative splicing is unknown but could serve to produce a protein with a function other than plasma neutral lipid transfer, or as an on-off switch to regulate the local concentration of biologically active protein.

  20. Bradykinin antagonists modified with dipeptide mimetic beta-turn inducers.

    PubMed

    Alcaro, Maria C; Vinci, Valerio; D'Ursi, Anna M; Scrima, Mario; Chelli, Mario; Giuliani, Sandro; Meini, Stefania; Di Giacomo, Marcello; Colombo, Lino; Papini, Anna Maria

    2006-05-01

    Bradykinin (BK) is involved in a wide variety of pathophysiological processes. Potent BK peptide antagonists can be developed introducing constrained unnatural amino acids, necessary to force the secondary structure of the molecule. In this paper, we report a structure-activity relationship study of two peptide analogues of the potent B2 antagonist HOE 140 by replacing the D-Tic-Oic dipeptide with conformationally constrained dipeptide mimetic beta-turn inducers. PMID:16504505

  1. Detection of Regulatory SNPs in Human Genome Using ChIP-seq ENCODE Data

    PubMed Central

    Matveeva, Marina Yu.; Shilov, Alexander G.; Kashina, Elena V.; Mordvinov, Viatcheslav A.; Merkulova, Tatyana I.

    2013-01-01

    A vast amount of SNPs derived from genome-wide association studies are represented by non-coding ones, therefore exacerbating the need for effective identification of regulatory SNPs (rSNPs) among them. However, this task remains challenging since the regulatory part of the human genome is annotated much poorly as opposed to coding regions. Here we describe an approach aggregating the whole set of ENCODE ChIP-seq data in order to search for rSNPs, and provide the experimental evidence of its efficiency. Its algorithm is based on the assumption that the enrichment of a genomic region with transcription factor binding loci (ChIP-seq peaks) indicates its regulatory function, and thereby SNPs located in this region are more likely to influence transcription regulation. To ensure that the approach preferably selects functionally meaningful SNPs, we performed enrichment analysis of several human SNP datasets associated with phenotypic manifestations. It was shown that all samples are significantly enriched with SNPs falling into the regions of multiple ChIP-seq peaks as compared with the randomly selected SNPs. For experimental verification, 40 SNPs falling into overlapping regions of at least 7 TF binding loci were selected from OMIM. The effect of SNPs on the binding of the DNA fragments containing them to the nuclear proteins from four human cell lines (HepG2, HeLaS3, HCT-116, and K562) has been tested by EMSA. A radical change in the binding pattern has been observed for 29 SNPs, besides, 6 more SNPs also demonstrated less pronounced changes. Taken together, the results demonstrate the effective way to search for potential rSNPs with the aid of ChIP-seq data provided by ENCODE project. PMID:24205329

  2. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom.

    PubMed

    Ferreira, L A; Alves, E W; Henriques, O B

    1993-08-01

    A bradykinin-potentiating peptide was isolated and characterized from venom of the scorpion Tityus serrulatus by chromatographic techniques followed by biological assays. The complete amino acid sequence (13 residues) of peptide is presented. The peptide potentiated the contractile activity of bradykinin on the isolated guinea-pig ileum, and inhibited the hydrolysis of bradykinin by angiotensin-converting enzyme from B. jararaca plasma and the conversion of angiotensin I to angiotensin II by kininase II from guinea-pig ileum tissue. The peptide also increased the depressor effect of bradykinin on arterial blood pressure in the anaesthetized rat. PMID:8212046

  3. Role of bradykinin in the vascular permeability response induced by carrageenin in rats.

    PubMed Central

    Kumakura, S.; Kamo, I.; Tsurufuji, S.

    1988-01-01

    1 Bradykinin in carrageenin-induced inflammatory pouch fluid was measured by an enzyme immunoassay method. 2 The bradykinin showed a single peak in the 30-60 min period after the challenge and then decreased quickly, and there was a correlation between the bradykinin level and exudation of fluorescein-labelled bovine serum albumin in the first 60 min period. 3 Captopril (an inhibitor of kininase II) elevated both the bradykinin level in the inflammatory pouch fluid and vascular permeability, while DL-2-mercaptomethyl-3- guanidinoethylthiopropanoic acid (an inhibitor of kininase I) had no effect. 4 Soybean trypsin inhibitor (SBTI) inhibited the vascular permeability response in parallel with the decrease in the bradykinin level. 5 A bradykinin-degrading activity appeared in the pouch fluid within 1 h after the challenge and increased with time. 6 In the period of 3.5-4 h, bradykinin levels were suppressed below the sensitivity limit of the assay, i.e. 0.07 nm ml-1, in spite of active generation. This was because degradation of bradykinin was very rapid in this late stage. Nevertheless, bradykinin still played a definite role in sustaining a high level of vascular permeability response in the late stage in conjunction with prostaglandins. PMID:2839262

  4. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex.

    PubMed

    Klein-Flügge, Miriam Cornelia; Barron, Helen Catharine; Brodersen, Kay Henning; Dolan, Raymond J; Behrens, Timothy Edward John

    2013-02-13

    A dominant focus in studies of learning and decision-making is the neural coding of scalar reward value. This emphasis ignores the fact that choices are strongly shaped by a rich representation of potential rewards. Here, using fMRI adaptation, we demonstrate that responses in the human orbitofrontal cortex (OFC) encode a representation of the specific type of food reward predicted by a visual cue. By controlling for value across rewards and by linking each reward with two distinct stimuli, we could test for representations of reward-identity that were independent of associative information. Our results show reward-identity representations in a medial-caudal region of OFC, independent of the associated predictive stimulus. This contrasts with a more rostro-lateral OFC region encoding reward-identity representations tied to the predicate stimulus. This demonstration of adaptation in OFC to reward specific representations opens an avenue for investigation of more complex decision mechanisms that are not immediately accessible in standard analyses, which focus on correlates of average activity. PMID:23407973

  5. Cloning and characterization of human liver cDNA encoding a protein S precursor

    SciTech Connect

    Hoskins, J.; Norman, D.K.; Beckmann, R.J.; Long, G.L.

    1987-01-01

    Human liver cDNA encoding a protein S precursor was isolated from two cDNA libraries by two different techniques. Based upon the frequency of positive clones, the abundance of mRNA for protein S is approx. = 0.01%. Blot hybridization of electrophoretically fractionated poly(A)/sup +/ RNA revealed a major mRNA approx. = 4 kilobases long and two minor forms of approx. = 3.1 and approx. = 2.6 kilobases. One of the cDNA clones contains a segment encoding a 676 amino acid protein S precursor, as well as 108 and 1132 nucleotides of 5' and 3' noncoding sequence, respectively, plus a poly(A) region at the 3' end. The cDNAs are adenosine plus thymidine-rich (60%) except for the 5' noncoding region, where 78% of the nucleotides are guanosine or cytosine. The protein precursor consists of a 41 amino acid leader peptide followed by 635 amino acids corresponding to mature protein S. Comparison of the mature protein region with homologous vitamin K-dependent plasma proteins shows that it is composed of the following domains: an amino-terminal ..gamma..-carboxyglutamic acid-rich region of 37 amino acids; a 36 amino acid linker region rich in hydroxy amino acids; four epidermal growth factor-like segments, each approx. = 45 amino acids long; and a 387 amino acid carboxyl-terminal domain of unrecognized structure and unknown function.

  6. Human anterior prefrontal cortex encodes the 'what' and 'when' of future intentions.

    PubMed

    Momennejad, Ida; Haynes, John-Dylan

    2012-05-15

    On a daily basis we form numerous intentions to perform specific actions. However, we often have to delay the execution of intended actions while engaging in other demanding activities. Previous research has shown that patterns of activity in human prefrontal cortex (PFC) can reveal our current intentions. However, two fundamental questions have remained unresolved: (a) how does the PFC encode information about future tasks while we are busy engaging in other activities, and (b) how does the PFC enable us to commence a stored task at the intended time? Here we investigate how the brain stores and retrieves future intentions during occupied delays, i.e. while a person is busy performing a different task. For this purpose, we conducted a neuroimaging study with a time-based prospective memory paradigm. Using multivariate pattern classification and fMRI we show that during an occupied delay, activity patterns in the anterior PFC encode the content of 'what' subjects intend to do next, and 'when' they intend to do it. Importantly, distinct anterior PFC regions store the 'what' and 'when' components of future intentions during occupied maintenance and self-initiated retrieval. These results show a role for anterior PFC activity patterns in storing future action plans and ensuring their timely retrieval. PMID:22418393

  7. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  8. Four phosphoproteins with common amino termini are encoded by human cytomegalovirus AD169

    SciTech Connect

    Wright, D.A.; Staprans, S.I.; Spector, D.H.

    1988-01-01

    In this report, the authors identify the proteins encoded by the 2.2-kilobase class of early transcripts arising from a region of the strain AD169 human cytomegalovirus genome (map units 0.682 to 0.713) which contains cell-related sequences. These transcripts, encoded by adjacent EcoRI fragments R and d, have a complex spliced structure with 5' and 3' coterminal ends. Antiserum directed against a synthetic 11-amino-acid peptide corresponding to the predicted amino terminus of the proteins was generated and found to immunoprecipitate four-infected-cell proteins of 84, 50, 43, and 34 kilodaltons. These proteins were phosphorylated and were associated predominantly with the nuclei of infected cells. The 43-kilodalton protein was the most abundant of the four proteins, and its level of expression remained relatively constant throughout the infection. Expression of the other proteins increased as the infection progressed. Pulse-chase analysis failed to show a precursor-product relationship between any of the proteins. A comparison of the (/sup 35/S)methionine-labeled tryptic peptide maps of the four proteins from infected cells and an in vitro-generated polypeptide derived from the putative first exon showed that all four infected-cell proteins were of viral origin and contained a common amino-terminal region.

  9. The relationship between transcript expression levels of nuclear encoded (TFAM, NRF1) and mitochondrial encoded (MT-CO1) genes in single human oocytes during oocyte maturation

    PubMed Central

    Novin, M Ghaffari; Allahveisi, A; Noruzinia, M; Farhadifar, F; Yousefian, E; Fard, A Dehghani; Salimi, M

    2015-01-01

    In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII) stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA), copied in oocytes, is essential for providing adenosine triphosphate (ATP) during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1) and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) in various stages of human oocyte maturation. Nine consenting patients, age 21–35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI) procedures. mRNA levels of mitochondrial-related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR). There was no significant relationship between the relative expression levels in germinal vesicle (GV) stage oocytes (p = 0.62). On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI) and MII (p = 0.03 and p = 0.002). A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation. PMID:26929904

  10. PiggyBac transposon vectors: the tools of the human gene encoding

    PubMed Central

    Zhao, Shuang; Jiang, Enze; Chen, Shuangshuang; Gu, Yuan; Shangguan, Anna Junjie; Lv, Tangfeng

    2016-01-01

    A transposon is a DNA segment, which is able to change its relative position within the entire genome of a cell. The piggyBac (PB) transposon is a movable genetic element that efficiently transposes between vectors and chromosomes through a “cut-and-paste” mechanism. During transposition, the PB transposase recognizes transposon-specific inverted terminal repeats (ITRs) sequences located on both ends of the transposon vector and eight efficiently moves the contents from its original positions and efficiently integrates them into TTAA chromosomal sites. PB has drawn much attention because of its transposition efficiency, safety and stability. Due to its priorities, PB can be used as a new genetic vehicle, a new tool for oncogene screening and a new method for gene therapy. PB has created a new outlook for human gene encoding. PMID:26958506

  11. Human chromosome 16 encodes a factor involved in induction of class II major histocompatibility antigens by interferon gamma.

    PubMed Central

    Bono, M R; Alcaïde-Loridan, C; Couillin, P; Letouzé, B; Grisard, M C; Jouin, H; Fellous, M

    1991-01-01

    Interferon gamma (IFN-gamma) induces expression of class II major histocompatibility complex (MHC)-encoded antigens in immunocompetent cells. To gain further insight into the mechanism of this induction, we prepared somatic cell hybrids between different human cell lines and a murine cell line, RAG, that does not express murine class II MHC antigens before or after treatment with murine IFN-gamma. Some of the resulting cell hybrids express murine class II MHC antigens when treated with murine IFN-gamma. This inducible phenotype is correlated with the presence of human chromosome 16. It has been shown previously that the induction of class I MHC antigens by human IFN-gamma in human-rodent hybrids requires the presence of species-specific factors encoded by chromosome 6, which bears the gene for the human IFN-gamma receptor, and chromosome 21, whose product(s) is necessary for the transduction of human IFN-gamma signals. In this report, we show that the induction of murine class II MHC antigens by human IFN-gamma in the human-RAG cell hybrids requires, likewise, the presence of human chromosomes 6 and 21, in addition to chromosome 16. In some of these hybrids, when all three of these human chromosomes were present, induction of cell-surface HLA-DR antigens was also observed. Our results demonstrate that human chromosome 16 encodes a non-species-specific factor involved in the induction of class II MHC antigens by IFN-gamma. Images PMID:1906174

  12. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells

    PubMed Central

    Ramunas, John; Yakubov, Eduard; Brady, Jennifer J.; Corbel, Stéphane Y.; Holbrook, Colin; Brandt, Moritz; Stein, Jonathan; Santiago, Juan G.; Cooke, John P.; Blau, Helen M.

    2015-01-01

    Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24–48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 1012-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.—Ramunas, J., Yakubov, E., Brady, J. J., Corbel, S. Y., Holbrook, C., Brandt, M., Stein, J., Santiago, J. G., Cooke, J. P., Blau, H. M. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. PMID:25614443

  13. Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q

    SciTech Connect

    Shephard, E.A.; Fox, M.F.; Povey, S. ); Dolphin, C.T.; Phillips, I.R.; Smith, R. )

    1993-04-01

    The authors have used the polymerase chain reaction to map the gene encoding human flavin-containing monooxygenase (FMO) form II (N. Lomri, Q. Gu, and J. R. Cashman, 1992, Proc. Natl. Acad. Sci. USA 89: 1685--1689) to chromosome 1. They propose the designation FMO3 for this gene as it is the third FMO gene to be mapped. The two other human FMO genes identified to date, FMO1 and FMO2, are also located on chromosome 1 (C. Dolphin, E. A. Shephard, S. Povey, C. N. A. Palmer, D. M. Ziegler, R. Ayesh, R. L. Smith, and 1. R. Phillips, 1991, J. Biol. Chem. 266: 12379--12385; C. Dolphin, E. A. Shephard, S. F. Povey, R. L. Smith, and I. R. Phillips, 1992, Biochem. J. 286: 261--267). The localization of FMO1, FMO2, and FMO3 has been refined to the long arm of chromosome 1. Analysis of human metaphase chromosomes by in situ hybridization confirmed the mapping of FMO1 and localized this gene more precisely to 1 q23-q25. 28 refs., 3 figs., 2 tabs.

  14. Phosphoproteome of Human Glioblastoma Initiating Cells Reveals Novel Signaling Regulators Encoded by the Transcriptome

    PubMed Central

    Kozuka-Hata, Hiroko; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Ao-Kondo, Hiroko; Tsumoto, Kouhei; Akiyama, Tetsu; Oyama, Masaaki

    2012-01-01

    Background Glioblastoma is one of the most aggressive tumors with poor prognosis. Although various studies have been performed so far, there are not effective treatments for patients with glioblastoma. Methodology/Principal Findings In order to systematically elucidate the aberrant signaling machinery activated in this malignant brain tumor, we investigated phosphoproteome dynamics of glioblastoma initiating cells using high-resolution nanoflow LC-MS/MS system in combination with SILAC technology. Through phosphopeptide enrichment by titanium dioxide beads, a total of 6,073 phosphopeptides from 2,282 phosphorylated proteins were identified based on the two peptide fragmentation methodologies of collision induced dissociation and higher-energy C-trap dissociation. The SILAC-based quantification described 516 up-regulated and 275 down-regulated phosphorylation sites upon epidermal growth factor stimulation, including the comprehensive status of the phosphorylation sites on stem cell markers such as nestin. Very intriguingly, our in-depth phosphoproteome analysis led to identification of novel phosphorylated molecules encoded by the undefined sequence regions of the human transcripts, one of which was regulated upon external stimulation in human glioblastoma initiating cells. Conclusions/Significance Our result unveils an expanded diversity of the regulatory phosphoproteome defined by the human transcriptome. PMID:22912867

  15. A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme.

    PubMed Central

    Yasunami, M; Chen, C S; Yoshida, A

    1991-01-01

    The human alcohol dehydrogenase (ADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family consists of five known loci (ADH1-ADH5), which have been mapped close together on chromosome 4 (4q21-25). ADH isozymes encoded by these genes are grouped in three distinct classes in terms of their enzymological properties. A moderate structural similarity is observed between the members of different classes. We isolated an additional member of the ADH gene family by means of cross-hybridization with the ADH2 (class I) cDNA probe. cDNA clones corresponding to this gene were derived from PCR-amplified libraries as well. The coding sequence of a 368-amino-acid-long open reading frame was interrupted by introns into eight exons and spanned approximately 17 kilobases on the genome. The gene contains a glucocorticoid response element at the 5' region. The transcript was detected in the stomach and liver. The deduced amino acid sequence of the open reading frame showed about 60% positional identity with known human ADHs. This extent of homology is comparable to interclass similarity in the human ADH family. Thus, the newly identified gene, which is designated ADH6, governs the synthesis of an enzyme that belongs to another class of ADHs presumably with a distinct physiological role. Images PMID:1881901

  16. Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain

    PubMed Central

    Quiroga, Rodrigo Quian; Kraskov, Alexander; Koch, Christof; Fried, Itzhak

    2010-01-01

    Summary Different pictures of Marilyn Monroe can evoke the same percept, even if greatly modified as in Andy Warhol’s famous portraits. But how does the brain recognize highly variable pictures as the same percept? Various studies have provided insights into how visual information is processed along the “ventral pathway,” via both single-cell recordings in monkeys [1, 2] and functional imaging in humans [3, 4]. Interestingly, in humans, the same “concept” of Marilyn Monroe can be evoked with other stimulus modalities, for instance by hearing or reading her name. Brain imaging studies have identified cortical areas selective to voices [5, 6] and visual word forms [7, 8]. However, how visual, text, and sound information can elicit a unique percept is still largely unknown. By using presentations of pictures and of spoken and written names, we show that (1) single neurons in the human medial temporal lobe (MTL) respond selectively to representations of the same individual across different sensory modalities; (2) the degree of multimodal invariance increases along the hierarchical structure within the MTL; and (3) such neuronal representations can be generated within less than a day or two. These results demonstrate that single neurons can encode percepts in an explicit, selective, and invariant manner, even if evoked by different sensory modalities. PMID:19631538

  17. Explicit encoding of multimodal percepts by single neurons in the human brain.

    PubMed

    Quian Quiroga, Rodrigo; Kraskov, Alexander; Koch, Christof; Fried, Itzhak

    2009-08-11

    Different pictures of Marilyn Monroe can evoke the same percept, even if greatly modified as in Andy Warhol's famous portraits. But how does the brain recognize highly variable pictures as the same percept? Various studies have provided insights into how visual information is processed along the "ventral pathway," via both single-cell recordings in monkeys and functional imaging in humans. Interestingly, in humans, the same "concept" of Marilyn Monroe can be evoked with other stimulus modalities, for instance by hearing or reading her name. Brain imaging studies have identified cortical areas selective to voices and visual word forms. However, how visual, text, and sound information can elicit a unique percept is still largely unknown. By using presentations of pictures and of spoken and written names, we show that (1) single neurons in the human medial temporal lobe (MTL) respond selectively to representations of the same individual across different sensory modalities; (2) the degree of multimodal invariance increases along the hierarchical structure within the MTL; and (3) such neuronal representations can be generated within less than a day or two. These results demonstrate that single neurons can encode percepts in an explicit, selective, and invariant manner, even if evoked by different sensory modalities. PMID:19631538

  18. Transfection of Human Keratinocytes with Nucleoside-Modified mRNA Encoding CPD-Photolyase to Repair DNA Damage.

    PubMed

    Boros, Gábor; Karikó, Katalin; Muramatsu, Hiromi; Miko, Edit; Emri, Eszter; Hegedűs, Csaba; Emri, Gabriella; Remenyik, Éva

    2016-01-01

    In vitro-synthesized mRNA containing nucleoside modifications has great therapeutical potential to transiently express proteins with physiological importance. One such protein is photolyase which rapidly removes UV-induced DNA damages, but this enzyme is absent in humans. Here, we apply a novel mRNA-based platform to achieve functional nonhuman photolyase production in cultured human keratinocytes. Transfection of nucleoside-modified mRNA encoding photolyase leads to accelerated repair of DNA photolesions in human keratinocytes. PMID:27236802

  19. Non-human lnc-DC orthologs encode Wdnm1-like protein

    PubMed Central

    Dijkstra, Johannes M.; Ballingall, Keith T.

    2014-01-01

    In a recent publication in Science, Wang et al. found a long noncoding RNA (lncRNA) expressed in human dendritic cells (DC), which they designated lnc-DC. Based on lentivirus-mediated RNA interference (RNAi) experiments in human and murine systems, they concluded that lnc-DC is important in differentiation of monocytes into DC. However, Wang et al. did not mention that their so-called “mouse lnc-DC ortholog” gene was already designated “ Wdnm1-like” and is known to encode a small secreted protein.  We found that incapacitation of the Wdnm1-like open reading frame (ORF) is very rare among mammals, with all investigated primates except for hominids having an intact ORF. The null-hypothesis by Wang et al. therefore should have been that the human lnc-DC transcript might only represent a non-functional relatively young evolutionary remnant of a protein coding locus.  Whether this null-hypothesis can be rejected by the experimental data presented by Wang et al. depends in part on the possible off-target (immunogenic or otherwise) effects of their RNAi procedures, which were not exhaustive in regard to the number of analyzed RNAi sequences and control sequences.  If, however, the conclusions by Wang et al. on their human model are correct, and they may be, current knowledge regarding the Wdnm1-like locus suggests an intriguing combination of different functions mediated by transcript and protein in the maturation of several cell types at some point in evolution. We feel that the article by Wang et al. tends to be misleading without the discussion presented here. PMID:25309733

  20. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    SciTech Connect

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III ); Billheimer, J.T. )

    1991-01-15

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP{sub 2}). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP{sub 2} amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP{sub 2}. The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A){sup +} RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP{sub 2} gene in the human genome or that the SCP{sub 2} gene is very large. Coexpression of the SCP{sub 2} cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP{sub 2} plays a role in regulating steroidogenesis, among other possible functions.

  1. Molecular cloning of a cDNA encoding the human Sm-D autoantigen

    SciTech Connect

    Rokeach, L.A.; Haselby, J.A.; Hoch, S.O. )

    1988-07-01

    Antibodies to the Sm-D polypeptide antigen are closely associated with the rheumatic disease systemic lupus erythematosus. Sm-D exists in the cell as one of the core proteins of the small nuclear ribonucleoprotein complexes implicated in RNA processing. The authors have isolated a cDNA clone, D45-2, coding for the Sm-D human nuclear antigen by screening a human B-lymphocyte cDNA library with synthetic oligonucleotide probes. The 1633-base-pair clone contains an open reading frame (ORF) 357 nucleotides long, capable of encoding a 13,282-dalton polypeptide. The Sm-D coding region is initiated at an AUG codon downstream from a sequence with excellent match to the consensus for the eukaryotic ribosome-binding site. The Sm-D ORF is preceded by a 150-nucleotide-long untranslated leader and followed by a 1126-nucleotide-long untranslated region containing four putative poly(A) signals. The predicted amino acid sequence reveals a (Gly-Arg){sub 9} repeated motif at the C terminus, which may constitute one of the Sm-D immunoreactive determinants. Moreover, this C terminus shows interesting features: (i) a good homology to protamines as expected for a nucleic acid binding protein and (ii) a striking similarity to a region in the Epstein-Barr nuclear antigen.

  2. Novel human growth hormone like protein HGH-V encoded in the human genome

    SciTech Connect

    Seeburg, P.H.

    1987-05-12

    This patent describes the human growth hormone protein, HGH-V, having the amino acid sequence: phe pro thr ile pro leu ser arg leu phe asp asn ala met leu arg ala arg arg leu tyr gln leu ala tyr asp thr tyr gln glu phe glu glu ala tyr ile leu lys glu gln lys tyr ser phe leu gln asn pro gln thr ser leu cys phe ser glu ser ile pro thr pro ser asn arg val lys thr gln gln lys ser asn leu glu leu leu arg ile ser leu leu leu ile gln ser trp leu glu pro val gln leu leu arg ser val phe ala asn ser leu val tyr gly ala ser asp ser asn val tyr arg his leu lys asp leu glu glu gly ile gln thr leu met trp arg leu glu asp gly ser pro arg thr gly gln ile phe asn-glycosylation site gln ser tyr ser lys phe asp thr lys ser his asn asp asp ala leu leu lys asn tyr gly leu leu tyr cys Phe arg lys asp met asp lys val glu thr phe leu arg ile val gln cys arg ser val glu gly ser cys gly phe.

  3. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon — diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor–null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor–null mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-β1, connective tissue growth factor, p53, α-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2′-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acid–reactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  4. [Bradykinin-induced angioedema: Definition, pathogenesis, clinical presentation, diagnosis and therapy].

    PubMed

    Hahn, J; Bas, M; Hoffmann, T K; Greve, J

    2015-12-01

    The incidence of bradykinin-induced angioedema is considerably lower than that of histamine-induced forms; however, the same is true for the clinician's knowledge of this condition. Bradykinin-induced angioedemas include hereditary angioedema (HAE), as well as acquired forms induced by drugs or antibody formation, e.g., during the course of oncologic disease. Drug-induced forms affect almost exclusively the head and neck region, and are thus important for the otorhinolaryngologist. Clear differentiation between histamine-induced angioedema (e. g., connected to allergy/urticaria) and bradykinin-induced angioedema is essential for selection of the specific treatment and may be lifesaving. Antihistamines and cortisone derivatives have no relevant effect in bradykinin induced-angioedema, whereas blood-derived C1 esterase inhibitor and bradykinin receptor 2 antagonists represent effective therapeutic options--both for acute and prophylactic treatment. PMID:26597136

  5. The mouse and human genes encoding the recognition component of the N-end rule pathway

    PubMed Central

    Kwon, Yong Tae; Reiss, Yuval; Fried, Victor A.; Hershko, Avram; Yoon, Jeong Kyo; Gonda, David K.; Sangan, Pitchai; Copeland, Neal G.; Jenkins, Nancy A.; Varshavsky, Alexander

    1998-01-01

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway is one proteolytic pathway of the ubiquitin system. The recognition component of this pathway, called N-recognin or E3, binds to a destabilizing N-terminal residue of a substrate protein and participates in the formation of a substrate-linked multiubiquitin chain. We report the cloning of the mouse and human Ubr1 cDNAs and genes that encode a mammalian N-recognin called E3α. Mouse UBR1p (E3α) is a 1,757-residue (200-kDa) protein that contains regions of sequence similarity to the 225-kDa Ubr1p of the yeast Saccharomyces cerevisiae. Mouse and human UBR1p have apparent homologs in other eukaryotes as well, thus defining a distinct family of proteins, the UBR family. The residues essential for substrate recognition by the yeast Ubr1p are conserved in the mouse UBR1p. The regions of similarity among the UBR family members include a putative zinc finger and RING-H2 finger, another zinc-binding domain. Ubr1 is located in the middle of mouse chromosome 2 and in the syntenic 15q15-q21.1 region of human chromosome 15. Mouse Ubr1 spans ≈120 kilobases of genomic DNA and contains ≈50 exons. Ubr1 is ubiquitously expressed in adults, with skeletal muscle and heart being the sites of highest expression. In mouse embryos, the Ubr1 expression is highest in the branchial arches and in the tail and limb buds. The cloning of Ubr1 makes possible the construction of Ubr1-lacking mouse strains, a prerequisite for the functional understanding of the mammalian N-end rule pathway. PMID:9653112

  6. A low-frequency oscillatory neural signal in humans encodes a developing decision variable.

    PubMed

    Kubanek, Jan; Snyder, Lawrence H; Brunton, Bingni W; Brody, Carlos D; Schalk, Gerwin

    2013-12-01

    We often make decisions based on sensory evidence that is accumulated over a period of time. How the evidence for such decisions is represented in the brain and how such a neural representation is used to guide a subsequent action are questions of considerable interest to decision sciences. The neural correlates of developing perceptual decisions have been thoroughly investigated in the oculomotor system of macaques who communicated their decisions using an eye movement. It has been found that the evidence informing a decision to make an eye movement is in part accumulated within the same oculomotor circuits that signal the upcoming eye movement. Recent evidence suggests that the somatomotor system may exhibit an analogous property for choices made using a hand movement. To investigate this possibility, we engaged humans in a decision task in which they integrated discrete quanta of sensory information over a period of time and signaled their decision using a hand movement or an eye movement. The discrete form of the sensory evidence allowed us to infer the decision variable on which subjects base their decision on each trial and to assess the neural processes related to each quantum of the incoming decision evidence. We found that a low-frequency electrophysiological signal recorded over centroparietal regions strongly encodes the decision variable inferred in this task, and that it does so specifically for hand movement choices. The signal ramps up with a rate that is proportional to the decision variable, remains graded by the decision variable throughout the delay period, reaches a common peak shortly before a hand movement, and falls off shortly after the hand movement. Furthermore, the signal encodes the polarity of each evidence quantum, with a short latency, and retains the response level over time. Thus, this neural signal shows properties of evidence accumulation. These findings suggest that the decision-related effects observed in the oculomotor system

  7. A Novel Bradykinin-Related Dodecapeptide (RVALPPGFTPLR) from the Skin Secretion of the Fujian Large-Headed Frog (Limnonectes fujianensis) Exhibiting Unusual Structural and Functional Features

    PubMed Central

    Shi, Daning; Luo, Yu; Du, Qiang; Wang, Lei; Zhou, Mei; Ma, Jie; Li, Renjie; Chen, Tianbao; Shaw, Chris

    2014-01-01

    Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor. PMID:25268979

  8. Studies on the expression and processing of human proinsulin derivatives encoded by different DNA constructs.

    PubMed

    Aslam, Farheen; Gardner, Qurra-tul Ann Afza; Zain, Hina; Nadeem, Muhammad Shahid; Ali, Muhammad; Rashid, Naeem; Akhtar, Muhammad

    2013-10-01

    A synthetic gene encoding human proinsulin, containing Escherichia coli preferred codons, with an additional N-terminal methionine, was used for the expression, of M-proinsulin and construction of nine derivatives. No improvement in expression was noted, relative to that of M-proinsulin, when the 5'- of the gene was appended to codons for seven amino acids of a well expressed E. coli protein (threonine dehydrogenase), or the constructs contained multiple copies of the proinsulin gene. That in the latter constructs only the gene adjacent to the prometer sequence is expressed, was shown by a construct containing a proinsulin gene followed by that for interferon α-2b. With the latter construct, the proinsulin was, predominantly, expressed. The availability of data on the constructs prompted, subjecting these to analysis by two models designed to predict the expression of proteins from the sequences, of putative mRNA, around the start of translation but no significant relationship was noted. In all cases the proteins were expressed as inclusion bodies, which were refolded to give products of desired masses and successfully converted into insulin derivatives. Of all the constructs containing a trypsin sensitive site before phenylalanine (F), the N-terminal sequence, MKR↓F, was most efficiently processed, by a cocktail of trypsin and buffalo carboxypeptidase B, to give insulin with the removal of the N-terminus linker as well as the C-peptide in a single step, without cleaving the trypsin sensitive K(29)T(30) peptide bond. PMID:23872484

  9. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer

    PubMed Central

    Cai, Zhen-Zhai; Xu, Jian-Gang; Zhou, Yu-Hui; Zheng, Ji-Hang; Lin, Ke-Zhi; Zheng, Shu-Zhi; Ye, Meng-Si; He, Yun; Liu, Chang-Bao; Xue, Zhan-Xiong

    2016-01-01

    AIM: To assess human cytomegalovirus-encoded US28 gene function in colorectal cancer (CRC) pathogenesis. METHODS: Immunohistochemical analysis was performed to determine US28 expression in 103 CRC patient samples and 98 corresponding adjacent noncancerous samples. Patient data were compared by age, sex, tumor location, histological grade, Dukes’ stage, and overall mean survival time. In addition, the US28 gene was transiently transfected into the CRC LOVO cell line, and cell proliferation was assessed using a cell counting kit-8 assay. Cell cycle analysis by flow cytometry and a cell invasion transwell assay were also carried out. RESULTS: US28 levels were clearly higher in CRC tissues (38.8%) than in adjacent noncancerous samples (7.1%) (P = 0.000). Interestingly, elevated US28 amounts in CRC tissues were significantly associated with histological grade, metastasis, Dukes’ stage, and overall survival (all P < 0.05); meanwhile, US28 expression was not significantly correlated with age, sex or tumor location. In addition, multivariate Cox regression data revealed US28 level as an independent CRC prognostic marker (P = 0.000). LOVO cells successfully transfected with the US28 gene exhibited higher viability, greater chemotherapy resistance, accelerated cell cycle progression, and increased invasion ability. CONCLUSION: US28 expression is predictive of poor prognosis and may promote CRC. PMID:26973417

  10. Renal permeability alteration precedes hypertension and involves bradykinin in the spontaneously hypertensive rat.

    PubMed Central

    Plante, G E; Bissonnette, M; Sirois, M G; Regoli, D; Sirois, P

    1992-01-01

    Vascular permeability disorders have been described in experimental models, as well as in human hypertension. We recently described the fact that vascular permeability to albumin is heterogeneous in the normal rat. In the present study, we examine the contents of Evans blue dye (EB) bound to albumin in selected organs of unanesthetized Wistar Kyoto (WKY) and in spontaneously hypertensive rats (SHR) at various stages of development of hypertension. EB was injected in the caudal vein of paired 4, 8, 12, and 16-wk-old WKY and SHR. Rats were killed 10 min after EB injection and extraction of the marker was measured in selected tissues. In additional 4 and 16-wk-old animals, bradykinin B1 and B2 receptor antagonists (BKA) were also injected with EB. Renal contents of EB bound to albumin were higher in the SHR than in the WKY: 196 +/- 9, 202 +/- 10, 182 +/- 7, and 196 +/- 9, compared with 158 +/- 8, 155 +/- 7, 138 +/- 7, and 118 +/- 6 micrograms/g dry tissue, in the 4, 8, 12, and 16-wk-old rats, respectively. In the 4-wk-old SHR and WKY, blood pressure values were normal and comparable, yet the alteration in EB permeability was already present in the SHR. Both BKA failed to alter the renal EB extravasation in the WKY, but the B2-BKA restored the renal permeability to control levels in the SHR. We conclude that a selective defect in the renal vascular permeability to EB developed in the SHR. Since this finding precedes hypertension and is corrected by a selective B2-BKA, it is suggested that bradykinin is involved at an early stage of the disease in the SHR. PMID:1602008

  11. Direction of Movement Is Encoded in the Human Primary Motor Cortex

    PubMed Central

    Toxopeus, Carolien M.; de Jong, Bauke M.; Valsan, Gopal; Conway, Bernard A.; Leenders, Klaus L.; Maurits, Natasha M.

    2011-01-01

    The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1). Using functional magnetic resonance imaging (fMRI) and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right) was located most laterally/superficially, whereas directions 180° (left) and 270° (down) elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180°) and vertical (90°+270°) axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1. PMID:22110768

  12. Fabry disease: isolation of a cDNA clone encoding human alpha-galactosidase A.

    PubMed Central

    Calhoun, D H; Bishop, D F; Bernstein, H S; Quinn, M; Hantzopoulos, P; Desnick, R J

    1985-01-01

    Fabry disease is an X-linked inborn error of metabolism resulting from the deficient activity of the lysosomal hydrolase, alpha-galactosidase A (alpha-Gal A; alpha-D-galactoside galactohydrolase, EC 3.2.1.22). To investigate the structure, organization, and expression of alpha-Gal A, as well as the nature of mutations in Fabry disease, a clone encoding human alpha-Gal A was isolated from a lambda gt11 human liver cDNA expression library. To facilitate screening, an improved affinity purification procedure was used to obtain sufficient homogeneous enzyme for production of monospecific antibodies and for amino-terminal and peptide microsequencing. On the basis of an amino-terminal sequence of 24 residues, two sets of oligonucleotide mixtures were synthesized corresponding to adjacent, but not overlapping, amino acid sequences. In addition, an oligonucleotide mixture was synthesized based on a sequence derived from an alpha-Gal A internal tryptic peptide isolated by reversed-phase HPLC. Four positive clones were initially identified by antibody screening of 1.4 X 10(7) plaques. Of these, only one clone (designated lambda AG18) demonstrated both antibody binding specificity by competition studies using homogeneous enzyme and specific hybridization to synthetic oligonucleotide mixtures corresponding to amino-terminal and internal amino acid sequences. Nucleotide sequencing of the 5' end of the 1250-base-pair EcoRI insert of clone lambda AG18 revealed an exact correspondence between the predicted and known amino-terminal amino acid sequence. The insert of clone lambda AG18 appears to contain the full-length coding region of the processed, enzymatically active alpha-Gal A, as well as sequences coding for five amino acids of the amino-terminal propeptide, which is posttranslationally cleaved during enzyme maturation. Images PMID:2997789

  13. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.

    PubMed

    Brookman, K W; Lamerdin, J E; Thelen, M P; Hwang, M; Reardon, J T; Sancar, A; Zhou, Z Q; Walter, C A; Parris, C N; Thompson, L H

    1996-11-01

    ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues. PMID:8887684

  14. Functional Analysis of the env Open Reading Frame in Human Endogenous Retrovirus IDDMK1,222 Encoding Superantigen Activity

    PubMed Central

    Lapatschek, Matthias; Dürr, Susanne; Löwer, Roswitha; Magin, Christine; Wagner, Hermann; Miethke, Thomas

    2000-01-01

    Mice harbor a family of endogenous retroviruses, the mouse mammary tumor viruses (MMTV), which encode superantigens. These superantigens are responsible for the deletion of T cells expressing certain Vβ chains of the T-cell receptor in the thymus. Human T cells are able to recognize MMTV-encoded superantigens presented by human major histocompatibility complex class II-positive cells. Owing to this and to the similarity of the human and murine immune systems, it was speculated that human endogenous retroviruses might also code for superantigens. Recently, it was reported that a proviral clone (IDDMK1,222) of the human endogenous retrovirus family HTDV/HERV-K encodes a superantigen. The putative superantigen gene was located within the env region of the virus. Stimulated by these findings, we amplified by PCR and cloned into eucaryotic expression vectors open reading frames (ORFs) which were identical or very similar to IDDMK1,222. When we transfected these vectors into A20 cells, a murine B-cell lymphoma, we were able to demonstrate mRNA expression and protein production. However, we did not find any evidence that the ORF stimulated human or murine T cells in a Vβ-specific fashion, the most prominent feature of superantigens. PMID:10864649

  15. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences.

    PubMed

    Cerrato, Bruno D; Carretero, Oscar A; Janic, Brana; Grecco, Hernán E; Gironacci, Mariela M

    2016-10-01

    Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties. PMID

  16. Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation

    PubMed Central

    Chauhan, Sanjay; Pandey, Ritu; Way, Jeffrey F.; Sroka, Thomas C.; Demetriou, Manolis C.; Kunz, Susan; Cress, Anne E.; Mount, David W.; Miesfeld, Roger L.

    2009-01-01

    We have developed a cell model to investigate steroid control of differentiation using a subline of HT1080 cells (HT-AR1) that have been engineered to express the human androgen receptor. Dihydrotestosterone (DHT) treatment of HT-AR1 cells induced growth arrest and cytoskeletal reorganization that was associated with the expression of fibronectin and the neuroendocrine markers chromogranin A and neuron-specific enolase. Expression profiling analysis identified the human FERM domain-encoding gene EHM2 as uniquely induced in HT-AR1 cells as compared to 16 other FERM domain containing genes. Since FERM domain proteins control cytoskeletal functions in differentiating cells, and the human EHM2 gene has not been characterized, we investigated EHM2 steroid-regulation, genomic organization, and sequence conservation. We found that DHT, but not dexamethasone, induced the expression of a 3.8 kb transcript in HT-AR1 cells encoding a 504 amino acid protein, and moreover, that human brain tissue contains a 5.8 kb transcript encoding a 913 amino acid isoform. Construction of an unrooted phylogenetic tree using 98 FERM domain proteins revealed that the human EHM2 gene is a member of a distinct subfamily consisting of nine members, all of which contain a highly conserved 325 amino acid FERM domain. PMID:14521927

  17. Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation.

    PubMed

    Chauhan, Sanjay; Pandey, Ritu; Way, Jeffrey F; Sroka, Thomas C; Demetriou, Manolis C; Kunz, Susan; Cress, Anne E; Mount, David W; Miesfeld, Roger L

    2003-10-17

    We have developed a cell model to investigate steroid control of differentiation using a subline of HT1080 cells (HT-AR1) that have been engineered to express the human androgen receptor. Dihydrotestosterone (DHT) treatment of HT-AR1 cells induced growth arrest and cytoskeletal reorganization that was associated with the expression of fibronectin and the neuroendocrine markers chromogranin A and neuron-specific enolase. Expression profiling analysis identified the human FERM domain-encoding gene EHM2 as uniquely induced in HT-AR1 cells as compared to 16 other FERM domain containing genes. Since FERM domain proteins control cytoskeletal functions in differentiating cells, and the human EHM2 gene has not been characterized, we investigated EHM2 steroid-regulation, genomic organization, and sequence conservation. We found that DHT, but not dexamethasone, induced the expression of a 3.8 kb transcript in HT-AR1 cells encoding a 504 amino acid protein, and moreover, that human brain tissue contains a 5.8 kb transcript encoding a 913 amino acid isoform. Construction of an unrooted phylogenetic tree using 98 FERM domain proteins revealed that the human EHM2 gene is a member of a distinct subfamily consisting of nine members, all of which contain a highly conserved 325 amino acid FERM domain. PMID:14521927

  18. Structure of the gene encoding the 14.5 kDa subunit of human RNA polymerase II.

    PubMed Central

    Acker, J; Wintzerith, M; Vigneron, M; Kedinger, C

    1993-01-01

    The structure of the gene encoding the 14.5 kDa subunit of the human RNA polymerase II (or B) has been elucidated. The gene consists of six exons, ranging from 52 to over 101 bp, interspaced with five introns ranging from 84 to 246 bp. It is transcribed into three major RNA species, present at low abundance in exponentially growing HeLa cells. The corresponding messenger RNAs contain the same open reading frame encoding a 125 amino acid residue protein, with a calculated molecular weight of 14,523 Da. This protein (named hRPB14.5) shares strong homologies with the homologous polymerase subunits encoded by the Drosophila (RpII15) and yeast (RPB9) genes. Cysteines characteristic of two zinc fingers are conserved in all three corresponding sequences and, like the yeast protein, the hRPB14.5 subunit exhibits zinc-binding activity. Images PMID:8265347

  19. Encoding/retrieval dissociation in working memory for human body forms.

    PubMed

    Bauser, Denise A Soria; Mayer, Kerstin; Daum, Irene; Suchan, Boris

    2011-06-20

    The present study was conducted to investigate the effect of working memory (WM) load on body processing mechanisms by using event-related potentials (ERPs). It is well known that WM load modulates the P3b (amplitude decreases as WM load increases). Additionally, WM load for faces modulates earlier ERPs like the N170. The present study aimed to investigate the effect of WM load for bodies on the P3b which is associated with WM. Additionally, we explored the effect of WM load on the N170, which is thought to be associated with configural processing, and P1, which has been observed in body as well as in face processing. Effects were analyzed during the encoding and retrieval phases. WM load was modulated by presenting one to four unfamiliar bodies simultaneously for memory encoding. The present study showed that early encoding processes (reflected by the P1 and N170) might not be modulated by WM load, whereas during the retrieval phase, early processes associated with structural encoding (N170) were affected by WM load. A possible explanation of the encoding/retrieval differences might be that subjects used distinct processing strategies in both phases. Parallel encoding of the simultaneously presented bodies might play an important role during the encoding phase where one to four bodies have to be stored, whereas serial matching might be used to compare the probe with the stored pictures during the retrieval phase. Additionally, WM load modulations were observed in later processing steps, which might be associated with stimulus identification and matching processes (reflected by the early P3b) during the encoding but not during the retrieval phase. The current findings further showed for both the encoding and the retrieval phase that the late P3b amplitude decreased as WM load for body images increased indicating that the late P3b is involved in WM processes which do not appear to be category-specific. PMID:21277335

  20. A human papilloma virus type 11 transcript encoding an E1--E4 protein.

    PubMed

    Nasseri, M; Hirochika, R; Broker, T R; Chow, L T

    1987-08-01

    The human papilloma virus (HPV) associated with a genital wart (condyloma acuminatum) was determined to be type 11. The majority of the viral DNA molecules were monomeric circles present in the cells at high copy number, as demonstrated by one- and two-dimensional agarose gell electrophoretic separation followed by Southern blot analysis. A cDNA library in phage lambda gt11 was constructed from poly(A)-selected mRNA recovered from the tissue. Recombinant clones corresponding to the most abundant 1.2-kb viral mRNA species detected by Northern blot hybridization and by electron microscopic analysis of R loops were isolated and their nucleotide sequence was determined. Comparison to the prototype HPV-11 DNA sequence revealed that this message consisted of two exons. The promotor-proximal exon spanned nucleotides 716 through 847 and the distal exon included nucleotides 3325 through 4390 or 4392. The mRNAs were alternatively polyadenylated after either of these latter two sites, in both cases following a G and preceding a U residue. Fourteen or sixteen bases upstream from the poly(A) was the hexanucleotide AGUAAA, which apparently serves as the signal for cleavage and polyadenylation of the nascent message. The splice donor and acceptor sites conformed to the usual /GU. . .AG/pattern. The exons joined open reading frame (ORF) E1, which contributed the initiation codon and four additional triplets, to ORF E4, which specified 85 amino acids to encode a protein of 10,022 Da. The cDNA also contained the ORFs E5a and E5b toward the 3' end. The complete sequence of the cDNA revealed three single-base changes from the prototype HPV-11, two resulting in altered amino acids in E4. Neither affects the coding potential of the overlapping E2 ORF. The function of the E1--E4 protein is unknown. PMID:2887066

  1. Psychophysical and EEG responses to repeated experimental muscle pain in humans: pain intensity encodes EEG activity.

    PubMed

    Chang, Peng-Fei; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas; Chen, Andrew C N

    2003-02-15

    Clinical pain is often characterized by repetitive and persistent occurrence in deep structures, but few studies investigated repetitive tonic pain in humans. To determine cerebral responses to repetitive tonic pain, psychophysical responses, and electroencephalographic (EEG) activation to five trials of repeated tonic muscle pain induced by hypertonic saline were examined and analyzed in 13 male subjects. The study was composed of two experimental sessions performed in separate days. Five sequential injections of hypertonic saline (5.8%) were used to induce repeated muscle pain in the left forearm, and five sequential injections of isotonic saline (0.9%) acted as control. Visual analogue scales (VAS) for pain intensity and 32-channels EEG activities were recorded simultaneously. Five trials of relatively stable muscle pain were induced by intramuscular injections of hypertonic saline, but no evident pain was induced by the injections of isotonic saline. Significant decreases in alpha-1 and -2 activities in posterior part of the head were found during repeated muscle pain in comparison with non-pain. In comparison with baseline, alpha-1 and -2 activities reduced significantly during the first two trials, and gradually resumed in the following three trials of muscle pain. However, beta-2 activity increased consistently throughout the five trials of muscle pain compared to baseline. Alpha-1 activity was negatively, but beta-2 activity was positively correlated to the pain intensity and pain area on the skin. Throughout five injections, the reduction of alpha-1 activity was contrary to the changes of pain intensity. These results indicates that pain-related EEG activities were encoded by the pain intensity. The thalamo-cortical system and descending inhibitory neuronal networks may be involved in the regulation of pain intensity. PMID:12576151

  2. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase

    SciTech Connect

    Hjalmarsson, K.; Marklund, S.L.; Engstroem, A.; Edlund, T.

    1987-09-01

    A complementary DNA (cDNA) clone from a human placenta cDNA library encoding extracellular superoxide dismutase has been isolated and the nucleotide sequence determined. The cDNA has a very high G + C content. EC-SOD is synthesized with a putative 18-amino acid signal peptide, preceding the 222 amino acids in the mature enzyme, indicating that the enzyme is a secretory protein. The first 95 amino acids of the mature enzyme show no sequence homology with other sequenced proteins and there is one possible N-glycosylation site (Asn-89). The amino acid sequence from residues 96-193 shows strong homology (approx. 50%) with the final two-thirds of the sequences of all know eukaryotic CuZn SODs, whereas the homology with the P. leiognathi CuZn SOD is clearly lower. The ligands to Cu and Zn, the cysteines forming the intrasubunit disulfide bridge in the CuZn SODs, and the arginine found in all CuZn SODs in the entrance to the active site can all be identified in EC-SOD. A comparison with bovine CuZn SOD, the three-dimensional structure of which is known, reveals that the homologies occur in the active site and the divergencies are in the part constituting the subunit contact area in CuZn SOD. Amino acid sequence 194-222 in the carboxyl-terminal end of EC-SOD is strongly hydrophilic and contains nine amino acids with a positive charge. This sequence probably confers the affinity of EC-SOD for heparin and heparan sulfate. An analysis of the amino acid sequence homologies with CuZn SODs from various species indicates that the EC-SODs may have evolved form the CuZn SODs before the evolution of fungi and plants.

  3. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    PubMed Central

    2010-01-01

    Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS) cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development. PMID:20682060

  4. Vibrational and ab initio molecular dynamics studies of bradykinin

    NASA Astrophysics Data System (ADS)

    Święch, Dominika; Kubisiak, Piotr; Andrzejak, Marcin; Borowski, Piotr; Proniewicz, Edyta

    2016-07-01

    In this study, the comprehensive theoretical and experimental investigations of Raman (RS) and infrared absorption (IR) spectra of bradykinin (BK) are presented. The ab initio Born-Oppenheimer molecular dynamics (BOMD) calculations, in the presence of water molecules that form the first coordination sphere, were used for conformational analysis of the BK structure. Based on the Density Functional Theory (DFT) calculations at the B3LYP/6-311G(d) level the vibrational spectra were interpreted. The calculated frequencies were scaled by means of the effective scaling frequency factor (ESFF) method. The theoretical data, which confirm the compact structure of BK in the presence of the water molecules revealed the remarkable effect of the intermolecular hydrogen bonding on the BK structural properties.

  5. Human proviral mRNAs down regulated in choriocarcinoma encode a zinc finger protein related to Krüppel.

    PubMed Central

    Kato, N; Shimotohno, K; VanLeeuwen, D; Cohen, M

    1990-01-01

    RNA transcripts of the HERV-R (ERV3) human provirus that are abundant in placenta but absent in choriocarcinoma contain nonproviral genomic sequences at their 3' ends. We report here the isolation of cDNA clones of these genomic sequences. The transcripts encode a Krüppel-related zinc finger protein consisting of a unique leader region and more than 12 28-amino-acid finger motifs. Images PMID:2115127

  6. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  7. Gas-phase basicities for ions from bradykinin and its des-arginine analogues.

    PubMed

    Ewing, N P; Pallante, G A; Zhang, X; Cassady, C J

    2001-08-01

    Apparent gas-phase basicities (GB(app)s) for [M + H]+ of bradykinin, des-Arg1-bradykinin and des-Arg9-bradykinin have been assigned by deprotonation reactions of [M + 2H]2+ in a Fourier transform ion cyclotron resonance mass spectrometer. With a GB(app) of 225.8 +/- 4.2 kcal x mol(-1), bradykinin [M + H]+ is the most basic of the ions studied. Ions from des-Arg1-bradykinin and des-Arg9-bradykinin have GB(app) values of 222.8 +/- 4.3 kcal x mol(-1) and 214.9 +/- 2.3 kcal x mol(-1), respectively. One purpose of this work was to determine a suitable reaction efficiency 'break point' for assigning GB(app) values to peptide ions using the bracketing method. An efficiency value of 0.1 (i.e. approximately 10% of all collisions resulting in a deprotonation reaction) was used to assign GB(app)s. Support for this criterion is provided by the fact that our GB(app) values for des-Arg1-bradykinin and des-Arg9-bradykinin are identical, within experimental error, to literature values obtained using a modified kinetic method. However, the GB(app)s for bradykinin ions from the two studies differ by 10.3 kcal x mol(-1). The reason for this is not clear, but may involve conformation differences produced by experimental conditions. The results may be influenced by salt-bridge conformers and/or by conformational changes caused by the use of a proton-bound heterodimer in the kinetic method. Factors affecting the basicities of these peptide ions are also discussed, and molecular modeling is used to provide information on protonation sites and conformations. The presence of two highly basic arginine residues on bradykinin results in its high GB(app), while the basicity of des-Arg1-bradykinin ions is increased by the presence of two proline residues at the N-terminus. The proline residue in the second position folds the peptide chain in a manner that increases intramolecular hydrogen bonding to the protonated N-terminal amino group of the proline at the first position. PMID:11523086

  8. Neurotransmitter release from bradykinin-stimulated PC12 cells. Stimulation of cytosolic calcium and neurotransmitter release.

    PubMed Central

    Appell, K C; Barefoot, D S

    1989-01-01

    The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels. PMID:2574973

  9. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms.

    PubMed

    Sharma, Roohani; Randhawa, Puneet Kaur; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-12-01

    Ischemic conditioning is an intrinsic protective mechanism in which repeated short episodes of reversible ischemia protects the tissue and increases its tolerance against a subsequent longer period of ischemia (index ischemia). Bradykinin is a physiologically and pharmacologically active peptide of the kallikrein-kinin system. Besides the involvement of bradykinin in a variety of physiological and pathological responses such as pain, inflammation and in cardiovascular system as a potent vasodilator, it also acts as an endogenous cytoprotective mediator in the ischemic tissue. Pretreatment with various pharmacological modulators of bradykinin has confirmed the involvement of bradykinin in ischemic conditioning-induced protection. The protective actions of bradykinin in three major paradigms of ischemic conditioning i.e. ischemic preconditioning, ischemic postconditioning and remote ischemic preconditioning involves activation and regulation of various endogenous signaling cascades to render the heart resistant to infarction. In ischemic preconditioning, bradykinin exerts cardioprotective effect via activation of PI3K/Akt/eNOS signaling pathway and regulation of redox state via NO release. The role of bradykinin and its B2 receptors in ischemic-postconditioning induced neuroprotection has been described mainly due to its increased redox signaling cascade and activation of mitochondrial anti-apoptotic pathway. Furthermore, its cardioprotective role during remote ischemic preconditioning has been associated with activation of B2 receptors mediated neurogenic pathway and internalization of B2 receptors along with the formation of signalosomes that activates intracellular cytoprotective transduction pathways. The present review focuses on the potential role of bradykinin in mediating different forms of ischemic conditioning (pre/post/remote)-induced cardioprotection and neuroprotection along with the possible mechanisms. PMID:26499976

  10. Spatial auditory regularity encoding and prediction: Human middle-latency and long-latency auditory evoked potentials.

    PubMed

    Cornella, M; Bendixen, A; Grimm, S; Leung, S; Schröger, E; Escera, C

    2015-11-11

    By encoding acoustic regularities present in the environment, the human brain can generate predictions of what is likely to occur next. Recent studies suggest that deviations from encoded regularities are detected within 10-50ms after stimulus onset, as indicated by electrophysiological effects in the middle latency response (MLR) range. This is upstream of previously known long-latency (LLR) signatures of deviance detection such as the mismatch negativity (MMN) component. In the present study, we created predictable and unpredictable contexts to investigate MLR and LLR signatures of the encoding of spatial auditory regularities and the generation of predictions from these regularities. Chirps were monaurally delivered in an either regular (predictable: left-right-left-right) or a random (unpredictable left/right alternation or repetition) manner. Occasional stimulus omissions occurred in both types of sequences. Results showed that the Na component (peaking at 34ms after stimulus onset) was attenuated for regular relative to random chirps, albeit no differences were observed for stimulus omission responses in the same latency range. In the LLR range, larger chirp-and omission-evoked responses were elicited for the regular than for the random condition, and predictability effects were more prominent over the right hemisphere. We discuss our findings in the framework of a hierarchical organization of spatial regularity encoding. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25912975

  11. Bradykinin analysis revived--a validated method for determination of its stable metabolite in whole blood by LC-MS/MS.

    PubMed

    Seip, Knut F; Bjerknes, Kari C; Johansen, Harald T; Nielsen, Erik W; Landrø, Linn; Reubsaet, Léon

    2014-02-01

    Investigation of bradykinin involvement in diseases like hereditary angioedema has been greatly hindered by its rapid metabolism and generation, induced by sampling. Because of this, reliable measurements of bradykinin have yet to be introduced in clinical practice. Prevention of bradykinin generation during sampling, and determination of the in vivo generated stable metabolite BK1-5, should allow a reliable indirect measure of bradykinin involvement. An LC-MS/MS method has been developed to determine BK1-5 in human whole blood. The method inactivates metabolizing enzymes with ethanol, followed by solid phase extraction (C18), separation (C8) and detection (linear ion trap) through the transitions 287.25→320.20 (y3, quantifier), 408.20 (b4, qualifier) for BK1-5, and 292.17→330.20 (y3, quantifier), 408.20 (b4, qualifier) for the heavy labelled internal standard. The method showed acceptable linearity (n=3, r(2)=0.994), intra-run precision (CV<15%), inter-run precision (CV<15%) and accuracy (CV<14%), without matrix effects. LLOQ was 265.5 pmol L(-1) and LOD was 35.4 pmol L(-1). The method was used on blood samples from patients with hereditary angioedema, where BK1-5 was measured during attacks and in remision. The samples showed elevated concentrations (up to 1.7 nmol L(-1) during attacks and 265.5 pmol L(-1) in remission) compared to healthy volunteers (<35.4 pmol L(-1)). This is the first time BK1-5 in hereditary angioedema patients has been measured. PMID:24424302

  12. Combined action of vasoactive amines and bradykinin mediates allergen-evoked thermal hyperalgesia in rats.

    PubMed

    Lavich, Tatiana R; Cordeiro, Renato S B; Calixto, João B; e Silva, Patrícia M R; Martins, Marco A

    2003-02-21

    The ability of allergens to induce hyperalgesia in immunoglobulin E (IgE)-sensitized rats was investigated. The left hind paws of Wistar rats were sensitized with intraplantar injections of IgE anti-dinitrophenylated bovine serum albumin monoclonal antibody, and challenged with dinitrophenylated bovine serum albumin 24 h later. Allergen challenge yielded rapid thermal hyperalgesia and oedema formation in the ipsilateral paws, both reaching a plateau from 15 min to 3 h, and both diminishing thereafter. Allergen-evoked hyperalgesia was inhibited by intraperitoneal treatment with meclizine or methysergide, histamine and 5-hydroxytryptamine receptor antagonists. There was also sensitivity to local treatment with either bradykinin B(1) or B(2) receptor antagonists, des-Arg(9)-[Leu(8)]-bradykinin or D-arginyl-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin (Hoe 140). Anaphylactic hyperalgesia was mimicked by the combined administration of histamine, 5-hydroxytryptamine and bradykinin at doses which were ineffective when injected alone. This synergistic effect was abolished by treatment with either meclizine, methysergide, Hoe 140 or des-Arg(9)-[Leu(8)]-bradykinin. Our findings show that local thermal hyperalgesia is a feature of allergen-evoked inflammation, and that a synergistic interaction among bradykinin, 5-hydroxytryptamine and histamine plays a critical role in this phenomenon. PMID:12591112

  13. Prolegomena to a neurocomputational architecture for human grammatical encoding and decoding.

    PubMed

    Kempen, Gerard

    2014-01-01

    This study develops a neurocomputational architecture for grammatical processing in language production and language comprehension (grammatical encoding and decoding, respectively). It seeks to answer two questions. First, how is online syntactic structure formation of the complexity required by natural-language grammars possible in a fixed, preexisting neural network without the need for online creation of new connections or associations? Second, is it realistic to assume that the seemingly disparate instantiations of syntactic structure formation in grammatical encoding and grammatical decoding can run on the same neural infrastructure? This issue is prompted by accumulating experimental evidence for the hypothesis that the mechanisms for grammatical decoding overlap with those for grammatical encoding to a considerable extent, thus inviting the hypothesis of a single "grammatical coder." The paper answers both questions by providing the blueprint for a syntactic structure formation mechanism that is entirely based on prewired circuitry (except for referential processing, which relies on the rapid learning capacity of the hippocampal complex), and can subserve decoding as well as encoding tasks. The model builds on the "Unification Space" model of syntactic parsing developed by Vosse and Kempen (Cognition 75:105-143, 2000; Cognitive Neurodynamics 3:331-346, 2009a). The design includes a neurocomputational mechanism for the treatment of an important class of grammatical movement phenomena. PMID:23872869

  14. pap-2-encoded fimbriae adhere to the P blood group-related glycosphingolipid stage-specific embryonic antigen 4 in the human kidney.

    PubMed Central

    Karr, J F; Nowicki, B J; Truong, L D; Hull, R A; Moulds, J J; Hull, S I

    1990-01-01

    A subtype of P fimbriae, encoded by the pap-2 gene cluster, has been analyzed for agglutination of erythrocytes and for binding to cryostat sections of the human kidney. We have demonstrated that pap-2-encoded fimbriae are capable of binding to erythrocytes from some animal species and to human erythrocytes which express globoside and the LKE (stage-specific embryonic antigen 4 [SSEA-4]) antigen. The pap-2 fimbriae bind to Bowman's capsule in the human kidney. Monoclonal antibodies directed against glycosphingolipids were used for the detection of specific P blood group-related antigens in the human kidney and on erythrocytes. Preincubation of kidney sections with monoclonal antibody MC813-70, which binds to the SSEA-4 antigen, inhibited adherence of purified pap-2-encoded fimbriae to Bowman's capsule. We suggest that one receptor for pap-2-encoded fimbriae is the antigen known as LKE (Luke) on human erythrocytes or SSEA-4 in the tissues. Images PMID:1979319

  15. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    PubMed Central

    Powell, Christopher A.; Nicholls, Thomas J.; Minczuk, Michal

    2015-01-01

    The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes. PMID:25806043

  16. Neurons in the human amygdala encode face identity, but not gaze direction.

    PubMed

    Mormann, Florian; Niediek, Johannes; Tudusciuc, Oana; Quesada, Carlos M; Coenen, Volker A; Elger, Christian E; Adolphs, Ralph

    2015-11-01

    The amygdala is important for face processing, and direction of eye gaze is one of the most socially salient facial signals. Recording from over 200 neurons in the amygdala of neurosurgical patients, we found robust encoding of the identity of neutral-expression faces, but not of their direction of gaze. Processing of gaze direction may rely on a predominantly cortical network rather than the amygdala. PMID:26479589

  17. Neurons in the human amygdala encode face identity but not gaze direction

    PubMed Central

    Mormann, Florian; Niediek, Johannes; Tudusciuc, Oana; Quesada, Carlos M.; Coenen, Volker; Elger, Christian; Adolphs, Ralph

    2015-01-01

    The amygdala is a key structure in face processing, and direction of eye gaze is one of the most socially salient facial signals. Recording from over 200 neurons in the amygdala of neurosurgical patients, we here find robust encoding of the identity of neutral-expression faces, but not to their direction of gaze. Processing of gaze direction may rely on a predominantly cortical network rather than the amygdala. PMID:26479589

  18. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    DOEpatents

    Haynes, Barton F.; Gao, Feng; Korber, Bette T.; Hahn, Beatrice H.; Shaw, George M.; Kothe, Denise; Li, Ying Ying; Decker, Julie; Liao, Hua-Xin

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  19. Distinguishing informational from value-related encoding of rewarding and punishing outcomes in the human brain.

    PubMed

    Jessup, Ryan K; O'Doherty, John P

    2014-06-01

    There is accumulating evidence implicating a set of key brain regions in encoding rewarding and punishing outcomes, including the orbitofrontal cortex, medial prefrontal cortex, ventral striatum, anterior insula, and anterior cingulate. However, it has proved challenging to reach consensus concerning the extent to which different brain areas are involved in differentially encoding rewarding and punishing outcomes. Here, we show that many of the brain areas involved in outcome processing represent multiple outcome components: encoding the value of outcomes (whether rewarding or punishing) and informational coding, i.e. signaling whether a given outcome is rewarding or punishing, ignoring magnitude or experienced utility. In particular, we report informational signals in the lateral orbitofrontal cortex and anterior insular cortex that respond to both rewarding and punishing feedback, even though value-related signals in these areas appear to be selectively driven by punishing feedback. These findings highlight the importance of taking into account features of outcomes other than value when characterising the contributions of different brain regions in outcome processing. PMID:24863104

  20. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.

    PubMed

    Abedinia, M; Layfield, R; Jones, S M; Nixon, P F; Mattick, J S

    1992-03-31

    Transketolase is a key enzyme in the pentose-phosphate pathway which has been implicated in the latent human genetic disease, Wernicke-Korsakoff syndrome. Here we report the cloning and partial characterisation of the coding sequences encoding human transketolase from a human brain cDNA library. The library was screened with oligonucleotide probes based on the amino acid sequence of proteolytic fragments of the purified protein. Northern blots showed that the transketolase mRNA is approximately 2.2 kb, close to the minimum expected, of which approximately 60% was represented in the largest cDNA clone. Sequence analysis of the transketolase coding sequences reveals a number of homologies with related enzymes from other species. PMID:1567394

  1. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth.

    PubMed

    Blum-Johnston, Carla; Thorpe, Richard B; Wee, Chelsea; Romero, Monica; Brunelle, Alexander; Blood, Quintin; Wilson, Rachael; Blood, Arlin B; Francis, Michael; Taylor, Mark S; Longo, Lawrence D; Pearce, William J; Wilson, Sean M

    2016-02-01

    Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes. PMID:26637638

  2. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein

    SciTech Connect

    Fukumoto, Hirofumi; Seino, Susumu; Imura, Hiroo; Seino, Yutaka; Eddy, R.L.; Fukushima, Yoshimitsu; Byers, M.G.; Shows, T.B.; Bell, G.I. )

    1988-08-01

    Recombinant DNA clones encoding a glucose transporter-like protein have been isolated from adult human liver and kidney cDNA libraries by cross-hybridization with the human HepG2/erythrocyte glucose transporter cDNA. Analysis of the sequence of this 524-amino acid glucose transporter-like protein indicates that is has 55.5% identity with the HepG2/erythrocyte glucose transporter as well as a similar structural organization. Studies of the tissue distribution of the mRNA coding for this glucose transporter-like protein in adult human tissues indicate that the highest amounts are present in liver with lower amounts in kidney and small intestine. The amounts of glucose transporter-like mRNA in other tissues, including colon, stomach, cerebrum, skeletal muscle, and adipose tissue, were below the level of sensitivity of our assay. The single-copy gene encoding this glucose transporter-like protein has been localized to the q26.1{yields}q26.3 region of chromosome 3.

  3. YY1 and Sp1 activate transcription of the human NDUFS8 gene encoding the mitochondrial complex I TYKY subunit.

    PubMed

    Lescuyer, Pierre; Martinez, Pascal; Lunardi, Joël

    2002-03-19

    Complex I is the most complicated of the multimeric enzymes that constitute the mitochondrial respiratory chain. It is encoded by both mitochondrial and nuclear genomes. We have previously characterized the human NDUFS8 gene that encodes the TYKY subunit. This essential subunit is thought to participate in the electron transfer and proton pumping activities of complex I. Here, we have analyzed the transcriptional regulation of the NDUFS8 gene. Using primer extension assays, we have identified two transcription start sites. The basal promoter was mapped to a 247 bp sequence upstream from the main transcription start site by reporter gene analysis in HeLa cells and in differentiated or non-differentiated C2C12 cells. Three Sp1 sites and one YY1 site were identified in this minimal promoter. Through gel shift analysis, all sites were shown to bind to their cognate transcription factors. Site-directed mutagenesis revealed that the YY1 site and two upstream adjacent Sp1 sites drive most of the promoter activity. This work represents the first promoter analysis for a complex I gene. Together with previous studies, our results indicate that YY1 and Sp1 control the expression of genes encoding proteins that are involved in almost all steps of the oxidative phosphorylation metabolism. PMID:11955626

  4. Renal haemodynamic and excretory responses to bradykinin in anaesthetized dogs.

    PubMed

    Matsumura, Y; Tadano, K; Yamasaki, T

    1999-08-01

    1. Effects of bradykinin (BK) on renal haemodynamics and urine formation were examined in anaesthetized dogs. 2. Renal arterial infusion of BK at doses of 5 or 50 ng/kg per min produced dose-dependent increases in renal blood flow (RBF), without affecting systemic arterial pressure or glomerular filtration rate. There were also significant and dose-dependent increases in urine flow (UF), urinary excretion of sodium (UNaV) and fractional excretion of sodium (FENa) and decreases in urine osmolality during BK infusion. 3. Renal haemodynamic and excretory responses to the BK infusion were completely abolished by the simultaneous administration of Hoe 140 (icatibant, 100 ng/kg per min intrarenally), a selective BK B2-receptor antagonist. 4. In the presence of NG-nitro-L-arginine (NOARG; 40 micrograms/kg per min intrarenally), a nitric oxide (NO) synthase inhibitor, BK-induced renal vasodilative and natriuretic effects were markedly attenuated, although responses of UF and urine osmolality to BK remained unchanged. The water diuretic effect of BK was abolished in dogs given both NOARG and ibuprofen (12.5 mg/kg bolus injection plus 12.5 mg/kg per h of sustained infusion intravenously), a cyclooxygenase inhibitor. 5. These results clearly indicate that renal haemodynamic and excretory responses to BK were mediated exclusively by the B2-receptor. Renal vasodilative and natriuretic responses are mainly linked to NO generation, while both NO and prostaglandin biosynthesis are involved in the BK-induced water diuresis. PMID:10474781

  5. Integrating Memories in the Human Brain: Hippocampal–Midbrain Encoding of Overlapping Events

    PubMed Central

    Shohamy, Daphna; Wagner, Anthony D.

    2008-01-01

    SUMMARY Decisions are often guided by generalizing from past experiences. Fundamental questions remain regarding the cognitive and neural mechanisms by which generalization takes place. Prior data suggest that generalization may stem from inference-based processes that occur at the time of generalization. By contrast, it has been hypothesized that generalization may emerge from mnemonic processes that occur while premise events are being encoded. Here, participants engaged in a two-phase learning and generalization task, wherein they initially learned a series of overlapping associations, and were subsequently probed to generalize what they learned to novel stimulus combinations. Functional magnetic resonance imaging (fMRI) revealed that subsequent generalization performance was associated with coupled changes in learning-phase activity in the hippocampus and midbrain (ventral tegmental area/substantia nigra). These findings provide novel evidence for generalization based on integrative encoding, whereby overlapping past events are integrated into a linked mnemonic representation. Hippocampal–midbrain interactions support the dynamic integration of experiences, providing a powerful mechanism for building a rich associative history that extends beyond individually experienced events. PMID:18957228

  6. Cadmium attenuates bradykinin-driven nitric oxide production by interplaying with the localization pattern of endothelial nitric oxide synthase.

    PubMed

    Majumder, Syamantak; Gupta, Ravi; Reddy, Himabindu; Sinha, Swaraj; Muley, Ajit; Kolluru, Gopi Krishna; Chatterjee, Suvro

    2009-08-01

    Cadmium, a ubiquitous heavy metal, interferes with endothelial functions and angiogenesis. Bradykinin is a Ca-mobilizing soluble peptide that acts via nitric oxide to promote vasodilation and capillary permeability. The objective of the present study was to explore the Cd implications in bradykinin-dependent endothelial functions. An egg yolk angiogenesis model was employed to evaluate the effect of Cd on bradykinin-induced angiogenesis. The results demonstrate that 100 nmol/L Cd attenuated bradykinin-dependent angiogenesis. The results of the in vitro wound healing and tube formation assays by using EAhy 926, a transformed endothelial cell line, suggest that Cd blocked bradykinin-mediated endothelial migration and tube formation by 38% and 67%, respectively, while nitric oxide supplementation could reverse the effect of Cd on bradykinin-induced endothelial migration by 94%. The detection of nitric oxide by using a DAF-2DA fluorescent probe, Griess assay, and ultrasensitive electrode suggests that Cd blocked bradykinin-induced nitric oxide production. Fluorescence imaging of eNOS-GFP transfected endothelial cells, immunofluorescence, and Western blot studies of Cd and bradykinin-treated cells show that Cd interfered with the localization pattern of eNOS, which possibly attenuates nitric oxide production in part. Additionally, Ca imaging of Cd- and bradykinin-treated cells suggests that Cd blocked bradykinin-dependent Ca influx into the cells, thus partially blocking Ca-dependent nitric oxide production in endothelial cells. The results of this study conclude that Cd blunted the effect of bradykinin by interfering with the Ca-associated NOS activity specifically by impeding subcellular trafficking of eNOS. PMID:19767824

  7. Pharmacological, pharmacokinetic, and primate analgesic efficacy profile of the novel bradykinin B1 Receptor antagonist ELN441958.

    PubMed

    Hawkinson, Jon E; Szoke, Balazs G; Garofalo, Albert W; Hom, Dennis S; Zhang, Hongbing; Dreyer, Mark; Fukuda, Juri Y; Chen, Linda; Samant, Bhushan; Simmonds, Stellanie; Zeitz, Karla P; Wadsworth, Angie; Liao, Anna; Chavez, Raymond A; Zmolek, Wes; Ruslim, Lany; Bova, Michael P; Holcomb, Ryan; Butelman, Eduardo R; Ko, Mei-Chuan; Malmberg, Annika B

    2007-08-01

    The bradykinin B(1) receptor plays a critical role in chronic pain and inflammation, although efforts to demonstrate efficacy of receptor antagonists have been hampered by species-dependent potency differences, metabolic instability, and low oral exposure of current agents. The pharmacology, pharmacokinetics, and analgesic efficacy of the novel benzamide B(1) receptor antagonist 7-chloro-2-[3-(9-pyridin-4-yl-3,9-diazaspiro[5.5]undecanecarbonyl)phenyl]-2,3-dihydro-isoindol-1-one (ELN441958) is described. ELN441958 competitively inhibited the binding of the B(1) agonist ligand [(3)H]desArg(10)-kallidin ([(3)H]DAKD) to IMR-90 human fibroblast membranes with high affinity (K(i) = 0.26 +/- 0.02 nM). ELN441958 potently antagonized DAKD (but not bradykinin)-induced calcium mobilization in IMR-90 cells, indicating that it is highly selective for B(1) over B(2) receptors. Antagonism of agonist-induced calcium responses at B(1) receptors from different species indicated that ELN441958 is selective for primate over rodent B(1) receptors with a rank order potency (K(B), nanomolar) of human (0.12 +/- 0.02) approximately rhesus monkey (0.24 +/- 0.01) > rat (1.5 +/- 0.4) > mouse (14 +/- 4). ELN441958 had good permeability and metabolic stability in vitro consistent with high oral exposure and moderate plasma half-lives in rats and rhesus monkeys. Because ELN441958 is up to 120-fold more potent at primate than at rodent B(1) receptors, it was evaluated in a primate pain model. ELN441958 dose-dependently reduced carrageenan-induced thermal hyperalgesia in a rhesus monkey tail-withdrawal model, with an ED(50) approximately 3 mg/kg s.c. Naltrexone had no effect on the antihyperalgesia produced by ELN441958, indicating a lack of involvement of opioid receptors. ELN441958 is a novel small molecule bradykinin B(1) receptor antagonist exhibiting high oral bioavailability and potent systemic efficacy in rhesus monkey inflammatory pain. PMID:17470643

  8. GANP protein encoded on human chromosome 21/mouse chromosome 10 is associated with resistance to mammary tumor development.

    PubMed

    Kuwahara, Kazuhiko; Yamamoto-Ibusuki, Mutsuko; Zhang, Zhenhuan; Phimsen, Suchada; Gondo, Naomi; Yamashita, Hiroko; Takeo, Toru; Nakagata, Naomi; Yamashita, Daisuke; Fukushima, Yoshimi; Yamamoto, Yutaka; Iwata, Hiroji; Saya, Hideyuki; Kondo, Eisaku; Matsuo, Keitaro; Takeya, Motohiro; Iwase, Hirotaka; Sakaguchi, Nobuo

    2016-04-01

    Human chromosome 21 is known to be associated with the high risk of hematological malignancy but with resistance to breast cancer in the study of Down syndrome. In human cancers, we previously observed the significant alterations of the protein expression encoded by the ganp/MCM3AP gene on human chromosome 21q22.3. Here, we investigated GANP protein alterations in human breast cancer samples (416 cases) at various stages by immunohistochemical analysis. This cohort study clearly showed that expression of GANP is significantly decreased in human breast cancer cases with poor prognosis as an independent risk factor (relapse-free survival, hazard ratio = 2.37, 95% confidence interval, 1.27-4.42, P = 0.007 [univariate analysis]; hazard ratio = 2.70, 95% confidence interval, 1.42-5.13, P = 0.002 [multivariate analysis]). To investigate whether the altered GANP expression is associated with mammary tumorigenesis, we created mutant mice that were conditionally deficient in the ganp/MCM3AP gene using wap-cre recombinase transgenic mice. Mammary gland tumors occurred at a very high incidence in female mammary gland-specific GANP-deficient mice after severe impairment of mammary gland development during pregnancy. Moreover, tumor development also occurred in female post parous GANP-heterodeficient mice. GANP has a significant role in the suppression of DNA damage caused by estrogen in human breast cancer cell lines. These results indicated that the GANP protein is associated with breast cancer resistance. PMID:26749495

  9. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE.

    PubMed

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B R; Zufall, Rebecca A; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 - 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these "functional" regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used "causal role" definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent," by failing to appreciate the crucial difference between "junk DNA" and "garbage DNA," by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten. PMID:23431001

  10. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3

    PubMed Central

    Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.

    2015-01-01

    Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964

  11. Conservation of structure in the human gene encoding argininosuccinate synthetase and the argG genes of the archaebacteria Methanosarcina barkeri MS and Methanococcus vannielii

    SciTech Connect

    Morris, C.J.; Reeve, J.N.

    1988-07-01

    The DNA sequences of the argG genes of Methanosarcina barkeri MS and Methanococcus vannielii were determined. The polypeptide products of these methanogen genes have amino acid sequences which are 50% identical to each other and 38% identical to the amino acid sequence encoded by the exons of the human argininosuccinate synthetase gene. Introns in the human chromosomal gene separate regions which encode amino acids conserved in both the archaebacterial and human gene products. An open reading frame immediately upstream of argG in Methanosarcina barkeri MS codes for an amino acid sequence which is 45 and 31% identical to the sequences of the large subunits of carbamyl phosphate synthetase in Escherichia coli and Saccharomyces cerevisiae, respectively. If this gene encodes carbamyl phosphate synthetase in Methanosarcina barkeri, this is the first example, in an archaebacterium, of physical linkage of genes that encode enzymes which catalyze reactions in the same amino acid biosynthetic pathway.

  12. Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

    PubMed Central

    Shinnawi, Rami; Huber, Irit; Maizels, Leonid; Shaheen, Naim; Gepstein, Amira; Arbel, Gil; Tijsen, Anke J.; Gepstein, Lior

    2015-01-01

    Summary The advent of the human-induced pluripotent stem cell (hiPSC) technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs). To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight) and calcium (GCaMP5G) fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing. PMID:26372632

  13. Transgenic Expression of the Chemokine Receptor Encoded by Human Herpesvirus 8 Induces an Angioproliferative Disease Resembling Kaposi's Sarcoma

    PubMed Central

    Yang, Tong-Yuan; Chen, Shu-Cheng; Leach, Michael W.; Manfra, Denise; Homey, Bernhard; Wiekowski, Maria; Sullivan, Lee; Jenh, Chung-Her; Narula, Satwant K.; Chensue, Stephen W.; Lira, Sergio A.

    2000-01-01

    Human herpesvirus 8 (HHV8, also known as Kaposi's sarcoma [KS]-associated herpesvirus) has been implicated as an etiologic agent for KS, an angiogenic tumor composed of endothelial, inflammatory, and spindle cells. Here, we report that transgenic mice expressing the HHV8-encoded chemokine receptor (viral G protein–coupled receptor) within hematopoietic cells develop angioproliferative lesions in multiple organs that morphologically resemble KS lesions. These lesions are characterized by a spectrum of changes ranging from erythematous maculae to vascular tumors, by the presence of spindle and inflammatory cells, and by expression of vGPCR, CD34, and vascular endothelial growth factor. We conclude that vGPCR contributes to the development of the angioproliferative lesions observed in these mice and suggest that this chemokine receptor may play a role in the pathogenesis of KS in humans. PMID:10662790

  14. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma.

    PubMed

    Yang, T Y; Chen, S C; Leach, M W; Manfra, D; Homey, B; Wiekowski, M; Sullivan, L; Jenh, C H; Narula, S K; Chensue, S W; Lira, S A

    2000-02-01

    Human herpesvirus 8 (HHV8, also known as Kaposi's sarcoma [KS]-associated herpesvirus) has been implicated as an etiologic agent for KS, an angiogenic tumor composed of endothelial, inflammatory, and spindle cells. Here, we report that transgenic mice expressing the HHV8-encoded chemokine receptor (viral G protein-coupled receptor) within hematopoietic cells develop angioproliferative lesions in multiple organs that morphologically resemble KS lesions. These lesions are characterized by a spectrum of changes ranging from erythematous maculae to vascular tumors, by the presence of spindle and inflammatory cells, and by expression of vGPCR, CD34, and vascular endothelial growth factor. We conclude that vGPCR contributes to the development of the angioproliferative lesions observed in these mice and suggest that this chemokine receptor may play a role in the pathogenesis of KS in humans. PMID:10662790

  15. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  16. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    PubMed Central

    Leyton-Mange, Jordan S.; Mills, Robert W.; Macri, Vincenzo S.; Jang, Min Young; Butte, Faraz N.; Ellinor, Patrick T.; Milan, David J.

    2014-01-01

    Summary In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  17. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor.

    PubMed

    Leyton-Mange, Jordan S; Mills, Robert W; Macri, Vincenzo S; Jang, Min Young; Butte, Faraz N; Ellinor, Patrick T; Milan, David J

    2014-02-11

    In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  18. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  19. Assignment of the gene encoding human galanin receptor (GALNR) to 18q23 by in situ hybridization

    SciTech Connect

    Nicholl, J.; Sutherland, G.R.; Shine, J.

    1995-12-10

    The neuropeptide galanin is widely distributed throughout the central and peripheral nervous systems of mammalian, avian, reptilian, and fish species and has a broad range of physiological and behavioral effects. Human galanin is a 30-amino-acid non-C-terminally amidated peptide that potently stimulates growth hormone secretion, inhibits cardiac vagal slowing of heart rate, abolishes sinus arrhythmia, and inhibits postprandial gastrointestinal motility. The actions of galanin are mediated through interaction with specific membrane receptors that are members of the seven transmembrane family of G-protein-coupled receptors. A functional human galanin receptor has recently been cloned, and we report here the localization of the gene encoding this receptor (GALNR) to chromosome 18q23. 5 refs., 1 fig.

  20. ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data.

    PubMed

    Lundberg, Scott M; Tu, William B; Raught, Brian; Penn, Linda Z; Hoffman, Michael M; Lee, Su-In

    2016-01-01

    A cell's epigenome arises from interactions among regulatory factors-transcription factors and histone modifications-co-localized at particular genomic regions. We developed a novel statistical method, ChromNet, to infer a network of these interactions, the chromatin network, by inferring conditional-dependence relationships among a large number of ChIP-seq data sets. We applied ChromNet to all available 1451 ChIP-seq data sets from the ENCODE Project, and showed that ChromNet revealed previously known physical interactions better than alternative approaches. We experimentally validated one of the previously unreported interactions, MYC-HCFC1. An interactive visualization tool is available at http://chromnet.cs.washington.edu. PMID:27139377

  1. Rapid Encoding of New Memories by Individual Neurons in the Human Brain

    PubMed Central

    Ison, Matias J.; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-01-01

    Summary The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories. PMID:26139375

  2. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    PubMed Central

    Rolain, Jean-Marc

    2013-01-01

    The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. PMID:23805136

  3. Potentiation of bradykinin action on smooth muscle by a scorpion venom extract.

    PubMed

    Araujo, R L; Gomez, M V

    1976-08-01

    Gel filtration of the water extract of the venom of the scorpion T. serrulatus showed four peaks; the first peak (P1) is devoid of toxic activity but increases the bradykinin-induced contraction of isolated rat uterus and guinea-pig ileum. The stepwise fractionation of the pooled P1 peak was performed in a DEAE-cellulose column and the bradykinin potentiating activity was found in the second protein peak. Finger-printing of this material showed that the bradykinin potentiating material migrates to the anode, giving two spots when submitted to chromatography, the activity being found in the spot that presents the greatest Rf. The potentiator is destroyed by heating at 97 degrees C, is not dialysable and is destroyed by incubation with pronase. Some of these properties differentiate it from the BPF's from snake venoms. PMID:976731

  4. Responses of bradykinin sensitive tooth-pulp driven neurons in cat cerebral cortex.

    PubMed

    Iwata, K; Itoga, H; Muramatsu, H; Toda, K; Sumino, R

    1987-01-01

    The properties of single cortical neurons responding to electrical stimulation of the tooth-pulp and to intrapulpal application of bradykinin were studied in the cat. The activities of tooth-pulp driven neurons (TPNs) were recorded from the middle and anterior parts of the coronal gyrus of the cerebral cortex. Bradykinin-sensitive tooth-pulp driven neurons (BK-TPNs) were located in layer IV of area 3b of the anterior part of the coronal gyrus. These neurons had a large cutaneous oro-facial receptive field and received a nociceptive input from the facial skin as well as from the tooth-pulp. The BK-TPNs had a higher threshold and longer latency to electrical stimulation than TPNs insensitive to bradykinin (non BK-TPNs). These findings suggest that BK-TPNs in this cortical area may be involved in sensory processing of noxious information from trigeminal regions. PMID:3595787

  5. Bradykinin-induced contraction of guinea pig lung in vitro.

    PubMed

    Lach, E; Trifilieff, A; Mousli, M; Landry, Y; Gies, J P

    1994-08-01

    We have investigated the contractile effect of bradykinin (BK) in guinea pig lung in vitro. BK induces a dose-related contraction of lung parenchymal strips which is increased significantly in the presence of 10(-5) M captopril (an angiotensin converting enzyme inhibitor) or 10(-5) M DL-thiorphan (a neutral endopeptidase inhibitor). The kininase I inhibitor, DL-2-mercaptomethyl-3-guanidino-ethylthiopropionic acid (MGTPA), has no effect on the BK-induced contraction. BK is more potent in contracting parenchymal lung strips than other contractile agents (histamine, carbachol and substance P), however the BK-induced maximal contraction is lower than those obtained with histamine and carbachol. The B1 agonist, des-Arg9-BK, does not contract lung parenchymal strips. The new BK B2 receptor antagonists (Hoe 140, NPC 17731 and NPC 17761), which possess binding affinities in the nanomolar range, inhibit the BK-induced contractile response in a dose-dependent manner. The BK-induced contraction was unaffected by propranolol, atropine, tetrodotoxin, capsaicin pre-treatment, triprolidine, methysergide, Ro 19-3704 and N omega-nitro-L-arginine-methyl-ester (L-NAME), excluding the involvement of nervous pathways, preformed mast cell mediators, platelet-activating factor and nitric oxide. However, indomethacin, a cyclooxygenase inhibitor, AA-861, a 5-lipoxygenase inhibitor, and furegrelate, a thromboxane A2 synthase inhibitor, decreased the contractile response to BK, suggesting that both cyclooxygenase and 5-lipoxygenase products are involved in this contraction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7990978

  6. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome.

    PubMed

    Brodsky, G; Barnes, T; Bleskan, J; Becker, L; Cox, M; Patterson, D

    1997-11-01

    Purines are critical for energy metabolism, cell signalling and cell reproduction. Nevertheless, little is known about the regulation of this essential biochemical pathway during mammalian development. In humans, the second, third and fifth steps of de novo purine biosynthesis are catalyzed by a trifunctional protein with glycinamide ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS) and glycinamide ribonucleotide formyltransferase (GART) enzymatic activities. The gene encoding this trifunctional protein is located on chromosome 21. The enzyme catalyzing the intervening fourth step of de novo purine biosynthesis, phosphoribosylformylglycineamide amidotransferase (FGARAT), is encoded by a separate gene on chromosome 17. To investigate the regulation of these proteins, we have generated monoclonal and/or polyclonal antibodies specific to each of these enzymatic domains. Using these antibodies on western blots of Chinese hamster ovary (CHO) cells transfected with the human GARS-AIRS-GART gene, we show that this gene encodes not only the trifunctional protein of 110 kDa, but also a monofunctional GARS protein of 50 kDa. This carboxy-truncated human GARS protein is produced by alternative splicing resulting in the use of a polyadenylation site in the intron between the terminal GARS and the first AIRS exons. The expression of both the GARS and GARS-AIRS-GART proteins are regulated during development of the human cerebellum, while the expression of FGARAT appears to be constitutive. All three proteins are expressed at high levels during normal prenatal cerebellum development while the GARS and GARS-AIRS-GART proteins become undetectable in this tissue shortly after birth. In contrast, the GARS and GARS-AIRS-GART proteins continue to be expressed during the postnatal development of the cerebellum in individuals with Down syndrome. PMID:9328467

  7. Specific immunotherapy with mugwort pollen allergoid reduce bradykinin release into the nasal fluid

    PubMed Central

    Grzanka, Alicja; Jawor, Barbara; Czecior, Eugeniusz

    2016-01-01

    Introduction A pathomechanism of allergic rhinitis is complex. A neurogenic mechanism seems to play a significant role in this phenomenon. Aim The evaluation of influence of specific immunotherapy of mugwort pollen allergic patients on the bradykinin concentration in the nasal lavage fluid. Material and methods The study included 22 seasonal allergic rhinitis patients. Thirty persons with monovalent allergy to mugwort pollen, confirmed with skin prick tests and allergen-specific immunoglobulin E, underwent a 3-year-long allergen immunotherapy with the mugwort extract (Allergovit, Allergopharma, Germany). The control group was composed of 9 persons with polyvalent sensitivity to pollen, who were treated with pharmacotherapy. Before the allergen-specific immunotherapy (AIT) and in subsequent years before the pollen seasons, a provocation allergen test with the mugwort extract was performed, together with collection of nasal fluids, where bradykinin concentration was determined according to Proud method. Results There were similar levels of bradykinin in both groups at baseline prior to therapy (AIT group: 584.0 ±87.2 vs. controls 606.3 ±106.5 pg/ml) and changes after allergen challenge 1112.4 ±334.8 vs. 1013.3 ±305.9 pg/ml as well. The bradykinin concentration in nasal lavage fluid after mugwort challenge in 1 year was lower in the AIT group (824.1 ±184.2 pg/ml vs. 1000.4 ±411.5 pg/l; p < 005) with a further significant decrease after the 2nd and 3rd year of specific immunotherapy. Significant reduction of symptoms and medications use was observed in hyposensitized patients. Conclusions A decreased level of bradykinin as a result of AIT suggests that some of the symptomatic benefits of AIT may be related to the reduced release of bradykinin into nasal secretions. These values correlate with clinical improvement within the course of treatment. PMID:27605897

  8. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  9. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells.

    PubMed

    Peng, Xing-Chen; Wang, Ming; Chen, Xu-Xia; Liu, Jing; Xiao, Gui-Hua; Liao, Hong-Li

    2014-10-01

    The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer. PMID:24997628

  10. Characterization of cDNAs encoding human pyruvate dehydrogenase alpha subunit.

    PubMed Central

    Ho, L; Wexler, I D; Liu, T C; Thekkumkara, T J; Patel, M S

    1989-01-01

    A cDNA clone (1423 base pairs) comprising the entire coding region of the precursor form of the alpha subunit of pyruvate dehydrogenase (E1 alpha) has been isolated from a human liver cDNA library in phage lambda gt11. The first 29 amino acids deduced from the open reading frame correspond to a typical mitochondrial targeting leader sequence. The remaining 361 amino acids, starting at the N terminus with phenylalanine, represent the mature mitochondrial E1 alpha peptide. The cDNA has 43 base pairs in the 5' untranslated region and 210 base pairs in the 3' untranslated region, including a polyadenylylation signal and a short poly(A) tract. The nucleotide sequence of human liver E1 alpha cDNA was confirmed by the nucleotide sequences of three overlapping fragments generated from human liver and fibroblast RNA by reverse transcription and DNA amplification by the polymerase chain reaction. This consensus nucleotide sequence of human liver E1 alpha cDNA resolves existing discrepancies among three previously reported human E1 alpha cDNAs and provides the unambiguous reference sequence needed for the characterization of genetic mutations in pyruvate dehydrogenase-deficient patients. Images PMID:2748588

  11. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  12. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase.

    PubMed

    Rosman, G J; Martins, T J; Sonnenburg, W K; Beavo, J A; Ferguson, K; Loughney, K

    1997-05-20

    Human cyclic GMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2A3) cDNAs were cloned from hippocampus and fetal brain cDNA libraries. A 4.2-kb composite DNA sequence constructed from overlapping cDNA clones encodes a 941 amino acid protein with a predicted molecular mass of 105,715 Da. Extracts prepared from yeast expressing the human PDE2A3 hydrolyzed both cyclic AMP (cAMP) and cyclic GMP (cGMP). This activity was inhibited by EHNA, a selective PDE2 inhibitor, and was stimulated three-fold by cGMP. Human PDE2A is expressed in brain and to a lesser extent in heart, placenta, lung, skeletal muscle, kidney and pancreas. The human PDE2A3 differs from the bovine PDE2A1 and rat PDE2A2 proteins at the amino terminus but its amino-terminal sequence is identical to the bovine PDE2A3 sequence. The different amino termini probably arise from alternative exon splicing of the PDE2A mRNA. PMID:9210593

  13. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    PubMed

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function. PMID:17571346

  14. [Treatment of drugs-associated non-hereditary angioedema mediated by bradykinin].

    PubMed

    Muller, Yannick; Harr, Thomas

    2016-01-13

    Angioedema is a deep intradermal or sub-cutaneous edema, which can be mediated by histamine, bradykinin or mixture of both components. The aims of this review are to describe the clinical approach and diagnosis of non-hereditary bradykinin-mediated angioedema induced by drugs such as: angiotensin-converting inhibitor, sartan, gliptins, rapamycin or some thrombolytic reagents and renin inhibitors. Furthermore, we will discuss the drug management of these angioedema, which is mainly based on C1 inhibitor concentrate or icatibant administration. PMID:26946694

  15. Structure and chromosomal localization of the gene encoding the human myelin protein zero (MPZ)

    SciTech Connect

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro ); Wang, Yimin; Takata, Mizuho; Minoshima, Shinsei; Shimizu, Nobuyoshi; Miura, Masayuki; Uyemura, Keiichi )

    1993-09-01

    The authors describe the cloning, characterization, and chromosomal mapping of the human myelin protein zero (MPZ) gene (a structural protein of myelin and an adhesive glycoprotein of the immunoglobulin superfamily). The gene is about 7 kb long and consists of six exons corresponding of the functional domains. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box), two CAAT boxes, and a single defined transcription initiation site detected by the primer extension method. The gene for human MPZ was assigned to chromosome 1q22-q23 by spot blot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. The localization of the MPZ gene coincides with the locus for Charcot-Marie-Tooth disease type 1B, determined by linkage analysis. 20 refs., 3 figs., 1 tab.

  16. Structure and localization of the gene encoding human peripheral myelin protein 2 (PMP2)

    SciTech Connect

    Hayasaka, Kiyoshi; Himoro, Masato; Takada, Goro ); Takahashi, Ei-Ichi ); Minoshima, Shinsei; Shimizu, Nobuyoshi )

    1993-11-01

    Peripheral myelin protein 2 (PMP2) is a small, basic, and cytoplasmic lipid-binding protein of peripheral myelin. In this paper, the authors describe the cloning, characterization, and chromosomal mapping of the human PMP2 gene. The gene is about 8 kb long and consists of four exons. All exon-intron junction sequences conform to the GT/AG rule. The 5[prime]-flanking region of the gene has a TA-rich element (TATA-like box) and a single defined transcription initiation site detected by the primer extension method. The gene for human PMP2 was assigned to chromosome 8q21.3-q22.1 by spot hybridization of flow-sorted human chromosomes and fluorescence in situ hybridization. 29 refs., 4 figs., 1 tab.

  17. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  18. Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome

    PubMed Central

    Leroy, Quentin; Vialettes, Bernard; Million, Matthieu; Raoult, Didier; Henrissat, Bernard

    2013-01-01

    Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals. PMID:24391873

  19. Mutations in CSPP1, Encoding a Core Centrosomal Protein, Cause a Range of Ciliopathy Phenotypes in Humans

    PubMed Central

    Shaheen, Ranad; Shamseldin, Hanan E.; Loucks, Catrina M.; Seidahmed, Mohammed Zain; Ansari, Shinu; Ibrahim Khalil, Mohamed; Al-Yacoub, Nadya; Davis, Erica E.; Mola, Natalie A.; Szymanska, Katarzyna; Herridge, Warren; Chudley, Albert E.; Chodirker, Bernard N.; Schwartzentruber, Jeremy; Majewski, Jacek; Katsanis, Nicholas; Poizat, Coralie; Johnson, Colin A.; Parboosingh, Jillian; Boycott, Kym M.; Innes, A. Micheil; Alkuraya, Fowzan S.

    2014-01-01

    Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies. PMID:24360803

  20. Cloning and characterization of a cDNA encoding transformation-sensitive tropomyosin isoform 3 from tumorigenic human fibroblasts

    SciTech Connect

    Lin, C.S.; Leavitt, J.

    1988-01-01

    The authors isolated a cDNA clone from the tumorigenic human fibroblast cell line HuT-14 that contains the entire protein coding region of tropomyosin isoform 3 (Tm3) and 781 base pairs of 5'- and 3'-untranslated sequences. Tm3, despite its apparent smaller molecular weight than Tm1 in two-dimensional gels, has the same peptide length as Tm1 (284 amino acids) and shares 83% homology with Tm1. Tm3 cDNA hybridized to an abundant mRNA of 1.3 kilobases in fetal muscle and cardiac muscle, suggesting that Tm3 is related to an ..cap alpha../sub fast/-tropomyosin. The first 188 amino acids of Tm3 are identical to those of rat or rabbit skeletal muscle ..cap alpha..-tropomyosin, and the last 71 amino acids differ from those of rat smooth muscle ..cap alpha..-tropomyosin by only 1 residue. Tm3 therefore appears to be encoded by the same gene that encodes the fast skeletal muscle ..cap alpha..-tropomyosin and the smooth muscle ..cap alpha..-tropomyosin via an alternative RNA-splicing mechanism. In contrast to Tm4 and Tm5, Tm3 has a small gene family, with, at best, only one pseudogene.

  1. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    ERIC Educational Resources Information Center

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  2. Human Cortical θ during Free Exploration Encodes Space and Predicts Subsequent Memory

    PubMed Central

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric

    2013-01-01

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  3. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    PubMed

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration. PMID:24048836

  4. The encoding of category-specific versus nonspecific information in human inferior temporal cortex.

    PubMed

    Guo, Bingbing; Meng, Ming

    2015-08-01

    Several brain areas in the inferior temporal (IT) cortex, such as the fusiform face area (FFA) and parahippocampal place area (PPA), are hypothesized to be selectively responsive to a particular category of visual objects. However, how category-specific and nonspecific information may be encoded at this level of visual processing is still unclear. Using fMRI, we compared averaged BOLD activity as well as multi-voxel activation patterns in the FFA and PPA corresponding to high-contrast and low-contrast face and house images. The averaged BOLD activity in the FFA and PPA was modulated by the image contrast regardless of the stimulus category. Interestingly, unlike the univariate averaged BOLD activity, multi-voxel activation patterns in the FFA and PPA were barely affected by variations in stimulus contrast. In both the FFA and PPA, decoding the categorical information about whether participants saw faces or houses was independent of stimulus contrast. Moreover, the multivariate pattern analysis (MVPA) results were highly stable when either the voxels that were more sensitive to stimulus contrast or the voxels that were less sensitive were used. Taken together, these findings demonstrate that both category-specific (face versus house) information and nonspecific (image contrast) information are available to be decoded orthogonally in the same brain areas (FFA and PPA), suggesting that complementary neural mechanisms for processing visual features and categorical information may occur in the same brain areas but respectively be revealed by averaged activity and multi-voxel activation patterns. Whereas stimulus strength, such as contrast, modulates overall activity amplitudes in these brain areas, activity patterns across populations of neurons appear to underlie the representation of object category. PMID:25869859

  5. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    SciTech Connect

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end of the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.

  6. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes.

    PubMed

    Kriegel, Alison J; Baker, Maria Angeles; Liu, Yong; Liu, Pengyuan; Cowley, Allen W; Liang, Mingyu

    2015-10-01

    The goal of this study was to systematically identify endogenous microRNAs (miRNAs) in endothelial cells that regulate mRNAs encoded by genes relevant to hypertension. Small RNA deep sequencing was performed in cultured human microvascular endothelial cells. Of the 50 most abundant miRNAs identified, 30 had predicted target mRNAs encoded by genes with known involvement in hypertension or blood pressure regulation. The cells were transfected with anti-miR oligonucleotides to inhibit each of the 30 miRNAs and the mRNA abundance of predicted targets was examined. Of 95 miRNA-target pairs examined, the target mRNAs were significantly upregulated in 35 pairs and paradoxically downregulated in 8 pairs. The result indicated significant suppression of the abundance of mRNA encoded by ADM by endogenous miR-181a-5p, ATP2B1 by the miR-27 family, FURIN by miR-125a-5p, FGF5 by the let-7 family, GOSR2 by miR-27a-3p, JAG1 by miR-21-5p, SH2B3 by miR-30a-5p, miR-98, miR-181a-5p, and the miR-125 family, TBX3 by the miR-92 family, ADRA1B by miR-22-3p, ADRA2A by miR-30a-5p and miR-30e-5p, ADRA2B by miR-30e-5p, ADRB1 by the let-7 family and miR-98, EDNRB by the miR-92 family, and NOX4 by the miR-92 family, miR-100-5p, and miR-99b-5p (n=3-9; P<0.05 versus scrambled anti-miR). Treatment with anti-miR-21 decreased blood pressure in mice fed a 4% NaCl diet. Inhibition of the miRNAs targeting NOX4 mRNA increased H2O2 release from endothelial cells. The findings indicate widespread, tonic control of mRNAs encoded by genes relevant to blood pressure regulation by endothelial miRNAs and provide a novel and uniquely informative basis for studying the role of miRNAs in hypertension. PMID:26283043

  7. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    PubMed Central

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2006-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Gαi, Gαq and Gα12/13 signaling pathways, and a PKCα inhibitor, Gö6976 blocked potentiation while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a non-selective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the N-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus, PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  8. The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): Cloning, characterization, and assignment to human chromosome 4, band q26

    SciTech Connect

    Bosio, A.; Binczek, E.; Stoffel, W.

    1996-05-15

    We have previously cloned the human UDP-galactose ceramide galactosyltransferase (CGT, E.C. 2.4.1.45) cDNA. Its open reading frame encodes the key enzyme in the biosynthesis of the glycosphingolipids, cerebrosides and sulfatides, essential constituents of the myelin membrane of the central nervous system (CNS) and PNS. Expression of the CGT gene and of the myelin-specific proteins in the terminal differentiated oligodendrocyte of CNS and in Schwann cells of PNS is cell-specific and highly time-regulated. The CGT gene therefore is important in the differentiation program of the oligodendrocyte lineage. Here we report the structural organization and the chromosomal localization of the human CGT gene. The coding sequence is separated into five exons, which are distributed over >40 kb. The CGT locus was mapped to the distal region of human chromosome 4, band q26. The organization of the CGT gene and of the UGT (uridylglucuronosyl-transferases) gene family suggests a correlation to functional domains of the encoded proteins. 19 refs., 4 figs., 1 tab.

  9. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  10. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    SciTech Connect

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  11. Encoding of frequency-modulation (FM) rates in human auditory cortex

    PubMed Central

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-01-01

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music. PMID:26656920

  12. YAC contig mapping of six expressed sequences encoded by human chromosome 21

    SciTech Connect

    Yu, J.; Cox, M.; Patterson, D. |

    1995-03-01

    Six cDNA clones from human chromosome 21 have been mapped in a set of complete YAC contig spanning the entire chromosome 21q. The mapping positions between two STSs on the YAC contig and the NotI coordinates starting from the telomere of 21q were determined for the cDNA clones. The YAC contig mapping positions agree well with those using a comprehensive somatic cell hybrid mapping panel. 6 refs., 1 fig., 2 tabs.

  13. The human hGSTA5 gene encodes an enzymatically active protein

    PubMed Central

    Singh, Sharda P.; Zimniak, Ludwika; Zimniak, Piotr

    2009-01-01

    Background Of the five human Alpha-class glutathione transferases, expression of hGSTA5 has not been experimentally documented, even though in silico the hGSTA5 sequence can be assembled into a mRNA and translated. The present work was undertaken to determine whether hGSTA5 is functional. Methods Human K562 cells were transfected with the hGSTA5 gene driven by the CMV promoter, and hGSTA5 cDNA was recovered from mature mRNA by reverse transcription. The cDNA was used in bacterial and eukaryotic protein expression systems. The resulting protein, after purification by glutathione affinity chromatography where appropriate, was tested for glutathione transferase activity. Results Human K562 cells transfected with the hGSTA5 gene under control of a CMV promoter produced a fully spliced mRNA which, after reverse transcription and expression in E. coli, yielded a protein that catalyzed the conjugation of the lipid peroxidation product 4-hydroxynonenal to glutathione. Similarly, transfection of human HEK-293 cells with the hGSTA5 gene driven by the CMV promoter led to an elevated 4-hydroxynonenal-conjugating activity in the cell lysate. In addition, translation of hGSTA5 cDNA in a cell-free eukaryotic system gave rise to a protein with 4-hydroxynonenal-conjugating activity. Conclusions hGSTA5 can be processed to a mature mRNA which is translation-competent, producing a catalytically active enzyme. General Significance Because a functional gene would not be maintained in the absence of selective pressure, we conclude that the native hGSTA5 promoter is active but has a spatially or temporally restricted expression pattern, and/or is expressed only under specific (patho)physiological conditions. PMID:19664689

  14. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C.

    PubMed Central

    Dewaste, V; Pouillon, V; Moreau, C; Shears, S; Takazawa, K; Erneux, C

    2000-01-01

    Inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] 3-kinase catalyses the phosphorylation of Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4). cDNAs encoding two isoenzymes of Ins(1,4,5)P(3) 3-kinase (3-kinases A and B) have been described previously. In the present study, we report the cloning of a full-length 2052 bp cDNA encoding a third human isoenzyme of the Ins(1,4,5)P(3) 3-kinase family, referred to as isoform C. This novel enzyme has a calculated molecular mass of 75. 207 kDa and a K(m) for Ins(1,4,5)P(3) of 6 microM. Northern-blot analysis showed the presence of a transcript of approx. 3.9 kb in various human tissues. Inositol trisphosphate 3-kinase C demonstrates enzymic activity when expressed in DH5alphaF' bacteria or COS-7 cells. Calcium alone decreases the Ins(1,4,5)P(3) 3-kinase activity of the 3-kinase C isoenzyme in transfected COS-7 cells. This inhibitory effect is reversed in the presence of calmodulin. The recombinant bacterial 3-kinase C can be adsorbed on calmodulin-Sepharose in the presence of calcium. The present data show that Ins(1,4,5)P(3) 3-kinase C: (i) shares a conserved catalytic domain of about 275 amino acids with the two other mammalian isoforms, (ii) could be purified on a calmodulin-Sepharose column and (iii) could be distinguished from the A and B isoenzymes by the effects of calcium and of calmodulin. PMID:11085927

  15. Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI

    PubMed Central

    Amedi, Amir

    2011-01-01

    The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities. PMID:21448274

  16. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    SciTech Connect

    Huebner, K.; Kastury, K.; Druck, T.

    1994-07-15

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding {open_quotes}adapter{close_quotes} proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types. 41 refs., 4 figs.

  17. Breast cancer gene therapy using an adenovirus encoding human IL-2 under control of mammaglobin promoter/enhancer sequences.

    PubMed

    Chaurasiya, S; Hew, P; Crosley, P; Sharon, D; Potts, K; Agopsowicz, K; Long, M; Shi, C; Hitt, M M

    2016-06-01

    Interleukin-2 (IL-2) has been used clinically for the treatment of some malignancies, but the toxicities associated with systemic IL-2 therapy are a major challenge. Here we have determined whether transcriptional targeting of IL-2 to breast cancer (BrCa) using an engineered human mammaglobin promoter/enhancer (MPE2) is a feasible option for reducing IL-2-associated toxicities while still achieving a meaningful antitumor effect. We have constructed nonreplicating adenovirus vectors encoding either a reporter gene (luciferase) or human IL-2 (hIL-2) complementary DNA under control of the MPE2 sequence, the murine cytomegalovirus immediate early (MCMV) promoter or the human telomerase reverse transcriptase (hTERT) promoter. Luciferase and hIL-2 complementary DNAs under the control of the MPE2 sequence in adenovirus vectors were expressed at high levels in BrCa cells and at lower levels in normal cells of human and murine origin. Cancer specificity of the hTERT promoter was found to be similar to that of the MPE2 promoter in cells of human origin, but reduced specificity in murine cells. The MPE2 regulatory sequence demonstrated excellent tissue specificity in a mouse tumor model. Whereas the MCMV promoter-controlled IL-2 vector generated high liver toxicity in mice, the MPE2-controlled IL-2 vector generated little or no liver toxicity. Both IL-2 vectors exerted significant tumor growth delay; however, attempts to further enhance antitumor activity of the IL-2 vectors by combining with the proapoptotic drug procaspase activating compound 1 (PAC1) were unsuccessful. PMID:27151235

  18. Enzymatic Assays for the Diagnosis of Bradykinin-Dependent Angioedema

    PubMed Central

    Defendi, Federica; Charignon, Delphine; Ghannam, Arije; Baroso, Remi; Csopaki, Françoise; Allegret-Cadet, Marion; Ponard, Denise; Favier, Bertrand; Cichon, Sven; Nicolie, Brigitte; Fain, Olivier

    2013-01-01

    Background The kinins (primarily bradykinin, BK) represent the mediators responsible for local increase of vascular permeability in hereditary angioedema (HAE), HAE I-II associated with alterations of the SERPING1 gene and HAE with normal C1-Inhibitor function (HAE-nC1INH). Besides C1-Inhibitor function and concentration, no biological assay of kinin metabolism is actually available to help physicians for the diagnosis of angioedema (AE). We describe enzymatic tests on the plasma for diagnosis of BK-dependent AE. Methods The plasma amidase assays are performed using the Pro-Phe-Arg-p-nitroanilide peptide substrate to evaluate the spontaneous amidase activity and the proenzyme activation. We analyzed data of 872 patients presenting with BK-dependent AE or BK-unrelated diseases, compared to 303 controls. Anti-high MW kininogen (HK) immunoblot was achieved to confirm HK cleavage in exemplary samples. Reproducibility, repeatability, limit of blank, limit of detection, precision, linearity and receiver operating characteristics (ROC) were used to calculate the diagnostic performance of the assays. Results Spontaneous amidase activity was significantly increased in all BK-dependent AE, associated with the acute phase of disease in HAE-nC1INH, but preserved in BK-unrelated disorders. The increase of the amidase activity was associated to HK proteolysis, indicating its relevance to identify kininogenase activity. The oestrogens, known for precipitating AE episodes, were found as triggers of enzymatic activity. Calculations from ROC curves gave the optimum diagnostic cut-off for women (9.3 nmol⋅min−1⋅mL−1, area under curve [AUC] 92.1%, sensitivity 80.0%, and specificity 90.1%) and for men (6.6 nmol·min−1⋅mL−1, AUC 91.0%, sensitivity 87.0% and specificity 81.2%). Conclusion The amidase assay represents a diagnostic tool to help physicians in the decision to distinguish between BK-related and –unrelated AE. PMID:23940538

  19. Sanfilippo syndrome type B: cDNA and gene encoding human {alpha}-N-acetylglucosaminidase

    SciTech Connect

    Zhao, H.G.; Lopez, R.; Rennecker, J.

    1994-09-01

    Deficiency of the lysosomal enzyme {alpha}-N-acetlyglucosaminidase underlies the type B Sanfilippo syndrome (MPS III B), a mucopolysaccharide storage disease with profound neurologic deterioration. We are acquiring tools to study the molecular basis of the disorder. The enzyme was purified from bovine testis; after ConA-, DEAE- and phenyl-Sepharose chromatography, it was subjected to SDS-PAGE without preheating. Of two bands of activity detected on the gel, 170 kDa and 87 kDa, the larger one, which coincided with a well-defined Coomassie blue band, was selected for sequence analysis. Degenerate 17-base oligonucleotides, corresponding to the ends of an internal 23 amino acid sequence, were used for RT-PCR of RNA from human fibroblasts. A 41-mer was synthesized from the sequence of the RT-PCR product and used to screen a human testis cDNA library. A number of cDNA inserts were isolated, all lacking the 5{prime} end and none longer than 1.7 kb. An additional 300 bp segment has been obtained by RACE. The cDNA sequence accounts for 9 of 11 peptides, allowing for species difference. Northern analysis of fibroblast RNA with a 1.5 kb cDNA probe showed the presence of a 3 kb mRNA; marked deficiency of this mRNA in two MPS III B fibroblast lines confirmed the authenticity of the cloned cDNA. While no homologous amino acid sequence has been found in a search of GenBank, the nucleotide sequence (interrupted by 4 introns) is present in a flanking region upstream of an unrelated gene on chromosome 17q11-21 (human 17{beta}-hydroxysteroid dehydrogenase). This must therefore be the chromosomal locus of the {alpha}-N-acetylglucosaminidase gene and of MPS III B.

  20. Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants.

    PubMed

    Agarwal, Saurabh; Singh, Rahul; Sanyal, Indraneel; Amla, D V

    2008-10-01

    Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate

  1. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network

    PubMed Central

    Keith, Benjamin P.; Robertson, David L.; Hentges, Kathryn E.

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity. PMID:25538735

  2. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    PubMed

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  3. Regulatory pathways for the stimulation of canine tracheal ciliary beat frequency by bradykinin.

    PubMed Central

    Wong, L B; Miller, I F; Yeates, D B

    1990-01-01

    1. The effects of bradykinin, a potent inflammatory nanopeptide, on tracheal ciliary beat frequency in vivo were investigated using barbiturate-anaesthetized beagles. Tracheal ciliary beat frequency was measured using heterodyne mode correlation analysis laser light scattering, a technique that does not require surgical intervention. 2. Aerosolized 10(-5) M-bradykinin in 0.9% saline administered for 3 min to eight barbiturate-anaesthetized beagles stimulated tracheal ciliary beat frequency from the baseline of 5.3 +/- 0.1 Hz to a maximum of 16.6 +/- 2.0 Hz, 8 min after aerosol delivery, and ciliary beat frequency remained above baseline for the following 35 min. 3. Intravenously injected hexamethonium bromide, ipratropium bromide or indomethacin did not change baseline tracheal ciliary beat frequency. That down-regulation of ciliary beat frequency below baseline values was not observed with either the neural or the cyclooxygenase blocking agents suggests that neither of these pathways is involved in the maintenance of the observed basal ciliary beat frequency. 4. Bradykinin-induced stimulation of tracheal ciliary beat frequency is blocked by hexamethonium bromide, ipratropium bromide or indomethacin. These data suggest that the stimulation of ciliary beat frequency by bradykinin acts through both cellular cyclooxygenase and parasympathetic pathways in series. PMID:1972192

  4. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2

    SciTech Connect

    Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.

    1981-12-01

    The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation.

  5. Bradykinin B2, but not B1, receptor antagonism has a neuroprotective effect after brain injury.

    PubMed

    Görlach, C; Hortobágyi, T; Hortobágyi, S; Benyó, Z; Relton, J; Whalley, E T; Wahl, M

    2001-08-01

    The aim of the present study was to measure the therapeutic effects of bradykinin antagonists on lesion volume and brain swelling induced by cold injury in the parietal cortex of rat and mouse, respectively. Cold lesion was induced by application of a precooled (-78 degrees C) copper cylinder (3 mm diameter) to the intact dura of rat and mouse for 6 and 30 sec, respectively. At 24 h after the injury, the brains were removed and lesion volume was determined by the triphenyltetrazolium chloride method in rats. In the mouse, brain swelling was expressed as percentage increase in weight of the injured hemisphere which is compared to the contralateral side. After a subcutaneous priming dose of 18 microg/kg, a 1-h pretreatment and 24-h posttreatment using osmotic minipumps (300 ng/kg x min) was applied. Hoe140, a bradykinin receptor 2 antagonist, revealed a 19% reduction of lesion volume (p < 0.05) in the rat and a 14% diminution of brain swelling (p < 0.05) in the mouse. In contrast, the bradykinin receptor 1 antagonist, B 9858, had no effect on lesion volume compared to sham treated rats. When B 9858 was given in combination with Hoe140, a significant reduction in lesion volume was seen which was equivalent to and not different from that seen with Hoe140 alone in the rat. We conclude that brain injury after cold lesion is partially mediated by bradykinin and can be successfully treated with B2 antagonists. PMID:11526989

  6. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel

    SciTech Connect

    Wang, Qing; Li, Zhizhong; Shen, Jiaxiang; Keating, M.T.

    1996-05-15

    The voltage-gated cardiac sodium channel, SCN5A, is responsible for the initial upstroke of the action potential. Mutations in the human SCN5A gene cause susceptibility to cardiac arrhythmias and sudden death in the long QT syndrome (LQT). In this report we characterize the genomic structure of SCN5A. SCN5A consists of 28 exons spanning approximately 80 kb on chromosome 3p21. We describe the sequences of all intron/exon boundaries and a dinucleotide repeat polymorphism in intron 16. Oligonucleotide primers based on exon-flanking sequences amplify all SCN5A exons by PCR. This work establishes the complete genomic organization of SCN5A and will enable high-resolution analyses of this locus for mutations associated with LQT and other phenotypes for which SCN5A may be a candidate gene. 40 refs., 4 figs., 2 tabs.

  7. Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis

    PubMed Central

    Paterson, Kathryn J.; Zambreanu, Laura; Bennett, David L.H.; McMahon, Stephen B.

    2013-01-01

    Bradykinin (BK) is an inflammatory mediator that can evoke oedema and vasodilatation, and is a potent algogen signalling via the B1 and B2 G-protein coupled receptors. In naïve skin, BK is effective via constitutively expressed B2 receptors (B2R), while B1 receptors (B1R) are purported to be upregulated by inflammation. The aim of this investigation was to optimise BK delivery to investigate the algesic effects of BK and how these are modulated by inflammation. BK iontophoresis evoked dose- and temperature-dependent pain and neurogenic erythema, as well as thermal and mechanical hyperalgesia (P < 0.001 vs saline control). To differentiate the direct effects of BK from indirect effects mediated by histamine released from mast cells (MCs), skin was pretreated with compound 4880 to degranulate the MCs prior to BK challenge. The early phase of BK-evoked pain was reduced in degranulated skin (P < 0.001), while thermal and mechanical sensitisation, wheal, and flare were still evident. In contrast to BK, the B1R selective agonist des-Arg9-BK failed to induce pain or sensitise naïve skin. However, following skin inflammation induced by ultraviolet B irradiation, this compound produced a robust pain response. We have optimised a versatile experimental model by which BK and its analogues can be administered to human skin. We have found that there is an early phase of BK-induced pain which partly depends on the release of inflammatory mediators by MCs; however, subsequent hyperalgesia is not dependent on MC degranulation. In naïve skin, B2R signaling predominates, however, cutaneous inflammation results in enhanced B1R responses. PMID:23422725

  8. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation.

    PubMed Central

    Lagasse, E; Clerc, R G

    1988-01-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, have been characterized. Here we report that MRP8 and MRP14 mRNAs are specifically expressed in human cells of myeloid origin and that their expression is regulated during monocyte-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, we cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100 alpha, S100 beta, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting elements responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci. Images PMID:3405210

  9. Distribution of Genes Encoding the Trypsin-Dependent Lantibiotic Ruminococcin A among Bacteria Isolated from Human Fecal Microbiota

    PubMed Central

    Marcille, F.; Gomez, A.; Joubert, P.; Ladiré, M.; Veau, G.; Clara, A.; Gavini, F.; Willems, A.; Fons, M.

    2002-01-01

    Fourteen bacterial strains capable of producing a trypsin-dependent antimicrobial substance active against Clostridium perfringens were isolated from human fecal samples of various origins (from healthy adults and children, as well as from adults with chronic pouchitis). Identification of these strains showed that they belonged to Ruminococcus gnavus, Clostridium nexile, and Ruminococcus hansenii species or to new operational taxonomic units, all from the Clostridium coccoides phylogenetic group. In hybridization experiments with a probe specific for the structural gene encoding the trypsin-dependent lantibiotic ruminococcin A (RumA) produced by R. gnavus, seven strains gave a positive response. All of them harbored three highly conserved copies of rumA-like genes. The deduced peptide sequence was identical to or showed one amino acid difference from the hypothetical precursor of RumA. Our results indicate that the rumA-like genes have been disseminated among R. gnavus and phylogenetically related strains that can make up a significant part of the human fecal microbiota. PMID:12089024

  10. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma.

    PubMed

    Jensen, Kristian K; Manfra, Denise J; Grisotto, Marcos G; Martin, Andrea P; Vassileva, Galya; Kelley, Kevin; Schwartz, Thue W; Lira, Sergio A

    2005-03-15

    Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively active G protein-coupled receptor known as vGPCR that binds CXC chemokines with high affinity. In this study, we show that conditional transgenic expression of vGPCR by cells of endothelial origin triggers an angiogenic program in vivo, leading to development of an angioproliferative disease that resembles KS. This angiogenic program consists partly in the expression of the angiogenic factors placental growth factor, platelet-derived growth factor B, and inducible NO synthase by the vGPCR-expressing cells. Finally, we show that continued vGPCR expression is essential for progression of the KS-like phenotype and that down-regulation of vGPCR expression results in reduced expression of angiogenic factors and regression of the lesions. Together, these findings implicate vGPCR as a key element in KS pathogenesis and suggest that strategies to block its function may represent a novel approach for the treatment of KS. PMID:15749907

  11. Isolation of a gene encoding a Chlamydia sp. strain TWAR protein that is recognized during infection of humans.

    PubMed

    Campbell, L A; Kuo, C C; Thissen, R W; Grayston, J T

    1989-01-01

    Chlamydia sp. strain TWAR is a unique Chlamydia sp. that causes acute respiratory disease. A gene bank consisting of TWAR isolate AR-39 DNA in pUC19 was screened with anti-AR-39 rabbit immune sera. Two positive clones were isolated that contained 7.3-kilobase (pLC1) and 14.9-kilobase (pLC2) plasmids. Restriction mapping and hybridization studies showed that both pLC1 and pLC2 contained a common 4.2-kilobase PstI fragment. Plasmids were used as templates of in vitro transcription-translation. All three plasmids had a novel protein product of ca. 75 kilodaltons not found in the vector alone. Western blots showed that this protein reacted with anti-TWAR rabbit immune sera and with human immune serum from an individual who had proven TWAR infection. Whole-cell lysates of TWAR demonstrated a protein having the same molecular weight and immunoreactivity as the recombinant gene product. This protein was also recognized by rabbit immune serum against Chlamydia psittaci or Chlamydia trachomatis. Southern hybridizations with the cloned fragment as a probe of digests of other Chlamydia spp. showed weakly hybridizing fragments. These results suggest that we have isolated a gene encoding a protein recognized during human TWAR infection that contains some sequences shared among Chlamydia spp. PMID:2909493

  12. Cloning, expression and characterization of a lipase encoding gene from human oral metagenome.

    PubMed

    Preeti, Arivaradarajan; Hemalatha, Devaraj; Rajendhran, Jeyaprakash; Mullany, Peter; Gunasekaran, Paramasamy

    2014-09-01

    The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6-7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes. PMID:24891735

  13. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    SciTech Connect

    Halaban, R.; Moellmann, G. )

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  14. Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2015-09-01

    The auditory system infers the location of sound sources from the processing of different acoustic cues. These cues change during development and when assistive hearing devices are worn. Previous studies have found behavioral recalibration to modified localization cues in human adults, but very little is known about the neural correlates and mechanisms of this plasticity. We equipped participants with digital devices, worn in the ear canal that allowed us to delay sound input to one ear, and thus modify interaural time differences, a major cue for horizontal sound localization. Participants wore the digital earplugs continuously for nine days while engaged in day-to-day activities. Daily psychoacoustical testing showed rapid recalibration to the manipulation and confirmed that adults can adapt to shifted interaural time differences in their daily multisensory environment. High-resolution functional MRI scans performed before and after recalibration showed that recalibration was accompanied by changes in hemispheric lateralization of auditory cortex activity. These changes corresponded to a shift in spatial coding of sound direction comparable to the observed behavioral recalibration. Fitting the imaging results with a model of auditory spatial processing also revealed small shifts in voxel-wise spatial tuning within each hemisphere. PMID:26054873

  15. Increased skin lymph protein clearance after a 6-h arterial bradykinin infusion.

    PubMed

    Mullins, R J; Hudgens, R W

    1987-12-01

    When bradykinin (0.15-0.28 micrograms.kg-1.min-1) was infused into both femoral arteries of 11 anesthetized dogs, skin lymph flows increased by 25-371% within 2 h, and mean lymph protein concentrations increased by one-third. To determine whether, in addition to the initial increase in permeability, a 6.5- to 10-h bradykinin infusion caused a sustained effect, the bradykinin infusion into one hindpaw was stopped after 2 h (2HR), whereas the contralateral hindpaw was infused continuously (CONT). Two hours after the bradykinin infusion was stopped, Ringer lactate equal to 10% of the dog's body weight was given intravenously to further increase lymph flow. After Ringer lactate infusion, increase in lymph protein clearance from the CONT hindpaws was greater than that from the 2HR hindpaws (change in clearance from before Ringer lactate infusion to final: 2HR, 6.9 +/- 1.4 to 8.8 +/- 1.1; CONT, 23.4 +/- 2.5 to 40.2 +/- 4.8 microliters/min). In the final lymph samples of the CONT, but not 2HR, hindpaws, the lymph-to-plasma ratio for immunoglobulin G and immunoglobulin M divided by the albumin lymph-to-plasma ratio exceeded the value of these ratios in the base-line samples. An intravenous bolus of Evans blue dye was given less than 2 h before the end of the experiment. The concentrations of dye in the final lymph samples were greater in CONT hindpaws (12.6 +/- 3.7% plasma equivalents) than in the 2HR hindpaws (1.1 +/- 0.5%). A continuous 6.5- to 10-h intra-arterial bradykinin infusion produced a sustained increase of transvascular protein clearance in skin that is consistent with a sustained increase in microvascular membrane permeability. PMID:3425746

  16. YAC contig and cell hybrid mapping of six expressed sequences encoded by human chromosome 21

    SciTech Connect

    Yu, J.; Cox, M.; Patterson, D.

    1994-09-01

    The candidate gene approach for positional cloning requires a sufficient number of expressed gene sequences from the chromosomal region of interest. Trisomy for human chromosome 21 results in Down syndrome (DS). However, only a limited number of genes on chromosome 21 have been identified and cloned. We used 1,000 single-copy microclones from a microdissection library of chromosome 21 to screen various cDNA libraries and isolated 9 cDNA clones, of which 6 contain unique sequences: 21E-C1, C3, C4, C5, C7, C10. Using a refined regional mapping panel of chromosome 21 which comprised 24 cell hybrids and divided the chromosome into 33 subregions, we assigned 21E-C1 and C7 to subregion No. 22 (distal q22.1), 21E-C3 to No. 25 (proximal q22.2), 21E-C4 to No. 23 (very distal q22.1), 21E-C5 to No. 31 (proximal q22.3), and 21E-C10 to No. 28 (middle q22.2). In addition, we identified YAC clones corresponding to these cDNA clones using the complete YAC contig spanning the entire chromosome 21q. On the average, 10 positive YAC clones were identified for each cDNA. The mapping positions for the 6 cDNAs determined by the STSs in the YAC contig agree well with the cytogenetic map constructed by the hybrid panel. These cDNA clones with refined mapping positions on chromosome 21 should be useful as candidate genes for the specific component phenotypes of DS assigned to the region.

  17. The expression of the human steroid sulfatase-encoding gene is driven by alternative first exons.

    PubMed

    Dalla Valle, Luisa; Toffolo, Vania; Nardi, Alessia; Fiore, Cristina; Armanini, Decio; Belvedere, Paola; Colombo, Lorenzo

    2007-10-01

    We have analyzed steroid sulfatase (STS) gene transcription in 10 human tissues: ovary, adrenal cortex, uterus, thyroid, liver, pancreas, colon, mammary gland, dermal papilla of the hair follicle, and peripheral mononuclear leukocytes. Overall, six different promoters were found to drive STS expression, giving rise to transcripts with unique first exons that were labeled 0a, 0b, 0c, 1a, 1c, and 1d, of which the last two and 0c are newly reported. All of them, except exon 1d, vary in length owing to the occurrence of multiple transcriptional start sites. While placental exon 1a is partially coding, the other five first exons are all untranslated. Three of these (0a, 0b, and 0c) are spliced to the common partially coding exon 1b, whereas the other two (1c and 1d) are spliced to the coding exon 2, which occurs in all transcripts. Whatever the ATG actually used, the differences are restricted to the signal peptide which is post-transcriptionally cleaved. Transcripts with exons 0a and 0b have the broadest tissue distribution, occurring, in 6 out of the 12 tissues so far investigated, while the other first exons are restricted to one or two tissues. The proximal promoter of each first exon was devoid of TATA box or initiator element and lacked consensus elements for transcription factors related to steroidogenesis, suggesting that regulatory sequences are probably placed at greater distance. In conclusion, the regulation of STS transcription appears to be more complex than previously thought, suggesting that this enzyme plays a substantial role in intercellular integration. PMID:17601726

  18. Molecular cloning and characterization of a human cDNA and gene encoding a novel acid ceramidase-like protein.

    PubMed

    Hong, S B; Li, C M; Rhee, H J; Park, J H; He, X; Levy, B; Yoo, O J; Schuchman, E H

    1999-12-01

    Computer-assisted database analysis of sequences homologous to human acid ceramidase (ASAH) revealed a 1233-bp cDNA (previously designated cPj-LTR) whose 266-amino-acid open reading frame had approximately 36% identity with the ASAH polypeptide. Based on this high degree of homology, we undertook further molecular characterization of cPj-LTR and now report the full-length cDNA sequence, complete gene structure (renamed human ASAHL since it is a human acid ceramidase-like sequence), chromosomal location, primer extension and promoter analysis, and transient expression results. The full-length human ASAHL cDNA was 1825 bp and contained an open-reading frame encoding a 359-amino-acid polypeptide that was 33% identical and 69% similar to the ASAH polypeptide over its entire length. Numerous short regions of complete identity were observed between these two sequences and two sequences obtained from the Caenorhabditis elegans genome database. The 30-kb human ASAHL genomic sequence contained 11 exons, which ranged in size from 26 to 671 bp, and 10 introns, which ranged from 150 bp to 6.4 kb. The gene was localized to the chromosomal region 4q21.1 by fluorescence in situ hybridization analysis. Northern blotting experiments revealed a major 2.0-kb ASAHL transcript that was expressed at high levels in the liver and kidney, but at relatively low levels in other tissues such as the lung, heart, and brain. Sequence analysis of the 5'-flanking region of the human ASAHL gene revealed a putative promoter region that lacked a TATA box and was GC rich, typical features of a housekeeping gene promoter, as well as several tissue-specific and/or hormone-induced transcription regulatory sites. 5'-Deletion analysis localized the promoter activity to a 1. 1-kb fragment within this region. A major transcription start site also was located 72 bp upstream from the ATG translation initiation site by primer extension analysis. Expression analysis of a green fluorescence protein/ASAHL fusion

  19. Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA

    SciTech Connect

    Mariottini, P.; Chomyn, A.; Riley, M.; Cottrell, B.; Doolittle, R.F.; Attardi, G.

    1986-03-01

    In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH/sub 2/-terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH/sub 2/-terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells.

  20. The Human Cytomegalovirus-Specific UL1 Gene Encodes a Late-Phase Glycoprotein Incorporated in the Virion Envelope

    PubMed Central

    Shikhagaie, Medya; Mercé-Maldonado, Eva; Isern, Elena; Muntasell, Aura; Albà, M. Mar; López-Botet, Miguel; Hengel, Hartmut

    2012-01-01

    We have investigated the previously uncharacterized human cytomegalovirus (HCMV) UL1 open reading frame (ORF), a member of the rapidly evolving HCMV RL11 family. UL1 is HCMV specific; the absence of UL1 in chimpanzee cytomegalovirus (CCMV) and sequence analysis studies suggest that UL1 may have originated by the duplication of an ancestor gene from the RL11-TRL cluster (TRL11, TRL12, and TRL13). Sequence similarity searches against human immunoglobulin (Ig)-containing proteins revealed that HCMV pUL1 shows significant similarity to the cellular carcinoembryonic antigen-related (CEA) protein family N-terminal Ig domain, which is responsible for CEA ligand recognition. Northern blot analysis revealed that UL1 is transcribed during the late phase of the viral replication cycle in both fibroblast-adapted and endotheliotropic strains of HCMV. We characterized the protein encoded by hemagglutinin (HA)-tagged UL1 in the AD169-derived HB5 background. UL1 is expressed as a 224-amino-acid type I transmembrane glycoprotein which becomes detectable at 48 h postinfection. In infected human fibroblasts, pUL1 colocalized at the cytoplasmic site of virion assembly and secondary envelopment together with TGN-46, a marker for the trans-Golgi network, and viral structural proteins, including the envelope glycoprotein gB and the tegument phosphoprotein pp28. Furthermore, analyses of highly purified AD169 UL1-HA epitope-tagged virions revealed that pUL1 is a novel constituent of the HCMV envelope. Importantly, the deletion of UL1 in HCMV TB40/E resulted in reduced growth in a cell type-specific manner, suggesting that pUL1 may be implicated in regulating HCMV cell tropism. PMID:22345456

  1. The PANE1 gene encodes a novel human minor histocompatibility antigen that is selectively expressed in B-lymphoid cells and B-CLL

    PubMed Central

    Brickner, Anthony G.; Evans, Anne M.; Mito, Jeffrey K.; Xuereb, Suzanne M.; Feng, Xin; Nishida, Tetsuya; Fairfull, Liane; Ferrell, Robert E.; Foon, Kenneth A.; Hunt, Donald F.; Shabanowitz, Jeffrey; Engelhard, Victor H.; Riddell, Stanley R.; Warren, Edus H.

    2006-01-01

    Minor histocompatibility antigens (mHAg's) are peptides encoded by polymorphic genes that are presented by major histocompatibility complex (MHC) molecules and recognized by T cells in recipients of allogeneic hematopoietic cell transplants. Here we report that an alternative transcript of the proliferation-associated nuclear element 1 (PANE1) gene encodes a novel human leukocyte antigen (HLA)-A*0301-restricted mHAg that is selectively expressed in B-lymphoid cells. The antigenic peptide is entirely encoded within a unique exon not present in other PANE1 transcripts. Sequencing of PANE1 alleles in mHAg-positive and mHAg-negative cells demonstrates that differential T-cell recognition is due to a single nucleotide polymorphism within the variant exon that replaces an arginine codon with a translation termination codon. The PANE1 transcript that encodes the mHAg is expressed at high levels in resting CD19+ B cells and B-lineage chronic lymphocytic leukemia (B-CLL) cells, and at significantly lower levels in activated B cells. Activation of B-CLL cells through CD40 ligand (CD40L) stimulation decreases expression of the mHAg-encoding PANE1 transcript and reciprocally increases expression of PANE1 transcripts lacking the mHAg-encoding exon. These studies suggest distinct roles for different PANE1 isoforms in resting compared with activated CD19+ cells, and identify PANE1 as a potential therapeutic target in B-CLL. PMID:16391015

  2. GREATER DIVERSITY OF SHIGA TOXIN-ENCODING BACTERIOPHAGE INSERTION SITES AMONG ESCHERICHA COLI O157:H7 ISOLATES FROM CATTLE THAN IN THOSE FROM HUMANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Escherichia coli O157:H7, a zoonotic human pathogen with reservoir in domestic cattle, produces Shiga toxin(s) encoded by bacteriophages. Chromosomal insertion sites of these bacteriophages define three principal genotypes (Clusters 1 - 3 ) among clinical isolates of E. coli O157:H7. ...

  3. Localization of the DCTN1 gene encoding p150{sup Glued} to human chromosome 2p13 by fluorescence in situ hybridization

    SciTech Connect

    Holzbaur, E.L.F.; Tokito, M.K.

    1996-02-01

    This report discusses the genetic mapping of the DCTN1 gene to human chromosome 2p13 using fluorescence in situ hybridization. This gene encodes the largest polypeptide of the dynactin complex, which is one of two microtubule-based biological motor protein complexes. 12 refs., 1 fig.

  4. Encoding Dictionaries.

    ERIC Educational Resources Information Center

    Ide, Nancy

    1995-01-01

    Describes problems in devising a Text Encoding Initiative (TEI) encoding format for dictionaries. Asserts that the high degree of structuring and compression of information are among the most complex text types treated in the TEI. Concludes that the source of some TEI problems lies in the design of Standard Generalized Markup Language (SGML). (CFR)

  5. Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans.

    PubMed

    Shaheen, Ranad; Hashem, Amal; Abdel-Salam, Ghada M H; Al-Fadhli, Fatima; Ewida, Nour; Alkuraya, Fowzan S

    2016-10-01

    Primary microcephaly is a clinical phenotype in which the head circumference is significantly reduced at birth due to abnormal brain development, primarily at the cortical level. Despite the marked genetic heterogeneity, most primary microcephaly-linked genes converge on mitosis regulation. Two consanguineous families segregating the phenotype of severe primary microcephaly, spasticity and failure to thrive had overlapping autozygomes in which exome sequencing identified homozygous splicing variants in CIT that segregate with the phenotype within each family. CIT encodes citron, an effector of the Rho signaling that is required for cytokinesis specifically in proliferating neuroprogenitors, as well as for postnatal brain development. In agreement with the critical role assigned to the kinase domain in effecting these biological roles, we show that both splicing variants predict variable disruption of this domain. The striking phenotypic overlap between CIT-mutated individuals and the knockout mice and rats that are specifically deficient in the kinase domain supports the proposed causal link between CIT mutation and primary microcephaly in humans. PMID:27503289

  6. Chlamydial Plasmid-Encoded Virulence Factor Pgp3 Neutralizes the Antichlamydial Activity of Human Cathelicidin LL-37

    PubMed Central

    Hou, Shuping; Dong, Xiaohua; Yang, Zhangsheng; Li, Zhongyu; Liu, Quanzhong

    2015-01-01

    Chlamydia trachomatis infection in the lower genital tract can ascend to and cause pathologies in the upper genital tract, potentially leading to severe complications, such as tubal infertility. However, chlamydial organisms depleted of plasmid or deficient in the plasmid-encoded Pgp3 are attenuated in ascending infection and no longer are able to induce the upper genital tract pathologies, indicating a significant role of Pgp3 in chlamydial pathogenesis. We now report that C. trachomatis Pgp3 can neutralize the antichlamydial activity of human cathelicidin LL-37, a host antimicrobial peptide secreted by both genital tract epithelial cells and infiltrating neutrophils. Pgp3 bound to and formed stable complexes with LL-37. We further showed that the middle region of Pgp3 (Pgp3m) was responsible for both the binding to and neutralization of LL-37, suggesting that Pgp3m can be targeted for attenuating chlamydial pathogenicity or developed for blocking LL-37-involved non-genital-tract pathologies, such as rosacea and psoriasis. Thus, the current study has provided significant information for both understanding the mechanisms of chlamydial pathogenesis and developing novel therapeutic agents. PMID:26416907

  7. Yeast RNC1 encodes a chimeric protein, RhoNUC, with a human rho motif and deoxyribonuclease activity.

    PubMed Central

    Chow, T Y; Perkins, E L; Resnick, M A

    1992-01-01

    The yeast Saccharomyces cerevisiae contains an endoexonuclease yNucR that has been implicated in both recombination and repair. We describe the isolation and characterization of the corresponding gene. Within the predicted N-terminal half of the protein there is extensive homology (approximately 50%) with human rho genes, which are related to the ras oncogene, particularly in the proposed GTP-binding region. The C-terminal region, which is related to the Escherichia coli recC protein, presumably encodes the endoexonuclease activity. The yNucR may thus represent a new class of GTP-binding proteins. Because of the chimeric nature of the polypeptide, this protein is renamed RhoNUC (rather than the original yNucR) and the gene is RNC1 for Rho-associated-NuClease. Over expression of the gene leads to altered cell growth and nuclear morphology. We propose that the gene plays an important role in cell development as well as DNA repair/recombination. Images PMID:1408836

  8. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    PubMed

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  9. The impact of minimally oversized adeno-associated viral vectors encoding human factor VIII on vector potency in vivo

    PubMed Central

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Piraino, Susan; Sookdeo, Cathleen; Nambiar, Bindu; Jackson, Robert; Burnham, Brenda; O’Riordan, Catherine R; Cheng, Seng H; Armentano, Donna

    2016-01-01

    Recombinant adeno-associated viral (rAAV) vectors containing oversized genomes provide transgene expression despite low efficiency packaging of complete genomes. Here, we characterized the properties of oversized rAAV2/8 vectors (up to 5.4 kb) encoding human factor VIII (FVIII) under the transcriptional control of three liver promoters. All vectors provided sustained production of active FVIII in mice for 7 months and contained comparable levels of vector genomes and complete expression cassettes in liver. Therefore, for the 5.4 kb genome size range, a strong expression cassette was more important for FVIII production than the vector genome size. To evaluate the potency of slightly oversized vectors, a 5.1 kb AAVrh8R/FVIII vector was compared to a 4.6 kb (wild-type size) vector with an identical expression cassette (but containing a smaller C1-domain deleted FVIII) for 3 months in mice. The 5.1 kb vector had twofold to threefold lower levels of plasma FVIII protein and liver vector genomes than that obtained with the 4.6 kb vector. Vector genomes for both vectors persisted equally and existed primarily as high molecular weight concatemeric circular forms in liver. Taken together, these results indicate that the slightly oversized vectors containing heterogeneously packaged vector genomes generated a functional transgene product but exhibited a twofold to threefold lower in vivo potency. PMID:26958574

  10. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter

    PubMed Central

    Rannversson, Hafsteinn; Andersen, Jacob; Sørensen, Lena; Bang-Andersen, Benny; Park, Minyoung; Huber, Thomas; Sakmar, Thomas P.; Strømgaard, Kristian

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. PMID:27089947

  11. Two putative subunits of a peptide pump encoded in the human major histocompatability complex class 2 region

    SciTech Connect

    Bahram, S.; Arnold, D.; Bresnahan, M.; Strominger, J.L.; Spies, T. )

    1991-11-15

    The class 2 region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class 1 molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class 1 molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class 2 DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by {gamma} interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class 1 molecules, although a distinct function of PSF2 cannot be ruled out.

  12. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter.

    PubMed

    Rannversson, Hafsteinn; Andersen, Jacob; Sørensen, Lena; Bang-Andersen, Benny; Park, Minyoung; Huber, Thomas; Sakmar, Thomas P; Strømgaard, Kristian

    2016-01-01

    Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. PMID:27089947

  13. Transactivation of human osteopontin promoter by human T-cell leukemia virus type 1-encoded Tax protein.

    PubMed

    Zhang, Jing; Yamada, Osamu; Matsushita, Yoshihisa; Chagan-Yasutan, Haorile; Hattori, Toshio

    2010-06-01

    Osteopontin (OPN) is a cytokine that contributes substantially to the growth and metastasis in a wide spectrum of malignancies. We report here that OPN gene is transactivated by Tax protein of human T-cell leukemia virus type 1 (HTLV-1). Northern blot showed enhanced OPN gene expression in cells stably expressing Tax. Co-expression of Tax increased the reporter gene expression directed by OPN promoter. Tax-induced OPN activation was abrogated by treatment with LY294002 (PI3K inhibitor) or co-transfection with AKT siRNA, suggesting PI3K/AKT pathway is involved in Tax-mediated transactivation. Reporter assay with deletion mutants showed that the 5'-partial sequence between -765 and -660 of the OPN promoter is the region responsive to Tax, and further, disrupting the AP-1 site within this region abolished the OPN induction by Tax, indicating that Tax activation of OPN promoter is likely mediated by AP-1 site. This study suggests that OPN is one of the downstream mediators of aberrantly activated PI3K/AKT signaling by Tax, which may partially contribute to HTLV-1-associated leukemogenesis. PMID:19767100

  14. Inhibition of kinin breakdown prolongs retention and action of bradykinin in a myocardial B2 receptor compartment

    PubMed Central

    Dendorfer, Andreas; Folkers, Verena; Klinger, Matthias; Wolfrum, Sebastian; Dominiak, Peter

    2003-01-01

    The high efficacy of ACE inhibitors to potentiate the actions of kinins might be explained by a hypothetical compartment in which B2-receptors are colocalized with kinin degrading enzymes. To demonstrate the functional consequence of such a compartment we compared the myocardial uptake and the persistence of action of bradykinin under the influence of kininase inhibitors. Bradykinin-induced vasodilation and uptake of tritiated bradykinin were studied in perfused rat hearts during inhibition of ACE and aminopeptidase P. B2-receptors were localized by immuno-gold labelling and electron-microscopy. The EC50 of bradykinin-induced vasodilation (5.1±0.8 nM) was shifted to 14 fold lower concentrations during inhibition of both kininases. The maximum persistence of vasodilation after termination of bradykinin application (half-life 112±20 s) was increased by kininase inhibitors to 398±130 s. This prolongation was reversed when B2-receptors were blocked simultaneously with the termination of bradykinin infusion. Tritiated bradykinin (perfused for 1 min) was partially (1.7±0.24%) retained by the myocardium and consecutively released with a half-life of 70±9 s. Kinin uptake was increased during kininase inhibition (7.7±2.6%), and was normalized by HOE 140 (2.0±0.34%), or when a tritiated B2-receptor antagonist (NPC 17731) was used as label. B2-receptors were localized in plasmalemmal and cytosolic vesicles of capillary endothelium. Bradykinin is locally incorporated and can associate with B2-receptors repeatedly when kinin breakdown is inhibited. This is the kinetic and functional consequence of a colocalization of kininases and B2-receptors in a compartment constituted by endothelial membrane vesicles. PMID:12540521

  15. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases

    SciTech Connect

    Reynolds, D.S.; Gurley, D.S.; Stevens, R.L.; Austen, K.F.; Serafin, W.E. Brigham and Women's Hospital, Boston, MA ); Sugarbaker, D.J. )

    1989-12-01

    Human skin and lung mast cells and rodent peritoneal cells contain a carboxypeptidase in their secretory granules. The authors have screened human lung cDNA libraries with a mouse mast cell carboxypeptidase A (MC-CPA) cDNA probe to isolate a near-full-length cDNA that encodes human MC-CPA. The 5{prime} end of the human MC-CPA transcript was defined by direct mRNA sequencing and by isolation and partial sequencing of the human MC-CPA gene. Human MC-CPA is predicted to be translated as a 417 amino acid preproenzyme which includes a 15 amino acid signal peptide and a 94-amino acid activation peptide. The mature human MC-CPA enzyme has a predicted size of 36.1 kDa, a net positive charge of 16 at neutral pH, and 86% amino acid sequence identity with mouse MC-CPA. DNA blot analyses showed that human MC-CPA mRNA is transcribed from a single locus in the human genome. Comparison of the human MC-CPA with mouse MC-CPA and with three rat pancreatic carboxypeptidases shows that these enzymes are encoded by distinct but homologous genes.

  16. Isolation and characterization of human cDNA clones encoding the. alpha. and the. alpha. prime subunits of casein kinase II

    SciTech Connect

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs E.G. )

    1990-09-11

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two {alpha} or {alpha}{prime} subunits (or one of each) and two {beta} subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell {lambda}gt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5{prime} untranslated region) and followed by 871 bp (3{prime} untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5{prime} untranslated region) and followed by 550 bp (3{prime} untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of {alpha} and {alpha}{prime} subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the {alpha} and {alpha}{prime} subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II ({alpha} and {alpha}{prime}) and that the sequence of these subunits is largely conserved between the bovine and the human.

  17. The human homolog of S. cerevisiae CDC27, CDC27 Hs, is encoded by a highly conserved intronless gene present in multiple copies in the human genome

    SciTech Connect

    Devor, E.J.; Dill-Devor, R.M.

    1994-09-01

    We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCR assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.

  18. Structure and chromosomal localization of the human renal kallikrein gene

    SciTech Connect

    Evans, B.A.; Yun, Z.X.; Close, J.A.; Tregear, G.W.; Kitamura, N.; Nakanish, S.; Callen, D.F.; Baker, E.; Hyland, V.J.; Sutherland, G.R.; Richards, R.I.

    1988-05-03

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7.

  19. Localization of the gene encoding peptidylglycine [alpha]-amidating monooxygenase (PAM) to human chromosome 5q14-5q21

    SciTech Connect

    Ouafik, L.H.; Giraud, P.; Oliver, C. ); Mattei, M.G. ); Eipper, B.A.; Mains, R.E. )

    1993-11-01

    Peptidylglycine [alpha]-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the [alpha]-amidation of neuroendocrine peptides. Southern blot analysis of human placental DNA demonstrated that PAM is encoded by a single gene. The chromosomal localization of the PAM gene was established using in situ hybridization. A 2.2-kb human PAM cDNA hybridized to human metaphase chromosomes revealed a significant clustering of silver grains over chromosome 5 bands q14-q21. The gene encoding another enzyme important in the post-translational processing of neuroendocrine precursors, prohormone convertase 1 (PC1), is localized in the same region (5q15-q21). 14 refs., 2 figs.

  20. In vitro mutagenesis and functional expression in Escherichia coli of a cDNA encoding the catalytic domain of human DNA ligase I.

    PubMed Central

    Kodama, K; Barnes, D E; Lindahl, T

    1991-01-01

    Human cDNAs encoding fragments of DNA ligase I, the major replicative DNA ligase in mammalian cells, have been expressed as lacZ fusion proteins in Escherichia coli. A cDNA encoding the carboxyl-terminal catalytic domain of human DNA ligase I was able to complement a conditional-lethal DNA ligase mutation in E. coli as measured by growth of the mutant strain at the non-permissive temperature. Targeted deletions of the amino and carboxyl termini of the catalytic domain identified a minimum size necessary for catalytic function and a maximum size for optimal complementing activity in E. coli. The human cDNA was subjected to systematic site-directed mutagenesis in vitro and mutant polypeptides assayed for functional expression in the E. coli DNA ligase mutant. Such functional analysis of the active site of DNA ligase I identified specific residues required for the formation of an enzyme-adenylate reaction intermediate. Images PMID:1956768

  1. Iatrogenic angioedema associated with ACEi, sitagliptin, and deficiency of 3 enzymes catabolizing bradykinin.

    PubMed

    Beaudouin, E; Defendi, F; Picaud, J; Drouet, C; Ponard, D; Moneret-Vautrin, D A

    2014-05-01

    New concepts of idiopathic and iatrogenic angioedema underline the role of bradykinin, and the importance of catabolizing enzymes. A case is described of Angiotensin converting enzyme inhibitor (ACEi) and sitagliptin induced angioedema, where AO attacks decreased after the withdrawal of lisinopril but resolved only after the withdrawal of sitagliptin, an inhibitor of dipeptylpeptidase IV. ACE, aminopeptidase P and carboxypeptidase N were decreased down to 17%, 42%, 64% of median references values, and remained low one year after the interruption of these drugs: 56%, 28% and 50%, respectively. The combined deficiency of APP and CPN might enhance the inhibiting effect of the DPP IV inhibitor. The fact that this triple deficiency remained latent before and after the treatment indicates that searching for latent enzyme deficiencies should be carried out when there is intention to treat with a combination of drugs interfering with the bradykinin metabolism. PMID:24853572

  2. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  3. Bradykinin in Hemipepsis ustulata: A novel method for safely milking wasps.

    PubMed

    White, Shawn R; Kadavakollu, Samuel

    2016-07-01

    Wasp venom characterization is of interest across multiple disciplines such as medicinal chemistry and evolutionary biology. A simple method is described herein to milk wasp venom without undue risks to the researcher. The wasps were immobilized by cooling for safe handling, restrained, and their venom was collected on parafilm. Bradykinin from Hemipepsis ustulata was identified by LC-MS/MS during method verification. PMID:26996494

  4. Pathophysiology of a severe case of Puumala hantavirus infection successfully treated with bradykinin receptor antagonist icatibant.

    PubMed

    Vaheri, Antti; Strandin, Tomas; Jääskeläinen, Anne J; Vapalahti, Olli; Jarva, Hanna; Lokki, Marja-Liisa; Antonen, Jaakko; Leppänen, Ilona; Mäkelä, Satu; Meri, Seppo; Mustonen, Jukka

    2014-11-01

    We recently described a patient with very severe Puumala hantavirus infection manifested by capillary leakage syndrome and shock. He was successfully treated with the bradykinin receptor antagonist, icatibant (Antonen et al., 2013). Here we report analysis of the pathophysiology which indicated pronounced complement activation, prolonged leukocytosis, extensive fibrinolysis, circulating histones, and defects in liver function. The patient had an uncommon HLA-phenotype, which may have contributed to the severe course of the disease. PMID:25194993

  5. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  6. Confirmation of the assignment of the gene encoding K{sub v}1.3, a voltage-gated potassium channel (KCNA3) to the proximal short arm of human chromosome 1

    SciTech Connect

    Folander, K.; Swanson, R.; Douglass, J.

    1994-09-01

    We report here the cloning of overlapping cDNAs encoding a voltage-gated potassium channel, K{sub V}1.3, from human peripheral T-cells and the assignment of the gene encoding it to the proximal short arm (band p21) of human chromosome 1. 13 refs., 1 fig.

  7. Sexual transmission of single human immunodeficiency virus type 1 virions encoding highly polymorphic multisite cytotoxic T-lymphocyte escape variants.

    PubMed

    Milicic, Anita; Edwards, Charles T T; Hué, Stéphane; Fox, Julie; Brown, Helen; Pillay, Tilly; Drijfhout, Jan W; Weber, Jonathan N; Holmes, Edward C; Fidler, Sarah J; Zhang, Hua-Tang; Phillips, Rodney E

    2005-11-01

    Antigenic variation inherent in human immunodeficiency virus type 1 (HIV-1) virions that successfully instigate new infections transferred by sex has not been well defined. Yet this is the viral "challenge" which any vaccine-induced immunity must deal with. Closely timed comparisons of the virus circulating in the "donor" and that which initiates new infection are difficult to carry out rigorously, as suitable samples are very hard to get in the face of ethical hurdles. Here we investigate HIV-1 variation in four homosexual couples where we sampled blood from both parties within several weeks of the estimated transmission event. We analyzed variation within highly immunogenic HIV-1 internal proteins encoding epitopes recognized by cytotoxic T lymphocytes (CTLs). These responses are believed to be crucial as a means of containing viral replication. In the donors we detected virions capable of evading host CTL recognition at several linked epitopes of distinct HLA class I restriction. When a donor transmitted escape variants to a recipient with whom he had HLA class I molecules in common, the recipient's CTL response to those epitopes was prevented, thus impeding adequate viral control. In addition, we show that even when HLA class I alleles are disparate in the transmitting couple, a single polymorphism can abolish CTL recognition of an overlapping epitope of distinct restriction and so confer immune escape properties to the recipient's seroconversion virus. In donors who are themselves controlling an early, acute infection, the precise timing of onward transmission is a crucial determinant of the viral variants available to compose the inoculum. PMID:16254331

  8. Characterizations of the human parainfluenza type 2 virus gene encoding the L protein and the intergenic sequences.

    PubMed Central

    Kawano, M; Okamoto, K; Bando, H; Kondo, K; Tsurudome, M; Komada, H; Nishio, M; Ito, Y

    1991-01-01

    We cloned and determined the nucleotide sequences of cDNAs against genomic RNA encoding the L protein of human parainfluenza type 2 virus (PIV-2). The L gene is 6904 nucleotides long including the intergenic region at the HN-L junction and putative negative strand leader RNA, almost all of which is complementary to the positive strand leader RNA of PIV-2. The deduced L protein contains 2262 amino acids with a calculated molecular weight of 256,366. The L protein of PIV-2 shows 39.9, 28.9, 27.8 and 28.3% homologies with Newcastle disease virus (NDV), Sendai virus (SV), parainfluenza type 3 virus (PIV-3) and measles virus (MV), respectively. Although sequence data on other components of transcriptive complex, NP and P, suggested a closer relationship between PIV-2 and MV, as concerns the L protein, MV is closely related to another group as SV and PIV-3. From analysis of the alignment of the five l proteins, six blocks composed of conserved amino acids were found in the L proteins. The L protein of PIV-2 was detected in purified virions and virus-infected cells using antiserum directed against an oligopeptide corresponding to the amino terminal region. Primer extension analyses showed that the intergenic regions at the NP-P, P-M, M-F, F-HN and HN-L junctions are 4, 45, 28, 8 and 42 nucleotides long, respectively, indicating that the intergenic regions exhibit no conservation of length and sequence. Furthermore, the starting and ending sequences of paramyxoviruses were summarized. Images PMID:1645865

  9. Substance P and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas.

    PubMed

    Figini, M; Emanueli, C; Grady, E F; Kirkwood, K; Payan, D G; Ansel, J; Gerard, C; Geppetti, P; Bunnett, N

    1997-04-01

    Neurogenic inflammation is mediated by release of tachykinins from sensory nerves, which stimulate plasma extravasation from postcapillary venules. Because there are conflicting results regarding the importance of neurogenic inflammation in the gastrointestinal tract, we quantified plasma extravasation using Evans blue and identified sites of the leak using Monastral blue in the mouse. Substance P and bradykinin stimulated extravasation from postcapillary venules in the stomach, small and large intestine, pancreas, urinary bladder, trachea, and skin by two- to sevenfold by interacting with NK1 and B2 receptors, respectively. Stimulation of sensory nerves with capsaicin also induced extravasation. Capsaicin- and bradykinin-stimulated extravasation was attenuated by an NK1-receptor antagonist and is thus mediated by release of tachykinins and activation of the NK1 receptor. We conclude that 1) substance P stimulates extravasation in the gastrointestinal tract and pancreas of mice by interacting with the NK1 receptors, and 2) capsaicin and bradykinin induce plasma extravasation by stimulating tachykinin release from sensory nerves. Thus neurogenic mechanisms mediate inflammation in the gastrointestinal tract and pancreas of the mouse. PMID:9142909

  10. ENCODE data at the ENCODE portal.

    PubMed

    Sloan, Cricket A; Chan, Esther T; Davidson, Jean M; Malladi, Venkat S; Strattan, J Seth; Hitz, Benjamin C; Gabdank, Idan; Narayanan, Aditi K; Ho, Marcus; Lee, Brian T; Rowe, Laurence D; Dreszer, Timothy R; Roe, Greg; Podduturi, Nikhil R; Tanaka, Forrest; Hong, Eurie L; Cherry, J Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments. PMID:26527727

  11. ENCODE data at the ENCODE portal

    PubMed Central

    Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg; Podduturi, Nikhil R.; Tanaka, Forrest; Hong, Eurie L.; Cherry, J. Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments. PMID:26527727

  12. Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway.

    PubMed

    Maeland, Johan A; Radtke, Andreas

    2013-12-27

    Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations. PMID:24120184

  13. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy

    PubMed Central

    Andrade, Daniele; Serra, Rafaela; Svensjö, Erik; Lima, Ana Paula C; Ramos Junior, Erivan S; Fortes, Fabio S; Morandini, Ana Carolina F; Morandi, Verônica; Soeiro, Maria de N; Tanowitz, Herbert B; Scharfstein, Julio

    2012-01-01

    BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells. LINKED ARTICLE This paper is commented on by D'Orléans-Juste et al

  14. Deciphering ENCODE.

    PubMed

    Diehl, Adam G; Boyle, Alan P

    2016-04-01

    The ENCODE project represents a major leap from merely describing and comparing genomic sequences to surveying them for direct indicators of function. The astounding quantity of data produced by the ENCODE consortium can serve as a map to locate specific landmarks, guide hypothesis generation, and lead us to principles and mechanisms underlying genome biology. Despite its broad appeal, the size and complexity of the repository can be intimidating to prospective users. We present here some background about the ENCODE data, survey the resources available for accessing them, and describe a few simple principles to help prospective users choose the data type(s) that best suit their needs, where to get them, and how to use them to their best advantage. PMID:26962025

  15. Myeloperoxidase Interacts with Endothelial Cell-Surface Cytokeratin 1 and Modulates Bradykinin Production by the Plasma Kallikrein-Kinin System

    PubMed Central

    Astern, Joshua M.; Pendergraft, William F.; Falk, Ronald J.; Jennette, J. Charles; Schmaier, Alvin H.; Mahdi, Fakhri; Preston, Gloria A.

    2007-01-01

    During an inflammatory state, functional myeloperoxidase (MPO) is released into the vessel as a result of intravascular neutrophil degradation. One mechanism of resulting cellular injury involves endothelial internalization of MPO, which causes oxidative damage and impairs endothelial signaling. We report the discovery of a protein that facilitates MPO internalization, cytokeratin 1 (CK1), identified using affinity chromatography and mass spectrometry. CK1 interacts with MPO in vitro, even in the presence of 100% human plasma, thus substantiating biological relevance. Immunofluorescent microscopy confirmed that MPO added to endothelial cells can co-localize with endogenously expressed CK1. CK1 acts as a scaffolding protein for the assembly of the vasoregulatory plasma kallikrein-kinin system; thus we explored whether MPO and high molecular weight kininogen (HK) reside on CK1 together or whether they compete for binding. The data support cooperative binding of MPO and HK on cells such that MPO masked the plasma kallikrein cleavage site on HK, and MPO-generated oxidants caused inactivation of both HK and kallikrein. Collectively, interactions between MPO and the components of the plasma kallikrein-kinin system resulted in decreased bradykinin production. This study identifies CK1 as a facilitator of MPO-mediated vascular responses and thus provides a new paradigm by which MPO affects vasoregulatory systems. PMID:17591979

  16. Utero-placental cellular and nuclear expression of bradykinin B2 receptors in normal and preeclamptic pregnancies.

    PubMed

    Valdés, Gloria; Acuña, Stephanie; Munizaga, Alejandro; Soto, Gloria X; Figueroa, Carlos D

    2016-01-01

    The bradykinin type 2 receptor (B2R), main effector of the pleiotropic kallikrein-kinin system (KKS), has been localized in the key sites related to placentation in human, rat and guinea pig utero-placental units. The present study was directed to characterize the content, the cellular and subcellular localization of B2R in the villi and basal plate of placentas from normal and preeclamptic pregnancies by means of western blotting, immunohistochemistry and immunoelectron microscopy. The protein content of B2R was demonstrated in both placental zones. The villous placenta of normal and preeclamptic pregnancies expressed B2R in syncytiotrophoblast and fetal endothelium; the basal plate displayed B2R in extravillous trophoblasts and decidual cells. Lastly, immunogold electron microscopy revealed B2R in fetal endothelium, syncytiotrophoblast, extravillous cytotrophoblasts and decidual cells; in all cell types the receptor was mainly located in the cytosol and nucleus. The protein content of placental homogenates and the immunoreactivity in the different cells types did not differ between both study groups; however the abundance of nuclear immunogold B2R positive beads in extravillous trophoblasts was greater in the normal than in the preeclamptic placentas. The purpose of describing nuclear B2R in the utero-placental unit, and its increment in normal extravillous trophoblasts, is to stimulate the study of the functional pathways that may be relevant to understand the local role of the B2R in normal and preeclamptic gestation. PMID:26955769

  17. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus

    PubMed Central

    Imamura, Takahisa; Tanase, Sumio; Szmyd, Grzegorz; Kozik, Andrzej; Travis, James; Potempa, Jan

    2005-01-01

    Staphylococcus aureus is a major pathogen of gram-positive septic shock and frequently is associated with consumption of plasma kininogen. We examined the vascular leakage (VL) activity of two cysteine proteinases that are secreted by S. aureus. Proteolytically active staphopain A (ScpA) induced VL in a bradykinin (BK) B2-receptor–dependent manner in guinea pig skin. This effect was augmented by staphopain B (SspB), which, by itself, had no VL activity. ScpA also produced VL activity from human plasma, apparently by acting directly on kininogens to release BK, which again was augmented significantly by SspB. Intravenous injection of ScpA into a guinea pig caused BK B2-receptor–dependent hypotension. ScpA and SspB together induced the release of leucyl-methionyl-lysyl-BK, a novel kinin with VL and blood pressure–lowering activities that are equivalent to BK. Collectively, these data suggest that production of BK and leucyl-methionyl-lysyl-BK by staphopains is a new mechanism of S. aureus virulence and bacterial shock. Therefore, staphopain-specific inhibitors and kinin-receptor antagonists could be used to treat this disease. PMID:15897280

  18. Human cytomegalovirus resistance to deoxyribosylindole nucleosides maps to a transversion mutation in the terminase subunit-encoding gene UL89.

    PubMed

    Gentry, Brian G; Phan, Quang; Hall, Ellie D; Breitenbach, Julie M; Borysko, Katherine Z; Kamil, Jeremy P; Townsend, Leroy B; Drach, John C

    2015-01-01

    Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions

  19. Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans.

    PubMed

    Fletcher, P C; Frith, C D; Grasby, P M; Shallice, T; Frackowiak, R S; Dolan, R J

    1995-04-01

    Long-term auditory-verbal memory comprises, at a neuropsychological level, a number of distinct cognitive processes. In the present study we determined the brain systems engaged during encoding (experiment 1) and retrieval (experiment 2) of episodic auditory-verbal material. In the separate experiments, PET measurements of regional cerebral blood flow (rCBF), an index of neural activity, were performed in normal volunteers during either the encoding or the retrieval of paired word associates. In experiment 1, a dual task interference paradigm was used to isolate areas involved in episodic encoding from those which would be concurrently activated by other cognitive processes associated with the presentation of paired associates, notably priming. In experiment 2, we used the cued retrieval of paired associates from episodic or from semantic memory in order to isolate the neural correlates of episodic memories. Encoding of episodic memory was associated with activation of the left prefrontal cortex and the retrosplenial area of the cingulate cortex, while retrieval from episodic memory was associated with activation of the precuneus bilaterally and of the right prefrontal cortex. These results are compatible with the patterns of activation reported in a previous PET memory experiment in which encoding and retrieval were studied concurrently. They also indicate that separate brain systems are engaged during the encoding and retrieval phases of episodic auditory-verbal memory. Retrieval from episodic memory engages a different, but overlapping, system to that engaged by retrieval from semantic memory, a finding that lends functional anatomical support to this neuropsychological distinction. PMID:7735882

  20. Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function

    PubMed Central

    2012-01-01

    Background The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. Results In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. Conclusion The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12–16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair. PMID:22873401

  1. Subtilase cytotoxin encoding genes are present in human, sheep and deer intimin-negative, Shiga toxin-producing Escherichia coli O128:H2.

    PubMed

    Sánchez, Sergio; Beristain, Xabier; Martínez, Remigio; García, Alfredo; Martín, Carmen; Vidal, Dolors; Díaz-Sánchez, Sandra; Rey, Joaquín; Alonso, Juan M; Herrera-León, Silvia

    2012-10-12

    Shiga toxin-producing Escherichia coli (STEC) O128:H2 is recognised worldwide to be an important non-O157 STEC associated with human illness and in particular with causing haemolytic uraemic syndrome. This serotype is commonly isolated from sheep and is being increasingly isolated from deer. We determined the virulence profile and genetic relationships of one human, six sheep and five deer intimin-negative STEC O128:H2 strains isolated in Spain over a 7-year period. Our goals were to establish the presence of other virulence-associated factors, such as SubAB, in intimin-negative STEC O128:H2 strains involved in human disease and in that case, to determine if sheep and/or deer represent a reservoir of SubAB-positive STEC O128:H2. All the strains lacked the eae gene and carried subtilase cytotoxin (SubAB) encoding genes (subAB) and tia genes, but not saa gene, suggesting the presence of the recently identified new variant of SubAB, encoded on a putative pathogenicity island together with tia. We report for the first time the presence of subtilase cytotoxin encoding genes in intimin-negative STEC O128:H2 strains pathogenic for humans and how this finding might explain their clinical relevance despite neither carrying eae nor stx subtypes associated with severe clinical outcomes, but only stx1c and stx2b. Multilocus sequence typing analysis revealed that STEC O128:H2 strains from sheep and deer belong to the clonal lineage of STEC O128:H2 strains involved in diarrhoeal and haemorrhagic diseases in humans. Our results indicate that sheep and deer represent a reservoir of SubAB-positive STEC O128:H2 strains and thus a potential source of human infection. PMID:22622337

  2. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training.

    PubMed Central

    Mombouli, J. V.; Nakashima, M.; Hamra, M.; Vanhoutte, P. M.

    1996-01-01

    1. Kinins, which are produced locally in arterial walls, stimulate the release of endothelium-derived vasodilator substances. Therefore, they may participate in the metabolic adaptation to chronic exercise that occurs in the coronary circulation. Experiments were designed to compare the reactivity to bradykinin in coronary arteries isolated from sedentary and exercised-trained dogs (for 8-10 weeks). 2. The organ chambers used in this study were designed for measurement of isometric tension and cell membrane potential with glass microelectrodes. Rings of canine isolated coronary arteries with endothelium were suspended in the organ chambers filled with modified Krebs-Ringer bicarbonate solution (37 degrees C, gassed with 5% CO2 in 95 O2), and were all treated with indomethacin to prevent interference from prostaglandins. 3. Bradykinin evoked concentration-dependent relaxations of the coronary arteries. However, the kinin was significantly less potent in relaxing coronary arteries from the sedentary dogs than those from the trained ones. 4. In the presence of NG-nitro-L-arginine (an inhibitor of nitric oxide synthases), concentration-relaxation curves to bradykinin were shifted to the right in both types of preparations. Nonetheless, the peptide was still significantly more potent in arteries from exercise-trained animals. 5. In the electrophysiological experiments, concentration-hyperpolarization curves to bradykinin obtained in arteries from sedentary dogs were also significantly to the right of those in vessels from exercise-trained animals. Thus, in arteries from exercised animals, bradykinin more potently evoked the release of both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). 7. The angiotensin converting enzyme (ACE)-inhibitor, perindoprilat, shifted to the left the concentration-relaxation curves to bradykinin obtained under control conditions and in the presence of NG-nitro-L-arginine. The concentration-hyperpolarization curves to

  3. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG.

    PubMed

    Friese, Uwe; Köster, Moritz; Hassler, Uwe; Martens, Ulla; Trujillo-Barreto, Nelson; Gruber, Thomas

    2013-02-01

    Although previous studies have established that successful memory encoding is associated with increased synchronization of theta-band and gamma-band oscillations, it is unclear if there is a functional relationship between oscillations in these frequency bands. Using scalp-recorded EEG in healthy human participants, we demonstrate that cross-frequency coupling between frontal theta phase and posterior gamma power is enhanced during the encoding of visual stimuli which participants later on remember versus items which participants subsequently forget ("subsequent memory effect," SME). Conventional wavelet analyses and source localizations revealed SMEs in spectral power of theta-, alpha-, and gamma-band. Successful compared to unsuccessful encoding was reflected in increased theta-band activity in right frontal cortex as well as increased gamma-band activity in parietal-occipital regions. Moreover, decreased alpha-band activity in prefrontal and occipital cortex was also related to successful encoding. Overall, these findings support the idea that during the formation of new memories frontal cortex regions interact with cortical representations in posterior areas. PMID:23142278

  4. Cloning of cDNA encoding human rapsyn and mapping of the RAPSN gene locus to chromosome 11p11.2-p11.1

    SciTech Connect

    Buckel, A.; Beeson, D.; Vincent, A.

    1996-08-01

    We have isolated and sequenced cDNA clones for the human 43-kDa acetylcholine receptor-associated protein rapsyn. The cDNA encodes a 412-amino-acid protein that has a predicted molecular mass of 46,330 Da and shows 96% sequence identity with mouse rapsyn. Analysis of PCR amplifications, first from somatic cell hybrids and subsequently from radiation hybrids, localizes the human RAPSN gene locus to chromosome 11p11.2-p11.1 in close proximity to ACP2. 12 refs., 2 figs.

  5. Endoplasmic reticulum is a key organella in bradykinin-triggered ATP release from cultured smooth muscle cells.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sato, Chiemi; Usune, Sadaharu; Iwamoto, Takahiro; Katsuragi, Takeshi

    2007-09-01

    ATP has broad functions as an autocrine/paracrine molecule. The mode of ATP release and its intracellular source, however, are little understood. Here we show that bradykinin via B(2)-receptor stimulation induces the extracellular release of ATP via the inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]-signaling pathway in cultured taenia coli smooth muscle cells. It was found that bradykinin also increased the production of Ins(1,4,5)P(3) and 2-APB-inhibitable [Ca(2+)](i). The evoked release of ATP was suppressed by the Ca(2+)-channel blockers, nifedipine, and verapamil. Moreover, the extracellular release of ATP was elicited by photoliberation of Ins(1,4,5)P(3). Bradykinin caused a quick and transient accumulation of intracellular ATP from cells treated with 1% perchloric acid solution (PCA), but not with the cell lysis buffer. Peak accumulation was prevented by 2-APB and thapsigargin, but not by nifedipine or verapamil, inhibitors of extracellular release of ATP. These findings suggest that bradykinin elicits the extracellular release of ATP that is mediated by the Ins(1,4,5)P(3)-induced Ca(2+) signaling and, finally, leads to a Ca(2+)-dependent export of ATP from the cells. Furthermore, the bradykinin-induced transient accumulation of ATP in the cells treated with PCA may imply a possible release of ATP from the endoplasmic reticulum. PMID:17827868

  6. Isolation of the cDNA and chromosomal localization of the gene (TAX1) encoding the human axonal glycoprotein TAG-1

    SciTech Connect

    Tsiotra, P.C.; Karagogeos, D.; Theodorakis, K.; Michaelidis, T.M.; Papamatheakis, J. ); Modi, W.S. ); Furley, A.J.; Jessell, T.M. )

    1993-12-01

    The transient axonal glycoprotein (TAG-1) is a cell adhesion molecule that promotes neurite outgrowth and belongs to the immunoglobulin superfamily. The authors have isolated cDNAs encoding TAX1, the human homologue of TAG-1. Human TAX1 shows a high degree of homology to rat TAX1 and less to its chick counterpart, axonin-1, with 91 and 75% identity at the amino acid level, respectively. The numbers of immunoglobulin (IgC2) domains and fibronectin repeats present in TAG-1 are conserved among the three species. The highest degree of conservation occurs in the second IgC2 domain (98% with the rat and 82% with the chick). The human homologue also contains a putative N-terminal signal sequence and a C-terminal hydrophobic sequence, suggestive of linkage to the cell membrane via phosphatidylinositol. In addition, the two mammalian TAG-1 proteins share the RDG tripeptide, a motif known to mediate recognition of fibronection by integrins. In situ hybridization to human metaphase chromosomes maps the TAX1 gene encoding human TAG-1 to a single location on chromosome 1q32. 35 refs., 3 figs.

  7. The human NFKB3 gene encoding the p65 subunit of transcription factor NF-[sub K]B is located on chromosome 11q12

    SciTech Connect

    Deloukas, P.; Loon, A.P.G.M. van ); Dauwerse, J.G.; Ommen, G.J.B. van )

    1994-02-01

    A YAC clone that contains the human gene NFKB3, encoding the p65 subunit of transcription factor nuclear factor [sub K]B (NF-[sub K]B), was isolated. The YAC contains the entire NFKB3 gene, which is smaller than 15 kb and present in a single copy in the genome. Fluorescence in situ hybridization with metaphase chromosomes showed two different chromosomal locations (11q12 and Xp11.4) for sequences present in the YAC. The NFKB3 gene was assigned to chromosome 11q12 by PCR analysis of a panel of relevant hybrid cell lines. Thus, no linkage exists between NFKB3 and genes encoding other known members of the NF-[sub K]B family. 20 refs., 2 figs.

  8. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

    SciTech Connect

    Zhang, Li; DeRider, Michele; McCornack, Milissa A.; Jao, Chris; Isern, Nancy G.; Ness, Traci; Moyer, Richard; Liwang, Patricia J.

    2006-09-19

    Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both the immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the first structure of an orthopoxvirus vCCI in complex with a human CC chemokine MIP-1β. vCCI binds to the chemokine with 1:1 stoichiometry, using residues from its β-sheet II to interact with the a surface of MIP-1β that includes the N-terminus, the following residues in the so-called N-loop20’s region, and the 40’s loop. This structure reveals a general strategy of vCCI for selective chemokine binding, as vCCI appears to interact most stronglyinteracts most directly with residues that are conserved among a subset of CC chemokines, but are not conservednot among the other chemokine subfamilies. This structure reveals a general strategy of vCCI for selective chemokine binding. Chemokines play critical roles in the immune system, causing chemotaxis of a variety of cells to sites of infection and inflammation, as well as mediating cell homing and immune system development 1(Baggiolini 2001). To date, about 50 chemokines have been identified, and these small proteins (7-14 kDa) are believed to function by binding with endothelial or matrix glycosaminoglycans to form a concentration gradient that is then sensed by high affinity, 7-transmembrane domain G-protein coupled chemokine receptors on the surface of immune cells surface. The chemokine system is critical for host defense in healthy individuals, butand can also lead to diseases including asthma, arthritis, and atherosclerosis in the case of malfunction, often due to inappropriate inflammation and subsequent tissue damage 2(Gerard and Rollins 2001). There are four subfamilies of chemokines, CC

  9. Role of low- and high-frequency oscillations in the human hippocampus for encoding environmental novelty during a spatial navigation task.

    PubMed

    Park, Jinsick; Lee, Hojong; Kim, Taekyung; Park, Ga Young; Lee, Eun Mi; Baek, Seunghee; Ku, Jeonghun; Kim, In Young; Kim, Sun I; Jang, Dong Pyo; Kang, Joong Koo

    2014-11-01

    The hippocampus plays a key role in the encoding and retrieval of information related to novel environments during spatial navigation. However, the neural basis for these processes in the human hippocampus remains unknown because it is difficult to directly measure neural signals in the human hippocampus. This study investigated hippocampal neural oscillations involved in encoding novel environments during spatial navigation in a virtual environment. Seven epileptic patients with implanted intracranial hippocampal depth electrodes performed three sessions of virtual environment navigation. Each session consisted of a navigation task and a location-recall task. The navigation task consisted of eight blocks, and in each block, the participant navigated to the location of four different objects and was instructed to remember the location of the objects. After the eight blocks were completed, a location-recall task was performed for each of the four objects. Intracranial electroencephalography data were monitored during the navigation tasks. Theta (5-8 Hz) and delta (1-4 Hz) oscillations were lower in the first block (novel environment) than in the eighth block (familiar environment) of the navigation task, and significantly increased from block one to block eight. By contrast, low-gamma (31-50 Hz) oscillations were higher in the first block than in the eighth block of the navigation task, and significantly decreased from block one to block eight. Comparison of sessions with high recall performance (low error between identified and actual object location) and low recall performance revealed that high-gamma (51-100 Hz) oscillations significantly decreased from block one to block eight only in sessions with high recall performance. These findings suggest that delta, theta, and low-gamma oscillations were associated with encoding of environmental novelty and high-gamma oscillations were important for the successful encoding of environmental novelty. PMID:24910318

  10. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.

    PubMed

    Dierks, Thomas; Schmidt, Bernhard; Borissenko, Ljudmila V; Peng, Jianhe; Preusser, Andrea; Mariappan, Malaiyalam; von Figura, Kurt

    2003-05-16

    C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tripartite domain structure. PMID:12757705

  11. Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia

    PubMed Central

    Chandrasekaran, Bharath; Hornickel, Jane; Skoe, Erika; Nicol, Trent; Kraus, Nina

    2009-01-01

    SUMMARY We examined context-dependent encoding of speech in children with and without developmental dyslexia by measuring auditory brainstem responses to a speech syllable presented in a repetitive or variable context. Typically developing children showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context. In contrast, children with developmental dyslexia exhibited impairment in their ability to modify representation in predictable contexts. From a functional perspective, we found that the extent of context-dependent encoding in the auditory brainstem positively correlated with behavioral indices of speech perception in noise. The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior ‘tagging’ of voice pitch, an important cue for segregating sound streams in background noise. The disruption of this mechanism contributes to a critical deficit in noise-exclusion, a hallmark symptom in developmental dyslexia. PMID:19914180

  12. Bradykinin-induced modulation of the response behaviour of different types of feline group III and IV muscle receptors.

    PubMed Central

    Mense, S; Meyer, H

    1988-01-01

    1. In order to test the hypothesis that bradykinin has a sensitizing action on muscle receptors (e.g. during a myositis), the response properties of single group III and IV afferent units from the cat gastrocnemius-soleus muscle were compared before and after infiltration of their receptive fields with a bradykinin solution. According to their responses to graded natural stimuli (local pressure, stretch, contractions and temperature changes) the units were classified as (a) nociceptors, (b) low-threshold pressure-sensitive (LTP) receptors, (c) contraction-sensitive (CS) receptors and (d) thermosensitive receptors. 2. Bradykinin activated the majority of both the nociceptive and low-threshold (LTP, CS and thermosensitive) receptors but a sensitization was prominent only among the nociceptors. Most of the sensitized nociceptors showed increased responses to mechanical, but not to thermal, stimuli. The sensitization appeared to be quite specific in that the nociceptors were sensitized either towards local pressure stimulation or to active contractions, but never towards both forms of stimulation. 3. Both group III and group IV nociceptors were sensitized by bradykinin, the proportion of sensitized receptors being greater for group III units. 4. Some of the low-threshold receptors (particularly the CS units) showed a desensitization under the influence of bradykinin. 5. Although bradykinin (by lowering the mechanical thresholds of nociceptors into the innocuous range) could produce the symptom of allodynia, it was not capable of eliciting all the changes in receptor behaviour which are known to occur in inflamed tissues. For instance, no ongoing activity of longer duration and no substantial sensitization of low-threshold receptors have been observed in the present study. PMID:3392680

  13. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    SciTech Connect

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-02-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage lambdagt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16/sup +/ natural killer cells and CD3/sup +/, CD16/sup -/ T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.

  14. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia

    PubMed Central

    Merner, Nancy D.; Chandler, Madison R.; Bourassa, Cynthia; Liang, Bo; Khanna, Arjun R.; Dion, Patrick; Rouleau, Guy A.; Kahle, Kristopher T.

    2015-01-01

    Many encoded gene products responsible for neurodevelopmental disorders (NDs) like autism spectrum disorders (ASD), schizophrenia (SCZ), intellectual disability (ID), and idiopathic generalized epilepsy (IGE) converge on networks controlling synaptic function. An increase in KCC2 (SLC12A5) Cl− transporter activity drives the developmental GABA excitatory-inhibitory sequence, but the role of KCC2 in human NDs is essentially unknown. Here, we report two rare, non-synonymous (NS), functionally-impairing variants in the KCC2 C-terminal regulatory domain (CTRD) in human ASD (R952H and R1049C) and SCZ (R952H) previously linked with IGE and familial febrile seizures, and another novel NS KCC2 variant in ASD (R1048W) with highly-predicted pathogenicity. Exome data from 2517 simplex families in the ASD Simon Simplex Collection (SSC) revealed significantly more KCC2 CTRD variants in ASD cases than controls, and interestingly, these were more often synonymous and predicted to disrupt or introduce a CpG site. Furthermore, full gene analysis showed ASD cases are more likely to contain rare KCC2 variants affecting CpG sites than controls. These data suggest genetically-encoded dysregulation of KCC2-dependent GABA signaling may contribute to multiple human NDs. PMID:26528127

  15. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia.

    PubMed

    Merner, Nancy D; Chandler, Madison R; Bourassa, Cynthia; Liang, Bo; Khanna, Arjun R; Dion, Patrick; Rouleau, Guy A; Kahle, Kristopher T

    2015-01-01

    Many encoded gene products responsible for neurodevelopmental disorders (NDs) like autism spectrum disorders (ASD), schizophrenia (SCZ), intellectual disability (ID), and idiopathic generalized epilepsy (IGE) converge on networks controlling synaptic function. An increase in KCC2 (SLC12A5) Cl(-) transporter activity drives the developmental GABA excitatory-inhibitory sequence, but the role of KCC2 in human NDs is essentially unknown. Here, we report two rare, non-synonymous (NS), functionally-impairing variants in the KCC2 C-terminal regulatory domain (CTRD) in human ASD (R952H and R1049C) and SCZ (R952H) previously linked with IGE and familial febrile seizures, and another novel NS KCC2 variant in ASD (R1048W) with highly-predicted pathogenicity. Exome data from 2517 simplex families in the ASD Simon Simplex Collection (SSC) revealed significantly more KCC2 CTRD variants in ASD cases than controls, and interestingly, these were more often synonymous and predicted to disrupt or introduce a CpG site. Furthermore, full gene analysis showed ASD cases are more likely to contain rare KCC2 variants affecting CpG sites than controls. These data suggest genetically-encoded dysregulation of KCC2-dependent GABA signaling may contribute to multiple human NDs. PMID:26528127

  16. Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2γ recapitulate the mitochondriopathy of the homologous null mouse

    PubMed Central

    Saunders, Carol J.; Moon, Sung Ho; Liu, Xinping; Thiffault, Isabelle; Coffman, Keith; LePichon, Jean-Baptiste; Taboada, Eugenio; Smith, Laurie D.; Farrow, Emily G.; Miller, Neil; Gibson, Margaret; Patterson, Melanie; Kingsmore, Stephen F.; Gross, Richard W.

    2015-01-01

    Mitochondriopathies are a group of clinically heterogeneous genetic diseases caused by defects in mitochondrial metabolism, bioenergetic efficiency, and/or signaling functions. The large majority of proteins involved in mitochondrial function are encoded by nuclear genes, with many yet to be associated with human disease. We performed exome sequencing on a young girl with a suspected mitochondrial myopathy that manifested as progressive muscle weakness, hypotonia, seizures, poor weight gain, and lactic acidosis. She was compound heterozygous for two frameshift mutations, p. Asn112HisfsX29 and p. Leu659AlafsX4, in the PNPLA8 gene, which encodes mitochondrial calcium independent phospholipase A2γ (iPLA2γ). Western blot analysis of affected muscle displayed the absence of PNPLA8 protein. iPLA2s are critical mediators of a variety of cellular processes including growth, metabolism, and lipid second messenger generation, exerting their functions through catalyzing the cleavage of the acyl groups in glycerophospholipids. The clinical presentation, muscle histology and the mitochondrial ultrastructural abnormalities of this proband are highly reminiscent of Pnpla8 null mice. Although other iPLA2–related diseases have been identified, namely infantile neuroaxonal dystrophy and neutral lipid storage disease with myopathy, this is the first report of PNPLA8-related disease in a human. We suggest PNPLA8 join the increasing list of human genes involved in lipid metabolism associated with neuromuscular diseases due to mitochondrial dysfunction. PMID:25512002

  17. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins

    SciTech Connect

    Matviw, Yu, G.; Young, D. )

    1992-11-01

    The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: The N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expressions of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals. 42 refs., 5 figs.

  18. Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation

    SciTech Connect

    Ninomiya-Tsuji, Jun ); Nomoto, Satoshi; Matsumoto, Kunihiro ); Yasuda, Hideyo ); Reed, S.I. )

    1991-10-15

    The authors have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34{sup CDC2} kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34{sup CDC2} kinase and more significantly is homologous to Xenopus Eg1 kinase, suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34{sup CDC2} kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G{sub 1} or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.

  19. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  20. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    SciTech Connect

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. )

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  1. The bradykinin B1 receptor antagonist R-954 inhibits Ehrlich tumor growth in rodents.

    PubMed

    Fernandes, Patricia Dias; Gomes, Niele de Matos; Sirois, Pierre

    2011-09-01

    The present study investigated the effects of a new bradykinin B(1) receptor antagonist, R-954, on the development of Ehrlich ascitic tumor (EAT) induced by the intraperitoneal inoculation of EAT cells in mice and the formation of a solid tumor by the subcutaneous injection of the cells in rat paw. The development of the tumor was associated with an increase in mouse total cell counts in bone marrow (10.8-fold), ascitic fluid (14.6-fold), and blood (12.6-fold). R-954 (2mg/kg, s.c.) significantly reduced the ascitic fluid volume (63.7%) and the mouse weight gain (30.5%) after 10 consecutive days of treatment. The B(1) antagonist as well as the anti-neoplasic drug vincristine also significantly inhibited the increase in total cell count in bone marrow, ascitic fluid, and blood. R-954 reduced significantly the total protein extravasation (57.3%), the production of nitric oxide (56%), PGE(2) production (82%), and TNFα release (85.7%) in mice peritoneal cavity whereas vincristine reduced the release of these inflammatory mediators by 84-94%. The increase in paw edema after intraplantar injection of EAT cells was reduced by approximately 52% by either R-954 or vincristine treatment. In conclusion, this study presents for the first time the antitumoral activity of a new bradykinin B(1) receptor antagonist on ascitic and solid tumors induced by Ehrlich cell inoculation in mice and rats. PMID:21835216

  2. Plasma kallikrein-bradykinin pathway promotes circulatory nitric oxide metabolite availability during hypoxia.

    PubMed

    Padhy, Gayatri; Gangwar, Anamika; Sharma, Manish; Himashree, Gidugu; Singh, Krishan; Bhaumik, Gopinath; Bhargava, Kalpana; Sethy, Niroj Kumar

    2016-05-01

    Nitric oxide (NO) is an indispensible signalling molecule under hypoxic environment for both ethnic high altitude natives as well as lowland residents at high altitude. Several studies have reported higher levels of NO and bioactive NO products for both high altitude natives as well as healthy high altitude sojourners. But the metabolic pathways regulating the formation of NO and associated metabolites during hypoxia still remain elusive. In the present study, we profiled plasma proteomes of Ladakhi natives (3520 m) and lowland residents (post 1, 4 and 7 days stay) at the same altitude. This has resulted in the identification of 208 hypoxia responsive proteins (p < 0.05) and kininogen-plasma kallikrein-bradykinin as a major pathway regulating eNOS activity during hypoxia. In corroboration, we have also observed significant higher levels of plasma biomarkers for NO production (l-citrulline, nitrite, nitrate) for Ladakhi natives as compared to both lowland individuals healthy high altitude sojourners indicating higher NO availability. Since hypoxia-induced free radicals reduce NO availability, we also measured plasma levels of 8-isoprostanes, protein carbonyls and protein oxidation products in both Ladakhi natives and high altitude sojourners. Interestingly Ladakhi natives had significant lower levels of oxidative stress in comparison to high altitude sojourners but higher than lowland controls. These results suggest that plasma kallikrein-bradykinin-eNOS pathway along with moderate oxidative stress contributes to high altitude adaptation of Ladakhi natives. PMID:26952290

  3. Cis–Trans Isomerizations of Proline Residues are Key to Bradykinin Conformations

    PubMed Central

    Pierson, Nicholas A.; Chen, Liuxi; Russell, David H.; Clemmer, David E.

    2013-01-01

    A recent ion mobility – mass spectrometry (IM–MS) study of the nonapeptide bradykinin (BK, amino acid sequence Arg1–Pro2–Pro3–Gly4–Phe5–Ser6–Pro7–Phe8–Arg9) found evidence for 10 populations of conformations that depend upon the solution composition [J. Am. Chem. Soc. 2011, 133, 13810]. Here, the role of the three proline residues (Pro2, Pro3, and Pro7) in establishing these conformations is investigated using a series of seven analogue peptides in which combinations of alanine residues are substituted for prolines. IM–MS distributions of the analogue peptides, when compared to the distribution for bradykinin, indicate the multiple structures are associated with different combinations of cis and trans forms of the three proline residues. These data are used to assign the structures to different peptide populations that are observed under various solution conditions. The assignments also show the connectivity between structures when collisional activation is used to convert one state into another. PMID:23373819

  4. Characterization of a Novel Human Herpesvirus 8-Encoded Protein, vIRF-3, That Shows Homology to Viral and Cellular Interferon Regulatory Factors

    PubMed Central

    Lubyova, Barbora; Pitha, Paula M.

    2000-01-01

    The genome of the human herpesvirus 8 (HHV-8) contains a cluster of open reading frames (ORFs) encoding proteins with homology to the cellular transcription factors of the interferon regulatory factor (IRF) family. Two of these homologues, vIRF-1 and vIRF-2, were previously identified and functionally analyzed. In this study, we have characterized a novel gene, designated vIRF-3, encoded within the previously predicted ORF K10.5 and our newly identified ORF K10.6. Northern blotting of RNA extracted from BCBL-1 cells with a vIRF-3-specific probe and reverse transcription-PCR analyses revealed a single transcript of 2.2 kb with a splice present in the coding region. The vIRF-3 mRNA levels in BCBL-1 cells were increased upon 12-O-tetradecanoylphorbol-13-acetate treatment, with kinetics of expression similar to those of the early immediate genes. The vIRF-3 ORF encodes a 73-kDa protein with homology to cellular IRF-4 and HHV-8-encoded vIRF-2 and K11. In transient transfection assays with the IFNACAT reporter, vIRF-3 functioned as a dominant-negative mutant of both IRF-3 and IRF-7 and inhibited virus-mediated transcriptional activity of the IFNA promoter. Similarly, the overexpression of vIRF-3 in mouse L929 cells resulted in inhibition of virus-mediated synthesis of biologically active interferons. These results suggest that by targeting IRF-3 and IRF-7, which play a critical role in the activation of alpha/beta interferon (IFN) genes, HHV-8 has evolved a mechanism by which it directly subverts the functions of IRFs and down-regulates the induction of the IFN genes that are important components of the innate immunity. PMID:10933732

  5. On the Immortality of Television Sets: “Function” in the Human Genome According to the Evolution-Free Gospel of ENCODE

    PubMed Central

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B.R.; Zufall, Rebecca A.; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 − 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used “causal role” definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as “affirming the consequent,” by failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten. PMID:23431001

  6. Characterization of the Enhanced Bone Regenerative Capacity of Human Periodontal Ligament Stem Cells Engineered to Express the Gene Encoding Bone Morphogenetic Protein 2

    PubMed Central

    Jung, Im-Hee; Lee, Si-Ho; Jun, Choong-Man; Oh, Namsik

    2014-01-01

    Human periodontal ligament stem cells (hPDLSCs) are considered an appropriate cell source for therapeutic strategies. The aims of this study were to investigate the sustainability of bone morphogenetic protein 2 (BMP2) secretion and the bone regenerative capacity of hPDLSCs that had been genetically modified to express the gene encoding BMP2 (BMP2). hPDLSCs isolated from healthy third molars were transduced using replication-deficient recombinant adenovirus (rAd) encoding BMP2 (hPDLSCs/rAd-BMP2), and the cellular characteristics and osteogenic potentials of hPDLSCs/rAd-BMP2 were analyzed both in vitro and in vivo. hPDLSCs/rAd-BMP2 successfully secreted BMP2, formed colonies, and expressed immunophenotypes similar to their nontransduced counterparts. As to their osteogenic potential, hPDLSCs/rAd-BMP2 formed greater mineralized nodules and exhibited significantly higher levels of expression of BMP2 and the gene encoding alkaline phosphatase, and formed more and better quality bone than other hPDLSC-containing or recombinant human BMP2-treated groups, being localized at the initial site until 8 weeks. The findings of the present study demonstrate that hPDLSCs/rAd-BMP2 effectively promote osteogenesis not only in vitro but also in vivo. The findings also suggest that hPDLSCs can efficiently carry and deliver BMP2, and that hPDLSCs/rAd-BMP2 could be used in an attractive novel therapeutic approach for the regeneration of deteriorated bony defects. PMID:24494708

  7. A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus.

    PubMed

    Meki, A R; Nassar, A Y; Rochat, H

    1995-01-01

    A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition. PMID:8745044

  8. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

    PubMed

    Chuang, H H; Prescott, E D; Kong, H; Shields, S; Jordt, S E; Basbaum, A I; Chao, M V; Julius, D

    2001-06-21

    Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family. PMID:11418861

  9. The human CCGl gene, essential for progression of the G sub 1 phase, encodes a 210-kilodalton nuclear DNA-binding protein

    SciTech Connect

    Sekiguchi, Takeshi; Nohiro, Yukiko; Hisamoto, Naoki; Nishimoto, Takeharu ); Nakamura, Yasuhara )

    1991-06-01

    The human CCGl gene complements tsBN462, a temperature-sensitive G{sup 1} mutant of the BHK21 cell line. The previously cloned cDNA turned out to be a truncated form of the actual CCGl cDNA. The newly cloned CCGl cDNA was 6.0 kb and encoded a protein with a molecular mass of 210 kDa. Using an antibody to a predicted peptide from the CCGl protein, a protein with a molecular mass of over 200 kDa was identified in human, monkey, and hamster cell lines. In the newly defined C-terminal region, an acidic domain was found. It contained four consensus target sequences for casein kinase 2 and was phosphorylated by this enzyme in vitro. However, this C-terminal region was not required to complement tsBN462 mutation since the region encoding the C-terminal part was frequently missing in complemented clones derived by DNA-mediated gene transfer, CCGl contains a sequence similar to the putative DNA-binding domain of HMGl in addition to the previously detected amino acid sequences common in nuclear proteins, such as a proline cluster and a nuclear translocation signal. Consistent with these predictions, CCGl was present in nuclei, possessed DNA-binding activity, and was eluted with similar concentrations of salt, 0.3 to 0.4 M NaCl either from isolated nuclei or from a DNA-cellulose column.

  10. cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family

    SciTech Connect

    Cool, D.E.; Tonks, N.K.; Charbonneau, H.; Walsh, K.A.; Fischer, E.H.; Krebs, E.G. )

    1989-07-01

    A human peripheral T-cell cDNA library was screened with two labeled synthetic oligonucleotides encoding regions of a human placenta protein-tyrosine-phosphatase. One positive clone was isolated and the nucleotide sequence was determined. It contained 1,305 base pairs of open reading frame followed by a TAA stop codon and 978 base pairs of 3{prime} untranslated end, although a poly(A){sup +} tail was not found. An initiator methionine residue was predicted at position 61, which would result in a protein of 415 amino acid residues. This was supported by the synthesis of a M{sub r} 48,000 protein in an in vitro reticulocyte lysate translation system using RNA transcribed from the cloned cDNA and T7 RNA polymerase. The deduced amino acid sequence was compared to other known proteins revealing 65% identity to the low M{sub r} PTPase 1B isolated from placenta. In view of the high degree of similarity, the T-cell cDNA likely encodes a newly discovered protein-tyrosine-phosphatase, thus expanding this family of genes.

  11. Three tightly linked genes encoding human type I keratins: conservation of sequence in the 5'-untranslated leader and 5'-upstream regions of coexpressed keratin genes.

    PubMed Central

    RayChaudhury, A; Marchuk, D; Lindhurst, M; Fuchs, E

    1986-01-01

    We have isolated and subcloned three separate segments of human DNA which share strong sequence homology with a previously sequenced gene encoding a type I keratin, K14 (50 kilodaltons). Restriction endonuclease mapping has demonstrated that these three genes are tightly linked chromosomally, whereas the K14 gene appears to be separate. As judged by positive hybridization-translation and Northern blot analyses, the central linked gene encodes a keratin, K17, which is expressed in abundance with K14 and two other type I keratins in cultured human epidermal cells. None of these other epidermal keratin mRNAs appears to be generated from the K17 gene through differential splicing of its transcript. The sequence of the K17 gene reveals striking homologies not only with the coding portions and intron positions of the K14 gene, but also with its 5'-noncoding and 5'-upstream sequences. These similarities may provide an important clue in elucidating the molecular mechanisms underlying the coexpression of the two genes. Images PMID:2431270

  12. A rhesus macaque rhadinovirus related to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 encodes a functional homologue of interleukin-6.

    PubMed

    Kaleeba, J A; Bergquam, E P; Wong, S W

    1999-07-01

    The rhesus rhadinovirus strain 17577 (RRV strain 17577) genome is essentially colinear with human herpesvirus 8 (HHV8)/Kaposi's sarcoma-associated herpesvirus (KSHV) and encodes several analogous open reading frames (ORFs), including the homologue of cellular interleukin-6 (IL-6). To determine if the RRV IL-6-like ORF (RvIL-6) is biologically functional, it was expressed either transiently in COS-1 cells or purified from bacteria as a glutathione S-transferase (GST)-RvIL-6 fusion and analyzed by IL-6 bioassays. Utilizing the IL-6-dependent B9 cell line, we found that both forms of RvIL-6 supported cell proliferation in a dose-dependent manner. Moreover, antibodies specific to the IL-6 receptor (IL-6R) or the gp130 subunit were capable of blocking the stimulatory effects of RvIL-6. Reciprocal titrations of GST-RvIL-6 against human recombinant IL-6 produced a more-than-additive stimulatory effect, suggesting that RvIL-6 does not inhibit but may instead potentiate normal cellular IL-6 signaling to B cells. These results demonstrate that RRV encodes an accessory protein with IL-6-like activity. PMID:10364379

  13. The gene encoding p120{sup cas}, a novel catenin, localizes on human chromosome 11q11 (CTNND) and mouse chromosome 2 (Catns)

    SciTech Connect

    Reynolds, A.B.; Daniel, J.M.; Shapiro, D.N.

    1996-01-01

    The p120{sub cas} gene encodes a protein tyrosine kinase substrate that associates with the cell-cell adhesion protein complex containing E-cadherin and its cytoplasmic cofactors {alpha}-catenin, {beta}-catenin, and plakoglobin. Like other components of the cadherin/catenin complex, defects in p120{sup cas} may contribute to cell malignancy. We have determined the chromosomal location of the p120{sup cas} gene in human and mouse using fluorescence in situ hybridization and interspecific backcross analysis, respectively. The human p120{sub cas} gene (CTNND) is localized immediately adjacent to the centromere on the long arm of chromosome 11 in band 11q11. The murine p120{sup cas} gene (Catns) was assigned to the middle of chromosome 2. Neither locus is currently known to be associated with disease or malignancy. 17 refs., 2 figs.

  14. A Dde I RFLP in exon 21 of human EL1 gene, encoding protein 4.1, detectable by SSCP.

    PubMed

    Maillet, P; Dalla Venezia, N; Bozon, M; Vallier, A; Delaunay, J; Baklouti, F

    1998-01-01

    Protein 4.1 is a major component of the junctional complex at the red cell skeleton. Genomic studies have recently evidenced that the encoding gene (EL1 locus) is present in a single copy per haploid genome. Several RFLPs have already been characterized within intron sequences. Here, we describe the first RFLP found within the coding sequence. This polymorphism (C or T at position 2723, in exon 21) does not affect the amino acid sequence (Thr-->Thr). It can be detected by either Dde I restriction digestion of an appropriate PCR product, or simply by SSCP These findings should facilitate analysis of families with 4.1 deficiencies causing hereditary elliptocytosis. PMID:9554757

  15. Repertoire comparison of the B-cell receptor encoding loci in humans and rhesus macaques by next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhesus macaques are a widely used model system for the study of vaccines, infectious diseases, and microbial pathogenesis. Their value as a model lies in their close evolutionary relationship to humans, which, in theory, allows them to serve as a close approximation of the human immune system. Howev...

  16. The active gene that encodes human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13

    SciTech Connect

    Ferrari, S.; Finelli, P.; Rocchi, M.

    1996-07-15

    The human genome contains a large number of sequences related to the cDNA for High Mobility Group 1 protein (HMG1), which so far has hampered the cloning and mapping of the active HMG1 gene. We show that the human HMG1 gene contains introns, while the HMG1-related sequences do not and most likely are retrotransposed pseudogenes. We identified eight YACs from the ICI and CEPH libraries that contain the human HMG1 gene. The HMG1 gene is similar in structure to the previously characterized murine homologue and maps to human chromosome 13 and q12, as determined by in situ hybridization. The mouse Hmg1 gene maps to the telomeric region of murine Chromosome 5, which is syntenic to the human 13q12 band. 18 refs., 3 figs.

  17. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b.

    PubMed

    Fornuskova, Daniela; Stiburek, Lukas; Wenchich, Laszlo; Vinsova, Kamila; Hansikova, Hana; Zeman, Jiri

    2010-06-15

    Mammalian CcO (cytochrome c oxidase) is a hetero-oligomeric protein complex composed of 13 structural subunits encoded by both the mitochondrial and nuclear genomes. To study the role of nuclear-encoded CcO subunits in the assembly and function of the human complex, we used stable RNA interference of COX4, COX5A and COX6A1, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)-293 cells. Knockdown of Cox4, Cox5a and Cox6a resulted in reduced CcO activity, diminished affinity of the residual enzyme for oxygen, decreased holoCcO and CcO dimer levels, increased accumulation of CcO subcomplexes and gave rise to an altered pattern of respiratory supercomplexes. An analysis of the patterns of CcO subcomplexes found in both knockdown and overexpressing cells identified a novel CcO assembly intermediate, identified the entry points of three late-assembled subunits and demonstrated directly the essential character as well as the interdependence of the assembly of Cox4 and Cox5a. The ectopic expression of the heart/muscle-specific isoform of the Cox6 subunit (COX6A2) resulted in restoration of both CcO holoenzyme and activity in COX6A1-knockdown cells. This was in sharp contrast with the unaltered levels of COX6A2 mRNA in these cells, suggesting the existence of a fixed expression programme. The normal amount and function of respiratory complex I in all of our CcO-deficient knockdown cell lines suggest that, unlike non-human CcO-deficient models, even relatively small amounts of CcO can maintain the normal biogenesis of this respiratory complex in cultured human cells. PMID:20307258

  18. Preclinical safety evaluation of recombinant adeno-associated virus 2 vector encoding human tumor necrosis factor receptor-immunoglobulin Fc fusion gene.

    PubMed

    Zhou, Xiaobing; Shen, Lianzhong; Liu, Li; Wang, Chao; Qi, Weihong; Zhao, Aizhi; Wu, Xiaobing; Li, Bo

    2016-03-01

    Recombinant adeno-associated virus (rAAV) 2 vector gene therapy offers promise for the healing of Rheumatoid arthritis. To support the clinical development of the candidate gene therapeutic product in China, a comprehensive preclinical safety assessment of rAAV2 encoding human TNF receptor-immunoglobulin Fc fusion gene (rAAV2/human TNFR:Fc), were conducted in 3 species of experimental animals. No abnormal findings were observed in mice following single intravenous administration with test article. Compared with the control group, no differences in mean body weight, food consumption in rats and monkeys following the repeated intraarticular administration with rAAV2/human TNFR:Fc. There were also no significant adverse effects due to treatment noted by clinical chemistry, hematology and pathology assessments. After intraarticular administration with rAAV2/human TNFR:Fc, the vector DNA initially distributed to spleen, lymph nodes, and joint synovium. The vector DNA cleared rapidly as it could be detected mainly at the site of injection by 91 d post-administration (182 d for monkey). Taken together, localized delivery of rAAV2/human TNFR:Fc showed no significant toxicity in mice, rats, and monkeys, which support the planned clinical evaluation of this product. PMID:26837862

  19. Characterization of novel Leishmania infantum recombinant proteins encoded by genes from five families with distinct capacities for serodiagnosis of canine and human visceral leishmaniasis.

    PubMed

    Oliveira, Geraldo G S; Magalhães, Franklin B; Teixeira, Márcia C A; Pereira, Andrea M; Pinheiro, Cristiane G M; Santos, Lenita R; Nascimento, Marília B; Bedor, Cheila N G; Albuquerque, Alessandra L; dos-Santos, Washington L C; Gomes, Yara M; Moreira, Edson D; Brito, Maria E F; Pontes de Carvalho, Lain C; de Melo Neto, Osvaldo P

    2011-12-01

    To expand the available panel of recombinant proteins that can be useful for identifying Leishmania-infected dogs and for diagnosing human visceral leishmaniasis (VL), we selected recombinant antigens from L. infantum, cDNA, and genomic libraries by using pools of serum samples from infected dogs and humans. The selected DNA fragments encoded homologs of a cytoplasmic heat-shock protein 70, a kinesin, a polyubiquitin, and two novel hypothetical proteins. Histidine-tagged recombinant proteins were produced after subcloning these DNA fragments and evaluated by using an enzyme-linked immunosorbent assays with panels of canine and human serum samples. The enzyme-linked immunosorbent assays with different recombinant proteins had different sensitivities (67.4-93.0% and 36.4-97.2%) and specificities (76.1-100% and 90.4-97.3%) when tested with serum samples from Leishmania-infected dogs and human patients with VL. Overall, no single recombinant antigen was sufficient to serodiagnosis all canine or human VL cases. PMID:22144438

  20. Repertoire comparison of the B-cell receptor-encoding loci in humans and rhesus macaques by next-generation sequencing

    PubMed Central

    Vigdorovich, Vladimir; Oliver, Brian G; Carbonetti, Sara; Dambrauskas, Nicholas; Lange, Miles D; Yacoob, Christina; Leahy, Will; Callahan, Jonathan; Stamatatos, Leonidas; Sather, D Noah

    2016-01-01

    Rhesus macaques (RMs) are a widely used model system for the study of vaccines, infectious diseases and microbial pathogenesis. Their value as a model lies in their close evolutionary relationship to humans, which, in theory, allows them to serve as a close approximation of the human immune system. However, despite their prominence as a human surrogate model system, many aspects of the RM immune system remain ill characterized. In particular, B cell-mediated immunity in macaques has not been sufficiently characterized, and the B-cell receptor-encoding loci have not been thoroughly annotated. To address these gaps, we analyzed the circulating heavy- and light-chain repertoires in humans and RMs by next-generation sequencing. By comparing V gene segment usage, J-segment usage and CDR3 lengths between the two species, we identified several important similarities and differences. These differences were especially notable in the IgM+ B-cell repertoire. However, the class-switched, antigen-educated B-cell populations converged on a set of similar characteristics, implying similarities in how each species responds to antigen. Our study provides the first comprehensive overview of the circulating repertoires of the heavy- and light-chain sequences in RMs, and provides insight into how they may perform as a model system for B cell-mediated immunity in humans. PMID:27525066

  1. Molecular characterization of hNRP, a cDNA encoding a human nucleosome-assembly-protein-I-related gene product involved in the induction of cell proliferation.

    PubMed Central

    Simon, H U; Mills, G B; Kozlowski, M; Hogg, D; Branch, D; Ishimi, Y; Siminovitch, K A

    1994-01-01

    We have isolated from a human thymus cDNA library a cDNA clone encoding a potential protein with 54% amino acid similarity to that encoded by a previously identified cDNA for yeast nucleosome assembly protein I (NAP-I). The deduced amino acid sequence for this newly identified cDNA, designated hNRP (human NAP-related protein), contains a potential seven-residue nuclear localization motif, three clusters of highly acidic residues and other structural features found in various proteins implicated in chromatin formation. When expressed as a fusion protein in Escherichia coli, hNRP reacted specifically with a monoclonal antibody raised against human NAP-I. The hNRP transcript was detected in all tissues and cell lines studied, but levels were somewhat increased in rapidly proliferating cells. Moreover, levels of both hNRP mRNA and protein increased rapidly in cultured T-lymphocytes induced to proliferate by incubation with phorbol ester and ionomycin. Phorbol 12-myristate 13-acetate/ionomycin-induced increases in both hNRP mRNA and mitogenesis, as measured by thymidine incorporation, were markedly inhibited, however, in cells treated with an hNRP antisense oligonucleotide. These results demonstrate a correlation between induction of hNRP expression and mitogenesis and taken together with the structural similarities between hNRP and yeast NAP-I suggest that the hNRP gene product participates in DNA replication and thereby plays an important role in the process of cell proliferation. Images Figure 4 Figure 5 Figure 6 PMID:8297347

  2. Characterization of a cDNA encoding a novel human Golgi alpha 1, 2-mannosidase (IC) involved in N-glycan biosynthesis.

    PubMed

    Tremblay, L O; Herscovics, A

    2000-10-13

    A human cDNA encoding a 70.9-kDa type II membrane protein with sequence similarity to class I alpha1,2-mannosidases was isolated. The enzymatic properties of the novel alpha1,2-mannosidase IC were studied by expressing its catalytic domain in Pichia pastoris as a secreted glycoprotein. alpha1,2-Mannosidase IC sequentially hydrolyzes the alpha1,2-linked mannose residues of [(3)H]mannose-labeled Man(9)GlcNAc to form [(3)H]Man(6)GlcNAc and a small amount of [(3)H]Man(5)GlcNAc. The enzyme requires calcium for activity and is inhibited by both 1-deoxymannojirimycin and kifunensine. The order of mannose removal was determined by separating oligosaccharide isomers formed from pyridylaminated Man(9)GlcNAc(2) by high performance liquid chromatography. The terminal alpha1,2-linked mannose residue from the middle branch is the last mannose removed by the enzyme. This residue is the mannose cleaved from Man(9)GlcNAc(2) by the endoplasmic reticulum alpha1, 2-mannosidase I to form Man(8)GlcNAc(2) isomer B. The order of mannose hydrolysis from either pyridylaminated Man(9)GlcNAc(2) or Man(8)GlcNAc(2) isomer B differs from that previously reported for mammalian Golgi alpha1,2-mannosidases IA and IB. The full-length alpha1,2-mannosidase IC was localized to the Golgi of MDBK and MDCK cells by indirect immunofluorescence. Northern blot analysis showed tissue-specific expression of a major transcript of 3.8 kilobase pairs. The expression pattern is different from that of human Golgi alpha1,2-mannosidases IA and IB. Therefore, the human genome contains at least three differentially regulated Golgi alpha1, 2-mannosidase genes encoding enzymes with similar, but not identical specificities. PMID:10915796

  3. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA

    PubMed Central

    Machitani, Mitsuhiro; Sakurai, Fuminori; Wakabayashi, Keisaku; Tomita, Kyoko; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-01

    In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells. PMID:27273616

  4. Variation in Human Genes Encoding Adhesion and Pro-inflammatory Molecules are Associated with Severe Malaria in the Vietnamese

    PubMed Central

    Dunstan, Sarah J; Rockett, Kirk A; Ngoc Quyen, Nguyen Thi; Teo, Yik Y; Thai, Cao Quang; Hang, Nguyen Thuy; Jeffreys, Anna; Clark, Taane G; Small, Kerrin S; Simmons, Cameron P; Day, Nicholas; O’Riordan, Sean E; Kwiatkowski, Dominic P; Farrar, Jeremy; Phu, Nguyen Hoan; Hien, Tran Tinh

    2013-01-01

    The genetic basis for susceptibility to malaria has been studied widely in African populations but less is known of the contribution of specific genetic variants in Asian populations. We genotyped 67 SNPs in 1030 severe malaria cases and 2840 controls from Vietnam. After data quality control, genotyping data of 956 cases and 2350 controls were analysed for 65 SNPs (3 gender confirmation, 62 positioned in/near 42 malarial candidate genes). 14 SNPs were monomorphic and 2 (rs8078340 and rs33950507) were not in HWE in controls (P<0.01). 7/46 SNPs in 6 genes (ICAM1, IL1A, IL17RC, IL13, LTA and TNF) were associated with severe malaria, with 3/7 SNPs in the TNFA/LTA region . Genotype phenotype correlations between SNPs and clinical parameters revealed that genotypes of rs708567 (IL17RC) correlate with parasitemia (P=0.028, r2=0.0086), with GG homozygotes having the lowest parasite burden. Additionally, rs708567 GG homozygotes had a decreased risk of severe malaria [P=0.007, OR=0.78 (95% CI; 0.65-0.93)] and death [P=0.028, OR=0.58 (95% CI; 0.37-0.93)] than those with AA and AG genotypes. In summary, variants in 6 genes encoding adhesion and pro-inflammatory molecules are associated with severe malaria in the Vietnamese. Further replicative studies in independent populations will be necessary to confirm these findings. PMID:22673309

  5. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.

    PubMed Central

    Phaneuf, D; Labelle, Y; Bérubé, D; Arden, K; Cavenee, W; Gagné, R; Tanguay, R M

    1991-01-01

    Type 1 hereditary tyrosinemia (HT) is an autosomal recessive disease characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2). We have isolated human FAH cDNA clones by screening a liver cDNA expression library using specific antibodies and plaque hybridization with a rat FAH cDNA probe. A 1,477-bp cDNA was sequenced and shown to code for FAH by an in vitro transcription-translation assay and sequence homology with tryptic fragments of purified FAH. Transient expression of this FAH cDNA in transfected CV-1 mammalian cells resulted in the synthesis of an immunoreactive protein comigrating with purified human liver FAH on SDS-PAGE and having enzymatic activity as shown by the hydrolysis of the natural substrate fumarylacetoacetate. This indicates that the single polypeptide chain encoded by the FAH gene contains all the genetic information required for functional activity, suggesting that the dimer found in vivo is a homodimer. The human FAH cDNA was used as a probe to determine the gene's chromosomal localization using somatic cell hybrids and in situ hybridization. The human FAH gene maps to the long arm of chromosome 15 in the region q23-q25. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 8 PMID:1998338

  6. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O sup 6 -alkylguanine

    SciTech Connect

    Tano, K.; Shiota, S.; Collier, J.; Foote, R.S.; Mitra, S. )

    1990-01-01

    O{sup 6}-Methylguanine-DNA methyltransferase a unique DNA repair protein present in most organisms, removes the carcinogenic and mutagenic adduct O{sup 6}-alkylguanine from DNA by stoichiometrically accepting the alkyl group on a cysteine residue in a suicide reaction. The mammalian protein is highly regulated in both somatic and germ-like cells. In addition, the toxicity of certain alkylating drugs in tumor and normal cells is inversely related to the levels of this protein. The cDNA of the human gene, henceforth named MGMT, has been cloned in an expression vector on the basis of its rescue of a methyltransferase-deficient (ada{sup {minus}}) Escherichia coli host. A 22-kDa active methyltransferase encoded entirely by the cDNA contains an amino acid sequence of 61 residues that bears 60-65% similarity with segments of E. coli methyltransferase which encompass the alkyl-acceptor residues. The human cDNA has no sequence similarity with the ada and ogt genes, due in part to differences in codon usage, and shows no detectable homology with E. coli genomic DNA. However, it hybridizes with distinct restriction fragments of human, mouse, and rat DNAs. The lack of methyltransferase observed in many human cell lines is due to the absence of the MGNT gene or to lack of synthesis and/or stability of its 0.95-kilobase poly(A){sup +} RNA transcript.

  7. Tritium-bradykinin binding site localization in guinea pig urinary system

    SciTech Connect

    Manning, D.C.; Snyder, S.H.

    1986-01-01

    Bradykinin (BK) causes vasodilation and increases free water and sodium excretion in the kidney and stimulates smooth muscle contraction in the ureter and bladder. Several proposed sites of action for BK include the renal medullary collecting duct, renal blood vessels and the ureter and bladder smooth muscle. This study employs 3H-BK autoradiography to localize the sites of BK action. 3H-BK binding sites in the kidney are localized in the medullary interstitium where BK may produce prostaglandins which mediate its blood flow, natriuretic and diuretic effects. 3H-BK binding sites in the ureter and bladder are localized in the lamina propria below the basal epithelial layer and absent over the muscle layers suggesting an indirect action on urinary tract smooth muscle.

  8. Molecular characterization of two human autoantigens: unique cDNAs encoding 95- and 160-kD proteins of a putative family in the Golgi complex.

    PubMed

    Fritzler, M J; Hamel, J C; Ochs, R L; Chan, E K

    1993-07-01

    Serum autoantibodies from a patient with autoantibodies directed against the Golgi complex were used to screen clones from a HepG2 lambda Zap cDNA library. Three related clones, designated SY2, SY10, and SY11, encoding two distinct polypeptides were purified for further analysis. Antibodies affinity purified by adsorption to the lambda Zap-cloned recombinant proteins and antibodies from NZW rabbits immunized with purified recombinant proteins reproduced Golgi staining and bound two different proteins, 95 and 160 kD, from whole cell extracts. The SY11 protein was provisionally named golgin-95 and the SY2/SY10 protein was named golgin-160. The deduced amino acid sequence of the cDNA clone of SY2 and SY11 represented 58.7- and 70-kD proteins of 568 and 620 amino acids. The in vitro translation products of SY2 and SY11 cDNAs migrated in SDS-PAGE at 65 and 95 kD, respectively. The in vitro translated proteins were immunoprecipitated by human anti-Golgi serum or immune rabbit serum, but not by normal human serum or preimmune rabbit serum. Features of the cDNA suggested that SY11 was a full-length clone encoding golgin-95 but SY2 and SY10 together encoded a partial sequence of golgin-160. Analysis of the SY11 recombinant protein identified a leucine zipper spanning positions 419-455, a glutamic acid-rich tract spanning positions 322-333, and a proline-rich tract spanning positions 67-73. A search of the SwissProt data bank indicated sequence similarity of SY11 to human restin, the heavy chain of kinesin, and the heavy chain of myosin. SY2 shared sequence similarity with the heavy chain of myosin, the USO1 transport protein from yeast, and the 150-kD cytoplasmic dynein-associated polypeptide. Sequence analysis demonstrated that golgin-95 and golgin-160 share 43% sequence similarity and, therefore, may be functionally related proteins. PMID:8315394

  9. A human FSHB transgene encoding the double N-glycosylation mutant (Asn(7Δ) Asn(24Δ)) FSHβ subunit fails to rescue Fshb null mice.

    PubMed

    Wang, Huizhen; Butnev, Vladimir; Bousfield, George R; Kumar, T Rajendra

    2016-05-01

    Follicle-stimulating hormone (FSH) is a gonadotrope-derived heterodimeric glycoprotein. Both the common α- and hormone-specific β subunits contain Asn-linked N-glycan chains. Recently, macroheterogeneous FSH glycoforms consisting of β-subunits that differ in N-glycan number were identified in pituitaries of several species and subsequently the recombinant human FSH glycoforms biochemically characterized. Although chemical modification and in vitro site-directed mutagenesis studies defined the roles of N-glycans on gonadotropin subunits, in vivo functional analyses in a whole-animal setting are lacking. Here, we have generated transgenic mice with gonadotrope-specific expression of either an HFSHB(WT) transgene that encodes human FSHβ WT subunit or an HFSHB(dgc) transgene that encodes a human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, and separately introduced these transgenes onto Fshb null background using a genetic rescue strategy. We demonstrate that the human FSHβ(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, unlike human FSHβ WT subunit, inefficiently combines with the mouse α-subunit in pituitaries of Fshb null mice. FSH dimer containing this mutant FSHβ subunit is inefficiently secreted with very low levels detectable in serum. Fshb null male mice expressing HFSHB(dgc) transgene are fertile and exhibit testis tubule size and sperm number similar to those of Fshb null mice. Fshb null female mice expressing the mutant, but not WT human FSHβ subunit-containing FSH dimer are infertile, demonstrate no evidence of estrus cycles, and many of the FSH-responsive genes remain suppressed in their ovaries. Thus, HFSHB(dgc) unlike HFSHB(WT) transgene does not rescue Fshb null mice. Our genetic approach provides direct in vivo evidence that N-linked glycans on FSHβ subunit are essential for its efficient assembly with the α-subunit to form FSH heterodimer in pituitary. Our studies also reveal that N-glycans on FSHβ subunit are

  10. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  11. Human Genes Encoding Transcription Factors and Chromatin-Modifying Proteins Have Low Levels of Promoter Polymorphism: A Study of 1000 Genomes Project Data

    PubMed Central

    Ignatieva, Elena V.; Levitsky, Victor G.; Kolchanov, Nikolay A.

    2015-01-01

    The expression level of each gene is controlled by its regulatory regions, which determine the precise regulation in a tissue-specific manner, according to the developmental stage of the body and the necessity of a response to external stimuli. Nucleotide substitutions in regulatory gene regions may modify the affinity of transcription factors to their specific DNA binding sites, affecting the transcription rates of genes. In our previous research, we found that genes controlling the sensory perception of smell and genes involved in antigen processing and presentation were overrepresented significantly among genes with high SNP contents in their promoter regions. The goal of our study was to reveal functional features of human genes containing extremely small numbers of SNPs in promoter regions. Two functional groups were found to be overrepresented among genes whose promoters did not contain SNPs: (1) genes involved in gene-specific transcription and (2) genes controlling chromatin organization. We revealed that the 5′-regulatory regions of genes encoding transcription factors and chromatin-modifying proteins were characterized by reduced genetic variability. One important exception from this rule refers to genes encoding transcription factors with zinc-coordinating DNA-binding domains (DBDs), which underwent extensive expansion in vertebrates, particularly, in primate evolution. Hence, we obtained new evidence for evolutionary forces shaping variability in 5′-regulatory regions of genes. PMID:26417590

  12. Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription.

    PubMed Central

    DeJong, J; Bernstein, R; Roeder, R G

    1995-01-01

    The human general transcription factor TFIIA is one of several factors involved in specific transcription by RNA polymerase II, possibly by regulating the activity of the TATA-binding subunit (TBP) of TFIID. TFIIA purified from HeLa extracts consists of 35-, 19-, and 12-kDa subunits. Here we describe the isolation of a cDNA clone (hTFIIA gamma) encoding the 12-kDa subunit. Using expression constructs derived from hTFIIA gamma and TFIIA alpha/beta (which encodes a 55-kDa precursor to the alpha and beta subunits of natural TFIIA), we have constructed a synthetic TFIIA with a polypeptide composition similar to that of natural TFIIA. The recombinant complex supports the formation of a DNA-TBP-TFIIA complex and mediates both basal and Gal4-VP16-activated transcription by RNA polymerase II in TFIIA-depleted nuclear extracts. In contrast, TFIIA has no effect on tRNA and 5S RNA transcription by RNA polymerase III in this system. We also present evidence that both the p55 and p12 recombinant subunits interact with TBP and that the basic region of TBP is critical for the TFIIA-dependent function of TBP in nuclear extracts. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7724559

  13. Transgene expression in the striatum following intracerebral injections of DNA nanoparticles encoding for human glial cell line-derived neurotrophic factor.

    PubMed

    Fletcher, A M; Kowalczyk, T H; Padegimas, L; Cooper, M J; Yurek, D M

    2011-10-27

    A goal of our studies is to develop a potential therapeutic for Parkinson's disease (PD) by a human glial cell line-derived neurotrophic factor (hGDNF) expression plasmid administered to the rat striatum as a compacted DNA nanoparticle (DNP) and which will generate long-term hGDNF expression at biologically active levels. In the present study, we used a DNA plasmid encoding for hGDNF and a polyubiquitin C (UbC) promoter that was previously shown to have activity in both neurons and glia, but primarily in glia. A two-fold improvement was observed at the highest plasmid dose when using hGDNF DNA incorporating sequences found in RNA splice variant 1 compared with splice variant 2; of note, the splice variant 2 sequence is used in most preclinical studies. This optimized expression cassette design includes flanking scaffold matrix attachment elements (S/MARs) as well as a CpG-depleted prokaryotic domain and, where possible, eukaryotic elements. Stable long-term GDNF activity at levels 300-400% higher than baseline was observed following a single intracerebral injection. In a previous study, DNP plasmids encoding for reporter genes had been successful in generating long-term reporter transgene activity in the striatum (>365 days) and in this study produced sustained GDNF activity at the longest assessed time point (6 months). PMID:21839809

  14. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15.

    PubMed Central

    Matsuoka, S; Thompson, J S; Edwards, M C; Bartletta, J M; Grundy, P; Kalikin, L M; Harper, J W; Elledge, S J; Feinberg, A P

    1996-01-01

    Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610162

  15. Identification of cDNA encoding an additional. alpha. subunit of a human GTP-binding protein: Expression of three. alpha. sub i subtypes in human tissues and cell lines

    SciTech Connect

    Kim, S.; Ang, S.L.; Bloch, D.B.; Bloch, K.D.; Kawahara, Y.; Tolman, C.; Lee, R.; Seidman, J.G.; Neer, E.J. )

    1988-06-01

    The guanine nucleotide-binding proteins (G proteins), which mediate hormonal regulation of many membrane functions, are composed of {alpha}, {beta}, and {gamma} subunits. The authors have cloned and characterized cDNA from a human T-cell library encoding a form of {alpha}{sub i} that is different from the human {alpha}{sub i} subtypes previously reported. {alpha}{sub i} is the {alpha} subunit of a class of G proteins that inhibits adenylate cyclase and regulates other enzymes and ion channels. This cDNA encodes a polypeptide of 354 amino acids and is assigned to encode the {alpha}{sub i-3} subtype of G proteins on the basis of its similarity to other {alpha}{sub i}-like cDNAs and the presence of a predicted site for ADP ribosylation by pertussis toxin. They have determined the expression of mRNA for this and two other subtypes of human {alpha}{sub i} ({alpha}{sub i-1} and {alpha}{sub i-2}) in a variety of human fetal tissues and in human cell lines. All three {alpha}{sub i} subtypes were present in the tissues tested. However, analysis of individual cell types reveals specificity of {alpha}{sub i-1} expression. mRNA for {alpha}{i-1} is absent in T cells, B cells, and monocytes but is present in other cell lines. The finding of differential expression of {alpha}{sub i-1} genes may permit characterization of distinct physiological roles for this {alpha}{sub i} subunit. mRNA for {alpha}{sub i-2} and {alpha}{sub i-3} was found in all the primary and transformed cell lines tested. Thus, some cells contain all three {alpha}{sub i} subtypes. This observation raises the question of how cells prevent cross talk among receptors that are coupled to effectors through such similar {alpha} proteins.

  16. Molecular cloning and characterization of the human KIN17 cDNA encoding a component of the UVC response that is conserved among metazoans.

    PubMed

    Kannouche, P; Mauffrey, P; Pinon-Lataillade, G; Mattei, M G; Sarasin, A; Daya-Grosjean, L; Angulo, J F

    2000-09-01

    We describe the cloning and characterization of the human KIN17 cDNA encoding a 45 kDa zinc finger nuclear protein. Previous reports indicated that mouse kin17 protein may play a role in illegitimate recombination and in gene regulation. Furthermore, overproduction of mouse kin17 protein inhibits the growth of mammalian cells, particularly the proliferation of human tumour-derived cells. We show here that the KIN17 gene is remarkably conserved during evolution. Indeed, the human and mouse kin17 proteins are 92.4% identical. Furthermore, DNA sequences from fruit fly and filaria code for proteins that are 60% identical to the mammalian kin17 proteins, indicating conservation of the KIN17 gene among metazoans. The human KIN17 gene, named (HSA)KIN17, is located on human chromosome 10 at p15-p14. The (HSA)KIN17 RNA is ubiquitously expressed in all the tissues and organs examined, although muscle, heart and testis display the highest levels. UVC irradiation of quiescent human primary fibroblasts increases (HSA)KIN17 RNA with kinetics similar to those observed in mouse cells, suggesting that up-regulation of the (HSA)KIN17 gene after UVC irradiation is a conserved response in mammalian cells. (HSA)kin17 protein is concentrated in intranuclear focal structures in proliferating cells as judged by indirect immunofluorescence. UVC irradiation disassembles (HSA)kin17 foci in cycling cells, indicating a link between the intranuclear distribution of (HSA)kin17 protein and the DNA damage response. PMID:10964102

  17. Isolation and characterization of a gene from Trypanosoma cruzi encoding a 46-kilodalton protein with homology to human and rat tyrosine aminotransferase.

    PubMed

    Bontempi, E J; Búa, J; Aslund, L; Porcel, B; Segura, E L; Henriksson, J; Orn, A; Pettersson, U; Ruiz, A M

    1993-06-01

    The complete sequence of a gene encoding a 46-kDa protein of Trypanosoma cruzi is presented. The first ATG complies with the consensus sequence for initiation of translation. A single band of 2 kb was highlighted by hybridizing a probe from the 46-kDa protein gene to a Northern filter containing total T. cruzi RNA. The gene is present in 50-80 copies per cell and most of them are contained in 2 tandem arrays on large T. cruzi chromosomes (> 2000 kb). A strong homology with rat and human tyrosine aminotransferase was detected. Homology with a Trypanosoma brucei retrotransposon was found in the nonsense strand of the intergenic region. PMID:8101971

  18. The mutated human gene encoding hepatocyte nuclear factor 1β inhibits kidney formation in developing Xenopus embryos

    PubMed Central

    Wild, Wiltrud; Pogge von Strandmann, Elke; Nastos, Aristotelis; Senkel, Sabine; Lingott-Frieg, Anja; Bulman, Michael; Bingham, Coralie; Ellard, Sian; Hattersley, Andrew T.; Ryffel, Gerhart U.

    2000-01-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is a tissue-specific regulator that also plays an essential role in early development of vertebrates. In humans, four heterozygous mutations in the HNF1β gene have been identified that lead to early onset of diabetes and severe primary renal defects. The degree and type of renal defects seem to depend on the specific mutation. We show that the frameshift mutant P328L329fsdelCCTCT associated with nephron agenesis retains its DNA-binding properties and acts as a gain-of-function mutation with increased transactivation potential in transfection experiments. Expression of this mutated factor in the Xenopus embryo leads to defective development and agenesis of the pronephros, the first kidney form of amphibians. Very similar defects are generated by overexpressing in Xenopus the wild-type HNF1β, which is consistent with the gain-of-function property of the mutant. In contrast, introduction of the human HNF1β mutant R137-K161del, which is associated with a reduced number of nephrons with hypertrophy of the remaining ones and which has an impaired DNA binding, shows only a minor effect on pronephros development in Xenopus. Thus, the overexpression of both human mutants has a different effect on renal development in Xenopus, reflecting the variation in renal phenotype seen with these mutations. We conclude that mutations in human HNF1β can be functionally characterized in Xenopus. Our findings imply that HNF1β not only is an early marker of kidney development but also is functionally involved in morphogenetic events, and these processes can be investigated in lower vertebrates. PMID:10758154

  19. Isolation, characterization, and mapping of gene encoding dihydrolipoyl succinyltransferase (E2k) of human [alpha]-ketoglutarate dehydrogenase complex

    SciTech Connect

    Ali, G.; Cai, Xingang; Sheu, Kwan-Fu R.; Blass, J.P. ); Wasco, W.; Gaston, S.M.; Tanzi, R.E.; Cooper, A.J.L.; Gusella, J.F. ); Szabo, P. )

    1994-03-01

    The authors have isolated and sequenced cDNAs representing the full-length (2987-bp) gene for dihydrolipoyl succinyltransferase (E2k component) of the human [alpha]-ketoglutarate dehydrogenase complex (KHDHC) from a human fetal brain cDNA library. The E2k cDNA was mapped to human chromosome 14 using a somatic cell hybrid panel, and more precisely to band 14q24.3 by in situ hybridization. This cDNA also cross-hybridized to an apparent E2k pseudogene on chromosome 1p31. Northern analysis revealed the E2k gene to be ubiquitously expressed in peripheral tissues and brain. Interestingly, chromosome 14q24.3 has recently been reported to contain gene defects for an early-onset form of familial Alzheimer's disease and for Machado-Joseph disease. Future studies will be necessary to determine whether the E2K gene plays a role in either of these two disorders.

  20. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making.

    PubMed

    Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre

    2016-06-01

    -frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson's disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost. PMID:27190012

  1. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making

    PubMed Central

    Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre

    2016-01-01

    that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson’s disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost. PMID:27190012

  2. Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts.

    PubMed Central

    Shibanuma, M; Mochizuki, E; Maniwa, R; Mashimo, J; Nishiya, N; Imai, S; Takano, T; Oshimura, M; Nose, K

    1997-01-01

    The hic-5 gene encodes a novel protein with Zn finger-like (LIM) motifs, the expression of which increases during cellular senescence. The ectopic expression of hic-5 in nontumorigenic immortalized human fibroblasts, whose expression levels of hic-5 were significantly reduced in comparison with those of mortal cells, decreased colony-forming efficiency. Stable clones expressing high levels of hic-5 mRNA showed higher levels of mRNAs for several extracellular matrix-related proteins, along with the alteration of an alternative splicing as seen in senescent cells and decreased c-fos inducibility. Furthermore, these clones acquired a senescence-like phenotype, such as growth retardation; senescence-like morphology; and increased expression of Cip1/WAF1/sdi1 after 20 to 40 population doublings. On the other hand, antisense RNA expression of hic-5 in human normal diploid fibroblasts delayed the senescence process. HIC-5 was localized in nuclei and had affinity for DNA. Based on these observations, we speculated that HIC-5 affected the expression of senescence-related genes through interacting with DNA and thereby induced the senescence-like phenotypes. To our knowledge, hic-5 is the first single gene that could induce senescence-like phenotypes in a certain type of immortalized human cell and mediate the normal process of senescence. PMID:9032249

  3. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice.

    PubMed

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A; Alkuraya, Fowzan S

    2016-04-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  4. Human. cap alpha. /sub 2/-HS-glycoprotein: the A and B chains with a connecting sequence are encoded by a single mRNA transcript

    SciTech Connect

    Lee, C.C.; Bowman, B.H.; Yang, F.

    1987-07-01

    The ..cap alpha../sub 2/-HS-glycoprotein (AHSG) is a plasma protein reported to play roles in bone mineralization and in the immune response. It is composed of two subunits, the A and B chains. Recombinant plasmids containing human cDNA AHSG have been isolated by screening an adult human liver library with a mixed oligonucleotide probe. The cDNA clones containing AHSG inserts span approximately 1.5 kilobase pairs and include the entire AHSG coding sequence, demonstrating that the A and B chains are encoded by a single mRNA transcript. The cDNA sequence predicts an 18-amino-acid signal peptide, followed by the A-chain sequence of AHSG. A heretofore unseen connecting sequence of 40 amino acids was deduced between the A- and B-chain sequences. The connecting sequence demonstrates the unique amino acid doublets and collagen triplets found in the A and B chains; it is not homologous with other reported amino acid sequences. The connecting sequence may be cleaved in a posttranslational step by limited proteolysis before mature AHSG is released into the circulation or may vary in its presence because of alternative processing. The AHSG cDNA was utilized for mapping the AHSG gene to the 3q21..-->..qter region of human chromosome 3. The availability of the AHSG cDNA clone will facilitate the analysis of its genetic control and gene expression during development and bone formation.

  5. Human adenovirus early region 4 open reading frame 1 genes encode growth-transforming proteins that may be distantly related to dUTP pyrophosphatase enzymes.

    PubMed Central

    Weiss, R S; Lee, S S; Prasad, B V; Javier, R T

    1997-01-01

    An essential oncogenic determinant of subgroup D human adenovirus type 9 (Ad9), which uniquely elicits estrogen-dependent mammary tumors in rats, is encoded by early region 4 open reading frame 1 (E4 ORF1). Whereas Ad9 E4 ORF1 efficiently induces transformed foci on the established rat embryo fibroblast cell line CREF, the related subgroup A Ad12 and subgroup C Ad5 E4 ORF1s do not (R. T. Javier, J. Virol. 68:3917-3924, 1994). In this study, we found that the lack of transforming activity associated with non-subgroup D adenovirus E4 ORF1s in CREF cells correlated with significantly reduced protein levels compared to Ad9 E4 ORF1 in these cells. In the human cell line TE85, however, the non-subgroup D adenovirus E4 ORF1s produced protein levels higher than those seen in CREF cells as well as transforming activities similar to that of Ad9 E4 ORF1, suggesting that all adenovirus E4 ORF1 polypeptides possess comparable cellular growth-transforming activities. In addition, searches for known proteins related to these novel viral transforming proteins revealed that the E4 ORF1 proteins had weak sequence similarity, over the entire length of the E4 ORF1 polypeptides, with a variety of organismal and viral dUTP pyrophosphatase (dUTPase) enzymes. Even though adenovirus E4 ORF1 proteins lacked conserved protein motifs of dUTPase enzymes or detectable enzymatic activity, E4 ORF1 and dUTPase proteins were predicted to possess strikingly similar secondary structure arrangements. It was also established that an avian adenovirus protein, encoded within a genomic location analogous to that of the human adenovirus E4 ORF1s, was a genuine dUTPase enzyme. Although no functional similarity was found for the E4 ORF1 and dUTPase proteins, we propose that human adenovirus E4 ORF1 genes have evolved from an ancestral adenovirus dUTPase and, from this structural framework, developed novel transforming properties. PMID:9032316

  6. An intact SAM-dependent methyltransferase fold is encoded by the human endothelin-converting enzyme-2 gene

    SciTech Connect

    Tempel, W.; Wu, H.; Dombrovsky, L.; Zeng, H.; Loppnau, P.; Zhu, H.; Plotnikov, A.N.; Bochkarev, A.

    2010-08-17

    A recent survey of protein expression patterns in patients with Alzheimer's disease (AD) has identified ece2 (chromosome: 3; Locations: 3q27.1) as the most significantly downregulated gene within the tested group. ece2 encodes endothelin-converting enzyme ECE2, a metalloprotease with a role in neuropeptide processing. Deficiency in the highly homologous ECE1 has earlier been linked to increased levels of AD-related {beta}-amyloid peptide in mice, consistent with a role for ECE in the degradation of that peptide. Initially, ECE2 was presumed to resemble ECE1, in that it comprises a single transmembrane region of {approx}20 residues flanked by a small amino-terminal cytosolic segment and a carboxy-terminal lumenar peptidase domain. The carboxy-terminal domain has significant sequence similarity to both neutral endopeptidase, for which an X-ray structure has been determined, and Kell blood group protein. After their initial discovery, multiple isoforms of ECE1 and ECE2 were discovered, generated by alternative splicing of multiple exons. The originally described ece2 transcript, RefSeq NM{_}174046, contains the amino-terminal cytosolic portion followed by the transmembrane region and peptidase domain (Fig. 1, isoform B). Another ece2 transcript, available from the Mammalian Gene Collection under MGC2408 (Fig. 1, isoform C), RefSeq accession NM{_}032331, is predicted to be translated into a 255 residue peptide with low but detectable sequence similarity to known S-adenosyl-L-methionine (SAM)-dependent methyltransferases (SAM-MTs), such as the hypothetical protein TT1324 from Thermus thermophilis, PDB code 2GS9, which shares 30% amino acid sequence identity with ECE2 over 138 residues of the sequence. Intriguingly, another 'elongated' ece2 transcript (Fig. 1, isoform A) (RefSeq NM{_}014693) contains an amino-terminal portion of the putative SAM-MT domain, the transmembrane domain, and the protease domain. This suggests the possibility for coexistence of the putative SAM

  7. Recent Positive Selection Has Acted on Genes Encoding Proteins with More Interactions within the Whole Human Interactome

    PubMed Central

    Pybus, Marc; Fares, Mario A.; Bertranpetit, Jaume; Laayouni, Hafid

    2015-01-01

    Genes vary in their likelihood to undergo adaptive evolution. The genomic factors that determine adaptability, however, remain poorly understood. Genes function in the context of molecular networks, with some occupying more important positions than others and thus being likely to be under stronger selective pressures. However, how positive selection distributes across the different parts of molecular networks is still not fully understood. Here, we inferred positive selection using comparative genomics and population genetics approaches through the comparison of 10 mammalian and 270 human genomes, respectively. In agreement with previous results, we found that genes with lower network centralities are more likely to evolve under positive selection (as inferred from divergence data). Surprisingly, polymorphism data yield results in the opposite direction than divergence data: Genes with higher centralities are more likely to have been targeted by recent positive selection during recent human evolution. Our results indicate that the relationship between centrality and the impact of adaptive evolution highly depends on the mode of positive selection and/or the evolutionary time-scale. PMID:25840415

  8. How concepts are encoded in the human brain: A modality independent, category-based cortical organization of semantic knowledge.

    PubMed

    Handjaras, Giacomo; Ricciardi, Emiliano; Leo, Andrea; Lenci, Alessandro; Cecchetti, Luca; Cosottini, Mirco; Marotta, Giovanna; Pietrini, Pietro

    2016-07-15

    How conceptual knowledge is represented in the human brain remains to be determined. To address the differential role of low-level sensory-based and high-level abstract features in semantic processing, we combined behavioral studies of linguistic production and brain activity measures by functional magnetic resonance imaging in sighted and congenitally blind individuals while they performed a property-generation task with concrete nouns from eight categories, presented through visual and/or auditory modalities. Patterns of neural activity within a large semantic cortical network that comprised parahippocampal, lateral occipital, temporo-parieto-occipital and inferior parietal cortices correlated with linguistic production and were independent both from the modality of stimulus presentation (either visual or auditory) and the (lack of) visual experience. In contrast, selected modality-dependent differences were observed only when the analysis was limited to the individual regions within the semantic cortical network. We conclude that conceptual knowledge in the human brain relies on a distributed, modality-independent cortical representation that integrates the partial category and modality specific information retained at a regional level. PMID:27132545

  9. The pink gene encodes the Drosophila orthologue of the human Hermansky-Pudlak syndrome 5 (HPS5) gene.

    PubMed

    Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M

    2007-06-01

    Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene. PMID:17632576

  10. Preclinical pharmacology, ocular tolerability and ocular hypotensive efficacy of a novel non-peptide bradykinin mimetic small molecule.

    PubMed

    Sharif, Najam A; Li, Linya; Katoli, Parvaneh; Xu, Shouxi; Veltman, James; Li, Byron; Scott, Daniel; Wax, Martin; Gallar, Juana; Acosta, Carmen; Belmonte, Carlos

    2014-11-01

    We sought to characterize the ocular pharmacology, tolerability and intraocular pressure (IOP)-lowering efficacy of FR-190997, a non-peptidic bradykinin (BK) B2-receptor agonist. FR-190997 possessed a relatively high receptor binding affinity (Ki = 27 nM) and a high in vitro potency (EC50 = 18.3 ± 4.4 nM) for inositol-1-phosphate generation via human cloned B2-receptors expressed in host cells with mimimal activity at B1-receptors. It also mobilized intracellular Ca2+ in isolated human trabecular meshwork (h-TM), ciliary muscle (h-CM), and in immortalized non-pigmented ciliary epithelial (h-iNPE) cells (EC50s = 167-384 nM; Emax = 32-86% of BK-induced response). HOE-140, a selective B2-receptor antagonist, potently blocked the latter effects of FR-190997 (e.g., IC50 = 7.3 ± 0.6 nM in h-CM cells). FR-190997 also stimulated the release of prostaglandins (PGs) from h-TM and h-CM cells (EC50s = 60-84 nM; Emax = 29-44% relative to max. BK-induced effects). FR-190997 (0.3-300 μg t.o.) did not activate cat corneal polymodal nociceptors and did not cause ocular discomfort in Dutch-Belted rabbits, but it was not well tolerated in New Zealand albino rabbits and Hartley guinea pigs. A single topical ocular (t.o.) dose of 1% FR-190997 in Dutch-Belted rabbits and mixed breed cats did not lower IOP. However, FR-190997 efficaciously lowered IOP of conscious ocular hypertensive cynomolgus monkey eyes (e.g., 34.5 ± 7.5% decrease; 6 h post-dose of 30 μg t.o.; n = 8). Thus, FR-190997 is an unexampled efficacious ocular hypotensive B2-receptor non-peptide BK agonist that activates multiple signaling pathways to cause IOP reduction. PMID:25307520

  11. Type-specific neutralization of the human immunodeficiency virus with antibodies to env-encoded synthetic peptides.

    PubMed Central

    Palker, T J; Clark, M E; Langlois, A J; Matthews, T J; Weinhold, K J; Randall, R R; Bolognesi, D P; Haynes, B F

    1988-01-01

    A synthetic peptide (SP-10-IIIB) with an amino acid sequence [Cys-Thr-Arg-Pro-Asn-Asn-Asn-Thr-Arg-Lys-Ser-Ile-Arg-Ile-Gln-Arg-Gly-Pro -Pro-Gly-(Tyr); amino acids 303-321] from the human immunodeficiency virus (HIV) isolate human T-cell lymphotropic virus type III (HTLV-III) HTLV-IIIB envelope glycoprotein gp120 was coupled to tetanus toxoid and used to raise goat antibodies to HIV gp120. Goat anti-SP-10-IIIB serum bound to the surface of HTLV-IIIB-infected CEM T cells but not to the surface of HTLV-IIIRF-infected or uninfected CEM T cells. Anti-SP-10-IIIB antibodies also selectively bound to gp120 from lysates of HTLV-IIIB cells in immunoblot assays. Twenty-one percent of sera (28 of 175) from patients seropositive for HIV contained antibodies that reacted with SP-10-IIIB in RIA. Human anti-SP-10-IIIB antibodies affinity purified from acquired immunodeficiency syndrome (AIDS) patient serum bound to HTLV-IIIB-infected cells and immunoprecipitated gp120. Goat antibodies to SP-10-IIIB neutralized HTLV-IIIB (80% neutralization titer of 1/600), inhibited HTLV-IIIB-induced syncytium formation, but did not neutralize HIV isolates HTLV-IIIRF or HTLV-IIIMN or inhibit syncytium formation with these isolates. Also, goat antiserum to an homologous synthetic peptide [SP-10-IIIRF(A), (Cys)-Arg-Lys-Ser-Ile-Thr-Lys-Gly-Pro-Gly-Arg-Val-Ile-Tyr] from gp120 of HIV isolate HTLV-IIIRF inhibited syncytium formation by HTLV-IIIRF, but did not inhibit syncytium formation by HTLV-IIIB or by HTLV-IIIMN. Thus, the amino acid sequences of SP-10-IIIB and SP-10-IIIRF(A) define homologous regions of gp120 that are important in type-specific virus neutralization. The identification of these type-specific neutralizing epitopes should facilitate the design of a polyvalent, synthetic vaccine for AIDS. Images PMID:2450351

  12. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat.

    PubMed Central

    Baker, D G; Coleridge, H M; Coleridge, J C; Nerdrum, T

    1980-01-01

    1. We have examined the effect of bradykinin on impulse traffic in sympathetic afferent fibres from the heart, great vessels and pleura, and have attempted to identify cardiac nociceptors that on the basis of their functional characteristics might have a role in the initiation of cardiac pain. 2. In anaesthetized cats, we recorded afferent impulses from 'single-fibre' slips of the left 2nd--5th thoracic rami communicantes and associated chain, and selected fibres arising from endings in the heart, great vessels, pericardium and pleura. We applied bradykinin solution (0 . 1--1 . 0 microgram/ml.) locally to the site of the ending; we also injected bradykinin (0 . 3--1 . 0 microgram/kg) into the left atrium. 3. Afferent endings excited by bradykinin (159 of 191 tested) were of two types. The larger group (140) were primarily mechanoreceptors with A delta of C fibres (mean conduction velocity, 7 . 5 +/- 0 . 6 m/sec). They were very sensitive to light touch. Those located in the heart, great vessels or overlying pleura had a cardiac rhythm of discharge and were stimulated by an increase in blood pressure or cardiac volume. 4. Bradykinin increased mechanoreceptor firing from 0 . 7 +/- to 5 . 0 +/- 0 . 3 (mean +/- S.E. of mean) impulses/sec. Some endings appeared to be stimulated directly by bradykinin, others sensitized by it so that they responded more vigorously to the pulsatile mechanical stimulation associated with the cardiac cycle. 5. The smaller group of eighteen endings, of which ten were in the left ventricle, were primarily chemosensitive. Most had C fibres, a few had A delta fibres (mean conduction velocity, 2 . 3 +/- 0 . 7 m/sec). They were insensitive to light touch. With one exception they never fired with a cardiac rhythm, and even large increases in aortic or left ventricular pressure had little effect on impulse frequency. 6. Chemosensitive endings were stimulated by bradykinin, impulse activity increasing from 0 . 6 to 15 . 6 +/- 1 . 3 impulses/sec and

  13. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells.

    PubMed

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-11-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. PMID:26212048

  14. Effects of Hoe 140, a bradykinin B2-receptor antagonist, on renal function in conscious normotensive rats.

    PubMed Central

    Madeddu, P.; Anania, V.; Parpaglia, P. P.; Demontis, M. P.; Varoni, M. V.; Pisanu, G.; Troffa, C.; Tonolo, G.; Glorioso, N.

    1992-01-01

    1. The present study was designed to determine if endogenous kinins are involved in the regulation of arterial blood pressure and renal function in conscious rats given deoxycorticosterone enantate (DOC, 25 mg kg-1, s.c., weekly) or vehicle for two weeks. 2. The bradykinin B2-receptor antagonist, D-Arg[Hyp3,Thi5,D-Tic7,Oic8]- bradykinin (Hoe 140), at a dose of 300 micrograms kg-1, s.c., blocked the hypotensive effect of 300 ng kg-1 bradykinin i.a., but it did not alter the blood pressure lowering action of 300 ng kg-1 acetylcholine or prostaglandin E2. Inhibition of the response to bradykinin persisted up to 6 h after the administration of Hoe 140. 3. Administration of 300 micrograms kg-1 Hoe 140 s.c. four times a day did not alter mean blood pressure, renal blood flow, or renal function in rats given DOC-vehicle. However, it decreased urinary volume by 70% (from 48.2 +/- 3.8 to 14.3 +/- 3.7 ml 24 h-1, P less than 0.01) and urinary secretion of sodium by 54% (from 1.02 +/- 0.05 to 0.47 +/- 0.16 mmol 24 h-1, P less than 0.01) and potassium by 30% (from 2.93 +/- 0.15 to 2.04 +/- 0.15 mmol 24 h-1, P less than 0.05) in DOC-treated rats. Mean blood pressure, glomerular filtration rate and total renal blood flow remained unchanged. 4. Our results suggest that endogenous kinins play a role in the regulation of renal excretion of water and sodium in the presence of elevated levels of DOC. PMID:1327379

  15. Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia.

    PubMed

    Merner, Nancy D; Mercado, Adriana; Khanna, Arjun R; Hodgkinson, Alan; Bruat, Vanessa; Awadalla, Philip; Gamba, Gerardo; Rouleau, Guy A; Kahle, Kristopher T

    2016-06-01

    Perturbations of γ-aminobutyric acid (GABA) neurotransmission in the human prefrontal cortex have been implicated in the pathogenesis of schizophrenia (SCZ), but the mechanisms are unclear. NKCC1 (SLC12A2) is a Cl(-)-importing cation-Cl(-) cotransporter that contributes to the maintenance of depolarizing GABA activity in immature neurons, and variation in SLC12A2 has been shown to increase the risk for schizophrenia via alterations of NKCC1 mRNA expression. However, no disease-causing mutations or functional variants in NKCC1 have been identified in human patients with SCZ. Here, by sequencing three large French-Canadian (FC) patient cohorts of SCZ, autism spectrum disorders (ASD), and intellectual disability (ID), we identified a novel heterozygous NKCC1 missense variant (p.Y199C) in SCZ. This variant is located in an evolutionarily conserved residue in the critical N-terminal regulatory domain and exhibits high predicted pathogenicity. No NKCC1 variants were detected in ASD or ID, and no KCC3 variants were identified in any of the three neurodevelopmental disorder cohorts. Functional experiments show Y199C is a gain-of-function variant, increasing Cl(-)-dependent and bumetanide-sensitive NKCC1 activity even in conditions in which the transporter is normally functionally silent (hypotonicity). These data are the first to describe a functional missense variant in SLC12A2 in human SCZ, and suggest that genetically encoded dysregulation of NKCC1 may be a risk factor for, or contribute to the pathogenesis of, human SCZ. PMID:26955005

  16. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    SciTech Connect

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  17. The yopM gene of Yersinia pestis encodes a released protein having homology with the human platelet surface protein GPIb alpha.

    PubMed Central

    Leung, K Y; Straley, S C

    1989-01-01

    In Yersinia pestis KIM, there are 11 Yops (yersinial outer membrane proteins) encoded by the low-Ca2+ response virulence plasmid pCD1. Only Yops M and N are found in easily detectable amounts in the culture medium. In this study, we located and characterized the yopM gene to obtain clues about its role in the virulence of Y. pestis. Rabbit antibody was raised against Yops M and H, copurified from the supernatant of Y. pseudotuberculosis 43(pGW600, pCD1 yopE::Mu dI1[Apr lac]). This antiserum was adsorbed with an Escherichia coli clone that strongly expressed YopH. The resulting YopM-specific antibody was used to screen a HindIII library of pCD1. HindIII-F and several subclones from it expressed YopM in E. coli minicells. A DNA fragment of 1.39 kilobases from HindIII-F was sequenced and found to contain a 367-amino-acid open reading frame capable of encoding a protein with molecular mass (41,566 daltons) and isoelectric point (4.06) similar to those of YopM. The +1 site of the yopM gene was determined by primer extension. The DNA sequence contained repeating structures: 11 pairs of exact direct repeats, two exact inverted repeats, and three palindromes, ranging from 10 to 42 bases in size. One consensus 14-amino-acid sequence was repeated six times in the predicted protein sequence. The YopM sequence shares some significant homology with the von Willebrand factor- and thrombin-binding domain of the alpha chain of human platelet membrane glycoprotein Ib. These findings suggested a testable hypothesis for the function of YopM. Images PMID:2670888

  18. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments.

    PubMed Central

    Cotmore, S F; McKie, V C; Anderson, L J; Astell, C R; Tattersall, P

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights of 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Restriction endonuclease fragments of this cloned B19 genome were treated with BAL 31 and shotgun cloned into the open reading frame expression vector pJS413. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus. Images PMID:3021988

  19. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization.

    PubMed

    Strang, Blair L; Bender, Brian J; Sharma, Mayuri; Pesola, Jean M; Sanders, Rebecca L; Spector, Deborah H; Coen, Donald M

    2012-10-01

    Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication. PMID:22855486

  20. Modulated expression of genes encoding estrogen metabolizing enzymes by G1-phase cyclin-dependent kinases 6 and 4 in human breast cancer cells.

    PubMed

    Jia, Yi; Domenico, Joanne; Swasey, Christina; Wang, Meiqin; Gelfand, Erwin W; Lucas, Joseph J

    2014-01-01

    G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers. PMID:24848372

  1. The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters*

    PubMed Central

    Di Noia, Maria Antonietta; Todisco, Simona; Cirigliano, Angela; Rinaldi, Teresa; Agrimi, Gennaro; Iacobazzi, Vito; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown. PMID:25320081

  2. Synthesis in Escherichia coli of human adenovirus type 12 transforming proteins encoded by early region 1A 13S mRNA and 12S mRNA.

    PubMed Central

    Kimelman, D; Lucher, L A; Brackmann, K H; Symington, J S; Ptashne, M; Green, M

    1984-01-01

    Human adenovirus (Ad)-encoded early region 1A (E1A) tumor (T) antigens have been implicated in the positive regulation of viral early genes, the positive and negative regulation of some cellular genes, and cell immortalization and transformation. To further study the Ad E1A T antigens and to facilitate their purification, we have cloned cDNA copies of the Ad12 E1A 13S mRNA and 12S mRNA downstream of a hybrid Escherichia coli trp-lac (tac) promoter. Up to 8% of the protein synthesized in E. coli cells transformed by each of the two different Ad12 E1A cDNA constructs were immunoprecipitated as a Mr 47,000 protein by antibody to a synthetic peptide encoded in the Ad12 E1A DNA sequence. Both proteins produced in E. coli appear to be authentic and complete Ad12 E1A T antigens because they possess (i) the Ad12 E1A NH2-terminal amino acid sequence predicted from the DNA sequence; (ii) the Ad12 E1A COOH-terminal sequence, as shown by immunoprecipitation with anti-peptide antibody; and (iii) a molecular weight and an acidic isoelectric point similar to that of the E1A T antigens synthesized in Ad12-infected and transformed mammalian cells. The T antigens were purified to near homogeneity in yields of 100-200 micrograms per g wet weight of transformed E. coli cells. Images PMID:6387701

  3. A negative cis-acting G-fer element participates in the regulation of expression of the human H-ferritin-encoding gene (FERH).

    PubMed

    Barresi, R; Sirito, M; Karsenty, G; Ravazzolo, R

    1994-03-25

    Ferritin (Fer) is the major iron storage protein in man. Its synthesis is regulated both at the translational and transcriptional levels. In previous studies on transcriptional regulation of the human H-ferritin-encoding gene (FERH), a 160-bp promoter segment was analyzed [Bevilacqua et al., Gene 111 (1992) 255-260]. In order to obtain a more complete view of the elements involved in the transcriptional regulation of FERH, we have studied, in a further upstream region of the human FERH promoter (pFERH), a sequence between -272 and -291, named G-fer, because it contains a stretch of ten G, which binds a nuclear factor present in different cell types. DNA-binding assays and competition experiments suggest that the factor binding to G-fer has binding properties very similar to inhibitory factor-1 (IF-1), an ubiquitous factor that interacts with G-rich elements in the promoters of the mouse type-I collagen genes. DNA transfection experiments in HeLa cells, using either a wild-type or mutated pFERH fused to a reporter gene, showed that a 3-bp substitution mutation, that abolished the binding of the specific factor to G-fer, increased the promoter activity, thus suggesting an inhibitory role for the G-fer element and its cognate trans-acting factor. PMID:8144027

  4. Circulating human cytomegalovirus-encoded HCMV-miR-US4-1 as an indicator for predicting the efficacy of IFNα treatment in chronic hepatitis B patients

    PubMed Central

    Pan, Yi; Wang, Nan; Zhou, Zhenxian; Liang, Hongwei; Pan, Chaoyun; Zhu, Dihan; Liu, Fenyong; Zhang, Chen-Yu; Zhang, Yujing; Zen, Ke

    2016-01-01

    The efficacy of interferon α (IFNα) therapy for chronic hepatitis B (CHB) patients is about 40% and often associates with adverse side-effects, thus identification of an easy accessible biomarker that can predict the outcome of IFNα treatment for individual CHB patients would be greatly helpful. Recent reports by us and others show that microRNAs encoded by human cytomegalovirus (HCMV) were readily detected in human serum and can interfere with lymphocyte responses required by IFNα therapeutic effect. We thus postulate that differential expression profile of serum HCMV miRNAs in CHB patients may serve as indicator to predict the efficacy of IFNα treatment for CHB patients. Blood was drawn from 56 individual CHB patients prior to IFNα treatment. By quantifying 13 HCMV miRNAs in serum samples, we found that the levels of HCMV-miR-US4-1 and HCMV-miR-UL-148D were significantly higher in IFNα-responsive group than in IFNα-non-responsive group. In a prospective study of 96 new CHB patients, serum level of HCMV-miR-US4-1 alone classified those who were and were not responsive to IFN-α treatment with correct rate of 84.00% and 71.74%, respectively. In conclusion, our results demonstrate that serum HCMV-miR-US4-1 can serve as a novel biomarker for predicting the outcome of IFNα treatment in CHB patients. PMID:26961899

  5. The porcine gene TBP10 encodes a protein homologous to the human tat-binding protein/26S protease subunit family.

    PubMed

    Leeb, T; Rettenberger, G; Breech, J; Hameister, H; Brenig, B

    1996-03-01

    We have cloned a porcine gene, designated TBP1O, that belongs to the Tat-binding protein/26S protease subunit family. The genomic structure of the porcine TBP1O gene was analyzed after isolation of three overlapping genomic phage lambda clones. The TBP10 gene harbors 12 exons spanning 4.5 kb of chromosomal DNA. The TBP1O gene was assigned to Chromosome (Chr) 12 by fluorescence in situ hybridization (FISH) on metaphase chromosomes. The chromosomal location was confirmed by PCR analysis of a porcine-rodent hybrid cell panel. The TBP1O protein is encoded by a 1221 nucleotide cDNA and has a molecular mass of 45.6 kDa. The predicted amino acid sequence has highest similarity to the human and bovine p45 subunit of the 26S protease and the human transcription factor TRIP1. Further similarities were detected to the slime mold protein DdTBP1O and the Schizosaccharomyces pombe and Saccharomyces cerevisiae protein SUG1. Like DdTBP1O and other members of the protein family, the porcine TBP1O harbors a leucine zipper motif in the N-terminal region and a domain characteristics of ATP-dependent proteases in the C-terminal region. PMID:8833236

  6. Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7.

    PubMed

    Szpakowska, Martyna; Dupuis, Nadine; Baragli, Alessandra; Counson, Manuel; Hanson, Julien; Piette, Jacques; Chevigné, Andy

    2016-08-15

    The atypical chemokine receptor CXCR7/ACKR3 binds two endogenous chemokines, CXCL12 and CXCL11, and is upregulated in many cancers or following infection by several cancer-inducing viruses, including HHV-8. ACKR3 is a ligand-scavenging receptor and does not activate the canonical G protein pathways but was proposed to trigger β-arrestin-dependent signaling. Here, we identified the human herpesvirus 8-encoded CC chemokine vCCL2/vMIP-II as a third high-affinity ligand for ACKR3. vCCL2 acted as partial ACKR3 agonist, inducing β-arrestin recruitment to the receptor, subsequent reduction of its surface levels and its delivery to endosomes. In addition, ACKR3 reduced vCCL2-triggered MAP kinase and PI3K/Akt signaling through other chemokine receptors. Our data suggest that ACKR3 acts as a scavenger receptor for vCCL2, regulating its availability and activity toward human receptors, thereby likely controlling its function in HHV-8 infection. Our study provides new insights into the complex crosstalk between viral chemokines and host receptors as well as into the biology of ACKR3, this atypical and still enigmatic receptor. PMID:27238288

  7. Organization of the gene (RHCE) encoding the human blood group RhCcEe antigens and characterization of the promoter region

    SciTech Connect

    Cherif-Zahar, B.; Le Van Kim, C.; Rouillac, C.; Raynal, V.; Cartron, J.P.; Colin, Y. )

    1994-01-01

    The human RH (rhesus) locus is composed of two genes, RHD and RHCE, encoding the D, Cc, and Ee blood group antigens. The RHCE gene was isolated from a human genomic library and characterized. It is organized into 10 exons distributed over 75 kb. Exons 4-8 are alternatively spliced in the different RNA isoforms previously identified. Primer extension analysis indicated that the transcription initiation site is located 83 bp upstream of the initiation codon. The 5[prime] flanking region of the RHCE gene, from nucleotide [minus]600 to +42, exhibited a significant transcriptional activity after transfection in the erythroleukemic cell line K562, but not in the nonhematopoietic cell line HeLa. This result was in agreement with Northern blot analysis, suggesting that the expression of the RH locus is restricted to the erythroid/megakaryocytic lineage. Accordingly, putative binding sites for SP1, GATA-1, and Ets proteins, nuclear factors known to be involved in the erythroid and megakaryocytic gene expression, were identified in this Rh promoter. 36 refs., 5 figs., 1 tab.

  8. The human TAX1 gene encoding the axon-associated cell adhesion molecule TAG-1/axonin-1: Genomic structure and basic promoter

    SciTech Connect

    Kozlov, S.V.; Giger, R.J.; Hasler, T.; Sonderegger, P.; Korvatska, E.; Schorderet, D.F.

    1995-11-20

    The human TAX-1 gene (HGMW-approved symbol TAX1) is located on chromosome 1 (1q32.1) and encodes the neuronal cell adhesion molecule TAG-1/axonin-1. The gene product, termed TAG-1 in the rat and axonin-1 in the chicken, is composed of six immunoglobulin (Ig)-like and four fibronectin type III (FNIII)-like domains. It is found predominantly on the axons of particular nerve fiber tracts during neural development, and it has been demonstrated to function as a potent substratum for neurite outgrowth in vitro. Here we report the cloning and structural characterization of the TAX-1 gene. The transcribed region of the TAX-1 gene extends over about 40 kb. Like its chicken homologue, the human TAX-1 gene consists of 23 exons. Two GT/CA microsatellites were localized in the first intron; a polymorphism was found for one of them. Reporter gene analysis with serially truncated fragments of the 5{prime}-flanking region indicated that a 164-bp fragment located immediately upstream of the putative transcription initiation site was sufficient to function as a basal promoter. 45 refs., 3 figs., 2 tabs.

  9. Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase.

    PubMed Central

    Levanon, D; Lieman-Hurwitz, J; Dafni, N; Wigderson, M; Sherman, L; Bernstein, Y; Laver-Rudich, Z; Danciger, E; Stein, O; Groner, Y

    1985-01-01

    The SOD-1 gene on chromosome 21 and approximately 100 kb of chromosomal DNA from the 21q22 region have been isolated and characterized. The gene which is present as a single copy per haploid genome spans 11 kb of chromosomal DNA. Heteroduplex analysis and DNA sequencing reveals five rather small exons and four introns that interrupt the coding region. The donor sequence at the first intron contains an unusual variant dinucleotide 5'-G-C, rather than the highly conserved 5'-GT. The unusual splice junction is functional in vivo since it was detected in both alleles of the SOD-1 gene, which were defined by differences in the length of restriction endonuclease fragments (RFLPs) that hybridize to the cDNA probe. Genomic blots of human DNA isolated from cells trisomic for chromosome 21 (Down's syndrome patients) show the normal pattern of bands. At the 5' end of gene there are the 'TATA' and 'CAT' promoter sequences as well as four copies of the -GGCGGG- hexanucleotide. Two of these -GC- elements are contained within a 13 nucleotide inverted repeat that could form a stem-loop structure with stability of -33 kcal. The 3'-non coding region of the gene contains five short open reading-frames starting with ATG and terminating with stop codons. Images Fig. 1. Fig. 3. Fig. 7. PMID:3160582

  10. Human substantia nigra neurons encode decision outcome and are modulated by categorization uncertainty in an auditory categorization task.

    PubMed

    McGovern, Robert A; Chan, Andrew K; Mikell, Charles B; Sheehy, John P; Ferrera, Vincent P; McKhann, Guy M

    2015-09-01

    The ability to categorize stimuli - predator or prey, friend or foe - is an essential feature of the decision-making process. Underlying that ability is the development of an internally generated category boundary to generate decision outcomes. While classic temporal difference reinforcement models assume midbrain dopaminergic neurons underlie the prediction error required to learn boundary location, these neurons also demonstrate a robust response to nonreward incentive stimuli. More recent models suggest that this may reflect a motivational aspect to performing a task which should be accounted for when modeling dopaminergic neuronal behavior. To clarify the role of substantia nigra dopamine neurons in uncertain perceptual decision making, we investigated their behavior using single neuron extracellular recordings in patients with Parkinson's disease undergoing deep brain stimulation. Subjects underwent a simple auditory categorical decision-making task in which they had to classify a tone as either low- or high-pitched relative to an explicit threshold tone and received feedback but no reward. We demonstrate that the activity of human SN dopaminergic neurons is predictive of perceptual categorical decision outcome and is modulated by uncertainty. Neuronal activity was highest during difficult (uncertain) decisions that resulted in correct responses and lowest during easy decisions that resulted in incorrect responses. This pattern of results is more consistent with a "motivational" role with regards to perceptual categorization and suggests that dopamine neurons are most active when critical information - as represented by uncertainty - is available for learning decision boundaries. PMID:26416969

  11. Human T-cell leukemia virus type-1 antisense-encoded gene, Hbz, promotes T-lymphocyte proliferation.

    PubMed

    Arnold, Joshua; Zimmerman, Bevin; Li, Min; Lairmore, Michael D; Green, Patrick L

    2008-11-01

    Human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) is dispensable for HTLV-1-mediated cellular transformation in cell culture, but is required for efficient viral infectivity and persistence in rabbits. In most adult T-cell leukemia (ATL) cells, Tax oncoprotein expression is typically low or undetectable, whereas Hbz gene expression is maintained, suggesting that Hbz expression may support infected cell survival and, ultimately, leukemogenesis. Emerging data indicate that HBZ protein can interact with cAMP response element binding protein (CREB) and Jun family members, altering transcription factor binding and transactivation of both viral and cellular promoters. Herein, lentiviral vectors that express Hbz-specific short hairpin (sh)-RNA effectively decreased both Hbz mRNA and HBZ protein expression in transduced HTLV-1-transformed SLB-1 T cells. Hbz knockdown correlated with a significant decrease in T-cell proliferation in culture. Both SLB-1 and SLB-1-Hbz knockdown cells engrafted into inoculated NOD/SCID(gammachain-/-) mice to form solid tumors that also infiltrated multiple tissues. However, tumor formation and organ infiltration were significantly decreased in animals challenged with SLB-1-Hbz knockdown cells. Our data indicate that Hbz expression enhances the proliferative capacity of HTLV-1-infected T cells, playing a critical role in cell survival and ultimately HTLV-1 tumorigenesis in the infected host. PMID:18689544

  12. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  13. Retro-inverso bradykinin opens the door of blood-brain tumor barrier for nanocarriers in glioma treatment.

    PubMed

    Xie, Zuoxu; Shen, Qing; Xie, Cao; Lu, Weiyue; Peng, Chunmei; Wei, Xiaoli; Li, Xue; Su, Bingxia; Gao, Chunli; Liu, Min

    2015-12-01

    The blood-brain barrier and the blood-brain tumor barrier (BBTB) prevent most drugs entering brain tumors. Complicated preparation procedures of drug delivery systems and damage to normal brain tissue have limited the application of many strategies for the treatment of brain tumor in clinical trials. We have designed a bradykinin analog, retro-inverso bradykinin (RI-BK), which is characterized by resistance to proteolysis and high binding activity with the bradykinin type 2 (B2) receptor. After systemic administration, RI-BK binds to B2 receptors and induces a change in zonula occluden-1 and depolymerization of F-actin to selectively open the BBTB. RI-BK increased the accumulation of drug-loaded nanocarriers in the glioma but not in normal brain. Co-administration with RI-BK enhanced the therapeutic efficiency of drug-loaded nanocarriers for glioma. These findings suggest that RI-BK could be translated into the clinic as an adjunctive treatment for malignant brain tumors. PMID:26282786

  14. Relaxation to bradykinin in bovine pulmonary supernumerary arteries can be mediated by both a nitric oxide-dependent and -independent mechanism

    PubMed Central

    Tracey, A; Bunton, D; Irvine, J; MacDonald, A; Shaw, A M

    2002-01-01

    The aim of the present study was to determine the relative contribution of prostanoids, nitric oxide and K+ channels in the bradykinin-induced relaxation of bovine pulmonary supernumerary arteries. In endothelium-intact, but not denuded rings, bradykinin produced a concentration-dependent relaxation (pEC50, 9.6±0.1), which was unaffected by the cyclo-oxygenase inhibitor indomethacin. The nitric oxide scavenger hydroxocobalamin (200 μM, pEC50, 8.5±0.2) and the nitric oxide synthase inhibitor L-NAME (100 μM, pEC50, 8.9±0.1) and the combination of L-NAME and hydroxocobalamin (pEC50, 8.1±0.2) produced rightward shifts in the bradykinin concentration response curve. The guanylyl cyclase inhibitor ODQ (10 μM, pEC50, 9.6±0.4) did not affect the response to bradykinin. Elevating the extracellular [K+] to 30 mM did not affect the response to bradykinin but abolished the response when ODQ or L-NAME was present. The K+ channel blocker apamin (100 nM), combined with charybdotoxin (100 nM), produced a small reduction in the maximum response to bradykinin but they abolished the response to bradykinin when ODQ, L-NAME or hydroxocobalamin were present. Apamin (100 nM) combined with iberiotoxin (100 nM) also reduced the response to bradykinin in the presence of hydroxocobalamin or L-NAME. The concentration response curve for sodium nitroprusside-induced relaxation was abolished by ODQ (10 μM) and shifted to the right by apamin and charybdotoxin. These studies suggest that in bovine pulmonary supernumerary arteries bradykinin can stimulate the formation of nitric oxide and activate an EDHF-like mechanism and that either of these pathways alone can mediate the bradykinin-induced relaxation. In addition nitric oxide, acting through guanylyl cyclase, can activate an apamin/charbydotoxin-sensitive K+ channel in this tissue. PMID:12359636

  15. Comparative mapping on the mouse and human X chromosomes of a human cDNA clone encoding the vasopressin renal-type receptor (AVP2R)

    SciTech Connect

    Faust, C.J.; Gonzales, J.C.; Seibold, A.; Birnbaumer, M.; Herman, G.E. )

    1993-02-01

    Mutation in the gene for the human renal-type vasopressin receptor (V2R) have recently been identified in patients with nephrogenic diabetes insipidus (NDI). Both V2R and NDI have been independently mapped to Xq28. Using a combination of genetic and physical mapping, we have localized the murine V2r locus to within 100 kb of L1Cam on the mouse X chromosome in a region syntenic with human Xq28. Based on conserved gene order of mouse and human loci in this region, physical mapping using DNA derived form human lymphoblasts has established that the corresponding human loci V2R and L1CAM are linked within 210 kb. The efficiency and precision of genetic mapping of V2r and other loci in the mouse suggest that it might be easier to map additional human genes in the mouse first and infer the corresponding human location. More precise physical mapping in man could then be performed using pulsed-field gel electrophoresis and/or yeast artificial chromosomes. 16 refs., 1 fig. 1 tab.

  16. Mechanism of contraction induced by bradykinin in the rabbit saphenous vein

    PubMed Central

    Eguchi, Daihiko; Nishimura, Junji; Kobayashi, Sei; Komori, Kimihiro; Sugimachi, Keizo; Kanaide, Hideo

    1997-01-01

    By using fura-PE3 fluorometry and receptor-coupled permeabilization by α-toxin, the mechanism of the bradykinin (BK)-induced contraction was determined in the rabbit saphenous vein (RSV). The receptor subtype responsible for the BK-induced contraction of RSV was determined by means of a pharmacological blocker study and reverse transcription polymerase chain reaction (RT-PCR).In the presence of extracellular Ca2+ (1.25 mM), BK (10−11–3×10−7 M) induced increases in both the cytosolic Ca2+ concentration ([Ca2+]i) and force, in a concentration-dependent manner. Both the release of Ca2+ from the store site and the influx of extracellular Ca2+ contribute to an increase in [Ca2+]i induced by BK.In the absence of extracellular Ca2+, the application of 10−7 M BK induced transient elevations of [Ca2+]i and force, both of which thereafter declined to the levels observed before the application of BK. When extracellular Ca2+ was replenished (1.25 mM), [Ca2+]i and force increased to form a peak, followed by a sustained elevation in the presence of BK. When an RSV strip was pretreated with 10−5 M thapsigargin for 20 min, the BK-induced transient increases in both [Ca2+]i and force were markedly inhibited.These responses induced by BK were inhibited by Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8] bradykinin), a highly specific bradykinin B2 receptor antagonist, in a concentration-dependent manner. In RT-PCR, B2-receptor mRNA was expressed in the smooth muscle of RSV.The [Ca2+]i-force relationships, which were determined by cumulative applications of extracellular Ca2+ (0–5 mM) during 118 mM K+-depolarization, shifted to the upper left in the presence of BK, thus indicating that BK induced a greater force than 118 mM K+-depolarization for a given level of [Ca2+]i.In α-toxin-permeabilized preparations of RSV, application of 10−7 M BK after a steady state contraction had been induced by a mixture of 5×10−7 M Ca2+, 10−6 M GTP and 10−6

  17. Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome

    PubMed Central

    Shahzad, Mohsin; Huang, Vincent H.; Qaiser, Tanveer A.; Potluri, Prasanth; Mahl, Sarah E.; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-sheqaih, Nada; Newman, William G.; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N.; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B.; Wu, Doris K.; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C.; Ahmed, Zubair M.; Huang, Taosheng; Riazuddin, Saima

    2015-01-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  18. Personal significance is encoded automatically by the human brain: an event-related potential study with ringtones.

    PubMed

    Roye, Anja; Jacobsen, Thomas; Schröger, Erich

    2007-08-01

    In this human event-related brain potential (ERP) study, we have used one's personal--relative to another person's--ringtone presented in a two-deviant passive oddball paradigm to investigate the long-term memory effects of self-selected personal significance of a sound on the automatic deviance detection and involuntary attention system. Our findings extend the knowledge of long-term effects usually reported in group-approaches in the domains of speech, music and environmental sounds. In addition to the usual mismatch negativity (MMN) and P3a component elicited by deviants in contrast to standard stimuli, we observed a posterior ERP deflection directly following the MMN for the personally significant deviant only. This specific impact of personal significance started around 200 ms after sound onset and involved neural generators that were different from the mere physical deviance detection mechanism. Whereas the early part of the P3a component was unaffected by personal significance, the late P3a was enhanced for the ERPs to the personal significant deviant suggesting that this stimulus was more powerful in attracting attention involuntarily. Following the involuntary attention switch, the personally significant stimulus elicited a widely-distributed negative deflection, probably reflecting further analysis of the significant sound involving evaluation of relevance or reorienting to the primary task. Our data show, that the personal significance of mobile phone and text message technology, which have developed as a major medium of communication in our modern world, prompts the formation of individual memory representations, which affect the processing of sounds that are not in the focus of attention. PMID:17634070

  19. Epigenetics of human myometrium: DNA methylation of genes encoding contraction-associated proteins in term and preterm labor.

    PubMed

    Mitsuya, Kohzoh; Singh, Natasha; Sooranna, Suren R; Johnson, Mark R; Myatt, Leslie

    2014-05-01

    Preterm birth involves the interaction of societal and environmental factors potentially modulating the length of gestation via the epigenome. An established form of epigenetic regulation is DNA methylation where promoter hypermethylation is associated with gene repression. We hypothesized we would find differences in DNA methylation in the myometrium of women with preterm labor of different phenotypes versus normal term labor. Myometrial tissue was obtained at cesarean section at term with or without labor, preterm without labor, idiopathic preterm labor, and twin gestations with labor. Genomic DNA was isolated, and samples in each group were combined and analyzed on a NimbleGen 2.1M human DNA methylation array. Differences in methylation from -8 to +3 kb of transcription start sites of 22 contraction-associated genes were determined. Cytosine methylation was not present in CpG islands of any gene but was present outside of CpG islands in shores and shelves in 19 genes. No differential methylation was found across the tissue groups for six genes (PTGES3L, PTGER2, PTGER4, PTGFRN, ESR2, and GJA1). For 13 genes, differential methylation occurred in several patterns between tissue groups. We find a correlation between hypomethylation and increased mRNA expression of PTGES/mPGES-1, indicating potential functional relevance of methylation, but no such correlation for PTGS2/COX-2, suggesting other regulatory mechanisms for PTGS2 at labor. The majority of differential DNA methylation of myometrial contraction-associated genes with different labor phenotypes occurs outside of CpG islands in gene promoters, suggesting that the entirety of DNA methylation across the genome should be considered. PMID:24571989

  20. CARD8 gene encoding a protein of innate immunity is expressed in human atherosclerosis and associated with markers of inflammation.

    PubMed

    Paramel, Geena Varghese; Folkersen, Lasse; Strawbridge, Rona J; Elmabsout, Ali Ateia; Särndahl, Eva; Lundman, Pia; Jansson, Jan-Håkan; Hansson, Göran K; Sirsjö, Allan; Fransén, Karin

    2013-10-01

    Inflammation is a key factor in the development of atherosclerotic coronary artery disease. It is promoted through the inflammasome, a molecular machine that produces IL (interleukin)-1β in response to cholesterol crystal accumulation in macrophages. The CARD8 (caspase recruitment domain 8) protein modulates this process by suppressing caspase 1 and the transcription factor NF-κB (nuclear factor κB). The expression of CARD8 mRNA was examined in atherosclerotic vascular tissue and the impact on MI (myocardial infarction) of a polymorphism in the CARD8 gene determined. CARD8 mRNA was analysed by microarray of human atherosclerotic tissue and compared with transplant donor arterial tissue. Microarray analysis was performed for proximal genes associated with the rs2043211 locus in plaque. The CARD8 rs2043211 polymorphism was analysed by genotyping of two Swedish MI cohorts, FIA (First Myocardial Infarction in Northern Sweden) and SCARF (Stockholm Coronary Atherosclerosis Risk Factor). The CRP (C-reactive protein) level was measured in both cohorts, but the levels of the pro-inflammatory cytokines IL-1β, IL-18, TNF (tumour necrosis factor) and MCP-1 (monocyte chemoattractant protein) were measured in sera available from the SCARF cohort. CARD8 mRNA was highly expressed in atherosclerotic plaques compared with the expression in transplant donor vessel (P<0.00001). The minor allele was associated with lower expression of CARD8 in the plaques, suggesting that CARD8 may promote inflammation. Carriers of the minor allele of the rs2043211 polymorphism also displayed lower circulating CRP and lower levels of the pro-atherosclerotic chemokine MCP-1. However, no significant association could be detected between this polymorphism and MI in the two cohorts. Genetic alterations in the CARD8 gene therefore seem to be of limited importance for the development of MI. PMID:23611467

  1. Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome.

    PubMed

    Simon, Mariella; Richard, Elodie M; Wang, Xinjian; Shahzad, Mohsin; Huang, Vincent H; Qaiser, Tanveer A; Potluri, Prasanth; Mahl, Sarah E; Davila, Antonio; Nazli, Sabiha; Hancock, Saege; Yu, Margret; Gargus, Jay; Chang, Richard; Al-Sheqaih, Nada; Newman, William G; Abdenur, Jose; Starr, Arnold; Hegde, Rashmi; Dorn, Thomas; Busch, Anke; Park, Eddie; Wu, Jie; Schwenzer, Hagen; Flierl, Adrian; Florentz, Catherine; Sissler, Marie; Khan, Shaheen N; Li, Ronghua; Guan, Min-Xin; Friedman, Thomas B; Wu, Doris K; Procaccio, Vincent; Riazuddin, Sheikh; Wallace, Douglas C; Ahmed, Zubair M; Huang, Taosheng; Riazuddin, Saima

    2015-03-01

    Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome. PMID:25807530

  2. The release and vascular action of bradykinin in the isolated perfused bovine udder

    PubMed Central

    Zeitlin, I J; Eshraghi, H R

    2002-01-01

    It has been postulated that the mammary kinin system may play a role in modulating mammary blood flow. Until the present study, the local release of bradykinin (BK) or other kinin system constituents into the mammary vasculature had not been reported and there were also conflicting findings on the action of BK on udder vasculature. Udders were removed from healthy lactating cows at slaughter. Pairs of ipsilateral quarters were perfused with Tyrode solution through the external pudendalis artery and drained via the cranial superficial epigastric vein. Mammary secretion was collected through teat cannulae. The perfusion pressure was linearly related to perfusate flux between 60 and 210 ml min−1 and the flow rate was adjusted (110-150 ml min−1) to give a basal pressure of 85 mmHg. PO2, PCO2 and pH in the venous effluent perfusate stabilised at 157 ± 10 mmHg, 50.1 ± 2.4 mmHg and 7.1 ± 0.03, respectively. The venous effluent contained immunoreactive BK and BK precursor, tissue kallikrein activity, and bradykinin-destroying enzyme. The concentration of BK stabilised at 378 ± 48 pg (ml perfusate)−1, that of trypsin-activated BK precursor was 679 ± 59 pg BK equivalents ml−1 and that of tissue kallikrein, measured as cleavage of d-Val.Leu.Arg-p-nitroanilide (d-Val.Leu.Arg-pNA), was 5.5 ± 1.7 nmol p-NA h−1 ml−1. Arterial infusion of phenylephrine (0.49-490 μM) produced increases in perfusion pressure (vasoconstriction). Acetylcholine (ACh) (0.55-55 μM) and BK (0.1-10 μM) produced only vasodilatation. BK (EC50 = 1.00±0.04 μM) was a more potent vasodilator than ACh (EC50 = 9.57±0.49 μM). The basal BK concentration was 250 times below the threshold for vasoactivity. The udder produced a milk-like secretion, which was dependent on perfusate flow and contained a concentration of BK which remained unchanged from 60 to 180 min of perfusion (231 ± 31 pg ml−1) unlike that in the venous effluent which doubled between 60 and 120 min. Thus, in addition to its

  3. Autoimmune type 1 diabetes genetic susceptibility encoded by human leukocyte antigen DRB1 and DQB1 genes in Tunisia.

    PubMed

    Stayoussef, Mouna; Benmansour, Jihen; Al-Irhayim, Abdul-Qader; Said, Hichem B; Rayana, Chiheb B; Mahjoub, Touhami; Almawi, Wassim Y

    2009-08-01

    Human leukocyte antigen (HLA) class II genes contribute to the genetic susceptibility to type 1 diabetes (T1D), and susceptible alleles and haplotypes were implicated in the pathogenesis of T1D. This study investigated the heterogeneity in HLA class II haplotype distribution among Tunisian patients with T1D. This was a retrospective case control study done in Monastir in central Tunisia. The subjects comprised 88 T1D patients and 112 healthy controls. HLA-DRB1 and -DQB1 genotyping was done by PCR-sequence-specific priming. Significant DRB1 and DQB1 allelic differences were seen between T1D patients and controls; these differences comprised DRB1*030101 and DQB1*0302, which were higher in T1D patients than in control subjects, and DRB1*070101, DRB1*110101, DQB1*030101, and DQB1*060101, which were lower in T1D patients than in control subjects. In addition, the frequencies of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 were higher in T1D patients than in control subjects, and the frequencies of DRB1*070101-DQB1*0201 and DRB1*110101-DQB1*030101 haplotypes were lower in T1D patients than in control subjects. Multiple logistic regression analysis revealed the positive association of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 and the negative association of only DRB1*070101-DQB1*0201 haplotypes with T1D. Furthermore, a significantly increased prevalence of DRB1*030101-DQB1*0201 homozygotes was seen for T1D subjects than for control subjects. Our results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with T1D in Tunisians. The identification of similar and unique haplotypes in Tunisians compared to other Caucasians highlights the need for evaluating the contribution of HLA class II to the genetic susceptibility to T1D with regard to haplotype usage and also to ethnic origin and racial background. PMID:19553558

  4. Autoimmune Type 1 Diabetes Genetic Susceptibility Encoded by Human Leukocyte Antigen DRB1 and DQB1 Genes in Tunisia▿

    PubMed Central

    Stayoussef, Mouna; Benmansour, Jihen; Al-Irhayim, Abdul-Qader; Said, Hichem B.; Rayana, Chiheb B.; Mahjoub, Touhami; Almawi, Wassim Y.

    2009-01-01

    Human leukocyte antigen (HLA) class II genes contribute to the genetic susceptibility to type 1 diabetes (T1D), and susceptible alleles and haplotypes were implicated in the pathogenesis of T1D. This study investigated the heterogeneity in HLA class II haplotype distribution among Tunisian patients with T1D. This was a retrospective case control study done in Monastir in central Tunisia. The subjects comprised 88 T1D patients and 112 healthy controls. HLA-DRB1 and -DQB1 genotyping was done by PCR-sequence-specific priming. Significant DRB1 and DQB1 allelic differences were seen between T1D patients and controls; these differences comprised DRB1*030101 and DQB1*0302, which were higher in T1D patients than in control subjects, and DRB1*070101, DRB1*110101, DQB1*030101, and DQB1*060101, which were lower in T1D patients than in control subjects. In addition, the frequencies of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 were higher in T1D patients than in control subjects, and the frequencies of DRB1*070101-DQB1*0201 and DRB1*110101-DQB1*030101 haplotypes were lower in T1D patients than in control subjects. Multiple logistic regression analysis revealed the positive association of DRB1*030101-DQB1*0201 and DRB1*040101-DQB1*0302 and the negative association of only DRB1*070101-DQB1*0201 haplotypes with T1D. Furthermore, a significantly increased prevalence of DRB1*030101-DQB1*0201 homozygotes was seen for T1D subjects than for control subjects. Our results confirm the association of specific HLA-DR and -DQ alleles and haplotypes with T1D in Tunisians. The identification of similar and unique haplotypes in Tunisians compared to other Caucasians highlights the need for evaluating the contribution of HLA class II to the genetic susceptibility to T1D with regard to haplotype usage and also to ethnic origin and racial background. PMID:19553558

  5. A Chromosome-Centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17

    PubMed Central

    Liu, Suli; Im, Hoguen; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W.; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S.; Beavis, Ronald C.; Hancock, William S.

    2014-01-01

    We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 ‘missing’ proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of ‘missing’ proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV and single nucleotide variant (SNV) databases and the construction of websites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the

  6. A chromosome-centric human proteome project (C-HPP) to characterize the sets of proteins encoded in chromosome 17.

    PubMed

    Liu, Suli; Im, Hogune; Bairoch, Amos; Cristofanilli, Massimo; Chen, Rui; Deutsch, Eric W; Dalton, Stephen; Fenyo, David; Fanayan, Susan; Gates, Chris; Gaudet, Pascale; Hincapie, Marina; Hanash, Samir; Kim, Hoguen; Jeong, Seul-Ki; Lundberg, Emma; Mias, George; Menon, Rajasree; Mu, Zhaomei; Nice, Edouard; Paik, Young-Ki; Uhlen, Mathias; Wells, Lance; Wu, Shiaw-Lin; Yan, Fangfei; Zhang, Fan; Zhang, Yue; Snyder, Michael; Omenn, Gilbert S; Beavis, Ronald C; Hancock, William S

    2013-01-01

    We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the

  7. Celsr1, a neural-specific gene encoding an unusual seven-pass transmembrane receptor, maps to mouse chromosome 15 and human chromosome 22qter.

    PubMed

    Hadjantonakis, A K; Sheward, W J; Harmar, A J; de Galan, L; Hoovers, J M; Little, P F

    1997-10-01

    We have identified Celsr1, a gene that encodes a developmentally regulated vertebrate seven-pass transmembrane protein. The extracellular domain of Celsr1 contains two regions each with homology to distinct classes of well-characterized motifs found in the extra-cellular domains of many cell surface molecules. The most N-terminal region contains a block of contiguous cadherin repeats, and C-terminal to this is a region containing seven epidermal growth factor-like repeats interrupted by two laminin A G-type repeats. Celsr1 is unique in that it contains this combination of repeats coupled to a seven-pass transmembrane domain. As part of the characterization of the Celsr1 gene, we have determined its chromosomal map location in both mouse and human. The European Collaborative Interspecific Backcross (EUCIB) and BXD recombinant inbred strains were used for mapping Celsr1 cDNA clones in the mouse, and fluorescence in situ hybridization was used to map human Celsr1 cosmid clones on metaphase chromosomes. We report that Celsr1 maps to proximal mouse Chromosome 15 and human chromosome 22qter, a region of conserved synteny. Reverse transcriptase-polymerase chain reaction analysis and in situ hybridization were used to determine the spatial restriction of Celsr1 transcripts in adult and embryonic mice. The results presented here extend our previous finding of expression of the Celsr1 receptor in the embryo and show that expression continues into adult life when expression in the brain is localized principally in the ependymal cell layer, choroid plexus, and the area postrema. PMID:9339365

  8. Gene structure and chromosomal localization of the human HSD11K gene encoding the kidney (type 2) isozyme of 11{beta}-hydroxysteroid dehydrogenase

    SciTech Connect

    Agarwal, A.K.; Rogerson, F.M.; Mune, T.; White, P.C.

    1995-09-01

    11{beta}-hydroxysteroid dehydrogenase (11{beta}HSD) converts glucocorticoids to inactive products and is thus thought to confer specificity for aldosterone on the type I mineralocorticoid receptor in the kidney. Recent studies indicate the presence of at least two isozymes of 11{beta}HSD. In vitro, the NAD{sup +}-dependent kidney (type 2) isozyme catalyzes 11{beta}-dehydrogenase but not reductase reactions, whereas the NADP{sup +}-dependent liver (type 1) isozyme catalyzes both reactions. We have now characterized the human gene encoding kidney 11{beta}HSD (HSD11K). A bacteriophage P1 clone was isolated after screening a human genomic library by hybridization with sheep HSD11K cDNA. The gene consists of 5 exons spread over 6 kb. The nucleotide binding domain lies in the first exon are GC-rich (80%), suggesting that the gene may be transcriptionally regulated by factors that recognize GC-rich sequences. Fluorescence in situ hybridization of metaphase chromosomes with a positive P1 clone localized the gene to chromosome 16q22. In contrast, the HSD11L (liver isozyme) gene is located on chromosome 1 and contains 6 exons; the coding sequences of these genes are only 21% identical. HSD11K is expressed at high levels in the placenta and kidney of midgestation human fetuses and at lower levels in lung and testes. Different transcriptional start sites are utilized in kidney and placenta. These data should be applicable to genetic analysis of the syndrome of apparent mineralocorticoid excess, which may represent a deficiency of 11{beta}HSD. 25 refs., 5 figs.

  9. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment

    PubMed Central

    Jelinic, Maria; Leo, Chen-Huei; Uiterweer, Emiel D. Post; Sandow, Shaun L.; Gooi, Jonathan H.; Wlodek, Mary E.; Conrad, Kirk P.; Parkington, Helena; Tare, Marianne; Parry, Laura J.

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.—Jelinic, M., Leo, C-H., Post Uiterweer, E. P., Sandow, S. L., Gooi, J. H., Wlodek, M. E., Conrad, K. P., Parkington, H., Tare, M., Parry, L. J. Localization of relaxin receptors

  10. Phosphorylation in vitro of Escherichia coli-produced 235R and 266R tumor antigens encoded by human adenovirus type 12 early transformation region 1A.

    PubMed Central

    Lucher, L A; Loewenstein, P M; Green, M

    1985-01-01

    The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens

  11. Spectroscopic studies of kinetically trapped conformations in the gas phase: the case of triply protonated bradykinin.

    PubMed

    Voronina, Liudmila; Rizzo, Thomas R

    2015-10-21

    Understanding the relation between the gas-phase structure of biological molecules and their solution-phase structure is important when attempting to use gas-phase techniques to address biologically relevant questions. Directly after electrospray ionization, molecules can be kinetically trapped in a state that retains some "memory" of its conformation in solution and is separated from the lowest-energy gas-phase structure by barriers on the potential energy surface. In order to identify and characterize kinetically trapped structures, we have explored the conformational space of triply protonated bradykinin in the gas phase by combining field-asymmetric ion mobility spectrometry (FAIMS) with cold ion spectroscopy. We isolate three distinct conformational families and characterize them by recording their UV-photofragment spectra and vibrational spectra. Annealing of the initial conformational distribution produced by electrospray reveals that one of the conformational families is kinetically trapped, while two others are stable, gas-phase structures. We compare our results to previously published results obtained using drift-tube ion mobility spectrometry (IMS) and propose a correspondence between the conformational families separated by FAIMS and those by IMS. PMID:25940085

  12. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain. PMID:15046718

  13. New insights into the stereochemical requirements of the bradykinin B1 receptor antagonists binding.

    PubMed

    Lupala, Cecylia S; Gomez-Gutierrez, Patricia; Perez, Juan J

    2016-07-01

    Bradykinin (BK) is a nonapeptide involved in several pathophysiological conditions including among others, septic and haemorrhagic shock, anaphylaxis, arthritis, rhinitis, asthma, inflammatory bowel disease. Accordingly, BK antagonists have long been sought after for therapeutic intervention. Action of BK is mediated through two different G-protein coupled receptors known as B1 and B2. Although there are several B1 antagonists reported in literature, their pharmacological profile is not yet optimal so that new molecules need to be discovered. In the present work we have constructed an atomistic model of the B1 receptor and docked diverse available non-peptide antagonists in order to get a deeper insight into the structure-activity relationships involving binding to this receptor. The model was constructed by homology modeling using the chemokine CXC4 and bovine rhodopsin receptors as template. The model was further refined using molecular dynamics for 600ns with the protein embedded in a POPC bilayer. From the refinement process we obtained an average structure that was used for docking studies using the Glide software. Antagonists selected for the docking studies include Compound 11, Compound 12, Chroman28, SSR240612, NPV-SAA164 and PS020990. The results of the docking study underline the role of specific receptor residues in ligand binding. The results of this study permitted to define a pharmacophore that describes the stereochemical requirements of antagonist binding, and can be used for the discovery of new compounds. PMID:27469392

  14. Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats.

    PubMed

    Wei, Chih-Chang; Lucchesi, Pamela A; Tallaj, Jose; Bradley, Wayne E; Powell, Pamela C; Dell'Italia, Louis J

    2003-08-01

    In the current study, interstitial fluid (ISF), bradykinin (BK), and angiotensin II (ANG II) levels were measured using cardiac microdialysis in conscious, nonsedated rats at baseline and at 48 h and 5 days after each of the following: sham surgery (sham, n = 6), sham + administration of ANG-converting enzyme inhibitor ramipril (R, n = 6), creation of aortocaval fistula (ACF, n = 6), ACF + R (n = 6), and ACF + R + BK2 receptor antagonist (HOE-140) administration (n = 6). At 5 days, both ISF ANG II and BK increased in ACF rats (P < 0.05); however, in ACF + R rats, ISF ANG II did not differ from basal levels and ISF BK increased greater than threefold above baseline at 2 and 5 days (P < 0.05). Five days after ACF, the left ventricular (LV) weight-to-body weight ratio increased 30% (P < 0.05) in ACF but did not differ from sham in ACF + R and ACF + R + HOE-140 rats despite similar systemic arterial pressures across all ACF groups. However, ACF + R + HOE-140 rats had greater postmortem wall thickness-to-diameter ratio and smaller cross-sectional diameter compared with ACF + R rats. There was a significant increase in mast cell density in ACF and ACF + R rats that decreased below sham in ACF + R + HOE-140 rats. These results suggest a potentially important interaction of mast cells and BK in the cardiac interstitium that modulates the pattern of LV remodeling in the acute phase of volume overload. PMID:12663259

  15. The Bradykinin B1 Receptor Regulates Aβ Deposition and Neuroinflammation in Tg-SwDI Mice

    PubMed Central

    Passos, Giselle F.; Medeiros, Rodrigo; Cheng, David; Vasilevko, Vitaly; LaFerla, Frank M.; Cribbs, David H.

    2014-01-01

    The deposition of amyloid-β peptides (Aβ) in the cerebral vasculature, a condition known as cerebral amyloid angiopathy, is increasingly recognized as an important component leading to intracerebral hemorrhage, neuroinflammation, and cognitive impairment in Alzheimer disease (AD) and related disorders. Recent studies demonstrated a role for the bradykinin B1 receptor (B1R) in cognitive deficits induced by Aβ in mice; however, its involvement in AD and cerebral amyloid angiopathy is poorly understood. Herein, we investigated the effect of B1R inhibition on AD-like neuroinflammation and amyloidosis using the transgenic mouse model (Tg-SwDI). B1R expression was found to be up-regulated in brains of Tg-SwDI mice, specifically in the vasculature, neurons, and astrocytes. Notably, administration of the B1R antagonist, R715, to 8-month-old Tg-SwDI mice for 8 weeks resulted in higher Aβ40 levels and increased thioflavin S–positive fibrillar Aβ deposition. Moreover, blockage of B1R inhibited neuroinflammation, as evidenced by the decreased accumulation of activated microglia and reactive astrocytes, diminished NF-κB activation, and reduced cytokine and chemokine levels. Together, our results indicate that B1R activation plays an important role in limiting the accumulation of Aβ in AD-like brain, likely through the regulation of activated glial cell accumulation and release of pro-inflammatory mediators. Therefore, the modulation of the receptor may represent a novel therapeutic approach for AD. PMID:23470163

  16. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin

    PubMed Central

    Bouhadfane, Mouloud; Kaszás, Attila; Rózsa, Balázs; Harris-Warrick, Ronald M; Vinay, Laurent; Brocard, Frédéric

    2015-01-01

    Bradykinin (Bk) is a potent inflammatory mediator that causes hyperalgesia. The action of Bk on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that Bk strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis, and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model. DOI: http://dx.doi.org/10.7554/eLife.06195.001 PMID:25781633

  17. Gynura procumbens causes vasodilation by inhibiting angiotensin II and enhancing bradykinin actions.

    PubMed

    Poh, Ting-Fung; Ng, Hien-Kun; Hoe, See-Ziau; Lam, Sau-Kuen

    2013-05-01

    Previous studies showed that Gynura procumbens reduced blood pressure by blocking calcium channels and inhibiting the angiotensin-converting enzyme activity. The present experiments were to further explore the effects and mechanisms of a purer aqueous fraction (FA-I) of G. procumbens on angiotensin I (Ang I)-induced and angiotensin II (Ang II)-induced contraction of aortic rings and also on the bradykinin (BK) effect on cardiovascular system. Rat aortic rings suspended in organ chambers were used to investigate the vascular reactivity of FA-I. Effect of FA-I on BK was studied by in vitro and in vivo methods. Results show that FA-I significantly (P < 0.05) decreased the contraction evoked by Ang I and Ang II. In the presence of indomethacin (10 µM) or N-nitro-L-arginine methyl ester (0.1 µM), the inhibitory effect of FA-I on Ang II-induced contraction of aortic rings was reduced. Besides, FA-I potentiated the vasorelaxant effect and enhanced the blood pressure-lowering effect of BK. In conclusion, FA-I reduced the contraction evoked by Ang II probably via the endothelium-dependent pathways, which involve activation of the release of nitric oxide and prostaglandins. The inhibition of angiotensin-converting enzyme activity by FA-I may contribute to the potentiation of the effects of BK on cardiovascular system. PMID:23328388

  18. Novel potential treatment modalities for ocular hypertension: focus on angiotensin and bradykinin system axes.

    PubMed

    Sharif, Najam A

    2015-04-01

    Despite the availability of modern surgical procedures, new drug delivery techniques, health authority-approved single topical ocular drugs, and combination products thereof, there continues to be an unmet medical need for novel treatment modalities for preserving vision. This is especially true for the treatment of glaucoma and the high risk factor often associated with this ocular disease, elevated intraocular pressure (IOP). Undesirable local or systemic side effects, frequency of dosing, lack of sustained IOP lowering, and lack of prevention of diurnal IOP spikes are among the greatest challenges. The very recent discovery, characterization, and publication of 2 novel IOP-lowering agents that pertain to the renin-angiotensin and kallikrein-kinin axes potentially offer novel means to treat and control ocular hypertension (OHT). Here, some contextual introductory information is provided first, followed by more detailed discussion of the properties and actions of diminazene aceturate (DIZE; a novel angiotensin-converting enzyme-2 activator) and FR-190997 (a nonpeptide bradykinin receptor-2 agonist) in relation to their anti-OHT activities in rodent and cynomolgus monkey eyes, respectively. It is anticipated that these compounds will pave the way for future discovery, development, and marketing of novel drugs to treat glaucoma and thus help save sight for millions of people afflicted with this slow progressive optic neuropathy. PMID:25599263

  19. Bradykinin inhibits oxidative stress-induced senescence of endothelial progenitor cells through the B2R/AKT/RB and B2R/EGFR/RB signal pathways.

    PubMed

    Fu, Cong; Li, Bing; Sun, Yuning; Ma, Genshan; Yao, Yuyu

    2015-09-22

    Circulating endothelial progenitor cells (EPCs) have multiple protective effects that facilitate repair of damage to tissues and organs. However, while various stressors are known to impair EPC function, the mechanisms of oxidative stress-induced EPC senescence remains unknown. We demonstrated that B2 receptor (B2R) expression on circulating CD34(+) cells was significantly reduced in patients with diabetes mellitus (DM) as compared to healthy controls. Furthermore, CD34(+) cell B2R expression in patients with DM was inversely correlated with plasma myeloperoxidase concentrations. Bradykinin (BK) treatment decreased human EPC (hEPC) senescence and intracellular oxygen radical production, resulting in reduced retinoblastoma 1 (RB) RNA expression in H2O2-induced senescent hEPCs and a reversal of the B2R downregulation that is normally observed in senescent cells. Furthermore, BK treatment of H2O2-exposed cells leads to elevated phosphorylation of RB, AKT, and cyclin D1 compared with H2O2-treatment alone. Antagonists of B2R, PI3K, and EGFR signaling pathways and B2R siRNA blocked BK protective effects. In summary, this study demonstrates that BK significantly inhibits oxidative stress-induced hEPC senescence though B2R-mediated activation of PI3K and EGFR signaling pathways. PMID:26360782

  20. Isolation and characterisation of antibodies which specifically recognise the peptide encoded by exon 7 (v2) of the human CD44 gene

    PubMed Central

    Borgya, A; Woodman, A; Sugiyama, M; Donié, F; Kopetzki, E; Matsumura, Y; Tarin, D

    1995-01-01

    Aims—Exon 7 of the human CD44 gene is overexpressed in many commonly occurring carcinomas. The aim of the study was to explore the diagnostic and therapeutic potential of this frequent abnormality. Methods—A new monoclonal antibody (mAb, M-23.6.1) and a polyclonal antibody (pAb,S-6127) to the corresponding antigen were raised by immunising mice and sheep, respectively, with a specially constructed fusion protein HIV2 (gp32)-CD44 exon 7. Results—Characterisation of mAb, M-23.6.1 by ELISA, western blotting, immunocytochemistry, and FACS analysis confirmed that it specifically recognises an epitope in the region between amino acids 19 and 33 of the peptide encoded by this exon. Western blotting experiments with two cell lines, RT112 and ZR75-1, known from RT-PCR data to be overtranscribing the exon, yielded a monospecific band of approximately 220 kDa, and immunocytochemistry showed discrete membrane staining on the same cell lines. Fluorescent antibody cell sorting (FACS) revealed binding to greater than 90% of the cells of each of these lines. Specificity of recognition of the antigen was shown by inhibition of the precise immunoreactivity typically seen in ELISA and Western blots, by pre-incubation with synthetic exon 7 peptide or fragments of it. Conclusions—The new antibodies will be useful tools for the further analysis of abnormal CD44 isoforms and their clinical implications. Images PMID:16696015

  1. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light chain subunit of human ferritin (FTL). In cultured hepatoma cells, HEV-macro domain reduces secretion of ferritin without causing any change in the expression levels of FTL. This inhibitory effect was further enhanced upon Brefeldin-A treatment. The levels of transferrin Receptor 1 or ferroportin, two important proteins in iron metabolism, remained unchanged in HEV-macro domain expressing cells. Similarly, there were no alterations in the levels of cellular labile iron pool and reactive oxygen species, indicating that HEV-macro domain does not influence cellular iron homeostasis/metabolism. As ferritin is an acute-phase protein, secreted in higher level in infected persons and HEV-macro domain has the property of reducing synthesis of inflammatory cytokines, we propose that by directly binding to FTL, macro domain prevents ferritin from entering into circulation and helps in further attenuation of the host immune response. PMID:27170377

  2. The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney

    SciTech Connect

    Wilson, A.C.; Herr, W.; Parrish, J.E.; Massa, H.F.

    1995-01-20

    After herpes simplex virus (HSV) infection, the viral regulatory protein VP16 activates transcription of the HSV immediate-early promoters by directing complex formation with two cellular proteins, the POU-homeodomain transcription factor Oct-1 and the host cell factor HCF. The function of HCF in uninfected cells is unknown. Here we show by fluorescence in situ hybridization and somatic cell hybrid analysis that the gene encoding human HCF, HCFC1, maps to the q28 region of the X chromosome. Yeast artificial chromosome and cosmid mapping localizes the HCFC1 gene within 100 kb distal of the renal vasopressin type-2 receptor (V2R) gene and adjacent to the renin-binding protein gene (RENBP). The HCFC1 gene is apparently unique. HCF transcripts and protein are most abundant in fetal and placental tissues and cell lines, suggesting a role in cell proliferation. In adults, HCF protein is abundant in the kidney, but not in the brain, a site of latent HSV infection and where HCF levels may influence progression of HSV infection. 42 refs., 3 figs.

  3. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human Chromosome 19q13.3

    PubMed Central

    Wolf, Rebecca M.; Draghi, Nicole; Liang, Xiquan; Dai, Chengkai; Uhrbom, Lene; Eklöf, Charlotta; Westermark, Bengt; Holland, Eric C.; Resh, Marilyn D.

    2003-01-01

    p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%–80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity. PMID:12600941

  4. Characterization of the in vitro expressed autoimmune rippling muscle disease immunogenic domain of human titin encoded by TTN exons 248-249

    SciTech Connect

    Zelinka, L.; McCann, S.; Budde, J.; Sethi, S.; Guidos, M.; Giles, R.; Walker, G.R.

    2011-08-05

    Highlights: {yields} Affinity purification of the autoimmune rippling muscle disease immunogenic domain of titin. {yields} Partial sequence analysis confirms that the peptides is in the I band region of titin. {yields} This region of the human titin shows high degree of homology to mouse titin N2-A. -- Abstract: Autoimmune rippling muscle disease (ARMD) is an autoimmune neuromuscular disease associated with myasthenia gravis (MG). Past studies in our laboratory recognized a very high molecular weight skeletal muscle protein antigen identified by ARMD patient antisera as the titin isoform. These past studies used antisera from ARMD and MG patients as probes to screen a human skeletal muscle cDNA library and several pBluescript clones revealed supporting expression of immunoreactive peptides. This study characterizes the products of subcloning the titin immunoreactive domain into pGEX-3X and the subsequent fusion protein. Sequence analysis of the fusion gene indicates the cloned titin domain (GenBank ID: (EU428784)) is in frame and is derived from a sequence of N2-A spanning the exons 248-250 an area that encodes the fibronectin III domain. PCR and EcoR1 restriction mapping studies have demonstrated that the inserted cDNA is of a size that is predicted by bioinformatics analysis of the subclone. Expression of the fusion protein result in the isolation of a polypeptide of 52 kDa consistent with the predicted inferred amino acid sequence. Immunoblot experiments of the fusion protein, using rippling muscle/myasthenia gravis antisera, demonstrate that only the titin domain is immunoreactive.

  5. Ubiquitous human ‘master’ origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers

    NASA Astrophysics Data System (ADS)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-01

    encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.

  6. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.

    PubMed

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-18

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in

  7. Excitation of afferent fibres in the cardiac sympathetic nerves induced by coronary occlusion and injection of bradykinin. The influence of acetylsalicylic acid and dipyron.

    PubMed

    Vogt, A; Vetterlein, F; dal Ri, H; Schmidt, G

    1979-05-01

    Afferent impulse activity was recorded in single fibres of the inferior cardiac sympathetic nerve of the cat. When the descending branch of the left coronary artery was ligated for 60 sec an enhancement of afferent impulses was recorded. Elevations in discharge frequency were also induced by injecting bradykinin, epinephrine, and isoprenaline or by general hypoxia due to interruption of the artificial ventilation. When these procedures were after pretreatment with the analgesic agents, acetylsalicylic acid or dipyron a reduction in spike discharge was observed only with bradykinin after application of acetylsalicylic acid. No influence of these pretreatments on the effects of coronary occlusion, general hypoxia and injection of epinephrine and isoprenaline could be observed. These results suggest that bradykinin does not predominate as mediator substance in eliciting ischemic heart pain. PMID:485722

  8. TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus.

    PubMed

    Yu, Shaoyong; Ouyang, Ann

    2009-02-01

    Bradykinin (BK) activates sensory nerves and causes hyperalgesia. Transient receptor potential A1 (TRPA1) is expressed in sensory nerves and mediates cold, mechanical, and chemical nociception. TRPA1 can be activated by BK. TRPA1 knockout mice show impaired responses to BK and mechanical nociception. However, direct evidence from sensory nerve terminals is lacking. This study aims to determine the role of TRPA1 in BK-induced visceral mechanical hypersensitivity. Extracellular recordings of action potentials from vagal nodose and jugular neurons are performed in an ex vivo guinea pig esophageal-vagal preparation. Peak frequencies of action potentials of afferent nerves evoked by esophageal distension and chemical perfusion are recorded and compared. BK activates most nodose and all jugular C fibers. This activation is repeatable and associated with a significant increase in response to esophageal distension, which can be prevented by the B2 receptor antagonist WIN64338. TRPA1 agonist allyl isothiocyanate (AITC) activates most BK-positive nodose and jugular C fibers. This is associated with a transient loss of response to mechanical distensions and desensitization to a second AITC perfusion. Desensitization with AITC and pretreatment with TRPA1 inhibitor HC-030031 both inhibit BK-induced mechanical hypersensitivity but do not affect BK-evoked activation in nodose and jugular C fibers. In contrast, esophageal vagal afferent Adelta fibers do not respond to BK or AITC and fail to show mechanical hypersensitivity after BK perfusion. This provides the first evidence directly from visceral sensory afferent nerve terminals that TRPA1 mediates BK-induced mechanical hypersensitivity. This reveals a novel mechanism of visceral peripheral sensitization. PMID:19033534

  9. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine

    PubMed Central

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-01-01

    AIM: To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. METHODS: Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). RESULTS: Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. CONCLUSION: The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK. PMID:26909238

  10. Bradykinin Controls Pool Size of Sensory Neurons Expressing Functional δ-Opioid Receptors

    PubMed Central

    Pettinger, Louisa; Gigout, Sylvain; Linley, John E.

    2013-01-01

    Analgesics targeting the δ-opioid receptor (DOR) may lead to fewer side effects than conventional opioid drugs, which mainly act on μ-opioid receptors (MOR), because of the less abundant expression of DOR in the CNS compared with MOR. Analgesic potential of DOR agonists increases after inflammation, an effect that may be mediated by DOR expressed in the peripheral sensory fibers. However, the expression of functional DOR at the plasma membrane of sensory neurons is controversial. Here we have used patch-clamp recordings and total internal reflection fluorescence microscopy to study the functional expression of DOR in sensory neurons from rat trigeminal (TG) and dorsal root ganglia (DRG). Real-time total internal reflection fluorescence microscopy revealed that treatment of TG and DRG cultures with the inflammatory mediator bradykinin (BK) caused robust trafficking of heterologously expressed GFP-tagged DOR to the plasma membrane. By contrast, treatment of neurons with the DOR agonist [d-Ala2, d-Leu5]-enkephalin (DADLE) caused a decrease in the membrane abundance of DOR, suggesting internalization of the receptor after agonist binding. Patch-clamp experiments revealed that DADLE inhibited voltage-gated Ca2+ channels (VGCCs) in 23% of small-diameter TG neurons. Pretreatment with BK resulted in more than twice as many DADLE responsive neurons (54%) but did not affect the efficacy of VGCC inhibition by DADLE. Our data suggest that inflammatory mediator-induced membrane insertion of DOR into the plasma membrane of peripheral sensory neurons may underlie increased DOR analgesia in inflamed tissue. Furthermore, the majority of BK-responsive TG neurons may have a potential to become responsive to DOR ligands in inflammatory conditions. PMID:23804098

  11. Functional expression of bradykinin B1 and B2 receptors in neonatal rat trigeminal ganglion neurons

    PubMed Central

    Kawaguchi, Aya; Sato, Masaki; Kimura, Maki; Yamazaki, Takaki; Yamamoto, Hitoshi; Tazaki, Masakazu; Ichinohe, Tatsuya; Shibukawa, Yoshiyuki

    2015-01-01

    Bradykinin (BK) and its receptors (B1 and B2 receptors) play important roles in inflammatory nociception. However, the patterns of expression and physiological/pathological functions of B1 and B2 receptors in trigeminal ganglion (TG) neurons remain to be fully elucidated. We investigated the functional expression of BK receptors in rat TG neurons. We observed intense immunoreactivity of B2 receptors in TG neurons, while B1 receptors showed weak immunoreactivity. Expression of the B2 receptor colocalized with immunoreactivities against the pan-neuronal marker, neurofilament H, substance P, isolectin B4, and tropomyosin receptor kinase A antibodies. Both in the presence and absence of extracellular Ca2+ ([Ca2+]o), BK application increased the concentration of intracellular free Ca2+ ([Ca2+]i). The amplitudes of BK-induced [Ca2+]i increase in the absence of [Ca2+]o were significantly smaller than those in the presence of Ca2+. In the absence of [Ca2+]o, BK-induced [Ca2+]i increases were sensitive to B2 receptor antagonists, but not to a B1 receptor antagonist. However, B1 receptor agonist, Lys-[Des-Arg9]BK, transiently increased [Ca2+]i in primary cultured TG neurons, and these increases were sensitive to a B1 receptor antagonist in the presence of [Ca2+]o. These results indicated that B2 receptors were constitutively expressed and their activation induced the mobilization of [Ca2+]i from intracellular stores with partial Ca2+ influx by BK. Although constitutive B1 receptor expression could not be clearly observed immunohistochemically in the TG cryosection, cultured TG neurons functionally expressed B1 receptors, suggesting that both B1 and B2 receptors involve pathological and physiological nociceptive functions. PMID:26124706

  12. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    PubMed

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  13. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  14. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    PubMed Central

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment with aprotinin to inhibit tissue kallikrein reduced the scratching behaviour induced by sodium deoxycholic acid, whereas treatment with soybean trypsin inhibitor to inhibit plasma kallikrein did not.Although injection of kininase II inhibitor, lisinopril together with sodium deoxycholic acid did not alter the scratching behaviour, phosphoramidon, a neutral endopeptidase inhibitor, significantly increased the frequency of scratching.Homogenates of the skin excised from the backs of mice were subjected to gel-filtration column chromatography followed by an assay of kinin release by trypsin from each fraction separated. Less kinin release from the fractions containing kininogen of low molecular weight was observed in the skin injected with sodium deoxycholic acid than in normal skin.The frequency of scratching after the injection of sodium deoxycholic acid in plasma kininogen-deficient Brown Norway Katholiek rats was significantly lower than that in normal rats of the same strain, Brown Norway Kitasato rats.These results indicate that BK released from low-molecular-weight kininogen by tissue kallikrein, but not from high-molecular-weight kininogen by plasma kallikrein, may be involved in the scratching behaviour induced by the injection of sodium deoxycholic acid in the rodent. PMID:10051136

  15. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice.

    PubMed

    Catanzaro, Orlando L; Dziubecki, Damian; Obregon, Pablo; Rodriguez, Ricardo R; Sirois, Pierre

    2010-04-01

    Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with many complications including nephropathy, retinopathy, neuropathy and hyperalgesia. Experimental evidence has shown that the bradykinin B1 receptor (BKB1-R) is involved in the development of type 1 diabetes and found to be upregulated alongside the disease. In the present study the effects of the selective BKB1-R antagonist the R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8) ]des-Arg(9)-BK and the BKB1-R agonist des Arg(9)-BK (DBK) were studied on diabetic hyperglycemia. Diabetic type 1 was induced in C57 BL/KsJ mdb male mice by five consecutives doses of STZ (45mg/kg i.p.). A glucose tolerance test (GTT) was performed by an intraperitoneal administration of glucose, 8, 12 and 18days after the diabetes induction. The induction of type 1 diabetes provoked a significant hyperglycemia levels in diabetic mice at 12 and 18days after STZ. The administration of R-954 (400microg/kg i.p.) at 12 and 18days after STZ returned the glycemia levels of this animals to normal values. In addition the administration of DKB (300microg/kg i.p.) significantly potentiated the diabetes-induced hyperglycemia; this effect that was totally reversed by R-954. These results provide further evidence for the implication of BKB1-R in the type 1 diabetes mellitus (insulitis). PMID:20092893

  16. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin

    PubMed Central

    Kotlo, Kumar; Bhattacharyya, Sumit; Yang, Bo; Feferman, Leonid; Tejaskumar, Shah; Linhardt, Robert; Danziger, Robert

    2013-01-01

    N -acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation. PMID:23385884

  17. Adaptive phenotypic modulation of human arterial endothelial cells to fluid shear stress-encoded signals: modulation by phosphodiesterase 4D-VE-cadherin signalling.

    PubMed

    Rampersad, Sarah N; Wudwud, Alie; Hubert, Fabien; Maurice, Donald H

    2016-07-01

    Although cAMP-signalling regulates numerous functions of vascular endothelial cells (VECs), including their ability to impact vascular resistance in response to changes in blood flow dynamics, few of the mechanisms underlying these effects have yet to be described. In addition to forming stable adherens junctions (AJs) in static VEC cultures, VE-cadherin (VECAD) has emerged as a critical component in a key mechanosensor responsible for linking altered blood flow dynamics and the VEC-mediated control of vascular resistance. Previously, a cAMP phosphodiesterase, PDE4D, was shown to coordinate the VEC permeability limiting effects of cAMP-elevating agents in human arterial VECs (HAECs). Herein, we report that PDE4D acts to allow cAMP-elevating agents to regulate VECADs' role as a sensor of flow-associated fluid shear stress (FSS)-encoded information in HAECs. Thus, we report that PDE4 activity is increased in HAECs exposed to laminar FSS and that this effect contributes to controlling how FSS impacts the morphological and gene expression changes in HAECs exposed to flow. More specifically, we report that PDE4D regulates the efficiency with which VECAD, within its mechanosensor, controls VEGFR2 and Akt activities. Indeed, we show that PDE4D knockdown (KD) significantly blunts responses of HAECs to levels of FSS characteristically found in areas of the vasculature in which stenosis is prevalent. We propose that this effect may provide a new therapeutic avenue in modulating VEC behaviour at these sites by promoting an adaptive and vasculo-protective phenotype. PMID:26658094

  18. Involvement of tachykinins in plasma extravasation induced by bradykinin and low pH medium in the guinea-pig conjunctiva.

    PubMed Central

    Figini, M.; Javdan, P.; Cioncolini, F.; Geppetti, P.

    1995-01-01

    1. The effect of bradykinin, capsaicin, substance P and low pH medium on plasma extravasation in the guinea-pig conjunctiva has been studied. Evans blue dye was measured in the conjunctiva after local instillation of the agents into the conjunctival sac. 2. Bradykinin (2-50 nmol), capsaicin (20-50 nmol) and substance P (0.5-5 nmol) caused a dose-dependent increase in plasma extravasation with the following order of potency: substance P > bradykinin = capsaicin. The effect of capsaicin (50 nmol) and substance P (5 nmol) was abolished by the tachykinin NK1 receptor antagonist, CP-99,994 (8 mumol kg-1, i.v.) (P < 0.01), whereas CP-100,263 (8 mumol kg-1, i.v.) the inactive enantiomer of CP-99,994 was without effect. CP-99,994 inhibited by 70% (P < 0.01) the effect of bradykinin. 3. The kinin B2 receptor antagonist, Hoe 140 (icatibant, 10 nmol kg-1, i.v.) abolished the response to bradykinin (50 nmol) (P < 0.01), but did not affect the responses to capsaicin (50 nmol) or substance P (5 nmol). Plasma extravasation induced by low pH medium (pH 1) was abolished by CP-99,994 (P < 0.01) and by Hoe 140 (P < 0.01). 4. The present findings suggest that: endogenous or exogenous tachykinins increase plasma extravasation in the guinea-pig conjunctiva by activation of NK1 receptors; bradykinin-induced plasma extravasation is mediated by tachykinin release from sensory nerve endings; low pH media cause plasma extravasation via release of kinins that by activation of B2 receptors release tachykinins from sensory nerve endings. PMID:7544195

  19. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    PubMed

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-01-01

    The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane. PMID:25058308

  20. Chromosomal localization of the genes encoding the kinetochore proteins CENPE and DENPF to human chromosomes 4q24{r_arrow}q25 and 1q32{r_arrow}q41, respectively, by fluorescence in situ hybridization

    SciTech Connect

    Testa, J.R.; Zhou, J.Y.; Bell, D.W.; Yen, T.J.

    1994-10-01

    CENPE and CENPF are human kinetochore proteins of 312 and {approximately}400 kDa, respectively. As part of an effort to characterize the functions of these two proteins, we have used their respective cDNAs to map their human chromosomal locations by fluorescence in situ hybridization. The gene that encodes CENPE, a kinetochore-associated motor protein that is postulated to segregate chromosomes during mitosis, maps to chromosome 4q24{r_arrow}q25. The CENPF gene, which encodes a structural protein of the kinetochore, maps to chromosome 1q32{r_arrow}q41 within close proximity to the genetic locus that is linked to Van der Woude syndrome. 8 refs., 1 fig.

  1. Bradykinin B2 receptor-dependent enhancement of enalapril-evoked hypotension in ethanol-fed female rats

    PubMed Central

    El-Mas, Mahmoud M.; Abdel-Rahman, Abdel A.

    2010-01-01

    Our previous studies showed that chronic ethanol feeding attenuates centrally (clonidine)- and potentiates peripherally (hydralazine)-evoked hypotension in female rats. In this study, we investigated whether chronic ethanol (8 weeks, 5% w/v) alters hemodynamic responses elicited by angiotensin converting enzyme (ACE) inhibition (enalapril) in telemetered female rats. Given the intimate interaction between ACE and bradykinin, studies were extended to investigate the role of bradykinin receptor (B2R) in ethanol-enalapril interaction. Compared with pair-fed controls, ethanol-fed female rats exhibited: (i) higher renal expressions of ACE and B2R proteins and angiotensin II levels, and (ii) lower blood pressure (BP). Pharmacological inhibition of ACE and B2R support functional role for the higher levels of these two proteins in ethanol-fed rats because enalapril (10 mg/kg i.p) caused significantly greater hypotensive response in ethanol-fed rats than in control rats. Further, blockade of B2R with bradyzide (2 mg/kg i.p.) abrogated the enhanced hypotensive effect of enalapril in ethanol-fed rats but had no effect on enalapril-evoked hypotension in control rats. Finally, enalapril enhancement of spontaneous baroreflex sensitivity (BRS) in control was absent in ethanol-fed rats. These findings demonstrate that chronic ethanol produces B2R-dependent enhancement of the hypotensive response elicited by enalapril and abrogates enalapril-evoked enhancement of spontaneous baroreflex response in female rats. PMID:20966761

  2. NMR and computational evidence that high-affinity bradykinin receptor antagonists adopt C-terminal beta-turns.

    PubMed

    Kyle, D J; Blake, P R; Smithwick, D; Green, L M; Martin, J A; Sinsko, J A; Summers, M F

    1993-05-14

    Three tetrapeptides were prepared, each corresponding to the four C-terminal amino acid residues of highly potent, second-generation bradykinin receptor antagonists. The tetrapeptides are (IA) Ser-D-Phe-Oic-Arg, (IIA) Ser-D-Tic-Oic-Arg, and (IIIA) Ser-D-Hype(trans-propyl)-Oic-Arg. Solution conformations for each were determined by incorporating interproton distance restraints, determined by 2D NMR experiments performed in water at neutral pH, into a series of distance geometry/simulated annealing model building calculations. Similarly, systematic conformational analyses were performed for each using molecular mechanics calculations. Both the NMR-derived structures, as well as the calculated structures, are shown to adopt a beta-turn as the primary conformation. Excellent agreement between the predicted structures and the NMR-derived structures is demonstrated. Aside from being the first examples of linear tetrapeptides reported to be ordered in aqueous solvent, the results presented support the hypothesis that high-affinity bradykinin receptor antagonists must adopt C-terminal beta-turn conformations. PMID:8388469

  3. The effects of sensory denervation on the responses of the rabbit eye to prostaglandin E1, bradykinin and substance P.

    PubMed Central

    Butler, J. M.; Hammond, B. R.

    1980-01-01

    1 Six to eight days after diathermic destruction of the fifth cranial nerve in the rabbit, the ocular hypertensive and miotic responses to intracameral administration of capsaicin, bradykinin, and prostaglandin E1 were greatly reduced or completely abolished. The response to substance P was not abolished. 2 A response could still be obtained to chemical irritants 36 h after coagulation of the nerve and it is deduced that manifestation of the response is dependent upon functional sensory nerve terminals, and is independent of central connections. 3 It is suggested that prostaglandin E1 and bradykinin act directly upon the sensory nerve endings and that propagation of the response is augmented by axon reflex. 4 In view of the ability of substance P to induce miosis in the denervated eyes, it is presumed that its actions are not mediated via sensory nerves. 5 It is considered possible that the mediator(s) released from sensory nerve endings after chemical irritation or antidromic stimulation may act in the same way as substance P with regard to the miotic effect. 6 Synthetic substance P will only produce ocular hypertension in doses which induce a maximal miotic response. This may either be a question of access or a partial resemblance to the endogenous mediator. PMID:6156734

  4. Blood pressure in patients with primary aldosteronism is influenced by bradykinin B(2) receptor and alpha-adducin gene polymorphisms.

    PubMed

    Mulatero, Paolo; Williams, Tracy A; Milan, Alberto; Paglieri, Cristina; Rabbia, Franco; Fallo, Francesco; Veglio, Franco

    2002-07-01

    Primary aldosteronism (PA) is the most common cause of endocrine hypertension. PA is most frequently presented as moderate to severe hypertension, but the clinical and biochemical features vary widely. The aim of our study was to identify genetic variants that influence the phenotype of patients with PA. We hypothesized that genetic variants potentially affecting aldosterone production (aldosterone synthase, CYP11B2), renal proximal tubule reabsorption (alpha-adducin), or the mechanisms of counterbalance leading to vasodilatation and sodium excretion (bradykinin B(2)-receptor, B(2)R) could influence the clinical and biochemical characteristics of patients with PA. We studied three polymorphisms of these genes (C-344T of CYP11B2, G460W of alpha-adducin, and C-58T of B(2)R) in 167 primary aldosteronism patients (56 with aldosterone-producing adenoma and 111 with idiopathic hyperaldosteronism). B(2)R and alpha-adducin genotypes were strong independent predictors of both systolic and diastolic blood pressure levels; plasma renin activity and aldosterone also play a marginal role on BP levels. Body mass index, age, sex, and CYP11B2 genotype displayed no significant effect on the clinical parameters of our population. In particular, alpha-adducin and B(2)R polymorphisms accounted for 13.2% and 11.0% of the systolic and diastolic blood pressure variance, respectively. These data suggest that genetic variants of alpha-adducin and the bradykinin B(2)-R influence the blood pressure levels in patients with primary aldosteronism. PMID:12107246

  5. An E1M--E2C fusion protein encoded by human papillomavirus type 11 is asequence-specific transcription repressor.

    PubMed Central

    Chiang, C M; Broker, T R; Chow, L T

    1991-01-01

    We have isolated a putative, spliced E5 cDNA of human papillomavirus type 11 (HPV-11) by polymerase chain reaction amplification of cDNAs from an experimental condyloma. Using retrovirus-mediated gene transfer, we isolated two novel HPV-11 cDNAs, one of which had a splice linking nucleotides 1272 and 3377. This transcript also existed in experimental condylomata and in cervical carcinoma cells transfected with cloned genomic HPV-11 DNAs. The 5' end of the transcript in transfected cells originated upstream of the initiation codon of the E1 open reading frame (ORF). It could conceptually encode a fusion protein consisting of the amino-terminal 23% of the E1 ORF and the carboxy-terminal 40% of the E2 ORF. This E1M--E2C fusion protein contained both the DNA replication modulator domain E1M, as defined in the bovine papillomavirus system, and the DNA binding domain of the E2 protein, which regulates viral transcriptional activities. Indirect immunofluorescence with polyclonal antibodies raised against the bacterially expressed TrpE-HPV-11 E2 protein demonstrated nuclear localization of the E1M--E2C protein in cells transiently transfected with an expression plasmid. Immunoprecipitation revealed a specific protein with an apparent molecular weight of 42,000 in transfected cells. The chloramphenicol acetyltransferase assay established that the putative E1M--E2C protein was a potent transcriptional repressor of both E2-dependent and E2-independent HPV-11 enhancer/promoter activities. Northern (RNA) blot hybridization indicated the repression was on the transcriptional level. Mutational analysis suggested that the E1M--E2C protein is an E2-binding site-specific repressor. The fusion protein also repressed bovine papillomavirus type 1 (BPV-1) E2 protein-dependent BPV-1 enhancer activity. When constitutively expressed in mouse C127 cells, the E1M--E2C protein inhibited BPV-1 transformation and episomal DNA replication, consistent with a role in the modulation of replication

  6. Down-regulation of messenger ribonucleic acid encoding an importer of sulfoconjugated steroids during human chorionic gonadotropin-induced follicular luteinization in vivo.

    PubMed

    Brown, Kristy A; Bouchard, Nadine; Lussier, Jacques G; Sirois, Jean

    2007-01-01

    Members of the organic anion transporting polypeptide (SLCO/OATP) superfamily are capable of importing anionic compounds across the lipid bilayer in a sodium-independent manner. Member 2B1 has been shown to transport few substrates, two of which are dihydroepiandrosterone-3-sulfate (DHEA-S) and estrone-3-sulfate. Steroid sulfatase (STS) catalyses the hydrolysis of these steroids into their unconjugated counterparts. The objective of this study was to investigate the regulation of SLCO2B1 and STS mRNAs during human chorionic gonadotropin (hCG)-induced ovulation/luteinization. The equine SLCO2B1 cDNA was cloned and shown to encode a 709-amino acid protein (OATP2B1) that is highly conserved when compared to mammalian orthologs. RT-PCR/Southern blot analyses were performed to study the regulation of SLCO2B1 and STS transcripts in equine preovulatory follicles isolated between 0 and 39h after hCG treatment. Results showed high levels of SLCO2B1 mRNA expression before hCG, with a marked decrease observed in follicles obtained 24-39h post-hCG (P<0.05). Analyses of isolated granulosa and theca interna cells identified high mRNA expression in both cell types prior to hCG treatment, with granulosa cells showing a more rapid SLCO2B1 mRNA down-regulation. No significant change in STS mRNA was observed in intact follicle walls. However, when both cell types were isolated, a significant decrease in STS mRNA was observed in granulosa cells 24-39h post-hCG. Collectively, these results demonstrate that the hCG-dependent induction of follicular luteinization is accompanied by the down-regulation of SLCO2B1 and STS transcripts. Considering that OATP2B1 can import sulfoconjugated DHEA and estrogens, and that STS can remove the sulfonate moiety from these steroids, their down-regulation in luteinizing preovulatory follicles may provide an additional biochemical basis for the decrease in ovarian 17beta-estradiol biosynthesis after the LH surge. PMID:17049229

  7. Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients.

    PubMed

    Menon, Anand G; Kuppen, Peter J K; van der Burg, Sjoerd H; Offringa, Rienk; Bonnet, Marie Claude; Harinck, Bert I J; Tollenaar, Rob A E M; Redeker, Anke; Putter, Hein; Moingeon, Philippe; Morreau, Hans; Melief, Cornelis J M; van de Velde, Cornelis J H

    2003-07-01

    Overexpression of p53 occurs in more than 50% of colorectal cancers. Therefore, p53 represents an attractive target antigen for immunotherapy. We assessed the safety of a canarypox virus encoding the human wild-type p53 gene given intravenously to end-stage colorectal cancer patients in a three-step dose escalation study aimed at inducing p53 immune responses. Patients with metastatic disease of p53-overexpressing colorectal cancers were vaccinated three times at 3-week intervals, each time with 10(6.5) CCID(50) (CCID(50)=cell culture infectious dose 50%; group 1, n=5), 10(7.0) CCID(50) (group 2, n=5) or 10(7.5) CCID(50) (group 3, n=6). Vital signs and the occurrence of adverse events were monitored and blood was analyzed for biochemical and hematological parameters as well as signs of auto-immune safety. In all, 16 patients were enrolled and 15 patients completed three vaccinations. No anaphylactic reaction or unwanted auto-immune reactions were observed. A total of 16 serious adverse events (SAEs) occurred: 10 in group 1, three in group 2 and three in group 3. All SAEs were tumor-related complications. There was no difference in the frequency of adverse events between the three groups, except for fever. Fever was the only vaccination-related adverse event consistently observed and was most frequent and outspoken in the group 3 patients. The majority was a grade 1 or 2 fever (93%) and grade 3 fever (7%) was observed in three patients of group 3. Some patients showed humoral and cellular responses against p53, following vaccinations. After having completed his initial treatment cycle, one patient (group 2) received a second treatment cycle of three doses of 10(7.5) CCID(50) and subsequently showed stable disease. All other patients showed progressive disease. We conclude that ALVAC-p53 can be administered intravenously to colorectal cancer patients without serious toxicity or pathological autoimmunity and can induce immune responses against p53. PMID:12833131

  8. Intravascular and interstitial degradation of bradykinin in isolated perfused rat heart

    PubMed Central

    Dendorfer, Andreas; Wolfrum, Sebastian; Wellhöner, Peter; Korsman, Katja; Dominiak, Peter

    1997-01-01

    Bradykinin (BK) has been shown to exert cardioprotective effects which are potentiated by inhibitors of angiotensin I-converting enzyme (ACE). In order to clarify the significance of ACE within the whole spectrum of myocardial kininases we investigated BK degradation in the isolated rat heart. Tritiated BK (3H-BK) or unlabelled BK was either repeatedly perfused through the heart, or applied as an intracoronary bolus allowing determination of its elution kinetics. BK metabolites were analysed by HPLC. Kininases were identified by ramiprilat, phosphoramidon, diprotin A and 2-mercaptoethanol or apstatin as specific inhibitors of ACE, neutral endopeptidase 24.11 (NEP), dipeptidylaminopeptidase IV and aminopeptidase P (APP), respectively. In sequential perfusion passages, 3H-BK concentrations in the perfusate decreased by 39% during each passage. Ramiprilat reduced the rate of 3H-BK breakdown by 54% and nearly abolished [1-5]-BK generation. The ramiprilat-resistant kininase activity was for the most part inhibited by the selective APP inhibitor apstatin (IC50 0.9 μM). BK cleavage by APP yielded the intermediate product [2-9]-BK, which was rapidly metabolized to [4-9]-BK by dipeptidylaminopeptidase IV. After bolus injection of 3H-BK, 10% of the applied radioactivity were protractedly eluted, indicating the distribution of this fraction into the myocardial interstitium. In samples of such interstitial perfusate fractions, 3H-BK was extensively (by 92%) degraded, essentially by ACE and APP. The ramiprilat- and mercaptoethanol-resistant fraction of interstitial kininase activity amounted to 14%, about half of which could be attributed to NEP. Only the product of NEP, [1-7]-BK, was continuously generated during the presence of 3H-BK in the interstitium. ACE and APP are located at the endothelium and represent the predominant kininases of rat myocardium. Both enzymes form a metabolic barrier for the extravasated fraction of BK. Thus, only interstitial, but not

  9. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules

    PubMed Central

    2013-01-01

    Background The testis-specific isoform of angiotensin-converting enzyme (tACE) is exclusively expressed in germ cells during spermatogenesis. Although the exact role of tACE in male fertility is unknown, it clearly plays a critical function in spermatogenesis. The dipeptidase domain of tACE is identical to the C-terminal catalytic domain of somatic ACE (sACE). Bradykinin potentiating peptides (BPPs) from snake venoms are the first natural sACE inhibitors described and their structure–activity relationship studies were the basis for the development of antihypertensive drugs such as captopril. In recent years, it has been showed that a number of BPPs – including BPP-10c – are able to distinguish between the N- and C-active sites of sACE, what is not applicable to captopril. Considering the similarity between tACE and sACE (and since BPPs are able to distinguish between the two active sites of sACE), the effects of the BPP-10c and captopril on the structure and function of the seminiferous epithelium were characterized in the present study. BPP-10c and captopril were administered in male Swiss mice by intraperitoneal injection (4.7 μmol/kg for 15 days) and histological sections of testes were analyzed. Classification of seminiferous tubules and stage analysis were carried out for quantitative evaluation of germ cells of the seminiferous epithelium. The blood-testis barrier (BTB) permeability and distribution of claudin-1 in the seminiferous epithelium were analyzed by hypertonic fixative method and immunohistochemical analyses of testes, respectively. Results The morphology of seminiferous tubules from animals treated with BPP-10c showed an intense disruption of the epithelium, presence of atypical multinucleated cells in the lumen and degenerated germ cells in the adluminal compartment. BPP-10c led to an increase in the number of round spermatids and total support capacity of Sertoli cell in stages I, V, VII/VIII of the seminiferous epithelium cycle, without

  10. Proinflammatory characteristics of a nonpeptide bradykinin mimic, FR190997, in vivo.

    PubMed

    Hayashi, I; Ishihara, K; Kumagai, Y; Majima, M

    2001-08-01

    1. Proinflammatory potency of the nonpeptide bradykinin (BK) B(2) receptor agonist FR190997 (8-[2,6-dichloro-3-[N-[(E)-4-(N-methylcarbamoyl)cinnamidoacetyl]-N-methylamino]benzyloxy]-2-methyl-4-(2-pyridylmethoxy)quinoline) was investigated. 2. Intradermal injection of FR190997 (0.03 - 3 nmol site(-1)) into dorsal skin of rats increased vascular permeability in a dose-dependent manner. The effect was less than that of BK, but it was long-acting and was inhibited by treatment with FR173657 (3 mg kg(-1), p.o.). Captopril (10 mg kg(-1), i.p.) did not enhance the plasma extravasation by FR190997 (0.3 nmol site(-1)) in the presence of soybean trypsin inhibitor (SBTI, 30 microg site(-1)). 3. Subcutaneous injection of FR190997 (3 nmol site(-1)) into the hindpaw of mice markedly induced paw swelling. The oedema lasted up to 3 h after the injection. Administration of indomethacin or NS-398 (10 mg kg(-1), i.p.) significantly reduced it at 3 h after the injection. 4. Simultaneous i.p. injection of prostaglandin (PG) E(2) (1 nmol site(-1)) or beraprost sodium (0.5 nmol site(-1)) with FR190997 (5 nmol site(-1)) greatly enhanced frequency of writhing reactions in mice. 5. FR190997 (0.3 - 30 nmol kg(-1), i.v.) showed less increase in airway opening pressure (Pao) in the guinea-pig after i.v. injection. Furthermore, FR190997 (0.03 - 30 nmol) resulted in a very weak contraction of tracheal ring strips and lung parenchymal sections in vitro. 6. In mice sponge implants, topical application of FR190997 increased angiogenesis and granulation with enhanced expressions of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) mRNAs. 7. These results indicate that FR190997 has proinflammatory long-lasting characteristics and it might be 'a stable tool' for studying the role of BK B(2) receptor in vivo. PMID:11498515

  11. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases

    PubMed Central

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2016-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer’s inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  12. Assignment of the gene encoding the [beta]-subunit of the electron-transfer flavoprotein (ETFB) to human chromosome 19q13. 3

    SciTech Connect

    Antonacci, R. ); Colombo, I.; Volta, M.; DiDonato, S.; Finocchiaro, G. ); Archidiacono, N.; Rocchi, M. )

    1994-01-01

    The electron-transfer flavoprotein (ETF), located in the mitochondrial matrix, is a nuclear-encoded enzyme delivering to the respiratory chain electrons by straight-chain acyl-CoA dehydrogenases and other dehydrogenases. ETF is composed of a 35-kDa [alpha]-subunit that is cleaved to a 32-kDa protein during mitochondrial import (ETFA) and a [beta]-subunit that reaches the mitochondrion unmodified (ETFB). The cDNA encoding both these subunits has been cloned and sequenced. 14 refs., 1 fig.

  13. The PsychENCODE project

    PubMed Central

    Akbarian, Schahram; Liu, Chunyu; Knowles, James A; Vaccarino, Flora M; Farnham, Peggy J; Crawford, Gregory E; Jaffe, Andrew E; Pinto, Dalila; Dracheva, Stella; Geschwind, Daniel H; Mill, Jonathan; Nairn, Angus C; Abyzov, Alexej; Pochareddy, Sirisha; Prabhakar, Shyam; Weissman, Sherman; Sullivan, Patrick F; State, Matthew W; Weng, Zhiping; Peters, Mette A; White, Kevin P; Gerstein, Mark B; Senthil, Geetha; Lehner, Thomas; Sklar, Pamela; Sestan, Nenad

    2015-01-01

    Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE. PMID:26605881

  14. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  15. Mechanisms of bradykinin-induced contraction of the guinea-pig gallbladder in vitro.

    PubMed

    Cabrini, D A; Silva, A M; Calixto, J B

    1995-04-01

    1. The mechanisms underlying bradykinin (BK)-mediated contractions in strips of guinea-pig gallbladder (GPG) were examined by use of selective bradykinin (BK) receptor agonists and antagonists. 2. Addition of BK and related kinins (0.1 pM-10 microM) after 2 h of equilibration of the preparation caused graded contractions characterized by two distinct phases: high affinity (0.1 pM-1 nM) and low affinity (3 nM-10 microM). The rank order of potency for the first phase (mean EC50, pM) was: BK (1.36) = Hyp3-BK (1.44) = Lys-BK (1.54) > Tyr8-BK (2.72) > Met-Lys-BK (4.30). The rank order of potency for the second phase (mean EC50, nM, at concentration producing 50% of the contraction caused by 80 mM KCl) was: Hyp3-BK (8.95) > Met-Lys-BK (12.78) > Tyr8-BK (33.75) > Lys-BK caused by 80 mM KCl) was: Hyp3-BK (8.95) > Met-Lys-BK (12.78) > Tyr8-BK (33.75) > Lys-BK (60.92) > BK (77.35). The contractile responses (g of tension) to 3 microM of BK (the highest concentration tested) were: Hyp3-BK, 1.76 +/- 0.09; BK, 1.65 +/- 0.12; Lys-BK, 1.45 +/- 0.13; Tyr8-BK, 1.36 +/- 0.15 and Met-Lys-BK, 1.36 +/- 0.15. The selective B1 agonist, des-Arg9-BK, caused only a weak contraction with maximal response (0.21 +/- 0.05 g), which corresponded to approximately 10% of that induced by BK. 3. BK-induced contraction in GPG was inhibited by indomethacin (3 microM) or ibuprofen (30 microM), and was partially reduced by phenidone (30 microM), but was not affected by atropine (1 JM), nicardipine (1 gM),Ca2+-free medium plus EGTA, dazoxiben (30 nM), L-655,240 (10 nM, a selective receptor antagonist ofthromboxane A2), MK-571 (0.1 microM, a selective leukotriene D4 receptor antagonist), tetrodotoxin(0.3microM), CP 96,345 (0.3 microM, a NK1 receptor antagonist), mepyramine (1 microM), glibenclamide (1 microM), H-7(3 microM), staurosporine (100 nM), or phorbol 12-myristate 13-acetate (1 microM). However, BK-induced contractions in GPG maintained in Ca2+-free medium were markedly attenuated by ryanodine (10

  16. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  17. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    PubMed

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment. PMID:24036884

  18. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  19. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains

    PubMed Central

    Srivastava, Anand K.; Pispa, Johanna; Hartung, Andrew J.; Du, Yangzhu; Ezer, Sini; Jenks, Ted; Shimada, Tokihiko; Pekkanen, Maija; Mikkola, Marja L.; Ko, Minoru S. H.; Thesleff, Irma; Kere, Juha; Schlessinger, David

    1997-01-01

    Mouse Tabby (Ta) and X chromosome-linked human EDA share the features of hypoplastic hair, teeth, and eccrine sweat glands. We have cloned the Ta gene and find it to be homologous to the EDA gene. The gene is altered in two Ta alleles with a point mutation or a deletion. The gene is expressed in developing teeth and epidermis; no expression is seen in corresponding tissues from Ta mice. Ta and EDA genes both encode alternatively spliced forms; novel exons now extend the 3′ end of the EDA gene. All transcripts recovered have the same 5′ exon. The longest Ta cDNA encodes a 391-residue transmembrane protein, ectodysplasin-A, containing 19 Gly-Xaa-Yaa repeats. The isoforms of ectodysplasin-A may correlate with differential roles during embryonic development. PMID:9371801

  20. Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection

    PubMed Central

    Tamminga, Cindy; Sedegah, Martha; Maiolatesi, Santina; Fedders, Charlotte; Reyes, Sharina; Reyes, Anatalio; Vasquez, Carlos; Alcorta, Yolanda; Chuang, Ilin; Spring, Michele; Kavanaugh, Michael; Ganeshan, Harini; Huang, Jun; Belmonte, Maria; Abot, Esteban; Belmonte, Arnel; Banania, JoGlenna; Farooq, Fouzia; Murphy, Jittawadee; Komisar, Jack; Richie, Nancy O; Bennett, Jason; Limbach, Keith; Patterson, Noelle B; Bruder, Joseph T; Shi, Meng; Miller, Edward; Dutta, Sheetij; Diggs, Carter; Soisson, Lorraine A; Hollingdale, Michael R; Epstein, Judith E; Richie, Thomas L

    2013-01-01

    Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. Methodology/Principal Findings: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 1010 particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range < 50–1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2–38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38–2550) and for AMA1 of 1303 (range 435–4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. Significance: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015. PMID:23899517

  1. Endogenous bradykinin activates ischaemically sensitive cardiac visceral afferents through kinin B2 receptors in cats

    PubMed Central

    Tjen-A-Looi, Stephanie C; Pan, Hui-Lin; Longhurst, John C

    1998-01-01

    Activity of ischaemically sensitive cardiac visceral afferents during myocardial ischaemia induces both angina and cardiovascular reflexes. Increased production of bradykinin (BK) and cyclo-oxygenase products (i.e. prostaglandins (PGs)) occurs during myocardial ischaemia. However, the role of these agents in activation of ischaemically sensitive cardiac afferents has not been established. The present study tested the hypothesis that BK produced during ischaemia activates cardiac afferents through kinin B2 receptors. Single-unit activity of cardiac afferents innervating the left ventricle was recorded from the left thoracic sympathetic chain (T1–T4) of anaesthetized cats. Ischaemically sensitive cardiac afferents were identified according to their response to 5 min of myocardial ischaemia. The mechanism of BK in activation of ischaemically sensitive cardiac afferents was determined by injection of BK (1 μg kg−1 i.a.), des-Arg9-BK (1 μg kg−1 i.a., a specific kinin B1 receptor agonist), kinin B2 receptor antagonists: HOE140 (30 μg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.), cyclo-oxygenase inhibition with indomethacin (5 mg kg−1 i.v.) and NPC-17731 (40 μg kg−1 i.v.) after pretreatment with indomethacin (5 mg kg−1 i.v.). We observed that BK increased the discharge rate of all eleven ischaemically sensitive cardiac afferents from 0.39 ± 0.12 to 1.47 ± 0.37 impulses s−1 (P < 0.05). Conversely, des-Arg9-BK did not significantly increase the activity of eleven ischaemically sensitive fibres (0.58 ± 0.02 vs. 0.50 ± 0.18 impulses s−1). HOE140 significantly attenuated the response of twelve afferents to ischaemia (0.61 ± 0.22 to 1.85 ± 0.5 vs. 0.53 ± 0.16 to 1.09 ± 0.4 impulses s−1). NPC-17731, another kinin B2 receptor antagonist, had similar inhibitory effects on six other ischaemically sensitive cardiac afferents (0.35 ± 0.14 to 1.19 ± 0.29 vs. 0.22 ± 0.08 to 0.23 ± 0.07 impulses s−1). Indomethacin significantly reduced the

  2. Changes in luminal flow rate modulate basal and bradykinin-stimulated cell [Ca2+] in aortic endothelium.

    PubMed

    Oliver, J A; Chase, H S

    1992-04-01

    Hemodynamic forces influence many endothelial cell functions. The coupling between hemodynamic forces and cell function could be mediated by mechano-sensitive ion channels present in the plasma membrane of endothelial cells. Because one of these channels is permeable to Ca2+, we tested whether hemodynamic forces influence endothelial cell Ca2+ ([Ca2+]i). Bovine aortic endothelial cells were grown inside cylindrical glass tubes, loaded with fura-2, and perfused at different pressures and flow rates on the stage of a fluorescence microscope. Decreasing flow from 110 to 2 ml.min-1 raised [Ca2+]i from 57 +/- 11 to 186 +/- 29 nM (mean +/- SEM, p less than 0.01) by increasing the entry of extracellular Ca2+ into the cytoplasm. Increasing flow from 2 to 110 ml.min-1 transiently decreased [Ca2+]i from 62 +/- 3 to 33 +/- 5 nM (p less than 0.01) apparently due to reduced Ca2+ entry and concomitant extrusion by the plasma membrane Ca(2+)-ATPase. The rise in [Ca2+]i induced by bradykinin was magnified during a decrease in flow; in control cells, 10(-7) M bradykinin increased [Ca2+]i by 162 +/- 26 nM, whereas [Ca2+]i increased 350 +/- 67 nM (p less than 0.05) in cells previously exposed to 110 ml.min-1. These observations suggest that flow-induced changes in [Ca2+]i might be a signal-transduction mechanism for endothelial functions responsive to hemodynamic forces and may also modulate the magnitude of hormonally mediated increases in [Ca2+]i. PMID:1313820

  3. Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides.

    PubMed

    da Cunha Morales Álvares, Alice; Schwartz, Elisabeth Ferroni; Amaral, Nathalia Oda; Trindade, Neidiane Rosa; Pedrino, Gustavo Rodrigues; Silva, Luciano Paulino; de Freitas, Sonia Maria

    2014-01-01

    The hydrolysis of bradykinin (Bk) by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI) and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M-1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus) ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ. PMID:25361421

  4. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    PubMed

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone. PMID:12733823

  5. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription

    PubMed Central

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L.; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel

    2009-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for “antisense protein of HTLV-2.” APH-2 mRNA is spliced, polyadenylated, and initiates in the 3′-long terminal repeat at different positions. This transcript was detected in all HTLV-2–infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2–infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand–encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  6. Human T-cell leukemia virus type 2 produces a spliced antisense transcript encoding a protein that lacks a classic bZIP domain but still inhibits Tax2-mediated transcription.

    PubMed

    Halin, Marilène; Douceron, Estelle; Clerc, Isabelle; Journo, Chloé; Ko, Nga Ling; Landry, Sébastien; Murphy, Edward L; Gessain, Antoine; Lemasson, Isabelle; Mesnard, Jean-Michel; Barbeau, Benoît; Mahieux, Renaud

    2009-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) retroviruses infect T lymphocytes. The minus strand of the HTLV-1 genome encodes HBZ, a protein that could play a role in the development of leukemia in infected patients. Herein, we demonstrate that the complementary strand of the HTLV-2 genome also encodes a protein that we named APH-2 for "antisense protein of HTLV-2." APH-2 mRNA is spliced, polyadenylated, and initiates in the 3'-long terminal repeat at different positions. This transcript was detected in all HTLV-2-infected cell lines and short-term culture of lymphocytes obtained from HTLV-2 African patients tested and in 4 of 15 HTLV-2-infected blood donors. The APH-2 protein is 183 amino acids long, is localized in the cell nucleus, and is detected in vivo. Despite the lack of a consensus basic leucine zipper domain, APH-2 interacts with cyclic adenosine monophosphate-response element binding protein (CREB) and represses Tax2-mediated transcription in Tax2-expressing cells and in cells transfected with an HTLV-2 molecular clone. Altogether, our results demonstrate the existence of an antisense strand-encoded protein in HTLV-2, which could represent an important player in the development of disorders, such as lymphocytosis, which is frequently observed in HTLV-2 patients. PMID:19602711

  7. Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice

    PubMed Central

    Gregorovic, Goran; Boulden, Elizabeth A.; Bosshard, Rachel; Elgueta Karstegl, Claudio; Skalsky, Rebecca; Cullen, Bryan R.; Gujer, Cornelia; Rämer, Patrick; Münz, Christian

    2015-01-01

    Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system. PMID:26339045

  8. Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice.

    PubMed

    Gregorovic, Goran; Boulden, Elizabeth A; Bosshard, Rachel; Elgueta Karstegl, Claudio; Skalsky, Rebecca; Cullen, Bryan R; Gujer, Cornelia; Rämer, Patrick; Münz, Christian; Farrell, Paul J

    2015-11-01

    Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system. PMID:26339045

  9. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  10. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying α1,4-N-acetylgalactosaminyltransferase

    PubMed Central

    2004-01-01

    Insects express arthro-series glycosphingolipids, which contain an α1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian α1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcβ1,4GlcNAcβ1-R α-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal β-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an α1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac. PMID:15130086

  11. Lessons from modENCODE.

    PubMed

    Brown, James B; Celniker, Susan E

    2015-01-01

    The modENCODE (Model Organism Encyclopedia of DNA Elements) Consortium aimed to map functional elements-including transcripts, chromatin marks, regulatory factor binding sites, and origins of DNA replication-in the model organisms Drosophila melanogaster and Caenorhabditis elegans. During its five-year span, the consortium conducted more than 2,000 genome-wide assays in developmentally staged animals, dissected tissues, and homogeneous cell lines. Analysis of these data sets provided foundational insights into genome, epigenome, and transcriptome structure and the evolutionary turnover of regulatory pathways. These studies facilitated a comparative analysis with similar data types produced by the ENCODE Consortium for human cells. Genome organization differs drastically in these distant species, and yet quantitative relationships among chromatin state, transcription, and cotranscriptional RNA processing are deeply conserved. Of the many biological discoveries of the modENCODE Consortium, we highlight insights that emerged from integrative studies. We focus on operational and scientific lessons that may aid future projects of similar scale or aims in other, emerging model systems. PMID:26133010

  12. Antinociceptive profile of the pseudopeptide B2 bradykinin receptor antagonist NPC 18688 in mice.

    PubMed Central

    Corrêa, C. R.; Kyle, D. J.; Chakraverty, S.; Calixto, J. B.

    1996-01-01

    nociceptive response caused by intraplantar injection of capsaicin (1.6 micrograms/paw) (40 +/- 2%). However, NPC 18688 (up to 300 nmol kg-1, i.p.), given 30 min beforehand, had no significant analgesic effect when analyzed in the tail flick and in the hot plate pain models, nor did it change the performance of animals in the rota rod test. 6. The action of NPC 18688 was quite selective for the B2 receptor, and like Hoe 140, (1 to 100 nmol kg-1, i.p.) it caused graded inhibition of bradykinin (BK, 3 mol/paw)-induced increase in mouse paw volume, with mean ID50s of 61 and 6 nmol kg-1, respectively. In addition, at 100 nmol kg-1, the dose at which NPC 18688 significantly antagonized BK (3 nmol)-mediated rat paw oedema in naive animals, it had no significant effect on des-Arg9-BK (100 nmol/paw)-induced oedema in paws that had been desensitized to BK. NPC 18688 (210 nmol kg-1), like Hoe 140 (230 nmol kg-1) given s.c. 30 min beforehand, completely abolished BK (28 nmol)-induced hypotension, without affecting the fall of mean arterial blood pressure induced by i.v. injection of ACh (2 nmol kg-1). Finally, NPC 18688 (1 microM) did not affect ACh-mediated contraction in the guinea-pig ileum or toad rectus abdominii in vitro. 7. These results demonstrate that the newly-developed and selective pseudopeptide B2 receptor antagonist, NPC 18688, although less potent than the available second generation of B2 peptide BK receptor antagonists, exhibits topical and long-lasting systemic anti-hyperalgesic properties when analysed in several models of nociception in mice, making it a useful tool for investigating the participation of BK and related kinins in physiological and pathological processes. Finally, this new class of selective pseudopeptide B2 receptor antagonist may constitute a new strategy for developing the third generation of potent and long-lasting orally-active non-peptide BK antagonists, which may be useful for the management of clinical disorders involving BK and relate PMID

  13. The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD[sub 67] and GAD[sub 65]) suggests that they derive from a common ancestral GAD

    SciTech Connect

    Bu, D.F.; Tobin, A.J. )

    1994-05-01

    The authors have cloned and characterized human genes (GAD1 and GAD2) encoding the two human glutamate decarboxylases, GAD[sub 67] and GAD[sub 65]. The coding region of the GAD[sub 65] gene consists of 16 exons, spanning more than 79 kb of genomic DNA. Exon 1 contains the 5[prime] untranslated region of GAD[sub 65] mRNA, and exon 16 specifies the protein's carboxy terminal and at least part of the mRNA's 3[prime] untranslated sequence. Similarly, the coding region of the GAD[sub 67] gene consists of 16 exons, spread over more than 45 kb of genomic DNA. The GAD[sub 67] gene contains an additional exon (exon 0) that, together with part of exon 1, specifies the 5[prime] untranslated region of GAD[sub 67] mRNA. Exon 16 specifies the entire 3[prime] untranslated region of GAD[sub 67] mRNA. Exons 1-3 encode the most divergent region of GAD[sub 65] and GAD[sub 67]. The remaining exon-intron boundaries occur at identical positions in the two cDNAs, suggesting that they derive from a common ancestral GAD gene. 26 refs., 4 figs., 2 tabs.

  14. Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes.

    PubMed

    Korang, K; Christiano, A M; Uitto, J; Mauviel, A

    1995-07-24

    Laminin 5, an anchoring filament protein previously known as nicein/kalinin/epiligrin, consists of three polypeptide chains, alpha 3, beta 3, and gamma 2, encoded by the genes LAMA3, LAMB3, and LAMC2, respectively. The expression of laminin 5 was detected by Northern hybridization with specific cDNA probes in various epidermal keratinocyte cultures, whereas no expression of any of the three genes could be detected in foreskin fibroblast cultures. Transforming growth factor-beta (TGF-beta) enhanced LAMA3, LAMB3, and LAMC2 gene expression in human epidermal keratinocytes, as well as in HaCaT and Balb/K cells in culture, although the extent of enhancement was greater for LAMA3 and LAMC2 genes than for LAMB3. Interestingly, tumor necrosis factor-alpha, (TNF-alpha) alone did not alter the expression of LAMB3 and LAMC2 genes in human epidermal keratinocytes, whereas it inhibited the expression of LAMA3. These results suggest that the expression of the three genes encoding the laminin 5 subunits is not coordinately regulated by the cytokines tested. PMID:7635220

  15. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  16. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses.

    PubMed

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-12-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  17. When two is too many: Collaborative encoding impairs memory.

    PubMed

    Barber, Sarah J; Rajaram, Suparna; Aron, Arthur

    2010-04-01

    Humans routinely encode and retrieve experiences in interactive, collaborative contexts. Yet much of what we know about human memory comes from research on individuals working in isolation. Some recent research has examined collaboration during retrieval, but not much is known about how collaboration during encoding affects memory. We examined this issue. Participants created episodes by elaborating on study materials alone or collaboratively, and they later performed a cued-recall task alone, with the study partner, or with a different partner (Experiment 1). Collaborative encoding impaired recall. This counterintuitive outcome was found for both individual and group recall, even when the same partners collaborated across encoding and retrieval. This impairment was significantly reduced, but persisted, when the encoding instructions encouraged free-flowing collaboration (Experiment 2). Thus, the collaborative-encoding deficit is robust in nature and likely occurs because collaborative encoding produces less effective cues for later retrieval. PMID:20234016

  18. Hyperoxic gassing with Tiron enhances bradykinin-induced endothelium-dependent and EDH-type relaxation through generation of hydrogen peroxide.

    PubMed

    Wong, Pui San; Roberts, Richard E; Randall, Michael D

    2015-01-01

    Oxygenation with 95%O2 is routinely used in organ bath studies. However, hyperoxia may affect tissue responses, particularly in studies which involve reactive oxygen species (ROS). Here, the effects of the antioxidant, Tiron, were investigated under different gassing conditions in the porcine isolated coronary artery (PCA). Distal PCAs from male and female pigs were mounted in a wire myograph gassed with either 95%O2/5%CO2 or 95% air/5%CO2 and pre-contracted with U46619. Concentration-response curves to bradykinin were constructed in the presence of Tiron (1mM), a cell permeable superoxide scavenger and catalase (1000Uml(-1)) to breakdown H2O2. The H2O2 level in Krebs'-Henseleit solution was detected using Amplex Red. Bradykinin produced concentration-dependent vasorelaxations in male and female PCAs when gassed with either 95%O2 or air, with no differences in the Rmax or EC50. Tiron increased the potency of bradykinin only when gassed with 95%O2 in PCAs from both sexes. At 95%O2, catalase prevented the leftward shift caused by Tiron in both sexes indicating that catalase prevented the formation of H2O2 by Tiron. In female PCAs, addition of catalase to Tiron significantly reduced the Rmax. In the EDH-type response (using L-NAME and indomethacin), Tiron enhanced the potency of the bradykinin-induced vasorelaxation when gassed with 95%O2 in PCAs from both sexes. Biochemical analysis using Amplex Red demonstrated that H2O2 was generated in Krebs'-Henseleit solution when gassed with 95%O2, but not with air. Therefore, hyperoxic gassing conditions could alter the environment generating superoxide within the Krebs'-Henseleit buffer, which may, in turn, influence the in vitro pharmacological responses. PMID:25450247

  19. Regulation of bradykinin-induced activation of volume-sensitive outwardly rectifying anion channels by Ca2+ nanodomains in mouse astrocytes

    PubMed Central

    Akita, Tenpei; Okada, Yasunobu

    2011-01-01

    Abstract Volume-sensitive outwardly rectifying (VSOR) anion channels play a key role in a variety of essential cell functions including cell volume regulation, cell death induction and intercellular communications. We previously demonstrated that, in cultured mouse cortical astrocytes, VSOR channels are activated in response to an inflammatory mediator, bradykinin, even without an increase in cell volume. Here we report that this VSOR channel activation must be mediated firstly by ‘nanodomains’ of high [Ca2+]i generated at the sites of both Ca2+ release from intracellular Ca2+ stores and Ca2+ entry at the plasma membrane. Bradykinin elicited a [Ca2+]i rise, initially caused by Ca2+ release and then by Ca2+ entry. Suppression of the [Ca2+]i rise by removal of extracellular Ca2+ and by depletion of Ca2+ stores suppressed the VSOR channel activation in a graded manner. Quantitative RT-PCR and suppression of gene expression with small interfering RNAs indicated that Orai1, TRPC1 and TRPC3 channels are involved in the Ca2+ entry and especially the entry through TRPC1 channels is strongly involved in the bradykinin-induced activation of VSOR channels. Moreover, Ca2+-dependent protein kinases Cα and β were found to mediate the activation after the [Ca2+]i rise through inducing generation of reactive oxygen species. Intracellular application of a slow Ca2+ chelator, EGTA, at 10 mm or a fast chelator, BAPTA, at 1 mm, however, had little effect on the VSOR channel activation. Application of BAPTA at 10 mm suppressed significantly the activation to one-third. These suggest that the VSOR channel activation induced by bradykinin is regulated by Ca2+ in the vicinity of individual Ca2+ release and entry channels, providing a basis for local control of cell volume regulation and intercellular communications. PMID:21690189

  20. Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties

    PubMed Central

    VanTeeffelen, Jurgen W G E; Constantinescu, Alina A; Brands, Judith; Spaan, Jos A E; Vink, Hans

    2008-01-01

    Previous studies have suggested that agonists may increase functionally perfused capillary volume by modulation of blood-excluding glycocalyx volume, but direct evidence for this association is lacking at the moment. Using intravital microscopic visualization of mouse cremaster muscle, we determined the effects of bradykinin (10−5 m) and sodium nitroprusside (10−6 m) on capillary tube haematocrit and glycocalyx barrier properties. In control C57Bl/6 mice (n = 10), tube haematocrit in capillaries (n = 71) increased (P < 0.05) from 8.7 ± 0.3% during baseline to 21.2 ± 1.2 and 22.2 ± 0.9% during superfusion with bradykinin and nitroprusside, respectively. In parallel, the exclusion zone of FITC-labelled 70 kDa dextrans decreased (P < 0.05) from 0.37 ± 0.01 μm during baseline to 0.17 ± 0.01 μm with bradykinin and 0.15 ± 0.01 μm with nitroprusside. Bradykinin and nitroprusside had no effect on dextran exclusion and tube haematocrit in capillaries (n = 55) of hyperlipidemic ApoE3-Leiden mice, which showed impaired exclusion of 70 kDa dextrans (0.05 ± 0.02 μm; P < 0.05 versus C57Bl/6) and increased capillary tube haematocrit (23 ± 0.8%; P < 0.05 versus C57Bl/6) under baseline conditions, indicating glycocalyx degradation. Our data show that vasodilator substances increase functionally perfused capillary volume and that this effect is associated with a reduction in glycocalyx exclusion of 70 kDa dextrans. Modulation of glycocalyx volume might represent a novel mechanism of perfusion control at the capillary level. PMID:18450777

  1. Alignment system for encoders

    NASA Technical Reports Server (NTRS)

    Villani, Daniel D. (Inventor)

    1988-01-01

    An improved encoder alignment system is disclosed which provides an indication of the extent of misalignment and a measure of the rate at which the misalignment may be changing. The invention is adapted for use with a conventional encoder which provides a digital coarse word having at least significant bit and a digital fine word having a least significant bit and a most significant bit. The invention generates the exclusive or of the least significant bit of the coarse digital signal and the least significant bit of the fine digital signal to provide a first signal. The invention then generates the exclusive or of the first signal and the complement of the most significant bit of the fine digital signal to provide an output signal which represents the misalignment of the encoder.

  2. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine.

    PubMed

    Ritzel, M W; Yao, S Y; Ng, A M; Mackey, J R; Cass, C E; Young, J D

    1998-01-01

    Two Na(+)-dependent nucleoside transporters implicated in adenosine and uridine transport in mammalian cells are distinguished functionally on the basis of substrate specificity: CNT1 is selective for pyrimidine nucleosides but also transports adenosine; CNT2 (also termed SPNT) is selective for purine nucleosides but also transports uridine. Both proteins belong to a gene family that includes the NupC proton/nucleoside symporter of E. coli. cDNAs encoding members of the CNT family have been isolated from rat tissues (jejunum, brain, liver; rCNT1 and rCNT2/SPNT) and, most recently, human kidney (hCNT1 and hSPNT1). Here, the molecular cloning and functional characterization of a CNT2/SPNT-type transporter from human small intestine are described. The encoded 658-residue protein (hCNT2 in the nomenclature) had the same predicted amino acid sequence as human kidney hSPNT1, except for a polymorphism at residue 75 (Arg substituted by Ser), and was 83 and 72% identical to rCNT2 and hCNT1, respectively. Sequence differences between hCNT2 and rCNT2 were greatest at the N-terminus. In Xenopus oocytes, recombinant hCNT2 exhibited the functional characteristics of a Na(+)-dependent nucleoside transporter with selectivity for adenosine, other purine nucleosides and uridine (adenosine and uridine K(m) app values 8 and 40 microM, respectively). hCNT2 transcripts were found in kidney and small intestine but, unlike rCNT2, were not detected in liver. Deoxyadenosine, which undergoes net renal secretion in humans, was less readily transported than adenosine. hCNT2 also mediated small, but significant, fluxes of the antiviral purine nucleoside analogue 2',3'-dideoxyinosine. hCNT2 is, therefore potentially involved in both the intestinal absorption and renal handling of purine nucleosides (including adenosine), uridine and purine nucleoside drugs. The gene encoding hCNT2 was mapped to chromosome 15q15. PMID:10087507

  3. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  4. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  5. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    PubMed

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated. PMID:25091347

  6. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13

    SciTech Connect

    Hua, X.; Wu, J.; Goldstein, J.L.

    1995-02-10

    Sterol regulatory element binding protein-1 (SREBP1) and SREBP2 are structurally related proteins that control cholesterol homeostasis by stimulating transcription of sterol-regulated genes, including those encoding the low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl CoA synthase. SREBP1 and SREBP2 are 47% identical, and they share a novel structure comprising a transcriptionally active NH{sub 2}-terminal basic helix-loop-helix-leucine zipper (bHLH-Zip) domain followed by a membrane attachment domain. Cleavage by a sterol-regulated protease frees the bHLH-Zip domain from the membrane and allows it to enter the nucleus. SREBP1 exists in several forms, possibly as a result of alternative splicing at both the 5{prime} and the 3{prime} ends of the mRNA. The genes for SREBP1 (SREBF1) and SREBP2 (SREBF2) have not been studied. In this paper we describe the cloning and characterization of the human SREBF1 gene. The gene is 26 kb in length and has 22 exons and 20 introns. The 5{prime} and 3{prime} sequences that differ between the two SREBP1 cDNAs are encoded by discrete exons, conforming the hypothesis that they result from alternative splicing. The chromosomal locations of human SREBF1 and SREBF2 were determined by analysis of human-rodent somatic cell hybrids and fluorescence in situ hybridization. The SREBF1 gene mapped to the proximal short arm of chromosome 17 (17p11.2), and the SREBF2 gene was localized to the long arm of chromosome 22 (22q13). 22 refs., 3 figs., 2 tabs.

  7. Cloning of a cDNA encoding a putative human very low density lipoprotein/Apolipoprotein E receptor and assignment of the gene to chromosome 9pter-p23[sup 6

    SciTech Connect

    Gafvels, M.E.; Strauss, J.F. III ); Caird, M.; Patterson, D. ); Britt, D.; Jackson, C.L. )

    19