Science.gov

Sample records for encoding human liver

  1. Mice with human livers.

    PubMed

    Grompe, Markus; Strom, Stephen

    2013-12-01

    Animal models are used to study many aspects of human disease and to test therapeutic interventions. However, some very important features of human biology cannot be replicated in animals, even in nonhuman primates or transgenic rodents engineered with human genes. Most human microbial pathogens do not infect animals and the metabolism of many xenobiotics is different between human beings and animals. The advent of transgenic immune-deficient mice has made it possible to generate chimeric animals harboring human tissues and cells, including hepatocytes. The liver plays a central role in many human-specific biological processes and mice with humanized livers can be used to model human metabolism, liver injury, gene regulation, drug toxicity, and hepatotropic infections.

  2. Human liver nucleolar antigens.

    PubMed

    Busch, R K; Busch, H

    1981-10-01

    In an extension of previous studies on the antigens in rat liver nucleoli (R. K. Busch, R. C. Reddy, D. H. Henning, and H. Busch, Proc. Soc. Exp. Biol. Med. 160, 185 (1979); R. K. Busch and H. Busch, Tumori 63, 347 (1977); F. M. Davis, R. K. Busch, L. C. Yeoman, and H. Busch, Cancer Res. 38, 1906 (1978), rabbit antibodies were elicited to human liver nucleoli isolated by the sucrose--Mg2+ method (10). Fluorescent nucleoli were found in liver cryostat sections treated with rabbit anti-human liver nucleolar antibodies followed by fluorescein-conjugated goat anti-rabbit antibodies. In HeLa cells, fluorescence was distributed throughout the nucleus and in a nuclear network but was not localized to the nucleolus. In placental cryostat sections, an overall nuclear fluorescence was observed with some localization to nucleoli. Immunodiffusion analysis revealed two immunoprecipitin bands which appeared to be liver specific. Other immunoprecipitin bands were common to liver, placenta, and HeLa nuclear extracts. Rocket immunoelectrophoresis revealed two liver-specific antigens, one migrating to the cathode and the other to the anode Other rockets exhibited identity to antigens of other nuclear extracts. These results demonstrate the presence of human liver nucleolar-specific antigens which were not found in the HeLa and placental cells.

  3. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  4. Humanized mice with ectopic artificial liver tissues.

    PubMed

    Chen, Alice A; Thomas, David K; Ong, Luvena L; Schwartz, Robert E; Golub, Todd R; Bhatia, Sangeeta N

    2011-07-19

    "Humanized" mice offer a window into aspects of human physiology that are otherwise inaccessible. The best available methods for liver humanization rely on cell transplantation into immunodeficient mice with liver injury but these methods have not gained widespread use due to the duration and variability of hepatocyte repopulation. In light of the significant progress that has been achieved in clinical cell transplantation through tissue engineering, we sought to develop a humanized mouse model based on the facile and ectopic implantation of a tissue-engineered human liver. These human ectopic artificial livers (HEALs) stabilize the function of cryopreserved primary human hepatocytes through juxtacrine and paracrine signals in polymeric scaffolds. In contrast to current methods, HEALs can be efficiently established in immunocompetent mice with normal liver function. Mice transplanted with HEALs exhibit humanized liver functions persistent for weeks, including synthesis of human proteins, human drug metabolism, drug-drug interaction, and drug-induced liver injury. Here, mice with HEALs are used to predict the disproportionate metabolism and toxicity of "major" human metabolites using multiple routes of administration and monitoring. These advances may enable manufacturing of reproducible in vivo models for diverse drug development and research applications.

  5. ENCODE Tiling Array Analysis Identifies Differentially Expressed Annotated and Novel 5′ Capped RNAs in Hepatitis C Infected Liver

    PubMed Central

    Maxwell, Christopher I.; Nelson, Cassie A.; Schwartz, Jason J.; Nix, David A.; Hagedorn, Curt H.

    2011-01-01

    Microarray studies of chronic hepatitis C infection have provided valuable information regarding the host response to viral infection. However, recent studies of the human transcriptome indicate pervasive transcription in previously unannotated regions of the genome and that many RNA transcripts have short or lack 3′ poly(A) ends. We hypothesized that using ENCODE tiling arrays (1% of the genome) in combination with affinity purifying Pol II RNAs by their unique 5′ m7GpppN cap would identify previously undescribed annotated and unannotated genes that are differentially expressed in liver during hepatitis C virus (HCV) infection. Both 5′-capped and poly(A)+ populations of RNA were analyzed using ENCODE tiling arrays. Sixty-four annotated genes were significantly increased in HCV cirrhotic as compared to control liver; twenty-seven (42%) of these genes were identified only by analyzing 5′ capped RNA. Thirty-one annotated genes were significantly decreased; sixteen (50%) of these were identified only by analyzing 5′ capped RNA. Bioinformatic analysis showed that capped RNA produced more consistent results, provided a more extensive expression profile of intronic regions and identified upregulated Pol II transcriptionally active regions in unannotated areas of the genome in HCV cirrhotic liver. Two of these regions were verified by PCR and RACE analysis. qPCR analysis of liver biopsy specimens demonstrated that these unannotated transcripts, as well as IRF1, TRIM22 and MET, were also upregulated in hepatitis C with mild inflammation and no fibrosis. The analysis of 5′ capped RNA in combination with ENCODE tiling arrays provides additional gene expression information and identifies novel upregulated Pol II transcripts not previously described in HCV infected liver. This approach, particularly when combined with new RNA sequencing technologies, should also be useful in further defining Pol II transcripts differentially regulated in specific disease states and

  6. Assessment of Liver Fibrosis Using Fast Strain-Encoded (FSENC) MRI Driven by Inherent Cardiac Motion

    PubMed Central

    Harouni, Ahmed A.; Gharib, Ahmed M.; Osman, Nael F.; Morse, Caryn; Heller, Theo; Abd-Elmoniem, Khaled Z.

    2014-01-01

    Purpose An external driver-free MRI method for assessment of liver fibrosis offers a promising non-invasive tool for diagnosis and monitoring of liver disease. Lately, the heart’s intrinsic motion and MR tagging have been utilized for the quantification of liver strain. However, MR tagging requires multiple breath-hold acquisitions and substantial post-processing. This work proposes a fast strain-encoded (FSENC) MRI methodology to measure the peak strain (Sp) in the liver’s left lobe, which is in close proximity and caudal to the heart. Additionally, a new method is introduced to measure heart-induced shear wave velocity (SWV) inside the liver. Methods Phantom and in-vivo experiments (11 healthy subjects, and 11 patients with liver fibrosis) were conducted. Reproducibility experiments were performed in seven healthy subjects. Results Peak liver strain Sp significantly decreased in fibrotic liver compared healthy liver (6.46%±2.27% vs. 12.49%±1.76%, P<0.05). Heart-induced SWV significantly increased in patients compared to healthy subjects (0.15±0.04 m/s vs. 0.63±0.32 m/s, P<0.05). Reproducibility analysis yielded no significant difference in Sp (P=0.47) or SWV (P=0.56). Conclusion Accelerated external driver-free noninvasive assessment of left liver lobe strain and shear wave velocity is feasible using strain-encoded MRI. The two measures significantly separate healthy subjects from patients with fibrotic liver. PMID:25081734

  7. Human immunodeficiency virus infection and the liver.

    PubMed

    Crane, Megan; Iser, David; Lewin, Sharon R

    2012-03-27

    Liver disease in human immunodeficiency virus (HIV)-infected individuals encompasses the spectrum from abnormal liver function tests, liver decompensation, with and without evidence of cirrhosis on biopsy, to non-alcoholic liver disease and its more severe form, non-alcoholic steatohepatitis and hepatocellular cancer. HIV can infect multiple cells in the liver, leading to enhanced intrahepatic apoptosis, activation and fibrosis. HIV can also alter gastro-intestinal tract permeability, leading to increased levels of circulating lipopolysaccharide that may have an impact on liver function. This review focuses on recent changes in the epidemiology, pathogenesis and clinical presentation of liver disease in HIV-infected patients, in the absence of co-infection with hepatitis B virus or hepatitis C virus, with a specific focus on issues relevant to low and middle income countries.

  8. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  9. Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein.

    PubMed Central

    Taylor, M E; Brickell, P M; Craig, R K; Summerfield, J A

    1989-01-01

    The N-terminal sequence of the major human serum mannose-binding protein (MBP1) was shown to be identical at all positions determined with the amino acid sequence predicted from a cDNA clone of a human liver MBP mRNA. An oligonucleotide corresponding to part of the sequence of this cDNA clone was used to isolate a cosmid genomic clone containing a homologous gene. The intron/exon structure of this gene was found to closely resemble that of the gene encoding a rat liver MBP (MBP A). The nucleotide sequence of the exons differed in several places from that of the human cDNA clone published by Ezekowitz, Day & Herman [(1988) J. Exp. Med. 167, 1034-1046]. The MBP molecule comprises a signal peptide, a cysteine-rich domain, a collagen-like domain, a 'neck' region and a carbohydrate-binding domain. Each domain is encoded by a separate exon. This genomic organization lends support to the hypothesis that the gene arose during evolution by a process of exon shuffling. Several consensus sequences that may be involved in controlling the expression of human serum MBP have been identified in the promoter region of the gene. The consensus sequences are consistent with the suggestion that this mammalian serum lectin is regulated as an acute-phase protein synthesized by the liver. PMID:2590164

  10. Enzymes of fructose metabolism in human liver

    PubMed Central

    Heinz, Fritz; Lamprecht, Walther; Kirsch, Joachim

    1968-01-01

    The enzyme activities involved in fructose metabolism were measured in samples of human liver. On the basis of U/g of wet-weight the following results were found: ketohexokinase, 1.23; aldolase (substrate, fructose-1-phosphate), 2.08; aldolase (substrate, fructose-1,6-diphosphate), 3.46; triokinase, 2.07; aldehyde dehydrogenase (substrate, D-glyceraldehyde), 1.04; D-glycerate kinase, 0.13; alcohol dehydrogenase (nicotinamide adenine dinucleotide [NAD]) substrate, D-glyceraldehyde), 3.1; alcohol dehydrogenase (nicotinamide adenine dinucleotide phosphate [NADP]) (substrate, D-glyceraldehyde), 3.6; and glycerol kinase, 0.62. Sorbitol dehydrogenases (25.0 U/g), hexosediphosphatase (4.06 U/g), hexokinase (0.23 U/g), and glucokinase (0.08 U/g) were also measured. Comparing these results with those of the rat liver it becomes clear that the activities of alcohol dehydrogenases (NAD and NADP) in rat liver are higher than those in human liver, and that the values of ketohexokinase, sorbitol dehydrogenases, and hexosediphosphatase in human liver are lower than those values found in rat liver. Human liver contains only traces of glycerate kinase. The rate of fructose uptake from the blood, as described by other investigators, can be based on the activity of ketohexokinase reported in the present paper. In human liver, ketohexokinase is present in a four-fold activity of glucokinase and hexokinase. This result may explain the well-known fact that fructose is metabolized faster than glucose. PMID:4385849

  11. Adrenergic receptors in human fetal liver membranes

    SciTech Connect

    Falkay, G.; Kovacs, L. )

    1990-01-01

    The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment of premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.

  12. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2017-04-05

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  13. Obesity accelerates epigenetic aging of human liver.

    PubMed

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.

  14. Liver glucose metabolism in humans

    PubMed Central

    Adeva-Andany, María M.; Pérez-Felpete, Noemi; Fernández-Fernández, Carlos; Donapetry-García, Cristóbal; Pazos-García, Cristina

    2016-01-01

    Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic pathways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP–galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. Glucose metabolism supplies intermediates for glycosylation, a post-translational modification of proteins and lipids that modulates their activity. Congenital deficiency of phosphoglucomutase (PGM)-1 and PGM-3 is associated with impaired glycosylation. In addition to metabolize carbohydrates, the liver produces glucose to be used by other tissues, from glycogen breakdown or from de novo synthesis using primarily lactate and alanine (gluconeogenesis). PMID:27707936

  15. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices

    PubMed Central

    Vickers, Alison E. M.; Ulyanov, Anatoly V.; Fisher, Robyn L.

    2017-01-01

    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%–11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%–6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%–60%), APAP, CBZ (57%–56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%–43%), APAP and DCF (40%–38%), MMI, TBF and CSA (37%–35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects. PMID:28272341

  16. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation

    PubMed Central

    Mazza, Giuseppe; Rombouts, Krista; Rennie Hall, Andrew; Urbani, Luca; Vinh Luong, Tu; Al-Akkad, Walid; Longato, Lisa; Brown, David; Maghsoudlou, Panagiotis; Dhillon, Amar P.; Fuller, Barry; Davidson, Brian; Moore, Kevin; Dhar, Dipok; De Coppi, Paolo; Malago, Massimo; Pinzani, Massimo

    2015-01-01

    Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development. PMID:26248878

  17. Robust encoding of scene anticipation during human spatial navigation

    PubMed Central

    Shikauchi, Yumi; Ishii, Shin

    2016-01-01

    In a familiar city, people can recall scene views (e.g., a particular street corner scene) they could encounter again in the future. Complex objects with multiple features are represented by multiple neural units (channels) in the brain, but when anticipating a scene view, the kind of feature that is assigned to a specific channel is unknown. Here, we studied neural encoding of scene view anticipation during spatial navigation, using a novel data-driven analysis to evaluate encoding channels. Our encoding models, based on functional magnetic resonance imaging (fMRI) activity, provided channel error correction via redundant channel assignments that reflected the navigation environment. We also found that our encoding models strongly reflected brain activity in the inferior parietal gyrus and precuneus, and that details of future scenes were locally represented in the superior prefrontal gyrus and temporal pole. Furthermore, a decoder associated with the encoding models accurately predicted future scene views in both passive and active navigation. These results suggest that the human brain uses scene anticipation, mediated especially by parietal and medial prefrontal cortical areas, as a robust and effective navigation processing. PMID:27874089

  18. Native fluorescence characterization of human liver abnormalities

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.

    1999-05-01

    Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.

  19. Molecular cloning, sequencing and expression of cDNA encoding human trehalase.

    PubMed

    Ishihara, R; Taketani, S; Sasai-Takedatsu, M; Kino, M; Tokunaga, R; Kobayashi, Y

    1997-11-20

    A complete cDNA clone encoding human trehalase, a glycoprotein of brush-border membranes, has been isolated from a human kidney library. The cDNA encodes a protein of 583 amino acids with a calculated molecular weight of 66,595. Human enzyme contains a typical cleavable signal peptide at amino terminus, five potential glycosylation sites, and a hydrophobic region at carboxyl terminus where the protein is anchored to plasma membranes via glycosylphosphatidylinositol. The deduced amino acid sequence of the human enzyme showed similarity to sequences of the enzyme from rabbit, silk worm, Tenebrio molitor, Escherichia coli and yeast. Northern blots revealed that human trehalase mRNA of approx. 2.0 kb was found mainly in the kidney, liver and small intestine. Expression of the recombinant trehalase in E. coli provided a high level of the enzyme activity. The isolation and expression of cDNA for human trehalase should facilitate studies of the structure of the gene, as well as a basis for a better understanding of the catalytic mechanism.

  20. Towards a Humanized Mouse Model of Liver Stage Malaria Using Ectopic Artificial Livers

    PubMed Central

    Ng, Shengyong; March, Sandra; Galstian, Ani; Gural, Nil; Stevens, Kelly R.; Mota, Maria M.; Bhatia, Sangeeta N.

    2017-01-01

    The malaria liver stage is an attractive target for antimalarial development, and preclinical malaria models are essential for testing such candidates. Given ethical concerns and costs associated with non‐human primate models, humanized mouse models containing chimeric human livers offer a valuable alternative as small animal models of liver stage human malaria. The best available human liver chimeric mice rely on cellular transplantation into mice with genetically engineered liver injury, but these systems involve a long and variable humanization process, are expensive, and require the use of breeding-challenged mouse strains which are not widely accessible. We previously incorporated primary human hepatocytes into engineered polyethylene glycol (PEG)-based nanoporous human ectopic artificial livers (HEALs), implanted them in mice without liver injury, and rapidly generated human liver chimeric mice in a reproducible and scalable fashion. By re-designing the PEG scaffold to be macroporous, we demonstrate the facile fabrication of implantable porous HEALs that support liver stage human malaria (P. falciparum) infection in vitro, and also after implantation in mice with normal liver function, 60% of the time. This proof-of-concept study demonstrates the feasibility of applying a tissue engineering strategy towards the development of scalable preclinical models of liver stage malaria infection for future applications. PMID:28361899

  1. Nucleotide sequence and the encoded amino acids of human apolipoprotein A-I mRNA.

    PubMed Central

    Law, S W; Brewer, H B

    1984-01-01

    The cDNA clones encoding the precursor form of human liver apolipoprotein A-I (apoA-I), preproapoA-I, have been isolated from a cDNA library. A 17-base synthetic oligonucleotide based on residues 108-113 of apoA-I and a 26-base primer-extended, dideoxynucleotide-terminated cDNA were used as hybridization probes to select for recombinant plasmids bearing the apoA-I sequence. The complete nucleic acid sequence of human liver preproapoA-I has been determined by analysis of the cloned cDNA. The sequence is composed of 801 nucleotides encoding 267 amino acid residues. PreproapoA-I contains an 18-amino-acid prepeptide and a 6-amino-acid propeptide connected to the amino terminus of the 243-amino acid mature apoA-I. Southern blotting analysis of chromosomal DNA obtained from peripheral blood indicated the apoA-I gene is contained in a 2.1-kilobase-pair Pst I fragment and there is no gross difference in structural organization between the normal apoA-I gene and the Tangier disease apoA-I gene. Images PMID:6198645

  2. [ENCODE apophenia or a panglossian analysis of the human genome].

    PubMed

    Casane, Didier; Fumey, Julien; Laurenti, Patrick

    2015-01-01

    In September 2012, a batch of more than 30 articles presenting the results of the ENCODE (Encyclopaedia of DNA Elements) project was released. Many of these articles appeared in Nature and Science, the two most prestigious interdisciplinary scientific journals. Since that time, hundreds of other articles dedicated to the further analyses of the Encode data have been published. The time of hundreds of scientists and hundreds of millions of dollars were not invested in vain since this project had led to an apparent paradigm shift: contrary to the classical view, 80% of the human genome is not junk DNA, but is functional. This hypothesis has been criticized by evolutionary biologists, sometimes eagerly, and detailed refutations have been published in specialized journals with impact factors far below those that published the main contribution of the Encode project to our understanding of genome architecture. In 2014, the Encode consortium released a new batch of articles that neither suggested that 80% of the genome is functional nor commented on the disappearance of their 2012 scientific breakthrough. Unfortunately, by that time many biologists had accepted the idea that 80% of the genome is functional, or at least, that this idea is a valid alternative to the long held evolutionary genetic view that it is not. In order to understand the dynamics of the genome, it is necessary to re-examine the basics of evolutionary genetics because, not only are they well established, they also will allow us to avoid the pitfall of a panglossian interpretation of Encode. Actually, the architecture of the genome and its dynamics are the product of trade-offs between various evolutionary forces, and many structural features are not related to functional properties. In other words, evolution does not produce the best of all worlds, not even the best of all possible worlds, but only one possible world.

  3. Differential Encoding of Losses and Gains in the Human Striatum

    PubMed Central

    Seymour, Ben; Daw, Nathaniel; Dayan, Peter; Singer, Tania; Dolan, Ray

    2009-01-01

    Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain. PMID:17475790

  4. Mutations in TJP2, encoding zona occludens 2, and liver disease

    PubMed Central

    Sambrotta, Melissa; Thompson, Richard J

    2015-01-01

    Progressive familial intrahepatic cholestasis is a clinical description of a phenotype, which we now realize has several different genetic aetiologies. The identification of the underlying genetic defects has helped to elucidate important aspects of liver physiology. The latest addition to this family of diseases is tight junction protein 2 (TJP2) deficiency. This protein is also known as zona occludens 2 (ZO-2). The patients, so far presented, all have homozygous, protein-truncating mutations. A complete absence of this protein was demonstrated. These children presented with severe liver disease, some manifesting extrahepatic features. By contrast, embryonic-lethality was seen in ZO-2 knockout mice. This discovery highlights important differences, not just between species, but also between different epithelia in humans. This commentary discusses the recently presented findings, and some of the issues that arise. PMID:26451340

  5. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  6. Dynamic encoding of speech sequence probability in human temporal cortex.

    PubMed

    Leonard, Matthew K; Bouchard, Kristofer E; Tang, Claire; Chang, Edward F

    2015-05-06

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning.

  7. Alternative splicing of the mRNA encoding the human cholesteryl ester transfer protein

    SciTech Connect

    Inazu, Akihiro; Quinet, E.M.; Suke Wang; Brown, M.L.; Stevenson, S.; Barr, M.L.; Moulin, P.; Tall, A.R. )

    1992-03-03

    The plasma cholesteryl ester transfer protein (CETP) is known to facilitate the transfer of lipids between plasma lipoproteins. The human CETP gene is a complex locus encompassing 16 exons. The CETP mRNA is found in liver and small intestine as well as in a variety of peripheral tissues. While the CETP cDNA from human adipose tissue was being cloned, a variant CETP cDNA was discovered which excluded the complete sequence encoded by exon 9, but which was otherwise identical to the full-length CETP cDNA, suggesting modification of the CETP gene transcript by an alternative RNA splicing mechanism. RNase protection analysis of tissue RNA confirmed the presence of exon 9 deleted transcripts and showed that they represented a variable proportion of the total CETP mRNA in various human tissues including adipose tissue (25%), liver (33%), and spleen (46%). Transient expression of the exon 9 deleted cDNA in COS cells or stable expression in CHO cells showed that the protein encoded by the alternatively spliced transcript was inactive in neutral lipid transfer, smaller, and poorly secreted compared to the protein derived from the full-length cDNA. Endo H digestion suggested that the inactive, cell-associated protein was present within the endoplasmic reticulum. The experiments show that the expression of the human CETP gene is modified by alternative splicing of the ninth exon, in a tissue-specific fashion. The function of alternative splicing is unknown but could serve to produce a protein with a function other than plasma neutral lipid transfer, or as an on-off switch to regulate the local concentration of biologically active protein.

  8. Humanization of excretory pathway in chimeric mice with humanized liver.

    PubMed

    Okumura, Hirotoshi; Katoh, Miki; Sawada, Toshiro; Nakajima, Miki; Soeno, Yoshinori; Yabuuchi, Hikaru; Ikeda, Toshihiko; Tateno, Chise; Yoshizato, Katsutoshi; Yokoi, Tsuyoshi

    2007-06-01

    The liver of a chimeric urokinase-type plasminogen activator (uPA)(+/+)/severe combined immunodeficient (SCID) mouse line recently established in Japan could be replaced by more than 80% with human hepatocytes. We previously reported that the chimeric mice with humanized liver could be useful as a human model in studies on drug metabolism and pharmacokinetics. In the present study, the humanization of an excretory pathway was investigated in the chimeric mice. Cefmetazole (CMZ) was used as a probe drug. The CMZ excretions in urine and feces were 81.0 and 5.9% of the dose, respectively, in chimeric mice and were 23.7 and 59.4% of the dose, respectively, in control uPA(-/-)/SCID mice. Because CMZ is mainly excreted in urine in humans, the excretory profile of chimeric mice was demonstrated to be similar to that of humans. In the chimeric mice, the hepatic mRNA expression of human drug transporters could be quantified. On the other hand, the hepatic mRNA expression of mouse drug transporters in the chimeric mice was significantly lower than in the control uPA(-/-)/SCID mice. In conclusion, chimeric mice exhibited a humanized profile of drug excretion, suggesting that this chimeric mouse line would be a useful animal model in excretory studies.

  9. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  10. Ipsilateral directional encoding of joystick movements in human cortex.

    PubMed

    Sharma, Mohit; Gaona, Charles; Roland, Jarod; Anderson, Nick; Freudenberg, Zachary; Leuthardt, Eric C

    2009-01-01

    The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be discerned utilizing ipsilateral cortical signals. In this study, three invasively monitored human subjects were recorded while performing a center out joystick task with the hand ipsilateral to the hemispheric subdural grid array. It was found that directional tuning was present in ipsilateral cortex. This information was encoded in both distinct anatomic populations and spectral distributions. These findings support the notion that ipsilateral signals may provide added information for BCI operation in the future.

  11. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  12. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  13. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.

    PubMed

    Mikolajczak, Sebastian A; Vaughan, Ashley M; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E; Adams, John H; Sattabongkot, Jetsumon; Prachumsri, Jetsumon; Kappe, Stefan H I

    2015-04-08

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites-hypnozoites. The lack of tractable P. vivax animal models constitutes an obstacle in examining P. vivax liver stage infection and drug efficacy. To overcome this obstacle, we have used human liver-chimeric (huHep) FRG KO mice as a model for P. vivax infection. FRG KO huHep mice support P. vivax sporozoite infection, liver stage development, and hypnozoite formation. We show complete P. vivax liver stage development, including maturation into infectious exo-erythrocytic merozoites as well as the formation and persistence of hypnozoites. Prophylaxis or treatment with the antimalarial primaquine can prevent and eliminate liver stage infection, respectively. Thus, P. vivax-infected FRG KO huHep mice are a model to investigate liver stage development and dormancy and may facilitate the discovery of drugs targeting relapsing malaria.

  14. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice

    PubMed Central

    Mikolajczak, Sebastian A.; Vaughan, Ashley M.; Kangwanrangsan, Niwat; Roobsoong, Wanlapa; Fishbaugher, Matthew; Yimamnuaychok, Narathatai; Rezakhani, Nastaran; Lakshmanan, Viswanathan; Singh, Naresh; Kaushansky, Alexis; Camargo, Nelly; Baldwin, Michael; Lindner, Scott E.; Adams, John H.; Prachumsri, Jetsumon; Kappe, Stefan H.I.

    2017-01-01

    Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites -hypnozoites. The lack of tractable animal models for P. vivax constitutes a severe obstacle to investigate this unique aspect of its biology and to test drug efficacy against liver stages. We show that the FRG KO huHep liver-humanized mice support P. vivax sporozoite infection, development of liver stages, and the formation of small non-replicating hypnozoites. Cellular characterization of P. vivax liver stage development in vivo demonstrates complete maturation into infectious exo-erythrocytic merozoites and continuing persistence of hypnozoites. Primaquine prophylaxis or treatment prevents and eliminates liver stage infection. Thus, the P. vivax/FRG KO huHep mouse infection model constitutes an important new tool to investigate the biology of liver stage development and dormancy and might aid in the discovery of new drugs for the prevention of relapsing malaria. PMID:25800544

  15. Encoding of marginal utility across time in the human brain

    PubMed Central

    Pine, Alex; Seymour, Ben; Roiser, Jonathan P; Bossaerts, Peter; Friston, Karl J.; Curran, H. Valerie; Dolan, Raymond J.

    2010-01-01

    Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value. Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its neurobiological basis. We show that human preferences in an inter-temporal choice task are best described by a model that integrates marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging (fMRI), we show that activity in the dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behaviour. Furthermore, during choice we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between value and time. Our data support an integrative architecture for decision-making, revealing the neural representation of distinct subcomponents of value that may contribute to impulsivity and decisiveness. PMID:19641120

  16. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  17. Regeneration of Human Liver After Hepatic Lobectomy Studied by Repeated Liver Scanning and Repeated Needle Biopsy

    PubMed Central

    Lin, Tien-Yu; Lee, Chue-Shue; Chen, Chiou-Chiang; Liau, Kuong-Yi; Lin, Wen-Shih-Jen

    1979-01-01

    Regeneration of the residual lobe of the liver after hepatic lobectomy in humans was studied by repeated liver scanning in seven noncirrhotic and three cirrhotic patients. Each patient was studied for several months during the study which lasted from 1-12 years. Regeneration was apparent in noncirrhotic liver remnants following hepatic lobectomy. In the case of a long standing, space occupying lesions such as benign giant cysts, the liver remnant would complete its regeneration process rather early, usually within a few months of hepatic lobectomy. In hepatoma cases, however, regeneration of the residual lobe after hepatic resection usually took five or six months for completion. On the contrary, no definite increase in the size of the liver remnant was seen on repeated liver scanning in cirrhotic patients. Histologic study of the residual lobe was repeated on needle biopsy specimens in two noncirrhotic and four cirrhotic patients. Regenerative hyperplasia of liver cells with large hyperchromatic, or double nuclei never seen in the preresection liver appeared in the liver remnant five, 11, and 27 days after hepatic lobectomy in noncirrhotic patients. In cirrhotics, however, there were no histologic changes between the preresection liver and the postresection remnant studied three, five, 15, 40 days or even two years and 8 months after hepatic lobectomy. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:464678

  18. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein

    SciTech Connect

    Fukumoto, Hirofumi; Seino, Susumu; Imura, Hiroo; Seino, Yutaka; Eddy, R.L.; Fukushima, Yoshimitsu; Byers, M.G.; Shows, T.B.; Bell, G.I. )

    1988-08-01

    Recombinant DNA clones encoding a glucose transporter-like protein have been isolated from adult human liver and kidney cDNA libraries by cross-hybridization with the human HepG2/erythrocyte glucose transporter cDNA. Analysis of the sequence of this 524-amino acid glucose transporter-like protein indicates that is has 55.5% identity with the HepG2/erythrocyte glucose transporter as well as a similar structural organization. Studies of the tissue distribution of the mRNA coding for this glucose transporter-like protein in adult human tissues indicate that the highest amounts are present in liver with lower amounts in kidney and small intestine. The amounts of glucose transporter-like mRNA in other tissues, including colon, stomach, cerebrum, skeletal muscle, and adipose tissue, were below the level of sensitivity of our assay. The single-copy gene encoding this glucose transporter-like protein has been localized to the q26.1{yields}q26.3 region of chromosome 3.

  19. Collagen polymorphism in normal and cirrhotic human liver.

    PubMed Central

    Seyer, J M; Hutcheson, E T; Kang, A H

    1977-01-01

    Collagens in normal human liver and in alcoholic cirrhotic liver were investigated. Collagens were solubilized by limited proteolysis with pepsin under nondenaturing conditions, and after purification, were fractionated into types I and III by selective precipitation with NaCl. After carboxymethyl cellulose and agarose chromatography, the resulting alpha-chains from each of the collagen types were analyzed with respect to their amino acid and carbohydrate compositions. A comparison of the results obtained from normal liver with those from the diseases organ revealed no significant differences. The isolated human liver alpha1(I) and alpha1(III) chains were digested with CNBr and the generated peptides were separated and purified by a combination of ion-exchange and molecular sieve chromatography. The molecular weight and the amino acid and the carbohydrate compositions of each of the peptides were identical to those of the corresponding human skin peptides except for the slightly higher content of hydroxylysine in some of the peptides. The relative content of type III in relation to type I collagen in both normal anc cirrhotic liver was determined by digesting washed liver homogenates directly with CNBr and quantitating the resultant alpha1(I) and alpha 1(III) peptides after chromatographic separation. The relative quantities of these peptides indicated that normal human liver contained an average of 47% type III, with the remainder being type I. Cirrhotic liver, on the other hand, contained a significantly smaller proportion of type III, ranging from 18 to 34% in different samples, with a corresponding increase in type I. These findings indicate that although the amino acid and carbohydrate compositions of collagens deposited in cirrhotic liver are normal, the fibrotic process of alcoholic liver disease in humans is accompanied by an alteration in tissue collagen polymorphism, and suggest that the observed alterations may have pathogenetic implications. PMID:833273

  20. Encoding of configural regularity in the human visual system.

    PubMed

    Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P

    2014-08-13

    The visual system is very efficient in encoding stimulus properties by utilizing available regularities in the inputs. To explore the underlying encoding strategies during visual information processing, we presented participants with two-line configurations that varied in the amount of configural regularity (or degrees of freedom in the relative positioning of the two lines) in a fMRI experiment. Configural regularity ranged from a generic configuration to stimuli resembling an "L" (i.e., a right-angle L-junction), a "T" (i.e., a right-angle midpoint T-junction), or a "+",-the latter being the most regular stimulus. We found that the response strength in the shape-selective lateral occipital area was consistently lower for a higher degree of regularity in the stimuli. In the second experiment, using multivoxel pattern analysis, we further show that regularity is encoded in terms of the fMRI signal strength but not in the distributed pattern of responses. Finally, we found that the results of these experiments could not be accounted for by low-level stimulus properties and are distinct from norm-based encoding. Our results suggest that regularity plays an important role in stimulus encoding in the ventral visual processing stream.

  1. Human germline antibody gene segments encode polyspecific antibodies.

    PubMed

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  2. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation.

  3. Human liver proteome project: plan, progress, and perspectives.

    PubMed

    He, Fuchu

    2005-12-01

    The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.

  4. Human jagged polypeptide, encoding nucleic acids and methods of use

    DOEpatents

    Li, Linheng; Hood, Leroy

    2000-01-01

    The present invention provides an isolated polypeptide exhibiting substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the polypeptide does not have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. The invention further provides an isolated nucleic acid molecule containing a nucleotide sequence encoding substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the nucleotide sequence does not encode the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. Also provided herein is a method of inhibiting differentiation of hematopoietic progenitor cells by contacting the progenitor cells with an isolated JAGGED polypeptide, or active fragment thereof. The invention additionally provides a method of diagnosing Alagille Syndrome in an individual. The method consists of detecting an Alagille Syndrome disease-associated mutation linked to a JAGGED locus.

  5. Measuring human ventilation for apnoea detection using an optical encoder.

    PubMed

    Weinberg, G M; Webster, J G

    1998-08-01

    We have designed, built and tested a proof-of-concept system based on optical encoder technology for measuring adult or infant ventilation. It uses change in chest circumference to provide an indirect measure of ventilation. The Hewlett-Packard HEDS-9720 optical encoder senses displacement of its matching codestrip. It yields a resolution of 0.17 mm and is accurate to 0.008 mm over a 10 mm test distance. The encoder is mounted on a nylon web belt wrapped around the torso and responds to changes in circumference. Motion of the code strip during respiration is converted to direction of movement (inhalation or exhalation) as well as magnitude of circumference change. Use of two sensor bands, one on the chest and one on the abdomen, may allow detection of obstructive apnoea in which there is no air flow out of or into the subject despite respiratory movement. Applications of this technology include infant apnoea monitoring as well as long-term adult monitoring.

  6. Human platelets inhibit liver fibrosis in severe combined immunodeficiency mice

    PubMed Central

    Takahashi, Kazuhiro; Murata, Soichiro; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2013-01-01

    AIM: To investigate the role of human platelets in liver fibrosis. METHODS: Severe combined immunodeficiency (SCID) mice were administered CCl4 and either phosphate-buffered saline (PBS group) or human platelet transfusions (hPLT group). Concentrations of hepatocyte growth factor (HGF), matrix metallopeptidases (MMP)-9, and transforming growth factor-β (TGF-β) in the liver tissue were compared between the PBS and the hPLT groups by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effects of a human platelet transfusion on liver fibrosis included the fibrotic area, hydroxyproline content, and α-smooth muscle actin (α-SMA) expression, which were evaluated by picrosirius red staining, ELISA, and immunohistochemical staining using an anti-mouse α-SMA antibody, respectively. Phosphorylations of mesenchymal-epithelial transition factor (Met) and SMAD3, downstream signals of HGF and TGF-β, were compared between the two groups by Western blotting and were quantified using densitometry. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Furthermore, the accumulation of human platelets in the liver 2 h after platelet transfusion was compared between normal and fibrotic livers by immunohistochemical staining using an anti-human CD41 antibody. RESULTS: The fibrotic area and hydroxyproline content in the liver were both significantly lower in the hPLT group when compared to the PBS group (fibrotic area, 1.7% ± 0.6% vs 2.5% ± 0.6%, P = 0.03; hydroxyproline content, 121 ± 26 ng/g liver vs 156 ± 47 ng/g liver, P = 0.04). There was less α-smooth muscle actin staining in the hPLT group than in the PBS group (0.5% ± 0.1% vs 0.8% ± 0.3%, P = 0.02). Hepatic expression levels of mouse HGF and MMP-9 were significantly higher in the hPLT group than in the PBS group (HGF, 109 ± 13 ng/g liver vs 88 ± 22 ng/g liver, P = 0.03; MMP-9, 113% ± 7%/GAPDH vs 92% ± 11%/GAPDH, P = 0.04). In contrast, the

  7. Human Immunodeficiency Virus and Liver Disease Forum 2010: Conference Proceedings

    PubMed Central

    Sherman, Kenneth E.; Thomas, David L.; Chung, Raymond T.

    2013-01-01

    Liver disease continues to represent a critical mediator of morbidity and mortality in those with human immunodeficiency virus (HIV) infection. The frequent presence and overlap of concomitant injurious processes, including hepatitis C virus and hepatitis B virus infections, hepatoxicity associated with antiretroviral therapeutic agents, alcohol, and other toxins, in the setting of immunosuppression lead to rapid fibrotic progression and early development of end-stage liver disease. This conference summary describes the proceedings of a state-of-the-art gathering of international experts designed to highlight the status of current research in epidemiology, natural history, pathogenesis, and treatment of HIV and liver disease. PMID:21898501

  8. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    PubMed

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P < 0.05). UC-MSC therapy also significantly improved liver function, as indicated by the increase of serum albumin levels, decrease in total serum bilirubin levels, and decrease in the sodium model for end-stage liver disease scores. UC-MSC transfusion is clinically safe and could improve liver function and reduce ascites in patients with decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  9. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases.

    PubMed

    Wang, Yini; Yu, Xiaopeng; Chen, Ermei; Li, Lanuan

    2016-05-12

    Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.

  10. Opisthorchis viverrini: The carcinogenic human liver fluke

    PubMed Central

    Kaewpitoon, Natthawut; Kaewpitoon, Soraya J; Pengsaa, Prasit; Sripa, Banchob

    2008-01-01

    Opisthorchiasis caused by Opisthorchis viverrini remains a major public health problem in many parts of Southeast Asia, including Thailand, Lao PDR, Vietnam and Cambodia. The infection is associated with a number of hepatobiliary diseases, including cholangitis, obstructive jaundice, hepatomegaly, cholecystitis and cholelithiasis. Multi-factorial etiology of cholangiocarcinoma, mechanical damage, parasite secretions, and immunopathology may enhance cholangiocarcinogenesis. Moreover, both experimental and epidemiological evidences strongly implicate liver fluke infection as the major risk factor in cholangiocarcinoma, cancer of the bile ducts. The liver fluke infection is induced by eating raw or uncooked fish products that is the tradition and popular in the northeastern and northern region, particularly in rural areas, of Thailand. The health education programs to prevent and control opisthorchiasis are still required in the high-risk areas. PMID:18205254

  11. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  12. Variations in human liver fucosyltransferase activities in hepatobiliary diseases.

    PubMed

    Jezequel-Cuer, M; Dalix, A M; Flejou, J F; Durand, G

    1992-06-01

    The hyperfucosylation of a number of glycoconjugates observed in liver diseases involves the action of several specific fucosyltransferases (F.T.) notably responsible for synthesizing histo-blood group antigens. We determined the activities of alpha 3, alpha 2 and alpha 3/4 F.T. in 35 liver biopsy samples from patients with fatty liver, alcoholic or post-hepatic liver cirrhosis, primary or secondary biliary cirrhosis, acute hepatitis or a normal liver. F.T. activities were measured by transfer of GDP [14C] fucose to asialotransferrin for alpha 3 F.T., to phenyl beta-D-galactoside for alpha 2 F.T. and to 2' fucosyllactose for alpha 3/4 F.T. The diseased liver extracts showed an early increase in non-Le gene-associated alpha 3 F.T. activity (p = 0.001), which was related to the number of steatosic hepatocytes and the degree of intralobular inflammatory infiltration. Overexpression of this alpha 3 F.T. provides an explanation for the strong expression of 3-fucosyl lactosamine structures described in several hepatobiliary diseases. alpha 2 F.T. levels were significantly elevated in the two groups of liver cirrhosis and acute hepatitis (p = 0.05), but not enough to consider alpha 2 F.T. as a sensitive feature of mesenchymal cell injury. All Lewis-positive biopsies displaying biliary alterations showed increased Le gene-encoded alpha 3/4 F.T. activity (p = 0.001), which was related to the intensity of neoductular proliferation. Elevated levels of alpha 3/4 F.T. may be a very early sign of biliary regeneration.

  13. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes

    SciTech Connect

    Elferink, M.G.L.; Olinga, P.; van Leeuwen, E.M.; Bauerschmidt, S.; Polman, J.; Schoonen, W.G.; Heisterkamp, S.H.; Groothuis, G.M.M.

    2011-05-15

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. A promising approach of toxicity testing is based on shifts in gene expression profiling of the liver. Toxicity screening based on animal liver cells cannot be directly extrapolated to humans due to species differences. The aim of this study was to evaluate precision-cut human liver slices as in vitro method for the prediction of human specific toxicity by toxicogenomics. The liver slices contain all cell types of the liver in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process. Previously we showed that toxicogenomic analysis of rat liver slices is highly predictive for rat in vivo toxicity. In this study we investigated the levels of gene expression during incubation up to 24 h with Affymetrix microarray technology. The analysis was focused on a broad spectrum of genes related to stress and toxicity, and on genes encoding for phase-I, -II and -III metabolizing enzymes and transporters. Observed changes in gene expression were associated with cytoskeleton remodeling, extracellular matrix and cell adhesion, but for the ADME-Tox related genes only minor changes were observed. PCA analysis showed that changes in gene expression were not associated with age, sex or source of the human livers. Slices treated with acetaminophen showed patterns of gene expression related to its toxicity. These results indicate that precision-cut human liver slices are relatively stable during 24 h of incubation and represent a valuable model for human in vitro hepatotoxicity testing despite the human inter-individual variability.

  14. Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis

    SciTech Connect

    Ilowski, Maren; Kleespies, Axel; Toni, Enrico N. de; Donabauer, Barbara; Jauch, Karl-Walter; Hengstler, Jan G.; Thasler, Wolfgang E.

    2011-01-07

    Research highlights: {yields} ALR decreases cytochrome c release from mitochondria. {yields} ALR protects hepatocytes against apoptosis induction by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. {yields} ALR exerts a liver-specific anti-apoptotic effect. {yields} A possible medical usage of ALR regarding protection of liver cells during apoptosis inducing therapies. -- Abstract: Augmenter of liver regeneration (ALR) is known to support liver regeneration and to stimulate proliferation of hepatocytes. However, it is not known if ALR exerts anti-apoptotic effects in human hepatocytes and whether this protective effect is cell type specific. This is relevant, because compounds that protect the liver against apoptosis without undesired effects, such as protection of metastatic tumour cells, would be appreciated in several clinical settings. Primary human hepatocytes (phH) and organotypic cancer cell lines were exposed to different concentrations of apoptosis inducers (ethanol, TRAIL, anti-Apo, TGF-{beta}, actinomycin D) and cultured with or without recombinant human ALR (rhALR). Apoptosis was evaluated by the release of cytochrome c from mitochondria and by FACS with propidium iodide (PI) staining. ALR significantly decreased apoptosis induced by ethanol, TRAIL, anti-Apo, TGF-{beta} and actinomycin D. Further, the anti-apoptotic effect of ALR was observed in primary human hepatocytes and in HepG2 cells but not in bronchial (BC1), colonic (SW480), gastric (GC1) and pancreatic (L3.6PL) cell lines. Therefore, the hepatotrophic growth factor ALR acts in a liver specific manner with regards to both its mitogenic and its anti-apoptotic effect. Unlike the growth factors HGF and EGF, rhALR acts in a liver specific manner. Therefore, ALR is a promising candidate for further evaluation as a possible hepatoprotective factor in clinical settings.

  15. Gene Expression Patterns in Human Liver Cancers

    PubMed Central

    Chen, Xin; Cheung, Siu Tim; So, Samuel; Fan, Sheung Tat; Barry, Christopher; Higgins, John; Lai, Kin-Man; Ji, Jiafu; Dudoit, Sandrine; Ng, Irene O.L.; van de Rijn, Matt; Botstein, David; Brown, Patrick O.

    2002-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. Using cDNA microarrays to characterize patterns of gene expression in HCC, we found consistent differences between the expression patterns in HCC compared with those seen in nontumor liver tissues. The expression patterns in HCC were also readily distinguished from those associated with tumors metastatic to liver. The global gene expression patterns intrinsic to each tumor were sufficiently distinctive that multiple tumor nodules from the same patient could usually be recognized and distinguished from all the others in the large sample set on the basis of their gene expression patterns alone. The distinctive gene expression patterns are characteristic of the tumors and not the patient; the expression programs seen in clonally independent tumor nodules in the same patient were no more similar than those in tumors from different patients. Moreover, clonally related tumor masses that showed distinct expression profiles were also distinguished by genotypic differences. Some features of the gene expression patterns were associated with specific phenotypic and genotypic characteristics of the tumors, including growth rate, vascular invasion, and p53 overexpression. PMID:12058060

  16. Liver Stem Cells: Experimental Findings and Implications for Human Liver Disease.

    PubMed

    Michalopoulos, George K; Khan, Zahida

    2015-10-01

    Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease.

  17. Immunocytochemical localization of peroxisomal enzymes in human liver biopsies.

    PubMed Central

    Litwin, J. A.; Völkl, A.; Müller-Höcker, J.; Hashimoto, T.; Fahimi, H. D.

    1987-01-01

    The immunocytochemical localization of catalase and three enzymes of the peroxisomal lipid beta-oxidation system--acyl-CoA oxidase, the bifunctional protein enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase--in human liver biopsies was investigated by means of light and electron microscopy. The antisera raised against all four enzymes from rat liver cross-reacted with the corresponding proteins in homogenates of human liver as revealed by immunoblotting. For light-microscopic localization in glutaraldehyde-fixed Epon-embedded material, the removal of resin and controlled digestion with trypsin was necessary. At the ultrastructural level specific labeling for all four antigens was found by the protein A-gold technique in peroxisomes of liver parenchymal cells fixed with formaldehyde-low glutaraldehyde concentrations and embedded in Lowicryl K4M. In biopsies fixed with glutaraldehyde and embedded in Epon, treatment with metaperiodate or etching with sodium ethoxide improved the immunolabeling. After such treatment catalase showed the most intense labeling and acyl-CoA oxidase the weakest, the two other proteins exhibiting an intermediate immunoreaction. In material postfixed with osmium only catalase could be visualized in peroxisomes. The immunocytochemical investigation of peroxisomal proteins in human liver biopsies provides a simple and highly promising approach for further elucidation of the pathophysiology of peroxisomal disorders. Images Figures 2 and 3 Figure 4-7 Figures 9-12 Figure 1 Figure 8 Figure 13 Figure 14 Figure 15 Figure 16 PMID:2886050

  18. Cultivation of human liver cell lines with microcarriers acting as biological materials of bioartificial liver

    PubMed Central

    Gao, Yi; Xu, Xiao-Ping; Hu, Huan-Zhang; Yang, Ji-Zhen

    1999-01-01

    AIM: To improve the cultivation efficiency and yield of human liver cell line Cl-1. METHODS: High-density cultivation of Cl-1 on microcarriers was carried out with periodic observation of their growth and proliferation. The specific functions of human liver cell were also determined. RESULTS: Cells of Cl-1 cell line grew well on microcarrier Cytodex-3 and on the 7th day the peak was reached. The amount of Cl-1 cells was 2.13 × 108 and the total amount of albumin synthesis reached 71.23 μg, urea synthesis 23.32 mg and diazepam transformation 619.7 μg respectively. The yield of Cl-1 on microcarriers was 49.3 times that of conventional cultivation. The amounts of albumin synthesis, urea synthesis and diazepam transformation were 39.8 times, 41.6 times and 33.3 times those of conventional cultivation, respectively. CONCLUSION: The human liver cell line Cl-1 can be cultivated to a high density with Cytodex-3 and has better biological functions. High-density cultivation of Cl-1 on microcarriers can act as the biological material of bioartificial liver. PMID:11819434

  19. Proteogenomic Analysis of Human Chromosome 9-Encoded Genes from Human Samples and Lung Cancer Tissues

    PubMed Central

    Ahn, Jung-Mo; Kim, Min-Sik; Kim, Yong-In; Jeong, Seul-Ki; Lee, Hyoung-Joo; Lee, Sun Hee; Paik, Young-Ki; Pandey, Akhilesh; Cho, Je-Yoel

    2014-01-01

    The Chromosome-centric Human Proteome Project (C-HPP) was recently initiated as an international collaborative effort. Our team adopted chromosome 9 (Chr 9) and performed a bioinformatics and proteogenomic analysis to catalog Chr 9-encoded proteins from normal tissues, lung cancer cell lines and lung cancer tissues. Approximately 74.7% of the Chr 9 genes of the human genome were identified, which included approximately 28% of missing proteins (46 of 162) on Chr 9 compared with the list of missing proteins from the neXtProt master table (2013-09). In addition, we performed a comparative proteomics analysis between normal lung and lung cancer tissues. Based on the data analysis, 15 proteins from Chr 9 were detected only in lung cancer tissues. Finally, we conducted a proteogenomic analysis to discover Chr 9-residing single nucleotide polymorphisms (SNP) and mutations described in the COSMIC cancer mutation database. We identified 21 SNPs and 4 mutations containing peptides on Chr 9 from normal human cells/tissues and lung cancer cell lines, respectively. In summary, this study provides valuable information of the human proteome for the scientific community as part of C-HPP. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD. PMID:24274035

  20. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes.

    PubMed Central

    Doecke, C J; Veronese, M E; Pond, S M; Miners, J O; Birkett, D J; Sansom, L N; McManus, M E

    1991-01-01

    1. The metabolic interaction of phenytoin and tolbutamide in human liver microsomes was investigated. 2. Phenytoin 4-hydroxylation (mean Km 29.6 microM, n = 3) was competitively inhibited by tolbutamide (mean Ki 106.2 microM, n = 3) and tolbutamide methylhydroxylation (mean Km 85.6 microM, n = 3) was competitively inhibited by phenytoin (mean Ki 22.6 microM, n = 3). 3. A significant correlation was obtained between phenytoin and tolbutamide hydroxylations in microsomes from 18 human livers (rs = 0.82, P less than 0.001). 4. Sulphaphenazole was a potent inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values of 0.4 microM and 0.6 microM, respectively. 5. Mephenytoin was a poor inhibitor of both phenytoin and tolbutamide hydroxylations with IC50 values greater than 400 microM for both reactions. 6. Anti-rabbit P450IIC3 IgG inhibited both phenytoin and tolbutamide hydroxylations in human liver microsomes by 62 and 68%, respectively. 7. These in vitro studies are consistent with phenytoin 4-hydroxylation and tolbutamide methylhydroxylation being catalysed by the same cytochrome P450 isozyme(s) in human liver microsomes. PMID:2049228

  1. A novel splice variant of human gene NPL, mainly expressed in human liver, kidney and peripheral blood leukocyte.

    PubMed

    Wu, Maoqing; Gu, Shaohua; Xu, Jian; Zou, Xianqiong; Zheng, Huarui; Jin, Zhe; Xie, Yi; Ji, Chaoneng; Mao, Yumin

    2005-04-01

    From the human fetal brain cDNA library constructed by our lab, a novel variant cDNA of a human gene was successfully cloned and identified. Because the gene has been named N-acetylneuraminate pyruvate lyase (NPL), accordingly we term our splice variant NPL_v2. The cDNA of NPL_v2 has a full-length open reading frame (ORF) from the nucleotide position 320 to 1225 that encodes a protein comprising 301 amino acids. SMART analysis showed that our hypothetical protein has one dihydrodipicolinate synthase (DHDPS) domain. Phosphorylation analysis of the deduced protein show that there are five phosphorylation sites including three "serine" and two "threonine" at the region that are not found in other splice variant. RT-PCR experiment revealed that our splice variant of the gene is mainly expressed in human placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocyte.

  2. Gene encoding human Ro-associated autoantigen Y5 RNA.

    PubMed Central

    Maraia, R; Sakulich, A L; Brinkmann, E; Green, E D

    1996-01-01

    Ro ribonucleoproteins are composed of Y RNAs and the Ro 60 kDa protein. While the Ro 60 kDa protein is implicated in an RNA discard pathway that recognizes 3'-extended 5S rRNAs, the function of Y RNAs remains unknown [O'Brien,C.A. and Wolin,S.L. (1995) Genes Dev. 8,2891-2903]. Y5 RNA occupies a large fraction of Ro 60 kDa protein in human Ro RNPs, contains an atypical 3'-extension not found on other Y RNAs, and constitutes an RNA antigen in certain autoimmune patients [Boulanger et al. (1995) Clin. Exp. Immunol. 99, 29-36]. An overabundance of Y RNA retroposed pseudogenes has previously complicated the isolation of mammalian Y RNA genes. The source gene for Y5 RNA was isolated from human DNA as well as from Galago senegalis DNA. Authenticity of the hY5 RNA gene was demonstrated in vivo and its activity was compared with the hY4 RNA gene that also uses a type 3 promoter for RNA polymerase III. The hY5 RNA gene was subsequently found to reside within a few hundred thousand base pairs of other Y RNA genes and the linear order of the four human Y RNA genes on chromosome 7q36 was determined. Phylogenetic comparative analyses of promoter and RNA structure indicate that the Y5 RNA gene has been subjected to positive selection during primate evolution. Consistent with the proposal of O'Brien and Harley [O'Brian,C.A. and Wolin,S.L. (1992) Gene 116, 285-289], analysis of flanking sequences suggest that the hY5 RNA gene may have originated as a retroposon. PMID:8836182

  3. Expression cloning of a human cDNA encoding folylpoly(gamma-glutamate) synthetase and determination of its primary structure.

    PubMed Central

    Garrow, T A; Admon, A; Shane, B

    1992-01-01

    A human cDNA for folypoly(gamma-glutamate) synthetase [FPGS; tetrahydrofolate:L-glutamate gamma-ligase (ADP forming), EC 6.3.2.17] has been cloned by functional complementation of an Escherichia coli folC mutant. The cDNA encodes a 545-residue protein of M(r) 60,128. The deduced sequence has regions that are highly homologous to peptide sequences obtained from purified pig liver FPGS and shows limited homology to the E. coli and Lactobacillus casei FPGSs. Expression of the cDNA in E. coli results in elevated expression of an enzyme with characteristics of mammalian FPGS. Expression of the cDNA in AUXB1, a mammalian cell lacking FPGS activity, overcomes the cell's requirement for thymidine and purines but does not overcome the cell's glycine auxotrophy, consistent with expression of the protein in the cytosol but not the mitochondria. PMID:1409616

  4. Architecture of the human regulatory network derived from ENCODE data.

    PubMed

    Gerstein, Mark B; Kundaje, Anshul; Hariharan, Manoj; Landt, Stephen G; Yan, Koon-Kiu; Cheng, Chao; Mu, Xinmeng Jasmine; Khurana, Ekta; Rozowsky, Joel; Alexander, Roger; Min, Renqiang; Alves, Pedro; Abyzov, Alexej; Addleman, Nick; Bhardwaj, Nitin; Boyle, Alan P; Cayting, Philip; Charos, Alexandra; Chen, David Z; Cheng, Yong; Clarke, Declan; Eastman, Catharine; Euskirchen, Ghia; Frietze, Seth; Fu, Yao; Gertz, Jason; Grubert, Fabian; Harmanci, Arif; Jain, Preti; Kasowski, Maya; Lacroute, Phil; Leng, Jing; Lian, Jin; Monahan, Hannah; O'Geen, Henriette; Ouyang, Zhengqing; Partridge, E Christopher; Patacsil, Dorrelyn; Pauli, Florencia; Raha, Debasish; Ramirez, Lucia; Reddy, Timothy E; Reed, Brian; Shi, Minyi; Slifer, Teri; Wang, Jing; Wu, Linfeng; Yang, Xinqiong; Yip, Kevin Y; Zilberman-Schapira, Gili; Batzoglou, Serafim; Sidow, Arend; Farnham, Peggy J; Myers, Richard M; Weissman, Sherman M; Snyder, Michael

    2012-09-06

    Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.

  5. Dynamic Encoding of Face Information in the Human Fusiform Gyrus

    PubMed Central

    Ghuman, Avniel Singh; Brunet, Nicolas M.; Li, Yuanning; Konecky, Roma O.; Pyles, John A.; Walls, Shawn A.; Destefino, Vincent; Wang, Wei; Richardson, R. Mark

    2014-01-01

    Humans’ ability to rapidly and accurately detect, identify, and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing, however temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200-500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses. PMID:25482825

  6. Molecular cloning of cDNAs encoding human carnitine acetyltransferase and mapping of the corresponding gene to chromosome 9q34.1

    SciTech Connect

    Corti, O.; Finocchiaro, G.; DiDonato, S.

    1994-09-01

    Using a combination of PCR screening of cDNA libraries and reverse transcription PCR, we have cloned three overlapping DNA fragments that encode human carnitine acetyltransferase (CAT), a key enzyme for metabolic pathways involved with the control of the acyl-Co/CoA ratio in mitochondria, peroxisomes, and endoplasmic reticulum. The resulting cDNA (2436 bp) hybridizes to a mRNA species of {approximately}2.9 kb that is particularly abundant in skeletal muscle and encodes a 68-kDa protein containing a peroxisomal targeting signal. The sequence matches those of several tryptic peptides obtained from purified human liver CAT and shows striking similarities with other members of the carnitine/choline acetyltransferase family very distant throughout evolution. CAT cDNA has also been used for fluorescence in situ hybridization on metaphase spreads of human chromosomes, and the corresponding gene, CAT1, has been mapped to chromosome 9q34.1. 29 refs., 4 figs.

  7. Distribution of elastic system fibres in human fetal liver.

    PubMed Central

    Monte, A; Costa, A; Porto, L C

    1996-01-01

    Elastic system fibres are extracellular matrix components found in different organs for which they provide elasticity and some mechanical resistance. Oxytalan, elaunin and elastic fibres, which possess graduated amounts of elastin, are the 3 forms of elastic system fibres that are identifiable by their tinctorial and ultrastructural features. The distribution of these fibres in adult human liver is well-established but little, if anything, is known about them in fetal liver. The distribution of elastic system fibres was therefore investigated in human fetal liver, and the process of elastogenesis characterised. Specimens of liver from 24 human fetuses ranging in age from 13 to 38 wk postfertilisation were studied. The results are presented in relation to gestational age and the size of the portal tracts. Portal tracts exhibited a network of oxytalan fibres at 13 wk; elaunin fibres appeared later after 20 wk postfertilisation. Elastogenesis occurred more rapidly in venous than in arterial walls, and in veins it was more evident in the adventitia. A microfibrillar network of oxytalan fibres was observed around biliary ducts from the outset of their development. Elastogenesis follows the sequence oxytalan, elaunin and elastic fibres, but the elastogenetic process only completes its maturation in arterial walls, thus leading to the internal elastic lamina. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8763481

  8. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease.

    PubMed

    Porath, Binu; Gainullin, Vladimir G; Cornec-Le Gall, Emilie; Dillinger, Elizabeth K; Heyer, Christina M; Hopp, Katharina; Edwards, Marie E; Madsen, Charles D; Mauritz, Sarah R; Banks, Carly J; Baheti, Saurabh; Reddy, Bharathi; Herrero, José Ignacio; Bañales, Jesús M; Hogan, Marie C; Tasic, Velibor; Watnick, Terry J; Chapman, Arlene B; Vigneau, Cécile; Lavainne, Frédéric; Audrézet, Marie-Pierre; Ferec, Claude; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2016-06-02

    Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.

  9. Transient Expression of Transgenic IL-12 in Mouse Liver Triggers Unremitting Inflammation Mimicking Human Autoimmune Hepatitis.

    PubMed

    Gil-Farina, Irene; Di Scala, Marianna; Salido, Eduardo; López-Franco, Esperanza; Rodríguez-García, Estefania; Blasi, Mercedes; Merino, Juana; Aldabe, Rafael; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2016-09-15

    The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies.

  10. GENCODE: the reference human genome annotation for The ENCODE Project.

    PubMed

    Harrow, Jennifer; Frankish, Adam; Gonzalez, Jose M; Tapanari, Electra; Diekhans, Mark; Kokocinski, Felix; Aken, Bronwen L; Barrell, Daniel; Zadissa, Amonida; Searle, Stephen; Barnes, If; Bignell, Alexandra; Boychenko, Veronika; Hunt, Toby; Kay, Mike; Mukherjee, Gaurab; Rajan, Jeena; Despacio-Reyes, Gloria; Saunders, Gary; Steward, Charles; Harte, Rachel; Lin, Michael; Howald, Cédric; Tanzer, Andrea; Derrien, Thomas; Chrast, Jacqueline; Walters, Nathalie; Balasubramanian, Suganthi; Pei, Baikang; Tress, Michael; Rodriguez, Jose Manuel; Ezkurdia, Iakes; van Baren, Jeltje; Brent, Michael; Haussler, David; Kellis, Manolis; Valencia, Alfonso; Reymond, Alexandre; Gerstein, Mark; Guigó, Roderic; Hubbard, Tim J

    2012-09-01

    The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.

  11. Encoding of physics concepts: concreteness and presentation modality reflected by human brain dynamics.

    PubMed

    Lai, Kevin; She, Hsiao-Ching; Chen, Sheng-Chang; Chou, Wen-Chi; Huang, Li-Yu; Jung, Tzyy-Ping; Gramann, Klaus

    2012-01-01

    Previous research into working memory has focused on activations in different brain areas accompanying either different presentation modalities (verbal vs. non-verbal) or concreteness (abstract vs. concrete) of non-science concepts. Less research has been conducted investigating how scientific concepts are learned and further processed in working memory. To bridge this gap, the present study investigated human brain dynamics associated with encoding of physics concepts, taking both presentation modality and concreteness into account. Results of this study revealed greater theta and low-beta synchronization in the anterior cingulate cortex (ACC) during encoding of concrete pictures as compared to the encoding of both high and low imageable words. In visual brain areas, greater theta activity accompanying stimulus onsets was observed for words as compared to pictures while stronger alpha suppression was observed in responses to pictures as compared to words. In general, the EEG oscillation patterns for encoding words of different levels of abstractness were comparable but differed significantly from encoding of pictures. These results provide insights into the effects of modality of presentation on human encoding of scientific concepts and thus might help in developing new ways to better teach scientific concepts in class.

  12. Human TOP3: a single-copy gene encoding DNA topoisomerase III.

    PubMed Central

    Hanai, R; Caron, P R; Wang, J C

    1996-01-01

    A human cDNA encoding a protein homologous to the Escherichia coli DNA topoisomerase I subfamily of enzymes has been identified through cloning and sequencing. Expressing the cloned human cDNA in yeast (delta)top1 cells lacking endogenous DNA topoisomerase I yielded an activity in cell extracts that specifically reduces the number of supercoils in a highly negatively supercoiled DNA. On the basis of these results, the human gene containing the cDNA sequence has been denoted TOP3, and the protein it encodes has been denoted DNA topoisomerase III. Screening of a panel of human-rodent somatic hybrids and fluorescence in situ hybridization of cloned TOP3 genomic DNA to metaphase chromosomes indicate that human TOP3 is a single-copy gene located at chromosome 17p11.2-12. Images Fig. 2 PMID:8622991

  13. Characterization of human antibody-reactive epitopes encoded by human papillomavirus types 16 and 18.

    PubMed Central

    Jenison, S A; Yu, X P; Valentine, J M; Galloway, D A

    1991-01-01

    We have previously reported that the most common human serum immunoglobulin G antibody reactivities to human papillomavirus type 16 and type 18 (HPV16 and HPV18)-encoded proteins are directed against the minor capsid proteins (HPV16 L2 and HPV18 L2) and to the E7 protein of HPV16 (S. A. Jenison, X.-P. Yu, J. M. Valentine, L. A. Koutsky, A. E. Christiansen, A. M. Beckmann, and D. A. Galloway, J. Infect. Dis. 162:60-69, 1990). In this study, the antibody-reactive segments of the HPV16 E7, HPV16 L2, and HPV18 L2 polypeptides were mapped by using nested sets of deleted recombinant proteins. A single major immunoreactive region was identified in the HPV16 E7 polypeptide between amino acids (aa) 21 and 34 (DLYCYE-QLNDSSEE). In contrast, three distinct immunoreactive regions of the HPV16 L2 polypeptide were present in the segment between aa149 and aa204, and three distinct immunoreactive regions of the HPV18 L2 polypeptide were present in the segment between aa110 and aa211. With the exception of one serum sample, serum immunoglobulin G antibodies which reacted with HPV16 L2 polypeptides or with HPV18 L2 polypeptides were not cross-reactive. Images PMID:1704924

  14. Biological and immunological characterization of a human liver immunoregulatory protein.

    PubMed

    Schrempf-Decker, G E; Baron, D P; Brattig, N W; Bockhorn, H; Berg, P A

    1983-01-01

    The liver immunoregulatory protein (LIP) was originally characterized as human liver-derived soluble factor which inhibited the alloantigen and phytohemagglutinin-induced proliferation of human lymphocytes (1). Soluble extracts prepared under the same experimental conditions from kidney, spleen, heart, lymph nodes, and erythrocytes did not exert any inhibitory activity (2). The purpose of this study was to characterize the immunobiological properties of LIP. In the primary one-way mixed lymphocyte culture, LIP depressed the generation of suppressor T cells which inhibited the lymphocyte proliferation induced by phytohemagglutinin or alloantigens. In addition, LIP suppressed in primary mixed lymphocyte culture the induction of cytotoxic T cells and memory cells as determined by cell-mediated lympholysis and secondary mixed lymphocyte culture, respectively. In the presence of LIP, the concanavalin A-mediated induction of suppressor T cells, the pokeweed mitogen-induced IgG synthesis in vitro and the cytolytic activity of K cells reacting in the antibody-dependent cell-mediated cytotoxicity were also inhibited. Cytotoxic effects could be excluded since the viability of human lymphoblastoid cells, hepatocytes, and allogeneically stimulated lymphocytes was not affected by LIP. LIP was shown to be different from other liver-derived substances like acute phase proteins, immunoregulatory alpha-globulins, C-reactive protein, lipoproteins, and F antigen. Furthermore, LIP is not identical to other serum components like the immunoregulatory rosette inhibition factor and the serum inhibitory factor (3). However, the characteristics described herein strongly indicate that LIP is very similar to the liver extract described by Chisari (4) and the liver-derived inhibitory protein (LIP) described by Grol and Schumacher (5).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion.

    PubMed

    Stiles, Ashlee R; Simon, Mariella T; Stover, Alexander; Eftekharian, Shaya; Khanlou, Negar; Wang, Hanlin L; Magaki, Shino; Lee, Hane; Partynski, Kate; Dorrani, Nagmeh; Chang, Richard; Martinez-Agosto, Julian A; Abdenur, Jose E

    2016-09-01

    In humans, mitochondrial DNA (mtDNA) depletion syndromes are a group of genetically and clinically heterogeneous autosomal recessive disorders that arise as a consequence of defects in mtDNA replication or nucleotide synthesis. Clinical manifestations are variable and include myopathic, encephalomyopathic, neurogastrointestinal or hepatocerebral phenotypes. Through clinical exome sequencing, we identified a homozygous missense variant (c.533C>T; p.Pro178Leu) in mitochondrial transcription factor A (TFAM) segregating in a consanguineous kindred of Colombian-Basque descent in which two siblings presented with IUGR, elevated transaminases, conjugated hyperbilirubinemia and hypoglycemia with progression to liver failure and death in early infancy. Results of the liver biopsy in the proband revealed cirrhosis, micro- and macrovesicular steatosis, cholestasis and mitochondrial pleomorphism. Electron microscopy of muscle revealed abnormal mitochondrial morphology and distribution while enzyme histochemistry was underwhelming. Electron transport chain testing in muscle showed increased citrate synthase activity suggesting mitochondrial proliferation, while respiratory chain activities were at the lower end of normal. mtDNA content was reduced in liver and muscle (11% and 21% of normal controls respectively). While Tfam mRNA expression was upregulated in primary fibroblasts, Tfam protein level was significantly reduced. Furthermore, functional investigations of the mitochondria revealed reduced basal respiration and spare respiratory capacity, decreased mtDNA copy number and markedly reduced nucleoids. TFAM is essential for transcription, replication and packaging of mtDNA into nucleoids. Tfam knockout mice display embryonic lethality secondary to severe mtDNA depletion. In this report, for the first time, we associate a homozygous variant in TFAM with a novel mtDNA depletion syndrome.

  16. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    DOEpatents

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  17. [Metabolism of mitomycin C by human liver microsomes in vitro].

    PubMed

    Hao, Fu-rong; Yan, Min-fen; Hu, Zhuo-han; Jin, Yi-zun

    2007-02-01

    To provide the profiles of metabolism of mitomycin C (MMC) by human liver microsomes in vitro, MMC was incubated with human liver microsomes, then the supernatant component was isolated and detected by HPLC. Types of metabolic enzymes were estimated by the effect of NADPH or dicumarol (DIC) on metabolism of MMC. Standard, reaction, background control (microsomes was inactivated), negative control (no NADPH), and inhibitor group (adding DIC) were assigned, the results were analyzed by Graphpad Prism 4. 0 software. Reaction group compared with background control and negative control groups, 3 NADPH-dependent absorption peaks were additionally isolated by HPLC after MMC were incubated with human liver microsomes. Their retention times were 10. 0, 14. 0, 14. 8 min ( named as Ml, M2, M3) , respectively. Their formation was kept as Sigmoidal dose-response and their Km were 0. 52 (95% CI, 0. 40 - 0.67) mmol x L(-1), 0. 81 (95% CI, 0. 59 - 1. 10) mmol x L(-1), 0. 54 (95% CI, 0. 41 -0. 71) mmol x L(-1) , respectively. The data indicated that the three absorption peaks isolated by HPLC were metabolites of MMC. DIC can inhibit formation of M2, it' s dose-effect fitted to Sigmoidal curve and it' s IC50 was 59. 68 (95% CI, 40. 66 - 87. 61) micromol x L(-1) , which indicated DT-diaphorase could take part in the formation of M2. MMC can be metabolized by human liver microsomes in vitro, and at least three metabolites of MMC could be isolated by HPLC in the experiment, further study showed DT-diaphorase participated in the formation of M2.

  18. Timing predictability enhances regularity encoding in the human subcortical auditory pathway.

    PubMed

    Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles

    2016-11-17

    The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency-following responses (FFR) were recorded to a repeating consonant-vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway.

  19. Timing predictability enhances regularity encoding in the human subcortical auditory pathway

    PubMed Central

    Gorina-Careta, Natàlia; Zarnowiec, Katarzyna; Costa-Faidella, Jordi; Escera, Carles

    2016-01-01

    The encoding of temporal regularities is a critical property of the auditory system, as short-term neural representations of environmental statistics serve to auditory object formation and detection of potentially relevant novel stimuli. A putative neural mechanism underlying regularity encoding is repetition suppression, the reduction of neural activity to repeated stimulation. Although repetitive stimulation per se has shown to reduce auditory neural activity in animal cortical and subcortical levels and in the human cerebral cortex, other factors such as timing may influence the encoding of statistical regularities. This study was set out to investigate whether temporal predictability in the ongoing auditory input modulates repetition suppression in subcortical stages of the auditory processing hierarchy. Human auditory frequency–following responses (FFR) were recorded to a repeating consonant–vowel stimuli (/wa/) delivered in temporally predictable and unpredictable conditions. FFR amplitude was attenuated by repetition independently of temporal predictability, yet we observed an accentuated suppression when the incoming stimulation was temporally predictable. These findings support the view that regularity encoding spans across the auditory hierarchy and point to temporal predictability as a modulatory factor of regularity encoding in early stages of the auditory pathway. PMID:27853313

  20. Role of liver transplantation in human immunodeficiency virus positive patients

    PubMed Central

    Joshi, Deepak; Agarwal, Kosh

    2015-01-01

    End-stage liver disease (ESLD) is a leading cause of morbidity and mortality amongst human immunodeficiency virus (HIV)-positive individuals. Chronic hepatitis B and hepatitis C virus (HCV) infection, drug-induced hepatotoxicity related to combined anti-retro-viral therapy, alcohol related liver disease and non-alcohol related fatty liver disease appear to be the leading causes. It is therefore, anticipated that more HIV-positive patients with ESLD will present as potential transplant candidates. HIV infection is no longer a contraindication to liver transplantation. Key transplantation outcomes such as rejection and infection rates as well as medium term graft and patient survival match those seen in the non-HIV infected patients in the absence of co-existing HCV infection. HIV disease does not seem to be negatively impacted by transplantation. However, HIV-HCV co-infection transplant outcomes remain suboptimal due to recurrence. In this article, we review the key challenges faced by this patient cohort in the pre- and post-transplant period. PMID:26604639

  1. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  2. Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans.

    PubMed

    Sturz, Bradley R; Kelly, Debbie M

    2009-10-01

    Human participants searched in a dynamic three-dimensional virtual-environment rectangular enclosure for a distinctly colored bin located in one of the four corners. During test trials, all bins were rendered identical in color, and the shape of the rectangular search space either remained the same or was modified to a relatively sized contracted rectangle, an expanded rectangle, or a square. Participants made one choice response during test trials. In the rectangular enclosures, more of participants' choice responses were allocated to the geometrically correct corners than to the geometrically incorrect corners. In the square enclosure, participants' choice responses were allocated equivalently to each of the four corners. Results replicate previous enclosure size studies demonstrating encoding of enclosure geometry with human and non-human animal subjects conducted in real environments and extend these results to include encoding of relative enclosure geometry. Results are discussed with respect to theoretical accounts of geometry learning.

  3. Liver stem cells: Experimental findings and implications for human liver disease

    PubMed Central

    2015-01-01

    Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease. Few topics of liver tissue biology have attracted as much attention as the existence of liver-specific tissue stem cells. Routine liver histology reveals two types of epithelial cells, hepatocytes and cholangiocytes (also known as biliary epithelial cells). Endothelial cells line the hepatic capillaries (sinusoids), with macrophages (Kupffer cells) interspersed along the sinusoid lumen. Stellate cells exist under the sinusoids and in close proximity to hepatocytes. None of these cells appears to have functions of a fully committed tissue specific stem cell, analogous to the cells of the intestinal crypts, the basal layer of the epidermis, bone marrow stem cells, etc. Hepatocytes and cholangiocytes can be easily identified based on their morphology and cell-specific biomarkers. Hepatocytes and cholangiocytes, however, often have mutually mixed expression of biomarkers in pathologic conditions. In patients with fulminant hepatic failure (FHF), there is rampant proliferation of cholangiocytes organized in ductular structures (“ductular reaction”1, 2). Many of these cholangiocytes (known as ductular hepatocytes) express biomarkers associated with hepatocytes, (HNF4, albumin, HEPPAR3, etc.). They are seen surrounding cells ranging in size from small to typical hepatocytes, and with a gradient of expression of cholangiocyte-associated biomarkers (e.g. EpCAM) decreasing from the periphery to the center (Regenerative Clusters: see Figure 1). It is not clear in FHF

  4. Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation

    PubMed Central

    Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982

  5. Effects of acute methamphetamine on emotional memory formation in humans: encoding vs consolidation.

    PubMed

    Ballard, Michael E; Weafer, Jessica; Gallo, David A; de Wit, Harriet

    2015-01-01

    Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies.

  6. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  7. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  8. Radionuclide imaging of the liver in human fascioliasis

    SciTech Connect

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  9. Oxidation of hydrogen sulfide by human liver mitochondria.

    PubMed

    Helmy, Nada; Prip-Buus, Carina; Vons, Corinne; Lenoir, Véronique; Abou-Hamdan, Abbas; Guedouari-Bounihi, Hala; Lombès, Anne; Bouillaud, Frédéric

    2014-09-15

    Hydrogen sulfide (H2S) is the third gasotransmitter discovered. Sulfide shares with the two others (NO and CO) the same inhibiting properties towards mitochondrial respiration. However, in contrast with NO or CO, sulfide at concentrations lower than the toxic (μM) level is an hydrogen donor and a substrate for mitochondrial respiration. This is due to the activity of a sulfide quinone reductase found in a large majority of mitochondria. An ongoing study of the metabolic state of liver in obese patients allowed us to evaluate the sulfide oxidation capacity with twelve preparations of human liver mitochondria. The results indicate relatively high rates of sulfide oxidation with a large variability between individuals. These observations made with isolated mitochondria appear in agreement with the main characteristics of sulfide oxidation as established before with the help of cellular models.

  10. Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices

    PubMed Central

    Zhou, Wen; Chen, Denise

    2009-01-01

    Chemosensory communication of affect and motivation is ubiquitous among animals. In humans, emotional expressions are naturally associated with faces and voices. Whether chemical signals play a role as well has hardly been addressed. Here we use functional magnetic resonance imaging (fMRI) to show that the right orbitofrontal cortex, right fusiform cortex, and right hypothalamus respond to airborne natural human sexual sweat, indicating that this particular chemosensory compound is encoded holistically in the brain. Our findings provide neural evidence that socioemotional meanings, including the sexual ones, are conveyed in the human sweat. PMID:19118174

  11. Chromosomal localization of the gene encoding the human DNA helicase RECQL and its mouse homologue

    SciTech Connect

    Puranam, K.L.; Kennington, E.; Blackshear, P.J.

    1995-04-10

    We have determined the chromosomal location of the human and mouse genes encoding the RECQL protein, a putative DNA helicase homologous to the bacterial DNA helicase, RecQ. RECQL was localized to human chromosome 12 by analysis of human-rodent somatic cell hybrid DNA, fine mapping of RECQL by fluorescence in situ hybridization revealed its chromosomal location to be 12p11-p12. The corresponding mouse gene, Recql, was mapped to the telomeric end of mouse chromosome 6 by analysis of DNA from an interspecific cross. 19 refs., 2 figs.

  12. Non-spin-echo 3D transverse hadamard encoded proton spectroscopic imaging in the human brain.

    PubMed

    Cohen, Ouri; Tal, Assaf; Goelman, Gadi; Gonen, Oded

    2013-07-01

    A non-spin-echo multivoxel proton MR localization method based on three-dimensional transverse Hadamard spectroscopic imaging is introduced and demonstrated in a phantom and the human brain. Spatial encoding is achieved with three selective 90° radiofrequency pulses along perpendicular axes: The first two create a longitudinal ±M(Z) Hadamard order in the volume of interest. The third pulse spatially Hadamard-encodes the ±M(Z)s in the volume of interest in the third direction while bringing them to the transverse plane to be acquired immediately. The approaching-ideal point spread function of Hadamard encoding and very short acquisition delay yield signal-to-noise-ratios of 20 ± 8, 23 ± 9, and 31 ± 10 for choline, creatine, and N-acetylaspartate in the human brain at 1.5 T from 1 cm(3) voxels in 21 min. The advantages of transverse Hadamard spectroscopic imaging are that unlike gradient (Fourier) phase-encoding: (i) the volume of interest does not need to be smaller than the field of view to prevent aliasing; (ii) the number of partitions in each direction can be small, 8, 4, or even 2 at no cost in point spread function; (iii) the volume of interest does not have to be contiguous; and (iv) the voxel profile depends on the available B1 and pulse synthesis paradigm and can, therefore, at least theoretically, approach "ideal" "1" inside and "0" elsewhere.

  13. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory.

    PubMed

    Staudigl, Tobias; Hanslmayr, Simon

    2013-06-17

    Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency coupling modulate such item-context binding, but direct evidence from humans is scarce. We investigated this issue by manipulating the overlap of contextual features between encoding and retrieval. Participants studied words superimposed on movie clips and were later tested by presenting the word with either the same or a different movie. The results show that memory performance and the oscillatory correlates of memory formation crucially depend on the overlap of the context between encoding and test. When the context matched, high theta power during encoding was related to successful recognition, whereas the opposite pattern emerged in the context-mismatch condition. In addition, cross-frequency coupling analysis revealed a context-dependent theta-to-gamma memory effect specifically in the left hippocampus. These results reveal for the first time that context-dependent episodic memory effects are mediated by theta oscillatory activity.

  14. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  15. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection.

    PubMed

    Petropolis, Debora B; Faust, Daniela M; Tolle, Matthieu; Rivière, Lise; Valentin, Tanguy; Neuveut, Christine; Hernandez-Cuevas, Nora; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Guillen, Nancy

    2016-01-01

    Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better

  16. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  17. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  18. Systematic Identification and Characterization of Novel Human Skin-Associated Genes Encoding Membrane and Secreted Proteins

    PubMed Central

    Buhren, Bettina Alexandra; Martinez, Cynthia; Schrumpf, Holger; Gasis, Marcia; Grether-Beck, Susanne; Krutmann, Jean

    2013-01-01

    Through bioinformatics analyses of a human gene expression database representing 105 different tissues and cell types, we identified 687 skin-associated genes that are selectively and highly expressed in human skin. Over 50 of these represent uncharacterized genes not previously associated with skin and include a subset that encode novel secreted and plasma membrane proteins. The high levels of skin-associated expression for eight of these novel therapeutic target genes were confirmed by semi-quantitative real time PCR, western blot and immunohistochemical analyses of normal skin and skin-derived cell lines. Four of these are expressed specifically by epidermal keratinocytes; two that encode G-protein-coupled receptors (GPR87 and GPR115), and two that encode secreted proteins (WFDC5 and SERPINB7). Further analyses using cytokine-activated and terminally differentiated human primary keratinocytes or a panel of common inflammatory, autoimmune or malignant skin diseases revealed distinct patterns of regulation as well as disease associations that point to important roles in cutaneous homeostasis and disease. Some of these novel uncharacterized skin genes may represent potential biomarkers or drug targets for the development of future diagnostics or therapeutics. PMID:23840300

  19. Localization of the human genes encoding the two subunits of general transcription factor TFIIE.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Motta, S; Pavone, L; Grzeschik, K H; Sichel, G

    1994-09-01

    TFIIE is a general transcription factor for class II genes composed of two types of subunits, a large one of 56 kDa and a small of 34 kDa. By Southern analysis at high and at low stringency of a panel of mouse/human hybrid cell lines and by in situ chromosomal hybridization, we have demonstrated that both polypeptides are encoded by genes that are single copy in the human genome and are localized at 3q13-q21 and at 8p12, respectively. A TaqI RFLP (heterozygosity index of 0.07) was detected at the locus for the 56-kDa subunit.

  20. Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis*

    PubMed Central

    Stenson, Britta M.; Rydén, Mikael; Venteclef, Nicolas; Dahlman, Ingrid; Pettersson, Annie M. L.; Mairal, Aline; Åström, Gaby; Blomqvist, Lennart; Wang, Victoria; Jocken, Johan W. E.; Clément, Karine; Langin, Dominique; Arner, Peter; Laurencikiene, Jurga

    2011-01-01

    The Liver X receptor (LXR) is an important regulator of carbohydrate and lipid metabolism in humans and mice. We have recently shown that activation of LXR regulates cellular fuel utilization in adipocytes. In contrast, the role of LXR in human adipocyte lipolysis, the major function of human white fat cells, is not clear. In the present study, we stimulated in vitro differentiated human and murine adipocytes with the LXR agonist GW3965 and observed an increase in basal lipolysis. Microarray analysis of human adipocyte mRNA following LXR activation revealed an altered gene expression of several lipolysis-regulating proteins, which was also confirmed by quantitative real-time PCR. We show that expression and intracellular localization of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL) are affected by GW3965. Although LXR activation does not influence phosphorylation status of HSL, HSL activity is required for the lipolytic effect of GW3965. This effect is abolished by PLIN1 knockdown. In addition, we demonstrate that upon activation, LXR binds to the proximal regions of the PLIN1 and HSL promoters. By selective knock-down of either LXR isoform, we show that LXRα is the major isoform mediating the lipolysis-related effects of LXR. In conclusion, the present study demonstrates that activation of LXRα up-regulates basal human adipocyte lipolysis. This is at least partially mediated through LXR binding to the PLIN1 promoter and down-regulation of PLIN1 expression. PMID:21030586

  1. Stoichiometries of Transferrin Receptors 1 and 2 in Human Liver

    PubMed Central

    Chloupková, Maja; Zhang, An-Sheng; Enns, Caroline A.

    2009-01-01

    Mutations in either the hereditary hemochromatosis protein, HFE, or transferrin receptor 2, TfR2, result in a similarly severe form of the most common type of iron overload disease called hereditary hemochromatosis. Models of the interactions between HFE, TfR1, and TfR2 imply that these proteins are present in different molar concentrations in the liver, where they control expression of the iron regulatory hormone, hepcidin, in response to body iron loading. The aim of this study was to determine in vivo levels of mRNA by quantitative RT-PCR and concentrations of these proteins by quantitative immunoblotting in human liver tissues. The level of TfR2 mRNA was 21- and 63- fold higher than that of TfR1 and HFE, respectively. Molar concentration of TfR2 protein was the highest and determined to be 1.95 nmoles/g protein in whole cell lysates and 10.89 nmoles/g protein in microsomal membranes. Molar concentration of TfR1 protein was 4.5- and 6.1-fold lower than that of TfR2 in whole cell lysates and membranes, respectively. The level of HFE protein was below 0.53 nmoles/g of total protein. HFE is thus present in substoichiometric concentrations with respect to both TfR1 and TfR2 in human liver tissue. This finding supports a model, in which availability of HFE is limiting for formation of complexes with TfR1 or TfR2. PMID:19819738

  2. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein.

    PubMed

    Dempsey, L A; Li, M J; DePace, A; Bray-Ward, P; Maizels, N

    1998-05-01

    The hnRNP D protein interacts with nucleic acids both in vivo and in vitro. Like many other proteins that interact with RNA, it contains RBD (or "RRM") domains and arg-gly-gly (RGG) motifs. We have examined the organization and localization of the human and murine genes that encode the hnRNP D protein. Comparison of the predicted sequences of the hnRNP D proteins in human and mouse shows that they are 96.9% identical (98.9% similar). This very high level of conservation suggests a critical function for hnRNP D. Sequence analysis of the human HNRPD gene shows that the protein is encoded by eight exons and that two additional exons specify sequences in the 3' UTR. Use of two of the coding exons is determined by alternative splicing of the HNRPD mRNA. The human HNRPD gene maps to 4q21. The mouse Hnrpd gene maps to the F region of chromosome 3, which is syntenic with the human 4q21 region.

  3. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  4. Effect of benidipine on simvastatin metabolism in human liver microsomes.

    PubMed

    Sugiyama, Yuka; Mimura, Nobuhito; Kuwabara, Takashi; Kobayashi, Hiroyuki; Ushiki, Junko; Fuse, Eiichi

    2007-06-01

    Benidipine, which is a calcium channel blocker that has clinical advantages in the treatment of hypertension, is metabolized by CYP3A4 in humans. The effect of benidipine on the metabolism of simvastatin by human liver microsomes was investigated in order to predict the potential of in vivo drug-drug interactions between benidipine and other substrates of CYP3A4. The results were compared with data generated with azelnidipine, which is also metabolized by CYP3A4. Both benidipine and azelnidipine inhibited simvastatin metabolism in vitro in a concentration-dependent manner. Assuming competitive inhibition, the K(i) values based on the unbound concentrations, were calculated to be 0.846 and 0.0181 microM for benidipine and azelnidipine, respectively. If simvastatin (10 mg) and benidipine (8 mg, the clinically recommended highest dose) were to be administered concomitantly, the ratio of the areas under the concentration-time curves of simvastatin with and without benidipine (AUC((+I))/AUC) was predicted to be 1.01. On the other hand, if simvastatin (10 mg) and azelnidipine (8 mg) were co-administered, the AUC((+I))/AUC for simvastatin was predicted to be 1.72, which is close to the observed value (1.9) in healthy volunteers. These data suggest that benidipine is unlikely to cause a drug interaction by inhibiting CYP3A4 activity in the liver.

  5. The human subthalamic nucleus and globus pallidus internus differentially encode reward during action control.

    PubMed

    Justin Rossi, Peter; Peden, Corinna; Castellanos, Oscar; Foote, Kelly D; Gunduz, Aysegul; Okun, Michael S

    2017-04-01

    The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN and GPi neurons would change their firing rate in response to reward- and loss-related stimuli, we recorded the activity of individual neurons while participants performed a behavioral task. In the task, action choices were associated with potential rewarding, punitive, or neutral outcomes. We found that STN and GPi neurons encode valence-related information during action control, but the proportion of valence-responsive neurons was greater in the STN compared to the GPi. In the STN, reward-related stimuli mobilized a greater proportion of neurons than loss-related stimuli. We also found surprising limbic overlap with the sensorimotor regions in both the STN and GPi, and this overlap was greater than has been previously reported. These findings may help to explain alterations in limbic function that have been observed following deep brain stimulation therapy of the STN and GPi. Hum Brain Mapp 38:1952-1964, 2017. © 2017 Wiley Periodicals, Inc.

  6. The human homolog of the JE gene encodes a monocyte secretory protein.

    PubMed Central

    Rollins, B J; Stier, P; Ernst, T; Wong, G G

    1989-01-01

    The mouse fibroblast gene, JE, was one of the first platelet-derived growth factor-inducible genes to be described as such. The protein encoded by JE (mJE) is the prototype of a large family of secreted, cytokinelike glycoproteins, all of whose members are induced by a mitogenic or activation signal in monocytes macrophages, and T lymphocytes; JE is the only member to have been identified in fibroblasts. We report the identification of a human homolog for murine JE, cloned from human fibroblasts. The protein predicted by the coding sequence of human JE (hJE) is 55 amino acids shorter than mJE, and its sequence is identical to that of a recently purified monocyte chemoattractant. When expressed in COS cells, the human JE cDNA directed the secretion of N-glycosylated proteins of Mr 16,000 to 18,000 as well as proteins of Mr 15,500, 15,000, and 13,000. Antibodies raised against mJE recognized these hJE species, all of which were secreted by human fibroblasts. hJE expression was stimulated in HL60 cells during phorbol myristate acetate-induced monocytoid differentiation. However, resting human monocytes constitutively secreted hJE; treatment with gamma interferon did not enhance hJE expression in monocytes, and treatment with phorbol myristate acetate or lipopolysaccharide inhibited its expression. Thus, human JE encodes yet another member of the large family of JE-related cytokinelike proteins, in this case a novel human monocyte and fibroblast secretory protein. Images PMID:2513477

  7. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  8. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-02-15

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

  9. Roughness encoding in human and biomimetic artificial touch: spatiotemporal frequency modulation and structural anisotropy of fingerprints.

    PubMed

    Oddo, Calogero Maria; Beccai, Lucia; Wessberg, Johan; Wasling, Helena Backlund; Mattioli, Fabio; Carrozza, Maria Chiara

    2011-01-01

    The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.

  10. Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence.

    PubMed Central

    Law, S W; Grant, S M; Higuchi, K; Hospattankar, A; Lackner, K; Lee, N; Brewer, H B

    1986-01-01

    Human apolipoprotein B-100 (apoB-100), the ligand on low density lipoproteins that interacts with the low density lipoprotein receptor and initiates receptor-mediated endocytosis and low density lipoprotein catabolism, has been cloned, and the complete nucleic acid and derived amino acid sequences have been determined. ApoB-100 cDNAs were isolated from normal human liver cDNA libraries utilizing immunoscreening as well as filter hybridization with radiolabeled apoB-100 oligodeoxynucleotides. The apoB-100 mRNA is 14.1 kilobases long encoding a mature apoB-100 protein of 4536 amino acids with a calculated amino acid molecular weight of 512,723. ApoB-100 contains 20 potential glycosylation sites, and 12 of a total of 25 cysteine residues are located in the amino-terminal region of the apolipoprotein providing a potential globular structure of the amino terminus of the protein. ApoB-100 contains relatively few regions of amphipathic helices, but compared to other human apolipoproteins it is enriched in beta-structure. The delineation of the entire human apoB-100 sequence will now permit a detailed analysis of the conformation of the protein, the low density lipoprotein receptor binding domain(s), and the structural relationship between apoB-100 and apoB-48 and will provide the basis for the study of genetic defects in apoB-100 in patients with dyslipoproteinemias. PMID:3464946

  11. Receptor expression and responsiveness of human peripheral blood mononuclear cells to a human cytomegalovirus encoded CC chemokine.

    PubMed

    Zheng, Qi; Xu, Jun; Gao, Huihui; Tao, Ran; Li, Wei; Shang, Shiqiang; Gu, Weizhong

    2015-01-01

    Human cytomegalovirus is a ubiquitous pathogen that infects the majority of the world's population. After long period of time co-evolving with human being, this pathogen has developed several strategies to evade host immune surveillance. One of the major trick is encoding homologous to those of the host organism or stealing host cellular genes that have significant functions in immune system. To date, we have found several viral immune analogous which include G protein coupled receptor, class I major histocompatibility complex and chemokine. Chemokine is a small group of molecules which is defined by the presence of four cysteines in highly conserved region. The four kinds of chemokines (C, CC, CXC, and CX3C) are classified based on the arrangement of 1 or 2 N-terminal cysteine residues. UL128 protein is one of the analogous that encoded by human cytomegalovirus that has similar amino acid sequences to the human CC chemokine. It has been proved to be one of the essential particles that involved in human cytomegalovirus entry into epithelial/endothelial cells as well as macrophages. It is also the target of potent neutralizing antibodies in human cytomegalovirus-seropositive individuals. We had demonstrated the chemotactic trait of UL128 protein in our previous study. Recombinant UL128 in vitro has the ability to attract monocytes to the infection region and enhances peripheral blood mononuclear cell proliferation by activating the MAPK/ERK signaling pathway. However, the way that this viral encoded chemokine interacting with peripheral blood mononuclear cells and the detailed mechanism that involving the virus entry into host cells keeps unknown. Here we performed in vitro investigation into the effects of UL128 protein on peripheral blood mononuclear cell's activation and receptor binding, which may help us further understand the immunomodulatory function of UL128 protein as well as human cytomegalovirus diffusion mechanism.

  12. Cloning of the genes encoding two murine and human cochlear unconventional type I myosins

    SciTech Connect

    Crozet, F.; El Amraoui, Z.; Blanchard, S.

    1997-03-01

    Several lines of evidence indicate a crucial role for unconventional myosins in the function of the sensory hair cells of the inner ear. We report here the characterization of the cDNAs encoding two unconventional type I myosins from a mouse cochlear cDNA library. The first cDNA encodes a putative protein named Myo1c, which is likely to be the murine orthologue of the bullfrog myosin I{beta} and which may be involved in the gating of the mechanotransduction channel of the sensory hair cells. This myosin belongs to the group of short-tailed myosins I, with its tail ending shortly after a polybasic, TH-1-like domain. The second cDNA encodes a novel type I myosin Myo1f which displays three regions: a head domain with the conserved ATP- and actin-binding sites, a neck domain with a single IQ motif, and a tail domain with the tripartite structure initially described in protozoan myosins I. The tail of Myo1f includes (1) a TH-1 region rich in basic residues, which may interact with anionic membrane phospholipids; (2) a TH-2 proline-rich region, expected to contain an ATP-insensitive actin-binding site; and (3) an SH-3 domain found in a variety of cytoskeletal and signaling proteins. Northern blot analysis indicated that the genes encoding Myo1c and Myo1f display a widespread tissue expression in the adult mouse. Myo1c and Myo1f were mapped by in situ hybridization to the chromosomal regions 11D-11E and 17B-17C, respectively. The human orthologuous genes MYO1C and MYO1F were also characterized, and mapped to the human chromosomal regions 17p13 and 19p13.2- 19p1.3.3, respectively. 45 refs., 5 figs., 2 tabs.

  13. Dual temporal encoding mechanisms in human auditory cortex: Evidence from MEG and EEG.

    PubMed

    Tang, Huizhen; Crain, Stephen; Johnson, Blake W

    2016-03-01

    Current hypotheses about language processing advocate an integral relationship between encoding of temporal information and linguistic processing in the brain. All such explanations must accommodate the evident ability of the perceptual system to process both slow and fast time scales in speech. However most cortical neurons are limited in their capability to precisely synchronise to temporal modulations at rates faster than about 50Hz. Hence, a central question in auditory neurophysiology concerns how the full range of perceptually relevant modulation rates might be encoded in the cerebral cortex. Here we show with concurrent noninvasive magnetoencephalography (MEG) and electroencephalography (EEG) measurements that the human auditory cortex transitions between a phase-locked (PL) mode of responding to modulation rates below about 50Hz, and a non-phase-locked (NPL) mode at higher rates. Precisely such dual response modes are predictable from the behaviours of single neurons in auditory cortices of non-human primates. Our data point to a common mechanistic explanation for the single neuron and MEG/EEG results and support the hypothesis that two distinct types of neuronal encoding mechanisms are employed by the auditory cortex to represent a wide range of temporal modulation rates. This dual encoding model allows slow and fast modulations in speech to be processed in parallel and is therefore consistent with theoretical frameworks in which slow temporal modulations (such as rhythm or syllabic structure) are akin to the contours or edges of visual objects, whereas faster modulations (such as periodicity pitch or phonemic structure) are more like visual texture.

  14. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  15. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task

    PubMed Central

    Gertz, Hanna

    2015-01-01

    Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified condition), the PRR and PMd have been shown to represent all potential movement goals. In this functional magnetic resonance imaging study, we investigated whether the human PCu and PMd likewise encode the movement goal, and whether these reach-related areas also engage in situations with underspecified compared with specified movement goals. By using a pro-/anti-reach task, we spatially dissociated the location of the visual cue from the location of the movement goal. In the specified conditions, pro- and anti-reaches activated similar parietal and premotor areas. In the PCu contralateral to the moving arm, we found directionally selective activation fixed to the movement goal. In the underspecified conditions, we observed activation in reach-related areas of the posterior parietal cortex, including PCu. However, the activation was substantially weaker in parietal areas and lacking in PMd. Our results suggest that human PCu encodes the movement goal rather than the location of the visual cue if the movement goal is specified and even engages in situations when only the visual cue but not the movement goal is defined. PMID:25904714

  16. Molecular expression and enzymatic characterization of thioredoxin from the carcinogenic human liver fluke Opisthorchis viverrini.

    PubMed

    Suttiprapa, Sutas; Matchimakul, Pitchaya; Loukas, Alex; Laha, Thewarach; Wongkham, Sopit; Kaewkes, Sasithorn; Brindley, Paul J; Sripa, Banchob

    2012-03-01

    The human liver fluke, Opisthorchis viverrini, induces inflammation of the hepatobiliary system. Despite being constantly exposed to inimical oxygen radicals released from inflammatory cells, the parasite survives for years. Defense against oxidative damage can be mediated through glutathione and/or thioredoxin utilizing systems. Here, we report the molecular expression and biochemical characterization of a thioredoxin (Trx) from O. viverrini. O. viverrini Trx cDNA encoded a polypeptide of 105 amino acid residues, of molecular mass 11.63 kDa. The predicted protein has similarity to previously characterized thioredoxins with 26-51% identity. Recombinant O. viverrini Trx (Ov-Trx-1) was expressed as soluble protein in E. coli. The recombinant protein showed insulin reduction activity and supported the enzymatic function of O. viverrini thioredoxin peroxidase. Expression of Ov-Trx-1 at mRNA and protein levels was observed in all obtainable developmental stages of the liver fluke. Ov-Trx-1 was also detected in excretory-secretory products released by adult O. viverrini. Immunohistochemistry, Ov-Trx-1 was expressed in nearly all parasite tissue excepted ovary and mature sperms. Interestingly, Ov-Trx-1 was observed in the infected biliary epithelium but not in normal bile ducts. These results suggest that Ov-Trx-1 is essential for the parasite throughout the life cycle. In the host-parasite interaction aspect, Ov-Trx-1 may support thioredoxin peroxidase in protecting the parasite against damage induced by reactive oxygen species from inflammation.

  17. Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay

    PubMed Central

    He, Miao; Kratz, Lisa E.; Michel, Joshua J.; Vallejo, Abbe N.; Ferris, Laura; Kelley, Richard I.; Hoover, Jacqueline J.; Jukic, Drazen; Gibson, K. Michael; Wolfe, Lynne A.; Ramachandran, Dhanya; Zwick, Michael E.; Vockley, Jerry

    2011-01-01

    Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. PMID:21285510

  18. Interaction of human lactoferrin with the rat liver

    SciTech Connect

    Debanne, M.T.; Regoeczi, E.; Sweeney, G.D.; Krestynski, F.

    1985-04-01

    Binding of human lactoferrin (hLf) by purified rat liver plasma membranes was studied to clarify whether the liver possesses specific hLf receptors. The binding was rapid between 4 degrees and 37 degrees C, with a pH optimum close to 5.0. At 22 degrees C and in glycine-NaOH (5 mM, pH 7.4) containing 150 mM NaCl and 0.5% albumin, 1 microgram of membrane bound a maximum of 11.8 ng hLf. The dissociation constant of the interaction was 1.6 X 10(-7) M. Other proteins of high isoelectric points (lactoperoxidase, lysozyme, and particularly salmine sulfate) and a piperazine derivative inhibited hLf binding in a concentration- dependent manner. In contrast, monosaccharides (galactose, N- acetylgalactosamine, mannose, and fucose) were ineffective. By omitting NaCl from the incubation buffer, binding was increased 3.6-fold. Erythrocyte ghosts bound hLf less firmly and alveolar macrophages more firmly than hepatic plasma membranes. Liver cell fractionations performed after the intravenous injection of labeled hLf showed that approximately 88% of the hepatic radioligand was associated with parenchymal cells. When binding was expressed per unit of cell volume, however, more hLf was present in nonparenchymal than in parenchymal cells, implying that the above value was determined by the relative cell masses rather than affinities alone. It is concluded that the binding of hLf by hepatic plasma membranes is electrostatic, i.e., is mediated by the cationic nature of the ligand, and that it is explicable in terms of a ''specific nonreceptor interaction'' of the generalized type proposed by Cuatrecasas and Hollenberg.

  19. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver*

    PubMed Central

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-01-01

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. PMID:26719341

  20. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.

  1. A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project.

    PubMed

    Qu, Hongzhu; Fang, Xiangdong

    2013-06-01

    The ENCyclopedia Of DNA Elements (ENCODE) project is an international research consortium that aims to identify all functional elements in the human genome sequence. The second phase of the project comprised 1640 datasets from 147 different cell types, yielding a set of 30 publications across several journals. These data revealed that 80.4% of the human genome displays some functionality in at least one cell type. Many of these regulatory elements are physically associated with one another and further form a network or three-dimensional conformation to affect gene expression. These elements are also related to sequence variants associated with diseases or traits. All these findings provide us new insights into the organization and regulation of genes and genome, and serve as an expansive resource for understanding human health and disease.

  2. Expression of the gene encoding growth hormone in the human mammary gland

    SciTech Connect

    Mol, J.A.; Misdorp, W.; Rijnberk, A.

    1995-10-01

    Progestins cause a syndrome of growth hormone (GH) excess and enhanced mammary tumorigenesis in the dog. This has been regarded as being specific for the dog. Recently we reported that progestin-induced GH excess originates from foci of hyperplastic ductular epithelium of the mammary gland in the dog. In the present report we demonstrate by reverse-transcriptase PCR and immunohistochemistry that a main factor involved in tissue growth, i.e. GH, is also expressed in normal and neoplastic human mammary glands. The gene expressed in the human mammary gland proved to be identical to the gene encoding GH in the pituitary gland. The role of progesterone in the GH expression of the human mammary gland needs, however, to be proven. It is hypothesized that this locally produced hGH may play a pathogenetic role in breast cancer. 21 refs., 2 figs., 1 tab.

  3. Molecular cloning of a cDNA encoding a human macrophage migration inhibitory factor.

    PubMed Central

    Weiser, W Y; Temple, P A; Witek-Giannotti, J S; Remold, H G; Clark, S C; David, J R

    1989-01-01

    A cDNA encoding a human macrophage migration inhibitory factor (MIF) was isolated, through functional expression cloning in COS-1 cells, from a cDNA library prepared from a lectin-stimulated T-cell hybridoma, T-CEMB. The 115-amino acid polypeptide encoded by the MIF cDNA (p7-1) was effectively released from the transfected COS-1 cells and yielded readily detectable MIF activity in the culture supernatant despite the apparent lack of a classical protein secretory sequence. Insertional mutational analysis and elution of MIF activity from polyacrylamide gel slices demonstrated that the Mr 12,000 protein with MIF activity released by the COS-1 cells is encoded by p7-1. The p7-1 cDNA hybridized with a 700-base mRNA expressed by Con-A-stimulated lymphocytes but not unstimulated lymphocytes. The availability of the MIF cDNA clone and recombinant MIF will facilitate the analysis of the role of this lymphokine in cell-mediated immunity, immunoregulation, and inflammation. Images PMID:2552447

  4. The Roles of Human Lateral Temporal Cortical Neuronal Activity in Recent Verbal Memory Encoding

    PubMed Central

    Schoenfield-McNeill, Julie; Corina, David

    2009-01-01

    Activity of 98 single neurons in human lateral temporal cortex was measured during memory encoding for auditory words, text, or pictures and compared with identification of material of the same modality in extracellular recordings during awake neurosurgery for epilepsy. Frequency of activity was divided into early or late epochs or activity sustained throughout both; 44 neurons had significant changes in one or more categories. Polymodal and sustained changes lateralized to dominant hemisphere and late changes to nondominant. The majority of polymodal neurons shifted categories for different modalities. In dominant hemisphere, the timing and nature of changes in activity provide the basis for a model of the roles of temporal cortex in encoding. Superior temporal gyrus excitatory activity was related to the early epoch, when perception and processing occur, and middle gyrus to the late epoch, when semantic labeling occurs. The superior two-thirds of middle gyrus also demonstrated sustained inhibition. In a subset of lateral temporal neurons, memory-encoding activity reflected simultaneous convergence of sustained attentional and early perceptual inputs. PMID:18469317

  5. Direct evidence for encoding of motion streaks in human visual cortex

    PubMed Central

    Apthorp, Deborah; Schwarzkopf, D. Samuel; Kaul, Christian; Bahrami, Bahador; Alais, David; Rees, Geraint

    2013-01-01

    Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion. PMID:23222445

  6. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

    PubMed

    Hart, Steven N; Li, Ye; Nakamoto, Kaori; Subileau, Eva-anne; Steen, David; Zhong, Xiao-bo

    2010-06-01

    HepaRG cells, derived from a female hepatocarcinoma patient, are capable of differentiating into biliary epithelial cells and hepatocytes. More importantly, differentiated HepaRG cells are able to maintain activities of many xenobiotic-metabolizing enzymes, and expression of the metabolizing enzyme genes can be induced by xenobiotics. The ability of these cells to express and induce xenobiotic-metabolizing enzymes is in stark contrast to the frequently used HepG2 cells. The previous studies have mainly focused on a set of selected genes; therefore, it is of significant interest to know the extent of similarity of gene expression at whole genome levels in HepaRG cells and HepG2 cells compared with primary human hepatocytes and human liver tissues. To accomplish this objective, we used Affymetrix (Santa Clara, CA) U133 Plus 2.0 arrays to characterize the whole genome gene expression profiles in triplicate biological samples from HepG2 cells, HepaRG cells (undifferentiated and differentiated cells), freshly isolated primary human hepatocytes, and frozen liver tissues. After using similarity matrix, principal components, and hierarchical clustering methods, we found that HepaRG cells globally transcribe genes at levels more similar to human primary hepatocytes and human liver tissues than HepG2 cells. In particular, many genes encoding drug-processing proteins are transcribed at a more similar level in HepaRG cells than in HepG2 cells compared with primary human hepatocytes and liver samples. The transcriptomic similarity of HepaRG with primary human hepatocytes is encouraging for use of HepaRG cells in the study of xenobiotic metabolism, hepatotoxicology, and hepatocyte differentiation.

  7. Development of in silico models for human liver microsomal stability

    NASA Astrophysics Data System (ADS)

    Lee, Pil H.; Cucurull-Sanchez, Lourdes; Lu, Jing; Du, Yuhua J.

    2007-12-01

    We developed highly predictive classification models for human liver microsomal (HLM) stability using the apparent intrinsic clearance (CLint, app) as the end point. HLM stability has been shown to be an important factor related to the metabolic clearance of a compound. Robust in silico models that predict metabolic clearance are very useful in early drug discovery stages to optimize the compound structure and to select promising leads to avoid costly drug development failures in later stages. Using Random Forest and Bayesian classification methods with MOE, E-state descriptors, ADME Keys, and ECFP_6 fingerprints, various highly predictive models were developed. The best performance of the models shows 80 and 75% prediction accuracy for the test and validation sets, respectively. A detailed analysis of results will be shown, including an assessment of the prediction confidence, the significant descriptors, and the application of these models to drug discovery projects.

  8. Color signal encoding for high dynamic range and wide color gamut based on human perception

    NASA Astrophysics Data System (ADS)

    Nezamabadi, Mahdi; Miller, Scott; Daly, Scott; Atkins, Robin

    2014-01-01

    A new EOTF based on human perception, called PQ (Perceptual Quantizer), was proposed in a previous work (SMPTE Mot. Imag. J 2013, 122:52-59) and its performance was evaluated for a wide range of luminance levels and encoding bitdepth values. This paper is an extension of that previous work to include the color aspects of the PQ signal encoding. The efficiency of the PQ encoding and bit-depth requirements were evaluated and compared for standard color gamuts of Rec 709 (SRGB), and the wide color gamuts of Rec 2020, P3, and ACES for a variety of signal representations as RGB, YCbCr, and XYZ. In a selected color space for any potential local gray level 26 color samples were simulated by deviating one quantization step from the original color in each signal dimension. The quantization step sizes were simulated based on the PQ and gamma curves for different bit-depth values and luminance ranges for each of the color gamut spaces and signal representations. Color differences between the gray field and the simulated color samples were computed using CIE DE2000 color difference equation. The maximum color difference values (quantization error) were used as a metric to evaluate the performance of the corresponding EOTF curve. Extended color gamuts were found to require more bits to maintain low quantization error. Extended dynamic range required fewer additional bits in to maintain quantization error. Regarding the visual detection thresholds, the minimum bit-depth required by the PQ and gamma encodings are evaluated and compared through visual experiments.

  9. Chromosome Studies of Virus-infected Semi-continuous Human Embryonic Liver Cells

    PubMed Central

    Zuckerman, A. J.; Taylor, P. E.; Jacobs, J. P.; Jones, C. A.

    1970-01-01

    Semi-continuous human embryonic liver cells infected with San Carlos virus 3 exhibited an increased frequency of chromosomal breaks and other chromosomal abnormalities when compared with uninoculated control cultures. The chromosomes of cells inoculated with AR-17 virus retained their normal structure. The strain of liver cells used in this study is essentially diploid. It represents the first strain of diploid cells so far described from human liver. ImagesFigs. 2-3Fig. 1 PMID:4985032

  10. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  11. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.

    PubMed Central

    Phaneuf, D; Labelle, Y; Bérubé, D; Arden, K; Cavenee, W; Gagné, R; Tanguay, R M

    1991-01-01

    Type 1 hereditary tyrosinemia (HT) is an autosomal recessive disease characterized by a deficiency of the enzyme fumarylacetoacetate hydrolase (FAH; E.C.3.7.1.2). We have isolated human FAH cDNA clones by screening a liver cDNA expression library using specific antibodies and plaque hybridization with a rat FAH cDNA probe. A 1,477-bp cDNA was sequenced and shown to code for FAH by an in vitro transcription-translation assay and sequence homology with tryptic fragments of purified FAH. Transient expression of this FAH cDNA in transfected CV-1 mammalian cells resulted in the synthesis of an immunoreactive protein comigrating with purified human liver FAH on SDS-PAGE and having enzymatic activity as shown by the hydrolysis of the natural substrate fumarylacetoacetate. This indicates that the single polypeptide chain encoded by the FAH gene contains all the genetic information required for functional activity, suggesting that the dimer found in vivo is a homodimer. The human FAH cDNA was used as a probe to determine the gene's chromosomal localization using somatic cell hybrids and in situ hybridization. The human FAH gene maps to the long arm of chromosome 15 in the region q23-q25. Images Figure 1 Figure 3 Figure 4 Figure 6 Figure 8 PMID:1998338

  12. Extensive double humanization of both liver and hematopoiesis in FRGN mice.

    PubMed

    Wilson, Elizabeth M; Bial, J; Tarlow, Branden; Bial, G; Jensen, B; Greiner, D L; Brehm, M A; Grompe, M

    2014-11-01

    Preclinical research in animals often fails to adequately predict the outcomes observed in human patients. Chimeric animals bearing individual human tissues have been developed to provide improved models of human-specific cellular processes. Mice transplanted with human hematopoietic stem cells can be used to study human immune responses, infections of blood cells and processes of hematopoiesis. Animals with humanized livers are useful for modeling hepatotropic infections as well as drug metabolism and hepatotoxicity. However, many pathophysiologic processes involve both the liver and the hematolymphoid system. Examples include hepatitis C/HIV co-infection, immune mediated liver diseases, liver injuries with inflammation such as steatohepatitis and alcoholic liver disease. We developed a robust protocol enabling the concurrent double-humanization of mice with mature hepatocytes and human blood. Immune-deficient, fumarylacetoacetate hydrolase (Fah(-/-)), Rag2(-/-) and Il2rg(-/-) deficient animals on the NOD-strain background (FRGN) were simultaneously co-transplanted with adult human hepatocytes and hematopoietic stem cells after busulfan and Ad:uPA pre-conditioning. Four months after transplantation the average human liver repopulation exceeded 80% and hematopoietic chimerism also was high (40-80% in bone marrow). Importantly, human macrophages (Kupffer cells) were present in the chimeric livers. Double-chimeric FRGN mice will serve as a new model for disease processes that involve interactions between hepatocytes and hematolymphoid cells.

  13. Differential processing of colony-stimulating factor 1 precursors encoded by two human cDNAs.

    PubMed Central

    Rettenmier, C W; Roussel, M F

    1988-01-01

    The biosynthesis of macrophage colony-stimulating factor 1 (CSF-1) was examined in mouse NIH-3T3 fibroblasts transfected with a retroviral vector expressing the 554-amino-acid product of a human 4-kilobase (kb) CSF-1 cDNA. Similar to results previously obtained with a 1.6-kb human cDNA that codes for a 256-amino-acid CSF-1 precursor, the results of the present study showed that NIH-3T3 cells expressing the product of the 4-kb clone produced biologically active human CSF-1 and were transformed by an autocrine mechanism when cotransfected with a vector containing a human c-fms (CSF-1 receptor) cDNA. The 4-kb CSF-1 cDNA product was synthesized as an integral transmembrane glycoprotein that was assembled into disulfide-linked dimers and rapidly underwent proteolytic cleavage to generate a soluble growth factor. Although the smaller CSF-1 precursor specified by the 1.6-kb human cDNA was stably expressed as a membrane-bound glycoprotein at the cell surface and was slowly cleaved to release the extracellular growth factor, the cell-associated product of the 4-kb clone was efficiently processed to the secreted form and was not detected on the plasma membrane. Digestion with glycosidic enzymes indicated that soluble CSF-1 encoded by the 4-kb cDNA contained both asparagine(N)-linked and O-linked carbohydrate chains, whereas the product of the 1.6-kb clone had only N-linked oligosaccharides. Removal of the carbohydrate indicated that the polypeptide chain of the secreted 4-kb cDNA product was longer than that of the corresponding form encoded by the smaller clone. These differences in posttranslational processing may reflect diverse physiological roles for the products of the two CSF-1 precursors in vivo. Images PMID:3264877

  14. Steroid metabolism in chimeric mice with humanized liver.

    PubMed

    Lootens, Leen; Van Eenoo, Peter; Meuleman, Philip; Pozo, Oscar J; Van Renterghem, Pieter; Leroux-Roels, Geert; Delbeke, Frans T

    2009-11-01

    Anabolic androgenic steroids are considered to be doping agents and are prohibited in sports. Their metabolism needs to be elucidated to allow for urinary detection by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Steroid metabolism was assessed using uPA(+/+) SCID mice with humanized livers (chimeric mice). This study presents the results of 19-norandrost-4-ene-3,17-dione (19-norAD) administration to these in vivo mice. As in humans, 19-norandrosterone and 19-noretiocholanolone are the major detectable metabolites of 19-norAD in the urine of chimeric mice.A summary is given of the metabolic pathways found in chimeric mice after administration of three model steroid compounds (methandienone, androst-4-ene-3,17-dione and 19-norandrost-4-ene-3,17-dione). From these studies we can conclude that all major metabolic pathways for anabolic steroids in humans are present in the chimeric mouse. It is hoped that, in future, this promising chimeric mouse model might assist the discovery of new and possible longer detectable metabolites of (designer) steroids.

  15. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    PubMed Central

    Sipahi, Mesut; Şahin, Sevinç; Arslan, Ergin; Börekci, Hasan; Metin, Bayram; Cantürk, Nuh Zafer

    2015-01-01

    Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations. PMID:26457000

  16. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  17. Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs

    DTIC Science & Technology

    2008-10-02

    Proteomic Study of Human Malaria Parasite Plasmodium Vivax Liver Stages for Development of Vaccines and Drugs PRINCIPAL INVESTIGATOR: Dr...AND SUBTITLE 5a. CONTRACT NUMBER Proteomic Study of Human Malaria Parasite Plasmodium Vivax 5b. GRANT NUMBER W81XWH-07-2-0090 Liver Stages...3. Production of sporozoite and preparation for transcriptome and proteomic analysis: Sporozoites harvested from salivary gland, haemolymph

  18. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  19. Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding.

    PubMed

    van Stegeren, Anda H; Roozendaal, Benno; Kindt, Merel; Wolf, Oliver T; Joëls, Marian

    2010-01-01

    Emotionally arousing experiences are usually well retained, an effect that depends on the release of adrenal stress hormones. Animal studies have shown that corticosterone and noradrenaline - representing the two main stress hormone systems - act in concert to enhance memory formation by actions involving the amygdala, hippocampus and prefrontal cortex (PFC). Here we test whether interactions between these two stress hormone systems also affect human memory formation as well as the associated pattern of brain activation. To this end, forty-eight male human subjects received hydrocortisone, yohimbine or both before presentation of emotional and neutral pictures. Activity in the amygdala, hippocampus and PFC was monitored with functional Magnetic Resonance Imaging (fMRI) during encoding of these stimuli, when hormonal levels were elevated. Memory performance was tested 1 week later. We investigated whether an increased level of one of the two hormone systems would lead to differential effects compared to the combined application of the drugs on brain activation and memory performance. We report that the application of cortisol led to an overall enhancing effect on recognition memory, with no significant additional effect of yohimbine. However, during encoding the brain switched from amygdala/hippocampus activation with either hormone alone, to a strong deactivation of prefrontal areas under the influence of the combination of both exogenous hormones. Although we did not find evidence that exogenous stimulation of the noradrenergic and corticosteroid systems led to significant interaction effects on memory performance in this experiment, we conclude that stress hormone levels during encoding did differentially determine the activation pattern of the brain circuits here involved.

  20. Molecular cloning and characterization of a human cDNA and gene encoding a novel acid ceramidase-like protein.

    PubMed

    Hong, S B; Li, C M; Rhee, H J; Park, J H; He, X; Levy, B; Yoo, O J; Schuchman, E H

    1999-12-01

    Computer-assisted database analysis of sequences homologous to human acid ceramidase (ASAH) revealed a 1233-bp cDNA (previously designated cPj-LTR) whose 266-amino-acid open reading frame had approximately 36% identity with the ASAH polypeptide. Based on this high degree of homology, we undertook further molecular characterization of cPj-LTR and now report the full-length cDNA sequence, complete gene structure (renamed human ASAHL since it is a human acid ceramidase-like sequence), chromosomal location, primer extension and promoter analysis, and transient expression results. The full-length human ASAHL cDNA was 1825 bp and contained an open-reading frame encoding a 359-amino-acid polypeptide that was 33% identical and 69% similar to the ASAH polypeptide over its entire length. Numerous short regions of complete identity were observed between these two sequences and two sequences obtained from the Caenorhabditis elegans genome database. The 30-kb human ASAHL genomic sequence contained 11 exons, which ranged in size from 26 to 671 bp, and 10 introns, which ranged from 150 bp to 6.4 kb. The gene was localized to the chromosomal region 4q21.1 by fluorescence in situ hybridization analysis. Northern blotting experiments revealed a major 2.0-kb ASAHL transcript that was expressed at high levels in the liver and kidney, but at relatively low levels in other tissues such as the lung, heart, and brain. Sequence analysis of the 5'-flanking region of the human ASAHL gene revealed a putative promoter region that lacked a TATA box and was GC rich, typical features of a housekeeping gene promoter, as well as several tissue-specific and/or hormone-induced transcription regulatory sites. 5'-Deletion analysis localized the promoter activity to a 1. 1-kb fragment within this region. A major transcription start site also was located 72 bp upstream from the ATG translation initiation site by primer extension analysis. Expression analysis of a green fluorescence protein/ASAHL fusion

  1. A Gene Encoding Antigenic Peptides of Human Squamous Cell Carcinoma Recognized by Cytotoxic T Lymphocytes

    PubMed Central

    Shichijo, Shigeki; Nakao, Masanobu; Imai, Yasuhisa; Takasu, Hideo; Kawamoto, Mayumi; Niiya, Fumihiko; Yang, Damu; Toh, Yuji; Yamana, Hideaki; Itoh, Kyogo

    1998-01-01

    Except for melanomas, tumor antigens recognized by cytotoxic T lymphocytes (CTLs) are yet unidentified. We have identified a gene encoding antigenic peptides of human squamous cell carcinomas (SCCs) recognized by human histocompatibility leukocyte antigens (HLA)- A2601–restricted CTLs. This gene showed no similarity to known sequences, and encoded two (125- and 43-kilodalton [kD]) proteins. The 125-kD protein with the leucine zipper motif was expressed in the nucleus of the majority of proliferating cells tested, including normal and malignant cells. The 43-kD protein was expressed in the cytosol of most SCCs from various organs and half of lung adenocarcinomas, but was not expressed in other cancers nor in a panel of normal tissues. The three nonapeptides shared by the two proteins were recognized by the KE4 CTLs, and one of the peptides induced in vitro from peripheral blood mononuclear cells (PBMCs) the CTLs restricted to the autologous tumor cells. The 43-kD protein and this nonapeptide (KGSGKMKTE) may be useful for the specific immunotherapy of HLA-A2601+ epithelial cancer patients. PMID:9449708

  2. Using human-induced pluripotent stem cells to model monogenic metabolic disorders of the liver.

    PubMed

    Ordonez, Maria Paulina; Goldstein, Lawrence S B

    2012-11-01

    A crucial problem in liver disease biology and a major obstacle to the development of new therapies is the inability to conduct mechanistic studies of live human hepatocytes. Liver tissue from patients is difficult to obtain and only reveals the disease aftermath, while animal models lack the significant genetic diversity of humans. Monogenic metabolic disorders of the liver are an ideal platform to explore the complex gene-environment interactions and the role of genetic variation in the onset and progression of liver disease. Human induced pluripotent stem cell (hIPSC) technology provides an unprecedented opportunity to generate live cellular models of disease for therapeutic candidate discovery and cell replacement therapy. In this review, we discuss the potential of hIPSC to increase our understanding of human disease with a focus on the current efforts to model metabolic diseases of the liver and to generate suitable populations of human hepatocytes for cell transplantation.

  3. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-08-05

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.

  4. Localization of a bacterial group II intron-encoded protein in human cells

    PubMed Central

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  5. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers.

    PubMed

    Chardin, P; Courtois, G; Mattei, M G; Gisselbrecht, S

    1991-04-11

    We have isolated a human cDNA (kup), encoding a new protein with two distantly spaced zinc fingers of the C2H2 type. This gene is highly conserved in mammals and is expressed mainly in hematopoietic cells and testis. Its expression was not higher in the various transformed cells tested than in the normal corresponding tissues. The kup gene is located in region q23-q24 of the long arm of human chromosome 14. The kup protein is 433 a.a. long, has a M.W. close to 50 kD and binds to DNA. Although the structure of the kup protein is unusual, the isolated fingers resemble closely those of the Krüppel family, suggesting that this protein is also a transcription factor. The precise function and DNA motif recognized by the kup protein remain to be determined.

  6. The habenula encodes negative motivational value associated with primary punishment in humans

    PubMed Central

    Lawson, Rebecca P.; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J.; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P.

    2014-01-01

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans. PMID:25071182

  7. The habenula encodes negative motivational value associated with primary punishment in humans.

    PubMed

    Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P

    2014-08-12

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.

  8. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  9. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    PubMed

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  10. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases.

    PubMed

    Montaner, Silvia; Kufareva, Irina; Abagyan, Ruben; Gutkind, J Silvio

    2013-01-01

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface molecules involved in signal transduction. Surprisingly, open reading frames for multiple GPCRs were hijacked in the process of coevolution between Herpesviridae family viruses and their human and mammalian hosts. Virally encoded GPCRs (vGPCRs) evolved as parts of viral genomes, and this evolution allowed the power of host GPCR signaling circuitries to be harnessed in order to ensure viral replicative success. Phylogenetically, vGPCRs are distantly related to human chemokine receptors, although they feature several unique characteristics. Here, we describe the molecular mechanisms underlying vGPCR-mediated viral pathogenesis. These mechanisms include constitutive activity, aberrant coupling to human G proteins and β-arrestins, binding and activation by human chemokines, and dimerization with other GPCRs expressed in infected cells. The likely structural basis for these molecular events is described for the two closest viral homologs of human GPCRs. This information may aid in the development of novel targeted therapeutic strategies against viral diseases.

  11. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole

    PubMed Central

    Paraskevi Bechtsi, Dafni; Braks, Joanna A. M.; Annoura, Takeshi; Fonager, Jannik; Spaccapelo, Roberta; Ramesar, Jai; Chevalley-Maurel, Séverine; Klop, Onny; Tanke, Hans J.; Kocken, Clemens H. M.; Pasini, Erica M.; Khan, Shahid M.; Böhme, Ulrike; van Ooij, Christiaan; Otto, Thomas D.; Janse, Chris J.; Franke-Fayard, Blandine

    2016-01-01

    Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. PMID:27851824

  12. Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury.

    PubMed

    Sell, S

    1998-02-01

    The ultrastructural characteristics of liver progenitor cell types of human atypical ductular reactions seen in chronic cholestasis, in regenerating human liver after submassive necrosis, in alcoholic liver disease, and in focal nodular hyperplasia are compared with liver progenitor cell types seen during experimental cholangiocarcinogenesis in hamsters; during hepatocarcinogenesis in rats; and in response to periportal liver injury induced by allyl alcohol in rats. Three types of progenitor cells have been identified in human atypical ductular reactions: type I: primitive, has an oval shape, marginal chromatin, few cellular organelles, rare tonofilaments, and forms desmosomal junctions with adjacent liver cells; type II: bile duct-like, is located within ducts, has few organelles, and forms lateral membrane interdigitations with other duct-like cells; and type III: hepatocyte-like, is located in hepatic cords, forms a bile canaliculus, has tight junctions with other hepatocyte-like cells, prominent mitochondria and rough endoplasmic reticulum, and some have lysosomes and a poorly developed Golgi apparatus. Each type is seen during cholangiocarcinogenesis in hamsters, but the most prominent cell type is type II, duct-like. A more primitive cell type ("type 0 cell"), as well as type I cells, are seen in the intraportal zone of the liver within 1 to 2 days after carcinogen exposure or periportal injury in the rat, but both type II and type III are seen later as the progenitor cells expand into the liver lobule. After allyl alcohol injury, type 0 cells precede the appearance of type I and type III cells, but most of the cells that span the periportal necrotic zone are type III hepatocyte-like cells showing different degrees of hepatocytic differentiation. Some type II cells are also seen, but these are essentially limited to ducts. It is concluded that there is a primitive stem cell type in the liver (type 0) that may differentiate directly into type I and then into

  13. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver.

    PubMed

    Song, Sunmi; Shackel, Nicholas A; Wang, Xin M; Ajami, Katerina; McCaughan, Geoffrey W; Gorrell, Mark D

    2011-03-01

    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell-collagen interactions in chronic liver injury.

  14. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex.

    PubMed

    Recasens, Marc; Grimm, Sabine; Wollbrink, Andreas; Pantev, Christo; Escera, Carles

    2014-11-01

    Our auditory system is able to encode acoustic regularity of growing levels of complexity to model and predict incoming events. Recent evidence suggests that early indices of deviance detection in the time range of the middle-latency responses (MLR) precede the mismatch negativity (MMN), a well-established error response associated with deviance detection. While studies suggest that only the MMN, but not early deviance-related MLR, underlie complex regularity levels, it is not clear whether these two mechanisms interplay during scene analysis by encoding nested levels of acoustic regularity, and whether neuronal sources underlying local and global deviations are hierarchically organized. We registered magnetoencephalographic evoked fields to rapidly presented four-tone local sequences containing a frequency change. Temporally integrated local events, in turn, defined global regularities, which were infrequently violated by a tone repetition. A global magnetic mismatch negativity (MMNm) was obtained at 140-220 ms when breaking the global regularity, but no deviance-related effects were shown in early latencies. Conversely, Nbm (45-55 ms) and Pbm (60-75 ms) deflections of the MLR, and an earlier MMNm response at 120-160 ms, responded to local violations. Distinct neuronal generators in the auditory cortex underlay the processing of local and global regularity violations, suggesting that nested levels of complexity of auditory object representations are represented in separated cortical areas. Our results suggest that the different processing stages and anatomical areas involved in the encoding of auditory representations, and the subsequent detection of its violations, are hierarchically organized in the human auditory cortex.

  15. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex

    PubMed Central

    Laubacher, Claire M.; Olausson, Håkan; Wang, Binquan; Spagnolo, Primavera A.; Bushnell, M. Catherine

    2016-01-01

    Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain. PMID:27225773

  16. Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors

    PubMed Central

    Koeberl, Dwight D.; Alexander, Ian E.; Halbert, Christine L.; Russell, David W.; Miller, A. Dusty

    1997-01-01

    We previously found that gene transduction by adeno-associated virus (AAV) vectors in cell culture can be stimulated over 100-fold by treatment of the target cells with agents that affect DNA metabolism, such as irradiation or topoisomerase inhibitors. Here we show that previous γ-irradiation increased the transduction rate in mouse liver by up to 900-fold, and the topoisomerase inhibitor etoposide increased transduction by about 20-fold. Similar rates of hepatic transduction were obtained by direct injection of the liver or by systemic delivery via tail vein injection. Hepatocytes were much more efficiently transduced than other cells after systemic delivery, and up to 3% of all hepatocytes could be transduced after one vector injection. The presence of wild-type AAV, which contaminates many AAV vector preparations, was required to observe a full response to γ-irradiation. Injection of mice with AAV vectors encoding human clotting factor IX after γ-irradiation resulted in synthesis of low levels of human clotting factor IX for the 5-month period of observation. These studies show the potential of targeted gene transduction of the liver by AAV vectors for treatment of various hematological or metabolic diseases. PMID:9037069

  17. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  18. Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire

    PubMed Central

    Yeung, Yik Andy; Foletti, Davide; Deng, Xiaodi; Abdiche, Yasmina; Strop, Pavel; Glanville, Jacob; Pitts, Steven; Lindquist, Kevin; Sundar, Purnima D.; Sirota, Marina; Hasa-Moreno, Adela; Pham, Amber; Melton Witt, Jody; Ni, Irene; Pons, Jaume; Shelton, David; Rajpal, Arvind; Chaparro-Riggers, Javier

    2016-01-01

    Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition. PMID:27857134

  19. Human anterior prefrontal cortex encodes the 'what' and 'when' of future intentions.

    PubMed

    Momennejad, Ida; Haynes, John-Dylan

    2012-05-15

    On a daily basis we form numerous intentions to perform specific actions. However, we often have to delay the execution of intended actions while engaging in other demanding activities. Previous research has shown that patterns of activity in human prefrontal cortex (PFC) can reveal our current intentions. However, two fundamental questions have remained unresolved: (a) how does the PFC encode information about future tasks while we are busy engaging in other activities, and (b) how does the PFC enable us to commence a stored task at the intended time? Here we investigate how the brain stores and retrieves future intentions during occupied delays, i.e. while a person is busy performing a different task. For this purpose, we conducted a neuroimaging study with a time-based prospective memory paradigm. Using multivariate pattern classification and fMRI we show that during an occupied delay, activity patterns in the anterior PFC encode the content of 'what' subjects intend to do next, and 'when' they intend to do it. Importantly, distinct anterior PFC regions store the 'what' and 'when' components of future intentions during occupied maintenance and self-initiated retrieval. These results show a role for anterior PFC activity patterns in storing future action plans and ensuring their timely retrieval.

  20. Campylobacter spp. in New Zealand raw sheep liver and human campylobacteriosis cases.

    PubMed

    Cornelius, A J; Nicol, C; Hudson, J A

    2005-03-01

    Sheep liver samples were tested for the presence and numbers of Campylobacter jejuni and C. coli during both spring and autumn. Over the same period, isolates were obtained from human clinical cases from the same geographical area as where the food samples were purchased. A subset of the C. jejuni isolates was typed by both Penner serotyping and pulsed field gel electrophoresis using the restriction enzyme SmaI, to estimate the proportion of liver isolate types that were also isolated from human cases of campylobacteriosis. Of the 272 liver samples tested, 180 (66.2%) contained Campylobacter. Most of the positive samples contained <3 MPN/g of the organism, and only 12 (6.7%) were contaminated at a level exceeding 100 MPN/g. A total of 180 C. jejuni isolates were obtained from sheep liver and another 200 from human faeces. Of these, 212 isolates were randomly selected for typing, half from raw liver and half from human faeces. More than half (61.1%) of the 106 C. jejuni isolates from liver were of subtypes that were also isolated from human cases. While the C. jejuni present in sheep liver were mostly of subtypes also isolated from human cases, the significance of this food as a vehicle of human campylobacteriosis needs to be examined further in respect to other factors such as dose-response information, consumption data, frequency of undercooking and cross contamination.

  1. Evidence that the SRY protein is encoded by a single exon on the human Y chromosome

    SciTech Connect

    Behlke, M.A. Women's Hospital and Harvard Medical School, Boston, MA ); Bogan, J.S.; Beer-Romero, P.; Page, D.C. )

    1993-09-01

    To facilitate studies of the SRY gene, a 4741-bp portion of the sex-determining region of the human Y chromosome was sequenced and characterized. Two RNAs were found to hybridize to this genomic segment, one transcript deriving from SRY and the second cross-hybridizing to a pseudogene located 2.5 kb 5[prime] of the SRY open reading frame (ORF). Analysis of the SRY transcript using 3[prime] and 5[prime] rapid amplification and cloning of ends suggested that the entire SRY protein is encoded by a single exon. A 700-bp CpG island is located immediately 5[prime] of the pseudogene (and 2 kb 5[prime] of the SRY ORF). Within this CpG island lies the sequence CGCCCCCGC, a potential binding site for the EGR-1/WT1 family of transcription factors, some of which appear to function in gonadal development. 19 refs., 1 fig.

  2. Evidence for joint encoding of motion and disparity in human visual perception.

    PubMed

    Neri, Peter; Levi, Dennis M

    2008-12-01

    Electrophysiological recordings have established that motion and disparity signals are jointly encoded by subpopulations of neurons in visual cortex. However, the question of whether these neurons play a perceptual role has proven challenging and remains open. To answer this question we combined two powerful psychophysical techniques: perceptual adaptation and reverse correlation. Our results provide a detailed picture of how visual information about motion and disparity is processed by human observers, and how this processing is modified by prolonged sensory stimulation. We were able to isolate two perceptual components: a separable component, supported by separate motion and disparity signals, and an inseparable joint component, supported by motion and disparity signals that are concurrently represented at the level of the same neural mechanism. Both components are involved in the perception of stimuli containing motion and disparity information in line with the known existence of corresponding neuronal subpopulations in visual cortex.

  3. Decoding the disease-associated proteins encoded in the human chromosome 4.

    PubMed

    Chen, Lien-Chin; Liu, Mei-Ying; Hsiao, Yung-Chin; Choong, Wai-Kok; Wu, Hsin-Yi; Hsu, Wen-Lian; Liao, Pao-Chi; Sung, Ting-Yi; Tsai, Shih-Feng; Yu, Jau-Song; Chen, Yu-Ju

    2013-01-04

    Chromosome 4 is the fourth largest chromosome, containing approximately 191 megabases (~6.4% of the human genome) with 757 protein-coding genes. A number of marker genes for many diseases have been found in this chromosome, including genetic diseases (e.g., hepatocellular carcinoma) and biomedical research (cardiac system, aging, metabolic disorders, immune system, cancer and stem cell) related genes (e.g., oncogenes, growth factors). As a pilot study for the chromosome 4-centric human proteome project (Chr 4-HPP), we present here a systematic analysis of the disease association, protein isoforms, coding single nucleotide polymorphisms of these 757 protein-coding genes and their experimental evidence at the protein level. We also describe how the findings from the chromosome 4 project might be used to drive the biomarker discovery and validation study in disease-oriented projects, using the examples of secretomic and membrane proteomic approaches in cancer research. By integrating with cancer cell secretomes and several other existing databases in the public domain, we identified 141 chromosome 4-encoded proteins as cancer cell-secretable/shedable proteins. Additionally, we also identified 54 chromosome 4-encoded proteins that have been classified as cancer-associated proteins with successful selected or multiple reaction monitoring (SRM/MRM) assays developed. From literature annotation and topology analysis, 271 proteins were recognized as membrane proteins while 27.9% of the 757 proteins do not have any experimental evidence at the protein-level. In summary, the analysis revealed that the chromosome 4 is a rich resource for cancer-associated proteins for biomarker verification projects and for drug target discovery projects.

  4. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells

    PubMed Central

    Ramunas, John; Yakubov, Eduard; Brady, Jennifer J.; Corbel, Stéphane Y.; Holbrook, Colin; Brandt, Moritz; Stein, Jonathan; Santiago, Juan G.; Cooke, John P.; Blau, Helen M.

    2015-01-01

    Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24–48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PDs), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PDs, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 1012-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.—Ramunas, J., Yakubov, E., Brady, J. J., Corbel, S. Y., Holbrook, C., Brandt, M., Stein, J., Santiago, J. G., Cooke, J. P., Blau, H. M. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. PMID:25614443

  5. Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Novo, Erica; Parola, Maurizio

    2016-01-01

    Background Tissue Angiotensin II (Ang-II), produced through local non ACE-dependent pathways, stimulates liver fibrogenesis, renal vasoconstriction and sodium retention. Aim To highlight chymase-dependent pathway of Ang-II production in liver and kidney during cirrhosis development. Methods Liver histology, portal pressure, liver and kidney function, and hormonal status were investigated in rat liver cirrhosis induced through 13 weeks of CCl4, with or without chymase inhibitor SF2809E, administered between 4th and 13th CCl4 weeks; liver and kidney chymase immunolocation and Ang-II content were assessed. Chymase immunohistochemistry was also assessed in normal and cirrhotic human liver, and chymase mRNA transcripts were measured in human HepG2 cells and activated hepatic stellate cells (HSC/MFs) in vitro. Results Rats receiving both CCl4 and SF2809E showed liver fibrotic septa focally linking portal tracts but no cirrhosis, as compared to ascitic cirrhotic rats receiving CCl4. SF2809E reduced portal pressure, plasma bilirubin, tissue content of Ang-II, plasma renin activity, norepinephrine and vasopressin, and increased glomerular filtration rate, water clearance, urinary sodium excretion. Chymase tissue content was increased and detected in α-SMA-positive liver myofibroblasts and in kidney tubular cells of cirrhotic rats. In human cirrhosis, chymase was located in hepatocytes of regenerative nodules. Human HepG2 cells and HSC/MFs responded to TGF-β1 by up-regulating chymase mRNA transcription. Conclusions Chymase, through synthesis of Ang-II and other mediators, plays a role in the derangement of liver and kidney function in chronic liver diseases. In human cirrhosis, chymase is well-represented and apt to become a future target of pharmacological treatment. PMID:27637026

  6. Characterisation of theophylline metabolism in human liver microsomes.

    PubMed Central

    Robson, R A; Matthews, A P; Miners, J O; McManus, M E; Meyer, U A; Hall, P M; Birkett, D J

    1987-01-01

    1. A radiometric high performance liquid chromatographic method is described for the assay of theophylline metabolism in vitro by the microsomal fraction of human liver. 2. Formation of the three metabolites of theophylline (3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid) were linear with protein concentrations to 4 mg ml-1 and with incubation times up to 180 min. 3. The coefficients of variation for the formation of 3-methylxanthine, 1-methylxanthine and 1,3-dimethyluric acid were 1.2%, 1% and 1.6%, respectively. 4. Theophylline is metabolised by microsomal enzymes with a requirement for NADPH. 5. The mean (n = 7) Km values for 1-demethylation, 3-demethylation and 8-hydroxylation were 545, 630 and 788 microM, respectively, and the mean Vmax values were 2.65, 2.84 and 11.23 pmol min-1 mg-1, respectively. 6. There was a high correlation between the Km and Vmax values for the two demethylation pathways suggesting that the demethylations are performed by the same enzyme. 7. Overall the in vitro studies are consistent with the in vivo results which suggest the involvement of two cytochrome P-450 isozymes in the metabolism of theophylline. PMID:3663445

  7. Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q

    SciTech Connect

    Shephard, E.A.; Fox, M.F.; Povey, S. ); Dolphin, C.T.; Phillips, I.R.; Smith, R. )

    1993-04-01

    The authors have used the polymerase chain reaction to map the gene encoding human flavin-containing monooxygenase (FMO) form II (N. Lomri, Q. Gu, and J. R. Cashman, 1992, Proc. Natl. Acad. Sci. USA 89: 1685--1689) to chromosome 1. They propose the designation FMO3 for this gene as it is the third FMO gene to be mapped. The two other human FMO genes identified to date, FMO1 and FMO2, are also located on chromosome 1 (C. Dolphin, E. A. Shephard, S. Povey, C. N. A. Palmer, D. M. Ziegler, R. Ayesh, R. L. Smith, and 1. R. Phillips, 1991, J. Biol. Chem. 266: 12379--12385; C. Dolphin, E. A. Shephard, S. F. Povey, R. L. Smith, and I. R. Phillips, 1992, Biochem. J. 286: 261--267). The localization of FMO1, FMO2, and FMO3 has been refined to the long arm of chromosome 1. Analysis of human metaphase chromosomes by in situ hybridization confirmed the mapping of FMO1 and localized this gene more precisely to 1 q23-q25. 28 refs., 3 figs., 2 tabs.

  8. Treatment of surgically induced acute liver failure with transplantation of highly differentiated immortalized human hepatocytes.

    PubMed

    Kobayashi, N; Miyazaki, M; Fukaya, K; Inoue, Y; Sakaguchi, M; Noguchi, H; Matsumura, T; Watanabe, T; Totsugawa, T; Tanaka, N; Namba, M

    2000-01-01

    Primary human hepatocytes are an ideal source of hepatic function in bioartficial liver (BAL), but the shortage of human livers available for hepatocyte isolation limits this modality. To resolve this issue, primary human fetal hepatocytes were immortalized using simian virus 40 large T antigen. One of the immortal cell lines, OUMS-29, showed highly differentiated liver functions. Intrasplenic transplantation of OUMS-29 cells protected 90% hepatectomized rats from hyperammonemia and significantly prolonged their survival. Essentially unlimited availability of OUMS-29 cells supports their clinical use for BAL treatment.

  9. Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long-chain polyunsaturated fatty acids.

    PubMed Central

    Leonard, A E; Bobik, E G; Dorado, J; Kroeger, P E; Chuang, L T; Thurmond, J M; Parker-Barnes, J M; Das, T; Huang, Y S; Mukerji, P

    2000-01-01

    The Saccharomyces cerevisiae protein ELO2p is involved in the elongation of saturated and monounsaturated fatty acids. Among several sequences with limited identity with the S. cerevisiae ELO2 gene, a consensus cDNA sequence was identified from the LifeSeq(R) database of Incyte Pharmaceuticals, Inc. Human liver cDNA was amplified by PCR using oligonucleotides complementary to the 5' and 3' ends of the putative human cDNA sequence. The resulting full-length sequence, termed HELO1, consisted of 897 bp, which encoded 299 amino acids. However, in contrast with the ELO2 gene, expression of this open reading frame in S. cerevisiae demonstrated that the encoded protein was involved in the elongation of long-chain polyunsaturated fatty acids, as determined by the conversion of gamma-linolenic acid (C(18:3, n-6)) into dihomo-gamma-linolenic acid (C(20:3, n-6)), arachidonic acid (C(20:4, n-6)) into adrenic acid (C(22:4, n-6)), stearidonic acid (C(18:4, n-3)) into eicosatetraenoic acid (C(20:4, n-3)), eicosapentaenoic acid (C(20:5, n-3)) into omega3-docosapentaenoic acid (C(22:5, n-3)) and alpha-linolenic acid (C(18:3, n-3)) into omega3-eicosatrienoic acid (C(20:3, n-3)). The predicted amino acid sequence of the open reading frame had only 29% identity with the yeast ELO2 sequence, contained a single histidine-rich domain and had six transmembrane-spanning regions, as suggested by hydropathy analysis. The tissue expression profile revealed that the HELO1 gene is highly expressed in the adrenal gland and testis. Furthermore, the HELO1 gene is located on chromosome 6, best known for encoding the major histocompatibility complex, which is essential to the human immune response. PMID:10970790

  10. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    SciTech Connect

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-02-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage lambdagt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16/sup +/ natural killer cells and CD3/sup +/, CD16/sup -/ T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells.

  11. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  12. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  13. Data-Driven Identification of Structural Alerts for Mitigating the Risk of Drug-Induced Human Liver Injuries

    DTIC Science & Technology

    2015-02-11

    RESEARCH ARTICLE Open Access Data-driven identification of structural alerts for mitigating the risk of drug-induced human liver injuries Ruifeng Liu...structural alerts before use. Method: To derive human liver toxicity structural alerts, we retrieved all small-molecule entries from LiverTox, a U.S...National Institutes of Health online resource for information on human liver injuries induced by prescription and over-the-counter drugs and dietary

  14. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation

    PubMed Central

    Cui, Guoliang; Qin, Xia; Wu, Lili; Zhang, Yuebo; Sheng, Xiaoyan; Yu, Qiwen; Sheng, Hongguang; Xi, Beili; Zhang, Jingwu Z.; Zang, Ying Qin

    2011-01-01

    Th17 cells are a subset of CD4+ T cells with an important role in clearing certain bacterial and fungal pathogens. However, they have also been implicated in autoimmune diseases such as multiple sclerosis. Exposure of naive CD4+ T cells to IL-6 and TGF-β leads to Th17 cell differentiation through a process in which many proteins have been implicated. We report here that ectopic expression of liver X receptor (LXR) inhibits Th17 polarization of mouse CD4+ T cells, while LXR deficiency promotes Th17 differentiation in vitro. LXR activation in mice ameliorated disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, whereas LXR deficiency exacerbated disease. Further analysis revealed that Srebp-1, which is encoded by an LXR target gene, mediated the suppression of Th17 differentiation by binding to the E-box element on the Il17 promoter, physically interacting with aryl hydrocarbon receptor (Ahr) and inhibiting Ahr-controlled Il17 transcription. The putative active site (PAS) domain of Ahr and the N-terminal acidic region of Srebp-1 were essential for this interaction. Additional analyses suggested that similar LXR-dependent mechanisms were operational during human Th17 differentiation in vitro. This study reports what we believe to be a novel signaling pathway underlying LXR-mediated regulation of Th17 cell differentiation and autoimmunity. PMID:21266776

  15. Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase.

    PubMed

    Lake, B G; Ball, S E; Kao, J; Renwick, A B; Price, R J; Scatina, J A

    2002-10-01

    1. The metabolism of Zaleplon (CL-284,846; ZAL) has been studied in precision-cut human liver slices and liver cytosol preparations. 2. Human liver slices metabolized ZAL to a number of products including 5-oxo-ZAL (M2), N-desethyl-5-oxo-ZAL (M1) and N-desethyl-ZAL (DZAL), the latter metabolite being known to be formed by CYP3A forms. 3. Human liver cytosol preparations catalysed the metabolism of ZAL to M2. Kinetic analysis of three cytosol preparations revealed mean (+/- SEM) K(m) and V(max) of 93 +/- 18 mm and 317 +/- 241 pmol/min/mg protein, respectively. 4. Using 16 individual human liver cytosol preparations a 33-fold variability in the metabolism of 80 micro M ZAL to M2 was observed. Correlations were observed between M2 formation and the metabolism of the aldehyde oxidase substrates phenanthridine (r(2) = 0.774) and phthalazine (r(2) = 0.460). 5. The metabolism of 80 micro M ZAL to M2 in liver cytosol preparations was markedly inhibited by the aldehyde oxidase inhibitors chlorpromazine, promethazine, hydralazine and menadione. Additional kinetic analysis suggested that chlorpromazine and promethazine were non-competitive inhibitors of M2 formation with K(i) of 2.3 and 1.9 micro M, respectively. ZAL metabolism to M2 was also inhibited by cimetidine. 6. Incubations conducted with human liver cytosol and H(2)(18)O demonstrated that the oxygen atom incorporated into ZAL and DZAL to form M2 and M1, respectively, was derived from water and not from molecular oxygen. 7. In summary, by correlation analysis, chemical inhibition and H(2)(18)O incorporation studies, ZAL metabolism to M2 in human liver appears to be catalysed by aldehyde oxidase. With human liver slices, ZAL was metabolized to products dependent on both aldehyde oxidase and CYP3A forms.

  16. Non-human lnc-DC orthologs encode Wdnm1-like protein

    PubMed Central

    Dijkstra, Johannes M.; Ballingall, Keith T.

    2014-01-01

    In a recent publication in Science, Wang et al. found a long noncoding RNA (lncRNA) expressed in human dendritic cells (DC), which they designated lnc-DC. Based on lentivirus-mediated RNA interference (RNAi) experiments in human and murine systems, they concluded that lnc-DC is important in differentiation of monocytes into DC. However, Wang et al. did not mention that their so-called “mouse lnc-DC ortholog” gene was already designated “ Wdnm1-like” and is known to encode a small secreted protein.  We found that incapacitation of the Wdnm1-like open reading frame (ORF) is very rare among mammals, with all investigated primates except for hominids having an intact ORF. The null-hypothesis by Wang et al. therefore should have been that the human lnc-DC transcript might only represent a non-functional relatively young evolutionary remnant of a protein coding locus.  Whether this null-hypothesis can be rejected by the experimental data presented by Wang et al. depends in part on the possible off-target (immunogenic or otherwise) effects of their RNAi procedures, which were not exhaustive in regard to the number of analyzed RNAi sequences and control sequences.  If, however, the conclusions by Wang et al. on their human model are correct, and they may be, current knowledge regarding the Wdnm1-like locus suggests an intriguing combination of different functions mediated by transcript and protein in the maturation of several cell types at some point in evolution. We feel that the article by Wang et al. tends to be misleading without the discussion presented here. PMID:25309733

  17. Cloning, characterization and subcellular localization of a gene encoding a human Ubiquitin-conjugating enzyme (E2) homologous to the Arabidopsis thaliana UBC-16 gene product.

    PubMed

    Yin, Gang; Ji, Chaoneng; Wu, Tong; Shen, Zhouliang; Xu, Xin; Xie, Yi; Mao, Yumin

    2006-05-01

    Ubiquitin charging and activation of class III E2 enzymes has been directly linked to their nuclear import. It has not been published whether other classes E2s also abide by this mechanism. During the large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a cDNA clone that is 2252 base pair in length, encoding a putative 162 amino acid protein, which shares high homology to Arabidopsis thaliana ubiquitin-conjugating enzyme 16 (Accession number NP_565110, 51% identity and 71% similarity) at protein level. Bioinformatics analysis revealed that the gene is composed of 7 exons, located on human chromosome 8q13-8q21.1, and that the predicted protein of the gene is a class I E2, for only composed of a conserved approximately 150-amino acid catalytic core, ubiquitin-conjugating enzyme E2 domain (UBC domain). In the C-terminal of the UBC domain sequence, there are two nuclear localization signals (NLSs). RT-PCR showed that this gene is ubiquitously expressed in 16 kinds of normal human tissues, but expression level is very low, unless in human heart, brain, liver, and pancreas. The subcellular localizations of the new human Ubiquitin conjugating enzyme E2 and its mutation were also examined, which showed that the nuclear localization of hUBC16 depended on two conditions: It has NLS, and at the same time, has enzyme active site, too, at least in HEK293 cells.

  18. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  19. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans

    PubMed Central

    Alzaid, Fawaz; Lagadec, Floriane; Albuquerque, Miguel; Ballaire, Raphaëlle; Orliaguet, Lucie; Hainault, Isabelle; Blugeon, Corinne; Lemoine, Sophie; Lehuen, Agnès; Saliba, David G.; Udalova, Irina A.; Paradis, Valérie; Foufelle, Fabienne

    2016-01-01

    Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease. PMID:27942586

  20. Blocking porcine sialoadhesin improves extracorporeal porcine liver xenoperfusion with human blood

    PubMed Central

    Waldman, Joshua P.; Vogel, Thomas; Burlak, Christopher; Coussios, Constantin; Dominguez, Javier; Friend, Peter; Rees, Michael A.

    2013-01-01

    Patients in fulminant hepatic failure currently do not have a temporary means of support while awaiting liver transplantation. A potential therapeutic approach for such patients is the use of extracorporeal perfusion with porcine livers as a form of “liver dialysis”. During a 72-hour extracorporeal perfusion of porcine livers with human blood, porcine Kupffer cells bind to and phagocytose human red blood cells (hRBC) causing the hematocrit to decrease to 2.5% of the original value. Our laboratory has identified porcine sialoadhesin expressed on Kupffer cells as the lectin responsible for binding N-acetylneuraminic acid on the surface of the hRBC. We evaluated whether blocking porcine sialoadhesin prevents the recognition and subsequent destruction of hRBCs seen during extracorporeal porcine liver xenoperfusion. Ex vivo studies were performed using wild type pig livers perfused with isolated hRBCs for 72-hours in the presence of an anti-porcine sialoadhesin antibody or isotype control. The addition of an anti-porcine sialoadhesin antibody to an extracorporeal porcine liver xenoperfusion model reduces the loss of hRBC over a 72 hour period. Sustained liver function was demonstrated throughout the perfusion. This study illustrates the role of sialoadhesin in mediating the destruction of hRBCs in an extracorporeal porcine liver xenoperfusion model. PMID:23822217

  1. Human cytomegalovirus UL49 encodes an early, virion-associated protein essential for virus growth in human foreskin fibroblasts.

    PubMed

    Zhu, Feng; Yuan, Jian; Li, Hong-Jian; Zeng, Zhi-Feng; Luo, Zhi-Wen; Li, Shi-Qian; He, Chi-Qiang; Jia, Xue-Fang; Zhang, Xin; Zuo, Hui; Liu, Yi-Min; Chang, Martin; Li, Yue-Qin; Zhou, Tian-Hong

    2016-05-01

    Despite recent results of deletion experiments showing that open reading frame (ORF) UL49 of human cytomegalovirus (HCMV) is essential, the expression, function and functional location of its encoded protein remain unknown. We generated an antibody specific for pUL49 to investigate the protein product encoded by the UL49 ORF and identified its function in HCMV-infected host foreskin fibroblasts. A bacterial artificial chromosome (BAC) of HCMV strain Towne (pRV-Towne) and the UL49-deleted mutant pRV-delUL49Towne were used to observe virus growth by plaque assay. Using a UL49-protein-binding antibody, we located pUL49 in the fibroblast cytoplasm. pUL49 exhibited expression kinetics resembling those of the class β-2 proteins and was detected in the virion tegument. Following deletion of UL49 ORF, the virus failed to replicate, but it could be recovered by addition of pUL49 from pCDNA3.1 (+)-UL49. Our findings indicate that UL49 ORF is essential for HCMV replication in host foreskin fibroblasts.

  2. Molecular cloning of a cDNA encoding the human Sm-D autoantigen

    SciTech Connect

    Rokeach, L.A.; Haselby, J.A.; Hoch, S.O. )

    1988-07-01

    Antibodies to the Sm-D polypeptide antigen are closely associated with the rheumatic disease systemic lupus erythematosus. Sm-D exists in the cell as one of the core proteins of the small nuclear ribonucleoprotein complexes implicated in RNA processing. The authors have isolated a cDNA clone, D45-2, coding for the Sm-D human nuclear antigen by screening a human B-lymphocyte cDNA library with synthetic oligonucleotide probes. The 1633-base-pair clone contains an open reading frame (ORF) 357 nucleotides long, capable of encoding a 13,282-dalton polypeptide. The Sm-D coding region is initiated at an AUG codon downstream from a sequence with excellent match to the consensus for the eukaryotic ribosome-binding site. The Sm-D ORF is preceded by a 150-nucleotide-long untranslated leader and followed by a 1126-nucleotide-long untranslated region containing four putative poly(A) signals. The predicted amino acid sequence reveals a (Gly-Arg){sub 9} repeated motif at the C terminus, which may constitute one of the Sm-D immunoreactive determinants. Moreover, this C terminus shows interesting features: (i) a good homology to protamines as expected for a nucleic acid binding protein and (ii) a striking similarity to a region in the Epstein-Barr nuclear antigen.

  3. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes.

    PubMed

    Slovak, J E; Mealey, K; Court, M H

    2017-04-01

    Use of the immunosuppressant mycophenolic acid (MPA) in cats is limited because MPA elimination depends on glucuronidation, which is deficient in cats. We evaluated formation of major (phenol glucuronide) and minor (acyl glucuronide, phenol glucoside, and acyl glucoside) MPA metabolites using liver microsomes from 16 cats, 26 dogs, and 48 humans. All MPA metabolites were formed by human liver microsomes, while dog and cat liver microsomes formed both MPA glucuronides, but only one MPA glucoside (phenol glucoside). Intrinsic clearance (CLint) of MPA for phenol glucuronidation by cat liver microsomes was only 15-17% that of dog and human liver microsomes. However, CLint for acyl glucuronide and phenol glucoside formation in cat liver microsomes was similar to or greater than that for dog and human liver microsomes. While total MPA conjugation CLint was generally similar for cat liver microsomes compared with dog and human liver microsomes, relative contributions of each pathway varied between species with phenol glucuronidation predominating in dog and human liver microsomes and phenol glucosidation predominating in cat liver microsomes. MPA conjugation variation between cat liver microsomes was threefold for total conjugation and for phenol glucosidation, sixfold for phenol glucuronidation, and 11-fold for acyl glucuronidation. Our results indicate that total MPA conjugation is quantitatively similar between liver microsomes from cats, dogs, and humans despite large differences in the conjugation pathways that are utilized by these species.

  4. Novel human growth hormone like protein HGH-V encoded in the human genome

    SciTech Connect

    Seeburg, P.H.

    1987-05-12

    This patent describes the human growth hormone protein, HGH-V, having the amino acid sequence: phe pro thr ile pro leu ser arg leu phe asp asn ala met leu arg ala arg arg leu tyr gln leu ala tyr asp thr tyr gln glu phe glu glu ala tyr ile leu lys glu gln lys tyr ser phe leu gln asn pro gln thr ser leu cys phe ser glu ser ile pro thr pro ser asn arg val lys thr gln gln lys ser asn leu glu leu leu arg ile ser leu leu leu ile gln ser trp leu glu pro val gln leu leu arg ser val phe ala asn ser leu val tyr gly ala ser asp ser asn val tyr arg his leu lys asp leu glu glu gly ile gln thr leu met trp arg leu glu asp gly ser pro arg thr gly gln ile phe asn-glycosylation site gln ser tyr ser lys phe asp thr lys ser his asn asp asp ala leu leu lys asn tyr gly leu leu tyr cys Phe arg lys asp met asp lys val glu thr phe leu arg ile val gln cys arg ser val glu gly ser cys gly phe.

  5. Metabolism and Metabolic Inhibition of Xanthotoxol in Human Liver Microsomes

    PubMed Central

    Shi, Xianbao; Zhang, Gang; Guo, Feng

    2016-01-01

    Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450 isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes. CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC50 of 7.43 μM for CYP3A4 and 27.82 μM for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15 μM and 2.22 μM for CYP1A2 and CYP3A4, respectively. The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and Vmax, Km, and CLint values were calculated as 0.55 nmol·min−1·mg−1, 8.46 μM, and 0.06 mL·min−1·mg−1. In addition, the results of molecular docking showed that xanthotoxol was bound to CYP1A2 with hydrophobic and π-π bond and CYP3A4 with hydrogen and hydrophobic bond. We predicted the hepatic clearance (CLH) and the CLH value was 15.91 mL·min−1·kg−1 body weight. These data were significant for the application of xanthotoxol and xanthotoxol-containing herbs. PMID:27034690

  6. Selenium chemoprevention of liver cancer in animals and possible human applications.

    PubMed

    Yu, S Y; Chu, Y J; Li, W G

    1988-01-01

    An inverse correlation between geographic distribution of liver cancer incidence and the selenium (Se) contents of whole blood and grains was observed in Qidong county, Jiangsu province, a high liver cancer area of the People's Republic of China. Animal experiments demonstrated that supplementation of Se reduced the incidence of liver cancer in rats exposed to aflatoxin B1. Se was also shown to inhibit the growth of transplanted tumors. A lower incidence of liver preneoplastic alterations and reduction of hepatitis B virus infection in ducks by Se-supplementation was observed, and three pilot studies for a Se-intervention trial on human liver cancer were carried out on the residents of Qidong county. A protective effect on the cellular DNA damage induced by aflatoxin B1 was observed in lympocytes from human with Se-supplements.

  7. Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function

    PubMed Central

    2013-01-01

    Background Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression. Results In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development. Conclusions Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity. PMID:23958281

  8. Cathepsin F Cysteine Protease of the Human Liver Fluke, Opisthorchis viverrini

    PubMed Central

    Laha, Thewarach; Sripa, Banchob; Kaewkes, Sasithorn; Morales, Maria E.; Mann, Victoria H.; Parriott, Sandi K.; Suttiprapa, Sutas; Robinson, Mark W.; To, Joyce; Dalton, John P.; Loukas, Alex; Brindley, Paul J.

    2009-01-01

    Background The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities. Methodology/Principal Findings Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt) encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa), prosegment (95 aa), and mature protease (213 aa). BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%), Paragonimus westermani (58%), Schistosoma mansoni and S. japonicum (52%), and with vertebrate cathepsin F (51%). Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of ∼3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not

  9. Fibronectin of human liver sinusoids binds hepatitis B virus: identification by an anti-idiotypic antibody bearing the internal image of the pre-S2 domain.

    PubMed Central

    Budkowska, A; Bedossa, P; Groh, F; Louise, A; Pillot, J

    1995-01-01

    Anti-idiotypic antibodies (anti-Ids) have been successfully used to characterize and isolate receptors of several cell ligands. To prepare an immunological probe for identification of cellular components interacting with the hepatitis B virus (HBV), polyclonal antisera against a panel of five HBV-specific monoclonal antibodies (MAbs) were produced in syngeneic BALB/c mice. MAbs to HBV used for immunization (Ab1) recognized biologically important and potentially neutralizing epitopes, located in the pre-S1, pre-S2, or S region-encoded domains of HBV proteins. All the anti-Ids (Ab2) were specific to idiotopes of the homologous Ab1 and inhibited their interaction with the corresponding viral epitopes, suggesting that they recognized unique determinants on the paratope of each immunizing Ab1. Therefore, all five generated polyclonal anti-Ids were of the Ab2 beta type and could represent internal images of viral epitopes. Ab2 raised against the pre-S2 region-specific MAb F124 bound to the extracellular matrix fibronectin of human liver sinusoids. Immunohistochemical studies demonstrated the attachment of viral and recombinant (S, M) hepatitis B surface antigen particles with the pre-S2 region-encoded epitopes to the fibronectin of human liver sinusoids. In contrast, recombinant (S, L*) hepatitis B surface antigen particles, in which the epitope recognized by F124 MAb was not expressed, did not show any binding capacity. These findings suggest that human liver fibronectin may bind HBV in vivo by the pre-S2 region-encoded epitopes in a species-restricted manner. Furthermore, binding of the circulating virus to liver sinusoids could facilitate its subsequent uptake by hepatocytes. PMID:7815551

  10. Assessment of liver function in chronic liver diseases and regional function of irradiated liver by means of 99mTc-galactosyl-human serum albumin liver scintigraphy and quantitative spectral analysis.

    PubMed

    Fukui, A; Murase, K; Tsuda, T; Fujii, T; Ikezoe, J

    2000-12-01

    Scintigraphy with 99mTc-diethylenetriamine pentaacetic acid galactosyl human serum albumin (99mTc-GSA) was performed on 102 patients, then the hepatic extraction fraction (HEF), the rate constant for liver uptake of the tracer from the blood (K1) and the hepatic blood flow index (HBFI) were determined by spectral analysis. The HEF, K1 and HBFI values correlated moderately or closely with various indices of hepatic function, and the HEF and K1 values decreased according to the stage of liver dysfunction. The HEF and K1 values linearly and nonlinearly correlated with HH15 and LHL15, respectively. The HEF, K1 and HBFI values for the irradiated portion of 20 patients before and alter irradiation were compared. The HEF value in patients with a cirrhotic liver significantly (p < 0.002) decreased compared with that in patients with a normal liver at a dose of less than 40 Gy, whereas the HBFI value in patients with a normal liver significantly (p < 0.05) decreased compared with that in patients with a cirrhotic liver at a dose of 40 Gy or greater. This method appears to be a simple, non-invasive and useful tool with which to quantitatively evaluate liver function and it also helps clarify changes in regional function of the irradiated liver.

  11. The mouse and human genes encoding the recognition component of the N-end rule pathway

    PubMed Central

    Kwon, Yong Tae; Reiss, Yuval; Fried, Victor A.; Hershko, Avram; Yoon, Jeong Kyo; Gonda, David K.; Sangan, Pitchai; Copeland, Neal G.; Jenkins, Nancy A.; Varshavsky, Alexander

    1998-01-01

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway is one proteolytic pathway of the ubiquitin system. The recognition component of this pathway, called N-recognin or E3, binds to a destabilizing N-terminal residue of a substrate protein and participates in the formation of a substrate-linked multiubiquitin chain. We report the cloning of the mouse and human Ubr1 cDNAs and genes that encode a mammalian N-recognin called E3α. Mouse UBR1p (E3α) is a 1,757-residue (200-kDa) protein that contains regions of sequence similarity to the 225-kDa Ubr1p of the yeast Saccharomyces cerevisiae. Mouse and human UBR1p have apparent homologs in other eukaryotes as well, thus defining a distinct family of proteins, the UBR family. The residues essential for substrate recognition by the yeast Ubr1p are conserved in the mouse UBR1p. The regions of similarity among the UBR family members include a putative zinc finger and RING-H2 finger, another zinc-binding domain. Ubr1 is located in the middle of mouse chromosome 2 and in the syntenic 15q15-q21.1 region of human chromosome 15. Mouse Ubr1 spans ≈120 kilobases of genomic DNA and contains ≈50 exons. Ubr1 is ubiquitously expressed in adults, with skeletal muscle and heart being the sites of highest expression. In mouse embryos, the Ubr1 expression is highest in the branchial arches and in the tail and limb buds. The cloning of Ubr1 makes possible the construction of Ubr1-lacking mouse strains, a prerequisite for the functional understanding of the mammalian N-end rule pathway. PMID:9653112

  12. Muscle spindles in human tibialis anterior encode muscle fascicle length changes.

    PubMed

    Day, James; Bent, Leah R; Birznieks, Ingvars; Macefield, Vaughan G; Cresswell, Andrew G

    2017-04-01

    Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns.NEW & NOTEWORTHY Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis

  13. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice.

    PubMed

    Sakai, Yusuke; Yamanouchi, Kosho; Ohashi, Kazuo; Koike, Makiko; Utoh, Rie; Hasegawa, Hideko; Muraoka, Izumi; Suematsu, Takashi; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Eguchi, Susumu

    2015-10-01

    Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.

  14. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics.

  15. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera.

    PubMed

    Meuleman, Philip; Libbrecht, Louis; De Vos, Rita; de Hemptinne, Bernard; Gevaert, Kris; Vandekerckhove, Joël; Roskams, Tania; Leroux-Roels, Geert

    2005-04-01

    A small animal model harboring a functional human liver cell xenograft would be a useful tool to study human liver cell biology, drug metabolism, and infections with hepatotropic viruses. Here we describe the repopulation, organization, and function of human hepatocytes in a mouse recipient and the infections with hepatitis B virus (HBV) and hepatitis C virus (HCV) of the transplanted cells. Homozygous urokinase plasminogen activator (uPA)-SCID mice underwent transplantation with primary human hepatocytes, and at different times animals were bled and sacrificed to analyze plasma and liver tissue, respectively. The plasma of mice that were successfully transplanted contained albumin and an additional 21 human proteins. Liver histology showed progressive and massive replacement of diseased mouse tissue by human hepatocytes. These cells were accumulating glycogen but appeared otherwise normal and showed no signs of damage or death. They formed functional bile canaliculi that connected to mouse canaliculi. Besides mature hepatocytes, human hepatic progenitor cells that were differentiating into mature hepatocytes could be identified within liver parenchyma. Infection of chimeric mice with HBV or HCV resulted in an active infection that did not alter the liver function and architecture. Electron microscopy showed the presence of viral and subviral structures in HBV infected hepatocytes. In conclusion, human hepatocytes repopulate the uPA(+/+)-SCID mouse liver in a very organized fashion with preservation of normal cell function. The presence of human hepatic progenitor cells in these chimeric animals necessitates a critical review of the observations and conclusions made in experiments with isolated "mature" hepatocytes. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index.html).

  16. Molecular cloning of MER-2, a human chromosome-11-encoded red blood cell antigen, using linkage of cotransfected markers.

    PubMed

    Bill, J; Palmer, E; Jones, C

    1987-09-01

    We report the molecular cloning of a human gene MER-2 located on chromosome 11 that encodes a cell surface antigen which is polymorphic on red blood cells. An essential element of the cloning strategy was cotransfection-induced linkage of pSV2-neo, which encodes resistance to the antibiotic G418, to the human MER-2 gene. An important feature of the pSV2-neo construct is that the same gene (the transposon, Tn5) that encodes G418 resistance in eukaryotic cells confers neomycin resistance in bacteria. Chinese hamster ovary (CHO) cells were cotransfected with pSV2-neo and genomic DNA from a CHO X human cell hybrid containing a single human chromosome (chromosome 11). Transfectants expressing both the human MER-2 gene and G418 resistance were isolated by selection in the antibiotic G418, followed by indirect immunofluorescence using the monoclonal antibody 1D12, which recognizes the MER-2 antigen, manual enrichment, and single-cell cloning. Genomic DNA from a primary transfectant positive for MER-2 expression and G418 resistance was used to construct a cosmid library and cosmid clones able to grow in neomycin were isolated. Of 150,000 cosmid clones screened, 90 were resistant to neomycin and of these, 11 contained human repetitive sequences. Five neomycin-resistant cosmid clones containing human repetitive DNA were able to transfect CHO cells for G418 resistance and MER-2 expression.

  17. Alterations of the human gut microbiome in liver cirrhosis.

    PubMed

    Qin, Nan; Yang, Fengling; Li, Ang; Prifti, Edi; Chen, Yanfei; Shao, Li; Guo, Jing; Le Chatelier, Emmanuelle; Yao, Jian; Wu, Lingjiao; Zhou, Jiawei; Ni, Shujun; Liu, Lin; Pons, Nicolas; Batto, Jean Michel; Kennedy, Sean P; Leonard, Pierre; Yuan, Chunhui; Ding, Wenchao; Chen, Yuanting; Hu, Xinjun; Zheng, Beiwen; Qian, Guirong; Xu, Wei; Ehrlich, S Dusko; Zheng, Shusen; Li, Lanjuan

    2014-09-04

    Liver cirrhosis occurs as a consequence of many chronic liver diseases that are prevalent worldwide. Here we characterize the gut microbiome in liver cirrhosis by comparing 98 patients and 83 healthy control individuals. We build a reference gene set for the cohort containing 2.69 million genes, 36.1% of which are novel. Quantitative metagenomics reveals 75,245 genes that differ in abundance between the patients and healthy individuals (false discovery rate < 0.0001) and can be grouped into 66 clusters representing cognate bacterial species; 28 are enriched in patients and 38 in control individuals. Most (54%) of the patient-enriched, taxonomically assigned species are of buccal origin, suggesting an invasion of the gut from the mouth in liver cirrhosis. Biomarkers specific to liver cirrhosis at gene and function levels are revealed by a comparison with those for type 2 diabetes and inflammatory bowel disease. On the basis of only 15 biomarkers, a highly accurate patient discrimination index is created and validated on an independent cohort. Thus microbiota-targeted biomarkers may be a powerful tool for diagnosis of different diseases.

  18. Packaging of an AAV vector encoding human acid alpha-glucosidase for gene therapy in glycogen storage disease type II with a modified hybrid adenovirus-AAV vector.

    PubMed

    Sun, Baodong; Chen, Y-T; Bird, Andrew; Xu, Fang; Hou, Yang-Xun; Amalfitano, Andrea; Koeberl, Dwight D

    2003-04-01

    We have developed an improved method for packaging adeno-associated virus (AAV) vectors with a replication-defective adenovirus-AAV (Ad-AAV) hybrid virus. The AAV vector encoding human acid alpha-glucosidase (hGAA) was cloned into an E1, polymerase/preterminal protein-deleted adenovirus, such that it is packaged as an Ad vector. Importantly, the Ad-AAV hybrid cannot replicate during AAV vector packaging in 293 cells, because of deletion of polymerase/preterminal protein. The residual Ad-AAV in the AAV vector stock was reduced to <1 infectious particle per 10(10) AAV vector particles. These modifications resulted in approximately 30-fold increased packaging of the AAV vector for the hybrid Ad-AAV vector method as compared with standard transfection-only methods. Similarly improved packaging was demonstrated for pseudotyping the AAV vector as AAV6, and for AAV vector packaging with a second Ad-AAV vector encoding canine glucose-6-phosphatase. Liver-targeted delivery of either the Ad-AAV hybrid or AAV vector particles in acid alpha-glucosidase-knockout (GAA-KO) mice revealed secretion of hGAA with the Ad-AAV vector, and sustained secretion of hGAA with an AAV vector in hGAA-tolerant GAA-KO mice. Further development of hybrid Ad-AAV vectors could offer distinct advantages for gene therapy in glycogen storage diseases.

  19. Expression pattern of thymosin beta 4 in the adult human liver

    PubMed Central

    Nemolato, S.; Van Eyken, P.; Cabras, T.; Cau, F.; Fanari, M.U.; Locci, A.; Fanni, D.; Gerosa, C.; Messana, I.; Castagnola, M.; Faa, G.

    2011-01-01

    Thymosin beta-4 (Tβ4) is a member of beta-thymosins, a family of small peptides involved in polymerization of G-actin, and in many critical biological processes including apoptosis, cell migration, angiogenesis, and fibrosis. Previous studies in the newborn liver did not reveal any significant reactivity for Tβ4 during the intrauterine life. The aim of the present study was to investigate by immunohistochemistry Tβ4 expression in the adult normal liver. Thirty-five human liver samples, including 11 needle liver biopsies and 24 liver specimens obtained at autopsy, in which no pathological change was detected at the histological examination, were immunostained utilizing an anti-Tβ4 commercial antibody. Tβ4 was detected in the hepatocytes of all adult normal livers examined. A zonation of Tβ4 expression was evident in the vast majority of cases. Immunostaining was preferentially detected in zone 3, while a minor degree of reactivity was detected in periportal hepatocytes (zone 1). At higher power, Tβ4-reactive granules appeared mainly localized at the biliary pole of hepatocytes. In cases with a strong immunostaining, even perinuclear areas and the sinusoidal pole of hepatocytes appeared interested by immunoreactivity for Tβ4. The current work first evidences a strong diffuse expression of Tβ4 in the adult human liver, and adds hepatocytes to the list of human cells able to synthesize large amounts of Tβ4 in adulthood. Moreover, Tβ4 should be added to the liver proteins characterized by a zonate expression pattern, in a descending gradient from the terminal vein to the periportal areas of the liver acinus. Identifying the intimate role played by this peptide intracellularly and extracellularly, in physiology and in different liver diseases, is a major challenge for future research focusing on Tβ4. PMID:22073372

  20. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  1. Genetic analysis of the variable region genes encoding a monospecific human natural anti-DNA antibody.

    PubMed Central

    Daley, M D; Misener, V; Olee, T; Chen, P P; Siminovitch, K A

    1993-01-01

    Recent evidence suggests that natural autoantibodies may play an integral role in the development of the normal immune repertoire. To explore the genetic origins of these antibodies, we have isolated and sequenced the variable (V) region genes encoding both the heavy (H) and light (L) chains of a natural anti-DNA antibody, Kim11.4. The genes appear to be derived from the VH4.18 (subgroup VHIV), JH5, Hum1L1 (subgroup V lambda I) and J lambda 3 germline genes. The origin of the H chain diversity gene is more obscure, being potentially derived from one or more of several germline genes, arranged in either the forward or reverse orientations. Both the Kim11.4 VH and VL genes share significant degrees of similarity with those utilized in other autoantibodies, indicating that at least some degree of V restriction may exist in human autoreactive B cells. The pattern of nucleotide differences between the Kim11.4 VH and VL genes and their putative germline counterparts suggests that the Kim11.4 genes may have undergone somatic mutation and arisen as a result of antigen selection. PMID:8324896

  2. US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

    PubMed Central

    Lee, Sungjin; Chung, Yoon Hee; Lee, Choongho

    2017-01-01

    Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling. PMID:28035083

  3. Aspartylglucosaminuria: cDNA encoding human aspartylglucosaminidase and the missense mutation causing the disease.

    PubMed Central

    Ikonen, E; Baumann, M; Grön, K; Syvänen, A C; Enomaa, N; Halila, R; Aula, P; Peltonen, L

    1991-01-01

    We have isolated a 2.1 kb cDNA which encodes human aspartylglucosaminidase (AGA, E.C. 3.5.1.26). The activity of this lysosomal enzyme is deficient in aspartylglucosaminuria (AGU), a recessively inherited lysosomal accumulation disease resulting in severe mental retardation. The polypeptide chain deduced from the AGA cDNA consists of 346 amino acids, has two potential N-glycosylation sites and 11 cysteine residues. Transient expression of this cDNA in COS-1 cells resulted in increased expression of immunoprecipitable AGA protein. Direct sequencing of amplified AGA cDNA from an AGU patient revealed a G----C transition resulting in the substitution of cysteine 163 with serine. This mutation was subsequently found in all the 20 analyzed Finnish AGU patients, in the heterozygous form in all 53 carriers and in none of 67 control individuals, suggesting that it represents the major AGU causing mutation enriched in this isolated population. Since the mutation produces a change in the predicted flexibility of the AGA polypeptide chain and removes an intramolecular S-S bridge, it most probably explains the deficient enzyme activity found in cells and tissues of AGU patients. Images PMID:1703489

  4. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.

    PubMed Central

    Brookman, K W; Lamerdin, J E; Thelen, M P; Hwang, M; Reardon, J T; Sancar, A; Zhou, Z Q; Walter, C A; Parris, C N; Thompson, L H

    1996-01-01

    ERCC4 is an essential human gene in the nucleotide excision repair (NER) pathway, which is responsible for removing UV-C photoproducts and bulky adducts from DNA. Among the NER genes, ERCC4 and ERCC1 are also uniquely involved in removing DNA interstrand cross-linking damage. The ERCC1-ERCC4 heterodimer, like the homologous Rad10-Rad1 complex, was recently found to possess an endonucleolytic activity that incises on the 5' side of damage. The ERCC4 gene, assigned to chromosome 16p13.1-p13.2, was previously isolated by using a chromosome 16 cosmid library. It corrects the defect in Chinese hamster ovary (CHO) mutants of NER complementation group 4 and is implicated in complementation group F of the human disorder xeroderma pigmentosum. We describe the ERCC4 gene structure and functional cDNA sequence encoding a 916-amino-acid protein (104 kDa), which has substantial homology with the eukaryotic DNA repair and recombination proteins MEI-9 (Drosophila melanogaster), Rad16 (Schizosaccharomyces pombe), and Rad1 (Saccharomyces cerevisiae). ERCC4 cDNA efficiently corrected mutants in rodent NER complementation groups 4 and 11, showing the equivalence of these groups, and ERCC4 protein levels were reduced in mutants of both groups. In cells of an XP-F patient, the ERCC4 protein level was reduced to less than 5%, consistent with XPF being the ERCC4 gene. The considerable identity (40%) between ERCC4 and MEI-9 suggests a possible involvement of ERCC4 in meiosis. In baboon tissues, ERCC4 was expressed weakly and was not significantly higher in testis than in nonmeiotic tissues. PMID:8887684

  5. Direction of Movement Is Encoded in the Human Primary Motor Cortex

    PubMed Central

    Toxopeus, Carolien M.; de Jong, Bauke M.; Valsan, Gopal; Conway, Bernard A.; Leenders, Klaus L.; Maurits, Natasha M.

    2011-01-01

    The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1). Using functional magnetic resonance imaging (fMRI) and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right) was located most laterally/superficially, whereas directions 180° (left) and 270° (down) elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180°) and vertical (90°+270°) axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1. PMID:22110768

  6. Expression, purification and bioactivity of human augmenter of liver regeneration

    PubMed Central

    Zhang, Yang-De; Zhou, Jian; Zhao, Jin-Feng; Peng, Jian; Liu, Xiao-Dong; Liu, Xin-Sheng; Jia, Ze-Ming

    2006-01-01

    AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity. METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2. The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation. RESULTS: The product of PCR from plasmid pGEM-T-hALR was examined by 1.5% sepharose electrophoresis. The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P < 0.01). CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application. PMID:16865786

  7. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    PubMed

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  8. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

    PubMed Central

    Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio

    2017-01-01

    There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763

  9. Involvement of human liver cytochrome P4502B6 in the metabolism of propofol

    PubMed Central

    Oda, Yutaka; Hamaoka, Naoya; Hiroi, Toyoko; Imaoka, Susumu; Hase, Ichiro; Tanaka, Kazuo; Funae, Yoshihiko; Ishizaki, Takashi; Asada, Akira

    2001-01-01

    Aims To determine the cytochrome P450 (CYP) isoforms involved in the oxidation of propofol by human liver microsomes. Methods The rate constant calculated from the disappearance of propofol in an incubation mixture with human liver microsomes and recombinant human CYP isoforms was used as a measure of the rate of metabolism of propofol. The correlation of these rate constants with rates of metabolism of CYP isoform-selective substrates by liver microsomes, the effect of CYP isoform-selective chemical inhibitors and monoclonal antibodies on propofol metabolism by liver microsomes, and its metabolism by recombinant human CYP isoforms were examined. Results The mean rate constant of propofol metabolism by liver microsomes obtained from six individuals was 4.2 (95% confidence intervals 2.7, 5.7) nmol min−1 mg−1 protein. The rate constants of propofol by microsomes were significantly correlated with S-mephenytoin N-demethylation, a marker of CYP2B6 (r = 0.93, P < 0.0001), but not with the metabolic activities of other CYP isoform-selective substrates. Of the chemical inhibitors of CYP isoforms tested, orphenadrine, a CYP2B6 inhibitor, reduced the rate constant of propofol by liver microsomes by 38% (P < 0.05), while other CYP isoform-selective inhibitors had no effects. Of the recombinant CYP isoforms screened, CYP2B6 produced the highest rate constant for propofol metabolism (197 nmol min−1 nmol P450−1). An antibody against CYP2B6 inhibited the disappearance of propofol in liver microsomes by 74%. Antibodies raised against other CYP isoforms had no effect on the metabolism of propofol. Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes. PMID:11298076

  10. Gene structure and chromosomal localization of the human HSD11K gene encoding the kidney (type 2) isozyme of 11{beta}-hydroxysteroid dehydrogenase

    SciTech Connect

    Agarwal, A.K.; Rogerson, F.M.; Mune, T.; White, P.C.

    1995-09-01

    11{beta}-hydroxysteroid dehydrogenase (11{beta}HSD) converts glucocorticoids to inactive products and is thus thought to confer specificity for aldosterone on the type I mineralocorticoid receptor in the kidney. Recent studies indicate the presence of at least two isozymes of 11{beta}HSD. In vitro, the NAD{sup +}-dependent kidney (type 2) isozyme catalyzes 11{beta}-dehydrogenase but not reductase reactions, whereas the NADP{sup +}-dependent liver (type 1) isozyme catalyzes both reactions. We have now characterized the human gene encoding kidney 11{beta}HSD (HSD11K). A bacteriophage P1 clone was isolated after screening a human genomic library by hybridization with sheep HSD11K cDNA. The gene consists of 5 exons spread over 6 kb. The nucleotide binding domain lies in the first exon are GC-rich (80%), suggesting that the gene may be transcriptionally regulated by factors that recognize GC-rich sequences. Fluorescence in situ hybridization of metaphase chromosomes with a positive P1 clone localized the gene to chromosome 16q22. In contrast, the HSD11L (liver isozyme) gene is located on chromosome 1 and contains 6 exons; the coding sequences of these genes are only 21% identical. HSD11K is expressed at high levels in the placenta and kidney of midgestation human fetuses and at lower levels in lung and testes. Different transcriptional start sites are utilized in kidney and placenta. These data should be applicable to genetic analysis of the syndrome of apparent mineralocorticoid excess, which may represent a deficiency of 11{beta}HSD. 25 refs., 5 figs.

  11. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  12. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells

    PubMed Central

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P.; Walles, Heike

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions. PMID:26488607

  13. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    PubMed

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  14. Encoding/retrieval dissociation in working memory for human body forms.

    PubMed

    Bauser, Denise A Soria; Mayer, Kerstin; Daum, Irene; Suchan, Boris

    2011-06-20

    The present study was conducted to investigate the effect of working memory (WM) load on body processing mechanisms by using event-related potentials (ERPs). It is well known that WM load modulates the P3b (amplitude decreases as WM load increases). Additionally, WM load for faces modulates earlier ERPs like the N170. The present study aimed to investigate the effect of WM load for bodies on the P3b which is associated with WM. Additionally, we explored the effect of WM load on the N170, which is thought to be associated with configural processing, and P1, which has been observed in body as well as in face processing. Effects were analyzed during the encoding and retrieval phases. WM load was modulated by presenting one to four unfamiliar bodies simultaneously for memory encoding. The present study showed that early encoding processes (reflected by the P1 and N170) might not be modulated by WM load, whereas during the retrieval phase, early processes associated with structural encoding (N170) were affected by WM load. A possible explanation of the encoding/retrieval differences might be that subjects used distinct processing strategies in both phases. Parallel encoding of the simultaneously presented bodies might play an important role during the encoding phase where one to four bodies have to be stored, whereas serial matching might be used to compare the probe with the stored pictures during the retrieval phase. Additionally, WM load modulations were observed in later processing steps, which might be associated with stimulus identification and matching processes (reflected by the early P3b) during the encoding but not during the retrieval phase. The current findings further showed for both the encoding and the retrieval phase that the late P3b amplitude decreased as WM load for body images increased indicating that the late P3b is involved in WM processes which do not appear to be category-specific.

  15. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis.

    PubMed

    Westra, Inge M; Mutsaers, Henricus A M; Luangmonkong, Theerut; Hadi, Mackenzie; Oosterhuis, Dorenda; de Jong, Koert P; Groothuis, Geny M M; Olinga, Peter

    2016-09-01

    Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and studied the efficacy of multiple putative antifibrotic compounds. Our results demonstrated that human PCLS remained viable for 48h and the early onset of fibrosis was observed during culture, as demonstrated by an increased gene expression of Heat Shock Protein 47 (HSP47) and Pro-Collagen 1A1 (PCOL1A1) as well as increased collagen 1 protein levels. SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (MAPK) showed a marked decrease in HSP47 and PCOL1A1 gene expression, whereas specific inhibitors of Smad 3 and Rac-1 showed no or only minor effects. Regarding the studied antifibrotics, gene levels of HSP47 and PCOL1A1 could be down-regulated with sunitinib and valproic acid, while PCOL1A1 expression was reduced following treatment with rosmarinic acid, tetrandrine and pirfenidone. These results are in contrast with prior data obtained in rat PCLS, indicating that antifibrotic drug efficacy is clearly species-specific. Thus, human PCLS is a promising model for liver fibrosis. Moreover, MAPK signaling plays an important role in the onset of fibrosis in this model and transforming growth factor beta pathway inhibitors appear to be more effective than platelet-derived growth factor pathway inhibitors in halting fibrogenesis in PCLS.

  16. Exons I and VII of the gene (Ker10) encoding human keratin 10 undergo structural rearrangements within repeats.

    PubMed

    Tkachenko, A V; Buchman, V L; Bliskovsky, V V; Shvets YuP; Kisselev, L L

    1992-07-15

    A genomic fragment containing the K51 gene previously isolated from a rat genomic library by hybridization with the v-mos probe in nonstringent conditions [Chumakov et al., Dokl. Akad. Nauk SSSR 290 (1986) 1252-1254], resembles a human keratin type-I-encoding gene [Shvets et al., Mol. Biol. 24 (1990) 663-677]. This genomic clone, K51, has been used as a probe to search for related human genes. A recombinant clone, HK51, with a 1.5-kb insert, was isolated from a human embryonic skin cDNA library, and its nucleotide (nt) sequence was determined. Analysis has shown that the cloned cDNA encodes human keratin 10 (Ker10). All presently known nt sequences of the human Ker10-encoding gene (Ker10) are not identical. Differences are concentrated in the 5'-end of the first exon and in the middle of the seventh exon within repeats. In spite of structural rearrangements in two of eight exons, the reading frame and position of the stop codon are preserved. The genetic rearrangements cause changes in hydrophobicity profiles of the N and C termini of Ker10. It was also noticed that insertion of one nt leads to the formation of an unusual 3'-end of the transcript.

  17. Clinical evaluation of liver structure and function in humans exposed to halogenated hydrocarbons.

    PubMed Central

    Guzelian, P S

    1985-01-01

    An unresolved question is whether humans exposed to comparatively low doses of persistent environmental chemicals such as polyhalogenated biphenyls or organochlorine pesticides are at risk for injury to the liver. Cross-sectional epidemiologic studies suggest that these chemicals may produce statistically significant but clinically mild abnormalities in the commonly employed chemical tests of liver function. The few reports of human liver morphology reveal nonspecific changes reflecting effects of lipophilic chemicals. There is evidence that chemicals of this category in at least some doses cause induction of liver microsomal enzymes involved in biotransformation of foreign substances. This finding has been documented by measurements of the clearance of model drugs or the appearance in the urine of steroid metabolites or glucaric acid. Although a positive statistical correlation between the concentrations of these chemicals in serum and the serum gamma-glutamyltranspeptidase activity has been reported, the non-specificity of the latter enzyme precludes conclusion that this change is indicative of induction of liver microsomal enzymes. Although the effects of this type of environmental chemical are not indicative of progressive liver disease, only prospective clinical trials can resolve the issue of the risk for future development of liver malignancy. PMID:2411535

  18. Flexible transgastric endoscopic liver cyst fenestration: A feasibility study in humans (with video).

    PubMed

    Wang, Dong; Liu, Yaping; Chen, Danlei; Li, Xi; Wu, Renpei; Liu, Weifen; Leung, Joseph W; Zhang, Chuansen; Li, Zhaoshen

    2016-12-01

    There is no clinical report on the use of natural orifice transluminal endoscopic surgery (NOTES) for the management of patients with large liver cysts.This study aims to evaluate the feasibility and safety of NOTES for liver cyst fenestration in humans using a currently available technique.From February 2009 to June 2010, 4 cases of transgastric endoscopic liver cyst fenestration were performed; in which 3 cases received NOTES only, while 1 case received additional laparoscopic assistance.Mean time to endoscopically locate the liver cyst was 16 minutes (5-22 minutes). Cysts that were present in the left lobe or on the liver surface were easier to locate endoscopically. Transgastric endoscopic liver cyst fenestration was successful in all patients. The use of an occlusion balloon helped in the endoscopic clipping of the gastrotomy incision. Mean operative time was 101.3 minutes (range, 90-112 minutes), and there were no intra- or postoperative complications including infections. All patients recovered well after the surgery, with only minor postoperative throat pain. There was no recurrence at a mean follow-up of 12 months (range, 6-48 months).Small sample size.It may be technically feasible and safe to perform transgastric endoscopic liver cyst fenestration in humans with no recurrence at follow up.

  19. Effect of naked eukaryotic expression plasmid encoding rat augmenter of liver regeneration on acute hepatic injury and hepatic failure in rats

    PubMed Central

    Zhang, Li-Mei; Liu, Dian-Wu; Liu, Jian-Bo; Zhang, Xiao-Lin; Wang, Xiao-Bo; Tang, Long-Mei; Wang, Li-Qin

    2005-01-01

    AIM: To study the protective effect of eukaryotic expression plasmid encoding augmenter of liver regeneration (ALR) on acute hepatic injury and hepatic failure in rats. METHODS: The PCR-amplified ALR gene was recombined with pcDNA3 plasmid, and used to treat rats with acute hepatic injury. The rats with acute hepatic injury induced by intraperitoneal injection of 2 mL/kg 50% carbon tetrachloride (CCl4) were randomly divided into saline control group and recombinant pcDNA3-ALR plasmid treatment groups. Recombinant pcDNA3-ALR plasmid DNA (50 or 200 μg/kg) was injected into the rats with acute hepatic injury intraven-ously, intraperitoneally, or intravenously and intraperitoneally in combination 4 h after CCl4 administration, respectively. The recombinant plasmid was injected once per 12 h into all treatment groups four times, and the rats were decapitated 12 h after the last injection. Hepatic histopathological alterations were observed after HE staining, the expression of proliferating cell nuclear antigen (PCNA) in liver tissue was detected by immunohistochemical staining, and the level of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was determined by biochemical method. The recombinant plasmid DNA (200 μg/kg) and saline were intraperitoneally injected into the rats with acute hepatic failure induced by intraperitoneal injection of 4 mL/kg 50% CCl4 after 4 h of CCl4 administration, respectively. Rats living over 96 h were considered as survivals. RESULTS: The sequence of ALR cDNA of recombinant pcDNA3-ALR plasmid was accordant with the reported sequence of rat ALR cDNA. After the rats with acute hepatic injury were treated with recombinant pcDNA3-ALR plasmid, the degree of liver histopathological injury markedly decreased. The pathologic liver tissues, in which hepatic degeneration and necrosis of a small amount of hepatocytes and a large amount of infiltrating inflammatory cells were observed, and they became basically normal in the

  20. A New Human 3D-Liver Model Unravels the Role of Galectins in Liver Infection by the Parasite Entamoeba histolytica

    PubMed Central

    Petropolis, Debora B.; Faust, Daniela M.; Deep Jhingan, Gagan; Guillen, Nancy

    2014-01-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. PMID:25211477

  1. Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding

    PubMed Central

    Berryhill, Marian E.; Caplovitz, Gideon P.

    2016-01-01

    The ability to encode, store, and retrieve visually presented objects is referred to as visual working memory (VWM). Although crucial for many cognitive processes, previous research reveals that VWM strictly capacity limited. This capacity limitation is behaviorally observable in the set size effect: the ability to successfully report items in VWM asymptotes at a small number of items. Research into the neural correlates of set size effects and VWM capacity limits in general largely focus on the maintenance period of VWM. However, we previously reported that neural resources allocated to individual items during VWM encoding correspond to successful VWM performance. Here we expand on those findings by investigating neural correlates of set size during VWM encoding. We hypothesized that neural signatures of encoding-related VWM capacity limitations should be differentiable as a function of set size. We tested our hypothesis using High Density Electroencephalography (HD-EEG) to analyze frequency components evoked by flickering target items in VWM displays of set size 2 or 4. We found that set size modulated the amplitude of the 1st and 2nd harmonic frequencies evoked during successful VWM encoding across frontal and occipital-parietal electrodes. Frontal sites exhibited the most robust effects for the 2nd harmonic (set size 2 > set size 4). Additionally, we found a set-size effect on the induced power of delta-band (1–4 Hz) activity (set size 2 > set size 4). These results are consistent with a capacity limited VWM resource at encoding that is distributed across to-be-remembered items in a VWM display. This resource may work in conjunction with a task-specific selection process that determines which items are to be encoded and which are to be ignored. These neural set size effects support the view that VWM capacity limitations begin with encoding related processes. PMID:27902738

  2. Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding.

    PubMed

    Gurariy, Gennadiy; Killebrew, Kyle W; Berryhill, Marian E; Caplovitz, Gideon P

    2016-01-01

    The ability to encode, store, and retrieve visually presented objects is referred to as visual working memory (VWM). Although crucial for many cognitive processes, previous research reveals that VWM strictly capacity limited. This capacity limitation is behaviorally observable in the set size effect: the ability to successfully report items in VWM asymptotes at a small number of items. Research into the neural correlates of set size effects and VWM capacity limits in general largely focus on the maintenance period of VWM. However, we previously reported that neural resources allocated to individual items during VWM encoding correspond to successful VWM performance. Here we expand on those findings by investigating neural correlates of set size during VWM encoding. We hypothesized that neural signatures of encoding-related VWM capacity limitations should be differentiable as a function of set size. We tested our hypothesis using High Density Electroencephalography (HD-EEG) to analyze frequency components evoked by flickering target items in VWM displays of set size 2 or 4. We found that set size modulated the amplitude of the 1st and 2nd harmonic frequencies evoked during successful VWM encoding across frontal and occipital-parietal electrodes. Frontal sites exhibited the most robust effects for the 2nd harmonic (set size 2 > set size 4). Additionally, we found a set-size effect on the induced power of delta-band (1-4 Hz) activity (set size 2 > set size 4). These results are consistent with a capacity limited VWM resource at encoding that is distributed across to-be-remembered items in a VWM display. This resource may work in conjunction with a task-specific selection process that determines which items are to be encoded and which are to be ignored. These neural set size effects support the view that VWM capacity limitations begin with encoding related processes.

  3. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    PubMed Central

    Itaba, Noriko; Matsumi, Yoshiaki; Okinaka, Kaori; Ashla, An Afida; Kono, Yohei; Osaki, Mitsuhiko; Morimoto, Minoru; Sugiyama, Naoyuki; Ohashi, Kazuo; Okano, Teruo; Shiota, Goshi

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentration-dependent manner. Hexachlorophene rapidly induced hepatic differentiation of human MSCs judging from expression of liver-specific genes and proteins, PAS staining, and urea production. The effect of orthotopic transplantation of human mesenchymal stem cell-engineered hepatic cell sheets against acute liver injury was examined in one-layered to three-layered cell sheets system. Transplantation of human mesenchymal stem cell-engineered hepatic cell sheets enhanced liver regeneration and suppressed liver injury. The survival rates of the mice were significantly improved. High expression of complement C3 and its downstream signals including C5a, NF-κB, and IL-6/STAT-3 pathway was observed in hepatic cell sheets-grafted tissues. Expression of phosphorylated EGFR and thioredoxin is enhanced, resulting in reduction of oxidative stress. These findings suggest that orthotopic transplantation of hepatic cell sheets manufactured from MSCs accelerates liver regeneration through complement C3, EGFR and thioredoxin. PMID:26553591

  4. Diffuse reflectance spectroscopy as a possible tool to complement liver biopsy for grading hepatic fibrosis in paraffin-preserved human liver specimens.

    PubMed

    Fabila-Bustos, Diego A; Arroyo-Camarena, Ursula D; López-Vancell, María D; Durán-Padilla, Marco A; Azuceno-García, Itzel; Stolik-Isakina, Suren; Ibarra-Coronado, Elizabeth; Brown, Blair; Escobedo, Galileo; de la Rosa-Vázquez, José Manuel

    2014-01-01

    A diffuse reflectance spectroscopy-based method to score fibrosis in paraffin-preserved human liver specimens has been developed and is reported here. Paraffin blocks containing human liver tissue were collected from the General Hospital of Mexico and included in the study with the patients' written consent. The score of liver fibrosis was determined in each sample by two experienced pathologists in a single-blind fashion. Spectral measurements were acquired at 450-750 nm by establishing surface contact between the optical probe and the preserved tissue. According to the histological evaluation, four liver samples showed no evidence of fibrosis and were categorized as F0, four hepatic specimens exhibited an initial degree of fibrosis (F1-F2), five liver specimens showed a severe degree of fibrosis (F3), and six samples exhibited cirrhosis (F4). The human liver tissue showed a characteristic diffuse reflectance spectrum associated with the progressive stages of fibrosis. In the F0 liver samples, the diffuse reflection intensity gradually increased in the wavelength range of 450-750 nm. In contrast, the F1-F2, F3, and F4 specimens showed corresponding 1.5-, 2-, and 5.5-fold decreases in the intensity of diffuse reflectance compared to the F0 liver specimens. At 650 nm, all the stages of liver fibrosis were clearly distinguished from each other with high sensitivity and specificity (92-100%). To our knowledge, this is the first study reporting a distinctive diffuse reflectance spectrum for each stage of fibrosis in paraffin-preserved human liver specimens. These results suggest that diffuse reflectance spectroscopy may represent a complementary tool to liver biopsy for grading fibrosis.

  5. Why do most human liver cytosol preparations lack xanthine oxidase activity?

    PubMed

    Barr, John T; Choughule, Kanika V; Nepal, Sahadev; Wong, Timothy; Chaudhry, Amarjit S; Joswig-Jones, Carolyn A; Zientek, Michael; Strom, Stephen C; Schuetz, Erin G; Thummel, Kenneth E; Jones, Jeffrey P

    2014-04-01

    When investigating the potential for xanthine oxidase (XO)-mediated metabolism of a new chemical entity in vitro, selective chemical inhibition experiments are typically used. Most commonly, these inhibition experiments are performed using the inhibitor allopurinol (AP) and commercially prepared human liver cytosol (HLC) as the enzyme source. For reasons detailed herein, it is also a common practice to perfuse livers with solutions containing AP prior to liver harvest. The exposure to AP in HLC preparations could obviously pose a problem for measuring in vitro XO activity. To investigate this potential problem, an HPLC-MS/MS assay was developed to determine whether AP and its primary metabolite, oxypurinol, are retained within the cytosol for livers that were treated with AP during liver harvest. Differences in enzymatic activity for XO and aldehyde oxidase (AO) in human cytosol that can be ascribed to AP exposure were also evaluated. The results confirmed the presence of residual AP (some) and oxypurinol (all) human liver cytosol preparations that had been perfused with an AP-containing solution. In every case where oxypurinol was detected, XO activity was not observed. In contrast, the presence of AP and oxypurinol did not appear to have an impact on AO activity. Pooled HLC that was purchased from a commercial source also contained residual oxypurinol and did not show any XO activity. In the future, it is recommended that each HLC batch is screened for oxypurinol and/or XO activity prior to testing for XO-mediated metabolism of a new chemical entity.

  6. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  7. Ultrastructure of Ebola virus particles in human liver.

    PubMed Central

    Ellis, D S; Simpson, I H; Francis, D P; Knobloch, J; Bowen, E T; Lolik, P; Deng, I M

    1978-01-01

    Electron microscopy of tissues from two necropsies carried out in the Sudan on patients with Ebola virus infection identified virus particles in lung and spleen, but the main concentrations of Ebola particles were seen in liver sections. Viral precursor proteins and cores were found in functional liver cells, often aligned in membrane-bound aggregations. Complete virions, usually found only extracellularly, were mainly seen as long tubular forms, some without cores. Many tubular forms had 'enlarged heads' or 'spores' and some branched and torus forms were identified. The size and structure of the Ebola virus forms appear to be virtually indistinguishable from those of Marburg virus. Images Figs 6, 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:641193

  8. Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family.

    PubMed

    Liu, Yongzhong; Li, Jinjun; Zhang, Fengrui; Qin, Wenxin; Yao, Genfu; He, Xianghuo; Xue, Peng; Ge, Chao; Wan, Dafang; Gu, Jianren

    2003-01-24

    We have cloned a new member of human ankyrin repeat and SOCS box containing protein family (ASB), designed as hASB-8, from a human placental cDNA library and further extended by 5(') and 3(')-RACE. The full-length cDNA was 2545bp in length, with a predicted open reading frame encoding a protein of 288 amino acids, which was 96% identical to mouse ASB-8 protein. Computer analysis revealed that the deduced amino acid sequence of the human ASB-8 contained four Ankyrin repeats and one SOCS box. The gene had four exons separated by three introns and was mapped to human chromosome 12q13. Human ASB-8 mRNA was expressed at the highest level of expression in skeletal muscle and at a varied level of expression in heart, brain, placenta, liver, kidney, and pancreas. The transcript of hASB-8 was not detected in adult normal lung tissue, but found in lung carcinoma cell lines SPC-A1, A549, and NCI-H446. Subcellular localization analysis showed that the EGFP-tagged hASB-8 protein was localized at cytoplasm in human hepatocellular carcinoma cell line BEL-7402. We also provided evidence that hASB-8 could interact with Elongin B-C complex in vitro. Furthermore, transfection with the truncated mutant of hASB-8 cDNA lacking SOCS box could suppress cell growth of lung adenocarcinoma SPC-A1 cells in vitro, which suggests that this gene might be related to the development of lung cancer.

  9. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B

    PubMed Central

    1993-01-01

    A human gene termed XB overlaps the P450c21B gene encoding steroid 21- hydroxylase and encodes a protein that closely resembles extracellular matrix proteins. Sequencing of phage and cosmid clones and of cDNA fragments shows that the XB gene spans 65 kb of DNA, consisting of 39 exons that encode a 12-kb mRNA. The predicted protein of over 400 kD consists of five distinct domains: a signal peptide, a hydrophobic domain containing three heptad repeats, a series of 18.5 EGF-like repeats, 29 fibronectin type III repeats, and a carboxy-terminal fibrinogen-like domain. Because the structure of the protein encoded by the XB gene closely resembles tenascin, we term this protein tenascin-X (TN-X), and propose a simplified nomenclature system for the family of tenascins. RNase protection experiments show that the TN-X transcript is expressed ubiquitously in human fetal tissues, with the greatest expression in the fetal testis and in fetal skeletal, cardiac, and smooth muscle. Two adrenal-specific transcripts, P450c21B (steroid 21- hydroxylase) and Y (an untranslated transcript) overlap the XB gene on the complementary strand of DNA, yielding a unique array of overlapping transcripts: a "polygene." In situ hybridization histochemistry experiments show that the TN-X transcript and the P450c21 and Y transcripts encoded on the complementary DNA strand are all expressed in the same cells of the human adrenal cortex. Genetic data suggest that TN-X may be essential for life. PMID:7686164

  10. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes.

    PubMed

    Yoshii, K; Kobayashi, K; Tsumuji, M; Tani, M; Shimada, N; Chiba, K

    2000-01-01

    Studies to identify the cytochrome P450 (CYP) isoform(s) involved in chlorpromazine 7-hydroxylation were performed using human liver microsomes and cDNA-expressed human CYPs. The kinetics of chlorpromazine 7-hydroxylation in human liver microsomes showed a simple Michaelis-Menten behavior. The apparent Km and Vmax values were 3.4+/-1.0 microM and 200.5+/-83.7 pmol/min/mg, respectively. The chlorpromazine 7-hydroxylase activity in human liver microsomes showed good correlations with desipramine 2-hydroxylase activity (r = 0.763, p < 0.05), a marker activity for CYP2D6, and phenacetin O-deethylase activity (r = 0.638, p < 0.05), a marker activity for CYP1A2. Quinidine (an inhibitor of CYP2D6) completely inhibited while alpha-naphthoflavone (an inhibitor of CYP1A2) marginally inhibited the chlorpromazine 7-hydroxylase activity in a human liver microsomal sample showing high CYP2D6 activity. On the other hand, alpha-naphthoflavone inhibited the chlorpromazine 7-hydroxylase activity to 55-65% of control in a human liver microsomal sample showing low CYP2D6 activity. Among eleven cDNA-expressed CYPs studied, CYP2D6 and CYP1A2 exhibited significant activity for the chlorpromazine 7-hydroxylation. The Km values for the chlorpromazine 7-hydroxylation of both cDNA-expressed CYP2D6 and CYP1A2 were in agreement with the Km values of human liver microsomes. These results suggest that chlorpromazine 7-hydroxylation is catalyzed mainly by CYP2D6 and partially by CYP1A2.

  11. Statistical modeling of human liver incorporating the variations in shape, size, and material properties.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Gayzik, Scott; Untaroiu, Costin D; Beillas, Philippe

    2013-11-01

    The liver is one of the most frequently injured abdominal organs during motor vehicle crashes. Realistic numerical assessments of liver injury risk for the entire occupant population require incorporating inter-subject variations into numerical models. The main objective of this study was to quantify the shape variations of human liver in a seated posture and the statistical distributions of its material properties. Statistical shape analysis was applied to construct shape models of the livers of 15 adult human subjects, recorded in a typical seated (occupant) posture. The principal component analysis was then utilized to obtain the modes of variation, the mean model, and 95% statistical boundary shape models. In addition, a total of 52 tensile tests were performed on the parenchyma of three fresh human livers at four loading rates (0.01, 0.1, 1, and 10 s^-1) to characterize the rate-dependent and failure properties of the human liver. A FE-based optimization approach was employed to identify the material parameters of an Ogden material model for each specimen. The mean material parameters were then determined for each loading rate from the characteristic averages of the stress-strain curves, and a stochastic optimization approach was utilized to determine the standard deviations of the material parameters. Results showed that the first five modes of the human liver shape models account for more than 60% of the overall anatomical variations. The distributions of the material parameters combined with the mean and statistical boundary shape models could be used to develop probabilistic finite element (FE) models, which may help to better understand the variability in biomechanical responses and injuries to the abdominal organs under impact loading.

  12. Interaction of human TNF and beta2-microglobulin with Tanapox virus-encoded TNF inhibitor, TPV-2L.

    PubMed

    Rahman, Masmudur M; Jeng, David; Singh, Rajkumari; Coughlin, Jake; Essani, Karim; McFadden, Grant

    2009-04-10

    Tanapox virus (TPV) encodes and expresses a secreted TNF-binding protein, TPV-2L or gp38, that displays inhibitory properties against TNF from diverse mammalian species, including human, monkey, canine and rabbit. TPV-2L also has sequence similarity with the MHC-class I heavy chain and interacts differently with human TNF as compared to the known cellular TNF receptors or any of the known virus-encoded TNF receptor homologs derived from many poxviruses. In order to determine the TNF binding region in TPV-2L, various TPV-2L C-terminal truncations and internal deletions were created and the muteins were expressed using recombinant baculovirus vectors. C-terminal deletions from TPV-2L resulted in reduced binding affinity for human TNF and specific mutants of TNF that discriminate between TNF-R1 and TNF-R2. However, deletion of C-terminal 42 amino acid residues totally abolished the binding of human TNF and its mutants. Removal of any of the predicted internal domains resulted in a mutant TPV-2L protein incapable of binding to human TNF. Deletion of C-terminal residues also affected the ability of TPV-2L to block TNF-induced cellular cytotoxicity. In addition to TNF, TPV-2L can also form complexes with human beta2-microglobulin to form a novel macromolecular complex. In summary, the TPV-2L protein is a bona fide MHC-1 heavy chain family member that binds and inhibits human TNF in a fashion very distinct from other known poxvirus-encoded TNF inhibitors, and also can form a novel complex with the human MHC-1 light chain, beta2-microglobulin.

  13. Reelin Expression in Human Liver of Patients with Chronic Hepatitis C Infection

    PubMed Central

    Carotti, Simone; Perrone, Giuseppe; Amato, Michelina; Gentilucci, Umberto Vespasiani; Righi, Daniela; Francesconi, Maria; Pellegrini, Claudio; Zalfa, Francesca; Zingariello, Maria; Picardi, Antonio; Muda, Andrea Onetti; Morini, Sergio

    2017-01-01

    Reelin is a secreted extracellular glyco-protein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by colocalization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data. PMID:28348420

  14. Complementary DNA encoding the human T-cell FK506-binding protein, a peptidylprolyl cis-trans isomerase distinct from cyclophilin

    SciTech Connect

    Maki, Noboru; Sekiguchi, Fumiko; Nishimaki, Junichi; Miwa, Keiko; Hayano, Toshiya; Takahashi, Nobuhiro; Suzuki, Masanori )

    1990-07-01

    The recently discovered macrolide FK506 has been demonstrated to have potent immunosuppressive activity at concentrations 100-fold lower than cyclosporin A, a cyclic undecapeptide that is used to prevent rejection after transplantation of bone marrow and organs, such as kidney, heart, and liver. After the recent discovery that the cylcosporin A-binding protein cyclophilin is identical to peptidylprolyl cis-trans isomerase, a cellular binding protein for FK506 was found to be distinct from cyclophilin but to have the same enzymatic activity. In this study, the authors isolated a cDNA coding for FK506-binding protein (FKBP) from human peripheral blood T cells by using mixed 20-mer oligonucleotide probes synthesized on the basis of the sequence, Glu-Asp-Gly-Lys-Lys-Phe-Asp, reported for bovine FKBP. The DNA isolated contained an open reading frame encoding 108 amino acid residues. The first 40 residues of the deduced amino acid sequence were identical to those of the reported amino-terminal sequence of bovine FKBP, indicating that the DNA sequence isolated represents the gene coding for FKBP. This result suggests that two catalytically similar proteins, cyclophilin and FKBP, evolved independently. In Northern blot analysis, mRNA species of {approx}1.8 kilobases that hybridized with human FKBP cDNA were detected in poly(A){sup +} RNAs from brain, lung, liver, and placental cells and leukocytes. Induction of Jurkat leukemic T cells with phorbol 12-myristate 13-acetate and ionomycin did not affect the level of FKBP mRNA.

  15. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.

    PubMed

    Li, Tingfen; Yan, Yongmin; Wang, Bingying; Qian, Hui; Zhang, Xu; Shen, Li; Wang, Mei; Zhou, Ying; Zhu, Wei; Li, Wei; Xu, Wenrong

    2013-03-15

    Mesenchymal stem cells (MSCs) have been considered as an attractive tool for the therapy of diseases. Exosomes excreted from MSCs can reduce myocardial ischemia/reperfusion damage and protect against acute tubular injury. However, whether MSC-derived exosomes can relieve liver fibrosis and its mechanism remain unknown. Previous work showed that human umbilical cord-MSCs (hucMSCs) transplanted into acutely injured and fibrotic livers could restore liver function and improve liver fibrosis. In this study, it was found that transplantation of exosomes derived from hucMSC (hucMSC-Ex) reduced the surface fibrous capsules and got their textures soft, alleviated hepatic inflammation and collagen deposition in carbon tetrachloride (CCl4)-induced fibrotic liver. hucMSC-Ex also significantly recovered serum aspartate aminotransferase (AST) activity, decreased collagen type I and III, transforming growth factor (TGF)-β1 and phosphorylation Smad2 expression in vivo. In further experiments, we found that epithelial-to-mesenchymal transition (EMT)-associated markers E-cadherin-positive cells increased and N-cadherin- and vimentin-positive cells decreased after hucMSC-Ex transplantation. Furthermore, the human liver cell line HL7702 underwent typical EMT after induction with recombinant human TGF-β1, and then hucMSC-Ex treatment reversed spindle-shaped and EMT-associated markers expression in vitro. Taken together, these results suggest that hucMSC-Ex could ameliorate CCl4-induced liver fibrosis by inhibiting EMT and protecting hepatocytes. This provides a novel approach for the treatment of fibrotic liver disease.

  16. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    PubMed

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  17. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    PubMed Central

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  18. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation.

    PubMed

    Bruinsma, B G; Yeh, H; Ozer, S; Martins, P N; Farmer, A; Wu, W; Saeidi, N; Op den Dries, S; Berendsen, T A; Smith, R N; Markmann, J F; Porte, R J; Yarmush, M L; Uygun, K; Izamis, M-L

    2014-06-01

    To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.

  19. Hydration of arene and alkene oxides by epoxide hydrase in human liver microsomes.

    PubMed

    Kapitulnik, J; Levin, W; Morecki, R; Dansette, P M; Jerina, D M; Conney, A H

    1977-02-01

    The comparative hydration of styrene 7,8-oxide, octene 1,2-oxide, naphthalene 1,2-oxide, phenanthrene 9,10-oxide, benzo[a]anthracene 5,6-oxide, 3-methylcholanthrene 11,12-oxide, dibenzo[a,h]anthracene 5,6-oxide, and benzo[a, 7,8-, 9,10-, and 11,12-oxides to their respective dihydrodiols was investigated in microsomes from nine human autopsy livers. The substrate specificity of the epoxide hydrase in human liver microsomes was very similar to that of the epoxide hydrase in rat liver microsomes. Phenanthrene 9,10-oxide was the best substrate for the human and rat epoxide hydrases and dibenzo[a,h]anthracene 5,6-oxide and benzo[a-a)pyrene 11, 12-oxide were the poorest substrates. Plotting epoxide hydrase activity obtained with one substrate against epoxide hydrase activity for another substrate for each of the nine human livers revealed excellent correlations for all combinations of the 11 substrates studied (r = 0.87 to 0.99). The data suggest the presence in human liver of a single epoxide hydrase with broad substrate specificity. However, the results do not exclude the possible presence in human liver of several epoxide hydrases that are under similar regulatory control. These results suggest the need for further investigation to determine whether there is a safe epoxide of a drug whose in vivo metabolism is predictive of the capacity of different individuals to metabolize a wide variety of epoxides of drugs and environmental chemicals.

  20. Human liver tumors in relation to steroidal usage.

    PubMed Central

    Barrows, G H; Christopherson, W M

    1983-01-01

    Since 1973 a number of investigators have reported an association between liver neoplasia and steroid usage. Through referral material we have examined the histology of over 250 cases of hepatic neoplasia, most in patients receiving steroid medications. The majority have been benign, predominantly focal nodular hyperplasia (55%) and hepatocellular adenoma (39%). The average age was 31.4 years; 83% had significant steroid exposure with an average duration of 71 months for focal nodular hyperplasia and 79.6 months for hepatocellular adenoma. The type of estrogenic agent was predominantly mestranol; however, during the period mestranol was the most frequently used synthetic steroid. A distinct clinical entity of life threatening hemorrhage from the lesion occurred in 31% of patients with hepatocellular adenoma and 9% of patients with focal nodular hyperplasia. Recurrence of benign tumors has occurred in some patients who continued using steroids and regression has been observed in patients who had incomplete tumor removal but discontinued steroid medication. Medial and intimal vascular changes have been present in a large number of the benign tumors. The relationship of these vascular changes to oncogenesis is unclear, but similar lesions have been described in the peripheral vasculature associated with steroid administration. A number of hepatocellular carcinomas have also been seen. Of significance is the young age of these patients and lack of abnormal histology in adjacent nonneoplastic liver. A striking number of the malignant hepatocellular tumors have been of the uncommon type described as "eosinophilic hepatocellular carcinoma with lamellar fibrosis." The epidemiology of liver lesions within this series is difficult to assess, since the material has been referred from very diverse locations. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. PMID:6307679

  1. Antibody-Mediated Rejection of Human Orthotopic Liver Allografts

    PubMed Central

    Demetris, A. Jake; Jaffe, Ron; Tzakis, A.; Ramsey, Glenn; Todo, S.; Belle, Steven; Esquivel, Carlos; Shapiro, Ron; Markus, Bernd; Mroczek, Elizabeth; Van Thiel, D. H.; Sysyn, Greg; Gordon, Robert; Makowka, Leonard; Starzl, Tom

    1988-01-01

    A clinicopathologic analysis of liver transplantation across major ABO blood group barriers was carried out 1) to determine if antibody-mediated (humoral) rejection was a cause of graft failure and if humoral rejection can be identified, 2) to propose criteria for establishing the diagnosis, and 3) to describe the clinical and pathologic features of humoral rejection. A total of 51 (24 primary) ABO-incompatible (ABO-I) liver grafts were transplanted into 49 recipients. There was a 46% graft failure rate during the first 30 days for primary ABO-I grafts compared with an 11% graft failure rate for primary ABO compatible (ABO-C), crossmatch negative, age, sex and priority-matched control patients (P < 0.02). A similarly high early graft failure rate (60%) was seen for nonprimary ABO-I grafts during the first 30 days. Clinically, the patients experienced a relentless rise in serum transaminases, hepatic failure, and coagulopathy during the first weeks after transplant. Pathologic examination of ABO-I grafts that failed early demonstrated widespread areas of geographic hemorrhagic necrosis with diffuse intraorgan coagulation. Prominent arterial deposition of antibody and complement components was demonstrated by immunoflourescent staining. Elution studies confirmed the presence of tissue-bound, donor-specific isoagglutinins within the grafts. No such deposition was seen in control cases. These studies confirm that antibody mediated rejection of the liver occurs and allows for the development of criteria for establishing the diagnosis. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:3046369

  2. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA

    PubMed Central

    VICENTINE, Fernando Pompeu Piza; GONZALEZ, Adriano Miziara; de AZEVEDO, Ramiro Anthero; BENINI, Barbara Burza; LINHARES, Marcelo Moura; LOPES-FILHO, Gaspar de Jesus; MARTINS, Jose Luiz; SALZEDAS-NETTO, Alcides Augusto

    2016-01-01

    ABSTRACT Background: Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Aim: Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Methods: Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). Results: The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). Conclusion: There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. PMID:28076477

  3. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity

    PubMed Central

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V.

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses. PMID:25309527

  4. Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity.

    PubMed

    Ariza, Maria Eugenia; Glaser, Ronald; Williams, Marshall V

    2014-01-01

    We have previously shown that Epstein-Barr virus (EBV)-encoded dUTPase can modulate innate immune responses through the activation of TLR2 and NF-κB signaling. However, whether this novel immune function of the dUTPase is specific for EBV or a common property of the Herpesviridae family is not known. In this study, we demonstrate that the purified viral dUTPases encoded by herpes simplex virus type 2 (HSV-2), human herpesvirus-6A (HHV-6A), human herpesvirus-8 (HHV-8) and varicella-zoster virus (VZV) differentially activate NF-κB through ligation of TLR2/TLR1 heterodimers. Furthermore, activation of NF-κB by the viral dUTPases was inhibited by anti-TLR2 blocking antibodies (Abs) and the over-expression of dominant-negative constructs of TLR2, lacking the TIR domain, and MyD88 in human embryonic kidney 293 cells expressing TLR2/TLR1. In addition, treatment of human dendritic cells and PBMCs with the herpesviruses-encoded dUTPases from HSV-2, HHV-6A, HHV-8, and VZV resulted in the secretion of the inflammatory cytokines IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-10, and IFN-γ. Interestingly, blocking experiments revealed that the anti-TLR2 Ab significantly reduced the secretion of cytokines by the various herpesviruses-encoded dUTPases (p < 0.05). To our knowledge, this is the first report demonstrating that a non-structural protein encoded by herpesviruses HHV-6A, HHV-8, VZV and to a lesser extent HSV-2 is a pathogen-associated molecular pattern. Our results reveal a novel function of the virus-encoded dUTPases, which may be important to the pathophysiology of diseases caused by these viruses. More importantly, this study demonstrates that the immunomodulatory functions of dUTPases are a common property of the Herpesviridae family and thus, the dUTPase could be a potential target for the development of novel therapeutic agents against infections caused by these herpesviruses.

  5. Evaluation of JPEG 2000 encoder options: human and model observer detection of variable signals in X-ray coronary angiograms.

    PubMed

    Zhang, Yani; Pham, Binh; Eckstein, Miguel P

    2004-05-01

    Previous studies have evaluated the effect of the new still image compression standard JPEG 2000 using nontask based image quality metrics, i.e., peak-signal-to-noise-ratio (PSNR) for nonmedical images. In this paper, the effect of JPEG 2000 encoder options was investigated using the performance of human and model observers (nonprewhitening matched filter with an eye filter, square-window Hotelling, Laguerre-Gauss Hotelling and channelized Hotelling model observer) for clinically relevant visual tasks. Two tasks were investigated: the signal known exactly but variable task (SKEV) and the signal known statistically task (SKS). Test images consisted of real X-ray coronary angiograms with simulated filling defects (signals) inserted in one of the four simulated arteries. The signals varied in size and shape. Experimental results indicated that the dependence of task performance on the JPEG 2000 encoder options was similar for all model and human observers. Model observer performance in the more tractable and computationally economic SKEV task can be used to reliably estimate performance in the complex but clinically more realistic SKS task. JPEG 2000 encoder settings different from the default ones resulted in greatly improved model and human observer performance in the studied clinically relevant visual tasks using real angiography backgrounds.

  6. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    PubMed

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  7. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

    PubMed Central

    Gibbs, Peter E. M.; McGregor, W. Glenn; Maher, Veronica M.; Nisson, Paul; Lawrence, Christopher W.

    1998-01-01

    To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart. PMID:9618506

  8. HMG-CoA reductase activity in human liver microsomes: comparative inhibition by statins.

    PubMed

    Dansette, P M; Jaoen, M; Pons, C

    2000-05-01

    The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).

  9. High resolution proton magnetic resonance spectroscopy of human brain and liver

    SciTech Connect

    Barany, M.; Spigos, D.G.; Mok, E.; Venkatasubramanian, P.N.; Wilbur, A.C.; Langer, B.G.

    1987-01-01

    Water-suppressed and slice-selective proton spectra of live human brain exhibited several resonances that were tentatively assigned to metabolites such as N-acetylaspartate, glutamate, phosphocreatine and creatine, choline derivatives, and taurine. In the liver spectrum of a healthy volunteer, the major resonance was tentatively assigned to a fatty acyl methylene and the minor resonances to protons in carnitine, taurine, glutamate, and glutamine. In the spectrum of a cancerous liver, resonances in addition to those present in the normal liver were seen. Protein degradation in the liver with cancer was indicated by resonances from urea and from the ring protons in tryptophan, tyrosine, and phenylalanine. Furthermore, increased nucleic acid synthesis was indicated by resonances from nucleotide protons.

  10. Transcriptional networks implicated in human nonalcoholic fatty liver disease.

    PubMed

    Ye, Hua; Liu, Wei

    2015-10-01

    The transcriptome of nonalcoholic fatty liver disease (NAFLD) was investigated in several studies. However, the implications of transcriptional networks in progressive NAFLD are not clear and mechanisms inducing transition from nonalcoholic simple fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) are still elusive. The aims of this study were to (1) construct networks for progressive NAFLD, (2) identify hub genes and functional modules in these networks and (3) infer potential linkages among hub genes, transcription factors and microRNAs (miRNA) for NAFLD progression. A systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) was utilized to dissect transcriptional profiles in 19 normal, 10 NAFL and 16 NASH patients. Based on this framework, 3 modules related to chromosome organization, proteasomal ubiquitin-dependent protein degradation and immune response were identified in NASH network. Furthermore, 9 modules of co-expressed genes associated with NAFL/NASH transition were found. Further characterization of these modules defined 13 highly connected hub genes in NAFLD progression network. Interestingly, 11 significantly changed miRNAs were predicted to target 10 of the 13 hub genes. Characterization of modules and hub genes that may be regulated by miRNAs could facilitate the identification of candidate genes and pathways responsible for NAFL/NASH transition and lead to a better understanding of NAFLD pathogenesis. The identified modules and hub genes may point to potential targets for therapeutic interventions.

  11. Spatial auditory regularity encoding and prediction: Human middle-latency and long-latency auditory evoked potentials.

    PubMed

    Cornella, M; Bendixen, A; Grimm, S; Leung, S; Schröger, E; Escera, C

    2015-11-11

    By encoding acoustic regularities present in the environment, the human brain can generate predictions of what is likely to occur next. Recent studies suggest that deviations from encoded regularities are detected within 10-50ms after stimulus onset, as indicated by electrophysiological effects in the middle latency response (MLR) range. This is upstream of previously known long-latency (LLR) signatures of deviance detection such as the mismatch negativity (MMN) component. In the present study, we created predictable and unpredictable contexts to investigate MLR and LLR signatures of the encoding of spatial auditory regularities and the generation of predictions from these regularities. Chirps were monaurally delivered in an either regular (predictable: left-right-left-right) or a random (unpredictable left/right alternation or repetition) manner. Occasional stimulus omissions occurred in both types of sequences. Results showed that the Na component (peaking at 34ms after stimulus onset) was attenuated for regular relative to random chirps, albeit no differences were observed for stimulus omission responses in the same latency range. In the LLR range, larger chirp-and omission-evoked responses were elicited for the regular than for the random condition, and predictability effects were more prominent over the right hemisphere. We discuss our findings in the framework of a hierarchical organization of spatial regularity encoding. This article is part of a Special Issue entitled SI: Prediction and Attention.

  12. The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5).

    PubMed

    Falcón-Pérez, Juan M; Romero-Calderón, Rafael; Brooks, Elizabeth S; Krantz, David E; Dell'Angelica, Esteban C

    2007-02-01

    Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.

  13. Hepatitis B Virus Infection and Immunopathogenesis in a Humanized Mouse Model: Induction of Human-Specific Liver Fibrosis and M2-Like Macrophages

    PubMed Central

    Bility, Moses T.; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-01-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology. PMID:24651854

  14. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages.

    PubMed

    Bility, Moses T; Cheng, Liang; Zhang, Zheng; Luan, Yan; Li, Feng; Chi, Liqun; Zhang, Liguo; Tu, Zhengkun; Gao, Yanhang; Fu, Yangxin; Niu, Junqi; Wang, Fusheng; Su, Lishan

    2014-03-01

    The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.

  15. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses

    PubMed Central

    Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  16. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver

    PubMed Central

    Strauss, Otto; Phillips, Anthony; Ruggiero, Katya; Bartlett, Adam; Dunbar, P. Rod

    2017-01-01

    As well as systemic vascular endothelial cells, the liver has specialised sinusoidal endothelial cells (LSEC). LSEC dysfunction has been documented in many diseased states yet their phenotype in normal human liver has not been comprehensively assessed. Our aim was to improve characterisation of subsets of endothelial cells and associated pericytes in the human liver. Immunofluorescence microscopy was performed on normal human liver tissue samples to assess endothelial and structural proteins in a minimum of three donors. LSEC are distributed in an acinar pattern and universally express CD36, but two distinctive subsets of LSEC can be identified in different acinar zones. Type 1 LSEC are CD36hiCD32−CD14−LYVE-1− and are located in acinar zone 1 of the lobule, while Type 2 LSEC are LYVE-1+CD32hiCD14+CD54+CD36mid-lo and are located in acinar zones 2 and 3 of the lobule. Portal tracts and central veins can be identified using markers for systemic vascular endothelia and pericytes, none of which are expressed by LSEC. In areas of low hydrostatic pressure LSEC are lined by stellate cells that express the pericyte marker CD146. Our findings identify distinctive populations of LSEC and distinguish these cells from adjacent stellate cells, systemic vasculature and pericytes in different zones of the liver acinus. PMID:28287163

  17. Early cytokine signatures of ischemia/reperfusion injury in human orthotopic liver transplantation.

    PubMed

    Sosa, Rebecca A; Zarrinpar, Ali; Rossetti, Maura; Lassman, Charles R; Naini, Bita V; Datta, Nakul; Rao, Ping; Harre, Nicholas; Zheng, Ying; Spreafico, Roberto; Hoffmann, Alexander; Busuttil, Ronald W; Gjertson, David W; Zhai, Yuan; Kupiec-Weglinski, Jerzy W; Reed, Elaine F

    2016-12-08

    BACKGROUND. Orthotopic liver transplant (OLT) is the primary therapy for end-stage liver disease and acute liver failure. However, ischemia/reperfusion injury (IRI) can severely compromise allograft survival. To understand the evolution of immune responses underlying OLT-IRI, we evaluated longitudinal cytokine expression profiles from adult OLT recipients before transplant through 1 month after transplant. METHODS. We measured the expression of 38 cytokines, chemokines, and growth factors in preoperative and postoperative recipient circulating systemic blood (before transplant and 1 day, 1 week, and 1 month after transplant) and intraoperative portal blood (before and after reperfusion) of 53 OLT patients and analyzed this expression in relation to biopsy-proven IRI (n = 26 IRI+; 27 IRI-), clinical liver function tests early (days 1-7) after transplant, and expression of genes encoding cytokine receptors in biopsies of donor allograft taken before and after reperfusion. RESULTS. Bilirubin and arginine transaminase levels early after transplant correlated with IRI. Fourteen cytokines were significantly increased in the systemic and/or portal blood of IRI+ recipients that shifted from innate to adaptive-immune responses over time. Additionally, expression of cognate receptors for 10 of these cytokines was detected in donor organ biopsies by RNAseq. CONCLUSION. These results provide a mechanistic roadmap of the early immunological events both before and after IRI and suggest several candidates for patient stratification, monitoring, and treatment. FUNDING. Ruth L. Kirschstein National Research Service Award T32CA009120, Keck Foundation award 986722, and a Quantitative & Computational Biosciences Collaboratory Postdoctoral Fellowship.

  18. Early cytokine signatures of ischemia/reperfusion injury in human orthotopic liver transplantation

    PubMed Central

    Sosa, Rebecca A.; Zarrinpar, Ali; Lassman, Charles R.; Naini, Bita V.; Datta, Nakul; Rao, Ping; Harre, Nicholas; Zheng, Ying; Hoffmann, Alexander; Busuttil, Ronald W.; Gjertson, David W.; Zhai, Yuan; Kupiec-Weglinski, Jerzy W.; Reed, Elaine F.

    2016-01-01

    BACKGROUND. Orthotopic liver transplant (OLT) is the primary therapy for end-stage liver disease and acute liver failure. However, ischemia/reperfusion injury (IRI) can severely compromise allograft survival. To understand the evolution of immune responses underlying OLT-IRI, we evaluated longitudinal cytokine expression profiles from adult OLT recipients before transplant through 1 month after transplant. METHODS. We measured the expression of 38 cytokines, chemokines, and growth factors in preoperative and postoperative recipient circulating systemic blood (before transplant and 1 day, 1 week, and 1 month after transplant) and intraoperative portal blood (before and after reperfusion) of 53 OLT patients and analyzed this expression in relation to biopsy-proven IRI (n = 26 IRI+; 27 IRI–), clinical liver function tests early (days 1–7) after transplant, and expression of genes encoding cytokine receptors in biopsies of donor allograft taken before and after reperfusion. RESULTS. Bilirubin and arginine transaminase levels early after transplant correlated with IRI. Fourteen cytokines were significantly increased in the systemic and/or portal blood of IRI+ recipients that shifted from innate to adaptive-immune responses over time. Additionally, expression of cognate receptors for 10 of these cytokines was detected in donor organ biopsies by RNAseq. CONCLUSION. These results provide a mechanistic roadmap of the early immunological events both before and after IRI and suggest several candidates for patient stratification, monitoring, and treatment. FUNDING. Ruth L. Kirschstein National Research Service Award T32CA009120, Keck Foundation award 986722, and a Quantitative & Computational Biosciences Collaboratory Postdoctoral Fellowship. PMID:27942590

  19. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion.

    PubMed

    Sutton, Michael E; op den Dries, Sanna; Karimian, Negin; Weeder, Pepijn D; de Boer, Marieke T; Wiersema-Buist, Janneke; Gouw, Annette S H; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2014-01-01

    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.

  20. Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans

    PubMed Central

    2013-01-01

    Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform. PMID:24565476

  1. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.

    PubMed

    Noor, Fozia

    2015-12-01

    Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.

  2. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    PubMed Central

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  3. Monocytic cells derived from human embryonic stem cells and fetal liver share common differentiation pathways and homeostatic functions.

    PubMed

    Klimchenko, Olena; Di Stefano, Antonio; Geoerger, Birgit; Hamidi, Sofiane; Opolon, Paule; Robert, Thomas; Routhier, Mélanie; El-Benna, Jamel; Delezoide, Anne-Lise; Boukour, Siham; Lescure, Bernadette; Solary, Eric; Vainchenker, William; Norol, Françoise

    2011-03-17

    The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14(low)CD16(-) precursor to form CD14(high)CD16(+) cells without producing the CD14(high)CD16(-) cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.

  4. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    PubMed Central

    Laha, Thewarach; Pinlaor, Porntip; Mulvenna, Jason; Sripa, Banchob; Sripa, Manop; Smout, Michael J; Gasser, Robin B; Brindley, Paul J; Loukas, Alex

    2007-01-01

    Background Cholangiocarcinoma (CCA) – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum) than to free-living (Schmidtea mediterranea) flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions, drugs and vaccines, to

  5. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.

    PubMed

    Pu, Yi; Cornwell, Brian R; Cheyne, Douglas; Johnson, Blake W

    2017-03-01

    Low frequency theta band oscillations (4-8 Hz) are thought to provide a timing mechanism for hippocampal place cell firing and to mediate the formation of spatial memory. In rodents, hippocampal theta has been shown to play an important role in encoding a new environment during spatial navigation, but a similar functional role of hippocampal theta in humans has not been firmly established. To investigate this question, we recorded healthy participants' brain responses with a 160-channel whole-head MEG system as they performed two training sets of a virtual Morris water maze task. Environment layouts (except for platform locations) of the two sets were kept constant to measure theta activity during spatial learning in new and familiar environments. In line with previous findings, left hippocampal/parahippocampal theta showed more activation navigating to a hidden platform relative to random swimming. Consistent with our hypothesis, right hippocampal/parahippocampal theta was stronger during the first training set compared to the second one. Notably, theta in this region during the first training set correlated with spatial navigation performance across individuals in both training sets. These results strongly argue for the functional importance of right hippocampal theta in initial encoding of configural properties of an environment during spatial navigation. Our findings provide important evidence that right hippocampal/parahippocampal theta activity is associated with environmental encoding in the human brain. Hum Brain Mapp 38:1347-1361, 2017. © 2016 Wiley Periodicals, Inc.

  6. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE.

    PubMed

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B R; Zufall, Rebecca A; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 - 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these "functional" regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used "causal role" definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent," by failing to appreciate the crucial difference between "junk DNA" and "garbage DNA," by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.

  7. Evidence that a human soluble beta-galactoside-binding lectin is encoded by a family of genes.

    PubMed Central

    Gitt, M A; Barondes, S H

    1986-01-01

    Two cDNA clones were isolated by immunoscreening a human hepatoma cDNA library with an antiserum that bound specifically to a human soluble beta-galactoside-binding lectin with Mr of approximately 14,000. The deduced amino acid sequences of the inserts of these two clones show considerable homology with each other, the sequence of chicken skin beta-galactoside-binding lectin, and eight peptides derived from purified human lung lectin of Mr approximately 14,000. However, the sequence differences between the two hepatoma clones as well as among each clone and the lung peptides suggest that at least three variants of the gene encoding this lectin are expressed in human tissue. Images PMID:3020551

  8. Prediction of Liver Injury Induced by Chemicals in Human With a Multiparametric Assay on Isolated Mouse Liver Mitochondria

    PubMed Central

    Porceddu, Mathieu; Buron, Nelly; Borgne-Sanchez, Annie

    2012-01-01

    Drug-induced liver injury (DILI) in humans is difficult to predict using classical in vitro cytotoxicity screening and regulatory animal studies. This explains why numerous compounds are stopped during clinical trials or withdrawn from the market due to hepatotoxicity. Thus, it is important to improve early prediction of DILI in human. In this study, we hypothesized that this goal could be achieved by investigating drug-induced mitochondrial dysfunction as this toxic effect is a major mechanism of DILI. To this end, we developed a high-throughput screening platform using isolated mouse liver mitochondria. Our broad spectrum multiparametric assay was designed to detect the global mitochondrial membrane permeabilization (swelling), inner membrane permeabilization (transmembrane potential), outer membrane permeabilization (cytochrome c release), and alteration of mitochondrial respiration driven by succinate or malate/glutamate. A pool of 124 chemicals (mainly drugs) was selected, including 87 with documented DILI and 37 without reported clinical hepatotoxicity. Our screening assay revealed an excellent sensitivity for clinical outcome of DILI (94 or 92% depending on cutoff) and a high positive predictive value (89 or 82%). A highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients was calculated (p < 0.001). Moreover, this multiparametric assay allowed identifying several compounds for which mitochondrial toxicity had never been described before and even helped to clarify mechanisms with some drugs already known to be mitochondriotoxic. Investigation of drug-induced loss of mitochondrial integrity and function with this multiparametric assay should be considered for integration into basic screening processes at early stage to select drug candidates with lower risk of DILI in human. This assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new

  9. Modulation of Oscillatory Power and Connectivity in the Human Posterior Cingulate Cortex Supports the Encoding and Retrieval of Episodic Memories.

    PubMed

    Lega, Bradley; Germi, James; Rugg, Michael

    2017-04-07

    Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70-180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items.

  10. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    SciTech Connect

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  11. Adiponectin oligomers and ectopic fat in liver and skeletal muscle in humans.

    PubMed

    Kantartzis, Konstantinos; Staiger, Harald; Machann, Jürgen; Schick, Fritz; Claussen, Claus D; Machicao, Fausto; Fritsche, Andreas; Häring, Hans-Ulrich; Stefan, Norbert

    2009-02-01

    We aimed at determining which circulating forms of the adipokine adiponectin that increases lipid oxidation in liver and skeletal muscle are related to ectopic fat in these depots in humans. Plasma total-, high-molecular weight (HMW)-, middle-molecular weight (MMW)-, and low-molecular weight (LMW) adiponectin were quantified by an enzyme-linked immunosorbent assay. Their relationships with liver- and intramyocellular fat, measured using (1)H magnetic resonance spectroscopy, were investigated in 54 whites without type 2 diabetes. Liver fat, adjusted for gender, age, and total body fat, was associated only with HMW adiponectin (r = -0.35, P = 0.012), but not with total-, MMW-, or LMW adiponectin. In addition, subjects with fatty liver (liver fat > or =5.56%, n = 15) had significantly lower HMW- (P = 0.04), but not total-, MMW-, or LMW adiponectin levels, compared to controls (n = 39). Similarly, intramyocellular fat correlated only with HMW (r = -0.32, P = 0.039), but not with the other circulating forms of adiponectin. These data indicate that, among circulating forms of adiponectin, HMW is strongly related to ectopic fat, thus possibly representing the form of adiponectin regulating lipid oxidation in liver and skeletal muscle.

  12. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    PubMed

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  13. Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver.

    PubMed

    He, Bo; Cruz-Topete, Diana; Oakley, Robert H; Xiao, Xiao; Cidlowski, John A

    2015-12-28

    While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms.

  14. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    PubMed Central

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430

  15. Specificity of procaine and ester hydrolysis by human, minipig, and rat skin and liver.

    PubMed

    Jewell, Christopher; Ackermann, Chrisita; Payne, N Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M

    2007-11-01

    The capacity of human, minipig, and rat skin and liver subcellular fractions to hydrolyze the anesthetic ester procaine was compared with carboxylesterase substrates 4-methylumbelliferyl-acetate, phenylvalerate, and para-nitrophenylacetate and the arylesterase substrate phenylacetate. Rates of procaine hydrolysis by minipig and human skin microsomal and cytosolic fractions were similar, with rat displaying higher activity. Loperamide inhibited procaine hydrolysis by human skin, suggesting involvement of human carboxylesterase hCE2. The esterase activity and inhibition profiles in the skin were similar for minipig and human, whereas rat had a higher capacity to metabolize esters and a different inhibition profile. Minipig and human liver and skin esterase activity was inhibited principally by paraoxon and bis-nitrophenyl phosphate, classical carboxylesterase inhibitors. Rat skin and liver esterase activity was inhibited additionally by phenylmethylsulfonyl fluoride and the arylesterase inhibitor mercuric chloride, indicating a different esterase profile. These results have highlighted the potential of skin to hydrolyze procaine following topical application, which possibly limits its pharmacological effect. Skin from minipig used as an animal model for assessing transdermal drug preparations had similar capacity to hydrolyze esters to human skin.

  16. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding.

    PubMed

    Cahill, Larry; Gorski, Lukasz; Le, Kathryn

    2003-01-01

    Abundant evidence indicates that endogenous stress hormones such as epinephrine and corticosterone modulate memory consolidation in animals. We recently provided the first demonstration that an endogenous stress hormone (epinephrine) can enhance human memory consolidation. However, these findings also suggested that post-learning stress hormone activation does not uniformly enhance memory for all recently acquired information; rather, that it interacts with the degree of arousal at initial encoding of material in modulating memory for the material. Here we tested this hypothesis by administering cold pressor stress (CPS) or a control procedure to subjects after they viewed slides of varying emotional content, and assessing memory for the slides 1 wk later. CPS, which significantly elevated salivary cortisol levels, enhanced memory for emotionally arousing slides compared with the controls, but did not affect memory for relatively neutral slides. These findings further support the view that post-learning stress hormone-related activity interacts with arousal at initial encoding to modulate memory consolidation.

  17. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy.

    PubMed

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M

    2017-02-16

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2-/-IL2Rγ-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair.

  18. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  19. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    DOEpatents

    Haynes, Barton F [Durham, NC; Gao, Feng [Durham, NC; Korber, Bette T [Los Alamos, NM; Hahn, Beatrice H [Birmingham, AL; Shaw, George M [Birmingham, AL; Kothe, Denise [Birmingham, AL; Li, Ying Ying [Hoover, AL; Decker, Julie [Alabaster, AL; Liao, Hua-Xin [Chapel Hill, NC

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  20. Dynamic changes in parietal activation during encoding: implications for human learning and memory.

    PubMed

    Elman, Jeremy A; Rosner, Zachary A; Cohn-Sheehy, Brendan I; Cerreta, Adelle G; Shimamura, Arthur P

    2013-11-15

    The ventral posterior parietal cortex (vPPC) monitors successful memory retrieval, yet its role during learning remains unclear. Indeed, increased vPPC activation during stimulus encoding is often negatively correlated with subsequent memory performance, suggesting that this region is suppressed during learning. Alternatively, the vPPC may engage in learning-related processes immediately after stimulus encoding thus facilitating retrieval at a later time. To investigate this possibility, we assessed vPPC activity during item presentation and immediately following its offset when a cue to remember was presented. We observed a dynamic change in vPPC response such that activity was negatively correlated with subsequent memory during stimulus presentation but positively correlated immediately following the stimulus during the cue phase. Furthermore, regional differences in this effect suggest a degree of functional heterogeneity within the vPPC. These findings demonstrate that the vPPC is engaged during learning and acts to facilitate post-encoding memory processes that establish long-term cortical representations.

  1. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.

    PubMed

    Lin, Fa-Hsuan; Tsai, Shang-Yueh; Otazo, Ricardo; Caprihan, Arvind; Wald, Lawrence L; Belliveau, John W; Posse, Stefan

    2007-02-01

    Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements.

  2. MicroRNA-Mediated Suppression of Oncolytic Adenovirus Replication in Human Liver

    PubMed Central

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver. PMID:23349911

  3. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    PubMed

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  4. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers.

    PubMed

    op den Dries, S; Karimian, N; Sutton, M E; Westerkamp, A C; Nijsten, M W N; Gouw, A S H; Wiersema-Buist, J; Lisman, T; Leuvenink, H G D; Porte, R J

    2013-05-01

    In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion may reduce preservation injury, improve graft viability and potentially allows ex vivo assessment of graft viability before transplantation. We have studied the feasibility of normothermic machine perfusion in four discarded human donor livers. Normothermic machine perfusion consisted of pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion for 6 h. Two hollow fiber membrane oxygenators provided oxygenation of the perfusion fluid. Biochemical markers in the perfusion fluid reflected minimal hepatic injury and improving function. Lactate levels decreased to normal values, reflecting active metabolism by the liver (mean lactate 10.0 ± 2.3 mmol/L at 30 min to 2.3 ± 1.2 mmol/L at 6 h). Bile production was observed throughout the 6 h perfusion period (mean rate 8.16 ± 0.65 g/h after the first hour). Histological examination before and after 6 h of perfusion showed well-preserved liver morphology without signs of additional hepatocellular ischemia, biliary injury or sinusoidal damage. In conclusion, this study shows that normothermic machine perfusion of human donor livers is technically feasible. It allows assessment of graft viability before transplantation, which opens new avenues for organ selection, therapeutic interventions and preconditioning.

  5. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans

    PubMed Central

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth

    2017-01-01

    Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515

  6. Differential Expression of Matrix-Metalloproteinase-1 and -2 Genes in Normal and Fibrotic Human Liver

    PubMed Central

    Milani, Stefano; Herbst, Hermann; Schuppan, Detlef; Grappone, Cecilia; Pellegrini, Giulia; Pinzani, Massimo; Casini, Alessandro; Calabró, Antonio; Ciancio, Giuseppe; Stefanini, Francesco; Ciancio, Andrew K.; Surrenti, Calogero

    1994-01-01

    Altered degradation of extracellular matrix has been implicated in the pathogenesis of hepatic fibrosis. We investigated levels and cellular sites of gene expression of two major collagebn-degrading enzymes, matrix-metalloproteinase (MMP)-l (fibroblast type-interstitial collagenase)and MMP-2 (72-kd gelatinase, type IV collagenase) in five normal and 18 fibrotic human livers as well as in cultured human hepatic fat-storing cells by Northern blot analysis and in situ hybridization. Fatstoring cells expressed both MMP-1 and MMP-2 RNA in vitro. In vivo, MMP-1 was undetectable in mesenchymal and parenchymal cells of all liver specimens, whereas MMP-2 transcripts were expressed in all livers by vimentin-positive, CD68 negative mesenchymal cells. Mesenchymal cells of all fibrotic livers displayed high transcript levels of transforming growth factor-β1, which is known to modulate MMP expression. Along with de novo fibrogenesis and possibly influenced by transforming growth factor-β1, expression of MMP-2 in the absence of MMP-1 expression may be responsible for the quantitative and qualitative changes of extracellular matrix observed in chronic liver disease. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 7 PMID:8129038

  7. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    PubMed Central

    Tobe, Ryuta; Carlson, Bradley A.; Tsuji, Petra A.; Lee, Byeong Jae; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system. PMID:26569310

  8. Induction of three-dimensional assembly of human liver cells by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Yoffe, B.

    1999-01-01

    The establishment of long-term cultures of functional primary human liver cells (PHLC) is formidable. Developed at NASA, the Rotary Cell Culture System (RCCS) allows the creation of the unique microgravity environment of low shear force, high-mass transfer, and 3-dimensional cell culture of dissimilar cell types. The aim of our study was to establish long-term hepatocyte cultures in simulated microgravity. PHLC were harvested from human livers by collagenase perfusion and were cultured in RCCS. PHLC aggregates were readily formed and increased up to 1 cm long. The expansion of PHLC in bioreactors was further evaluated with microcarriers and biodegradable scaffolds. While microcarriers were not conducive to formation of spheroids, PHLC cultured with biodegradable scaffolds formed aggregates up to 3 cm long. Analyses of PHLC spheroids revealed tissue-like structures composed of hepatocytes, biliary epithelial cells, and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes surrounded by complex stromal structures and reticulin fibers, bile canaliculi with multiple microvilli, and tight cellular junctions. Albumin mRNA was expressed throughout the 60-d culture. A simulated microgravity environment is conducive to maintaining long-term cultures of functional hepatocytes. This model system will assist in developing improved protocols for autologous hepatocyte transplantation, gene therapy, and liver assist devices, and facilitate studies of liver regeneration and cell-to-cell interactions that occur in vivo.

  9. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    PubMed Central

    Powell, Christopher A.; Nicholls, Thomas J.; Minczuk, Michal

    2015-01-01

    The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes. PMID:25806043

  10. The PPAR alpha-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPAR alpha.

    PubMed

    Yang, Qian; Nagano, Tomokazu; Shah, Yatrik; Cheung, Connie; Ito, Shinji; Gonzalez, Frank J

    2008-01-01

    To determine the impact of the species difference between rodents and humans in response to peroxisome proliferators (PPs) mediated by peroxisome proliferator-activated receptor (PPAR)alpha, PPAR alpha-humanized transgenic mice were generated using a P1 phage artificial chromosome (PAC) genomic clone bred onto a ppar alpha-null mouse background, designated hPPAR alpha PAC. In hPPAR alpha PAC mice, the human PPAR alpha gene is expressed in tissues with high fatty acid catabolism and induced upon fasting, similar to mouse PPAR alpha in wild-type (Wt) mice. Upon treatment with the PP fenofibrate, hPPAR alpha PAC mice exhibited responses similar to Wt mice, including peroxisome proliferation, lowering of serum triglycerides, and induction of PPAR alpha target genes encoding enzymes involved in fatty acid metabolism in liver, kidney, and heart, suggesting that human PPAR alpha (hPPAR alpha) functions in the same manner as mouse PPAR alpha in regulating fatty acid metabolism and lowering serum triglycerides. However, in contrast to Wt mice, treatment of hPPAR alpha PAC mice with fenofibrate did not cause significant hepatomegaly and hepatocyte proliferation, thus indicating that the mechanisms by which PPAR alpha affects lipid metabolism are distinct from the hepatocyte proliferation response, the latter of which is only induced by mouse PPAR alpha. In addition, a differential regulation of several genes, including the oncogenic let-7C miRNA by PPs, was observed between Wt and hPPAR alpha PAC mice that may contribute to the inherent difference between mouse and human PPAR alpha in activation of hepatocellular proliferation. The hPPAR alpha PAC mouse model provides an in vivo platform to investigate the species difference mediated by PPAR alpha and an ideal model for human risk assessment PPs exposure.

  11. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    SciTech Connect

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin . E-mail: min-xin.guan@chmcc.org

    2006-04-21

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations.

  12. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    PubMed

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  13. Identification of TSIX, Encoding an RNA Antisense to Human XIST, Reveals Differences from its Murine Counterpart: Implications for X Inactivation

    PubMed Central

    Migeon, Barbara R.; Chowdhury, Ashis K.; Dunston, Jennifer A.; McIntosh, Iain

    2001-01-01

    X inactivation is the mammalian method for X-chromosome dosage compensation, but some features of this developmental process vary among mammals. Such species variations provide insights into the essential components of the pathway. Tsix encodes a transcript antisense to the murine Xist transcript and is expressed in the mouse embryo only during the initial stages of X inactivation; it has been shown to play a role in imprinted X inactivation in the mouse placenta. We have identified its counterpart within the human X inactivation center (XIC). Human TSIX produces a >30-kb transcript that is expressed only in cells of fetal origin; it is expressed from human XIC transgenes in mouse embryonic stem cells and from human embryoid-body–derived cells, but not from human adult somatic cells. Differences in the structure of human and murine genes indicate that human TSIX was truncated during evolution. These differences could explain the fact that X inactivation is not imprinted in human placenta, and they raise questions about the role of TSIX in random X inactivation. PMID:11555794

  14. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes

    SciTech Connect

    Yamano, Shigeru; Tatsuno, Jun; Gonzalez, F.J. )

    1990-02-06

    Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a {lambda}gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu{sup 160}{yields}His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a {lambda}{sub max} at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIa mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. These data establish that the CYP2A3 gene product is primarily responsible for coumarin 7-hydroxylase activity in human liver. The level of expression of this activity varied up to 40-fold between livers. Levels of IIA mRNA also varied significantly between liver specimens, and three specimens had no detectable mRNA.

  15. Variability in Expression of CYP3A5 in Human Fetal Liver.

    PubMed

    Vyhlidal, Carrie A; Pearce, Robin E; Gaedigk, Roger; Calamia, Justina C; Shuster, Diana L; Thummel, Kenneth E; Leeder, J Steven

    2015-08-01

    Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.

  16. Hepatogenic differentiation from human adipose-derived stem cells and application for mouse acute liver injury.

    PubMed

    Guo, De-Liang; Wang, Zhi-Gang; Xiong, Liang-Kun; Pan, Le-Yu; Zhu, Qian; Yuan, Yu-Feng; Liu, Zhi-Su

    2017-03-01

    Adipose-derived stem cells (ADSCs) derived from adipose tissue have the capacity to differentiate into endodermal, mesoderm, and ectodermal cell lineages in vitro, which are an ideal engraft in tissue-engineered repair. In this study, human ADSCs were isolated from subcutaneous fat. The markers of ADSCs, CD13, CD71, CD73, CD90, CD105, CD166, CYP3A4, and ALB were detected by immunofluorescence assays. Human ADSCs were cultured in a specific hepatogenesis differentiation medium containing HGF, bFGF, nicotinamide, ITS, and oncostatin M for hepatogenic differentiation. The hepatocyte markers were analyzed using immunofluorescence and real-time PCR after dramatic changes in morphology. Hepatocytes derived from ADSCs or ADSCs were transplanted into the mice of liver injury for observation cells colonization and therapy in liver tissue. The result demonstrated that human ADSCs were positive for the CD13, CD71, CD73, CD90, CD105, and CD166 but negative for hepatocyte markers, ALB and CYP3A4. After hepatogenic differentiation, the hepatocytes were positive for liver special markers, gene expression level showed a time-lapse increase with induction time. Human ADSCs or ADSCs-derived hepatocyte injected into the vein could improve liver function repair and functionally rescue the CCl4-treated mice with liver injury, but the ADSCs transplantation was better than ADSCs-derived hepatocyte transplantation. In conclusion, our research shows that a population of hepatocyte can be specifically generated from human ADSCs and that cells may allow for participation in tissue-repair.

  17. Upregulation of LAPTM4B-35 promotes malignant transformation and tumorigenesis in L02 human liver cell line.

    PubMed

    Li, Li; Shan, Yi; Yang, Hua; Zhang, Sha; Lin, Ming; Zhu, Ping; Chen, Xin-Yu; Yi, Jing; McNutt, Michael A; Shao, Gen-Ze; Zhou, Rou-Li

    2011-07-01

    Hepatocellular carcinoma (HCC) is one of the most frequent malignant neoplasms worldwide and is the second leading cause of cancer death in China. We have previously demonstrated that LAPTM4B-35, encoded by lysosomal protein transmembrane 4 beta gene, is overexpressed in over 80% of HCCs and is a novel-independent prognostic factor for metastasis, recurrence, and postoperative survival in HCC. In this study, we investigated the role of LAPTM4B-35 in malignant transformation and tumorigenesis using L02 cells, a cell line originated from human normal liver cells. Our data show that replication-deficient adenovirus vector-mediated upregulation of LAPTM4B-35 promotes anchorage-independent proliferation and resistance to adriamycin-induced apoptosis. Study of the underlying mechanisms demonstrated alterations of molecular events involved in these processes, which included the activation of phosphoinositide 3-kinases (PI3K)/serine/threonine protein kinase B (PKB/AKT)/bcl-xL/bcl-2-associated death promoter homolog (Bad) signaling pathway, inhibition of caspase-3 activation, upregulation of Bcl-2, and downregulation of Bax. In addition, upregulation of LAPTM4B-35 in L02 cells resulted in tumorigenesis in 100% (6/6) of inoculated nude mice and accelerated the death of mice with xenografts in vivo. In conclusion, LAPTM4B-35 promotes malignant transformation and tumorigenesis in human liver L02 cell line through promotion of deregulated proliferation and inhibition of apoptosis. These findings suggest that overexpression of LAPTM4B-35 may play a critical role in hepatocarcinogenesis and therefore, may be a therapeutic target for HCC.

  18. Epigenetic silencing of glutaminase 2 in human liver and colon cancers

    PubMed Central

    2013-01-01

    Background Glutaminase 2 (Gls2) is a p53 target gene and is known to play an important role in energy metabolism. Gls2 has been reported to be downregulated in human hepatocellular carcinomas (HCC). However, the underlying mechanism responsible for its downregulation is still unclear. Here, we investigated Gls2 expression and its promoter methylation status in human liver and colon cancers. Methods mRNA expression of Gls2 was determined in human liver and colon cancer cell lines and HCC tissues by real-time PCR and promoter methylation was analyzed by methylation-specific PCR (MSP) and validated by bisulfite genome sequencing (BGS). Cell growth was determined by colony formation assay and MTS assay. Statistical analysis was performed by Wilcoxon matched-pairs test or non-parametric t test. Results First, we observed reduced Gls2 mRNA level in a selected group of liver and colon cancer cell lines and in the cancerous tissues from 20 HCC and 5 human colon cancer patients in comparison to their non-cancerous counter parts. Importantly, the lower level of Gls2 in cancer cells was closely correlated to its promoter hypermethylation; and chemical demethylation treatment with 5-aza-2′-deoxycytidine (Aza) increased Gls2 mRNA level in both liver and colon cancer cells, indicating that direct epigenetic silencing suppressed Gls2 expression by methylation. Next, we further examined this correlation in human HCC tissues, and 60% of primary liver tumor tissues had higher DNA methylation levels when compared with adjacent non-tumor tissues. Detailed methylation analysis of 23 CpG sites at a 300-bp promoter region by bisulfite genomic sequencing confirmed its methylation. Finally, we examined the biological function of Gls2 and found that restoring Gls2 expression in cancer cells significantly inhibited cancer cell growth and colony formation ability through induction of cell cycle arrest. Conclusions We provide evidence showing that epigenetic silencing of Gls2 via promoter

  19. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6.

    PubMed

    Crosby, H A; Hubscher, S; Fabris, L; Joplin, R; Sell, S; Kelly, D; Strain, A J

    1998-03-01

    The term oval cell describes small cells with oval nuclei that arise in the periphery of the portal tracts in rat models of hepatocarcinogenesis and injury and can differentiate into either hepatocytes or bile duct cells, ie, are bipotential. The presence of such cells in human liver is controversial. Here, immunolocalization of OV-6 and two biliary markers, cytokeratin 19 (CK-19) and human epithelial antigen 125 (HEA-125) is compared in normal adult human livers and in primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) liver sections. CK-19 and HEA-125 stained bile ducts and ductules in normal liver as well as proliferating ductular structures in diseased livers. OV-6 did not label ducts or ductules in normal liver, but in PBC and PSC stained numerous proliferating ductular and periductular cells and lobular hepatocytes. In PBC, discrete OV-6-positive cells with a mature biliary-cell-like morphology were seen integrated into some intact bile ducts as well as occasional small immature oval-like cells. In addition, in PSC, hepatocytes in regenerating lobules were also strongly stained with OV-6, and on close inspection, in both PBC and PSC, oval cells and small hepatocytes at the margins of the lobules were strongly labeled. In contrast to the rat liver, OV-6 and CK-19 staining did not always co-localize. It is proposed that the small OV-6-positive oval cells are analogous to those seen in rat models and may represent human liver progenitor cells that may differentiate into OV-6-positive ductal cells or lobular hepatocytes.

  20. Obstructive jaundice leads to accumulation of oxidized low density lipoprotein in human liver tissue.

    PubMed

    Comert, Mustafa; Ustundag, Yucel; Tekin, Ishak Ozel; Gun, Banu Dogan; Barut, Figen

    2006-08-21

    Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice. Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.

  1. Human Liver Cell Trafficking Mutants: Characterization and Whole Exome Sequencing

    PubMed Central

    Yuan, Fei; Snapp, Erik L.; Novikoff, Phyllis M.; Suadicani, Sylvia O.; Spray, David C.; Potvin, Barry; Wolkoff, Allan W.; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α’’. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype. PMID:24466322

  2. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    PubMed

    Yuan, Fei; Snapp, Erik L; Novikoff, Phyllis M; Suadicani, Sylvia O; Spray, David C; Potvin, Barry; Wolkoff, Allan W; Stanley, Pamela

    2014-01-01

    The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  3. Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis

    PubMed Central

    Najimi, Mustapha; Stéphenne, Xavier; Sempoux, Christine; Sokal, Etienne

    2014-01-01

    AIM: To investigate the activity and expression of EAAT2 glutamate transporter in both in vitro and in vivo models of cholestasis. METHODS: This study was conducted on human hepatoblastoma HepG2 cell cultures, the liver of bile duct ligated rats and human specimens from cholestatic patients. EAAT2 glutamate transporter activity and expression were analyzed using a substrate uptake assay, immunofluorescence, reverse transcription-polymerase chain reaction, and immunohistochemistry, respectively. RESULTS: In HepG2 cells, cholestasis was mimicked by treating cells with the protein kinase C activator, phorbol 12-myristate 13-acetate. Under such conditions, EAAT2 transporter activity was decreased both at the level of substrate affinity and maximal transport velocity. The decreased uptake was correlated with intracellular translocation of EAAT2 molecules as demonstrated using immunofluorescence. In the liver of bile duct ligated rats, an increase in EAAT2 transporter protein expression in hepatocytes was demonstrated using immunohistochemistry. The same findings were observed in human liver specimens of cholestasis in which high levels of γ-glutamyl transpeptidase were documented in patients with biliary atresia and progressive familial intrahepatic cholestasis type 3. CONCLUSION: This study demonstrates the alteration in glutamate handling by hepatocytes in liver cholestasis and suggests a potential cross-talk between glutamatergic and bile systems. PMID:24587631

  4. Long Term Maintenance of a Microfluidic 3-D Human Liver Sinusoid

    PubMed Central

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J.; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L.; Usta, O. Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA’s initiative to replicate and replace chronic and acute drug testing in animals. For this purpose we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic), urea excretion (detoxification) was observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies. PMID:26152452

  5. Long-term maintenance of a microfluidic 3D human liver sinusoid.

    PubMed

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L; Usta, Osman Berk

    2016-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA's initiative to replicate and replace chronic and acute drug testing in animals. For this purpose, we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip, using human cells only for a period of 28 days. Using a step-by-step method for building a 3D microtissue on-a-chip, we demonstrate that an organotypic in vitro model that reassembles the liver sinusoid microarchitecture can be maintained successfully for a period of 28 days. In addition, higher albumin synthesis (synthetic) and urea excretion (detoxification) were observed under flow compared to static cultures. This human liver-on-a-chip should be further evaluated in drug-related studies.

  6. The attentional blink reveals serial working memory encoding: evidence from virtual and human event-related potentials.

    PubMed

    Craston, Patrick; Wyble, Brad; Chennu, Srivas; Bowman, Howard

    2009-03-01

    Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST(2) model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom-up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST(2) model's neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate "virtual ERPs" by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST(2) model.

  7. Genome-Wide Analysis Reveals Loci Encoding Anti-Macrophage Factors in the Human Pathogen Burkholderia pseudomallei K96243

    PubMed Central

    Dowling, Andrea J.; Wilkinson, Paul A.; Holden, Matthew T. G.; Quail, Michael A.; Bentley, Stephen D.; Reger, Julia; Waterfield, Nicholas R.; Titball, Richard W.; ffrench-Constant, Richard H.

    2010-01-01

    Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin ‘tails’ and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle. PMID:21203527

  8. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells

    PubMed Central

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  9. Molecular cloning, expression, and chromosomal localization of the gene encoding a human myeloid membrane antigen (gp150).

    PubMed Central

    Look, A T; Peiper, S C; Rebentisch, M B; Ashmun, R A; Roussel, M F; Lemons, R S; Le Beau, M M; Rubin, C M; Sherr, C J

    1986-01-01

    DNA from a tertiary mouse cell transformant containing amplified human sequences encoding a human myeloid membrane glycoprotein, gp150, was used to construct a bacteriophage lambda library. A single recombinant phage containing 12 kilobases (kb) of human DNA was isolated, and molecular subclones were then used to isolate the complete gp150 gene from a human placental genomic DNA library. The intact gp150 gene, assembled from three recombinant phages, proved to be biologically active when transfected into NIH 3T3 cells. Molecular probes from the gp150 locus annealed with a 4.0-kb polyadenylated RNA transcript derived from human myeloid cell lines and from tertiary mouse cell transformants. The gp150 gene was assigned to human chromosome 15, and was subchromosomally localized to bands q25-26 by in situ hybridization. The chromosomal location of the gp150 gene coincides cytogenetically with the region assigned to the c-fes proto-oncogene, another human gene specifically expressed by myeloid cells. Images PMID:2428842

  10. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.

  11. EXPRESSION OF CYP4F2 IN HUMAN LIVER AND KIDNEY: ASSESSMENT USING TARGETED PEPTIDE ANTIBODIES

    PubMed Central

    Hirani, Vandana; Yarovoy, Anton; Kozeska, Anita; Magnusson, Ronald P.; Lasker, Jerome M.

    2008-01-01

    P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61–74 (WGHQGMVNPTEEG) and 65–77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly-variable CYP4F2 expression in liver (16.4 ± 18.6 pmol/mg microsomal protein; n = 29) and kidney cortex (3.9 ± 3.8 pmol/mg; n = 10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r ≥ 0.63; p < 0.05) with leukotriene B4 and arachidonate ω-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate ω-hydroxylase in human liver. PMID:18662666

  12. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Hardwick, Rhiannon N; Flores-Keown, Brieanna; Zhao, Fei; Klimecki, Walter T; Cherrington, Nathan J

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) may progress from simple steatosis to severe, nonalcoholic steatohepatitis (NASH) in 7%-14% of the U.S. population through a second "hit" in the form of increased oxidative stress and inflammation. Endoplasmic reticulum (ER) stress signaling and the unfolded protein response (UPR) are triggered when high levels of lipids and misfolded proteins alter ER homeostasis creating a lipotoxic environment within NAFLD livers. The objective of this study was to determine the coordinate regulation of ER stress-associated genes in the progressive stages of human NAFLD. Human liver samples categorized as normal, steatosis, NASH (Fatty), and NASH (Not Fatty) were analyzed by individual Affymetrix GeneChip Human 1.0 ST microarrays, immunoblots, and immunohistochemistry. A gene set enrichment analysis was performed on autophagy, apoptosis, lipogenesis, and ER stress/UPR gene categories. An enrichment of downregulated genes in the ER stress-associated lipogenesis and ER stress/UPR gene categories was observed in NASH. Conversely, an enrichment of upregulated ER stress-associated genes for autophagy and apoptosis gene categories was observed in NASH. Protein expression of the adaptive liver response protein STC2 and the transcription factor X-box binding protein 1 spliced (XBP-1s) were significantly elevated among NASH samples, whereas other downstream ER stress proteins including CHOP, ATF4, and phosphorylated JNK and eIF2α were not significantly changed in disease progression. Increased nuclear accumulation of total XBP-1 protein was observed in steatosis and NASH livers. The findings reveal the presence of a coordinated, adaptive transcriptional response to hepatic ER stress in human NAFLD.

  13. Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes

    PubMed Central

    Avdic, Selmir; McSharry, Brian P.; Steain, Megan; Poole, Emma; Sinclair, John; Abendroth, Allison

    2016-01-01

    ABSTRACT The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14+ monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease

  14. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model

    PubMed Central

    Gröger, Marko; Rennert, Knut; Giszas, Benjamin; Weiß, Elisabeth; Dinger, Julia; Funke, Harald; Kiehntopf, Michael; Peters, Frank T.; Lupp, Amelie; Bauer, Michael; Claus, Ralf A.; Huber, Otmar; Mosig, Alexander S.

    2016-01-01

    Liver dysfunction is an early event in sepsis-related multi-organ failure. We here report the establishment and characterization of a microfluidically supported in vitro organoid model of the human liver sinusoid. The liver organoid is composed of vascular and hepatocyte cell layers integrating non-parenchymal cells closely reflecting tissue architecture and enables physiological cross-communication in a bio-inspired fashion. Inflammation-associated liver dysfunction was mimicked by stimulation with various agonists of toll-like receptors. TLR-stimulation induced the release of pro- and anti-inflammatory cytokines and diminished expression of endothelial VE-cadherin, hepatic MRP-2 transporter and apolipoprotein B (ApoB), resulting in an inflammation-related endothelial barrier disruption and hepatocellular dysfunction in the liver organoid. However, interaction of the liver organoid with human monocytes attenuated inflammation-related cell responses and restored MRP-2 transporter activity, ApoB expression and albumin/urea production. The cellular events observed in the liver organoid closely resembled pathophysiological responses in the well-established sepsis model of peritoneal contamination and infection (PCI) in mice and clinical observations in human sepsis. We therefore conclude that this human liver organoid model is a valuable tool to investigate sepsis-related liver dysfunction and subsequent immune cell-related tissue repair/remodeling processes. PMID:26902749

  15. Cytotoxicity of gold nanoclusters in human liver cancer cells

    PubMed Central

    Yang, Yanjie; Nan, Jing; Hou, Jianwen; Yu, Bianfei; Zhao, Tong; Xu, Shuang; Lv, Shuangyu; Zhang, Haixia

    2014-01-01

    In this study, we synthesized water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with dihydrolipoic acid (DHLA). The cytotoxicity of these Au NCs was then assessed in the normal human hepatic cell line (L02) and the human hepatoma cell line (HepG2) at different exposure times. Cell viability was normal in both cell lines at 24 hours and 48 hours; however, the growth of HepG2 cells was significantly inhibited at 72 hours. The change in lactate dehydrogenase level was strongly correlated with cell viability after 72 hours incubation with DHLA–capped Au NCs, and the increase in cellular reactive oxygen species may be related to the decrease in cell viability. Growth inhibition of HepG2 cells was possibly due to difficultly passing the checkpoint between G1 phase and S phase. The anticancer activity of DHLA–capped Au NCs should be considered when used in biomedical imaging and drug delivery. PMID:25473282

  16. In vivo time-harmonic multifrequency elastography of the human liver

    NASA Astrophysics Data System (ADS)

    Tzschätzsch, Heiko; Ipek-Ugay, Selcan; Guo, Jing; Streitberger, Kaspar-Josche; Gentz, Enno; Fischer, Thomas; Klaua, Robert; Schultz, Michael; Braun, Jürgen; Sack, Ingolf

    2014-04-01

    Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimulation, i.e. relative insensitivity to obesity and ascites and mechanical approachability of the entire liver, and the advantages of ultrasound, i.e. time efficiency, low costs, and wide availability, by introducing in vivo time-harmonic elastography (THE) of the human liver using ultrasound and a broad range of harmonic stimulation frequencies. THE employs continuous harmonic shear vibrations at 7 frequencies from 30 to 60 Hz in a single examination and determines the elasticity and the viscosity of the liver from the dispersion of the shear wave speed within the applied frequency range. The feasibility of the method is demonstrated in the livers of eight healthy volunteers and a patient with cirrhosis. Multifrequency MRE at the same drive frequencies was used as elastographic reference method. Similar values of shear modulus and shear viscosity according the Kelvin-Voigt model were obtained by MRE and THE, indicating that the new method is suitable for in vivo quantification of the shear viscoelastic properties of the liver, however, in real-time and at a fraction of the costs of MRE. In conclusion, THE may provide a useful tool for fast assessment of the viscoelastic properties of the liver at low costs and without limitations in obesity, ascites or hemochromatosis.

  17. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3.

    PubMed

    Goettel, Jeremy A; Biswas, Subhabrata; Lexmond, Willem S; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S; McCann, Katelyn J; Horwitz, Bruce H; Mathis, Diane; Milford, Edgar L; Notarangelo, Luigi D; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A; Bacchetta, Rosa; Quintana, Francisco J; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M; Snapper, Scott B

    2015-06-18

    Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease.

    PubMed

    Soronen, Jarkko; Yki-Järvinen, Hannele; Zhou, You; Sädevirta, Sanja; Sarin, Antti-Pekka; Leivonen, Marja; Sevastianova, Ksenia; Perttilä, Julia; Laurila, Pirkka-Pekka; Sigruener, Alexander; Schmitz, Gerd; Olkkonen, Vesa M

    2016-01-01

    MicroRNAs (miRNAs) control gene expression by reducing mRNA stability and translation. We aimed to identify alterations in human liver miRNA expression/function in nonalcoholic fatty liver disease (NAFLD). Subjects with the highest (median liver fat 30%, n = 15) and lowest (0%, n = 15) liver fat content were selected from >100 obese patients for miRNA profiling of liver biopsies on microarrays carrying probes for 1438 human miRNAs (a cross-sectional study). Target mRNAs and pathways were predicted for the miRNAs most significantly upregulated in NAFLD, their cell-type-specific expression was investigated by quantitative PCR (qPCR), and the transcriptome of immortalized human hepatocytes (IHH) transfected with the miRNA with the highest number of predicted targets, miR-576-5p, was studied. The screen revealed 42 miRNAs up- and two downregulated in the NAFLD as compared to non-NAFLD liver. The miRNAs differing most significantly between the groups, miR-103a-2*, miR-106b, miR-576-5p, miRPlus-I137*, miR-892a, miR-1282, miR-3663-5p, and miR-3924, were all upregulated in NAFLD liver. Target pathways predicted for these miRNAs included ones involved in cancer, metabolic regulation, insulin signaling, and inflammation. Consistent transcriptome changes were observed in IHH transfected with miR-576-5p, and western analysis revealed a marked reduction of the RAC1 protein belonging to several miR-576-5p target pathways. To conclude, we identified 44 miRNAs differentially expressed in NAFLD versus non-NAFLD liver, 42 of these being novel in the context of NAFLD. The study demonstrates that by applying a novel study set-up and a broad-coverage array platform one can reveal a wealth of previously undiscovered miRNA dysregulation in metabolic disease.

  20. Metabolism of (+)-terpinen-4-ol by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Haigou, Risa; Miyazawa, Mitsuo

    2012-01-01

    We examined the in vitro metabolism of (+)-terpinen-4-ol by human liver microsomes and recombinant enzymes. The biotransformation of (+)-terpinen-4-ol was investigated by gas chromatography-mass spectrometry (GC-MS). (+)-Terpinen-4-ol was found to be oxidized to (+)-(1R,2S,4S)-1,2-epoxy-p-menthan-4-ol, (+)-(1S,2R,4S)-1,2-epoxy-p-menthan-4-ol, and (4S)-p-menth-1-en-4,8-diol by human liver microsomal P450 enzymes. The identities of (+)-terpinen-4-ol metabolites were determined through the relative abundance of mass fragments and retention times on GC-MS. Of 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6, and CYP3A4 were found to catalyze the oxidation of (+)-terpinen-4-ol. Based on several lines of evidence, CYP2A6 and CYP3A4 were determined to be major enzymes involved in the oxidation of (+)-terpinen-4-ol by human liver microsomes. First, of the 11 recombinant human P450 enzymes tested, CYP1A2, CYP2A6 and CYP3A4 catalyzed oxidation of (+)-terpinen-4-ol. Second, oxidation of (+)-terpinen-4-ol was inhibited by (+)-menthofuran and ketoconazole, inhibitors known to be specific for these enzymes. Finally, there was a good correlation between CYP2A6 and CYP3A4 activities and (+)-terpinen-4-ol oxidation activities in the 10 human liver microsomes.

  1. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    SciTech Connect

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  2. [Effect of combined administration of Angelica polysaccharide and cytarabine on liver of human leukemia NOD/SCID mouse model].

    PubMed

    Zhu, Jia-Hong; Xu, Chun-Yan; Mu, Xin-Yi; Liu, Jun; Zhang, Meng-Si; Jia, Dao-Yong; Zhang, Yan-Yan; Huang, Guo-Ning; Wang, Ya-Ping

    2014-01-01

    Leukemia is a type of malignant tumors of hematopoietic system with the abnormal increased immature leukemia cells showing metastasis and invasion ability. Liver is one of the main targets of the leukemia cells spread to, where they may continue to proliferate and differentiate and cause liver function damage, even liver failure. Our previous studies showed that Angelica polysscharides (APS), the main effective components in Angelica sinensis of Chinese traditional medicine, was able to inhibit the proliferation and induced differentiation of the leukemia cells, however, its effect on the liver during the treatment remains elucidated. In the present study, the human leukemia NOD/SCID mouse model were established by implantation human leukemia K562 cells line, then the leukemia mouse were treated with APS, Ara-c or APS + Ara-c respectively by peritoneal injection for 14 days, to explore the effect and mechanism of the chemicals on the mouse liver. Compared to the human leukemia NOD/SCID mouse model group with the treatments of APS, Ara-c and APS + Ara-c, We found that severe liver damage and pathological changes of the liver were able to alleviate: First, the number of white blood cells in the peripheral blood was significantly lower and with less transplanted K562 leukemia cells; Second, liver function damage was alleviated as liver function tests showed that alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBiL) were significantly reduced, while the albumin (Alb) was notably increased; Third, liver antioxidant ability was improved as the activities of the antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were significantly increased, and the contents of GSH and malonaldehyde (MDA) were decreased significantly in the liver; Fourth, the inflammation of the liver was relieved as the level of IL-1beta and IL-6, the inflammatory cytokines, were decreased significantly in the liver. Fifth, liver index

  3. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations.

  4. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon gamma receptor: evidence for multiple accessory factors.

    PubMed

    Soh, J; Donnelly, R J; Mariano, T M; Cook, J R; Schwartz, B; Pestka, S

    1993-09-15

    Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon gamma (Hu-IFN-gamma), as measured by the induction of human HLA class I antigen. Human chromosome 6 encodes the receptor for Hu-IFN-gamma, and human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-gamma receptor. A small region of human chromosome 21 that is responsible for encoding such factors was localized with hamster-human somatic cell hybrids carrying an irradiation-reduced fragment of human chromosome 21. The cell line with the minimum chromosome 21-specific DNA is Chinese hamster ovary 3x1S. To localize the genes further, 10 different yeast artificial chromosome clones from six different loci in the vicinity of the 3x1S region were fused to a human-hamster hybrid cell line (designated 16-9) that contains human chromosome 6q (supplying the Hu-IFN-gamma receptor) and the human HLA-B7 gene. These transformed 16-9 cells were assayed for induction of class I HLA antigens upon treatment with Hu-IFN-gamma. Here we report that a 540-kb yeast artificial chromosome encodes the necessary species-specific factor(s) and can substitute for human chromosome 21 to reconstitute the Hu-IFN-gamma-receptor-mediated induction of class I HLA antigens. However, the factor encoded on the yeast artificial chromosome does not confer antiviral protection against encephalomyocarditis virus, demonstrating that an additional factor encoded on human chromosome 21 is required for the antiviral activity.

  5. Three sequential brain activations encode mental transformations of upright and inverted human bodies: a high resolution evoked potential study.

    PubMed

    Tadi, T; Overney, L S; Blanke, O

    2009-04-10

    Human bodies provide a particularly rich source of visual information. Whereas most previous studies have focused on the neural mechanisms during the perception and recognition of human bodies, the aim of the present study was to investigate the time course and location of brain activation during mental imagery of human bodies. When participants were asked to imagine themselves in the position of a visually presented human body as seen from many different angles and at two orientations (upright or inverted), their reaction times were faster for upright as compared to inverted bodies and correlated differently with the tested angles. These behavioral effects were also reflected in brain activation patterns, but only during the time period from 220 to 490 ms after stimulus onset. Evoked potential mapping and electrical neuroimaging revealed three distinct and sequential steps of processing related to mental body transformation: (1) an early activation in temporo-occipital and temporo-parietal cortex (220-360 ms) that does not distinguish between upright and inverted bodies, but closely reflects the effort of mental transformation, followed (2) by an activation in temporo-occipital and medial parieto-occipital cortex (350-460 ms) that encodes mental transformation for upright bodies, and (3) a later activation in temporo-occipital and prefrontal cortex (390-490 ms) that encodes mental transformation for inverted bodies. These data suggest that the mental transformation of human bodies is not a single process but a sequence of temporally distinct processing steps, where each step reflects a distinct aspect of the transformation process that consists of activations in a network of posterior brain areas including extrastriate cortex, temporo-parietal cortex, and medial parieto-occipital cortex, as well as an anterior brain region in prefrontal cortex.

  6. Improving animal and human health through understanding liver fluke immunology.

    PubMed

    Piedrafita, D; Spithill, T W; Smith, R E; Raadsma, H W

    2010-08-01

    Sheep, goats and cattle represent the most numerous and economically important agricultural species worldwide used as sources for milk, fibre and red meat. In addition, in the developing world, these species often represent the sole asset base for small-holder livestock farmers and cattle/buffaloes often provide the majority of draught power for crop production. Production losses caused by helminth diseases of these animals are a major factor in extending the cycle of poverty in developing countries and a major food security issue for developed economies. Fasciola spp. are one of the most important zoonotic diseases with a global economic impact in livestock production systems and a poorly defined but direct effect on human health. Improvements in human and animal health will require a concerted research effort into the development of new accurate and simple diagnostic tests and increased vaccine and drug development against Fasciola infections. Here, the use of definitive natural host breeds with contrasting resistance to Fasciola infections is discussed as a resource to contrast parasite-host interactions and identify parasite immune evasion strategies. Such studies are likely to boost the discovery of new vaccine, drug and diagnostic candidates and provide the foundation for future genetic selection of resistant animals.

  7. Adhesion domain of human T11 (CD2) is encoded by a single exon.

    PubMed Central

    Richardson, N E; Chang, H C; Brown, N R; Hussey, R E; Sayre, P H; Reinherz, E L

    1988-01-01

    The 50-kDa T11 (CD2) T-lymphocyte surface glycoprotein facilitates physical adhesion between T-lineage cells and their cognate cellular counterparts (cytotoxic T-lymphocytes-target cells, helper T lymphocytes-antigen-presenting cells, or thymocytes-thymic epithelium) as well as signaling through the antigen-specific T3-Ti receptor complex. To examine the relationship between the structure and function of the T11 molecule, we have utilized a baculoviral expression system to produce milligram quantities of the hydrophilic extracellular T11 segment. Enzyme cleavage, microsequencing, and HPLC analyses of the expressed protein in conjunction with genomic cloning information show that the domain involved in cellular adhesion is encoded by a single 321-base-pair exon. Images PMID:2455894

  8. Rapid Encoding of New Memories by Individual Neurons in the Human Brain.

    PubMed

    Ison, Matias J; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-07-01

    The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories.

  9. Rapid Encoding of New Memories by Individual Neurons in the Human Brain

    PubMed Central

    Ison, Matias J.; Quian Quiroga, Rodrigo; Fried, Itzhak

    2015-01-01

    Summary The creation of memories about real-life episodes requires rapid neuronal changes that may appear after a single occurrence of an event. How is such demand met by neurons in the medial temporal lobe (MTL), which plays a fundamental role in episodic memory formation? We recorded the activity of MTL neurons in neurosurgical patients while they learned new associations. Pairs of unrelated pictures, one of a person and another of a place, were used to construct a meaningful association modeling the episodic memory of meeting a person in a particular place. We found that a large proportion of responsive MTL neurons expanded their selectivity to encode these specific associations within a few trials: cells initially responsive to one picture started firing to the associated one but not to others. Our results provide a plausible neural substrate for the inception of associations, which are crucial for the formation of episodic memories. PMID:26139375

  10. Human relevance framework for rodent liver tumors induced by the insecticide sulfoxaflor.

    PubMed

    LeBaron, Matthew J; Gollapudi, B Bhaskar; Terry, Claire; Billington, Richard; Rasoulpour, Reza J

    2014-05-01

    Sulfoxaflor, a novel active substance that targets sap-feeding insects, induced rodent hepatotoxicity when administered at high dietary doses. Specifically, hepatocellular adenomas and carcinomas increased after 18 months in male and female CD-1 mice at 750 and 1250 ppm, respectively, and hepatocellular adenomas increased after 2 years in male F344 rats at 500 ppm. Studies to determine the mode of action (MoA) for these liver tumors were performed in an integrated and prospective manner as part of the standard battery of toxicology studies such that the MoA data were available prior to, or by the time of, the completion of the carcinogenicity studies. Sulfoxaflor is not genotoxic and the MoA data support the following key events in the etiology of the rodent liver tumors: (1) CAR nuclear receptor activation and (2) hepatocellular proliferation. The MoA data were evaluated in a weight of evidence approach using the Bradford Hill criteria for causation and were found to align with dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a CAR-mediated MoA while excluding other alternate MoAs. The available data include: activation of CAR, Cyp2b induction, hepatocellular hypertrophy and hyperplasia, absence of liver effects in KO mice, absence of proliferation in humanized mice, and exclusion of other possible mechanisms (e.g., genotoxicity, cytotoxicity, AhR, or PPAR activation), and indicate that the identified rodent liver tumor MoA for sulfoxaflor would not occur in humans. In this case, sulfoxaflor is considered not to be a potential human liver carcinogen.

  11. Mechanism of action of novel piperazine containing a toxicant against human liver cancer cells

    PubMed Central

    Kanthimathi, MS; Haerian, Batoul Sadat

    2016-01-01

    The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27019772

  12. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer.

    PubMed

    Andersen, Jesper B; Factor, Valentina M; Marquardt, Jens U; Raggi, Chiara; Lee, Yun-Han; Seo, Daekwan; Conner, Elizabeth A; Thorgeirsson, Snorri S

    2010-10-20

    Epigenomic changes such as aberrant hypermethylation and subsequent atypical gene silencing are characteristic features of human cancer. Here, we report a comprehensive characterization of epigenomic modulation caused by zebularine, an effective DNA methylation inhibitor, in human liver cancer. Using transcriptomic and epigenomic profiling, we identified a zebularine response signature that classified liver cancer cell lines into two major subtypes with different drug responses. In drug-sensitive cell lines, zebularine caused inhibition of proliferation coupled with increased apoptosis, whereas drug-resistant cell lines showed up-regulation of oncogenic networks (for example, E2F1, MYC, and TNF) that drive liver cancer growth in vitro and in preclinical mouse models. Assessment of zebularine-based therapy in xenograft mouse models demonstrated potent therapeutic effects against tumors established from zebularine-sensitive but not zebularine-resistant liver cancer cells, leading to increased survival and decreased pulmonary metastasis. Integration of the zebularine gene expression and demethylation response signatures allowed differentiation of patients with hepatocellular carcinoma according to their survival and disease recurrence. This integrated signature identified a subclass of patients within the poor-survivor group that is likely to benefit from therapeutic agents that target the cancer epigenome.

  13. Use of a three-dimensional humanized liver model for the study of viral gene vectors.

    PubMed

    Wagner, Anke; Röhrs, Viola; Materne, Eva-Maria; Hiller, Thomas; Kedzierski, Radoslaw; Fechner, Henry; Lauster, Roland; Kurreck, Jens

    2015-10-20

    Reconstituted three-dimensional (3D) liver models obtained by engrafting hepatic cells into an extracellular matrix (ECM) are valuable tools to study tissue regeneration, drug action and toxicology ex vivo. The aim of the present study was to establish a system for the functional investigation of a viral vector in a 3D liver model composed of human HepG2 cells on a rat ECM. An adeno-associated viral (AAV) vector expressing the Emerald green fluorescent protein (EmGFP) and a short hairpin RNA (shRNA) directed against human cyclophilin b (hCycB) was injected into the portal vein of 3D liver models. Application of the vector did not exert toxic effects, as shown by analysis of metabolic parameters. Six days after transduction, fluorescence microscopy analysis of EmGFP production revealed widespread distribution of the AAV vectors. After optimization of the recellularization and transduction conditions, averages of 55 and 90 internalized vector genomes per cell in two replicates of the liver model were achieved, as determined by quantitative PCR analysis. Functionality of the AAV vector was confirmed by efficient shRNA-mediated knockdown of hCycB by 70-90%. Our study provides a proof-of-concept that a recellularized biological ECM provides a valuable model to study viral vectors ex vivo.

  14. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans.

    PubMed

    Rosqvist, Fredrik; Iggman, David; Kullberg, Joel; Cedernaes, Jonathan; Johansson, Hans-Erik; Larsson, Anders; Johansson, Lars; Ahlström, Håkan; Arner, Peter; Dahlman, Ingrid; Risérus, Ulf

    2014-07-01

    Excess ectopic fat storage is linked to type 2 diabetes. The importance of dietary fat composition for ectopic fat storage in humans is unknown. We investigated liver fat accumulation and body composition during overfeeding saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs). LIPOGAIN was a double-blind, parallel-group, randomized trial. Thirty-nine young and normal-weight individuals were overfed muffins high in SFAs (palm oil) or n-6 PUFAs (sunflower oil) for 7 weeks. Liver fat, visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), total adipose tissue, pancreatic fat, and lean tissue were assessed by magnetic resonance imaging. Transcriptomics were performed in SAT. Both groups gained similar weight. SFAs, however, markedly increased liver fat compared with PUFAs and caused a twofold larger increase in VAT than PUFAs. Conversely, PUFAs caused a nearly threefold larger increase in lean tissue than SFAs. Increase in liver fat directly correlated with changes in plasma SFAs and inversely with PUFAs. Genes involved in regulating energy dissipation, insulin resistance, body composition, and fat-cell differentiation in SAT were differentially regulated between diets, and associated with increased PUFAs in SAT. In conclusion, overeating SFAs promotes hepatic and visceral fat storage, whereas excess energy from PUFAs may instead promote lean tissue in healthy humans.

  15. Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis.

    PubMed Central

    Herbst, H.; Wege, T.; Milani, S.; Pellegrini, G.; Orzechowski, H. D.; Bechstein, W. O.; Neuhaus, P.; Gressner, A. M.; Schuppan, D.

    1997-01-01

    The remodeling of extracellular matrix during chronic liver disease may partially be attributed to altered activity of matrix metalloproteinases and their tissue inhibitors (TIMPs). Expression of TIMP-1 and -2 was studied by in situ hybridization combined with immunohistochemistry in rat (acute and chronic carbon tetrachloride intoxication and secondary biliary fibrosis) and human livers and on isolated rat hepatic stellate cells. TIMP-1 and -2 transcripts appeared in rat livers within 1 to 3 hours after intoxication, pointing to a role in the protection against accidental activation of matrix metalloproteinases, and were present at high levels in all fibrotic rat and human livers predominantly in stellate cells. TIMP-2 RNA distribution largely matched with previously reported patterns of matrix metalloproteinase-2 (72-kd gelatinase) expression, suggesting generation of a TIMP-2/matrix metalloproteinase-2 complex (large inhibitor of metalloproteinases). Isolated stellate cells expressed TIMP-1 and -2 RNA. Addition of transforming growth factor-beta 1 enhanced TIMP-1 and matrix metalloproteinase-2 RNA levels in vitro, whereas TIMP-2-specific signals were reduced, likely to result in a stoichiometric excess of matrix-metalloproteinase-2 over TIMP-2. In the context of previous demonstrations of transforming growth factor-beta 1 and matrix metalloproteinase-2 in vivo, these patterns suggest an intrahepatic environment permitting only limited matrix degradation, ultimately resulting in redistribution of extracellular matrix with relative accumulation of collagen type 1. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9137090

  16. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    PubMed

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures.

  17. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    PubMed Central

    Rolain, Jean-Marc

    2013-01-01

    The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain. PMID:23805136

  18. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells

    PubMed Central

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-01-01

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs. PMID:28345668

  19. C9ORF135 encodes a membrane protein whose expression is related to pluripotency in human embryonic stem cells.

    PubMed

    Zhou, Shixin; Liu, Yinan; Ma, Yumin; Zhang, Xiaoyan; Li, Yang; Wen, Jinhua

    2017-03-27

    Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs.

  20. Structural organization and splice variants of the POLE1 gene encoding the catalytic subunit of human DNA polymerase epsilon.

    PubMed Central

    Huang, D; Pospiech, H; Kesti, T; Syväoja, J E

    1999-01-01

    The catalytic subunit of human DNA polymerase epsilon, an enzyme involved in nuclear DNA replication and repair, is encoded by the POLE1 gene. This gene is composed of 51 exons spanning at least 97 kb of genomic DNA. It was found to encode three alternative mRNA splice variants that differ in their 5'-terminal sequences and in the N-termini of the predicted proteins. A CpG island covers the promoter region for the major transcript in HeLa cells. This promoter is TATA-less and contains several putative binding sites for transcription factors typical of S-phase-up-regulated and serum-responsive promoters. Potential promoter regions were also identified for the two other alternative transcripts. Interestingly, no nuclear polyadenylation signal sequence was detected in the 3'-untranslated region, although a poly(A) tail was present. These results suggest a complicated regulatory machinery for the expression of the human POLE1 gene, including three alternative transcripts expressed from three promoters. PMID:10215605

  1. Novel piperazine core compound induces death in human liver cancer cells: possible pharmacological properties

    PubMed Central

    Samie, Nima; Muniandy, Sekaran; Kanthimathi, M. S.; Haerian, Batoul Sadat; Raja Azudin, Raja Elina

    2016-01-01

    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27072064

  2. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine.

    PubMed

    Chang, C C; Sakashita, N; Ornvold, K; Lee, O; Chang, E T; Dong, R; Lin, S; Lee, C Y; Strom, S C; Kashyap, R; Fung, J J; Farese, R V; Patoiseau, J F; Delhon, A; Chang, T Y

    2000-09-08

    By using specific anti-ACAT-1 antibodies in immunodepletion studies, we previously found that ACAT-1, a 50-kDa protein, plays a major catalytic role in the adult human liver, adrenal glands, macrophages, and kidneys but not in the intestine. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in the intestine may be largely derived from a different ACAT protein. To test this hypothesis, we produced specific polyclonal anti-ACAT-2 antibodies that quantitatively immunodepleted human ACAT-2, a 46-kDa protein expressed in Chinese hamster ovary cells. In hepatocyte-like HepG2 cells, ACAT-1 comprises 85-90% of the total ACAT activity, with the remainder attributed to ACAT-2. In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2. ACAT-1 and ACAT-2 do not form hetero-oligomeric complexes. In differentiating intestinal enterocyte-like Caco-2 cells, ACAT-2 protein content increases by 5-10-fold in 6 days, whereas ACAT-1 protein content remains relatively constant. In the small intestine, ACAT-2 is concentrated at the apices of the villi, whereas ACAT-1 is uniformly distributed along the villus-crypt axis. In the human liver, ACAT-1 is present in both fetal and adult hepatocytes. In contrast, ACAT-2 is evident in fetal but not adult hepatocytes. Our results collectively suggest that in humans, ACAT-2 performs significant catalytic roles in the fetal liver and in intestinal enterocytes.

  3. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  4. The genomic structure of the gene encoding the human transforming growth factor {beta} type II receptor (TGF-{beta} RII)

    SciTech Connect

    Takenoshita, Seiichi; Hagiwara, Koichi; Nagashima, Makoto; Gemma, Akihiko

    1996-09-01

    The genomic structure of the human transforming growth factor-{beta} type II receptor gene (TGF-{beta} RII) was determined by two PCR-based methods, the {open_quotes}long distance sequencer{close_quotes} method and the {open_quotes}promoter finder{close_quotes} method. Genomic fragments containing exons and adjacent introns were amplified by PCR, and the nucleotide sequences were determined by direct sequencing and subcloning sequencing. The TGF-{beta} RII protein is encoded by 567 codons in 7 exons. This is the first report about the genomic structure of a gene that belongs to the serine/threonine kinase type II receptor subfamily. Knowledge of the genomic structure of the TGF-{beta} RII gene will facilitate investigation of the TGF-{beta} RII gene will facilitate investigation of the TGF-{beta} signaling pathway in normal human cells and of the aberrations occurring during carcinogenesis. 18 refs., 2 figs., 1 tab.

  5. Assignment of the gene encoding human galanin receptor (GALNR) to 18q23 by in situ hybridization

    SciTech Connect

    Nicholl, J.; Sutherland, G.R.; Shine, J.

    1995-12-10

    The neuropeptide galanin is widely distributed throughout the central and peripheral nervous systems of mammalian, avian, reptilian, and fish species and has a broad range of physiological and behavioral effects. Human galanin is a 30-amino-acid non-C-terminally amidated peptide that potently stimulates growth hormone secretion, inhibits cardiac vagal slowing of heart rate, abolishes sinus arrhythmia, and inhibits postprandial gastrointestinal motility. The actions of galanin are mediated through interaction with specific membrane receptors that are members of the seven transmembrane family of G-protein-coupled receptors. A functional human galanin receptor has recently been cloned, and we report here the localization of the gene encoding this receptor (GALNR) to chromosome 18q23. 5 refs., 1 fig.

  6. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  7. Implantation of human colorectal carcinoma cells in the liver studied by in vivo fluorescence videomicroscopy.

    PubMed

    Ishii, S; Mizoi, T; Kawano, K; Cay, O; Thomas, P; Nachman, A; Ford, R; Shoji, Y; Kruskal, J B; Steele, G; Jessup, J M

    1996-03-01

    In vivo fluorescence videomicroscopy (IVFM) was used to analyse the behavior of weakly and highly metastatic human colorectal carcinoma (CRC) cells during implantation in the liver. A highly metastatic human CRC cell line, CX-1, and a weakly metastatic line, Clone A, were double-labeled with rhodamine B isothiocyanate-dextran (Rd-Dx) to locate cells and with calcein AM to assess cell metabolic activity in an experimental metastasis model. Double-labeled CRC cells (2.0 x 10(6)) were injected into the spleens of groups of nude mice and the livers observed by IVFM over the next 72 h. CRC cells were implanted within 30 s after injection into either portal venules or the proximal third of hepatic sinusoids. Approximately 0.5% of CRC cells traversed the liver through portal-central venous shunts and implanted in the lung. The number of CX-1 cells in the liver was similar to that of Clone A cells during the first 12 h. However, more CX-1 cells than Clone A cells remained in the liver at 4 h and were in groups of 8-12 cells whereas only a few, single Clone A cells were detected in the liver at 72 h. Not all Clone A cells are committed to die within 4 h of implantation because cells harvested 4 h after hepatic implantation proliferated normally in vitro when removed from the hepatic microenvironment. Since the stress of mechanical deformation during implantation may cause differences in cell survival, CX-1 and Clone A cells were passed through filters with 8 microM pores in vitro at 10-15 cm of water pressure to recreate the trauma of hepatic implantation. Approximately 50% of both CX-1 and Clone A cells were lysed. Furthermore, both CRC lines remained metabolically active when co-cultivated with liver cells for at least 24 h in vitro. Thus, the difference in metastatic potential between the two CRC lines may reside in their response to the combination of mechanical implantation and subsequent growth in the liver parenchyma.

  8. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers

    PubMed Central

    Butler, James R.; Paris, Leela L.; Blankenship, Ross L.; Sidner, Richard A.; Martens, Gregory R.; Ladowski, Joeseph M.; Li, Ping; Estrada, Jose L; Tector, Matthew; Tector, A. Joseph

    2015-01-01

    Background A profound thrombocytopenia limits hepatic xenotransplantation in the pig-to-primate model. Porcine livers also have shown the ability to phagocytose human platelets in the absence of immune-mediate injury. Recently, inactivation of the porcine ASGR1 gene has been shown to decrease this phenomenon. Inactivating GGTA1 and CMAH genes has reduced the antibody-mediated barrier to xenotransplantation; herein we describe the effect that these modifications have on xenogeneic consumption of human platelets in the absence of immune-mediated graft injury. Methods WT, ASGR1−/−, GGTA1−/−, and GGTA1−/−CMAH−/− knockout pigs were compared for their xenogeneic hepatic consumption of human platelets. An in vitro assay was established to measure the association of human platelets with liver sinusoidal endothelial cells (LSECs) by immunohistochemistry. Perfusion models were used to measure human platelet uptake in livers from WT, ASGR1−/−, GGTA1−/−, and GGTA1−/− CMAH−/− pigs. Results GGTA1−/−, CMAH−/− LSECs exhibited reduced levels of human platelet binding in vitro, when compared to GGTA1−/− and WT LSECs. In a continuous perfusion model, GGTA1−/− CMAH−/− livers consumed fewer human platelets than GGTA1−/− and WT livers. GGTA1−/− CMAH−/− livers also consumed fewer human platelets than ASGR1−/− livers in a single pass model. Conclusions Silencing the porcine carbohydrate genes necessary to avoid antibody-mediated rejection in a pig-to-human model also reduces the xenogeneic consumption of human platelets by the porcine liver. The combination of these genetic modifications may be an effective strategy to limit the thrombocytopenia associated with pig-to-human hepatic xenotransplantation. PMID:26906939

  9. Characterization of verotoxin-encoding phages from Escherichia coli O103:H2 strains of bovine and human origins.

    PubMed

    Karama, Musafiri; Gyles, Carlton L

    2008-08-01

    The objectives of this study were to induce and characterize verotoxin-encoding phages from a collection of 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of human and bovine origins. All the strains carried the vt1 gene, and two carried the vt2 gene as well. The phages were induced by UV irradiation and characterized by DNA restriction fragment length polymorphism (RFLP), genome size, morphology, and Q and P genes, characteristic of lambdoid phages. A total of 32 vt-positive phages were induced and isolated from 31 VTEC O103:H2 strains. Thirty phages were vt1 positive, and two were vt2 positive. Ten of the 30 vt1-positive phages (33.3%) were from cattle strains, and 20 (66.6%) were from human strains. The two vt2-positive phages were from human strains. Phages belonged to 21 RFLP profiles, of which 17 were single-phage profiles and 4 were multiple-phage profiles. The estimated genome size of the phages ranged from 34 to 84 kb. Two phages that were examined by electron microscopy possessed hexagonal heads with long tails, and one had an elongated head with a long tail. The Q and P genes were amplified in all 32 phages, and the Q-stxA(1) gene region yielded an amplicon in 19 phages (59.3%). It is concluded that the VTEC O103:H2 strains of human origin were more readily inducible than those of bovine origin and that the genotypic profiles of verotoxin-encoding phages were highly diverse, as revealed by their RFLP profiles.

  10. Genetic mapping in human and mouse of the locus encoding TRBP, a protein that binds the TAR region of the human immunodeficiency virus (HIV-1)

    SciTech Connect

    Kozak, C.A.; Gatignol, A.; Graham, K.

    1995-01-01

    Productive infection with HIV-1, the virus responsible for AIDS, requires the involvement of host cell factors for completion of the replicative cycle, but the identification of these factors and elucidation of their specific functions has been difficult. A human cDNA, TRBP, was recently cloned and characterized as a positive regulator of gene expression that binds to the TAR region of the HIV-1 genome. Here we demonstrate that this factor is encoded by a gene, TARBP2, that maps to human chromosome 12 and mouse chromosome 15, and we also identify and map one human pseudogene (TARBP2P) and two mouse TRBP-related sequences. The map location of the expressed gene identifies it as a candidate for the previously identified factor encoded on human chromosome 12 that has been shown to be important for expression of HIV-1 genes. Western blotting indicates that despite high sequence conservation in human and mouse, the TARBP2 protein differs in apparent size in primate and rodent cells. 41 refs., 5 figs., 1 tab.

  11. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum

    SciTech Connect

    Van den Eede, Nele; Erratico, Claudio; Exarchou, Vassiliki; Maho, Walid; Neels, Hugo; Covaci, Adrian

    2015-04-15

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites to confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography–tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis–Menten model. Apparent K{sub m} values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148 μM, respectively. Apparent V{sub max} values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254 pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment. - Highlights: • First steps in the elucidation of TBOEP toxicokinetics • Quantification of TBOEP metabolites in human serum and liver microsomes • No detectable formation of BBOEP occurred with liver or serum

  12. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    PubMed

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  13. Lack of in vitro interactions using human liver microsomes between rabeprazole and anticancer drugs.

    PubMed

    Tamaro, Ilaria; Genazzani, Armando; Canonico, Pierluigi; Grosa, Giorgio

    2009-01-01

    The potential interactions between rabeprazole, a widely used proton pump inhibitor, and anticancer drugs (5-fluorouracil, docetaxel, cyclophosphamide, gemcitabine, methotrexate, doxorubicin, etoposide) or drugs commonly present in the therapy of oncological patients (fluoxetine and ondansetron), were studied using in vitro human liver microsomes. The interactions between rabeprazole and the anticancer drugs were evaluated by measuring their concentrations in test and control incubations with HPLC-DAD-UV methods. To achieve this aim, nine HPLC-DAD-UV methods were developed using different stationary and mobile phases. The methods were then validated for the following parameters: selectivity, linearity, precision, and accuracy. As expected rabeprazole did not significantly inhibit the metabolism of the evaluated drugs in human liver microsomal preparations at the selected concentrations. These results shows that rabeprazole probably could be devoid of pharmacokinetic interactions with common drugs used during chemotherapy.

  14. Production of monospecific antiserum to a cytosolic epoxide hydrolase from human liver.

    PubMed

    Qato, M K; Reinmund, S G; Guenthner, T M

    1990-01-15

    A method for the purification to apparent homogeneity of cytosolic trans-stilbene oxide hydrolase from human liver is presented. The method employed ion exchange and gel filtration chromatography. From 50 g of human liver, 4.9 mg of homogenous enzyme protein was obtained. Although the enzyme had lost much of its catalytic activity during purification, it was nevertheless suitable for the preparation of antibodies to the enzyme. Only one immunogenic species was present in the antigen preparation, but some antibodies that were cross-reactive to sites on catalase were present in the antiserum. These catalase-specific antibodies were removed by immunoaffinity chromatography, and an IgG fraction that is monospecific to the cytosolic epoxide hydrolase was obtained. The usefulness of antibodies to this enzyme in immunoblotting experiments, following either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focussing, as well as in enzyme-linked immunosorbent assays, is demonstrated.

  15. Differential receptor targeting of liver cells using 99mTc-neoglycosylated human serum albumins.

    PubMed

    Kim, Sungeun; Jeong, Jae Min; Hong, Mee Kyung; Jang, Ja-June; Lee, Jaetae; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2008-01-01

    Neolactosyl human serum albumin (LSA) targets asialoglycoprotein receptor and shows high liver uptake due to accumulation in hepatocytes. Although neomannosyl human serum albumin (MSA) also shows high liver uptake, it has been reported to be taken up by Kupffer cells and endothelial cells. We compared the biological properties of LSA and MSA. 99mTc-LSA and 99mTc-MSA biodistribution in mice were investigated after intravenous injection. In vivo localization of rhodaminisothiocyanate (RITC)-LSA and fluoresceineisothiocyanate (FITC)-MSA were investigated in mouse liver. Excretion routes of 99mTc-LSA and 99mTc-MSA metabolites were examined. Both 99mTc-LSA and 99mTc-MSA showed high liver uptakes. RITC-LSA was taken up by hepatocytes whereas FITC-MSA was taken up by Kupffer cells and endothelial cells. 99mTc-MSA showed higher spleen and kidney uptakes than 99mTc-LSA. 99mTc-LSA metabolites excreted in urine and feces accounted for 44.4 and 50.0% of 99mTc-LSA injected, respectively, while 99mTc-MSA metabolites accounted for 51.5 and 10.3%, respectively. In conclusion, LSA is specifically taken up by hepatcytes while MSA by Kupffer cells and endothelial cells. After taken up by the liver, LSA is metabolized by the hepatocytes and then excreted through both the hepatobiliary tract and kidney, whereas MSA is metabolized by Kupffer cells and endoghelial cells and then excreted mainly through the kidney.

  16. Locations of human and mouse genes encoding the RFX1 and RFX2 transcription factor proteins.

    PubMed

    Doyle, J; Hoffman, S; Ucla, C; Reith, W; Mach, B; Stubbs, L

    1996-07-01

    RFX transcription factors constitute a highly conserved family of site-specific DNA binding proteins involved in the expression of a variety of cellular and viral genes, including major histocompatibility complex class II genes and genes in human hepatitis B virus. Five members of the RFX gene family have been isolated from human and mouse, and all share a highly characteristic DNA binding domain that is distinct from other known DNA binding motifs. The human RFX1 and RFX2 genes have been assigned by in situ hybridization to chromosome 19p13.1 and 19p13.3, respectively. In this paper, we present data that localize RFX1 and RFX2 precisely within the detailed physical map of human chromosome 19 and genetic data that assign Rfx1 and Rfx2 to homologous regions of mouse chromosomes 8 and 17, respectively. These data define the established relationships between these homologous mouse and human regions in further detail and provide new tools for linking cloned genes to phenotypes in both species.

  17. Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood.

    PubMed

    MacParland, Sonya A; Tsoi, Kim M; Ouyang, Ben; Ma, Xue-Zhong; Manuel, Justin; Fawaz, Ali; Ostrowski, Mario A; Alman, Benjamin A; Zilman, Anton; Chan, Warren C W; McGilvray, Ian D

    2017-01-17

    A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-β/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.

  18. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells.

    PubMed

    Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Rajasekaran, Raghu; Sheen, Lee-Yan

    2012-08-29

    Garlic has been used throughout history for both culinary and medicinal purpose. Allicin is a major component of crushed garlic. Although it is sensitive to heat and light and easily metabolized into various compounds such as diallyl disulfide, diallyl trisulfide, and diallyl sulfide, allicin is still a major bioactive compound of crushed garlic. The mortality of hepatocellular carcinoma is quite high and ranks among the top 10 cancer-related deaths in Taiwan. Although numerous studies have shown the cancer-preventive properties of garlic and its components, there is no study on the effect of allicin on the growth of human liver cancer cells. In this study, we focused on allicin-induced autophagic cell death in human liver cancer Hep G2 cells. Our results indicated that allicin induced p53-mediated autophagy and inhibited the viability of human hepatocellular carcinoma cell lines. Using Western blotting, we observed that allicin decreased the level of cytoplasmic p53, the PI3K/mTOR signaling pathway, and the level of Bcl-2 and increased the expression of AMPK/TSC2 and Beclin-1 signaling pathways in Hep G2 cells. In addition, the colocalization of LC3-II with MitoTracker-Red (labeling mitochondria), resulting in allicin-induced degradation of mitochondria, could be observed by confocal laser microscopy. In conclusion, allicin of garlic shows great potential as a novel chemopreventive agent for the prevention of liver cancer.

  19. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  20. Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4.

    PubMed

    Cisco, Robin M; Abdel-Wahab, Zeinab; Dannull, Jens; Nair, Smita; Tyler, Douglas S; Gilboa, Eli; Vieweg, Johannes; Daaka, Yehia; Pruitt, Scott K

    2004-06-01

    Maturation of dendritic cells (DC) is critical for the induction of Ag-specific immunity. Ag-loaded DC matured with LPS, which mediates its effects by binding to Toll-like receptor 4 (TLR4), induce Ag-specific CTL in vitro and in vivo in animal models. However, clinical use of LPS is limited due to potential toxicity. Therefore, we sought to mimic the maturation-inducing effects of LPS on DC by stimulating TLR4-mediated signaling in the absence of exogenous LPS. We developed a constitutively active TLR4 (caTLR4) and demonstrated that transfection of human DC with RNA encoding caTLR4 led to IL-12 and TNF-alpha secretion. Transfection with caTLR4 RNA also induced a mature DC phenotype. Functionally, transfection of DC with caTLR4 RNA enhanced allostimulation of CD4(+) T cells. DC transfected with RNA encoding the MART (Melan-A/MART-1) melanoma Ag were then used to stimulate T cells in vitro. Cotransfection of these DC with caTLR4 RNA enhanced the generation of MART-specific CTL. This CTL activity was superior to that seen when DC maturation was induced using either LPS or a standard mixture of cytokines (TNF-alpha, IL-6, IL-1beta, and PGE(2)). We conclude that transfection of DC with RNA encoding a functional signaling protein, such as caTLR4, may provide a new tool for studying TLR signaling in DC and may be a promising approach for the induction of DC maturation for tumor immunotherapy.

  1. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  2. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.

    PubMed

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-12-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  3. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice

    PubMed Central

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean- François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  4. A Drosophila gene encoding a protein resembling the human. beta. -amyloid protein precursor

    SciTech Connect

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K. )

    1989-04-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human {beta}-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human {beta}-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development.

  5. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor.

    PubMed Central

    Rosen, D R; Martin-Morris, L; Luo, L Q; White, K

    1989-01-01

    We have isolated genomic and cDNA clones for a Drosophila gene resembling the human beta-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human beta-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development. Images PMID:2494667

  6. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  7. Primary Human Hepatocytes Repopulate Livers of Mice After In Vitro Culturing and Lentiviral-Mediated Gene Transfer

    PubMed Central

    Bierwolf, Jeanette; Volz, Tassilo; Lütgehetmann, Marc; Allweiss, Lena; Riecken, Kristoffer; Warlich, Michael; Fehse, Boris; Kalff, Joerg C.; Dandri, Maura

    2016-01-01

    Cell-based therapies represent a promising alternative to orthotopic liver transplantation. However, therapeutic effects are limited by low cell engraftment rates. We recently introduced a technique creating human hepatocyte spheroids for potential therapeutic application. The aim of this study was to evaluate whether these spheroids are suitable for engraftment in diseased liver tissues. Intrasplenic spheroid transplantation into immunodeficient uPA/SCID/beige mice was performed. Hepatocyte transduction ability prior to transplantation was tested by lentiviral labeling using red-green-blue (RGB) marking. Eight weeks after transplantation, animals were sacrificed and livers were analyzed by immunohistochemistry and immunofluorescence. To investigate human hepatocyte-specific gene expression profiles in mice, quantitative real-time-PCR was applied. Human albumin and alpha-1-antitrypsin concentrations in mouse serum were quantified to assess the levels of human chimerism. Precultured human hepatocytes reestablished their physiological liver tissue architecture and function upon transplantation in mice. Positive immunohistochemical labeling of the proliferating cell nuclear antigen revealed that human hepatocytes retained their in vivo proliferation capacity. Expression profiles of human genes analyzed in chimeric mouse livers resembled levels determined in native human tissue. Extensive vascularization of human cell clusters was detected by demonstration of von Willebrand factor activity. To model gene therapy approaches, lentiviral transduction was performed ex vivo and fluorescent microscopic imaging revealed maintenance of RGB marking in vivo. Altogether, this is the first report demonstrating that cultured and retroviral transduced human hepatocyte spheroids are able to engraft and maintain their regenerative potential in vivo. PMID:27068494

  8. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans.

    PubMed

    Mink, M; Fogelgren, B; Olszewski, K; Maroy, P; Csiszar, K

    2001-06-01

    A novel human gene, SARM, encodes the orthologue of a Drosophila protein (CG7915) and contains a unique combination of the sterile alpha (SAM) and the HEAT/Armadillo motifs. The SARM gene was identified on chromosome 17q11, between markers D17S783 and D17S841 on BAC clone AC002094, which also included a HERV repeat and keratin-18-like, MAC30, TNFAIP1, HSPC017, and vitronectin genes in addition to three unknown genes. The mouse SARM gene was located on a mouse chromosome 11 BAC clone (AC002324). The SARM gene is 1.8 kb centromeric to the vitronectin gene, and the two genes share a promoter region that directs a high level of liver-specific expression of both the SARM and the vitronectin genes. In addition to the liver, the SARM gene was highly expressed in the kidney. A 0.4-kb antisense transcript was coordinately expressed with the SARM gene in the kidney and liver, while in the brain and malignant cell lines, it appeared independent of SARM gene transcription. The SARM gene encodes a protein of 690 amino acids. Based on amino acid sequence homology, we have identified a SAM motif within this derived protein. Structure modeling and protein folding recognition studies confirmed the presence of alpha-alpha right-handed superhelix-like folds consistent with the structure of the Armadillo and HEAT repeats of the beta-catenin and importin protein families. Both motifs are known to be involved in protein-protein interactions promoting the formation of diverse protein complexes. We have identified the same conserved SAM/Armadillo motif combination in the mouse, Drosophila, and Caenorhabditis elegans SARM proteins.

  9. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    PubMed

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  10. Induction of Three-Dimensional Growth of Human Liver Cells in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Khaoustov, V. I.; Yoffe, B.; Murry, D. J.; Soriano, H. E.; Risin, D.; Dawson, David L. (Technical Monitor)

    1999-01-01

    We previously reported that a NASA-developed bioreactor that simulates microgravity environment and creates the unique environment of low shear force and high-mass transfer is conducive for maintaining long term 3-D cell cultures of functional hepatocytes (60 days). However, significant further expansion of liver mass, or the remodeling of liver in vitro was jeopardized by the appearance of apoptotic zones in the center of large cell aggregates. To optimize oxygenation and nutritional uptake within growing cellular aggregates we cultured primary human liver cells (HLC) in a bioreactor in the presence or absence of microcarriers and biodegradable scaffolds. Also, to promote angiogenesis, HLC were cultured with or without microvascular endothelial cells. HLC were harvested from human livers by collagenase perfusion. While microcarriers did not affect cell growth, HLC cultured with biodegradable scaffolds made from polyglycolic acid (PGA) formed aggregates up to 3 cm in length. Culturing cells with PGA scaffolds increased the efficiency of cell self-assembly and the formation of larger cell aggregates. Based on histological evaluation it appears that the degree of apoptotic cells was diminished as compared to cultures without scaffolds. Histology of HLC with PGA-scaffolds revealed cell distribution between the fibers of the scaffolds, and cell-cell and cell-fiber interactions. Analyses of HLC spheroids revealed tissue-like structures comprised of hepatocytes, biliary epithelial cells and/or progenitor liver cells that were arranged as bile duct-like structures along nascent vascular sprouts. Electron microscopy revealed groups of cohesive hepatocytes and bile canaliculi with multiple microvilli and tight cellular junctions. Hepatocytes were further organized into tight clusters surrounded by complex stromal structures and reticulin fibers. Also, we observed higher levels of albumin mRNA expression when hepatocytes were co-cultured with endothelial cells. To evaluate

  11. Isolation and characterization of cDNA encoding the antigenic protein of the human tRNP(Ser)Sec complex recognized by autoantibodies from patients with type-1 autoimmune hepatitis

    PubMed Central

    Costa, M; Rodríguez-Sánchez, J L; Czaja, A J; Gelpí, C

    2000-01-01

    We previously described autoantibodies against a UGA serine tRNA–protein complex (tRNP(Ser)Sec) in patients with type-1 autoimmune hepatitis [1] and now define the specificity and frequency of this autoantibody and the DNA sequence encoding the tRNA(Ser)Sec-associated antigenic protein. The presence of anti‐tRNP(Ser)Sec antibodies was highly specific for type-1 autoimmune hepatitis, as 47·5% of patients were positive compared with none of the control subjects. To characterize the antigenic protein(s), we immunoscreened a human cDNA library with anti-tRNP(Ser)Sec-positive sera. Two clones (19 and 13) were isolated. Clone 19 encodes a protein with a predicted molecular mass of 48·8 kD. Clone 13 is a shorter cDNA, almost identical to clone 19, which encodes a 35·9-kD protein. Expression of both cDNAs was accomplished in Escherichia coli as His-tagged recombinant proteins. Antibodies eluted from both purified recombinant proteins were able to immunoprecipitate the tRNA(Ser)Sec from a HeLa S3 cell extract, demonstrating their cross-reactivity with the mammalian antigenic complex. Recent cloning data relating to the target antigen(s) of autoantibodies in autoimmune hepatitis patients that react with a soluble liver antigen (SLA) and a liver-pancreas antigen (LP) have revealed that these two autoantibodies are identical and that the cloned antigen shows 99% amino acid sequence homology with tRNP(Ser)Sec. PMID:10931155

  12. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    ERIC Educational Resources Information Center

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  13. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    PubMed

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

  14. Genetically engineered mannosylated-human serum albumin as a versatile carrier for liver-selective therapeutics.

    PubMed

    Hirata, Kenshiro; Maruyama, Toru; Watanabe, Hiroshi; Maeda, Hitoshi; Nakajou, Keisuke; Iwao, Yasunori; Ishima, Yu; Katsumi, Hidemasa; Hashida, Mitsuru; Otagiri, Masaki

    2010-07-01

    Human serum albumin (HSA), a non-glycosylated protein, is widely employed as carrier for drug delivery systems. A series of recombinant, mannosylated-HSA mutants (Man-rHSAs: D63N, A320T and D494N) and their triple mutant (TM-rHSA: D63N/A320T/D494N) were prepared, that can be selectively delivered to the liver via mannose receptor (MR) on the liver non-parenchymal cells. A pharmacokinetic analysis of (111)In-Man-rHSAs in mice showed that they were rapidly cleared from the blood circulation, and were largely taken up by the liver rapidly in the order: TM-rHSA>D494N>A320T=D63N, consistent with their degree of mannosylation. In vivo competition experiments with an excess amount of chemically modified Man-BSA or mannan suggested that the hepatic uptake of TM-rHSA was selectively mediated by MR on Kupffer cells. Lastly, a TM-rHSA-NO conjugate, S-nitrosylated TM-rHSA, effectively delivered NO to the liver and then exhibited a significant inhibitory effect against hepatic ischemia/reperfusion injury model rats, accompanied by the induction of heme oxygenase-1.

  15. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells.

    PubMed

    Friedman, Mendel; Lee, Kap-Rang; Kim, Hyun-Jeong; Lee, In-Seon; Kozukue, Nobuyuke

    2005-07-27

    Methods were devised for the isolation of large amounts of pure alpha-chaconine and alpha-solanine from Dejima potatoes and for the extraction and analysis of total glycoalkaloids from five fresh potato varieties (Dejima, Jowon, Sumi, Toya, and Vora Valley). These compounds were then evaluated in experiments using a tetrazolium microculture (MTT) assay to assess the anticarcinogenic effects of (a) the isolated pure glycoalkaloids separately, (b) artificial mixtures of the two glycoalkaloids, and (c) the total glycoalkaloids isolated from each of the five potato varieties. All samples tested reduced the numbers of the following human cell lines: cervical (HeLa), liver (HepG2), lymphoma (U937), stomach (AGS and KATO III) cancer cells and normal liver (Chang) cells. The results show that (a) the effects of the glycoalkaloids were concentration dependent in the range of 0.1-10 mug/mL (0.117-11.7 nmol/mL); (b) alpha-chaconine was more active than was alpha-solanine; (c) some mixtures exhibited synergistic effects, whereas other produced additive ones; (d) the different cancer cells varied in their susceptibilities to destruction; and (e) the destruction of normal liver cells was generally lower than that of cancer liver cells. The decreases in cell populations were also observed visually by reversed-phase microscopy. The results complement related observations on the anticarcinogenic potential of food ingredients.

  16. High frequency of Human Cytomegalovirus DNA in the Liver of Infants with Extrahepatic Neonatal Cholestasis

    PubMed Central

    De Tommaso, Adriana MA; Andrade, Paula D; Costa, Sandra CB; Escanhoela, Cecília AF; Hessel, Gabriel

    2005-01-01

    Background Biliary atresia (BA) is the most severe hepatic disorder in newborns and its etiopathogenesis remains unknown. Viral involvement has been proposed, including the human cytomegalovirus (HCMV). The aims of the study were to use the polymerase chain reaction (PCR) to screen the liver tissue of infants with extrahepatic cholestasis for HCMV and to correlate the results with serological antibodies against HCMV and histological findings. Methods A retrospective study in a tertiary care setting included 35 patients (31 BA, 1 BA associated with a choledochal cyst, 2 congenital stenosis of the distal common bile duct and 1 hepatic cyst). HCMV serology was determined by ELISA. Liver and porta hepatis were examined histologically. Liver samples from infants and a control group were screened for HCMV DNA. Results Twelve patients had HCMV negative serology, 9 were positive for IgG antibodies and 14 were positive for IgG and IgM. Nine liver and seven porta hepatis samples were positive for HCMV DNA but none of the control group were positive (general frequency of positivity was 34.3% – 12/35). There was no correlation between HCMV positivity by PCR and the histological findings. The accuracy of serology for detecting HCMV antibodies was low. Conclusion These results indicate an elevated frequency of HCMV in pediatric patients with extrahepatic neonatal cholestasis. They also show the low accuracy of serological tests for detecting active HCMV infection and the lack of correlation between HCMV positivity by PCR and the histopathological changes. PMID:16321152

  17. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    SciTech Connect

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end of the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.

  18. Response-Modality-Specific Encoding of Human Choices in Upper Beta Band Oscillations during Vibrotactile Comparisons

    PubMed Central

    Herding, Jan; Ludwig, Simon; Blankenburg, Felix

    2017-01-01

    Perceptual decisions based on the comparison of two vibrotactile frequencies have been extensively studied in non-human primates. Recently, we obtained corresponding findings from human oscillatory electroencephalography (EEG) activity in the form of choice-selective modulations of upper beta band amplitude in medial premotor areas. However, the research in non-human primates as well as its human counterpart was so far limited to decisions reported by button presses. Thus, here we investigated whether the observed human beta band modulation is specific to the response modality. We recorded EEG activity from participants who compared two sequentially presented vibrotactile frequencies (f1 and f2), and decided whether f2 > f1 or f2 < f1, by performing a horizontal saccade to either side of a computer screen. Contrasting time-frequency transformed EEG data between both choices revealed that upper beta band amplitude (∼24–32 Hz) was modulated by participants’ choices before actual responses were given. In particular, “f2 > f1” choices were always associated with higher beta band amplitude than “f2 < f1” choices, irrespective of whether the choice was correct or not, and independent of the specific association between saccade direction and choice. The observed pattern of beta band modulation was virtually identical to our previous results when participants responded with button presses. In line with an intentional framework of decision making, the most likely sources of the beta band modulation were now, however, located in lateral as compared to medial premotor areas including the frontal eye fields. Hence, we could show that the choice-selective modulation of upper beta band amplitude is on the one hand consistent across different response modalities (i.e., same modulation pattern in similar frequency band), and on the other hand effector specific (i.e., modulation originating from areas involved in planning and executing saccades). PMID:28360848

  19. A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss

    PubMed Central

    Mujtaba, Ghulam; Schultz, Julie M; Imtiaz, Ayesha; Morell, Robert J; Friedman, Thomas B; Naz, Sadaf

    2015-01-01

    Background Hearing loss is a heterogeneous neurosensory disorder. Mutations of 56 genes are reported to cause recessively inherited nonsyndromic deafness. Objective We sought to identify the genetic lesion causing hearing loss segregating in a large consanguineous Pakistani family. Methods and Results Mutations of GJB2 and all other genes reported to underlie recessive deafness were ruled out as the cause of the phenotype in the affected members of the participating family. Homozygosity mapping with a dense array of one million SNP markers allowed us to map the gene for recessively inherited severe hearing loss to chromosome 7q31.2, defining a new deafness locus designated DFNB97 (maximum LOD score of 4.8). Whole-exome sequencing revealed a novel missense mutation c.2521T>G (p.F841V) in MET, which encodes the receptor for hepatocyte growth factor. The mutation co-segregated with the hearing loss phenotype in the family and was absent from 800 chromosomes of ethnically matched control individuals as well as from 136,602 chromosomes in public databases of nucleotide variants. Analyses by multiple prediction programs indicated that p.F841V is likely damaging to MET function. Conclusion We identified a missense mutation of MET, encoding the hepatocyte growth factor receptor, as a likely cause of hearing loss in humans. PMID:25941349

  20. Cloning and characterization of a cDNA encoding transformation-sensitive tropomyosin isoform 3 from tumorigenic human fibroblasts

    SciTech Connect

    Lin, C.S.; Leavitt, J.

    1988-01-01

    The authors isolated a cDNA clone from the tumorigenic human fibroblast cell line HuT-14 that contains the entire protein coding region of tropomyosin isoform 3 (Tm3) and 781 base pairs of 5'- and 3'-untranslated sequences. Tm3, despite its apparent smaller molecular weight than Tm1 in two-dimensional gels, has the same peptide length as Tm1 (284 amino acids) and shares 83% homology with Tm1. Tm3 cDNA hybridized to an abundant mRNA of 1.3 kilobases in fetal muscle and cardiac muscle, suggesting that Tm3 is related to an ..cap alpha../sub fast/-tropomyosin. The first 188 amino acids of Tm3 are identical to those of rat or rabbit skeletal muscle ..cap alpha..-tropomyosin, and the last 71 amino acids differ from those of rat smooth muscle ..cap alpha..-tropomyosin by only 1 residue. Tm3 therefore appears to be encoded by the same gene that encodes the fast skeletal muscle ..cap alpha..-tropomyosin and the smooth muscle ..cap alpha..-tropomyosin via an alternative RNA-splicing mechanism. In contrast to Tm4 and Tm5, Tm3 has a small gene family, with, at best, only one pseudogene.

  1. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  2. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes.

    PubMed

    Kriegel, Alison J; Baker, Maria Angeles; Liu, Yong; Liu, Pengyuan; Cowley, Allen W; Liang, Mingyu

    2015-10-01

    The goal of this study was to systematically identify endogenous microRNAs (miRNAs) in endothelial cells that regulate mRNAs encoded by genes relevant to hypertension. Small RNA deep sequencing was performed in cultured human microvascular endothelial cells. Of the 50 most abundant miRNAs identified, 30 had predicted target mRNAs encoded by genes with known involvement in hypertension or blood pressure regulation. The cells were transfected with anti-miR oligonucleotides to inhibit each of the 30 miRNAs and the mRNA abundance of predicted targets was examined. Of 95 miRNA-target pairs examined, the target mRNAs were significantly upregulated in 35 pairs and paradoxically downregulated in 8 pairs. The result indicated significant suppression of the abundance of mRNA encoded by ADM by endogenous miR-181a-5p, ATP2B1 by the miR-27 family, FURIN by miR-125a-5p, FGF5 by the let-7 family, GOSR2 by miR-27a-3p, JAG1 by miR-21-5p, SH2B3 by miR-30a-5p, miR-98, miR-181a-5p, and the miR-125 family, TBX3 by the miR-92 family, ADRA1B by miR-22-3p, ADRA2A by miR-30a-5p and miR-30e-5p, ADRA2B by miR-30e-5p, ADRB1 by the let-7 family and miR-98, EDNRB by the miR-92 family, and NOX4 by the miR-92 family, miR-100-5p, and miR-99b-5p (n=3-9; P<0.05 versus scrambled anti-miR). Treatment with anti-miR-21 decreased blood pressure in mice fed a 4% NaCl diet. Inhibition of the miRNAs targeting NOX4 mRNA increased H2O2 release from endothelial cells. The findings indicate widespread, tonic control of mRNAs encoded by genes relevant to blood pressure regulation by endothelial miRNAs and provide a novel and uniquely informative basis for studying the role of miRNAs in hypertension.

  3. Value of energy substrates in HTK and UW to protect human liver endothelial cells against ischemia and reperfusion injury.

    PubMed

    Janssen, Hermann; Janssen, Petra H E; Broelsch, Christoph E

    2004-01-01

    Adenosine 5'-triphosphate (ATP) depletion is a major cause of cellular injury during ischemia and reperfusion in organ transplantation. Therefore, histidine-tryptophan-ketoglutarate solution (HTK; alpha-ketoglutarate) and University of Wisconsin solution (UW; adenosine) were supplied with energy substrates to achieve graft viability. Nevertheless, their efficacy for maintaining the ATP level, particularly in human liver endothelial cells, was uncertain. Furthermore, it is of interest whether a high ATP level is beneficial in human liver endothelial cell viability. We used human liver endothelial cells between the 3rd and 6th passages in a cell culture model. Human liver endothelial cells were exposed to hypothermic preservation (4 degrees C) in HTK and UW for 2, 6, 12, 24 and 48 h with subsequent reperfusion of 6 h. ATP and lactate dehydrogenase (LDH) were measured after each interval. In comparison to HTK, UW demonstrates a statistically significantly higher level of ATP after each interval of ischemia (p < 0.001) and reperfusion (p < 0.002). Additionally, UW-preserved human liver endothelial cells exceed the ATP level of the warm control during all intervals of ischemia. The loss of cell viability (LDH) was statistically significantly higher after ischemia (p < 0.01) and reperfusion (p < 0.01) in HTK than in UW except after the interval of 48 h. In conclusion, adenosine was more effective than alpha-ketoglutarate in maintaining a high ATP level in human liver endothelial cells after ischemia and reperfusion. Different pathways of energy substrate utilization were a contributing factor. The beneficial effect of the higher ATP level caused by adenosine to human liver endothelial cell viability was limited to 24 h of ischemia. Beyond this ischemia time we could not prove a favorable impact of adenosine on human liver endothelial cells.

  4. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    PubMed

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  5. Encoding of frequency-modulation (FM) rates in human auditory cortex

    PubMed Central

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-01-01

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music. PMID:26656920

  6. Human gene encoding prostacyclin synthase (PTGIS): Genomic organization, chromosomal localization, and promoter activity

    SciTech Connect

    Yokoyama, Chieko; Yabuki, Tomoko; Inoue, Hiroyasu

    1996-09-01

    The prostacyclin synthase gene isolated from human genomic libraries (PTGIS) consists of 10 exons spanning approximately 60 kb. All the splice donor and acceptor sites conform to the GT/AG rule. Genomic Southern blot and fluorescence in situ hybridization analyses revealed that the human prostacyclin synthase gene is present as a single copy per haploid genome and is localized on chromosome 20q13.11-q13.13. The 1.5-kb sequence of the 5{prime} of the translational initiation site contained both GC-rich and pyrimidine-rich regions and consensus sequences of the transcription factor recognition sites such as Sp1, AP-2, the interferon-{gamma} response element, GATA, NF-{kappa}B, the CACCC box, and the glucocorticoid response element. The core binding sequence (GAGACC) of the shear stress responsive element was also found in the 5{prime}-flanking region of the gene. The major product of the primer extension analysis suggested that the transcription of the gene started from the positions around 49 bp upstream of the translational initiation codon. Transient transfection experiments using human aortic and bovine arterial endothelial cells demonstrated that the GC-rich region (positions -145 to -10) possessed a significant promoter activity. The 6-kb downstream sequence of the translational termination codon contained multiple polyadenylation signals, Alu repeat sequences, and the consensus sequence of the primate-repetitive DNA element, MER1. Two sizes of the prostacyclin synthase mRNAs (approximately 6 and 3.3 kb) were detected with the human aorta and lung. RNA blot hybridization analysis using the 3{prime}-untranslated region as probe indicated that the sizes of the 3{prime}-flanking regions were different in the major 6-kb and minor 3.3-kb mRNAs. 54 refs., 7 figs.

  7. A physiologically based model for temporal envelope encoding in human primary auditory cortex.

    PubMed

    Dugué, Pierre; Le Bouquin-Jeannès, Régine; Edeline, Jean-Marc; Faucon, Gérard

    2010-09-01

    Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response.

  8. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase

    PubMed Central

    Choi, Seon-A; Yoon, Seung-Bin; Kim, Seung U.; Lee, Hong J.

    2016-01-01

    Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer. PMID:27659534

  9. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    PubMed Central

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O’Doherty, John P.

    2013-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others. PMID:21812568

  10. Assignment of the gene encoding glycogen synthase (GYS) to human chromosome 19, band q13,3

    SciTech Connect

    Lehto, M. Helsinki Univ. ); Stoffel, M.; Espinosa, R. III; Beau, M.M. le; Bell, G.I. ); Groop, L. )

    1993-02-01

    The enzyme glycogen synthase (UDP glocose:glycogen 4-[alpha]-D-glucosyltransferase, EC 2.4.1.11) catalyzes the formation of glycogen from uridine diphosphate glucose (UPDG). Impaired activation of muscle glycogen synthase by insulin has been noted in patients with genetic risk of developing non-insulin-dependent diabets mellitus (NIDDM) and this may represent an early defect in the pathogenesis of this disorder. As such, glycogen synthase represents a candidate gene for contributing to genetic susceptibility. As a first step in studying the role of glycogen synthase in the genetics of NIDDM, we have isolated a cosmid encoding the human glycogen synthase gene (gene symbol GYS) and determined its chromosomal localization by fluorescence in situ hybridization. 4 refs., 1 fig.

  11. Segregation patterns of polymorphic restriction sites of the gene encoding the alpha subunit of human chorionic gonadotropin in trophoblastic disease.

    PubMed Central

    Hoshina, M; Boothby, M R; Hussa, R D; Pattillo, R A; Camel, H M; Boime, I

    1984-01-01

    The gene encoding the alpha subunit of human chorionic gonadotropin contains at least two polymorphic sites in its 3' flanking region detected by restriction enzymes HindIII and EcoRI. We used these polymorphic sites as markers of tissue genotype in normal placenta, hydatidiform mole, choriocarcinoma, and peripheral leukocytes. As expected, inheritance patterns of most hydatidiform moles showed only a paternal genetic contribution. However, one uncommon DNA polymorphism pattern, homozygosity for the absence of the EcoRI site and the presence of the HindIII site, predominated in choriocarcinoma. Thus, our results suggest that moles which have this uncommon polymorphism pattern appear particularly likely to develop into choriocarcinoma. Images PMID:6201859

  12. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels

    PubMed Central

    Matte, Ashok; Perfilyev, Alexander; de Mello, Vanessa D.; Käkelä, Pirjo; Pihlajamäki, Jussi

    2015-01-01

    Objective: Epigenetic variation may contribute to the development of complex metabolic diseases such as type 2 diabetes (T2D). Hepatic insulin resistance is a hallmark of T2D. However, it remains unknown whether epigenetic alterations take place in the liver from diabetic subjects. Therefore, we investigated the genome-wide DNA methylation pattern in the liver from subjects with T2D and nondiabetic controls and related epigenetic alterations to gene expression and circulating folate levels. Research Design and Methods: Liver biopsies were obtained from 35 diabetic and 60 nondiabetic subjects, which are part of the Kuopio Obesity Surgery Study. The genome-wide DNA methylation pattern was analyzed in the liver using the HumanMethylation450 BeadChip. RNA expression was analyzed from a subset of subjects using the HumanHT-12 Expression BeadChip. Results: After correction for multiple testing, we identified 251 individual CpG sites that exhibit differential DNA methylation in liver obtained from T2D compared with nondiabetic subjects (Q < .05). These include CpG sites annotated to genes that are biologically relevant to the development of T2D such as GRB10, ABCC3, MOGAT1, and PRDM16. The vast majority of the significant CpG sites (94%) displayed decreased DNA methylation in liver from subjects with T2D. The hypomethylation found in liver from diabetic subjects may be explained by reduced folate levels. Indeed, subjects with T2D had significantly reduced erythrocyte folate levels compared with nondiabetic subjects. We further identified 29 genes that displayed both differential DNA methylation and gene expression in human T2D liver including the imprinted gene H19. Conclusions: Our study highlights the importance of epigenetic and transcriptional changes in the liver from subjects with T2D. Reduced circulating folate levels may provide an explanation for hypomethylation in the human diabetic liver. PMID:26418287

  13. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    PubMed Central

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N.; Hay, David C.

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays. PMID:20169088

  14. Human intron-encoded AluACA RNAs and telomerase RNA share a common element promoting RNA accumulation

    PubMed Central

    Ketele, Amandine; Kiss, Tamás; Jády, Beáta E.

    2016-01-01

    ABSTRACT Mammalian cells express hundreds of intron-encoded box H/ACA RNAs which fold into a common hairpin-hinge-hairpin-tail structure, interact with 4 evolutionarily conserved proteins, dyskerin, Nop10, Nhp2 and Gar1, and function mainly in RNA pseudouridylation. The human telomerase H/ACA RNA (hTR) directs telomeric DNA synthesis and it carries a 5′-terminal domain encompassing the telomeric template sequence. The primary hTR transcript is synthesized from an independent gene by RNA polymerase II and undergoes 3′ end processing controlled by the 3′-terminal H/ACA domain. The apical stem-loop of the 3′ hairpin of hTR carries a unique biogenesis-promoting element, the BIO motif that promotes hTR processing and RNP assembly. AluACA RNAs represent a distinct class of human H/ACA RNAs; they are processed from intronic Alu repetitive sequences. As compared to canonical H/ACA RNAs, the AluACA RNAs carry unusually short or long 5′ hairpins and generally, they accumulate at low levels. Here, we demonstrate that the suboptimal 5′ hairpins are responsible for the weak expression of AluACA RNAs. We also show that AluACA RNAs frequently carry a processing/stabilization element that is structurally and functionally indistinguishable from the hTR BIO motif. Both hTR and AluACA biogenesis-promoting elements are located in the terminal stem-loop of the 3′-terminal H/ACA hairpin, they show perfect structural conservation and are functionally interchangeable in in vivo RNA processing reactions. Our results demonstrate that the BIO motif, instead of being confined to hTR, is a more general H/ACA RNP biogenesis-facilitating element that can also promote processing/assembly of intron-encoded AluACA RNPs. PMID:27726486

  15. Human cytomegalovirus gene UL21a encodes a short-lived cytoplasmic protein and facilitates virus replication in fibroblasts.

    PubMed

    Fehr, Anthony R; Yu, Dong

    2010-01-01

    The human cytomegalovirus (HCMV) gene UL21a was recently annotated by its conservation in chimpanzee cytomegalovirus. Two large-scale mutagenic analyses showed that mutations in overlapping UL21a/UL21 resulted in a severe defect of virus growth in fibroblasts. Here, we characterized UL21a and demonstrated its role in HCMV infection. We mapped a UL21a-specific transcript of approximately 600 bp that was expressed with early kinetics. UL21a encoded pUL21a, a protein of approximately 15 kDa, which was unstable and localized predominantly to the cytoplasm during HCMV infection or when expressed alone. Interestingly, pUL21a was drastically stabilized in the presence of proteasome inhibitor MG132, but its instability was independent of a functional ubiquitin-mediated pathway, suggesting that pUL21a underwent proteasome-dependent, ubiquitin-independent degradation. A UL21a deletion virus was attenuated in primary human newborn foreskin fibroblasts (HFFs) and embryonic lung fibroblasts (MRC-5), whereas a marker-rescued virus and mutant viruses lacking the neighboring or overlapping genes UL20, UL21, or UL21.5-UL23 replicated at wild-type levels. The growth defect of UL21a-deficient virus in MRC-5 cells was more pronounced than that in HFFs. At a high multiplicity of infection, the UL21a deletion virus synthesized viral proteins with wild-type kinetics but had a two- to threefold defect in viral DNA replication. More importantly, although pUL21a was not detected in the virion, progeny virions produced by the mutant virus were approximately 10 times less infectious than wild-type virus, suggesting that UL21a is required for HCMV to establish efficient productive infection. We conclude that UL21a encodes a short-lived cytoplasmic protein and facilitates HCMV replication in fibroblasts.

  16. The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): Cloning, characterization, and assignment to human chromosome 4, band q26

    SciTech Connect

    Bosio, A.; Binczek, E.; Stoffel, W.

    1996-05-15

    We have previously cloned the human UDP-galactose ceramide galactosyltransferase (CGT, E.C. 2.4.1.45) cDNA. Its open reading frame encodes the key enzyme in the biosynthesis of the glycosphingolipids, cerebrosides and sulfatides, essential constituents of the myelin membrane of the central nervous system (CNS) and PNS. Expression of the CGT gene and of the myelin-specific proteins in the terminal differentiated oligodendrocyte of CNS and in Schwann cells of PNS is cell-specific and highly time-regulated. The CGT gene therefore is important in the differentiation program of the oligodendrocyte lineage. Here we report the structural organization and the chromosomal localization of the human CGT gene. The coding sequence is separated into five exons, which are distributed over >40 kb. The CGT locus was mapped to the distal region of human chromosome 4, band q26. The organization of the CGT gene and of the UGT (uridylglucuronosyl-transferases) gene family suggests a correlation to functional domains of the encoded proteins. 19 refs., 4 figs., 1 tab.

  17. Age-related changes in microRNA expression and pharmacogenes in human liver

    PubMed Central

    Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.

    2015-01-01

    Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric (1-17 years), and adult (28-80 years); n=30 each). 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g. hsamiR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n=10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition. PMID:25968989

  18. Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products.

    PubMed

    Takahashi, S; Mukai, H; Tanabe, S; Sakayama, K; Miyazaki, T; Masuno, H

    1999-08-01

    Butyltin compounds (BTs) including mono-(MBT), di-(DBT) and tributyltin (TBT) were determined in livers of humans and wild terrestrial mammals, such as raccoon dogs (Nyctereutes procyonoids) and monkeys (Macaca fuscata) from Japan. In addition, 22 samples of plastic products were analyzed. BT residues were detected in all the liver samples of humans and raccoon dogs, with concentrations of <360 ng/g wet wt, whereas concentrations in the liver of monkeys were either less than the detection limit or were only in trace levels. Elevated concentrations of BTs, particularly DBT (<140,000 ng/g) and MBT (<130,000 ng/g), were found in some plastic products, such as baking parchments made from siliconized paper and gloves made up from polyurethane. The results of a cooking test using the above baking parchment indicated the transfer of BTs to foodstuffs. These observations suggest expansion of BT contamination among terrestrial mammals. BT pollution from industrial appliances, such as plastic stabilizers and catalysts other than those of marine origin as antifouling agents, are suggested as alternative sources of exposure.

  19. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model

    PubMed Central

    Lagaye, Sylvie; Brun, Sonia; Gaston, Jesintha; Shen, Hong; Stranska, Ruzena; Camus, Claire; Dubray, Clarisse; Rousseau, Géraldine; Massault, Pierre-Philippe; Courcambeck, Jerôme; Bassisi, Firas; Halfon, Philippe; Pol, Stanislas

    2016-01-01

    AIM: To evaluate the antiviral potency of a new anti-hepatitis C virus (HCV) antiviral agent targeting the cellular autophagy machinery. METHODS: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices (2.7 × 106 cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant (multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription - polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS: The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dose-dependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect (compared to hydroxychloroquine EC50 = 1.17 μmol/L). CONCLUSION: Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dose-dependent manner without cytotoxic effect. PMID:27478540

  20. Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, S-Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Kawano, Mirai; Shimizu, Makiko; Toda, Akiko; Utoh, Masahiro; Sasaki, Erika; Yamazaki, Hiroshi

    2015-10-01

    The common marmoset (Callithrix jacchus), a small New World monkey, has the potential for use in human drug development due to its evolutionary closeness to humans. Four novel cDNAs, encoding cytochrome P450 (P450) 2C18, 2C19, 2C58, and 2C76, were cloned from marmoset livers to characterize P450 2C molecular properties, including previously reported P450 2C8. The deduced amino acid sequence showed high sequence identities (>86%) with those of human P450 2Cs, except for marmoset P450 2C76, which has a low sequence identity (∼70%) with any human P450 2Cs. Phylogenetic analysis showed that marmoset P450 2Cs were more closely clustered with those of humans and macaques than other species investigated. Quantitative polymerase chain reaction analysis showed that all of the marmoset P450 2C mRNAs were predominantly expressed in liver as opposed to the other tissues tested. Marmoset P450 2C proteins were detected in liver by immunoblotting using antibodies against human P450 2Cs. Among marmoset P450 2Cs heterologously expressed in Escherichia coli, marmoset P450 2C19 efficiently catalyzed human P450 2C substrates, S-warfarin, diclofenac, tolbutamide, flurbiprofen, and omeprazole. Marmoset P450 2C19 had high Vmax and low Km values for S-warfarin 7-hydroxylation that were comparable to those in human liver microsomes, indicating warfarin stereoselectivity similar to findings in humans. Faster in vivo S-warfarin clearance than R-warfarin after intravenous administration of racemic warfarin (0.2 mg/kg) to marmosets was consistent with the in vitro kinetic parameters. These results indicated that marmoset P450 2C enzymes had functional characteristics similar to those of humans, and that P450 2C-dependent metabolic properties are likewise similar between marmosets and humans.

  1. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis

    PubMed Central

    Turola, Elena; Petta, Salvatore; Vanni, Ester; Milosa, Fabiola; Valenti, Luca; Critelli, Rosina; Miele, Luca; Maccio, Livia; Calvaruso, Vincenza; Fracanzani, Anna L.; Bianchini, Marcello; Raos, Nazarena; Bugianesi, Elisabetta; Mercorella, Serena; Di Giovanni, Marisa; Craxì, Antonio; Fargion, Silvia; Grieco, Antonio; Cammà, Calogero; Cotelli, Franco; Villa, Erica

    2015-01-01

    ABSTRACT Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to ‘The Pathology Committee of the NASH Clinical Research Network’. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis. PMID:26183212

  2. Sanfilippo syndrome type B: cDNA and gene encoding human {alpha}-N-acetylglucosaminidase

    SciTech Connect

    Zhao, H.G.; Lopez, R.; Rennecker, J.

    1994-09-01

    Deficiency of the lysosomal enzyme {alpha}-N-acetlyglucosaminidase underlies the type B Sanfilippo syndrome (MPS III B), a mucopolysaccharide storage disease with profound neurologic deterioration. We are acquiring tools to study the molecular basis of the disorder. The enzyme was purified from bovine testis; after ConA-, DEAE- and phenyl-Sepharose chromatography, it was subjected to SDS-PAGE without preheating. Of two bands of activity detected on the gel, 170 kDa and 87 kDa, the larger one, which coincided with a well-defined Coomassie blue band, was selected for sequence analysis. Degenerate 17-base oligonucleotides, corresponding to the ends of an internal 23 amino acid sequence, were used for RT-PCR of RNA from human fibroblasts. A 41-mer was synthesized from the sequence of the RT-PCR product and used to screen a human testis cDNA library. A number of cDNA inserts were isolated, all lacking the 5{prime} end and none longer than 1.7 kb. An additional 300 bp segment has been obtained by RACE. The cDNA sequence accounts for 9 of 11 peptides, allowing for species difference. Northern analysis of fibroblast RNA with a 1.5 kb cDNA probe showed the presence of a 3 kb mRNA; marked deficiency of this mRNA in two MPS III B fibroblast lines confirmed the authenticity of the cloned cDNA. While no homologous amino acid sequence has been found in a search of GenBank, the nucleotide sequence (interrupted by 4 introns) is present in a flanking region upstream of an unrelated gene on chromosome 17q11-21 (human 17{beta}-hydroxysteroid dehydrogenase). This must therefore be the chromosomal locus of the {alpha}-N-acetylglucosaminidase gene and of MPS III B.

  3. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    PubMed

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  4. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    PubMed

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  5. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow.

    PubMed

    Muench, M O; Namikawa, R

    2001-01-01

    The liver and the bone marrow (BM) are the major organs that support hematopoiesis in the human fetus. Although both tissues contain the spectrum of hematopoietic cells, erythropoiesis dominates the liver. Previous studies suggested that a unique responsiveness of fetal burst-forming units erythroid (BFU-E) to erythropoietin (EPO) obviates the need for cytokines with burst-promoting activity (BPA) in fetal erythropoiesis. This potential regulatory mechanism whereby fetal erythropoiesis is enhanced was further investigated. Fluorescence-activated cell sorting was used to isolate liver and BM progenitors based on their levels of CD34 and CD38 expression. The most mature population of CD34+ lineage (Lin-) cells was also the most prevalent of the three subpopulations and contained BFU-E responsive to EPO alone under serum-deprived conditions. Kit ligand (KL) also strongly synergized with EPO in stimulating the growth of these BFU-E. An intermediate subset of CD34++CD38+Lin- cells contained erythroid progenitors responsive to EPO alone, but also displayed synergism between EPO and KL, granulocyte-macrophage colony-stimulating factor (GM-CSF), or interleukin (IL)-3, demonstrating that erythroid progenitors that respond to cytokines with BPA do exist in fetal tissues as in the adult BM. Candidate stem cells (CD34++CD38-Lin- cells) did not respond to EPO. Synergisms among KL, GM-CSF, and IL-3, and to a lesser extent granulocyte colony-stimulating factor (G-CSF) and FLK-2/FLT-3 ligand (FL), supported the growth of primitive multipotent progenitors that became responsive to EPO. These data define the limits of EPO activity in fetal erythropoiesis to cells that express CD38 and demonstrate the potential for various cytokine interactions to be involved in regulating fetal erythropoiesis. Furthermore, a comparison of the responses of liver and BM erythroid progenitors revealed similarity in their responses to cytokines but a difference in the frequency of BFU-E among the three

  6. Pre-encoding administration of amphetamine or THC preferentially modulates emotional memory in humans

    PubMed Central

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2012-01-01

    Rationale Many addictive drugs are known to have effects on learning and memory, and these effects could motivate future drug use. Specifically, addictive drugs may affect memory of emotional events and experiences in ways that are attractive to some users. However, few studies have investigated the effects of addictive drugs on emotional memory in humans. Objectives This study examined the effects of the memory-enhancing drug dextroamphetamine (AMP) and the memory-impairing drug Δ9-tetrahydrocannabinol (THC) on emotional memory in healthy volunteers. Methods Participants completed three experimental sessions across which they received capsules containing placebo and two doses of either AMP (10 and 20 mg; N=25) or THC (7.5 and 15 mg; N=25) before viewing pictures of positive (pleasant), neutral, and negative (unpleasant) scenes. Memory for the pictures was assessed two days later, under drug-free conditions. Results Relative to placebo, memory for emotional pictures was improved by AMP and impaired by THC, but neither drug significantly affected memory for unemotional pictures. Positive memory biases were not observed with either drug, and there was no indication that the drugs’ memory effects were directly related to their subjective or physiological effects alone. Conclusions This study provides the first clear evidence that stimulant drugs can preferentially strengthen, and cannabinoids can preferentially impair, memory for emotional events in humans. Although addictive drugs do not appear to positively bias memory, the possibility remains that these drugs’ effects on emotional memory could influence drug use among certain individuals. PMID:23224510

  7. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    SciTech Connect

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. )

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  8. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    NASA Astrophysics Data System (ADS)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  9. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  10. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.

    PubMed

    Gordon, L M; Mobley, P W

    1984-01-01

    Electron spin resonance (ESR) studies of human erythrocyte ghosts labeled with 5-nitroxide stearate, I(12,3), indicate that a temperature-dependent lipid phase separation occurs with a high onset at 38 degrees C. Cooling below 38 degrees C induces I(12,3) clustering. Similar phase separations were previously identified in human platelet and cholesterol-loaded [cholesterol/phospholipid molar ratio (C/P) = 0.85] rat liver plasma membranes [L.M. Gordon et al., 1983; J. Membrane Biol. 76; 139-149]; these were attributed to redistribution of endogenous lipid components such that I(12,3) is excluded from cholesterol-rich domains and tends to reside in cholesterol-poor domains. Further enrichment of rat liver plasma membranes to C/P ratios of 0.94-0.98 creates an "artificial" system equivalent to human erythrocyte ghosts (C/P = 0.90), using such criteria as probe flexibility, temperature dependent I(12,3) clustering; and polarity of the probe environment. Consequently, cholesterol-rich and -poor domains probably exist in both erythrocyte ghosts and high cholesterol liver membranes at physiologic temperatures. The temperature dependence of cold-induced hypertonic lysis of intact human erythrocytes was examined by incubating cells in 0.9 M sucrose for 10 min at 1 degree C intervals between 9 and 46 degrees C (Stage 1), and then subjecting them to 0 degrees C for 10 min (Stage 2). Plots of released hemoglobin are approx. sigmoidal, with no lysis below 18 degrees C and maximal lysis above 40 degrees C. The protective effect of low temperatures during Stage 1 may be due to the formation of cholesterol-rich domains that alter the bilayer distribution and/or conformation of critical membrane-associated proteins.

  11. Cloning of cytochrome P-450 2C9 cDNA from human liver and its expression in CHL cells

    PubMed Central

    Zhu, Ge-Jian; Yu, Ying-Nian; Li, Xin; Qian, Yu-Li

    2002-01-01

    AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9 (CYP2C9) is a polymorphic enzyme responsible for the metabolism of a large number of clinically important drugs. It ranks among the most important drug metabolizing enzymes in humans. In order to provide a sufficient amount of the enzyme for drug metabolic research, the CYP2C9 cDNA was cloned and expressed stably in CHL cells. METHODS: After extraction of total RNA from human liver tissue, the human CYP2C9 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA fragment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant vector of pREP9-CYP2C9 into CHL cells. The enzyme activity of CYP2C9 catalyzing oxidation of tolbutamide to hydroxy tolbutamide in S9 fraction of the cell was determined by high performance liquid chromatography (HPLC). RESULTS: The amino acid sequence predicted from the cDNA segment was identical to that of CYP2C9*1, the wild typeCYP2C9. However, there were two base differences, i.e. 21T > C, 1146C > T, but the encoding amino acid sequence was the same, L7, P382. The S9 fraction of the established cell line metabolizes tolbutamide to hydroxy tolbutamide; tolbutamide hydroxylase activity was found to be 0.465 ± 0.109 μmol•min-1 ·g-1 S9 protein or 8.62 ± 2.02 mol•min-1 ·mol-1 CYP, but was undetectable in parental CHL cell. CONCLUSION: The cDNA of human CYP2C9 was successfully cloned and a cell line of CHL-CYP2C9, efficiently expressing the protein of CYP2C9, was established. PMID:11925616

  12. Structurally divergent human T cell receptor. gamma. proteins encoded by distinct C. gamma. genes

    SciTech Connect

    Krangel, M.S.; Band, H.; Hata, S.; McLean, J.; Brenner, M.B.

    1987-07-03

    The human T cell receptor (TCR) ..gamma.. polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR ..gamma.. genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR ..gamma.. correlates with the use of the C..gamma..1 and C..gamma..2 constant-region gene segments, respectively. Variability in TCR ..gamma.. polypeptide and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus, C..gamma..1 and C..gamma..2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR ..gamma.. and delta peptides in the nondisulfide-linked form are distinct.

  13. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector.

    PubMed Central

    Cone, R D; Weber-Benarous, A; Baorto, D; Mulligan, R C

    1987-01-01

    We introduced a human beta-globin gene into murine erythroleukemia (MEL) cells by infection with recombinant retroviruses containing the complete genomic globin sequence. The beta-globin gene was correctly regulated during differentiation, steady-state mRNA levels being induced 5- to 30-fold after treatment of the cells with the chemical inducer dimethyl sulfoxide. Studies using vectors which yield integrated proviruses lacking transcriptional enhancer sequences indicated that neither retroviral transcription nor the retroviral enhancer sequences themselves had any obvious effect on expression of the globin gene. Viral RNA expression also appeared inducible, being considerably depressed in uninduced MEL cells but approaching normal wild-type levels after dimethyl sulfoxide treatment. We provide data which suggest that the control point for both repression and subsequent activation of virus expression in MEL cells lies in the viral enhancer element. Images PMID:3029570

  14. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel

    SciTech Connect

    Wang, Qing; Li, Zhizhong; Shen, Jiaxiang; Keating, M.T.

    1996-05-15

    The voltage-gated cardiac sodium channel, SCN5A, is responsible for the initial upstroke of the action potential. Mutations in the human SCN5A gene cause susceptibility to cardiac arrhythmias and sudden death in the long QT syndrome (LQT). In this report we characterize the genomic structure of SCN5A. SCN5A consists of 28 exons spanning approximately 80 kb on chromosome 3p21. We describe the sequences of all intron/exon boundaries and a dinucleotide repeat polymorphism in intron 16. Oligonucleotide primers based on exon-flanking sequences amplify all SCN5A exons by PCR. This work establishes the complete genomic organization of SCN5A and will enable high-resolution analyses of this locus for mutations associated with LQT and other phenotypes for which SCN5A may be a candidate gene. 40 refs., 4 figs., 2 tabs.

  15. Mapping TNNC1, the gene that encodes cardiac troponin I in the human and the mouse

    SciTech Connect

    Bermingham, N.; Hernandez, D.; Fisher, E.M.C.

    1995-12-10

    We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7. 18 refs., 3 figs., 1 tab.

  16. Liver Immunology

    PubMed Central

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  17. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  18. Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein

    PubMed Central

    1988-01-01

    A 14-kD protein was purified from human PMNs and its NH2-terminal sequence was determined. Comparison of a portion of the NH2-terminal sequence of this protein to the recently reported NH2-terminal sequence of eosinophil major basic protein (MBP) showed them to be identical. To aid further characterization of the structural and functional properties of this molecule, we isolated from an HL-60 cDNA library a single class of cDNA clones whose sequence matched exactly the NH2- terminal amino acid sequence of the 14-kD polypeptide. Northern analysis of HL-60 cells suggests that MBP is constitutively expressed in HL-60 cells and is highly transcribed from a single copy gene. The sequence of the full-length cDNA clones predicts that MBP is synthesized as a 23-kD precursor form (pro-MBP) which is subsequently cleaved to release the mature 14-kD MBP. The putative pro-MBP has a predicted pI of 6.0, but both the charged and the hydrophobic residues are asymmetrically distributed, creating a bipolar molecule. The NH2- terminal half has a predicted pI of 3.7 and is hydrophilic, while the COOH-terminal half (corresponding to mature MBP) has a predicted pI of 11.1 and is hydrophobic. PMID:3199069

  19. Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2015-09-01

    The auditory system infers the location of sound sources from the processing of different acoustic cues. These cues change during development and when assistive hearing devices are worn. Previous studies have found behavioral recalibration to modified localization cues in human adults, but very little is known about the neural correlates and mechanisms of this plasticity. We equipped participants with digital devices, worn in the ear canal that allowed us to delay sound input to one ear, and thus modify interaural time differences, a major cue for horizontal sound localization. Participants wore the digital earplugs continuously for nine days while engaged in day-to-day activities. Daily psychoacoustical testing showed rapid recalibration to the manipulation and confirmed that adults can adapt to shifted interaural time differences in their daily multisensory environment. High-resolution functional MRI scans performed before and after recalibration showed that recalibration was accompanied by changes in hemispheric lateralization of auditory cortex activity. These changes corresponded to a shift in spatial coding of sound direction comparable to the observed behavioral recalibration. Fitting the imaging results with a model of auditory spatial processing also revealed small shifts in voxel-wise spatial tuning within each hemisphere.

  20. The human VK locus. Characterization of a duplicated region encoding 28 different immunoglobulin genes.

    PubMed

    Straubinger, B; Huber, E; Lorenz, W; Osterholzer, E; Pargent, W; Pech, M; Pohlenz, H D; Zimmer, F J; Zachau, H G

    1988-01-05

    Two large regions of the human multigene family coding for the variable parts of the immunoglobulin light chains of the K type (VK) have been characterized on cosmid clones. The two germline regions, called Aa and Ab, span together 250,000 base-pairs and comprise 28 different VK gene segments, nine of which have been sequenced. There is a preponderance of VKII genes but genes belonging to subgroups I and III, and genes that cannot be easily assigned to one of the known subgroups, are interspersed within the VKII gene clusters. A number of pseudogenes have been identified. Within the Aa and Ab regions, all gene segments are organized in the same transcriptional orientation. The regions Aa and Ab, whose restriction maps are highly homologous, were shown not to be allelic structures; they must have arisen by a duplication event. Taken together with previous results, one can conclude that the major part of the VK locus exists in duplicated form. One individual has been found who has only one copy of some of the duplicated regions. By chromosomal walking, the A regions could be linked to the O regions, an analysis of which has been reported. The A regions contribute about one-third of the VK genes so far identified.

  1. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    SciTech Connect

    Halaban, R.; Moellmann, G. )

    1990-06-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  2. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens

    PubMed Central

    1992-01-01

    The lymphocyte activation gene 3 (LAG-3), expressed in human activated T and natural killer (NK) cells, is closely related to CD4 at the gene and protein levels. We report here the initial characterization of the LAG-3-encoded protein. We have generated two monoclonal antibodies after immunization of mice with a 30-amino acid peptide that corresponds to an exposed extra loop region present in the LAG-3 immunoglobulin-like first domain. The reactivity of these reagents is directed against LAG-3 since they recognize both membrane-expressed and soluble recombinant LAG-3 molecules produced in a baculovirus expression system. The two antibodies are likely to react with the same or closely related epitope (termed LAG-3.1) exposed on the LAG-3 first domain extra loop, as assessed in competition experiments on LAG-3- expressing activated lymphocytes. Cellular distribution analysis indicated that the LAG-3.1 epitope is expressed on activated T (both CD4+ and CD8+ subsets) and NK cells, and not on activated B cells or monocytes. In immunoprecipitation experiments performed on activated T and NK cell lysates, a 70-kD protein was detected after SDS-PAGE analysis. 45-kD protein species were also immunoprecipitated. Both the 70- and 45-kD proteins were shown to be N-glycosylated. In Western blot analysis, only the former molecule was recognized by the anti-LAG-3 antibodies, demonstrating that it is LAG-3 encoded. These anti-LAG-3 antibodies were used to investigate whether the LAG-3 protein interacts with the CD4 ligands. By using a high-level expression cellular system based on COS-7 cell transfection with recombinant CDM8 vectors and a quantitative cellular adhesion assay, we demonstrate that rosette formation between LAG-3-transfected COS-7 cells and human leukocyte antigen (HLA) class II-bearing B lymphocytes is specifically dependent on LAG-3/HLA class II interaction. In contrast to CD4, LAG-3 does not bind the human immunodeficiency virus gp120. This initial

  3. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans.

    PubMed

    Narisawa, Ayumi; Komatsuzaki, Shoko; Kikuchi, Atsuo; Niihori, Tetsuya; Aoki, Yoko; Fujiwara, Kazuko; Tanemura, Mitsuyo; Hata, Akira; Suzuki, Yoichi; Relton, Caroline L; Grinham, James; Leung, Kit-Yi; Partridge, Darren; Robinson, Alexis; Stone, Victoria; Gustavsson, Peter; Stanier, Philip; Copp, Andrew J; Greene, Nicholas D E; Tominaga, Teiji; Matsubara, Yoichi; Kure, Shigeo

    2012-04-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.

  4. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor.

    PubMed Central

    Daigle, I; Li, C

    1993-01-01

    The major component of senile plaques found in the brains of Alzheimer disease patients is the beta-amyloid peptide, which is derived from a larger amyloid precursor protein (APP). Recently, a number of APP and APP-related proteins have been identified in different organisms and constitute the family of APP proteins. We have isolated several cDNAs encoding an APP-related protein in the nematode Caenorhabditis elegans and have designated the corresponding gene as apl-1. The apl-1 transcripts undergo two forms of posttranscriptional modification: trans-splicing and alternative polyadenylylation. In vitro translation of an apl-1 cDNA results in a protein of approximately the expected size. Similar to the Drosophila, human, and mouse APP-related proteins, APL-1 does not appear to contain the beta-amyloid peptide. Because APP-related proteins seem to be conserved through evolution, the apl-1 gene from C. elegans should be important for determining the normal function of human APP. Images Fig. 2 Fig. 3 PMID:8265668

  5. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7.

    PubMed

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W; Daemen, Toos

    2015-03-24

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

  6. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    PubMed Central

    Eitan, Renana; Shamir, Reuben R.; Linetsky, Eduard; Rosenbluh, Ovadya; Moshel, Shay; Ben-Hur, Tamir; Bergman, Hagai; Israel, Zvi

    2013-01-01

    Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric

  7. Xmrk, Kras and Myc Transgenic Zebrafish Liver Cancer Models Share Molecular Signatures with Subsets of Human Hepatocellular Carcinoma

    PubMed Central

    Zheng, Weiling; Li, Zhen; Nguyen, Anh Tuan; Li, Caixia; Emelyanov, Alexander; Gong, Zhiyuan

    2014-01-01

    Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC). Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24–29%) and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2%) of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down) in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup. PMID:24633177

  8. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  9. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes.

    PubMed

    Otake, Yoko; Hsieh, Faye; Walle, Thomas

    2002-05-01

    In a previous study, we used human liver microsomes for the first time to study cytochrome P450 (P450)-mediated oxidation of the flavonoid galangin. The combination of CYP1A2 and CYP2C9 produced a V(max)/K(m) value of 13.6 +/- 1.1 microl/min/mg of protein. In the present extended study, we determined glucuronidation rates for galangin with the same microsomes. Two major and one minor glucuronide were identified by liquid chromatography/mass spectrometry. The V(max)/K(m) values for the two major glucuronides conjugated in the 7- and 3-positions were 155 +/- 30 and 427 +/- 26 microl/min/mg of protein, thus, exceeding that of oxidation by 11 and 31 times, respectively. This highly efficient glucuronidation appeared to be catalyzed mainly by the UDP-glucuronosyltransferase (UGT)1A9 isoform but also by UGT1A1 and UGT2B15. Sulfation of galangin by the human liver cytosol, mediated mainly but not exclusively by sulfotransferase (SULT) 1A1, also appeared to be efficient. These conclusions were strongly supported by experiments using the S9 fraction of the human liver, in which all three metabolic pathways could be directly compared. When galangin metabolism was examined in fresh plated hepatocytes from six donors, glucuronidation clearly predominated followed by sulfation. Oxidation occurred only to a minor extent in two of the donors. This study for the first time establishes that glucuronidation and sulfation of galangin, and maybe other flavonoids, are more efficient than P450-mediated oxidation, clearly being the metabolic pathways of choice in intact cells and therefore likely also in vivo.

  10. Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices.

    PubMed

    Vatakuti, Suresh; Pennings, Jeroen L A; Gore, Emilia; Olinga, Peter; Groothuis, Geny M M

    2016-03-21

    Human toxicity screening is an important stage in the development of safe drug candidates. Hepatotoxicity is one of the major reasons for the withdrawal of drugs from the market because the liver is the major organ involved in drug metabolism, and it can generate toxic metabolites. There is a need to screen molecules for drug-induced hepatotoxicity in humans at an earlier stage. Transcriptomics is a technique widely used to screen molecules for toxicity and to unravel toxicity mechanisms. To date, the majority of such studies were performed using animals or animal cells, with concomitant difficulty in interpretation due to species differences, or in human hepatoma cell lines or cultured hepatocytes, suffering from the lack of physiological expression of enzymes and transporters and lack of nonparenchymal cells. The aim of this study was to classify known hepatotoxicants on their phenotype of toxicity in humans using gene expression profiles ex vivo in human precision-cut liver slices (PCLS). Hepatotoxicants known to induce either necrosis (n = 5) or cholestasis (n = 5) were used at concentrations inducing low (<30%) and medium (30-50%) cytotoxicity, based on ATP content. Random forest and support vector machine algorithms were used to classify hepatotoxicants using a leave-one-compound-out cross-validation method. Optimized biomarker sets were compared to derive a consensus list of markers. Classification correctly predicted the toxicity phenotype with an accuracy of 70-80%. The classification is slightly better for the low than for the medium cytotoxicity. The consensus list of markers includes endoplasmic reticulum stress genes, such as C2ORF30, DNAJB9, DNAJC12, SRP72, TMED7, and UBA5, and a sodium/bile acid cotransporter (SLC10A7). This study shows that human PCLS are a useful model to predict the phenotype of drug-induced hepatotoxicity. Additional compounds should be included to confirm the consensus list of markers, which could then be used to develop a

  11. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system

    PubMed Central

    Wheeler, S E; Clark, A M; Taylor, D P; Young, C L; Pillai, V C; Stolz, D B; Venkataramanan, R; Lauffenburger, D; Griffith, L; Wells, A

    2014-01-01

    Background: Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases. Methods: Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added. Results: The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU− or Ki67−). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent. Conclusions: These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy. PMID:25314052

  12. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    SciTech Connect

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.

    1989-02-01

    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  13. Function of the liver and bile ducts in humans exposed to lead.

    PubMed

    Kasperczyk, A; Dziwisz, M; Ostałowska, A; Swietochowska, E; Birkner, E

    2013-08-01

    Lead is very common in the environment, and it is therefore important to characterize its possible adverse health effects. The aim of this study was to evaluate the impact of lead exposure on selected functions of the liver and bile ducts in people who are chronically exposed to the metal because of their occupations. To provide this information, the activity of specific enzymes and the bilirubin concentration were determined in blood serum, and morphological parameters of the liver and bile ducts were evaluated using the ultrasonic imaging method. Healthy male employees of a lead-zinc processing facility (n = 145) who were occupationally exposed to lead were divided into two subgroups as a function of the lead concentrations in blood (PbB): low lead exposure (PbB = 20-35 μg/dl; n = 57) and high lead exposure (PbB = 35-60 μg/dl; n = 88). Human exposure to lead compounds was found to cause liver enlargement and to activate inflammatory reactions with the characteristics of moderate cholestasis within the bile ducts, while no characteristics of necrotic damage of hepatic cells were noted. It seems that lipid peroxidation can be one of the toxic mechanisms of lead which induce moderate cholestasis. The effects depend on the extent of the lead exposure and were greater in subjects with higher exposure levels, particularly subjects with PbB values greater than 35 μg/dl.

  14. Pros and cons of liver transplantation in human immunodeficiency virus infected recipients.

    PubMed

    Baccarani, Umberto; Righi, Elda; Adani, Gian Luigi; Lorenzin, Dario; Pasqualucci, Alberto; Bassetti, Matteo; Risaliti, Andrea

    2014-05-14

    Before the introduction of combined highly active antiretroviral therapy, a positive human immunodeficiency virus (HIV) serological status represented an absolute contraindication for solid organ transplant (SOT). The advent of highly effective combined antiretroviral therapy in 1996 largely contributed to the increased demand for SOT in HIV-positive individuals due to increased patients' life expectancy associated with the increasing prevalence of end-stage liver disease (ESLD). Nowadays, liver failure represents a frequent cause of mortality in the HIV-infected population mainly due to coinfection with hepatitis viruses sharing the same way of transmission. Thus, liver transplantation (LT) represents a reasonable approach in HIV patients with stable infection and ESLD. Available data presently supports with good evidence the practice of LT in the HIV-positive population. Thus, the issue is no longer "whether it is correct to transplant HIV-infected patients", but "who are the patients who can be safely transplanted" and "when is the best time to perform LT". Indeed, the benefits of LT in HIV-infected patients, especially in terms of mid- and long-term patient and graft survivals, are strictly related to the patients' selection and to the correct timing for transplantation, especially when hepatitis C virus coinfection is present. Aim of this article is to review the pros and cons of LT in the cohort of HIV infected recipients.

  15. Identification and purification of a protein encoded by the human adenovirus type 2 transforming region.

    PubMed Central

    Green, M; Brackmann, K H; Cartas, M A; Matsuo, T

    1982-01-01

    The human adenovirus type 2 (Ad2) transforming genes are located in early regions E1a (map position 1.3 to 4.5) and E1b (map position 4.6 to 11.2). We have identified and purified to near homogeneity a major 20,000-molecular-weight (20K) protein and have shown that it is coded by E1b. Using an Ad2-transformed cell antiserum which contained antibody to E1b-coded proteins, we immunoprecipitated 53K and 19K proteins from the nucleoplasm and 53K, 19K, and 20K proteins from the cytoplasmic S-100 fraction of Ad2 productively infected and Ad2-transformed cells. The 19K protein was present in both the nucleoplasm and the cytoplasm, whereas the 20K protein was found only in the cytoplasm. The 53K and 19K proteins are known Ad2 E1b-coded proteins. The 20K protein was purified to near homogeneity in 20 to 50% yields by sequential DEAE-Sephacel chromatography and reverse-phase high-performance liquid chromatography. Purified 20K protein shares most of its methionine-labeled tryptic peptides with E1b-53K, as shown by reverse-phase high-performance liquid chromatography, and therefore is closely related to the 53K protein. The 19K protein does not appear to share tryptic peptides with either 20K or 53K protein. To provide more direct evidence that 20K protein is virus-coded, we translated E1b-specific mRNA in vitro. Both immunoprecipitation analysis and high-performance liquid chromatography purification of the translated product identified a 20K protein that has the same tryptic peptides as the 20K protein isolated from infected and from transformed cells. These findings suggest that the Ad2 20K protein is a primary translation product of an Ad2 E1b mRNA. Images PMID:7045392

  16. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    SciTech Connect

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya; Takamiya, Masataka; Aoki, Yasuhiro; Fukami, Tatsuki; Yokoi, Tsuyoshi

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  17. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues

    SciTech Connect

    Olsavsky, Katy M.; Page, Jeanine L.; Johnson, Mary C.; Zarbl, Helmut; Strom, Stephen C.; Omiecinski, Curtis J. . E-mail: cjo10@psu.edu

    2007-07-01

    Frequently, primary hepatocytes are used as an in vitro model for the liver in vivo. However, the culture conditions reported vary considerably, with associated variability in performance. In this study, we characterized the differentiation character of primary human hepatocytes cultured using a highly defined, serum-free two-dimensional sandwich system, one that configures hepatocytes with collagen I as the substratum together with a dilute extracellular matrix (Matrigel{sup TM}) overlay combined with a defined serum-free medium containing nanomolar levels of dexamethasone. Gap junctional communication, indicated by immunochemical detection of connexin 32 protein, was markedly enhanced in hepatocytes cultured in the Matrigel sandwich configuration. Whole genome expression profiling enabled direct comparison of liver tissues to hepatocytes and to the hepatoma-derived cell lines, HepG2 and Huh7. PANTHER database analyses were used to identify biological processes that were comparatively over-represented among probe sets expressed in the in vitro systems. The robustness of the primary hepatocyte cultures was reflected by the extent of unchanged expression character when compared directly to liver, with more than 77% of the probe sets unchanged in each of the over-represented categories, representing such genes as C/EBP{alpha}, HNF4{alpha}, CYP2D6, and ABCB1. In contrast, HepG2 and Huh7 cells were unchanged from the liver tissues for fewer than 48% and 55% of these probe sets, respectively. Further, hierarchical clustering of the hepatocytes, but not the cell lines, shifted from donor-specific to treatment-specific when the probe sets were filtered to focus on phenobarbital-inducible genes, indicative of the highly differentiated nature of the hepatocytes when cultured in a highly defined two-dimensional sandwich system.

  18. Variation in dielectric properties due to pathological changes in human liver.

    PubMed

    Peyman, Azadeh; Kos, Bor; Djokić, Mihajlo; Trotovšek, Blaž; Limbaeck-Stokin, Clara; Serša, Gregor; Miklavčič, Damijan

    2015-12-01

    Dielectric properties of freshly excised human liver tissues (in vitro) with several pathological conditions including cancer were obtained in frequency range 100 MHz-5 GHz. Differences in dielectric behavior of normal and pathological tissues at microwave frequencies are discussed based on histological information for each tissue. Data presented are useful for many medical applications, in particular nanosecond pulsed electroporation techniques. Knowledge of dielectric properties is vital for mathematical calculations of local electric field distribution inside electroporated tissues and can be used to optimize the process of electroporation for treatment planning procedures.

  19. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  20. Phentermine inhibition of recombinant human liver monoamine oxidases A and B.

    PubMed

    Nandigama, Ravi K; Newton-Vinson, Paige; Edmondson, Dale E

    2002-03-01

    Recent studies with rat tissue preparations have suggested that the anorectic drug phentermine inhibits serotonin degradation by inhibition of monoamine oxidase (MAO) A with a K(I) value of 85-88 microM, a potency suggested to be similar to that of other reversible MAO inhibitors (Ulus et al., Biochem Pharmacol 2000;59:1611-21). Since there are known differences between rats and humans in substrate and inhibitor specificities of MAOs, the interactions of phentermine with recombinant human purified preparations of MAO A and MAO B were determined. Human MAO A was competitively inhibited by phentermine with a K(I) value of 498+/-60 microM, a value approximately 6-fold weaker than that observed for the rat enzyme. Phentermine was also observed to be a competitive inhibitor of recombinant human liver MAO B with a K(I) value of 375+/-42 microM, a value similar to that observed with the rat enzyme (310-416 microM). In contrast to the behavior with rat tissue preparations, no slow time-dependent behavior was observed for phentermine inhibition of purified soluble human MAO preparations. Difference absorption spectral studies showed similar perturbations of the covalent FAD moieties of both human MAO A and MAO B, which suggests a similar mode of binding in both enzymes. These data suggest that phentermine inhibition of human MAO A (or of MAO B) is too weak to be of pharmacological relevance.

  1. Differential TGFβ pathway targeting by miR-122 in humans and mice affects liver cancer metastasis

    PubMed Central

    Yin, Shenyi; Fan, Yu; Zhang, Hanshuo; Zhao, Zhihua; Hao, Yang; Li, Juan; Sun, Changhong; Yang, Junyu; Yang, Zhenjun; Yang, Xiao; Lu, Jian; Xi, Jianzhong Jeff

    2016-01-01

    Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFβ pathway: miR-122 target site is present in the mouse but not human TGFβR1, whereas a noncanonical target site is present in the TGFβ1 5′UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFβR1 and the ligand TGFβ1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFβ1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases. PMID:26987776

  2. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate