Poulsen, Knud; Reinholdt, Jesper; Jespersgaard, Christina; Boye, Kit; Brown, Thomas A.; Hauge, Majbritt; Kilian, Mogens
1998-01-01
An analysis of 13 immunoglobulin A1 (IgA1) protease genes (iga) of strains of Streptococcus pneumoniae, Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguis was carried out to obtain information on the structure, polymorphism, and phylogeny of this specific protease, which enables bacteria to evade functions of the predominant Ig isotype on mucosal surfaces. The analysis included cloning and sequencing of iga genes from S. oralis and S. mitis biovar 1, sequencing of an additional seven iga genes from S. sanguis biovars 1 through 4, and restriction fragment length polymorphism (RFLP) analyses of iga genes of another 10 strains of S. mitis biovar 1 and 6 strains of S. oralis. All 13 genes sequenced had the potential of encoding proteins with molecular masses of approximately 200 kDa containing the sequence motif HEMTH and an E residue 20 amino acids downstream, which are characteristic of Zn metalloproteinases. In addition, all had a typical gram-positive cell wall anchor motif, LPNTG, which, in contrast to such motifs in other known streptococcal and staphylococcal proteins, was located in their N-terminal parts. Repeat structures showing variation in number and sequence were present in all strains and may be of relevance to the immunogenicities of the enzymes. Protease activities in cultures of the streptococcal strains were associated with species of different molecular masses ranging from 130 to 200 kDa, suggesting posttranslational processing possibly as a result of autoproteolysis at post-proline peptide bonds in the N-terminal parts of the molecules. Comparison of deduced amino acid sequences revealed a 94% similarity between S. oralis and S. mitis IgA1 proteases and a 75 to 79% similarity between IgA1 proteases of these species and those of S. pneumoniae and S. sanguis, respectively. Combined with the results of RFLP analyses using different iga gene fragments as probes, the results of nucleotide sequence comparisons provide evidence of horizontal transfer of iga gene sequences among individual strains of S. sanguis as well as among S. mitis and the two species S. pneumoniae and S. oralis. While iga genes of S. sanguis and S. oralis were highly homogeneous, the genes of S. pneumoniae and S. mitis showed extensive polymorphism reflected in different degrees of antigenic diversity. PMID:9423856
Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases.
Reinholdt, J; Kilian, M
1991-01-01
Bacterial immunoglobulin A1 (IgA1) proteases cleaving IgA1 and secretory IgA1 molecules in the hinge region are believed to be important virulence factors. Previous studies have indicated that IgA of humans, gorillas, and chimpanzees are the exclusive substrates of these enzymes. In a recent study, IgA from the rhesus monkey was found to be susceptible to the IgA1 protease activity of Streptococcus pneumoniae. In an attempt to reproduce this observation, we found that neither five isolates of S. pneumoniae nor other IgA1 protease-producing bacteria representing different cleavage specificities caused cleavage of rhesus monkey IgA. Hence, the rhesus monkey does not appear to be a suitable animal model for studies of IgA1 proteases as virulence factors. Images PMID:2037384
Kotelnikova, O V; Zinchenko, A A; Vikhrov, A A; Alliluev, A P; Serova, O V; Gordeeva, E A; Zhigis, L S; Zueva, V S; Razgulyaeva, O A; Melikhova, T D; Nokel, E A; Drozhzhina, E Yu; Rumsh, L D
2016-07-01
Using the genome sequence of IgA1 protease of N. meningitidis of serogroup B, four recombinant proteins of different structure and molecular weight were constructed. These proteins were equal in inducing the formation of specific antibodies to IgA1 protease and had protective properties against meningococci. In the sera of immunized mice, anti-IgA1 protease antibodies were detected by whole-cell ELISA, which indicated the presence of IgA1 protease on the surface of these bacteria. We hypothesized that the protective properties of IgA1 protease-based antigens and IgA1 protease analogs could be realized not only via impairment of bacterium adhesion to the mucosa, but also via suppression of this pathogen in the organism. The presented findings seem promising for using these proteins as the basis for anti-meningococcus vaccine.
Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.
Frandsen, E V; Kjeldsen, M; Kilian, M
1997-07-01
Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies.
Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.
Frandsen, E V; Kjeldsen, M; Kilian, M
1997-01-01
Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies. PMID:9220164
Frandsen, E V; Reinholdt, J; Kjeldsen, M; Kilian, M
1995-10-01
Immunoglobulin A1 (IgA1) proteases secreted by oral Prevotella and Capnocytophaga species specifically cleave IgA1 at the same peptide bond in the hinge region, leaving intact monomeric Fab and Fc fragments. Assuming that Prevotella- and Capnocytophaga-induced Fab fragments of IgA1 expose a specific immunogenic neoepitope at the cleavage site, we established an enzyme-linked immunosorbent assay to measure human serum antibodies to this neoepitope as indirect evidence of in vivo activity of Prevotella and Capnocytophaga IgA1 proteases. The assay used a monoclonal antibody with specificity for the neoepitope, and the ability to block binding of the monoclonal antibody to the neoepitope was investigated. Absorption of sera with Prevotella melaninogenica-induced Fab fragments of IgA1 resulted in removal of antibodies blocking binding of the monoclonal antibody, whereas absorption with Fab fragments induced by bacterial IgA1 proteases of other cleavage specificities did not remove blocking antibodies. Consequently, we assume that the antibodies detected had been induced by a neoepitope an the Fab fragment of IgA1 exposed exclusively after cleavage with IgA1 proteases from Prevotella and Capnocytophaga, indicating in vivo activity of these IgA1 proteases. Evidence, though indirect, of in vivo activity of Prevotella and Capnocytophaga IgA1 proteases was present in 42 of 92 sera examined and in a significantly higher proportion of sera from adults with periodontal disease compared with control individuals. No correlation with disease was observed for the juvenile periodontitis groups.
Kirkeby, Line; Rasmussen, Trine Tang; Reinholdt, Jesper; Kilian, Mogens
2000-01-01
Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro. Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11 healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and, subsequently, concentrations in undiluted secretions could thereby be calculated. IgA, mainly in the secretory form, was found by enzyme-linked immunosorbent assay to be the dominant isotype in all subjects, and the vast majority of IgA (median, 91%) was of the A1 subclass, corroborating results of previous analyses at the level of immunoglobulin-producing cells. Levels of serum-type immunoglobulins were low, except for four subjects in whom levels of IgG corresponded to 20 to 66% of total IgA. Cumulative levels of IgA, IgG, and IgM in undiluted secretions ranged from 260 to 2,494 (median, 777) μg ml−1. IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, or Streptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 × 103 to 7.2 × 106 CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, α-chain fragments characteristic of IgA1 protease activity were not detected in secretions from any subject by immunoblotting. Neutralizing antibodies to IgA1 proteases of autologous isolates were detected in secretions from five of the seven subjects but not in those from two subjects harboring IgA1 protease-producing S. mitis biovar 1. α-chain fragments different from Fcα and Fdα were detected in some samples, possibly reflecting nonspecific proteolytic activity of microbial or host origin. These results add to previous evidence for a role of secretory immunity in the defense of the nasal mucosa but do not help identify conditions under which bacterial IgA1 proteases may interfere with this defense. PMID:10618273
Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G
1998-10-13
Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.
[Isolation and characteristics of IgA1 and its use for detecting bacterial IgA1 proteases].
Amelina, I P; Zakharova, N A
1984-12-01
Sufficiently purified IgA, subclass I, has been isolated from the defibrinated plasma of a myeloma patient by chromatography on columns packed with DEAE-Sephadex A-50 or Sephadex G-200, and rabbit antiserum to this immunoglobulin has been obtained. These preparations have been used for detecting specific protease in Bordetella pertussis. The tested B. pertussis strains have been shown to induce, as revealed by immunoelectrophoretic methods, the proteolysis of human IgA, subclass I.
[Protease activity of microflora in the oral cavity of patients with periodontitis].
Voropaeva, E A; Baĭrakova, A L; Bichucher, A M; D'iakov, V L; Kozlov, L V
2008-01-01
Microbial spectrum and non-specific as well as specific IgA1 protease activity of isolated microorganisms were investigated in gingival liquid of patients with periodontitis. Microorganisms from the gingival liqud of these patients belonged to conditional-pathogenic obligate and facultatively anaerobic bacteria. 24 strains of microorganisms have been identified. Nonspecific proteolytic activity was found in the following microorganisms: Actinomyces israelii, Actinomyces naeslundii, Aerococcus viridans, Bifidobacterium longum, Neisseria subflave, Streptococcus parvulus, Eubacterium alactolyticum, Lactobaccilus catenoforme, Bacillus spp. Specific IgA1-protease activity and lack of proteolytic activity towards IgG was found in Streptococcus acidominimus, Streptococcus hansenii, Streptococcus salivarius, Leptotrychia buccalis, Staphylococcus haemolyticus and Neisseria sicca. No proteolytic activity was found in cultivation medium of Eubacterium alactolyticum (1 strain), Prevotella buccalis, Aerococcus viridans and Streptococcus sanguis.
Almogren, Adel; Senior, Bernard W; Kerr, Michael A
2007-01-01
A detailed investigation of the binding of secretory component to immunoglobulin A (IgA) in human secretory IgA2 (S-IgA2) was made possible by the development of a new method of purifying S-IgA1, S-IgA2 and free secretory component from human colostrum using thiophilic gel chromatography and chromatography on Jacalin-agarose. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis of unreduced pure S-IgA2 revealed that, unlike in S-IgA1, a significant proportion of the secretory component was bound non-covalently in S-IgA2. When S-IgA1 was incubated with a protease purified from Proteus mirabilis the secretory component, but not the α-chain, was cleaved. This is in contrast to serum IgA1, in which the α-chain was cleaved under the same conditions – direct evidence that secretory component does protect the α-chain from proteolytic cleavage in S-IgA. Comparisons between the products of cleavage with P. mirabilis protease of free secretory component and bound secretory component in S-IgA1 and S-IgA2 also indicated that, contrary to the general assumption, the binding of secretory component to IgA is different in S-IgA2 from that in S-IgA1. PMID:17156102
The role of the carbohydrate chains in complement (C3) fixation by solid-phase-bound human IgA.
Nikolova, E B; Tomana, M; Russell, M W
1994-01-01
In contrast to antigen-antibody complexes containing native human IgA, solid-phase-deposited IgA activates the alternative complement pathway and binds C3b. To investigate the role of carbohydrate chains in this, various human IgA preparations were treated with neuraminidase alone or together with N-glycanase or O-glycanase, or with mixed glycosidases from the oral bacterium, Streptococcus mitis. Depletion of oligosaccharides was determined by carbohydrate analysis. Removal of sialic acid and N-linked glycan chains greatly increased the C3b-fixing properties of normal serum IgA1 and IgA2. Myeloma IgA1 and IgA2 proteins and secretory IgA had higher C3b-binding activity than normal serum IgA, and this was further increased by removal of sialic acid and N-linked glycans. Fc alpha and Fc alpha-SC fragments of myeloma and secretory IgA1, respectively, but not Fab alpha fragments, obtained by cleavage with bacterial IgA1 proteases and also free secretory component, fixed C3b by the alternative pathway. Images Figure 4 PMID:7927504
Bek-Thomsen, Malene; Poulsen, Knud; Kilian, Mogens
2012-01-01
ABSTRACT The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. PMID:23033471
Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections
Armitage, Charles W; O’Meara, Connor P; Harvie, Marina C G; Timms, Peter; Wijburg, Odilia L; Beagley, Kenneth W
2014-01-01
Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR−/− mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection. PMID:24827556
Antibody blocks acquisition of bacterial colonization through agglutination
Roche, A. M.; Richard, A. L.; Rahkola, J. T.; Janoff, E. N.; Weiser, J. N.
2014-01-01
Invasive infection often begins with asymptomatic colonization of mucosal surfaces. A murine model of bacterial colonization with Streptococcus pneumoniae was used to study the mechanism for mucosal protection by immunoglobulin. In previously colonized immune mice, bacteria were rapidly sequestered within large aggregates in the nasal lumen. To further examine the role of bacterial agglutination in protection by specific antibodies, mice were passively immunized with IgG purified from anti-pneumococcal sera or pneumococcal type-specific monoclonal human IgA (hIgA1 or hIgA2). Systemically-delivered IgG accessed the mucosal surface and blocked acquisition of colonization and transmission between littermates. Optimal protection by IgG was independent of Fc fragment and complement and, therefore, did not involve an opsonophagocytic mechanism. Enzymatic digestion or reduction of IgG prior to administration showed that protection required divalent binding that maintained its agglutinating effect. Divalent hIgA1 is cleaved by the pneumococcal member of a family of bacterial proteases that generate monovalent Fabα fragments. Thus, passive immunization with hIgA1 blocked colonization by an IgA1-protease deficient mutant (agglutinated), but not the protease-producing wild-type parent (not agglutinated), whereas protease-resistant hIgA2 agglutinated and blocked colonization by both. Our findings highlight the importance of agglutinating antibodies in mucosal defense and reveal how successful pathogens evade this effect. PMID:24962092
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway
Kiryluk, Krzysztof; Moldoveanu, Zina; Suzuki, Hitoshi; Reily, Colin; Hou, Ping; Xie, Jingyuan; Mladkova, Nikol; Prakash, Sindhuri; Fischman, Clara; Shapiro, Samantha; Bradbury, Drew; Ionita-Laza, Iuliana; Eitner, Frank; Rauen, Thomas; Maillard, Nicolas; Floege, Jürgen; Chen, Nan; Zhang, Hong; Scolari, Francesco; Wyatt, Robert J.; Julian, Bruce A.; Gharavi, Ali G.; Novak, Jan
2017-01-01
Aberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 x 10−11) and C1GALT1C1 (rs5910940, P = 2.7 x 10−8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1 that encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer. PMID:28187132
Giufrè, Maria; Cardines, Rita; Accogli, Marisa; Pardini, Manuela; Cerquetti, Marina
2013-08-01
The introduction of Haemophilus influenzae serotype b (Hib) conjugate vaccines has changed the epidemiology of invasive H. influenzae disease, with a shift in the predominant serotype from Hib to nonencapsulated H. influenzae (ncHi). The objective of this study was to identify the genotypes/clones associated with invasive H. influenzae disease in Italy. Eighty-seven H. influenzae strains isolated in the years 2009 to 2011 within the National Surveillance of Invasive Bacterial Disease program were analyzed. Strains were characterized by serotyping, antimicrobial susceptibility testing, and multilocus sequence typing (MLST). Genetic polymorphisms in the bla(TEM) gene promoter region as well as the occurrence of both adhesin genes (hmwA and hia) and the IgA1 protease-encoding gene (igaB) were also investigated. Of 87 strains, 67 were ncHi and 20 were encapsulated. Eleven strains were β-lactamase positive, harboring the bla(TEM) gene. Most bla(TEM) genes (10/11) were associated with a Pdel promoter region exhibiting a 135-bp deletion; the remaining strain possessed the Pa/Pb overlapping promoter. MLST analysis showed that encapsulated isolates were clonal, with each serotype sharing a few related sequence types (STs). Forty-six different STs were identified among the 67 ncHi strains. Despite this heterogeneity, a group of closely related STs (ST103, ST139, and ST145) encompassed almost 25% of all ncHi strains and 45.5% of the β-lactamase producers carrying the Pdel promoter. These major ST clones were found to be associated with the hmwA gene but not with the igaB gene. To conclude, although the heterogeneity of the ncHi population was confirmed, diffusion of major successful ST clones was documented.
[Clinical significance of analysis of immunoglobulin A levels in saliva].
Bokor-Bratić, M
2000-01-01
SALIVA COLLECTION: Whole saliva is a product of secretion of 3 major glands (parotid, submandibular, sublingual) and many minor glands (labial, buccal, palatal). Unstimulated saliva is usually obtained as the patient spits out every 60 sec. or by forward bended head the patient allows saliva to drip off the lower lip into a cylinder. By collection of saliva in the tube the flow rate per unit time can be measured. When volume measurement is not required the saliva can be collected on cotton rolls, gauze or filter paper. For evaluating salivary gland function or when large volumes of saliva are required for analytic purposes, stimulated whole saliva is used. Method of collection is the same as for unstimulated saliva. The usual masticatory stimuli are paraffin wax or a washed rubber band. A standard gustatory stimulus is obtained by 2% citric acid applied directly to the tongue every 15 to 60 sec. Parotid saliva can be collected by aspiration from the duct opening with a micropipette. Parotid saliva is best collected with Lashley's vacuum chamber. Submandibular and sublingual saliva can be collected by cannulation of the duct with micropipette, but in practice this is both uncomfortable for the patients and technically difficult since the duct orifice is mobile and has a strong sphincter. Because of that, alginate and silicone impression material is used for retention of the collecting tube. As alternative and simple technique is to block off secretion from the parotid glands with absorbent swabs and collect mixed submandibular and sublingual saliva by pipette from the floor of the mouth. Saliva from labial and palatal glands can be collected by filter paper disc or disc of other synthetic materials. SALIVARY IMMUNOGLOBULIN A: The most significant characteristics of the salivary immunoglobulin system are quantitative domination of immunoglobulin A, local synthesis and specific structure. Immunofluorescence studies have shown that immunoglobulin A is produced by plasma cells locally in the salivary glands. There is still little convincing evidence for the origin of predominantly immunoglobulin A secreting plasma cells in salivary glands. DETECTION OF IMMUNOGLOBULIN A IN SALIVA: Radial immunodiffusion (RID) was the most applicable method for detecting salivary immunoglobulin A. However, there are more sensitive and automatic methods such as nephelometry and ELISA. A standard level of immunoglobulin in saliva is still in question since the concentration varies in relation to origin of saliva, method of collection and stimulation of secretion (Table 1). PERIODONTAL DISEASE: Studies of the salivary immunoglobulin A in patients with periodontal disease and healthy persons showed that there are differences which can be used in detection of high-risk groups and individuals. If the bacterial adherence to the mucosa is a prerequisite for bacterial evolution in subgingival or any other region of the oral cavity respectively introduction in periodontitis development, than it is to be presumed that the basic function of salivary immunoglobulin A is inhibition of bacterial adherence rather than antigens destruction. Several bacterial species frequently isolated from the oral cavity of patients with periodontitis have been identified as producers of IgA protease. These enzymes cleave serum IgA and secretory IgA equally well. Additionally, most of the IgA proteases studied have cleaved the A1 and A2 subclass. Several studies have demonstrated that cleavage of human IgA occurs in vivo, resulting in generation of intact Fab alpha and (Fc alpha)2 fragment. Moreover, when bacteria are exposed to Fab alpha fragments released from IgA after cleavage by IgA protease, their surface antigens are likely to be occupied by Fab alpha fragments. These Fab alpha fragments left on the bacterial surface may mediate adhesion. Together, these results indicate that IgA proteases, by promoting adherence, contribute the pathogenic potential of bacteria in the oral c
Yan, J; Cheng, Q; Li, C B; Aksoy, S
2001-02-01
Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for trypsin and chymotrypsin occurs at the post-transcriptional level in tsetse. Both the coding sequences and patterns of expression of Gsp1 and Gsp2 genes are similar to the serine proteases that have been reported from the bloodfeeding insect Stomoxys calcitrans.
An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.
Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia
2015-12-01
Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.
Plasmids encoding therapeutic agents
Keener, William K [Idaho Falls, ID
2007-08-07
Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.
Longet, Stéphanie; Miled, Sarah; Lötscher, Marius; Miescher, Sylvia M.; Zuercher, Adrian W.; Corthésy, Blaise
2013-01-01
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins. PMID:23250751
Lee, Jinyoung; Kim, Jong-Hyun; Sohn, Hae-Jin; Yang, Hee-Jong; Na, Byoung-Kuk; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon
2014-08-01
Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.
USDA-ARS?s Scientific Manuscript database
Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...
Reid, Vernita J.; Theron, Louwrens W.; du Toit, Maret
2012-01-01
The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence. PMID:22820332
Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y
2018-01-15
Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, David B.; Lao, Guifang
1998-01-01
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.
2005-01-01
These alterations abolished Opa-dependent invasion. Also, cells deficient in proteoglycan synthesis were resistant to gonococcal invasion...volunteers. Gonococcal mutants deficient in production of pilin (40), RecA (40), or IgA1 protease (106) were not attenuated in this model. Interestingly...proliferative or high estrogen phase of the menstrual cycle. Endocervical cultures from these same patients taken during the luteal or high progesterone
2011-05-31
improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins , IgA1 protease, and the ability of infecting...indicated by the horizontal dotted line) is 1.8× 103 cfu for MS11mkC and 1.0× 105 cfu for FA1090. contained predominantly piliated (P+), Opacity protein ...Gonococcal genetic island Absent Present Dillard and Seifert, (2001) Lactoferrin utilization (expression of lactoferrin-binding proteins B and A) Lf
Nucleotide sequences encoding a thermostable alkaline protease
Wilson, D.B.; Lao, G.
1998-01-06
Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.
USDA-ARS?s Scientific Manuscript database
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...
Systemic and local gut-specific antibody responses in preruminant calves sensitive to soya.
Lallès, J P; Dréau, D; Huet, A; Toullec, R
1995-07-01
The systemic and local (gut) patterns of antibodies against various proteins from soyabean were analysed in preruminant calves fed milk substitutes based on skim milk powder (SMP) or heated soyabean flour (HSF) as the main protein sources. The titres of IgM, IgA, IgG1 and IgG2 antibodies were determined against feed extracts and purified soyabean proteins by dot-blotting in plasma after three months and jejunal mucous secretions after six months of feeding the experimental diets. The calves fed HSF had higher levels of circulating IgA, IgG1 and IgG2 antibodies against raw or heated soya extracts and purified proteins including alpha-conglycinin, beta-conglycinin, Bowman-Birk protease inhibitors and lectins than the calves fed SMP. In contrast, the differences between the IgM titres of the groups were most often not significant. The patterns of specific antibodies present in the jejunum were broadly similar to those observed in the blood, although the differences between the groups of calves more often reached significance for IgG2 and IgM than for IgA and IgG1, when the purified soyabean proteins were considered.
Levels and complexity of IgA antibody against oral bacteria in samples of human colostrum.
Petrechen, L N; Zago, F H; Sesso, M L T; Bertoldo, B B; Silva, C B; Azevedo, K P; de Lima Pereira, S A; Geraldo-Martins, V R; Ferriani, V P L; Nogueira, R D
2015-01-01
Streptococcus mutans (SM) have three main virulence antigens: glucan binding protein B (gbpB), glucosyltransferase (Gtf) and antigens I/II (Ag I/II) envolved in the capacity of those bacteria to adhere and accumulate in the dental biofilm. Also, the glycosyltransferases 153 kDa of Streptococcus gordonii (SGO) and 170kDa of Streptococcus sanguinis (SSA) were important antigens associated with the accumulation of those bacterias. Streptococcus mitis (SMI) present IgA1 protease of 202 kDa. We investigated the specificity and levels IgA against those antigens of virulence in samples of human colostrum. This study involved 77 samples of colostrum that were analyzed for levels of immunoglobulian A, M and G by Elisa. The specificity of IgA against extracts of SM and initials colonizators (SSA, SMI, SGO) were analyzed by the Western blot. The mean concentration of IgA was 2850.2 (±2567.2) mg/100 mL followed by IgM and IgG (respectively 321.8±90.3 and 88.3±51.5), statistically different (p<0.05). Results showed that the majority of samples had detectable levels of IgA antibodies to extracts of bacteria antigens and theirs virulence antigens. To SM, the GbpB was significantly lower detected than others antigens of SM (p<0.05). High complexities of response to Ags were identified in the samples. There were no significant differences in the mean number of IgA-reactive Ags between the antigens (p>0.4). So, the breast milk from first hours after birth presented significant levels of IgA specific against important virulence of antigens those oral streptococci, which can disrupt the installation and accumulation process of these microorganisms in the oral cavity. Copyright © 2014 Elsevier GmbH. All rights reserved.
Frankowiack, Marcel; Hellman, Lars; Zhao, Yaofeng; Arnemo, Jon M; Lin, Miaoli; Tengvall, Katarina; Møller, Torsten; Lindblad-Toh, Kerstin; Hammarström, Lennart
2013-06-01
Low mean concentrations of serum immunoglobulin A (IgA) and an increased frequency of overt IgA deficiency (IgAD) in certain dog breeds raises the question whether it is a breeding-enriched phenomenon or a legacy from the dog's ancestor, the gray wolf (Canis lupus). The IgA concentration in 99 serum samples from 58 free-ranging and 13 captive Scandinavian wolves, was therefore measured by capture ELISA. The concentrations were markedly lower in the wolf serum samples than in the dog controls. Potential differences in the IgA molecule between dogs and wolves were addressed by sequencing the wolf IgA heavy chain constant region encoding gene (IGHA). Complete amino acid sequence homology was found. Detection of wolf and dog IgA was ascertained by showing identity using double immunodiffusion. We suggest that the vast majority of wolves, the ancestor of the dog, are IgA deficient. Copyright © 2013 Elsevier Ltd. All rights reserved.
Disruption of Smad4 Expression in T Cells Leads to IgA Nephropathy-Like Manifestations
Yamashita, Michifumi; Choi, Sung Hee; Tomino, Yasuhiko; Letterio, John J.; Emancipator, Steven N.
2013-01-01
The link between glomerular IgA nephropathy (IgAN) and T helper 2 (Th2) response has been implicated, however, the mechanisms are poorly defined because of the lack of an appropriate model. Here we report a novel murine model characterized by lineage-restricted deletion of the gene encoding MAD homologue 4 (Smad4) in T cells (Smad4co/co;Lck-cre). Loss of Smad4 expression in T cells results in overproduction of Th2 cytokines and high serum IgA levels. We found that Smad4co/co;Lck-cre mice exhibited massive glomerular IgA deposition, increased albumin creatinine ratio, aberrant glycosylated IgA, IgA complexed with IgG1 and IgG2a, and polymeric IgA, all known features of IgAN in humans. Furthermore, we examined the β1, 4-galactosyltransferases (β4GalT) enzyme which is involved in the synthesis of glycosylated murine IgA, and we found reduced β4GalT2 and β4GalT4 mRNA levels in B cells. These findings indicate that Smad4co/co;Lck-cre mice could be a useful model for studying the mechanisms between IgAN and Th2 response, and further, disruption of Smad4-dependent signaling in T cells may play an important role in the pathogenesis of human IgAN and contributing to a Th2 T cell phenotype. PMID:24223846
Kirchherr, Jennifer L.; Bowden, George H.; Cole, Michael F.; Kawamura, Yoshiaki; Richmond, Dorothy A.; Sheridan, Michael J.; Wirth, Katherine A.
2007-01-01
SUMMARY Objective The purpose of the study was to explore the physiological and antigenic diversity of a large number of S. mitis biovar 1 isolates in order to begin to determine whether these properties contribute to species persistence. Design S. mitis biovar 1 was collected from four infants from birth to one year of age. At each of 8–9 visits 60 isolates each were obtained from the cheeks, tongue and incisors (once erupted) yielding 4,440 in total. These were tested for production of neuraminidase, β1-N-acetylglucosaminidase, β1-N-acetylgalactosaminidase, IgA1 protease, and amylase-binding. Antigenic diversity was examined by ELISA and Western immunoblotting using antisera raised against S. mitis biovar 1 NCTC 12261T and SK145. Results 3,330 (75%) of the isolates were identified as S. mitis biovar 1 and 3,144 (94.4%) could be divided into four large phenotypic groups based on glycosidase production. 54% of the isolates produced IgA1 protease, but production was disproportionate among the phenotypes. Between 1/3 to 1/2 of the strains of each phenotype bound salivary α-amylase. Antisera against strains NCTC 12261T and SK145 displayed different patterns of reactivity with randomly selected representatives of the four phenotypes. Conclusions S. mitis biovar 1 is physiologically and antigenically diverse, properties which could aid strains in avoiding host immunity and promote re-colonization of a habitat or transfer to a new habitat. PMID:17045561
Viktorin, Alexander; Frankowiack, Marcel; Padyukov, Leonid; Chang, Zheng; Melén, Erik; Sääf, Annika; Kull, Inger; Klareskog, Lars; Hammarström, Lennart; Magnusson, Patrik K.E.
2014-01-01
In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus. PMID:24676358
Kyöstiö, S R; Cramer, C L; Lacy, G H
1991-01-01
The prt1 gene encoding extracellular protease from Erwinia carotovora subsp. carotovora EC14 in cosmid pCA7 was subcloned to create plasmid pSK1. The partial nucleotide sequence of the insert in pSK1 (1,878 bp) revealed a 1,041-bp open reading frame (ORF1) that correlated with protease activity in deletion mutants. ORF1 encodes a polypeptide of 347 amino acids with a calculated molecular mass of 38,826 Da. Escherichia coli transformed with pSK1 or pSK23, a subclone of pSK1, produces a protease (Prt1) intracellularly with a molecular mass of 38 kDa and a pI of 4.8. Prt1 activity was inhibited by phenanthroline, suggesting that it is a metalloprotease. The prt1 promoter was localized between 173 and 1,173 bp upstream of ORF1 by constructing transcriptional lacZ fusions. Primer extension identified the prt1 transcription start site 205 bp upstream of ORF1. The deduced amino acid sequence of ORF1 showed significant sequence identity to metalloproteases from Bacillus thermoproteolyticus (thermolysin), B. subtilis (neutral protease), Legionella pneumophila (metalloprotease), and Pseudomonas aeruginosa (elastase). It has less sequence similarity to metalloproteases from Serratia marcescens and Erwinia chrysanthemi. Locations for three zinc ligands and the active site for E. carotovora subsp. carotovora protease were predicted from thermolysin. Images FIG. 2 FIG. 5 FIG. 6 FIG. 8 FIG. 9 PMID:1917878
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Gallerano, Daniela; Ndlovu, Portia; Makupe, Ian; Focke-Tejkl, Margarete; Fauland, Kerstin; Wollmann, Eva; Puchhammer-Stöckl, Elisabeth; Keller, Walter; Sibanda, Elopy; Valenta, Rudolf
2015-01-01
A comprehensive set of recombinant proteins and peptides of the proteome of HIV-1 clade C was prepared and purified and used to measure IgG, IgG-subclass, IgA and IgM responses in HIV-infected patients from Sub-Saharan Africa, where clade C is predominant. As a comparison group, HIV-infected patients from Europe were tested. African and European patients showed an almost identical antibody reactivity profile in terms of epitope specificity and involvement of IgG, IgG subclass, IgA and IgM responses. A V3-peptide of gp120 was identified as major epitope recognized by IgG1>IgG2 = IgG4>IgG3, IgA>IgM antibodies and a C-terminal peptide represented another major peptide epitope for the four IgG subclasses. By contrast, gp41-derived-peptides were mainly recognized by IgG1 but not by the other IgG subclasses, IgA or IgM. Among the non-surface proteins, protease, reverse transcriptase+RNAseH, integrase, as well as the capsid and matrix proteins were the most frequently and strongly recognized antigens which showed broad IgG subclass and IgA reactivity. Specificities and magnitudes of antibody responses in African patients were stable during disease and antiretroviral treatment, and persisted despite severe T cell loss. Using a comprehensive panel of gp120, gp41 peptides and recombinant non-surface proteins of HIV-1 clade C we found an almost identical antibody recognition profile in African and European patients regarding epitopes and involved IgG-sublass, IgA- and IgM-responses. Immune recognition of gp120 peptides and non-surface proteins involved all four IgG subclasses and was indicative of a mixed Th1/Th2 immune response. The HIV-1 clade C proteome-based test allowed diagnosis and monitoring of antibody responses in the course of HIV-infections and assessment of isotype and subclass responses. PMID:25658330
Zheng, Wenning; Tan, Mui Fern; Old, Lesley A; Paterson, Ian C; Jakubovics, Nicholas S; Choo, Siew Woh
2017-06-07
Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
Viktorin, Alexander; Frankowiack, Marcel; Padyukov, Leonid; Chang, Zheng; Melén, Erik; Sääf, Annika; Kull, Inger; Klareskog, Lars; Hammarström, Lennart; Magnusson, Patrik K E
2014-08-01
In a broad attempt to improve the understanding of the genetic regulation of serum IgA levels, the heritability was estimated in over 12 000 Swedish twins, and a genome-wide association study was conducted in a subsample of 9617. Using the classical twin model the heritability was found to be significantly larger among females (61%) compared with males (21%), while contribution from shared environment (20%) was only seen for males. By modeling the genetic relationship matrix with IgA levels, we estimate that a substantial proportion (31%) of variance in IgA levels can ultimately be explained by the investigated SNPs. The genome-wide association study revealed significant association to two loci: (i) rs6928791 located on chromosome 6, 22 kb upstream of the gene SAM and SH3 domain containing 1 (SASH1) and (ii) rs13300483 on chromosome 9, situated 12 kb downstream the CD30 ligand (CD30L) encoding gene. The association to rs13300483 was replicated in two additional independent Swedish materials. The heritability of IgA levels is moderate and can partly be attributable to common variation in the CD30L locus. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng
2014-06-04
Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets.
Zhang, Di; Tözsér, József; Waugh, David S.
2009-01-01
Alphaviruses cause serious diseases that pose a potential health threat to both humans and livestock. The nonstructural protein 2 (nsp2) encoded by alphaviruses is a multifunctional enzyme that is essential for viral replication and maturation. Its 39-kDa C-terminal domain (nsp2pro) is a cysteine protease that is responsible for cleaving a viral polyprotein at three sites to generate nonstructural proteins 1, 2, 3 and 4. In the present study, we evaluated nsp2pro domains from the following three sources as reagents for site-specific cleavage of fusion proteins: Venezuelan Equine Encephalitis Virus (VEEV), Semliki Forest Virus (SFV) and Sindbis Virus (SIN). All three alphavirus proteases cleaved model fusion protein substrates with high specificity but they were much less efficient enzymes than potyviral proteases from tobacco etch virus (TEV) and tobacco vein mottling virus (TVMV). Oligopeptide substrates were also cleaved with very low efficiency by the alphavirus proteases. We conclude that, in general, alphavirus nsp2pro proteases are not very useful tools for the removal of affinity tags from recombinant proteins although they do remain promising therapeutic targets for the treatment of a variety of diseases. PMID:19013248
Crosby, J L; Bleackley, R C; Nadeau, J H
1990-02-01
A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.
A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.
Ohkawa, T; Majima, K; Maeda, S
1994-01-01
Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997
Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika
2006-01-01
An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.
Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W
2016-11-01
Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1.
Gale, Daniel P; Molyneux, Karen; Wimbury, David; Higgins, Patricia; Levine, Adam P; Caplin, Ben; Ferlin, Anna; Yin, Peiran; Nelson, Christopher P; Stanescu, Horia; Samani, Nilesh J; Kleta, Robert; Yu, Xueqing; Barratt, Jonathan
2017-07-01
IgA nephropathy (IgAN), an important cause of kidney failure, is characterized by glomerular IgA deposition and is associated with changes in O -glycosylation of the IgA1 molecule. Here, we sought to identify genetic factors contributing to levels of galactose-deficient IgA1 (Gd-IgA1) in white and Chinese populations. Gd-IgA1 levels were elevated in IgAN patients compared with ethnically matched healthy subjects and correlated with evidence of disease progression. White patients with IgAN exhibited significantly higher Gd-IgA1 levels than did Chinese patients. Among individuals without IgAN, Gd-IgA1 levels did not correlate with kidney function. Gd-IgA1 level heritability (h 2 ), estimated by comparing midparental and offspring Gd-IgA1 levels, was 0.39. Genome-wide association analysis by linear regression identified alleles at a single locus spanning the C1GALT1 gene that strongly associated with Gd-IgA1 level ( β =0.26; P =2.35×10 -9 ). This association was replicated in a genome-wide association study of separate cohorts comprising 308 patients with membranous GN from the UK ( P <1.00×10 -6 ) and 622 controls with normal kidney function from the UK ( P <1.00×10 -10 ), and in a candidate gene study of 704 Chinese patients with IgAN ( P <1.00×10 -5 ). The same extended haplotype associated with elevated Gd-IgA1 levels in all cohorts studied. C1GALT1 encodes a galactosyltransferase enzyme that is important in O -galactosylation of glycoproteins. These findings demonstrate that common variation at C1GALT1 influences Gd-IgA1 level in the population, which independently associates with risk of progressive IgAN, and that the pathogenic importance of changes in IgA1 O -glycosylation may vary between white and Chinese patients with IgAN. Copyright © 2017 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Zhao, Chunling; Ju, Jiyu
2015-06-01
The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.
Monteiro, Renato C; Van De Winkel, Jan G J
2003-01-01
The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans
2003-05-01
A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.
2011-01-01
Background Wheat grains accumulate a variety of low molecular weight proteins that are inhibitors of alpha-amylases and proteases and play an important protective role in the grain. These proteins have more balanced amino acid compositions than the major wheat gluten proteins and contribute important reserves for both seedling growth and human nutrition. The alpha-amylase/protease inhibitors also are of interest because they cause IgE-mediated occupational and food allergies and thereby impact human health. Results The complement of genes encoding alpha-amylase/protease inhibitors expressed in the US bread wheat Butte 86 was characterized by analysis of expressed sequence tags (ESTs). Coding sequences for 19 distinct proteins were identified. These included two monomeric (WMAI), four dimeric (WDAI), and six tetrameric (WTAI) inhibitors of exogenous alpha-amylases, two inhibitors of endogenous alpha-amylases (WASI), four putative trypsin inhibitors (CMx and WTI), and one putative chymotrypsin inhibitor (WCI). A number of the encoded proteins were identical or very similar to proteins in the NCBI database. Sequences not reported previously included variants of WTAI-CM3, three CMx inhibitors and WTI. Within the WDAI group, two different genes encoded the same mature protein. Based on numbers of ESTs, transcripts for WTAI-CM3 Bu-1, WMAI Bu-1 and WTAI-CM16 Bu-1 were most abundant in Butte 86 developing grain. Coding sequences for 16 of the inhibitors were unequivocally associated with specific proteins identified by tandem mass spectrometry (MS/MS) in a previous proteomic analysis of milled white flour from Butte 86. Proteins corresponding to WDAI Bu-1/Bu-2, WMAI Bu-1 and the WTAI subunits CM2 Bu-1, CM3 Bu-1 and CM16 Bu-1 were accumulated to the highest levels in flour. Conclusions Information on the spectrum of alpha-amylase/protease inhibitor genes and proteins expressed in a single wheat cultivar is central to understanding the importance of these proteins in both plant defense mechanisms and human allergies and facilitates both breeding and biotechnology approaches for manipulating the composition of these proteins in plants. PMID:21774824
Synthesis of the 2-methylene analogue of the HRV 3C protease inhibitor thysanone (2-carbathysanone).
Schünemann, Katrin; Furkert, Daniel P; Choi, Eun Cho; Connelly, Stephen; Fraser, John D; Sperry, Jonathan; Brimble, Margaret A
2014-02-14
The Human Rhinovirus (HRV) is the major aetiological agent for the common cold, for which only symptomatic treatment is available. HRV maturation and replication is entirely dependent on the activity of a virally encoded 3C protease that represents an attractive target for the development of therapeutics to treat the common cold. Herein we report the synthesis and biological evaluation of the 2-methylene analogue of the HRV 3C protease inhibitor (-)-thysanone (1) namely 2-carbathysanone (2), in an attempt to decipher the structural features in the natural product that are responsible for the 3C protease activity. 2-Carbathysanone (2) (and related analogues (±)-cis-23, (±)-cis-30, (±)-31) did not inhibit HRV 3C protease, indicating that the lactol functionality present in (-)-thysanone (1) is a critical structural feature required for inhibition.
Na, Byoung-Kuk; Kim, Tong-Soo; Rosenthal, Philip J; Lee, Jong-Koo; Kong, Yoon
2004-10-01
Cysteine proteases perform critical roles in the life cycles of malaria parasites. In Plasmodium falciparum, treatment of cysteine protease inhibitors inhibits hemoglobin hydrolysis and blocks the parasite development in vitro and in vivo, suggesting that plasmodial cysteine proteases may be interesting targets for new chemotherapeutics. To determine whether sequence diversity may limit chemotherapy against Plasmodium vivax, we analyzed sequence variations in the genes encoding three cysteine proteases, vivapain-1, -2 and -3, in 22 wild isolates of P. vivax. The sequences were highly conserved among wild isolates. A small number of substitutions leading to amino acid changes were found, while they did not modify essential residues for the function or structure of the enzymes. The substrate specificities and sensitivities to synthetic cysteine protease inhibitors of vivapain-2 and -3 from wild isolates were also very similar. These results support the suggestion that cysteine proteases of P. vivax are promising antimalarial chemotherapeutic targets.
Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K
2016-09-02
An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.
Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch.
Han, Binyue; Li, Yan; Han, Haitang; Zhao, Yaofeng; Pan, Qingjie; Ren, Liming
2017-01-01
Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.
Nørskov-Lauritsen, Niels; Overballe, Merete D.; Kilian, Mogens
2009-01-01
To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospecies biotype IV, and the never formally validated species “Haemophilus intermedius”. Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene sequences supported this delineation but was obscured by a conspicuously high number of polymorphic sites in many of the strains that did not belong to the core group of H. influenzae strains. The division was corroborated by the differential presence of genes encoding H. influenzae adhesion and penetration protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains (“H. intermedius”) closely related to H. influenzae was confirmed. Several chromosomally encoded hemin biosynthesis genes were identified, and sequence analysis showed these genes to represent an ancestral genotype rather than recent transfers from, e.g., Haemophilus parainfluenzae. Strains previously assigned to H. haemolyticus formed several separate lineages within a distinct but deeply branching cluster, intermingled with strains of “H. intermedius” and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make it difficult to define the natural borders of that species. PMID:19060144
Chen, C-M; Liu, J-J; Chou, C-W; Lai, C-H; Wu, L-T
2015-10-01
To investigate the biochemical and functional properties of an extracellular protease, RpA, in Ralstonia pickettii WP1 isolated from water supply systems. An extracellular protease was identified and characterized from R. pickettii WP1. A mutant strain WP1M2 was created from strain WP1 by mini-Tn5 transposition. The culture filtrates from WP1M2 had a lower cytotoxic effect than the parental WP1 on several mammalian cell lines. Cloning and sequence analysis revealed the Tn5 transposon inserted at a protease gene (rpA) which is 81% homologous to prtA and aprX genes of Pseudomonas fluorescens. The rpA gene encodes a 482-residue protein showing sequence similarity to metalloproteases of the serralysin family. The RpA protein was expressed in Escherichia coli using a pET expression vector and purified as a 55 kDa molecular weight protein. Furthermore, the protease activity of RpA was inhibited by protease inhibitor and heat treatment. The in vitro cytotoxic activity of R. pickettii culture filtrates was attributed to RpA protease. An extracellular protease, RpA, was identified from R. pickettii WP1 isolated from water supply system. The RpA metalloproteases is required for the pathogenicity of R. pickettii to mammalian cell lines. © 2015 The Society for Applied Microbiology.
Hu, Junjie; Liu, Fei; Ju, Huangxian
2015-04-21
A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.
Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha
2011-10-01
Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.
Salwan, Richa; Sharma, Vivek; Pal, Mohinder; Kasana, Ramesh Chand; Yadav, Sudesh Kumar; Gulati, Arvind
2018-02-01
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg -1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry. Copyright © 2017. Published by Elsevier B.V.
Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja
2015-09-01
A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.
Tripathi, Siddharth Kaushal; Singh, Amar Pal; Sane, Aniruddha P.; Nath, Pravendra
2009-01-01
Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease. PMID:19346241
A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso
2017-03-01
Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.
Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir
2008-09-01
We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference.
Jørgensen, P L; Tangney, M; Pedersen, P E; Hastrup, S; Diderichsen, B; Jørgensen, S T
2000-02-01
A gene encoding an alkaline protease was cloned from an alkalophilic bacillus, and its nucleotide sequence was determined. The cloned gene was used to increase the copy number of the protease gene on the chromosome by an improved gene amplification technique.
Structure and Function of the Haemophilus influenzae Autotransporters
Spahich, Nicole A.; St. Geme, Joseph W.
2011-01-01
Autotransporters are a large class of proteins that are found in the outer membrane of Gram-negative bacteria and are almost universally implicated in virulence. These proteins consist of a C-terminal β-domain that is embedded in the outer membrane and an N-terminal domain that is exposed on the bacterial surface and is endowed with effector function. In this article, we review and compare the structural and functional characteristics of the Haemophilus influenzae IgA1 protease and Hap monomeric autotransporters and the H. influenzae Hia and Hsf trimeric autotransporters. All of these proteins play a role in colonization of the upper respiratory tract and in the pathogenesis of H. influenzae disease. PMID:22919571
Structural determinants of tobacco vein mottling virus protease substrate specificity
Sun, Ping; Austin, Brian P; Tözsér, József; Waugh, David S
2010-01-01
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease. PMID:20862670
Structural determinants of tobacco vein mottling virus protease substrate specificity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ping; Austin, Brian P.; Tozer, Jozsef
2010-10-28
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMVmore » protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.« less
A Family of LIC Vectors for High-Throughput Cloning and Purification of Proteins1
Eschenfeldt, William H.; Stols, Lucy; Millard, Cynthia Sanville; Joachimiak, Andrzej; Donnelly, Mark I.
2009-01-01
Summary Fifteen related ligation-independent cloning vectors were constructed for high-throughput cloning and purification of proteins. The vectors encode a TEV protease site for removal of tags that facilitate protein purification (his-tag) or improve solubility (MBP, GST). Specialized vectors allow coexpression and copurification of interacting proteins, or in vivo removal of MBP by TVMV protease to improve screening and purification. All target genes and vectors are processed by the same protocols, which we describe here. PMID:18988021
Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri
2010-09-28
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailedmore » study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.« less
Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri
2010-09-17
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailedmore » study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.« less
Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai
2017-09-01
Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Syngkon, Aurelia; Elluri, Sridhar; Koley, Hemanta; Rompikuntal, Pramod K.; Saha, Dhira Rani; Chakrabarti, Manoj K.; Bhadra, Rupak K.; Wai, Sun Nyunt; Pal, Amit
2010-01-01
Background Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). Methodology/Principal Findings We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/−0.3 n = 3), CHA6.8 (FA ratio 1.08+/−0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/−0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/−0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/−0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/−0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. Conclusion Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model. PMID:20927349
Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H
2013-11-15
A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. Copyright © 2013 Elsevier GmbH. All rights reserved.
Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases
Watters, Kelly; Inankur, Bahar; Gardiner, Jaye C.; Warrick, Jay; Sherer, Nathan M.; Yin, John
2017-01-01
ABSTRACT The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes. IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes. PMID:28179529
Kim, Hyun-Do; Kim, Su-Mi; Choi, Jong-Il
2018-03-28
In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.
Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives
Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise; Håvarstein, Leiv S.; Bek-Thomsen, Malene; Tettelin, Hervé; Sørensen, Uffe B. S.
2008-01-01
Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial killers worldwide. Population genetic analysis of 118 strains, supported by demonstration of a distinct cell wall carbohydrate structure and competence pheromone sequence signature, shows that S. pneumoniae is one of several hundred evolutionary lineages forming a cluster separate from Streptococcus oralis and Streptococcus infantis. The remaining lineages of this distinct cluster are commensals previously collectively referred to as Streptococcus mitis and each represent separate species by traditional taxonomic standard. Virulence genes including the operon for capsule polysaccharide synthesis and genes encoding IgA1 protease, pneumolysin, and autolysin were randomly distributed among S. mitis lineages. Estimates of the evolutionary age of the lineages, the identical location of remnants of virulence genes in the genomes of commensal strains, the pattern of genome reductions, and the proportion of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most of the lineages gradually lost the majority of genes determining virulence and became genetically distinct due to sexual isolation in their respective hosts. PMID:18628950
Mueller, Niklaus H; Pattabiraman, Nagarajan; Ansarah-Sobrinho, Camilo; Viswanathan, Prasanth; Pierson, Theodore C; Padmanabhan, R
2008-09-01
West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen approximately 32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K(i) values of 3.2 +/- 0.3 microM and 3.4 +/- 0.6 microM, respectively. These compounds inhibited the dengue virus type 2 protease with K(i) values of 28.6 +/- 5.1 microM and 30.2 +/- 8.6 microM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 +/- 0.4 microM; selectivity index, 100), presumably by inhibition of polyprotein processing.
Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut
2010-10-01
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.
Kim, Jitae; Olinares, Paul Dominic; Oh, Soo-hyun; Ghisaura, Stefania; Poliakov, Anton; Ponnala, Lalit; van Wijk, Klaas J.
2013-01-01
The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed. PMID:23548781
The C-terminal sequence of several human serine proteases encodes host defense functions.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2011-01-01
Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.
Pirisinu, Laura; Di Bari, Michele; Marcon, Stefano; Vaccari, Gabriele; D'Agostino, Claudia; Fazzi, Paola; Esposito, Elena; Galeno, Roberta; Langeveld, Jan; Agrimi, Umberto; Nonno, Romolo
2010-01-01
Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural hosts, such as humans and sheep. PMID:20856860
Scholte, Florine E M; Zivcec, Marko; Dzimianski, John V; Deaton, Michelle K; Spengler, Jessica R; Welch, Stephen R; Nichol, Stuart T; Pegan, Scott D; Spiropoulou, Christina F; Bergeron, Éric
2017-09-05
Antiviral responses are regulated by conjugation of ubiquitin (Ub) and interferon-stimulated gene 15 (ISG15) to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU) superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae) is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines. Published by Elsevier Inc.
Extracellular proteases of Trichoderma species. A review.
Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet
2005-01-01
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.
Moser, M; Menz, G; Blaser, K; Crameri, R
1994-01-01
A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866
De Vries, Erik; Bakker, Nicole; Krijgsveld, Jeroen; Knox, Dave P.; Heck, Albert J.R.; Yatsuda, Ana Patricia
2009-01-01
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses. PMID:19401141
β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells.
Molyneux, Karen; Wimbury, David; Pawluczyk, Izabella; Muto, Masahiro; Bhachu, Jasraj; Mertens, Peter R; Feehally, John; Barratt, Jonathan
2017-12-01
IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Maseko, Sibusiso B; Natarajan, Satheesh; Sharma, Vikas; Bhattacharyya, Neelakshi; Govender, Thavendran; Sayed, Yasien; Maguire, Glenn E M; Lin, Johnson; Kruger, Hendrik G
2016-06-01
Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities. Copyright © 2016 Elsevier Inc. All rights reserved.
Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David
2010-01-01
Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671
Satake, Kenji; Shimizu, Yoshio; Sasaki, Yohei; Yanagawa, Hiroyuki; Suzuki, Hitoshi; Suzuki, Yusuke; Horikoshi, Satoshi; Honda, Shinichiro; Shibuya, Kazuko; Shibuya, Akira; Tomino, Yasuhiko
2014-06-13
Although serum under-O-glycosylated IgA1 in IgA nephropathy (IgAN) patients may deposit more preferentially in glomeruli than heavily-O-glycosylated IgA1, the relationship between the glomerular IgA deposition level and the O-glycan profiles of serum IgA1 remains obscure. Serum total under-O-glycosylated IgA1 levels were quantified in 32 IgAN patients by an enzyme-linked immunosorbent assay (ELISA) with Helix aspersa (HAA) lectin. Serum under-O-glycosylated polymeric IgA1 (pIgA1) was selectively measured by an original method using mouse Fcα/μ receptor (mFcα/μR) transfectant and flow cytometry (pIgA1 trap). The percentage area of IgA deposition in the whole glomeruli (Area-IgA) was quantified by image analysis on the immunofluorescence of biopsy specimens. Correlations were assessed between the Area-IgA and data from HAA-ELISA or pIgA1 trap. The relationships between clinical parameters and data from HAA-ELISA or pIgA1 trap were analyzed by data mining approach. While the under-O-glycosylated IgA1 levels in IgAN patients were significantly higher than those in healthy controls when measured (p<0.05), there was no significant difference in under-O-glycosylated pIgA1. There was neither a correlation observed between the data from HAA-ELISA and pIgA1 trap (r2=0.09) in the IgAN patients (r2=0.005) nor was there a linear correlation between Area-IgA and data from HAA-ELISA or the pIgA1 trap (r2=0.005, 0.03, respectively). Contour plots of clinical parameters versus data from HAA-ELISA and the pIgA1 trap revealed that patients with a high score in each clinical parameter concentrated in specific areas, showing that patients with specific O-glycan profiles of IgA1 have similar clinical parameters. A decision tree analysis suggested that dominant immune complexes in glomeruli were consisted of: 1) IgA1-IgG and complements, 2) pIgA1 and complements, and 3) monomeric IgA1-IgA or aggregated monomeric IgA1. Serum under-O-glycosylated IgA1 levels are not correlated with glomerular IgA deposition based upon heterogeneity in the composition of glomerular immune complexes in IgAN patients.
Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3
Zheng, Fengwei; Lu, Guoliang; Li, Ling
2017-01-01
ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different conformational states. PMID:28835495
Shi, Stephanie T.; Schiller, Jennifer J.; Kanjanahaluethai, Amornrat; Baker, Susan C.; Oh, Jong-Won; Lai, Michael M. C.
1999-01-01
Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery, which may localize to different membrane structures in different cell lines. PMID:10364348
el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H
1990-07-01
Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.
MBL-associated serine proteases (MASPs) and infectious diseases.
Beltrame, Marcia H; Boldt, Angelica B W; Catarino, Sandra J; Mendes, Hellen C; Boschmann, Stefanie E; Goeldner, Isabela; Messias-Reason, Iara
2015-09-01
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kurien, M; Leeds, J S; Hopper, A D; Wild, G; Egner, W; Tesfaye, S; Hadjivassiliou, M; Sanders, D S
2013-07-01
Immunoglobulin A (IgA) measurement is advocated when case finding for coeliac disease in patients with Type 1 diabetes mellitus. Currently, there is a paucity of contemporary studies assessing IgA deficiency in Type 1 diabetes. This study evaluates the prevalence of IgA deficiency in individuals with Type 1 diabetes, compared with patients with coeliac disease and control subjects. In addition, we evaluate whether routine IgA measurement is justifiable when case finding for coeliac disease in patients with Type 1 diabetes. All patients were assessed using IgA endomysial antibodies, IgA anti-tissue transglutaminase antibodies and total IgA levels. Altogether, 2434 individuals were tested: 1000 patients with Type 1 diabetes, 234 patients with coeliac disease and 1200 population control subjects. Definitive IgA deficiency was defined as total IgA levels < 0.07 g/l. The prevalence of IgA deficiency was significantly more common in patients with Type 1 diabetes (0.9%, n = 9/1000; P = 0.036) and coeliac disease (1.29%, n = 3/234; P = 0.041) when compared with population control subjects (prevalence of 0.17%, 2/1200). No statistical difference between Type 1 diabetes and coeliac disease for IgA deficiency was identified (P = 0.87). Of patients in the group with Type 1 diabetes, 3.3% (33/1000) had coeliac disease, and of those only one patient had IgA deficiency leading to an antibody-negative presentation. Both IgA-deficient individuals within the population control subjects had normal duodenal biopsies and no relevant symptoms. IgA deficiency is more common in Type 1 diabetes compared with population control subjects. Despite this, very few individuals with Type 1 diabetes and IgA deficiency appear to have villous atrophy on biopsy. These outcomes question the practice of routine IgA measurement when case finding for coeliac disease in patients with Type 1 diabetes. © 2013 The Authors. Diabetic Medicine © 2013 Diabetes UK.
Chen, Po Ting; Shaw, Jei-Fu; Chao, Yun-Peng; David Ho, Tuan-Hua; Yu, Su-May
2010-05-12
Bacillus subtilis is most commonly employed for secretion of recombinant proteins. To circumvent the problems caused by using plasmids, the T7 expression system known for its high efficiency was rebuilt in B. subtilis. Accordingly, a markerless and replicon-free method was developed for genomic insertion of DNAs. By the act of homologous recombination via the guide DNA, a suicidal vector carrying the gene of interest was integrated into genomic loci of bacteria. Removal of the inserted selection marker and replicon flanked by FRT sites was mediated by the FLP recombinase. By using the mentioned system, B. subtilis strain PT5 was constructed to harbor a genomic copy of the spac promoter-regulated T7 gene 1 located at wprA (encoding the cell wall-associated protease). Similarly, the T7 promoter-driven nattokinase or endoglucanase E1 of Thermomonospora fusca genes were also integrated into mpr (encoding an extracellular protease) of strain PT5. Consequently, the integrant PT5/Mmp-T7N or PT5/MT1-E1 resulted in a "clean" producer strain deprived of six proteases. After 24 h, the strain receiving induction was able to secret nattokinase and endoglucanase E1 with the volumetric activity reaching 10860 CU/mL and 8.4 U/mL, respectively. This result clearly indicates the great promise of the proposed approach for high secretion of recombinant proteins in B. subtilis.
Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena
2015-01-01
Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418
Glycosylation of immunoglobulin A influences its receptor binding.
Basset, C; Devauchelle, V; Durand, V; Jamin, C; Pennec, Y L; Youinou, P; Dueymes, M
1999-12-01
Immunoglobulin A (IgA), which is heavily glycosylated, interacts with a variety of receptors, e.g. the asialoglycoprotein receptor (ASGP-R), which binds terminal galactose residues, and the Fcalpha receptor (FcalphaRI). It has thus been proposed that elevated serum levels of IgA in primary Sjögren's syndrome (pSS) are caused by its defective clearance. To test this hypothesis, we developed a method (based on sialyl transferases eluted from a hepatoma cell line) to increase the amount of sialic acid (SA) on IgA, and used a battery of IgA1- and IgA2-specific glycosidases to reduce this amount. Binding of IgA1 and IgA2 to ASGP-R and FcalphaRI was found to be sugar dependent because oversialylated IgA bound less than native or desialylated IgA. However, individual sugars did not play a direct role in this binding. Given that IgA are oversialylated in pSS, defective clearance of IgA may indeed be ascribed to an excess of SA in IgA1 and IgA2.
Hepatitis A Virus Capsid Protein VP1 Has a Heterogeneous C Terminus
Graff, Judith; Richards, Oliver C.; Swiderek, Kristine M.; Davis, Michael T.; Rusnak, Felicia; Harmon, Shirley A.; Jia, Xi-Yu; Summers, Donald F.; Ehrenfeld, Ellie
1999-01-01
Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1. PMID:10364353
Watson, Douglas S.; Feng, Xizhi; Askew, David S.; Jambunathan, Kalyani; Kodukula, Krishna; Galande, Amit K.
2011-01-01
Background The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers. Methodology and Principal Findings As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures. Conclusions This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis. PMID:21695046
Hoebe, E. K.; Hutajulu, S. H.; van Beek, J.; Stevens, S. J.; Paramita, D. K.; Greijer, A. E.; Middeldorp, J. M.
2011-01-01
WHO type III nasopharyngeal carcinoma (NPC) is highly prevalent in Indonesia and 100% associated with Epstein-Barr virus (EBV). NPC tumor cells express viral proteins, including BARF1, which is secreted and is considered to have oncogenic and immune-modulating properties. Recently, we found conserved mutations in the BARF1 gene in NPC isolates. This study describes the expression and purification of NPC-derived BARF1 and analyzes humoral immune responses against prototype BARF1 (B95-8) and purified native hexameric BARF1 in sera of Indonesian NPC patients (n = 155) compared to healthy EBV-positive (n = 56) and EBV-negative (n = 16) individuals. BARF1 (B95-8) expressed in Escherichia coli and baculovirus, as well as BARF1-derived peptides, did not react with IgG or IgA antibodies in NPC. Purified native hexameric BARF1 protein isolated from culture medium was used in enzyme-linked immunosorbent assay (ELISA) and revealed relatively weak IgG and IgA responses in human sera, although it had strong antibody responses to other EBV proteins. Higher IgG reactivity was found in NPC patients (P = 0.015) than in regional Indonesian controls or EBV-negative individuals (P < 0.001). IgA responses to native BARF1 were marginal. NPC sera with the highest IgG responses to hexameric BARF1 in ELISA showed detectable reactivity with denatured BARF1 by immunoblotting. In conclusion, BARF1 has low immunogenicity for humoral responses and requires native conformation for antibody binding. The presence of antibodies against native BARF1 in the blood of NPC patients provides evidence that the protein is expressed and secreted as a hexameric protein in NPC patients. PMID:21123521
Mizutani, Osamu; Shiina, Matsuko; Yoshimi, Akira; Sano, Motoaki; Watanabe, Takeshi; Yamagata, Youhei; Nakajima, Tasuku; Gomi, Katsuya; Abe, Keietsu
2016-09-01
Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes β-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the β-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of β-1,3-glucan polymerization.
Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G; Zhang, Hong
2015-05-01
Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1-5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3-1 deletion (CFHR3-1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype-phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3-1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. Copyright © 2015 by the American Society of Nephrology.
Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline
2018-05-18
While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.
Calpain chronicle--an enzyme family under multidisciplinary characterization.
Sorimachi, Hiroyuki; Hata, Shoji; Ono, Yasuko
2011-01-01
Calpain is an intracellular Ca2+-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) discovered in 1964. It was also called CANP (Ca2+-activated neutral protease) as well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to transform or modulate their substrates' structures and activities; they are therefore called, "modulator proteases." In the human genome, 15 genes--CAPN1, CAPN2, etc.--encode a calpain-like protease domain. Their products are calpain homologs with divergent structures and various combinations of functional domains, including Ca2+-binding and microtubule-interaction domains. Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms, including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of calpains focuses especially on recent findings about their structure-function relationships. These discoveries have been greatly aided by the development of 3D structural studies and genetic models.
Quantification of equine immunoglobulin A in serum and secretions by a fluorescent bead-based assay.
Schnabel, Christiane L; Babasyan, Susanna; Freer, Heather; Wagner, Bettina
2017-06-01
Only few quantitative reports exist about the concentrations and induction of immunoglobulin A (IgA) in mucosal secretions of horses. Despite this, it is widely assumed that IgA is the predominant immunoglobulin on mucosal surfaces in the horse. Here, two new monoclonal antibodies (mAbs) against equine IgA, clones 84-1 and 161-1, were developed and characterized in detail. Both IgA mAbs specifically bound monomeric and dimeric equine IgA in different applications, such as Western blots and fluorescent bead-based assays. Cross-reactivity with other equine immunoglobulin isotypes was not observed. The new IgA mAb 84-1 was used in combination with the previously characterized anti-equine IgA mAb BVS2 for the development and validation of a fluorescent bead-based assay to quantify total IgA in equine serum and various secretions. The IgA assay's linear detection ranged from 64pg/ml to 1000ng/ml. For the quantification of IgA in serum or in secretions an IgA standard was purified from serum or nasal wash fluid (secretory IgA), respectively. The different standards were needed for accurate IgA quantification in the respective samples taking the different signal intensities of monomeric and dimeric IgA on the florescent bead-based assay into account. IgA was quantified by the bead-based assay established here in different equine samples of healthy adult individuals. In serum the median total IgA was 0.45mg/ml for Thoroughbred horses (TB, n=10) and 1.16mg/ml in Icelandic horses (ICH, n=12). In nasopharyngeal secretions of TB (n=7) 0.13mg/ml median total IgA was measured, and 0.25mg/ml for ICH (n=12). Saliva of ICH (n=6) contained a median of 0.15mg/ml, colostrum of Warmbloods (n=8) a median of 1.89mg/ml IgA. Compared to IgG1 and IgG4/7 quantified in the same samples, IgA appeared as the major immunoglobulin isotype in nasopharyngeal secretions and saliva while it is a minor isotype in serum and colostrum. The newly developed monoclonal antibodies against equine IgA and the resulting bead-based assay for quantification of total IgA can notably improve the evaluation of mucosal immunity in horses. Copyright © 2017 Elsevier B.V. All rights reserved.
Gluten exacerbates IgA nephropathy in humanized mice through gliadin-CD89 interaction.
Papista, Christina; Lechner, Sebastian; Ben Mkaddem, Sanae; LeStang, Marie-Bénédicte; Abbad, Lilia; Bex-Coudrat, Julie; Pillebout, Evangéline; Chemouny, Jonathan M; Jablonski, Mathieu; Flamant, Martin; Daugas, Eric; Vrtovsnik, François; Yiangou, Minas; Berthelot, Laureline; Monteiro, Renato C
2015-08-01
IgA1 complexes containing deglycosylated IgA1, IgG autoantibodies, and a soluble form of the IgA receptor (sCD89), are hallmarks of IgA nephropathy (IgAN). Food antigens, notably gluten, are associated with increased mucosal response and IgAN onset, but their implication in the pathology remains unknown. Here, an IgAN mouse model expressing human IgA1 and CD89 was used to examine the role of gluten in IgAN. Mice were given a gluten-free diet for three generations to produce gluten sensitivity, and then challenged for 30 days with a gluten diet. A gluten-free diet resulted in a decrease of mesangial IgA1 deposits, transferrin 1 receptor, and transglutaminase 2 expression, as well as hematuria. Mice on a gluten-free diet lacked IgA1-sCD89 complexes in serum and kidney eluates. Disease severity depended on gluten and CD89, as shown by reappearance of IgAN features in mice on a gluten diet and by direct binding of the gluten-subcomponent gliadin to sCD89. A gluten diet exacerbated intestinal IgA1 secretion, inflammation, and villous atrophy, and increased serum IgA1 anti-gliadin antibodies, which correlated with proteinuria in mice and patients. Moreover, early treatment of humanized mice with a gluten-free diet prevented mesangial IgA1 deposits and hematuria. Thus, gliadin-CD89 interaction may aggravate IgAN development through induction of IgA1-sCD89 complex formation and a mucosal immune response. Hence, early-stage treatment with a gluten-free diet could be beneficial to prevent disease.
Sanches, Mario; Krauchenco, Sandra; Martins, Nadia H; Gustchina, Alla; Wlodawer, Alexander; Polikarpov, Igor
2007-06-15
Although a majority of HIV-1 infections in Brazil are caused by the subtype B virus (also prevalent in the United States and Western Europe), viral subtypes F and C are also found very frequently. Genomic differences between the subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. The current anti-HIV drugs have been developed primarily against subtype B and the effects arising from the combination of drug-resistance mutations with the naturally existing polymorphisms in non-B HIV-1 subtypes are only beginning to be elucidated. To gain more insights into the structure and function of different variants of HIV proteases, we have determined a 2.1 A structure of the native subtype F HIV-1 protease (PR) in complex with the protease inhibitor TL-3. We have also solved crystal structures of two multi-drug resistant mutant HIV PRs in complex with TL-3, from subtype B (Bmut) carrying the primary mutations V82A and L90M, and from subtype F (Fmut) carrying the primary mutation V82A plus the secondary mutation M36I, at 1.75 A and 2.8 A resolution, respectively. The proteases Bmut, Fwt and Fmut exhibit sevenfold, threefold, and 54-fold resistance to TL-3, respectively. In addition, the structure of subtype B wild type HIV-PR in complex with TL-3 has been redetermined in space group P6(1), consistent with the other three structures. Our results show that the primary mutation V82A causes the known effect of collapsing the S1/S1' pockets that ultimately lead to the reduced inhibitory effect of TL-3. Our results further indicate that two naturally occurring polymorphic substitutions in subtype F and other non-B HIV proteases, M36I and L89M, may lead to early development of drug resistance in patients infected with non-B HIV subtypes.
Vicente, Rebeca L.; Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.
2016-01-01
Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application. PMID:27977736
Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases
Horwitz, Marshall S.; Jenne, Dieter E.; Gauthier, Francis
2010-01-01
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies. PMID:21079042
Sharma, Vivek; Salwan, Richa; Sharma, Prem N
2016-09-01
In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.
A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W
van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther
2012-01-01
Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455
The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.
Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I
2016-12-01
The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.
Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun
2011-04-01
Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. Copyright © 2010 Elsevier Inc. All rights reserved.
Lehoux, S; Ju, T
2017-01-01
Human immunoglobulin A1 (IgA1), which carries four to six mucin-type O-glycans (O-glycans) on its hinge region (HR), is the most abundant O-glycoprotein in plasma or serum. While normal O-glycans from hematopoietic-originated cells are core 1-based complex structures, many reports showed that the IgA1 from patients with IgA nephropathy (IgAN) carries undergalactosylated or truncated O-glycans such as the Tn antigen and its sialylated version the SialylTn (STn) antigen on the HR. Yet, there is still a debate whether Tn/STn on the HR of IgA1 is specific to the IgA1 from patients with IgAN since these antigens have also been seen in serum IgA1 of healthy individuals. An additional question is whether the O-glycans at all sites on the two HRs of one IgA1 molecule are homogeneous (either all normal or all Tn/STn) or heterogeneous (both normal and Tn/STn O-glycans). To address these questions, we conducted a systematic study on the O-glycans of plasma IgA1 from both IgAN patients and healthy controls using serial HPA and PNA lectin chromatography followed by western blotting and further analysis of O-glycans from HPA-bound and PNA-bound IgA1 fractions by mass spectrometry. Unexpectedly, we found that a variable minor fraction of IgA1 from both IgAN patients and healthy controls had Tn/STn antigens, and that the O-glycoprotein IgA1 molecules from most samples had only two distinct O-glycoforms: one major glycoform with homogeneous normal core 1-based O-glycans and one minor glycoform with homogeneous Tn/STn antigens. These results raised a serious question about the role of Tn/STn antigens on IgA1 in pathogenesis of IgAN, and there is a demand for a practical methodology that any laboratory can utilize to analyze the O-glycans of IgA1. Herein, we describe the methodology we developed in more detail. The method could also be applied to the analysis of any other O-glycosylated proteins. © 2017 Elsevier Inc. All rights reserved.
Impact of enhancin genes on potency of LdNPV in gypsy moth
Kelli Hoover; Jim McNeil; Alyssa Gendron; James. Slavicek
2011-01-01
Lymantria dispar nucleopolyhedrovirus (LdNPV) contains two enhancin genes (E1 and E2) encoding proteases that degrade key peritrophic matrix (PM) proteins, thereby promoting infection and mortality by the virus. In a previous study, gypsy moth larvae inoculated with LdNPV in which both E1 and E2 were deleted (double deletion virus) resulted in a non-...
Schuhmann, Holger; Adamska, Iwona
2012-05-01
Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent serine endopeptidases found in almost every organism. Database searches revealed that 16 Deg paralogues are encoded by the genome of Arabidopsis thaliana, six of which were experimentally shown to be located in chloroplasts, one in peroxisomes, one in mitochondria and one in the nucleus. Two more Deg proteases are predicted to reside in chloroplasts, five in mitochondria (one of them with a dual chloroplastidial/mitochondrial localization) and the subcellular location of one protein is uncertain. This review summarizes the current knowledge on the role of Deg proteases in maintaining protein homeostasis and protein processing in various subcompartments of the plant cell. The chloroplast Deg proteases are the best examined so far, especially with respect to their role in the degradation of photodamaged photosynthetic proteins and in biogenesis of photosystem II (PSII). A combined action of thylakoid lumen and stroma Deg proteases in the primary cleavage of photodamaged D1 protein from PSII reaction centre is discussed on the basis of a recently resolved crystal structure of plant Deg1. The peroxisomal Deg protease is a processing enzyme responsible for the cleavage of N-terminal peroxisomal targeting signals (PTSs). A. thaliana mutants lacking this enzyme show reduced peroxisomal β-oxidation, indicating for the first time the impact of protein processing on peroxisomal functions in plants. Much less data is available for mitochondrial and nuclear Deg proteases. Based on the available expression data we hypothesize a role in general protein quality control and during acquired heat resistance. Copyright © Physiologia Plantarum 2011.
Identification of Mycoparasitism-Related Genes in Trichoderma atroviride ▿ † ‡
Reithner, Barbara; Ibarra-Laclette, Enrique; Mach, Robert L.; Herrera-Estrella, Alfredo
2011-01-01
A high-throughput sequencing approach was utilized to carry out a comparative transcriptome analysis of Trichoderma atroviride IMI206040 during mycoparasitic interactions with the plant-pathogenic fungus Rhizoctonia solani. In this study, transcript fragments of 7,797 Trichoderma genes were sequenced, 175 of which were host responsive. According to the functional annotation of these genes by KOG (eukaryotic orthologous groups), the most abundant group during direct contact was “metabolism.” Quantitative reverse transcription (RT)-PCR confirmed the differential transcription of 13 genes (including swo1, encoding an expansin-like protein; axe1, coding for an acetyl xylan esterase; and homologs of genes encoding the aspartyl protease papA and a trypsin-like protease, pra1) in the presence of R. solani. An additional relative gene expression analysis of these genes, conducted at different stages of mycoparasitism against Botrytis cinerea and Phytophthora capsici, revealed a synergistic transcription of various genes involved in cell wall degradation. The similarities in expression patterns and the occurrence of regulatory binding sites in the corresponding promoter regions suggest a possible analog regulation of these genes during the mycoparasitism of T. atroviride. Furthermore, a chitin- and distance-dependent induction of pra1 was demonstrated. PMID:21531825
Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R
2013-12-01
Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.
IgA-mediated inhibition of human leucocyte function by interference with Fc gamma and C3b receptors.
Saito, K; Kato, C; Katsuragi, H; Komatsuzaki, A
1991-09-01
The inhibitory effects of IgA from human colostrum, and IgA1 and IgA2 from human serum on the chemiluminescence (CL) response and phagocytosis of polymorphonuclear leucocytes (PML) to Staphylococcus epidermidis and the CL response to formylmethionyl-leucyl-phenylalanine (FMLP) were studied. The dose-dependent inhibition of the luminol-mediated CL response of human PML to the bacteria was observed in the presence of more than 0.1 mg/ml IgA from both colostrum and serum. The preincubation of PML with a solution of IgA enhanced the suppressive effect of IgA on the cells. Removal of IgA from the reaction mixture after preincubation resulted in recovery, with time, of the response of PML to the bacteria. The bacteria treated with IgA did not give rise to any inhibition of the response. The CL response of PML to FMLP was not affected by the presence of IgA in the reaction mixture. The decrease of phagocytic activity of PML in the presence of IgA resulted in a decrease of NADPH oxidase activity of PML after stimulation with the bacteria as compared with the absence of IgA. The effect of IgA on the receptors of Fc and C3b (CR1) on the surface of PML was measured by monitoring erythrocyte-antibody (EA) or erythrocyte-antibody-complement (EAC) rosette formation and by direct and indirect immunofluorescence techniques using anti-CR1 antibody and Fc-specific antibodies. The presence of IgA in the reaction mixture led to a quantitative decrease in CR1 and the ability to bind IgG to the surface of PML.
IgA-mediated inhibition of human leucocyte function by interference with Fc gamma and C3b receptors.
Saito, K; Kato, C; Katsuragi, H; Komatsuzaki, A
1991-01-01
The inhibitory effects of IgA from human colostrum, and IgA1 and IgA2 from human serum on the chemiluminescence (CL) response and phagocytosis of polymorphonuclear leucocytes (PML) to Staphylococcus epidermidis and the CL response to formylmethionyl-leucyl-phenylalanine (FMLP) were studied. The dose-dependent inhibition of the luminol-mediated CL response of human PML to the bacteria was observed in the presence of more than 0.1 mg/ml IgA from both colostrum and serum. The preincubation of PML with a solution of IgA enhanced the suppressive effect of IgA on the cells. Removal of IgA from the reaction mixture after preincubation resulted in recovery, with time, of the response of PML to the bacteria. The bacteria treated with IgA did not give rise to any inhibition of the response. The CL response of PML to FMLP was not affected by the presence of IgA in the reaction mixture. The decrease of phagocytic activity of PML in the presence of IgA resulted in a decrease of NADPH oxidase activity of PML after stimulation with the bacteria as compared with the absence of IgA. The effect of IgA on the receptors of Fc and C3b (CR1) on the surface of PML was measured by monitoring erythrocyte-antibody (EA) or erythrocyte-antibody-complement (EAC) rosette formation and by direct and indirect immunofluorescence techniques using anti-CR1 antibody and Fc-specific antibodies. The presence of IgA in the reaction mixture led to a quantitative decrease in CR1 and the ability to bind IgG to the surface of PML. PMID:1834550
Lerch, R A; Friesen, P D
1992-01-01
TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168
Naturally Occurring Structural Isomers in Serum IgA1 O-Glycosylation
Takahashi, Kazuo; Smith, Archer D.; Poulsen, Knud; Kilian, Mogens; Julian, Bruce A.; Mestecky, Jiri; Novak, Jan; Renfrow, Matthew B.
2013-01-01
IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr225, Thr228, Ser230, Ser232 and Thr236 have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC/MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser230, Thr233 or Thr236 produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability. PMID:22067045
1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meekins, David A.; Zhang, Xin; Battaile, Kevin P.
Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector,Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses.A. gambiaeserpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure ofA. gambiaeSRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short andmore » constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold.« less
1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae
Meekins, David A.; Zhang, Xin; Battaile, Kevin P.; Lovell, Scott; Michel, Kristin
2016-01-01
Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector, Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses. A. gambiae serpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure of A. gambiae SRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold. PMID:27917832
2018-01-01
ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the functional properties of HIV-1-specific IgG, more studies are needed on the functional attributes of HIV-1-specific IgA, specifically for vaccine-elicited IgA. Characterization of the functional properties of HIV-1 Env-specific IgA monoclonal antibodies from human vaccine clinical trials are critical toward understanding the capacity of the host immune response to block HIV-1 acquisition. PMID:29321320
Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K
2001-07-01
We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.
Vernersson, M; Belov, K; Aveskogh, M; Hellman, L
2010-01-01
To trace the emergence of modern IgA isotypes during vertebrate evolution we have studied the immunoglobulin repertoire of a model monotreme, the platypus. Two highly divergent IgA-like isotypes (IgA1 and IgA2) were identified and their primary structures were determined from full-length cDNAs. A comparative analysis of the amino acid sequences for IgA from various animal species showed that the two platypus IgA isotypes form a branch clearly separated from their eutherian (placental) counterparts. However, they still conform to the general structure of eutherian IgA, with a hinge region and three constant domains. This indicates that the deletion of the second domain and the formation of a hinge region in IgA did occur very early during mammalian evolution, more than 166 million years ago. The two IgA isotypes in platypus differ in primary structure and appear to have arisen from a very early gene duplication, possibly preceding the metatherian eutherian split. Interestingly, one of these isotypes, IgA1, appears to be expressed in only the platypus, but is present in the echidna based on Southern blot analysis. The platypus may require a more effective mucosal immunity, with two highly divergent IgA forms, than the terrestrial echidna, due to its lifestyle, where it is exposed to pathogens both on land and in the water. Copyright 2010 Elsevier Ltd. All rights reserved.
Gene encoding a novel extracellular metalloprotease in Bacillus subtilis.
Sloma, A; Rudolph, C F; Rufo, G A; Sullivan, B J; Theriault, K A; Ally, D; Pero, J
1990-01-01
The gene for a novel extracellular metalloprotease was cloned, and its nucleotide sequence was determined. The gene (mpr) encodes a primary product of 313 amino acids that has little similarity to other known Bacillus proteases. The amino acid sequence of the mature protease was preceded by a signal sequence of approximately 34 amino acids and a pro sequence of 58 amino acids. Four cysteine residues were found in the deduced amino acid sequence of the mature protein, indicating the possible presence of disulfide bonds. The mpr gene mapped in the cysA-aroI region of the chromosome and was not required for growth or sporulation. Images FIG. 2 FIG. 7 PMID:2105291
He, Dan; Xie, Xiao; Yang, Fan; Zhang, Heng; Su, Haomiao; Ge, Yun; Song, Haiping; Chen, Peng R
2017-11-13
A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low-abundance prey proteins after intracellular photocrosslinking and prey-bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease-chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lower serum IgA is associated with COPD exacerbation risk in SPIROMICS
Paul, Gabriel G.; Azar, Antoine; Wise, Robert A.; O’Neal, Wanda K.; Dransfield, Mark T.; Woodruff, Prescott G.; Curtis, Jeffrey L.; Comellas, Alejandro P.; Drummond, M. Bradley; Lambert, Allison A.; Paulin, Laura M.; Fawzy, Ashraf; Kanner, Richard E.; Paine, Robert; Han, MeiLan K.; Martinez, Fernando J.; Bowler, Russell P.; Barr, R. Graham; Hansel, Nadia N.
2018-01-01
Background Decreased but measurable serum IgA levels (≤70 mg/dL) have been associated with risk for infections in some populations, but are unstudied in COPD. This study tested the hypothesis that subnormal serum IgA levels would be associated with exacerbation risk in COPD. Methods Data were analyzed from 1,049 COPD participants from the observational cohort study SPIROMICS (535 (51%) women; mean age 66.1 (SD 7.8), 338 (32%) current smokers) who had baseline serum IgA measured using the Myriad RBM biomarker discovery platform. Exacerbation data was collected prospectively (mean 944.3 (SD 281.3) days), and adjusted linear, logistic and zero-inflated negative binomial regressions were performed. Results Mean IgA was 269.1 mg/dL (SD 150.9). One individual had deficient levels of serum IgA (<7 mg/dL) and 25 (2.4%) had IgA level ≤70 mg/dL. Participants with IgA ≤70 mg/dL were younger (62 vs. 66 years, p = 0.01) but otherwise similar to those with higher IgA. In adjusted models, IgA ≤70 mg/dL was associated with higher exacerbation incidence rates (IRR 1.71, 95% CI 1.01–2.87, p = 0.044) and greater risk for any severe exacerbation (OR 2.99, 95% CI 1.30–6.94, p = 0.010). In adjusted models among those in the lowest decile (<120 mg/dL), each 10 mg/dL decrement in IgA (analyzed continuously) was associated with more exacerbations during follow-up (β 0.24, 95% CI 0.017–0.46, p = 0.035). Conclusions Subnormal serum IgA levels were associated with increased risk for acute exacerbations, supporting mildly impaired IgA levels as a contributing factor in COPD morbidity. Additionally, a dose-response relationship between lower serum IgA and number of exacerbations was found among individuals with serum IgA in the lowest decile, further supporting the link between serum IgA and exacerbation risk. Future COPD studies should more comprehensively characterize immune status to define the clinical relevance of these findings and their potential for therapeutic correction. PMID:29649230
Yokoyama, Ayaka; Miyamoto, Hiroko; Kajihara, Masahiro; Maruyama, Junki; Nao, Naganori; Manzoor, Rashid; Takada, Ayato
2014-01-01
Both IgA and IgG antibodies are known to play important roles in protection against influenza virus infection. While IgG is the major isotype induced systemically, IgA is predominant in mucosal tissues, including the upper respiratory tract. Although IgA antibodies are believed to have unique advantages in mucosal immunity, information on direct comparisons of the in vitro antiviral activities of IgA and IgG antibodies recognizing the same epitope is limited. In this study, we demonstrate differences in antiviral activities between these isotypes using monoclonal IgA and IgG antibodies obtained from hybridomas of the same origin. Polymeric IgA-producing hybridoma cells were successfully subcloned from those originally producing monoclonal antibody S139/1, a hemaggulutinin (HA)-specific IgG that was generated against an influenza A virus strain of the H3 subtype but had cross-neutralizing activities against the H1, H2, H13, and H16 subtypes. These monoclonal S139/1 IgA and IgG antibodies were assumed to recognize the same epitope and thus used to compare their antiviral activities. We found that both S139/1 IgA and IgG antibodies strongly bound to the homologous H3 virus in an enzyme-linked immunosorbent assay, and there were no significant differences in their hemagglutination-inhibiting and neutralizing activities against the H3 virus. In contrast, S139/1 IgA showed remarkably higher cross-binding to and antiviral activities against H1, H2, and H13 viruses than S139/1 IgG. It was also noted that S139/1 IgA, but not IgG, drastically suppressed the extracellular release of the viruses from infected cells. Electron microscopy revealed that S139/1 IgA deposited newly produced viral particles on the cell surface, most likely by tethering the particles. These results suggest that anti-HA IgA has greater potential to prevent influenza A virus infection than IgG antibodies, likely due to increased avidity conferred by its multivalency, and that this advantage may be particularly important for heterosubtypic immunity. PMID:24465606
Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi.
Sun, Yu-Xuan; Zhu, Bao-Jian; Tang, Lin; Sun, Yu; Chen, Chen; Nadeem Abbas, Muhammad; Wang, Lei; Qian, Cen; Wei, Guo-Qing; Liu, Chao-Liang
2017-11-01
Cathepsins are key members of mammalian papain-like cysteine proteases that play an important role in the immune response. In this study, a fragment of cDNA encoding cathepsin O proteinase (ApCathepsin O) was cloned from Antheraea pernyi. It contains an open reading frame of 1170bp and encodes a protein with 390 amino acid residues, including a conserved I29 inhibitor domain and a peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) domain. Comparison with other previously reported cathepsin O proteins showed identity ranging from 45% to 79%. Quantitative real-time PCR (qRT-PCR) and Western blot analysis revealed that ApCathepsin O was highly expressed in the fat body; furthermore, the high expression during the pupal stage indicated that it might be involved during metamorphosis. After exposure to four different heat-killed pathogens (Escherichia coli, Beauveria bassiana, Micrococcus luteus, and A. pernyi nucleopolyhedrovirus), the expression levels of ApCathepsin O mRNA significantly increased and showed variable expression patterns. This indicates that ApCathepsin O is potentially involved in the innate immune system of A. pernyi. Interestingly, ApCathepsin O expression was upregulated after 20-hydroxyecdysone (20E) injection, which suggested that it might be regulated by 20E. In conclusion, ApCathepsin O is a protease that may play an important role in the innate immune response and metamorphosis of A. pernyi. Copyright © 2017. Published by Elsevier Inc.
Molina, Diana; Patiño, Luisa; Quintero, Mónica; Cortes, José; Bastos, Sara
2014-02-01
The coffee berry borer Hypothenemus hampei is a pest that causes great economic damage to coffee grains worldwide. Because the proteins consumed are digested by aspartic proteases in the insect's midgut, the inhibition of these proteases by transferring a gene encoding an aspartic protease inhibitor from Lupinus bogotensis Benth. to coffee plants could provide a promising strategy to control this pest. Five aspartic protease inhibitors from L. bogotensis (LbAPI) were accordingly purified and characterized. The gene encoding the L. bogotensis aspartic protease inhibitor (LbAPI), with the highest inhibitory activity against H. hampei, was expressed in Escherichia coli and the purified recombinant protein (rLbAPI), with a molecular mass of 15 kDa, was subsequently assessed for its ability to inhibit the aspartic protease activity present in the H. hampei midgut in vitro, as well as its effects on the growth and development of H. hampei in vivo. The in vitro experiments showed that rLbAPI was highly effective against aspartic proteases from H. hampei guts, with a half maximal inhibitory concentration (IC50) of 2.9 μg. The in vivo experiments showed that the concentration of rLbAPI (w/w) in the artificial diet necessary to cause 50% mortality (LD50) of the larvae was 0.91%. The amino acid sequence of LbAPI had high homology (52-80%) to the seed storage proteins, vicilin and β-conglutin, suggesting that this protein was generated by evolutionary events from a β-conglutin precursor. Based on these results, LbAPI may have a dual function as storage protein, and as defense protein against H. hampei. These results provide a promising alternative to obtain a coffee plant resistant to H. hampei. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo
2015-01-01
The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. PMID:26092458
Tsurumaru, Hirohito; Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo
2015-09-01
The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad
2000-06-01
Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.
USDA-ARS?s Scientific Manuscript database
Previously, twelve protease-deficient mutants of Xanthomonas oryzae pv. oryzicola (Xoc) RS105 strain were recovered from a Tn5-tagged mutant library. In the current study, the Tn5 insertion site in each mutant was mapped. Mutations in genes encoding components of the type II secretion apparatus, cAM...
Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N
2006-03-01
The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.
Transcriptional Activation by Heat and Cold of a Thiol Protease Gene in Tomato
Schaffer, Mark A.; Fischer, Robert L.
1990-01-01
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases (MA Schaffer, RL Fischer [1988] Plant Physiol 87: 431-436). We now demonstrate that C14 mRNA accumulation is a response common to both high (40°C) and low (4°C) temperature stresses. Exposure of tomato fruit to 40°C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4°C, but slower than the induction of many heat shock messages by 40°C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667644
Chen, Wenjie; Kinsler, Veronica A.
2016-01-01
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS. PMID:27824929
van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein
2013-02-26
Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudreau, Nathalie; Brochu, Christian; Cameron, Dale R.
2008-06-30
The virally encoded NS3 protease is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. The design and synthesis of 15-membered ring {beta}-strand mimics which are capable of inhibiting the interactions between the HCV NS3 protease enzyme and its polyprotein substrate will be described. The binding interactions between a macrocyclic ligand and the enzyme were explored by NMR and molecular dynamics, and a model of the ligand/enzyme complex was developed.
New insights into the pathogenesis of IgA nephropathy.
Yeo, See Cheng; Cheung, Chee Kay; Barratt, Jonathan
2018-05-01
IgA nephropathy is the most common form of glomerulonephritis in many parts of the world and remains an important cause of end-stage renal disease. Current evidence suggests that IgA nephropathy is not due to a single pathogenic insult, but rather the result of multiple sequential pathogenic "hits". An abnormally increased level of circulating poorly O-galactosylated IgA1 and the production of O-glycan-specific antibodies leads to the formation of IgA1-containing immune complexes, and their subsequent mesangial deposition results in inflammation and glomerular injury. While this general framework has formed the foundation of our current understanding of the pathogenesis of IgA nephropathy, much work is ongoing to try to precisely define the genetic, epigenetic, immunological, and molecular basis of IgA nephropathy. In particular, the precise origin of poorly O-galactosylated IgA1 and the inciting factors for the production of O-glycan-specific antibodies continue to be intensely evaluated. The mechanisms responsible for mesangial IgA1 deposition and subsequent renal injury also remain incompletely understood. In this review, we summarize the current understanding of the key steps involved in the pathogenesis of IgA nephropathy. It is hoped that further advances in our understanding of this common glomerulonephritis will lead to novel diagnostic and prognostic biomarkers, and targeted therapies to ameliorate disease progression.
Pöggeler, S
2000-06-01
In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.
Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.
2014-01-01
Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Man; Li, Fu-gang; Xie, Xi-sheng
Highlights: • CagA stimulated cell proliferation and the production of IgA1 in DAKIKI cells. • CagA promoted the underglycosylation of IgA1 in DAKIKI cells. • CagA decreased the expression of C1GALT1 and its chaperone Cosmc in DAKIKI cells. • Helicobacter pylori infection may participate in the pathogenesis of IgAN via CagA. - Abstract: While Helicobacter pylori (Hp) infection is closely associated with IgA nephropathy (IgAN), the underlying molecular mechanisms remain to be elucidated. This study was to investigate the effect of cytotoxin associated gene A protein (CagA), a major virulence factor of Hp, on the production and underglycosylation of IgA1more » in the B cell line DAKIKI cells. Cells were cultured and treated with recombinant CagA protein. We found that CagA stimulated cell proliferation and the production of IgA1 in a dose-dependent and time-dependent manner. Moreover, CagA promoted the underglycosylation of IgA1, which at least partly attributed to the downregulation of β1,3-galactosyltransferase (C1GALT1) and its chaperone Cosmc. In conclusion, we demonstrated that Hp infection, at least via CagA, may participate in the pathogenesis of IgAN by influencing the production and glycosylation of IgA1 in B cells.« less
DNA vaccine encoding Haemonchus contortus actin induces partial protection in goats.
Yan, Ruofeng; Wang, Jingjing; Xu, Lixin; Song, Xiaokai; Li, Xiangrui
2014-10-01
Actin is a globular multi-functional protein that forms microfilaments, and participates in many important cellular processes. Previous study found that Haemonchus contortus actin could be recognized by the serum of goats infected with the homology parasite. This indicated that H. contortus actin could be a potential candidate for vaccine. In this study, DNA vaccine encoding H. contortus actin was tested for protection against experimental H. contortus infections in goats. Fifteen goats were allocated into three trial groups. The animals of Actin group were vaccinated with the DNA vaccine on day 0 and 14, and challenged with 5000 infective H. contortus third stage larval (L3) on day 28. An unvaccinated positive control group was challenged with L3 at the same time. An unvaccinated negative control group was not challenged with L3. The results showed that DNA vaccine were transcribed at local injection sites and expressed in vivo post immunizations respectively. For goats in Actin vaccinated group, higher levels of serum IgG, serum IgA and mucosal IgA were produced, the percentages of CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes and the concentrations of TGF-β were increased significantly (P<0.05). Following L3 challenge, the mean eggs per gram feces (EPG) and worm burdens of Actin group were reduced by 34.4% and 33.1%, respectively. This study suggest that recombinant H. contortus Actin DNA vaccine induced partial immune response and has protective potential against goat haemonchosis.
Cercós, M; Santamaría, S; Carbonell, J
1999-04-01
A cDNA clone encoding a thiol-protease (TPE4A) was isolated from senescent ovaries of pea (Pisum sativum) by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequence of TPE4A has the conserved catalytic amino acids of papain. It is very similar to VSCYSPROA, a thiol-protease induced during seed germination in common vetch. TPE4A mRNA levels increase during the senescence of unpollinated pea ovaries and are totally suppressed by treatment with gibberellic acid. In situ hybridization indicated that TPE4A mRNA distribution in senescent pea ovaries is different from that of previously reported thiol-proteases induced during senescence, suggesting the involvement of different proteases in the mobilization of proteins from senescent pea ovaries. TPE4A is also induced during the germination of pea seeds, indicating that a single protease gene can be induced during two different physiological processes, senescence and germination, both of which require protein mobilization.
A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.
Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F
2009-04-01
Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.
Schünemann, Katrin; Connelly, Stephen; Kowalczyk, Renata; Sperry, Jonathan; Wilson, Ian A; Fraser, John D; Brimble, Margaret A
2012-08-01
With over a 100 different serotypes, the human rhinovirus (HRV) is the major aetiological agent for the common cold, for which only symptomatic treatment is available. HRV maturation and replication is entirely dependent on the activity of a virally encoded 3C protease that represents an attractive target for the development of therapeutics to treat the common cold. Although a variety of small molecules and peptidomimetics have been found to inhibit HRV 3C protease, no universally compatible assay exists to reliably quantify the activity of the enzyme in vitro. Herein we report the development of a universal and robust solid phase peptide assay that utilizes the full HRV-14 3C protease recognition sequence and the release of 5(6)-carboxyfluorescein to sensitively quantify protease activity. This novel assay overcomes several limitations of existing assays allowing for the simple and efficient analysis of HRV-14 3C protease activity facilitating both high-throughput screening and the accurate kinetic study of HRV-14 3C protease inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Saibi, Walid; Zouari, Nabil; Masmoudi, Khaled; Brini, Faiçal
2016-04-01
Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases. Copyright © 2016 Elsevier B.V. All rights reserved.
Lindberg, Pia; Devine, Ellenor; Stensjö, Karin
2012-01-01
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less
Understanding serine proteases implications on Leishmania spp lifecycle.
Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza
2018-01-01
Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas
2014-01-01
Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629
Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J
1991-01-01
We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation. Images FIG. 1 PMID:1938892
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development
Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.
2014-01-01
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development1–3; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4)6 exhibit aninversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2)7,8, but not EPF1 (ref. 9), is induced in wild-type leaves but not inca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants. PMID:25043023
Yang, Jingjie; Leen, Eoin N.; Maree, Francois F.
2016-01-01
The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3Cpro). As in other picornaviruses, 3Cpro performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3Cpro from serotype A—one of the seven serotypes of FMDV—adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3Cpro amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3Cpro from SAT2/GHA/8/91. PMID:27168976
USDA-ARS?s Scientific Manuscript database
Listeria monocytogenes plays a significant role in human food-borne disease caused by eating food contaminated with the bacterium and although incidence is low it is a leading cause of life-threatening, bacterial food-borne disease in humans. L. monocytogenes serotypes 1/2a and 4b can form mixed-cu...
Van Loveren, H; Osterhaus, A D; Nagel, J; Schuurman, H J; Vos, J G
1988-09-01
This report describes procedures to quantify IgA responses in the rat sensitized to ovalbumin or infected with the parasite Trichinella spiralis: an ELISPOT detecting specific IgA antibody-producing cells in lymph nodes, and an ELISA demonstrating IgA antibody in serum and gut mucosal scrapings. For this purpose a mouse monoclonal anti-rat IgA antibody was produced. This IgG1-kappa 1 antibody recognized rat IgA but not rat IgM, IgG, or IgE. It proved very suitable in both assays. Using this reagent we could demonstrate large numbers of IgA anti-ovalbumin-producing cells in the mesenteric lymph nodes 15 days after sensitization to ovalbumin via the Peyer's patches. At 28 days after sensitization the numbers were much lower. IgA antibody titres to ovalbumin in serum were maximal between days 14 and 21 after immunization. Maximal numbers of IgA anti-T. spiralis-producing cells were found in the mesenteric lymph nodes 12 days after infection with muscle larvae, followed by a sharp decrease at 15 days. Maximal IgA anti-T. spiralis antibody titres in serum and mucus scrapings of small intestines were found on days 10 and 12 after oral infection with the parasite.
An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence
Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2016-01-01
A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles’ heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved. PMID:27625656
Hobbs, Marcia M.; Sparling, P. Frederick; Cohen, Myron S.; Shafer, William M.; Deal, Carolyn D.; Jerse, Ann E.
2011-01-01
Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea. PMID:21734909
Lafayette, Richard A.; Canetta, Pietro A.; Rovin, Brad H.; Appel, Gerald B.; Novak, Jan; Nath, Karl A.; Sethi, Sanjeev; Tumlin, James A.; Mehta, Kshama; Hogan, Marie; Erickson, Stephen; Julian, Bruce A.; Leung, Nelson; Enders, Felicity T.; Brown, Rhubell; Knoppova, Barbora; Hall, Stacy
2017-01-01
IgA nephropathy frequently leads to progressive CKD. Although interest surrounds use of immunosuppressive agents added to standard therapy, several recent studies have questioned efficacy of these agents. Depleting antibody–producing B cells potentially offers a new therapy. In this open label, multicenter study conducted over 1-year follow-up, we randomized 34 adult patients with biopsy–proven IgA nephropathy and proteinuria >1 g/d, maintained on angiotensin–converting enzyme inhibitors or angiotensin receptor blockers with well controlled BP and eGFR<90 ml/min per 1.73 m2, to receive standard therapy or rituximab with standard therapy. Primary outcome measures included change in proteinuria and change in eGFR. Median baseline serum creatinine level (range) was 1.4 (0.8–2.4) mg/dl, and proteinuria was 2.1 (0.6–5.3) g/d. Treatment with rituximab depleted B cells and was well tolerated. eGFR did not change in either group. Rituximab did not alter the level of proteinuria compared with that at baseline or in the control group; three patients in each group had ≥50% reduction in level of proteinuria. Serum levels of galactose-deficient IgA1 or antibodies against galactose-deficient IgA1 did not change. In this trial, rituximab therapy did not significantly improve renal function or proteinuria assessed over 1 year. Although rituximab effectively depleted B cells, it failed to reduce serum levels of galactose-deficient IgA1 and antigalactose–deficient IgA1 antibodies. Lack of efficacy of rituximab, at least at this stage and severity of IgA nephropathy, may reflect a failure of rituximab to reduce levels of specific antibodies assigned salient pathogenetic roles in IgA nephropathy. PMID:27821627
Lafayette, Richard A; Canetta, Pietro A; Rovin, Brad H; Appel, Gerald B; Novak, Jan; Nath, Karl A; Sethi, Sanjeev; Tumlin, James A; Mehta, Kshama; Hogan, Marie; Erickson, Stephen; Julian, Bruce A; Leung, Nelson; Enders, Felicity T; Brown, Rhubell; Knoppova, Barbora; Hall, Stacy; Fervenza, Fernando C
2017-04-01
IgA nephropathy frequently leads to progressive CKD. Although interest surrounds use of immunosuppressive agents added to standard therapy, several recent studies have questioned efficacy of these agents. Depleting antibody-producing B cells potentially offers a new therapy. In this open label, multicenter study conducted over 1-year follow-up, we randomized 34 adult patients with biopsy-proven IgA nephropathy and proteinuria >1 g/d, maintained on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers with well controlled BP and eGFR<90 ml/min per 1.73 m 2 , to receive standard therapy or rituximab with standard therapy. Primary outcome measures included change in proteinuria and change in eGFR. Median baseline serum creatinine level (range) was 1.4 (0.8-2.4) mg/dl, and proteinuria was 2.1 (0.6-5.3) g/d. Treatment with rituximab depleted B cells and was well tolerated. eGFR did not change in either group. Rituximab did not alter the level of proteinuria compared with that at baseline or in the control group; three patients in each group had ≥50% reduction in level of proteinuria. Serum levels of galactose-deficient IgA1 or antibodies against galactose-deficient IgA1 did not change. In this trial, rituximab therapy did not significantly improve renal function or proteinuria assessed over 1 year. Although rituximab effectively depleted B cells, it failed to reduce serum levels of galactose-deficient IgA1 and antigalactose-deficient IgA1 antibodies. Lack of efficacy of rituximab, at least at this stage and severity of IgA nephropathy, may reflect a failure of rituximab to reduce levels of specific antibodies assigned salient pathogenetic roles in IgA nephropathy. Copyright © 2017 by the American Society of Nephrology.
Petersen, Lauren M.
2014-01-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493
Yamazaki, Tatsuya; Nagashima, Maria; Ninomiya, Daisuke; Ainai, Akira; Fujimoto, Akira; Ichimonji, Isao; Takagi, Hidekazu; Morita, Naoko; Murotani, Kenta; Hasegawa, Hideki; Chiba, Joe; Akashi-Takamura, Sachiko
2018-01-01
The influenza virus causes annual epidemics and occasional pandemics and is thus a major public health problem. Development of vaccines and antiviral drugs is essential for controlling influenza virus infection. We previously demonstrated the use of vectored immune-prophylaxis against influenza virus infection. We generated a plasmid encoding neutralizing IgG monoclonal antibodies (mAbs) against A/PR/8/34 influenza virus (IAV) hemagglutinin (HA). We then performed electroporation of the plasmid encoding neutralizing mAbs (EP) in mice muscles and succeeded in inducing the expression of neutralizing antibodies in mouse serum. This therapy has a prophylactic effect against lethal IAV infection in mice. In this study, we established a new method of passive immunotherapy after IAV infection. We performed hydrodynamic injection of the plasmid encoding neutralizing mAbs (HD) involving rapid injection of a large volume of plasmid-DNA solution into mice via the tail vein. HD could induce neutralizing antibodies in the serum and in several mucosal tissues more rapidly than in EP. We also showed that a single HD completely protected the mice even after infection with a lethal dose of IAV. We also established other isotypes of anti-HA antibody (IgA, IgM, IgD, and IgE) and showed that like anti-HA IgG, anti-HA IgA was also effective at combating upper respiratory tract IAV infection. Passive immunotherapy with HD could thus provide a new therapeutic strategy targeting influenza virus infection. PMID:29416543
Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A
2018-06-01
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development.
Engineer, Cawas B; Ghassemian, Majid; Anderson, Jeffrey C; Peck, Scott C; Hu, Honghong; Schroeder, Julian I
2014-09-11
Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of how plants perceive and relay the elevated CO2 signal and provides a framework to guide future research into how environmental challenges can modulate gas exchange in plants.
Fecal antibodies to Cryptosporidium parvum in healthy volunteers.
Dann, S M; Okhuysen, P C; Salameh, B M; DuPont, H L; Chappell, C L
2000-09-01
This study examined the intestinal antibody response in 26 healthy volunteers challenged with Cryptosporidium parvum oocysts. Fecal extracts were assayed for total secretory immunoglobulin A (IgA) and C. parvum-specific IgA reactivity. Specific IgA reactivity was standardized to IgA concentration and expressed as a reactivity index (RI). Anti-C. parvum fecal IgA (fIgA) increased significantly in 17 of 26 (65.4%) following oocyst ingestion. Of those with detectable responses, 59, 76.5, and 94.1% were positive by days 7, 14, and 30, respectively. Volunteers receiving high challenge doses (>1,000 and 300 to 500 oocysts) had higher RIs (RI = 5.57 [P = 0. 027] and RI = 1.68 [P = 0.039], respectively) than those ingesting low doses (30 to 100 oocysts; RI = 0.146). Subjects shedding oocysts and experiencing a diarrheal illness had the highest fIgA reactivity. When evaluated separately, oocyst excretion was associated with an increased fIgA response compared to nonshedders (RI = 1.679 versus 0. 024, respectively; P = 0.003). However, in subjects experiencing diarrhea with or without oocyst shedding, a trend toward a higher RI (P = 0.065) was seen. Extracts positive for fecal IgA were further examined for IgA subclass. The majority of stools contained both IgA1 and IgA2, and the relative proportions did not change following challenge. Also, no C. parvum-specific IgM or IgG was detected in fecal extracts. Thus, fecal IgA to C. parvum antigens was highly associated with infection in subjects who had no evidence of previous exposure and may provide a useful tool in detecting recent infections.
Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis
Lee, Sang Eun; Jeong, Se Kyoo
2010-01-01
Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045
Low pretransplant IgA level is associated with early post-lung transplant seromucous infection.
Murthy, Sudish C; Avery, Robin K; Budev, Marie; Gupta, Sandeep; Pettersson, Gösta B; Nowicki, Edward R; Mehta, Atul; Chapman, Jeffrey T; Rajeswaran, Jeevanantham; Blackstone, Eugene H
2018-04-13
Infection is an important cause of morbidity and mortality after lung transplantation. Immunoglobulins are part of both seromucous (IgA) and serum (IgG) infection defense mechanisms. We therefore hypothesized that lower pretransplant IgA levels would be associated with more early post-lung transplant seromucous infections and greater mortality independent of IgG. From January 2000 to July 2010, 538 patients undergoing primary lung transplantation had pretransplant IgA (n = 429) and IgG (n = 488) measured as a clinical routine. Median IgA was 200 mg·dL -1 (2% < 70 mg·dL -1 , lower limit of normal); median IgG was 970 mg·dL -1 (5% < 600 mg·dL -1 ). Intensive microbiology review was used to categorize infections and their causative organisms within the first posttransplant year. In total, 397 seromucous infections were observed in 247 patients, most bacterial. Although IgA and IgG were moderately correlated (r = 0.5, P < .0001), low pretransplant IgA was a strong risk factor (P = .01) for seromucous infections, but pretransplant IgG was not (P ≥ .6). As pretransplant IgA levels fell below 200 mg·dL -1 , the risk of these posttransplant infections rose nearly linearly. Lower pretransplant levels of IgA were associated with greater posttransplant mortality to end of follow-up (P = .004), but pretransplant IgG was not (P ≥ .3). Low levels of preoperative IgA, an important immunoglobulin involved in mucosal immunologic defense, but not IgG, are associated with seromucous infections in the year after lung transplantation and increased follow-up mortality. It would appear prudent to identify patients with relative IgA deficiency at listing and to increase vigilance of monitoring for, and prophylaxis against, seromucous infection in this high-risk population. Copyright © 2018. Published by Elsevier Inc.
[Identification and characterization of proteins from human bronchial secretion (author's transl)].
Laine, A; Hayem, A
1976-03-01
An analysis of bronchial mucus proteins was carried out by crossed immunoelectrophoresis. Before electrophoretic migration, sputum was treated with Ecteola-cellulose, which retains acid mucins. The proteins were then extracted by a phosphate/saline buffer pH 7.5. Crossed immunoelectrophoresis of the "bronchial extracts" was carried out with an anti-human serum: fifteen proteins were detected. Among them, IgA and protease inhibitiors play an important role in bronchial pathology. Bronchial extracts were also studied with immune serums against milk proteins, whole saliva and proteins of bronchial mucus. Bronchotransferrin, amylase and two esterases were characterized. Four other proteins were also detected with immune serums against bronchial mucus-proteins: their biological role is still unknown.
De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain
2016-01-01
ABSTRACT Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates. PMID:27822542
Tran, Van Du T; De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain; Pagni, Marco; Monod, Michel
2016-01-01
Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae . Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum . IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete's foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae . Comparing gene expression during infection on guinea pigs with keratin degradation in vitro , which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo , encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates.
Al-Eisa, Amal; Dhaunsi, Gursev S
2017-01-01
Glomerulonephritis due to mesangial proliferation is responsible for renal dysfunction in IgA nephropathy (IgAN), however molecular mechanisms of pathogenesis are not well known. We examined the effect of IgA on Insulin-like Growth Factor-1 (IGF-1) activity, a potent mitogen with vital role in growth and development of children, and IGF-1 receptor (IGF-1R) in cultures of glomerular mesangial cells (GMC). GMC were isolated from rat kidneys using sieving and enzymatic digestion of tissue homogenates, and cultured in RPMI 1640 medium. GMC cultures were treated with IgA (0-10 µg/ml) in the presence or absence of IGF-1 and fetal bovine serum (FBS), and BrdU incorporation was measured. IGF-1 levels were assayed along with real-time PCR quantification of IGF-1R mRNA. Treatment of GMC with IgA (5 -10 µg/ml) significantly (p < 0.01) increased the BrdU incorporation in the presence or absence of FBS or IGF-1. IgA-mediated effects were more pronounced in IGF-1 treated cells that were significantly (p < 0.01) blocked by pretreatment of cells with IGF-1 receptor antibody or genistein. IgA significantly increased the levels of IGF-1 in culture supernatants and GMC homogenates. IGF-1R mRNA was significantly (p < 0.01) increased in IgA treated cells particularly by co-treatment with IGF-1. These findings show that IgA enhances the IGF-1 activity in GMC via stimulation of IGF-1R gene transcription and suggest a role for IGF-1 in pathogenesis of IgAN. © 2017 The Author(s). Published by S. Karger AG, Basel.
Mazdeh, Mehrdokht; Komaki, Alireza; Omrani, Mir Davood; Gharzi, Vajihe; Sayad, Arezou; Taheri, Mohammad; Ghafouri-Fard, Soudeh
2018-06-02
Beta-secretase 1 (BACE1) gene encodes a transmembrane protease from the peptidase A1 family of aspartic proteases whose role in the pathogenesis of Alzheimer's disease has been assessed. The enzymatic activity of BACE1 on several proteins implicated in epileptogenesis implies its role in the pathogenesis of epilepsy. In the present study, we assessed expression of BACE1 and its naturally occurring antisense (BACE1-AS) in peripheral blood of 40 epileptic patients and 40 age- and sex-matched healthy subjects. We did not detect either any difference in the expression of these genes between cases and controls or significant correlation between their expressions and participants' age. However, we demonstrated a significant correlation between expression levels of BACE1 and BACE1-AS which supports the previously suggested feed-forward mechanism of regulation between these two transcripts. Future studies in larger sample sizes are needed to elaborate the function of BACE1 in epilepsy.
Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency
Maruya, Mikako; Kawamoto, Shimpei; Kato, Lucia M.; Fagarasan, Sidonia
2013-01-01
A major function of immunoglobulin A (IgA) is to maintain balanced bacterial communities in the gut. We have previously shown that diversification of IgA upon somatic hypermutation (SHM) is critical for IgA function yet the principles governing the selection of IgA in the gut have remained elusive. Here we discuss recent progress in understanding this process as revealed by our studies in mice that lack the inhibitory co-receptor programmed cell death–1 (PD-1). We found that PD-1 affects the dynamics of germinal center (GC) B cells by controlling the number and the nature of T helper cells in the Peyer’s patches (PPs). Deregulation of the T cell compartment impacts the selection of IgA plasma cells leading to gut dysbiosis. When the PD-1-dependent checkpoint is missing, gut bacteria go beyond the mucosal barrier and induce systemic GCs that can generate antibodies with auto-reactive properties. PMID:23333864
Musich, Thomas; Demberg, Thorsten; Morgan, Ian L; Estes, Jacob D; Franchini, Genoveffa; Robert-Guroff, Marjorie
2015-06-01
Vaccine-induced mucosal antibodies are often evaluated using small volumes of secretory fluids. However, fecal matter containing mucosal IgA is abundant. We purified fecal IgA from five SIV-vaccinated and five SIV-infected rhesus macaques by sequential affinity chromatography. The purified IgA was dimeric by native PAGE, contained secretory component, and was analogous to IgA in colostrum and vaginal fluid by western blot. IgA from one infected and four vaccinated animals neutralized H9-derived SIV(mac)251 with IC(50)s as low as 1 μg/mL. Purified IgAs inhibited transcytosis and exhibited phagocytic activity, the latter significantly correlated with SIV(mac)251 Env-specific IgA in the purified samples. Among different affinity resins, peptide M was optimal compared to jacalin, anti-monkey IgA and SSL7 for IgA purification, as confirmed using tandem peptide M/anti-monkey IgA columns. Fecal IgA provided material sufficient for several assays relevant to protective efficacy, and was shown to be multifunctional. Our approach is potentially applicable to human clinical studies. Published by Elsevier Inc.
Williamson, Danielle M; Elferich, Johannes; Shinde, Ujwal
2015-09-18
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Mitsui, Shinichi; Okui, Akira; Kominami, Katsuya; Konishi, Eiichi; Uemura, Hidetoshi; Yamaguchi, Nozomi
2005-10-01
We have isolated a cDNA that encodes a novel serine protease, prosemin, from human brain. The cDNA of human prosemin is 1306 bp, encoding 317 amino acids. It showed significant homology with the sequence of a chromosome 16 cosmid clone (accession no. NT_037887.4). The prosemin gene contains six exons and five introns. The amino acid sequence of prosemin shows significant homology to prostasin, gamma-tryptase, and testisin (43%, 41%, and 38% identity, respectively), the genes of which are also located on chromosome 16. Northern hybridization showed that prosemin is expressed predominantly in the pancreas and weakly in the prostate and cerebellum. However, western blot and RT-PCR analyses showed that prosemin is expressed and secreted from various kinds of cancer cells, such as glioma, pancreas, prostate, and ovarian cell lines. Prosemin is secreted in the cystic fluid of clinical ovarian cancers. Furthermore, immunohistochemistry showed prosemin protein localized in the apical parts of ovarian carcinomas. Recombinant prosemin was expressed in COS cells and was purified by immunoaffinity chromatography. Recombinant prosemin preferentially cleaved benzyloxycarbonyl (Z)-His-Glu-Lys-methylcoumaryl amidide (MCA) and t-butyloxycarbonyl (Boc)-Gln-Ala-Arg-MCA. Our results suggest that prosemin is a novel serine protease of the chromosome 16 cluster that is highly expressed in the pancreas. The usefulness of this serine protease as a candidate tumor marker should be further examined.
NASA Astrophysics Data System (ADS)
de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.
2010-08-01
Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-01-01
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. PMID:26363073
Patel, Manish; Glass, Roger I; Jiang, Baoming; Santosham, Mathuram; Lopman, Ben; Parashar, Umesh
2013-07-15
Identifying an immunological correlate of protection for rotavirus vaccines (Rotarix [RV1] and RotaTeq [RV5]) would substantially facilitate testing of interventions for improving efficacy in developing countries and evaluating additional candidate rotavirus vaccines. We accessed PubMed and ClinicalTrials.gov to identify immunogenicity and efficacy trials for RV1 and RV5 to correlate anti-rotavirus serum immunoglobulin A (IgA) antibody titers vs efficacy in regions stratified by all-cause under-5 mortality rates (u5MR). We established a cutoff point for IgA geometric mean concentration or titer (GMC) that predicted lower efficacy and calculated pooled vaccine efficacy among countries with high vs low IgA titers. We observed an inverse correlation between u5MR and IgA titers for RV1 (r(2) = 0.72; P < .001 and RV5 (r(2) = 0.66; P < .001) and between efficacy and IgA titers for both vaccines (r(2) = 0.56; P = .005). Postimmunization anti-rotavirus IgA GMC <90 were associated with decline in vaccine efficacy. Efficacy during first 2 years of life was significantly lower among countries with IgA GMC < 90 (44%; 95% confidence interval [CI], 30-55) compared to countries with GMC > 90 (85%; 95% CI, 82-88). We observed a significant correlation between IgA titers and rotavirus vaccine efficacy and hypothesize that a critical level of IgA antibody titer is associated with a sufficient level of sustained protection after rotavirus vaccination.
Is the simian virus SV40 associated with idiopathic focal segmental glomerulosclerosis in humans?
Galdenzi, Gabriella; Lupo, Antonio; Anglani, Franca; Perini, Marino; Galeazzi, Luciano; Giunta, Sergio; Marcantoni, Carmelita; Del Prete, Dorella; Graziotto, Romina; D'angelo, Angela; Maschio, Giuseppe; Gambaro, Giovanni
2003-01-01
Glomerulosclerosis was reported in mice transgenic for the simian polyomavirus SV40 early region that contains the transforming sequences encoding the SV40 large T-antigen (TAG). This was discovered when an SV40 epidemic occurred following the use of contaminated polio vaccines during 1955-1963, and led to investigations that showed an association between SV40 infection and tumors in humans. We investigated the possible association of SV40 infection and idiopathic focal segmental glomerulosclerosis (FSGS). The study was performed in 17 Bouin-fixed, paraffin-embedded renal biopsies from FSGS patients and 10 matched biopsies from patients with IgA glomerulonephritis; all patients had undergone polio vaccination in the early 1960s. Extracted DNA was polymerase chain reaction (PCR) amplified using SV.for3/SV.rev primers and GabE1/GabE2 primers; both sets of primers map in the region of SV40 TAG sequences, and amplify a fragment of respectively 105-bp and 135-bp. The biopsies considered were those in which the DNA was sufficiently intact to allow amplification of a fragment of 102-bp of the ApoE gene. Three FSGS and none of the IgA biopsies were positive for the SV.for3/SV.rev fragment. Conversely, amplification with GabE1/GabE2 primers did not lead to any specific product in either the IgA or FSGS biopsies. Restriction fragment length polymorphism and sequencing analyses revealed that the positive results obtained with the SV.for3/SV.rev primers were due to amplicons generated by multiple dimerization of forward and reverse primers. With the limited number of patients investigated, this study excludes the hypothesis that SV40 is associated with idiopathic FSGS.
Spontaneous remission of IgA nephropathy associated with resolution of hepatitis A.
Han, Seung Hyeok; Kang, Ea Wha; Kie, Jeong Hae; Yoo, Tae Hyun; Choi, Kyu Hun; Han, Dae-Suk; Kang, Shin-Wook
2010-12-01
Although most cases of immunoglobulin A (IgA) nephropathy are idiopathic, several diseases are associated with IgA nephropathy. Of these, chronic liver disease resulting from hepatitis B or C virus infection has been reported as a secondary cause of IgA nephropathy. Recently, hepatitis A virus (HAV)-associated kidney disease has received attention because acute kidney injury can occur as a complication of HAV infection, generally caused by acute tubular necrosis or interstitial nephritis. However, unlike IgA nephropathy related to hepatitis B or C, HAV-associated IgA nephropathy is extremely rare and long-term outcomes have not been reported yet. We describe a case of spontaneous remission of IgA nephropathy associated with serologically documented HAV infection. The patient presented with microhematuria and moderate proteinuria, but acute kidney injury did not occur during active hepatic injury. Kidney biopsy specimens clearly showed mesangial IgA deposits with intact tubules and interstitium. Serum liver enzyme levels returned to reference values 1 month after the onset of acute hepatitis, but urinary protein excretion remained increased. Approximately 1 year later, urinary abnormalities were resolved and a second biopsy showed no mesangial IgA deposits. These findings suggest that IgA nephropathy can transiently accompany HAV infection, but may not progress to chronic glomerulonephritis after recovery from HAV. Copyright © 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling
Jin, Jin; Xiao, Yichuan; Chang, Jae-Hoon; Yu, Jiayi; Hu, Hongbo; Starr, Robyn; Brittain, George C.; Chang, Mikyoung; Cheng, Xuhong; Sun, Shao-Cong
2012-01-01
Immunoglobulin (Ig) class switching is crucial for generating antibody diversity in humoral immunity and, if deregulated, also has severe pathological consequences. How the magnitude of Ig isotype switching is controlled is still poorly understood. Here we identify TANK-binding kinase 1 (TBK1) as a pivotal negative regulator of IgA class switching. B cell-specific TBK1 ablation in mice resulted in uncontrolled production of IgA and development of nephropathy-like disease symptoms. TBK1 negatively regulated IgA class switching by attenuating noncanonical NF-κB signaling, an action that involved TBK1-mediated phosphorylation and subsequent degradation of the NF-κB-inducing kinase. These findings establish TBK1 as a pivotal negative regulator of the noncanonical NF-κB pathway and highlight a unique mechanism that controls IgA production. PMID:23023393
Thrombin enhances herpes simplex virus infection of cells involving protease-activated receptor 1.
Sutherland, M R; Friedman, H M; Pryzdial, E L G
2007-05-01
We have previously shown that the surface of purified herpes family viruses can initiate thrombin production by expressing host-encoded and virus-encoded procoagulant factors. These enable the virus to bypass the normal cell-regulated mechanisms for initiating coagulation, and provide a link between infection and vascular disease. In the current study we investigated why these viruses may have evolved to generate thrombin. Using cytolytic viral plaque assays, the current study examines the effect of thrombin on human umbilical vein endothelial cell (HUVEC) or human foreskin fibroblast (HFF) infection by purified herpes simplex virus type 1 (HSV1) and type 2 (HSV2). Demonstrating that the availability of thrombin is an advantage to the virus, purified thrombin added to serum-free inoculation media resulted in up to a 3-fold enhancement of infection depending on the virus strain and cell type. The effect of thrombin on HUVEC infection was generally greater than its effect on HFF. To illustrate the involvement of thrombin produced during inoculation, hirudin was shown to inhibit the infection of each HSV strain, but only when serum containing clotting factors for thrombin production was present in media. The involvement of protease-activated receptor 1 (PAR1) was supported using PAR1-activating peptides in place of thrombin and PAR1-specific antibodies to inhibit the effects of thrombin. These data show that HSV1 and HSV2 initiate thrombin production to increase the susceptibility of cells to infection through a mechanism involving PAR1-mediated cell modulation.
Wang, S Y; Gudas, L J
1990-09-15
We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.
Segarra, A
2010-01-01
Progress in understanding the pathogenesis of IgA nephropathy has shown that probably there is no a single IgA nephropathy with the same pathogenic mechanism, clinical course and response to therapy. The evidence currently available suggests the existence of at least two possible mechanisms of IgA deposition in the renal mesangium. In a small percentage of patients, mesangial deposition of IgA1 colocalizes with secretory component, indicating that the deposited IgA1 in glomeruli originates completely or partly in the mucose-associated lymphoid tissue. This deposition pattern has been associated with activation of complement by the lectin pathway and has been associated with a worse prognosis, although this last statement needs to be confirmed in long-term studies. The mechanisms responsible for secretory IgA deposition are not known. In the majority of patients with IgA nephropathy secretory component is not detectable in the mesangium. In these cases, the presence of elevated circulating levels of galactose-deficient IgA, produced by bone marrow plasma cells would be a predisposing factor but not sufficient to induce nephropathy. To produce kidney disease, galactose-deficient IgA1 must be deposited in the renal mesangium, and once there, either by interaction with specific receptors (CD71?), by direct activation of complement or by being the target of an IgG autoimmune response anti-IgA, induce activation, proliferation and increased mesangial matrix synthesis and eventually cell injury. In parallel, galactose-deficient IgA, through interaction with the RR Fc alpha/gamma, may activate circulating lymphocytes and monocytes and enhance their response to chemoattractants produced by the mesangial cell, causing, thus, the inflammatory infiltrate to initiate and maintain the interstitial injury. In the next few years, advances recently added to the knowledge of the pathogenesis of nephropathy IgA1 could provide new variables that allow walking in the direction of having a classification of patients based not only in clinical and morphological criteria but also having a greater pathogenic basis.
Noureldin, Mohamed S; el-Ganaini, Goman A; Abou El-Enin, Ahmed M; el-Nemr, Hosam-Eldin I; Hussin, Eman M; Sultan, Doaa M
2004-08-01
Seven assays detecting serum IgM, IgG, IgG1, IgG4, IgA and salivary and fecal excretory IgA against Fasciola excretory/secretory (ES) antigens were evaluated in diagnosing fascioliasis, for cross reactivity with Schistosoma mansoni sera and for evaluation of cure of Fasciola infection after treatment. Assays detecting sera IgM, IgG1, IgG4 and IgA against Fasciola ES antigens showed 100% specificity and sensitivity. Assays detecting IgM and IgG showed 98% and 96% sensitivity and 100% and 94.6% specificity respectively. Assays detecting salivary and faecal IgA showed 92% & 96% sensitivity and 100% & 100% specificity respectively. Assays detecting IgM and IgG4 were the best in evaluation of cure and assays detecting IgG4 & IgA showed the lowest cross-reactivity with sera from S. mansoni infected patients. So, assays detecting serum IgA, IgG1 & IgG4 against Fasciola ES antigens were highly sensitive and specific for diagnosis of fascioliasis and assays detecting salivary and faecal IgA were promising and of great help in diagnosis of fascioliasis especially in epidemiologic studies.
Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.
Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G
2004-10-01
The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.
Camacho, M T; Outschoorn, I; Echevarría, C; Kovácová, E; Yebra, M; Maté, I; Auffray, P; Téllez, A
1998-07-01
The progression of Coxiella burnetii infection to acute or chronic Q fever has been attributed to biological characteristics of the bacterium and to the host immune response. We measured whether serum levels of total and specific subclasses IgA1 and IgA2 could be correlated with the course of disease in acute and chronic Q fever infections, and with the occurrence of endocarditis. In patients with chronic infection, total IgA2 levels were significantly increased. Q-fever-specific IgA1 antibodies were detectable in both acute and chronic infections, but only patients with endocarditis had IgA2 antibodies to C. burnetii phase II antigens. These findings indicate that the measurement of IgA subclasses may be a useful aid in the serological diagnosis of Q fever. Our results reinforce the idea that immunologically mediated host factors are important in the pathogenesis of Q fever and in the disease outcome of this infection. Copyright 1998 Academic Press.
Jiang, Min; Fang, Jing; Peng, Xi; Cui, Hengmin; Yu, Zhengqiang
2015-01-01
Aflatoxin B1 (AFB1) is the most toxic group of mycotoxins produced by two species of the Aspergillus, common contaminants of food and animal feed. The purpose of our study was to determine the effect of AFB1 on the number of IgA(+) cell and immunoglobulin mRNA expression in the intestine of broilers. One hundred and fifty six one-day-old healthy Cobb broilers were randomly divided into the control group (the dosage of 0 mg/kg AFB1) and AFB1 group (the dosage of 0.6 mg/kg AFB1) with three replicates per group and 26 birds per replicate for 21 days, respectively. After necropsy at 7, 14 and 21 days of age, duodenum, jejunum and ileum samples were taken for analyzing IgA(+) cell by immunohistochemistry and IgA, pIgR, IgM and IgG mRNA expression by qRT-PCR. IgA(+) cells were mainly distributed in the lamina propria of small intestinal mucosa in both groups at 14 and 21 days of age. A significant decrease in the number of IgA(+) cells in the duodenum, jejunum and ileum was revealed in the AFB1 group compared with that of the control group. The expression levels of IgA, pIgR, IgM and IgG mRNA in the intestinal mucosa were lower in the AFB1 group than those in the control group at 14 and 21 days of age. Our data demonstrated that the dosage of 0.6 mg/kg AFB1 in broiler diet reduced the number of IgA(+) cell and the expression of IgA, pIgR, IgM and IgG mRNA in the small intestine.
Enhancement of intestinal IgA production by Ajoene in mice.
Washiya, Yuki; Nishikawa, Tomoaki; Fujino, Tsuchiyoshi
2013-01-01
We investigated the effects of ajoene on intestinal IgA production. Ajoene (1.35, 4.5, and 13.5 µg/kg/d) was administered to mice for 4 weeks. The fecal IgA level in the 13.5 µg/kg/d group increased after 3 weeks. The intestinal IgA level also increased in a dose-dependent manner upon ajoene administration. An oil-macerated garlic extract, with 1500 µg/g of ajoene, enhanced the intestinal IgA production.
Using ensemble of classifiers for predicting HIV protease cleavage sites in proteins.
Nanni, Loris; Lumini, Alessandra
2009-03-01
The focus of this work is the use of ensembles of classifiers for predicting HIV protease cleavage sites in proteins. Due to the complex relationships in the biological data, several recent works show that often ensembles of learning algorithms outperform stand-alone methods. We show that the fusion of approaches based on different encoding models can be useful for improving the performance of this classification problem. In particular, in this work four different feature encodings for peptides are described and tested. An extensive evaluation on a large dataset according to a blind testing protocol is reported which demonstrates how different feature extraction methods and classifiers can be combined for obtaining a robust and reliable system. The comparison with other stand-alone approaches allows quantifying the performance improvement obtained by the ensembles proposed in this work.
Mallo, N; DeFelipe, A P; Folgueira, I; Sueiro, R A; Lamas, J; Leiro, J M
2017-02-01
The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 μm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis. © 2016 John Wiley & Sons Ltd.
Yagame, M; Tomino, Y; Miura, M; Tanigaki, T; Suga, T; Nomoto, Y; Sakai, H
1987-01-01
The detection of circulating immune complexes (CIC) in sera from patients with IgA nephropathy is described. A solid-phase anti-C3 Facb enzyme immunoassay (EIA) was employed for detection of IgA-, IgG- and IgM-CIC in sera. The C1q-binding enzyme assay was also used for the detection of CIC in sera from these patients and healthy adults. Twenty-two patients with IgA nephropathy, 14 patients with other glomerular diseases and 19 healthy adults were examined by anti-C3 Facb EIA. The levels of IgA-CIC in sera from patients with IgA nephropathy were significantly higher than those in sera from patients with other glomerular diseases and healthy adults. CIC measured by the C1q-binding enzyme assay was detected in some patients with IgA nephropathy. The levels of serum IgA in patients with IgA nephropathy were significantly higher than those in patients with other glomerular diseases and healthy adults. However, there was no significant correlation between the levels of IgA-CIC in sera and those of serum IgA in patients with IgA nephropathy. There was also no significant correlation between the levels of IgA-CIC in sera and the degree of histopathological injuries in the patients. It is concluded that the solid-phase anti-C3 Facb EIA is useful for the detection of IgA-CIC in sera from patients with IgA nephropathy. PMID:3301093
Zhao, Yaofeng; Cui, Huiting; Whittington, Camilla M; Wei, Zhiguo; Zhang, Xiaofeng; Zhang, Ziding; Yu, Li; Ren, Liming; Hu, Xiaoxiang; Zhang, Yaping; Hellman, Lars; Belov, Katherine; Li, Ning; Hammarström, Lennart
2009-09-01
The evolutionary origins of mammalian immunoglobulin H chain isotypes (IgM, IgD, IgG, IgE, and IgA) are still incompletely understood as these isotypes differ considerably in structure and number from their counterparts in nonmammalian tetrapods. We report in this study that the platypus (Ornithorhynchus anatinus) Ig H chain constant region gene locus contains eight Ig encoding genes, which are arranged in an mu-delta-omicron-gamma2-gamma1-alpha1-epsilon-alpha2 order, spanning a total of approximately 200 kb DNA, encoding six distinct isotypes. The omicron (omicron for Ornithorhynchus) gene encodes a novel Ig H chain isotype that consists of four constant region domains and a hinge, and is structurally different from any of the five known mammalian Ig classes. This gene is phylogenetically related to upsilon (epsilon) and gamma, and thus appears to be a structural intermediate between these two genes. The platypus delta gene encodes ten heavy chain constant region domains, lacks a hinge region and is similar to IgD in amphibians and fish, but strikingly different from that in eutherian mammals. The platypus Ig H chain isotype repertoire thus shows a unique combination of genes that share similarity both to those of nonmammalian tetrapods and eutherian animals and demonstrates how phylogenetically informative species can be used to reconstruct the evolutionary history of functionally important genes.
Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica
2012-02-15
An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach. Copyright © 2011 Elsevier B.V. All rights reserved.
Kihara, A; Akiyama, Y; Ito, K
1997-05-27
The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.
Mendoza-Palomares, Carlos; Biteau, Nicolas; Giroud, Christiane; Coustou, Virginie; Coetzer, Theresa; Authié, Edith; Boulangé, Alain; Baltz, Théo
2008-01-01
Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis. PMID:18281598
de Macedo, Alexandre C; Guimarães, Juliana A; Rodrigues, Raphael O; Araújo, Thiago D V; Tavares, Clodis M; Cabral, Paula B; de Moraes-Pinto, Maria Isabel; Nagao-Dias, Aparecida T
2018-03-01
The aim of this study was to compare serum anti-phenolic glycolipid-1 IgA, IgG, and IgM levels in leprosy patients and controls. Analysis of anti-PGL-1 IgA, IgG, or IgM in serum samples from multibacillary (MB, n=32) and paucibacillary (PB, n=22) leprosy patients, and in non-endemic controls (n=17), using an indirect enzyme-linked immunosorbent assay. A strong correlation between serum IgM and IgA isotypes was found (r=.745, P<.0001) in MB patients. A moderate correlation was found in all analyses in PB patients. A moderate agreement was found between anti-PGL1 IgA and IgM tests. Based on the ROC curves, the cut-off values were selected and the parameters of validation were calculated. Considering the clinical forms altogether, the diagnostic sensitivities were 50.0% for IgA, 22.2% for IgG, and 74.1% for IgM. The positive (VPP) and negative (VPN) predictive values were estimated for each isotype. For IgA, the VPP and VPN were, respectively, 100.0% (87.0%-100.0%; 95% confidence interval) and 38.7% (24.4%-54.5%); for IgG, 100% (87.0%-100.0%) and 28.8% (17.8%-42.1%), respectively; and for IgM, 95.2% (83.8%-99.4%) and 51.7% (32.5%-70.6%), respectively. Despite the limiting factors, anti-PGL1 IgA correlates to IgM levels and it could be considered as a possible laboratorial tool to be also used, for instance, in serological follow-up studies. © 2017 Wiley Periodicals, Inc.
Abdul-Wahid, Aws; Faubert, Gaétan
2007-12-05
In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.
Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.
Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun
2012-12-21
In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.
LeMosy, E K; Leclerc, C L; Hashimoto, C
2000-01-01
The nudel gene of Drosophila is maternally required both for structural integrity of the egg and for dorsoventral patterning of the embryo. It encodes a structurally modular protein that is secreted by ovarian follicle cells. Genetic and molecular studies have suggested that the Nudel protein is also functionally modular, with a serine protease domain that is specifically required for ventral development. Here we describe biochemical and immunolocalization studies that provide insight into the molecular basis for the distinct phenotypes produced by nudel mutations and for the interactions between these alleles. Mutations causing loss of embryonic dorsoventral polarity result in a failure to activate the protease domain of Nudel. Our analyses support previous findings that catalytic activity of the protease domain is required for dorsoventral patterning and that the Nudel protease is auto-activated and reveal an important role for a region adjacent to the protease domain in Nudel protease function. Mutations causing egg fragility and early embryonic arrest result in a significant decrease in extracellular Nudel protein, due to defects in post-translational processing, stability, or secretion. On the basis of these and other studies of serine proteases, we suggest potential mechanisms for the complementary and antagonistic interactions between the nudel alleles. PMID:10628985
Does low IgA in human milk predispose the infant to development of cow's milk allergy?
Järvinen, K M; Laine, S T; Järvenpää, A L; Suomalainen, H K
2000-10-01
We sought a relationship between total and cow's milk-specific IgA levels in colostrum and human milk and subsequent development of cow's milk allergy (CMA) in the breast-fed infant. The study included 87 nursing mothers and their infants (age, 2 d to 7 mo), followed prospectively up to 1 y. At 1 y, 48 mothers (69% with an atopic constitution) had an infant with CMA, verified by clinical cow's milk challenge, eight (38% with an atopic constitution) had a baby who had had protracted infantile colic but no CMA (disease control group), and 31 (23% with an atopic constitution) had a healthy infant. Total breast-milk IgA was measured by radial immunodiffusion, and IgA antibodies to cow's milk were measured by ELISA during the breast-feeding period. The levels of total and cow's milk-specific IgA antibodies in colostrum and human milk were significantly lower in the mothers whose baby later developed CMA [estimated third day value, 0.38 g/L (95% confidence interval, 0. 24-0.82)] than in the ones whose infant remained healthy or had had infantile colic but not CMA [0.82 g/L (95% confidence interval, 0. 99-1.51); p < 0.05]. The infants developed CMA significantly more often if the concentration of total IgA antibodies in milk was <0.25 g/L, when measured between 6 d and 4 wk postpartum [sensitivity, 0. 55; specificity, 0.92; odds ratio, 14.7 (95% confidence interval, 3. 1-70.2); p < 0.001]. The levels of cow's milk-specific IgA positively correlated with the levels of total IgA but not with the development of CMA in the infant. The levels of total or cow's milk-specific IgA did not correlate with maternal atopy. IgA antibodies in colostrum and human milk may prevent antigen entry at the intestinal surface of the breast-fed infant. A low IgA content in human milk may lead to defective exclusion of food antigens and thus predispose an offspring to develop food allergies.
Ureaplasma: current perspectives.
Kokkayil, P; Dhawan, B
2015-01-01
Ureaplasma species are the most prevalent genital Mycoplasma isolated from the urogenital tract of both men and women. Ureaplasma has 14 known serotypes and is divided into two biovars- Ureaplasma parvum and Ureaplasma urealyticum. The organism has several genes coding for surface proteins, the most important being the gene encoding the Multiple Banded Antigen (MBA). The C-terminal domain of MBA is antigenic and elicits a host antibody response. Other virulence factors include phospholipases A and C, IgA protease and urease. Besides genital tract infections and infertility, Ureaplasma is also associated with adverse pregnancy outcomes and diseases in the newborn (chronic lung disease and retinopathy of prematurity). Infection produces cytokines in the amniotic fluid which initiates preterm labour. They have also been reported from renal stone and suppurative arthritis. Genital infections have also been reported with an increasing frequency in HIV-infected patients. Ureaplasma may be a candidate 'co factor' in the pathogenesis of AIDS. Culture and polymerase chain reaction (PCR) are the mainstay of diagnosis. Commercial assays are available with improved turnaround time. Micro broth dilution is routinely used to test antimicrobial susceptibility of isolates. The organisms are tested against azithromycin, josamycin, ofloxacin and doxycycline. Resistance to macrolides, tetracyclines and fluoroquinolones have been reported. The susceptibility pattern also varies among the biovars with biovar 2 maintaining higher sensitivity rates. Prompt diagnosis and initiation of appropriate antibiotic therapy is essential to prevent long term complications of Ureaplasma infections. After surveying PubMed literature using the terms 'Ureaplasma', 'Ureaplasma urealyticum' and 'Ureaplasma parvum', relevant literature were selected to provide a concise review on the recent developments.
Serendipitous Discovery of an Immunoglobulin-Binding Autotransporter in Bordetella Species▿
Williams, Corinne L.; Haines, Robert; Cotter, Peggy A.
2008-01-01
We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an ∼180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. BatB is predicted to share similarity with immunoglobulin A (IgA) proteases, and we showed that BatB binds Ig in vitro. In vivo, a Bordetella bronchiseptica ΔbatB mutant was unable to overcome innate immune defenses and was cleared from the lower respiratory tracts of mice more rapidly than wild-type B. bronchiseptica. This defect was abrogated in SCID mice, suggesting that BatB functions to resist clearance during the first week postinoculation in a manner dependent on B- and T-cell-mediated activities. Taken together with the previous demonstration that polymorphonuclear neutrophils (PMN) are critical for the control of B. bronchiseptica in mice, our data support the hypothesis that BatB prevents nonspecific antibodies from facilitating PMN-mediated clearance during the first few days postinoculation. Neither of the strictly human-adapted Bordetella subspecies produces a fully functional BatB protein; nucleotide differences within the putative promoter region prevent batB transcription in Bordetella pertussis, and although expressed, the batB gene of human-derived Bordetella parapertussis (B. parapertussishu) contains a large in-frame deletion relative to batB of B. bronchiseptica. Taken together, our data suggest that BatB played an important role in the evolution of virulence and host specificity among the mammalian-adapted bordetellae. PMID:18426869
Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin
2018-05-01
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Petersen, Lauren M; Tisa, Louis S
2014-11-01
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Gould, Victoria M W; Francis, James N; Anderson, Katie J; Georges, Bertrand; Cope, Alethea V; Tregoning, John S
2017-01-01
In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.
Mancilla-Olea, Maria Inocente; Ortega-López, Jaime; Figueroa-Angulo, Elisa E; Avila-González, Leticia; Cárdenas-Guerra, Rosa Elena; Miranda-Ozuna, Jesús F T; González-Robles, Arturo; Hernández-García, Mar Saraí; Sánchez-Ayala, Lizbeth; Arroyo, Rossana
2018-04-01
Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko
2005-02-01
Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.
The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putativemore » nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.« less
Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.
Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R
1987-01-01
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.
Chiou, S J; Vanden Broeck, J; Janssen, I; Borovsky, D; Vandenbussche, F; Simonet, G; De Loof, A
1998-10-01
The cDNA coding for a Ser-protease-related protein (Scg-SPRP) was cloned from desert locust (Schistocerca gregaria) midgut. The derived amino acid sequence consists of 260 residues and shows strong sequence similarity to insect trypsin-like molecules. It is, however, likely that Scg-SPRP is not a proteolytically active enzyme and that it plays another physiologically relevant role, since two out of three residues which are indispensable for catalytic activity of Ser-proteases are replaced. Northern analysis revealed that the Scg-SPRP gene is expressed in midgut tissue and that this expression is strongly induced in adult female locusts. Moreover, the occurrence of the transcript (1.2 kb) fluctuates during the molting cycle and during the female reproductive cycle. Juvenile hormone (JH III) dependence of transcription was investigated by chemical allatectomy (precocene I) of adult females. This resulted in inhibition of vitellogenesis and in disappearance of the Scg-SPRP transcript. Expression of Scg-SPRP in precocene-treated locusts could be reinduced by additional treatment with JH III or with 20-OH-ecdysone.
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-11-13
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Insulin-like growth factor binding protein-1 levels are increased in patients with IgA nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokunaga, Koki; Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp; Takami, Yoichiro
2010-08-20
Research highlights: {yields} IGFBP-1 mRNA over express in kidneys obtained from mice model of IgA nephropathy. {yields} Serum IGFBP-1 levels are high in patients with IgA nephropathy. {yields} Serum IGFBP-1 levels correlate with renal function and the severity of renal injury. -- Abstract: The mechanisms underlying the pathogenesis of immunoglobulin A (IgA) nephropathy (IgAN) are not well understood. In this study, we examined gene expression profiles in kidneys obtained from mice with high serum IgA levels (HIGA mice), which exhibit features of human IgAN. Female inbred HIGA, established from the ddY line, were used in these experiments. Serum IgA levels,more » renal IgA deposition, mesangial proliferation, and glomerulosclerosis were increased in 32-week-old HIGA mice in comparison to ddY animals. By microarray analysis, five genes were observed to be increased by more than 2.5-fold in 32-week-old HIGA in comparison to 16-week-old HIGA; these same five genes were decreased more than 2.5-fold in 32-week-old ddY in comparison to 16-week-old ddY mice. Of these five genes, insulin-like growth factor (IGF) binding protein (IGFBP)-1 exhibited differential expression between these mouse lines, as confirmed by quantitative RT-PCR. In addition, serum IGFBP-1 levels were significantly higher in patients with IgAN than in healthy controls. In patients with IgAN, these levels correlated with measures of renal function, such as estimated glomerular filtration rate (eGFR), but not with sex, age, serum IgA, C3 levels, or IGF-1 levels. Pathologically, serum IGFBP-1 levels were significantly associated with the severity of renal injury, as assessed by mesangial cell proliferation and interstitial fibrosis. These results suggest that increased IGFBP-1 levels are associated with the severity of renal pathology in patients with IgAN.« less
Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms
Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang
2014-01-01
IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27Kip1, p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27Kip1 at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. PMID:25349217
Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.
Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan
2015-07-01
IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. © 2014 by the Society for Experimental Biology and Medicine.
Schwartze, Volker U; Winter, Sascha; Shelest, Ekaterina; Marcet-Houben, Marina; Horn, Fabian; Wehner, Stefanie; Linde, Jörg; Valiante, Vito; Sammeth, Michael; Riege, Konstantin; Nowrousian, Minou; Kaerger, Kerstin; Jacobsen, Ilse D; Marz, Manja; Brakhage, Axel A; Gabaldón, Toni; Böcker, Sebastian; Voigt, Kerstin
2014-08-01
Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1-4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparison to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.
Wehner, Stefanie; Linde, Jörg; Valiante, Vito; Sammeth, Michael; Riege, Konstantin; Nowrousian, Minou; Kaerger, Kerstin; Jacobsen, Ilse D.; Marz, Manja; Brakhage, Axel A.; Gabaldón, Toni; Böcker, Sebastian; Voigt, Kerstin
2014-01-01
Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1–4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparision to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae. PMID:25121733
Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng
2013-11-01
Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.
Pinheiro, Ana; Woof, Jenny M.; Abi-Rached, Laurent; Parham, Peter; Esteves, Pedro J.
2013-01-01
IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this possibility, the action of natural selection on IgA was examined in depth with six different methods: CODEML from the PAML package and the SLAC, FEL, REL, MEME and FUBAR methods implemented in the Datamonkey webserver. In considering just primate IgA, these analyses show that diversifying selection targeted five positions of the Cα1 and Cα2 domains of IgA. Extending the analysis to include other mammals identified 18 positively selected sites: ten in Cα1, five in Cα2 and three in Cα3. All but one of these positions display variation in polarity and charge. Their structural locations suggest they indirectly influence the conformation of sites on IgA that are critical for interaction with host IgA receptors and also with proteins produced by mucosal pathogens that prevent their elimination by IgA-mediated effector mechanisms. Demonstrating the plasticity of IgA in the evolution of different groups of mammals, only two of the eighteen selected positions in all mammals are included in the five selected positions in primates. That IgA residues subject to positive selection impact sites targeted both by host receptors and subversive pathogen ligands highlights the evolutionary arms race playing out between mammals and pathogens, and further emphasizes the importance of IgA in protection against mucosal pathogens. PMID:24019941
Elucidation of the structure of retroviral proteases: a reminiscence.
Jaskolski, Mariusz; Miller, Maria; Mohana Rao, J K; Gustchina, Alla; Wlodawer, Alexander
2015-11-01
Determinations of only a very few protein structures had consequences comparable to the impact exerted by the structure of the protease encoded by HIV-1, published just over 25 years ago. The structure of this relatively small protein and its cousins from other retroviruses provided a clear target for a spectacularly successful structure-assisted drug design effort that offered new hope for controlling the then-escalating AIDS epidemic. This reminiscence is limited primarily to work conducted at the National Cancer Institute, and is not meant to be a comprehensive history of the field, but is rather an attempt to provide a very personal account of how the structures of this most thoroughly studied crystallographic target were determined. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.
Ellisdon, Andrew M; Zhang, Qingwei; Henstridge, Michelle A; Johnson, Travis K; Warr, Coral G; Law, Ruby Hp; Whisstock, James C
2014-04-24
The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin 'suicide' inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined. We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities. In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon 'switching'. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of each of the Serpin 42 Da isoforms.
Mucosal immunogenicity of plant lectins in mice
Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O’Hagan, D T
2000-01-01
The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated [Viscum album (mistletoe lectin 1; ML‐1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA‐1)] stimulated the production of specific serum IgG and IgA antibody after three i.n. or oral doses. Immunization with ML‐1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML‐1 was comparable to that induced by CT, although a 10‐fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i.n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA‐1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected. PMID:10651938
Mapping, Complementation, and Targets of the Cysteine Protease Actinidin in Kiwifruit1[C][W][OA
Nieuwenhuizen, Niels J.; Maddumage, Ratnasiri; Tsang, Gianna K.; Fraser, Lena G.; Cooney, Janine M.; De Silva, H. Nihal; Green, Sol; Richardson, Kim A.; Atkinson, Ross G.
2012-01-01
Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin. PMID:22039217
Cusick, John K; Hager, Elizabeth; Gill, Ronald E
2015-01-01
The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Du, Luping; Yu, Zhengyu; Pang, Fengjiao; Xu, Xiangwei; Mao, Aihua; Yuan, Wanzhe; He, Kongwang; Li, Bin
2018-01-01
Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system. PMID:29423381
Toro, H; Zhang, J F; Gallardo, R A; van Santen, V L; van Ginkel, F W; Joiner, K S; Breedlove, C
2014-06-01
Protective properties of three distinct infectious bronchitis virus (IBV) Ark Delmarva poultry industry (ArkDPI) S1 proteins encoded from replication-defective recombinant adenovirus vectors were investigated. Using a suboptimal dose of each recombinant virus, we demonstrated that IBV S1 amino acid sequences showing > or = 95.8% amino acid identity to the S1 of the challenge strain differed in their ability at conferring protection. Indeed, the S1 sequence of the IBV population previously designated C4 (AdIBVS1.C4), which protected the most poorly, differs from the S1 sequence of population C2 (AdIBVS1.C2), which provided the highest protection, only at amino acid position 56. The fact that a change in one amino acid in this region significantly altered the induction of a protective immune response against this protein provides evidence that the first portion of S1 displays relevant immunoprotective epitopes. Use of an optimal dose of AdIBVS1.C2 effectively protected chickens from clinical signs and significantly reduced viral load after IBV Ark virulent challenge. Moreover, increased numbers of both IgA and IgG IBV-specific antibody secreting lymphocytes were detected in the spleen after challenge. The increased response detected for both IgA and IgG lymphocytes after challenge might be explained by vaccine-induced B memory cells. The fact that a single vaccination with Ad/IBVS1.C2 provides protection against IBV challenge is promising, because Ad-vectored vaccines can be mass delivered by in ovo inoculation using automated in ovo injectors.
Saliva secretory IgA antibodies against molds and mycotoxins in patients exposed to toxigenic fungi.
Vojdani, Aristo; Kashanian, Albert; Vojdani, Elroy; Campbell, Andrew W
2003-11-01
Upper respiratory exposure to different environmental antigens results first in the activation of mucosal immunity and production of IgA antibodies in different secretions including saliva. Despite this there is no study, which addresses secretory antibodies against molds and mycotoxins. The purpose of this study was to evaluate mold-specific salivary IgA in individuals exposed to molds and mycotoxins in a water-damaged building environment. Saliva IgA antibody levels against seven different molds and two mycotoxins were studied in 40 patients exposed to molds and in 40 control subjects. Mold-exposed patients showed significantly higher levels of salivary IgA antibodies against one or more mold species. A majority of patients with high IgA antibodies against molds exhibited elevation in salivary IgA against mycotoxins, as well. These IgA antibodies against molds and mycotoxins are specific, since using molds and mycotoxins in immune absorption could reduce antibody levels, significantly. Detection of high counts of molds in water-damaged buildings, strongly suggests the existence of a reservoir of mold spores in the environment. This viable microbial activity with specific mold and mycotoxin IgA in saliva may assist in the diagnosis of mold exposure. Whether mold and mycotoxin specific IgA antibodies detected in saliva are indicative of the role of IgA antibodies in the late phase of type-1 hypersensitivity reaction or in type-2 and type-3 delayed sensitivities is a matter that warrants further investigation.
Human milk IgA concentrations during the first year of lactation
Weaver, L.; Arthur, H.; Bunn, J.; Thomas, J.
1998-01-01
AIMS—To measure the concentrations of total IgA in the milk secreted by both breasts, throughout the first year of lactation, in a cohort of Gambian mothers of infants at high risk of infection. SUBJECTS AND METHODS—Sixty five women and their infants were studied monthly from the 4th to 52nd postpartum week. Samples of milk were obtained from each breast by manual expression immediately before the infant was suckled. Milk intakes were measured by test weighing the infants before and after feeds over 12 hour periods; IgA concentrations were determined by enzyme linked immunosorbent assay. RESULTS—A total of 1590 milk samples was measured. The median (interquartile range) concentration of IgA for all samples was 0.708(0.422-1.105) g/l; that in milk obtained from the left breast was 0.785 (0.458-1.247) g/l, and that in milk obtained from the right breast was 0.645 (0.388-1.011) g/l (p < 0.0001). There was no significant change in milk or IgA intakes with advancing infant age, but there was a close concordance of IgA concentrations between the two breasts, with "tracking" of the output of the left and right breasts. There was a significant (p < 0.01) negative correlation between maternal age and parity, and weight of milk ingested by infants. During the dry season (December to May) the median (interquartile range) IgA concentration was significantly higher at 0.853 (0.571-1.254) g/l than during the rainy season (June to November), when it was 0.518 (0.311-0.909) g/l (p < 0.0001). CONCLUSIONS—Sustained IgA secretion is likely to protect suckling infants from microbial infection. PMID:9613353
Seppo, A E; Savilahti, E M; Berin, M C; Sampson, H A; Järvinen, K M
2017-10-01
We have previously shown that maternal cow's milk (CM) elimination results in downregulation of CM-specific IgA antibody levels in BM, but not in serum, suggesting that an entero-mammary link may exist for food-specific antibody-secreting cells. We sought to investigate whether food-specific IgA epitope profiles differ intra-individually between mother's serum and BM. We also examined how infants' food epitope-specific IgA develops in early infancy and the relationship of IgA epitope recognition with development of cow's milk allergy (CMA). We measured specific IgA to a series of overlapping peptides in major CM allergens (α s1 -, α s2 -, β- and κ-caseins and β-lactoglobulin) in paired maternal and infant serum as well as BM samples in 31 mother-infant dyads within the first 15 post-partum months utilizing peptide microarray. There was significant discordance in epitope specificity between BM and maternal sera ranging from only 13% of sample pairs sharing at least one epitope in α s1 -casein to 73% in κ-casein. Epitope-specific IgA was detectable in infants' sera starting at less than 3 months of age. Sera of mothers with a CMA infant had increased binding of epitope-specific IgA to CM proteins compared to those with a non-CMA infant. These findings support the concept that mother's milk has a distinct antifood antibody repertoire when compared to the antibody repertoire of the peripheral blood. Increased binding of serum epitope-specific IgA to CM in mothers of infants with CMA may reflect inherited systemic immunogenicity of CM proteins in these families, although specific IgA in breast milk was not proportionally up-regulated. © 2017 John Wiley & Sons Ltd.
Kim, Nahyun; Hughes, Tonda L; Park, Chang G; Quinn, Laurie; Kong, In Deok
2016-03-01
The purpose of this study was to compare the resting-state plasma catecholamine and anxiety levels of Korean male adolescents with Internet game addiction (IGA) and those without IGA. This cross-sectional comparative study was conducted with 230 male high school students in a South Korean city. Convenience and snowball sampling methods were employed, and data were collected using (1) participant blood samples analyzed for dopamine (DA), epinephrine (Epi), and norepinephrine (NE) and (2) two questionnaires to assess IGA and anxiety levels. Using SPSS 15.0, data were analyzed by descriptive analysis, χ(2)-tests, t-tests, and Pearson's correlation tests. The plasma Epi (t = 1.962, p < 0.050) and NE (t = 2.003, p = 0.046) levels were significantly lower in the IGA group than in the non-IGA group; DA levels did not significantly differ between the groups. The mean anxiety level of the IGA group was significantly higher compared with the non-IGA group (t = -6.193, p < 0.001). No significant correlations were found between catecholamine and anxiety levels. These results showed that excessive Internet gaming over time induced decreased peripheral Epi and NE levels, thus altering autonomic regulation, and increasing anxiety levels in male high school students. Based on these physiological and psychological effects, interventions intended to prevent and treat IGA should include stabilizing Epi, NE, and anxiety levels in adolescents.
Jacobino, Shamir R; Nederend, Maaike; Reijneveld, J Frederiek; Augustijn, Daan; Jansen, J H Marco; Meeldijk, Jan; Reiding, Karli R; Wuhrer, Manfred; Coenjaerts, Frank E J; Hack, C Erik; Bont, Louis J; Leusen, Jeanette H W
2018-04-01
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.
Yang, Y; Koh, D; Ng, V; Lee, C; Chan, G; Dong, F; Goh, S; Anantharaman, V; Chia, S
2002-01-01
Aims: To assess and compare the self perceived work related stress among emergency department (ED) and general ward (GW) nurses, and to investigate its relation with salivary IgA and lysozyme. Methods: One hundred and thirty two of 208 (63.5%) registered female ED and GW nurses participated in the study. A modified mental health professional stress scale (PSS) was used to measure self perceived stress. ELISA methods were used to determine the salivary IgA and lysozyme levels. Results: On PSS, ED nurses had higher scores (mean 1.51) than GW nurses (1.30). The scores of PSS subscales such as organisational structure and processes (OS), lack of resources (RES), and conflict with other professionals (COF) were higher in ED than in GW nurses. ED nurses had lower secretion rates of IgA (geometric mean (GM) 49.1 µg/min) and lysozyme (GM 20.0 µg/min) than GW nurses (68.2 µg/min, 30.5 µg/min). Significant correlations were observed between PSS and log IgA and lysozyme secretion rates. OS, RES, and COF were correlated with log IgA and lysozyme levels. Conclusion: ED nurses, who reported a higher level of professional stress, showed significantly lower secretion rates of salivary IgA and lysozyme compared to GW nurses. Salivary IgA and lysozyme were inversely correlated with self perceived work related stress. As these salivary biomarkers are reflective of the mucosal immunity, results support the inverse relation between stress and mucosal immunity. PMID:12468751
Cerutti, Andrea; Zan, Hong; Kim, Edmund C.; Shah, Shefali; Schattner, Elaine J.; Schaffer, András; Casali, Paolo
2015-01-01
Chronic lymphocytic leukemia (CLL) results from the expansion of malignant CD5+ B cells that usually express IgD and IgM. These leukemic cells can give rise in vivo to clonally related IgG+ or IgA+ elements. The requirements and modalities of this process remain elusive. Here we show that leukemic B cells from 14 of 20 CLLs contain the hallmarks of ongoing Ig class switch DNA recombination (CSR), including extrachromosomal switch circular DNAs and circle transcripts generated by direct Sμ→Sγ, Sμ→Sα, and Sμ→Sε as well as sequential Sγ→Sα and Sγ→Sε CSR. Similar CLL B cells express transcripts for activation-induced cytidine deaminase, a critical component of the CSR machinery, and contain germline IH-CH and mature VHDJH-CH transcripts encoded by multiple Cγ, Cα, and Cε genes. Ongoing CSR occurs in only a fraction of the CLL clone, as only small proportions of CD5+CD19+ cells express surface IgG or IgA and lack IgM and IgD. In vivo class-switching CLL B cells down-regulate switch circles and circle transcripts in vitro unless exposed to exogenous CD40 ligand and IL-4. In addition, CLL B cells that do not class switch in vivo activate the CSR machinery and secrete IgG, IgA, or IgE upon in vitro exposure to CD40 ligand and IL-4. These findings indicate that in CLL at least some members of the malignant clone actively differentiate in vivo along a pathway that induces CSR. They also suggest that this process is elicited by external stimuli, including CD40 ligand and IL-4, provided by bystander immune cells. PMID:12444172
Mohanty, Madhu C; Nalavade, Uma P; Deshpande, Jagadish M
2015-03-08
IgG and IgA immunocompetence of children with wild poliovirus poliomyelitis and non-polio acute flaccid paralysis. 932 cases of acute flaccid paralysis, reported in 2008-2009, were tested for presence of polio and non-polio enteroviruses according to the WHO standards. Serum IgA and IgG levels were determined by sandwich ELISA. Mean (SD) IgA levels [0.87 (0.62)g/L; n=28] of virologically confirmed poliomyelitis cases were lower than those of virus negative [1.21 (0.83)g/L; n=612] and non-polio Enterovirus positive [1.22 (0.79)g/L; n=240] cases of acute flaccid paralysis. No significant difference was observed in the concentration of IgG among these groups. IgA plays an important role in protection against poliomyelitis.
Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa
2014-01-01
The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.
Multifunctional Mitochondrial AAA Proteases
Glynn, Steven E.
2017-01-01
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125
Multifunctional Mitochondrial AAA Proteases.
Glynn, Steven E
2017-01-01
Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffer, M.A.; Fischer, R.L.
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activatemore » C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.« less
Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong
2009-01-01
In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.
Emerging roles for diverse intramembrane proteases in plant biology.
Adam, Zach
2013-12-01
Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/γ-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.
Nagel, Robyn; Traub, Rebecca J; Kwan, Marcella M S; Bielefeldt-Ohmann, Helle
2015-09-15
Blastocystis species are common enteric human parasites and carriage has been linked to Irritable Bowel Syndrome (IBS), particularly diarrhoea-predominant IBS. The spectrum of immune reactivity to Blastocystis proteins has been reported previously in symptomatic patients. We investigated differences in serum immunoglobulin profiles between patients with IBS, both positive and negative for Blastocystis carriage, and healthy controls (HC). Forty diarrhoea-predominant IBS patients (26 patients positive for Blastocystis sp., 14 negative patients) and forty HC (24 positive, 16 Blastocystis-negative) were enrolled. Age, gender, ethnicity and serum immunoglobulin A (IgA) levels were recorded and faecal specimens were analysed using smear, culture and polymerase chain reaction amplification of ribosomal DNA. Sera were tested in Western blots and the reactivities compared to known targets using monoclonal antibodies Blastofluor® (Blastocystis specific antibody), MAb1D5 (cytopathicto Blastocystis cells), anti-promatrix metalloprotease-9 (anti-MMP-9) and SDS-PAGE zymograms. Levels of serum IgA were significantly lower in Blastocystis carriers (p < 0.001) but had no relationship to symptoms. Western blots demonstrated serum IgG antibodies specific for Blastocystis proteins of 17,27,37,50,60-65, 75-90, 95-105 and 150 kDa MW. Reactivity to the 27, 50 and 75-95 kDa proteins were found more frequently in the IBS group compared to the HC's (p < 0.001) and correlation was greater for Blastocystis-positive IBS patients (p < 0.001) than for negative IBS patients (p < 0.05). MAb1D5 reacted with proteins of 27 and 100 kDa, and anti-MMP-9 with 27, 50 and 75-100 kDa proteins. Bands were seen in zymograms around 100 kDa. Low serum IgA levels are associated with Blastocystis carriage. All IBS patients were more likely to demonstrate reactivity with Blastocystis proteins of 27 kDa (likely a cysteine protease), 50 and 75-95 kDa MW compared to HC. The presence of antibodies to these Blastocystis proteins in some Blastocystis-negative subjects suggests either prior exposure to Blastocystis organisms or antibody cross reactivities. The anti-proMMP-9 reaction at 50 and 75-100 kDa and the zymogram result suggest that metalloproteases may be important Blastocystis antigens. Australian and New Zealand Clinical Trials registry ACTRN: 12611000918921.
Matulova, Marta; Rajova, Jana; Vlasatikova, Lenka; Volf, Jiri; Stepanova, Hana; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan
2012-01-01
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens. PMID:23094107
Chaya, Etsushi; Suzuki, Tohru; Karita, Shuichi; Hanya, Akira; Yoshino-Yasuda, Shoko; Kitamoto, Noriyuki
2014-06-01
Two protease-like proteins, KrtA and KrtC, were identified in Fusarium oxysporum 26-1. Genes coding these proteins, krtA and krtC, were isolated and characterized. Recombinant KrtA (rKrtA) and KrtC (rKrtC) were successfully expressed in Aspergillus oryzae and secreted. The combination of rKrtA and rKrtC completely removed the cuticle of wool fibers. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Langley, Gayle; Hao, Yongping; Pondo, Tracy; Miller, Lisa; Petit, Susan; Thomas, Ann; Lindegren, Mary Louise; Farley, Monica M; Dumyati, Ghinwa; Como-Sabetti, Kathryn; Harrison, Lee H; Baumbach, Joan; Watt, James; Van Beneden, Chris
2016-04-01
Invasive group A Streptococcus (iGAS) infections cause significant morbidity and mortality worldwide. We analyzed whether obesity and diabetes were associated with iGAS infections and worse outcomes among an adult US population. We determined the incidence of iGAS infections using 2010-2012 cases in adults aged ≥ 18 years from Active Bacterial Core surveillance (ABCs), a population-based surveillance system, as the numerator. For the denominator, we used ABCs catchment area population estimates from the 2011 to 2012 Behavioral Risk Factor Surveillance System (BRFSS) survey. The relative risk (RR) of iGAS was determined by obesity and diabetes status after adjusting for age group, gender, race, and other underlying conditions through binomial logistic regression. Multivariable logistic regression was used to determine whether obesity or diabetes was associated with increased odds of death due to iGAS compared to normal weight and nondiabetic patients, respectively. Between 2010 and 2012, 2927 iGAS cases were identified. Diabetes was associated with an increased risk of iGAS in all racial groups (adjusted risk ratio [aRR] ranged from 2.71 to 5.08). Grade 3 obesity (body mass index [BMI] ≥ 40) was associated with an increased risk of iGAS for whites (aRR = 3.47; 95% confidence interval [CI], 3.00-4.01). Grades 1-2 (BMI = 30.0-<40.0) and grade 3 obesity were associated with an increased odds of death (odds ratio [OR] = 1.55, [95% CI, 1.05, 2.29] and OR = 1.62 [95% CI, 1.01, 2.61], respectively) when compared to normal weight patients. These results may help target vaccines against GAS that are currently under development. Efforts to develop enhanced treatment regimens for iGAS may improve prognoses for obese patients. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Molecular cloning and characterization of novel phytocystatin gene from turmeric, Curcuma longa.
Chan, Seow-Neng; Abu Bakar, Norliza; Mahmood, Maziah; Ho, Chai-Ling; Shaharuddin, Noor Azmi
2014-01-01
Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5'/3' rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis.
Molecular Cloning and Characterization of Novel Phytocystatin Gene from Turmeric, Curcuma longa
Chan, Seow-Neng; Abu Bakar, Norliza; Mahmood, Maziah; Ho, Chai-Ling
2014-01-01
Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5′/3′ rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis. PMID:25853138
Induction of mucosal IgA by a novel jet delivery technique for HIV-1 DNA.
Lundholm, P; Asakura, Y; Hinkula, J; Lucht, E; Wahren, B
1999-04-09
Novel ways of delivering plasmid DNA to elicit humoral IgA, IgG and cell-mediated immune responses in mice were investigated. Intraoral administration of DNA in the cheek, using a jet immunization technique, elicited the highest IgA mucosal responses. Intranasal immunization gave strong mucosal IgA responses and persistent systemic IgG. Immunoglobulin isotype analysis revealed an IgG1 profile for intramuscular tongue and gene gun immunizations and an IgG2a profile following oral jet injection and intranasal application. The route of delivery was of importance for the characteristics and quality of the mucosal immune response following DNA immunization. For DNA vaccine delivery, the intraoral jet injection technique has the advantages of being a simple and rapid way of administering the DNA in solution and of provoking specific mucosal IgA when administered in the mucosal associated lymphoid tissue.
Kim, Nahyun; Hughes, Tonda L.; Park, Chang G.; Quinn, Laurie
2016-01-01
Abstract The purpose of this study was to compare the resting-state plasma catecholamine and anxiety levels of Korean male adolescents with Internet game addiction (IGA) and those without IGA. This cross-sectional comparative study was conducted with 230 male high school students in a South Korean city. Convenience and snowball sampling methods were employed, and data were collected using (1) participant blood samples analyzed for dopamine (DA), epinephrine (Epi), and norepinephrine (NE) and (2) two questionnaires to assess IGA and anxiety levels. Using SPSS 15.0, data were analyzed by descriptive analysis, χ2-tests, t-tests, and Pearson's correlation tests. The plasma Epi (t = 1.962, p < 0.050) and NE (t = 2.003, p = 0.046) levels were significantly lower in the IGA group than in the non-IGA group; DA levels did not significantly differ between the groups. The mean anxiety level of the IGA group was significantly higher compared with the non-IGA group (t =−6.193, p < 0.001). No significant correlations were found between catecholamine and anxiety levels. These results showed that excessive Internet gaming over time induced decreased peripheral Epi and NE levels, thus altering autonomic regulation, and increasing anxiety levels in male high school students. Based on these physiological and psychological effects, interventions intended to prevent and treat IGA should include stabilizing Epi, NE, and anxiety levels in adolescents. PMID:26849530
Sloma, A; Rufo, G A; Theriault, K A; Dwyer, M; Wilson, S W; Pero, J
1991-11-01
We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.
Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamicmore » plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.« less
Schumacher, A; Seljeflot, I; Lerkerød, A B; Sommervoll, L; Otterstad, J E; Arnesen, H
2002-10-01
To investigate if Chlamydia pneumoniae and/or Helicobacter pylori seropositivity is associated with elevated levels of soluble endothelial cell adhesion molecules (sCAMs) as markers of atherosclerotic activity. Immunoglobulin A (IgA) and IgG antibodies to the two bacteria, soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and E-selectin were measured in coronary heart disease (CHD) patients (n = 193) and age- and sex-matched controls (n = 193). Two different serological methods were used for the detection of Chlamydia antibodies: Labsystems microimmunofluorescence to detect species-specific C. pneumoniae antibodies and Medac's recombinant enzyme-linked immunosorbent assay to detect genus-specific lipopolysaccharide antibodies. The concentrations of sICAM-1 and E-selectin were higher in CHD patients with positive vs. negative Chlamydia lipopolysaccharide IgA (P = 0.044 for both). H. pylori antibodies alone did not predict raised levels of sCAMs, but in CHD patients sICAM-1 was increased with IgA seropositivity to both bacteria compared to double seronegativity (P = 0.034). Concentrations of sVCAM-1 were elevated in CHD patients with double IgA seropositivity compared to those with Chlamydia lipopolysaccharide IgA seropositivity alone (P = 0.018). Our results may indicate that C. pneumoniae contributes to increased inflammation in CHD, and that this contribution is even more pronounced when present in combination with H. pylori IgA antibodies.
Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1
Deng, Haoyu; Fung, Gabriel; Shi, Junyan; Xu, Suowen; Wang, Chen; Yin, Meimei; Hou, Jun; Zhang, Jingchun; Jin, Zheng-Gen; Luo, Honglin
2015-01-01
Coxsackievirus B3 (CVB3), an important human causative pathogen for viral myocarditis, pancreatitis, and meningitis, has evolved different strategies to manipulate the host signaling machinery to ensure successful viral infection. We previously revealed a crucial role for the ERK1/2 signaling pathway in regulating viral infectivity. However, the detail mechanism remains largely unknown. Grb2-associated binder 1 (GAB1) is an important docking protein responsible for intracellular signaling assembly and transduction. In this study, we demonstrated that GAB1 was proteolytically cleaved after CVB3 infection at G175 and G436 by virus-encoded protease 2Apro, independent of caspase activation. Knockdown of GAB1 resulted in a significant reduction of viral protein expression and virus titers. Moreover, we showed that virus-induced cleavage of GAB1 is beneficial to viral growth as the N-terminal proteolytic product of GAB1 (GAB1-N1–174) further enhances ERK1/2 activation and promotes viral replication. Our results collectively suggest that CVB3 targets host GAB1 to generate a GAB1-N1–174 fragment that enhances viral infectivity, at least in part, via activation of the ERK pathway. The findings in this study suggest a novel mechanism that CVB3 employs to subvert the host signaling and facilitate consequent viral replication.—Deng, H., Fung, G., Shi, J., Xu, S., Wang, C., Yin, M., Hou, J., Zhang, J., Jin, Z.-G., Luo, H. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1. PMID:26183772
Yamamoto, Yuko; Fujino, Kazuhiro; Saruta, Juri; Takahashi, Toru; To, Masahiro; Fuchida, Shinya; Shimizu, Tomoko; Kamata, Yohei; Misawa, Kyoko; Tsukinoki, Keiichi
2017-12-01
The aim of this study was to investigate the alterations in the salivary IgA levels of elderly persons administered yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) OLL1073R-1, which has been reported to reduce the risk of colds. Salivary immunoglobulin (Ig)A plays an important role in the defence of the oral cavity mucous membrane against foreign antigens and pathogens. Accordingly, low levels of salivary IgA are associated with an increased risk of upper respiratory tract infection. Furthermore, salivary IgA secretion has been reported to decrease with age. Recently, several studies have reported that certain strains of Lactobacillus and their products can modulate the immune response, but there are currently few studies on the effects of on the IgA level in human saliva. This was a before-after non-randomised intervention study. Thirty-seven elderly persons (mean age, 82.7 years) residing in a single nursing home ingested 112 g of the yogurt every morning for 12 weeks. The participants' saliva was collected before and after 4, 8 and 12 weeks of yogurt intake. Our results showed that yogurt intake affected the concentration of IgA in the saliva (P < .0001). Additionally, yogurt intake and the body weight of the participants affected the IgA flow rate of saliva (P = .0003 and .03, respectively). Continuous intake of yogurt fermented with L. bulgaricus OLL1073R-1 may help improve the mucosal immune function in elderly people with weakened immune systems. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Cytokine profile of NALT during acute stress and its possible effect on IgA secretion.
Gutiérrez-Meza, Juan Manuel; Jarillo-Luna, Rosa Adriana; Rivera-Aguilar, Victor; Miliar-García, Angel; Campos-Rodríguez, Rafael
2017-08-01
Stress stimuli affect the immune system responses that occur at mucosal membranes, particularly IgA secretion. It has been suggested that acute stress increases the levels of IgA and that sympathetic innervation plays an important role in this process. We herein explore in a murine model how acute stress affects the Th1/Th2/Treg cytokine balance in NALT, and the possible role of glucocorticoids in this effect. Nine-week-old male CD1 mice were divided into three groups: unstressed (control), stressed (subjected to 4h of immobilization), and stressed after pretreatment with a single dose of the corticosterone receptor antagonist RU-486. The parameters evaluated included plasma corticosterone and epinephrine, IgA levels in nasal fluid (by ELISA), the percentage of CD19 + B220 + IgA + lymphocytes and CD138 + IgA + plasma cells, and the mRNA expression of heavy α chain, J chain and pIgR. Moreover, the gene and protein expression of Th1 cytokines (TNFα, IL-2 and INF-γ), Th2 cytokines (IL-4 and IL-5) and Treg cytokines (IL-10 and TGFβ) were determined in nasal mucosa. The results show that acute stress generated a shift towards the dominance of an anti-inflammatory immune response (Th2 and Treg cytokines), evidenced by a significant rise in the amount of T cells that produce IL4, IL-5 and IL-10. This immune environment may favor IgA biosynthesis by CD138 + IgA + plasma cells, a process mediated mostly by glucocorticoids. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
2008-06-03
etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular...disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in...IgG2a and were partially protected against chal- lenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth
Staphopains Modulate Staphylococcus aureus Biofilm Integrity
Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.
2013-01-01
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534
IgE, IgG4 and IgA specific to Bet v 1-related food allergens do not predict oral allergy syndrome.
Guhsl, E E; Hofstetter, G; Lengger, N; Hemmer, W; Ebner, C; Fröschl, R; Bublin, M; Lupinek, C; Breiteneder, H; Radauer, C
2015-01-01
Birch pollen-associated plant food allergy is caused by Bet v 1-specific IgE, but presence of cross-reactive IgE to related allergens does not predict food allergy. The role of other immunoglobulin isotypes in the birch pollen-plant food syndrome has not been investigated in detail. Bet v 1-sensitized birch pollen-allergic patients (n = 35) were diagnosed for food allergy by standardized interviews, skin prick tests, prick-to-prick tests and ImmunoCAP. Concentrations of allergen-specific IgE, IgG1, IgG4 and IgA to seven Bet v 1-related food allergens were determined by ELISA. Bet v 1, Cor a 1, Mal d 1 and Pru p 1 bound IgE from all and IgG4 and IgA from the majority of sera. Immunoglobulins to Gly m 4, Vig r 1 and Api g 1.01 were detected in <65% of the sera. No significant correlation was observed between plant food allergy and increased or reduced levels of IgE, IgG1, IgG4 or IgA specific to most Bet v 1-related allergens. Api g 1-specific IgE was significantly (P = 0.01) elevated in celeriac-allergic compared with celeriac-tolerant patients. Likewise, frequencies of IgE (71% vs 15%; P = 0.01) and IgA (86% vs 38%; P = 0.04) binding to Api g 1.01 were increased. Measurements of allergen-specific immunoglobulins are not suitable for diagnosing Bet v 1-mediated plant food allergy to hazelnut and Rosaceae fruits. In contrast, IgE and IgA to the distantly related allergen Api g 1 correlate with allergy to celeriac. © 2014 The Authors. Allergy Published by John Wiley & Sons Ltd.
A comparative analysis of serpin genes in the silkworm genome
Zou, Zhen; Picheng, Zhao; Weng, Hua; Mita, Kazuei; Jiang, Haobo
2009-01-01
Serine protease inhibitors (serpins) are a superfamily of proteins, most of which control protease-mediated processes by inhibiting their cognate enzymes. Sequencing of the silkworm genome provides an opportunity to investigate serpin structure, function, and evolution at the genome level. There are thirty-four serpin genes in Bombyx mori. Six are highly similar to their Manduca sexta orthologs that regulate innate immunity. Three alternative exons in serpin1 gene and four in serpin28 encode a variable region including the reactive site loop. Splicing of serpin2 pre-mRNA yields variations in serpin2A, 2A′ and 2B. Sequence similarity and intron positions reveal the evolutionary pathway of seven serpin genes in group C. RT-PCR indicates an increase in the mRNA levels of serpin1, 3, 5, 6, 9, 12, 13, 25, 27, 32 and 34 in fat body and hemocytes of larvae injected with bacteria. These results suggest that the silkworm serpins play regulatory roles in defense responses. PMID:19150649
Plant Viral Proteases: Beyond the Role of Peptide Cutters
Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio
2018-01-01
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Independent Subtilases Expansions in Fungi Associated with Animals
Muszewska, Anna; Taylor, John W.; Szczesny, Pawel; Grynberg, Marcin
2011-01-01
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive. PMID:21727238
Vatter, Heather A; Di, Han; Donaldson, Eric F; Radu, Gertrud U; Maines, Taronna R; Brinton, Margo A
2014-08-01
The N-terminal region of simian hemorrhagic fever virus (SHFV) nonstructural polyprotein 1a is predicted to encode three papain-like proteases (PLP1α, PLP1β, and PLP1γ). Catalytic residues and cleavage sites for each of the SHFV PLP1s were predicted by alignment of the SHFV PLP1 region sequences with each other as well as with those of other arteriviruses, and the predicted catalytic residues were shown to be proximal by homology modeling of the SHFV nsp1s on porcine respiratory and reproductive syndrome virus (PRRSV) nsp1 crystal structures. The functionality of the predicted catalytic Cys residues and cleavage sites was tested by analysis of the autoproteolytic products generated in in vitro transcription/translation reactions done with wild-type or mutant SHFV nsp1 constructs. Cleavage sites were also analyzed by mass spectroscopy analysis of selected immunoprecipitated cleavage products. The data showed that each of the three SHFV PLP1s is an active protease. Cys63 was identified as the catalytic Cys of SHFV PLP1α and is adjacent to an Ala instead of the canonical Tyr observed in other arterivirus PLP1s. SHFV PLP1γ is able to cleave at both downstream and upstream nsp1 junction sites. Although intermediate precursor polyproteins as well as alternative products generated by each of the SHFV PLP1s cleaving at sites within the N-terminal region of nsp1β were produced in the in vitro reactions, Western blotting of SHFV-infected, MA104 cell lysates with SHFV nsp1 protein-specific antibodies detected only the three mature nsp1 proteins. SHFV is unique among arteriviruses in having three N-terminal papain-like protease 1 (PLP1) domains. Other arteriviruses encode one or two active PLP1s. This is the first functional study of the SHFV PLP1s. Analysis of the products of in vitro autoprocessing of an N-terminal SHFV nonstructural 1a polypeptide fragment showed that each of the three SHFV PLP1s is active, and the predicted catalytic Cys residues and cleavage sites for each PLP1 were confirmed by testing mutant constructs. Several unique features of the SHFV PLP1s were discovered. The SHFV PLP1α catalytic Cys63 is unique among arterivirus PLP1s in being adjacent to an Ala instead of a Trp. Other arterivirus PLP1s cleave only in cis at a single downstream site, but SHFV PLP1γ can cleave at both the downstream nsp1γ-nsp2 and upstream nsp1β-nsp1γ junctions. The three mature nsp1 proteins were produced both in the in vitro reactions and in infected cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Murata, Fernando Henrique Antunes; Ferreira, Marina Neves; Camargo, Natália Sahyoun; Santos, Gabriela Soria; Spegiorin, Lígia Cosentino Junqueira Franco; Silveira-Carvalho, Aparecida Perpétuo; Pereira-Chioccola, Vera Lucia; Mattos, Luiz Carlos de; Mattos, Cinara Cássia Brandão de
2016-01-01
Toxoplasmosis during pregnancy can be severe; thus, it is essential to diagnose the disease via serological tests. An enzyme-linked immunosorbent assay (ELISA) was used to investigate anti-Toxoplasma gondii immunoglobulin A (IgA), M (IgM) and G (IgG) antibodies in 62 high-risk pregnant women. Forty-three (69.4%) women were positive for IgA, 31 (50%) for IgG, and 57 (91.9%) for IgM; 4 (6,5%) were positive for IgA but negative for IgM; 10 (16.1%) were negative for IgA and IgM but positive for IgG. Testing for these antibodies can help diagnose infection in pregnant women, thereby contributing to clinical management.
2013-05-28
uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env... vaccine re- cipients in the case control study. There was a significantly greater number of infected vaccinees with IgA/IgG ratio >1e-02 (A1 Congp140 Env... vaccine efficacy. Second, we demonstrated that IgA mAbs isolated from RV144 vaccinees can both inhibit Env binding and block ADCC function of vaccine
Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang
2010-12-01
The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.
3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7
Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo
2015-01-01
ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321
Oliveira, Felipe L; Bernardes, Emerson S; Brand, Camila; dos Santos, Sofia N; Cabanel, Mariana P; Arcanjo, Kátia D; Brito, José M; Borojevic, Radovan; Chammas, Roger; El-Cheikh, Márcia C
2016-02-01
Galectin-3 is a β-galactoside-binding protein with an inhibitory role in B cell differentiation into plasma cells in distinct lymphoid tissues. We use a model of chronic schistosomiasis, a well-characterized experimental disease hallmarked by polyclonal B cell activation, in order to investigate the role of galectin-3 in controlling IgA production through peritoneal B1 cells. Chronically infected, galectin-3-deficient mice (Lgals3(-/-)) display peritoneal fluid hypercellularity, increased numbers of atypical peritoneal IgM(+)/IgA(+) B1a and B1b lymphocytes and histological disturbances in plasma cell niches when compared with Lgals3(+/+) mice. Similar to our infection model, peritoneal B1 cells from uninfected Lgals3(-/-) mice show enhanced switching to IgA after in vitro treatment with interleukin-5 plus transforming growth factor-β (IL-5 + TGF-β1). A higher number of IgA(+) B1a lymphocytes was found in the peritoneal cavity of Lgals3(-/-)-uninfected mice at 1 week after i.p. injection of IL-5 + TGF-β1; this correlates with the increased levels of secreted IgA detected in the peritoneal fluid of these mice after cytokine treatment. Interestingly, a higher number of degranulated mast cells is present in the peritoneal cavity of uninfected and Schistosoma mansoni-infected Lgals3(-/-) mice, indicating that, at least in part, mast cells account for the enhanced differentiation of B1 into IgA-producing B cells found in the absence of galectin-3. Thus, a novel role is revealed for galectin-3 in controlling the expression of surface IgA by peritoneal B1 lymphocytes; this might have important implications for manipulating the mucosal immune response.
Relationship between frequency of pilocarpine administration and salivary IgA level.
Smith, D J; Taubman, M A; Ebersole, J L; King, W
1982-12-01
The effect of repetitive administration of pilocarpine nitrate on the salivary volume and salivary IgA concentration was studied in the NIH white hamster. One and one-half to three-fold increases in salivary volume, coupled with decreases of 1/3 to 2/3 in IgA concentration, occurred as the frequency of administration of pilocarpine increased.
Wang, Yu-Wei; Tan, Ji-Min; Du, Can-Wei; Luan, Ning; Yan, Xiu-Wen; Lai, Ren; Lu, Qiu-Min
2015-08-01
Various bio-active substances in amphibian skins play important roles in survival of the amphibians. Many protease inhibitor peptides have been identified from amphibian skins, which are supposed to negatively modulate the activity of proteases to avoid premature degradation or release of skin peptides, or to inhibit extracellular proteases produced by invading bacteria. However, there is no information on the proteinase inhibitors from the frog Lepidobatrachus laevis which is unique in South America. In this work, a cDNA encoding a novel trypsin inhibitor-like (TIL) cysteine-rich peptide was identified from the skin cDNA library of L. laevis. The 240-bp coding region encodes an 80-amino acid residue precursor protein containing 10 half-cysteines. By sequence comparison and signal peptide prediction, the precursor was predicted to release a 55-amino acid mature peptide with amino acid sequence, IRCPKDKIYKFCGSPCPPSCKDLTPNCIAVCKKGCFCRDGTVDNNHGKCVKKENC. The mature peptide was named LL-TIL. LL-TIL shares significant domain similarity with the peptides from the TIL supper family. Antimicrobial and trypsin-inhibitory abilities of recombinant LL-TIL were tested. Recombinant LL-TIL showed no antimicrobial activity, while it had trypsin-inhibiting activity with a Ki of 16.5178 μM. These results suggested there was TIL peptide with proteinase-inhibiting activity in the skin of frog L. laevis. To the best of our knowledge, this is the first report of TIL peptide from frog skin.
Invasive Group A Streptococcal Infections in Children: A Nationwide Survey in Finland.
Tapiainen, Terhi; Launonen, Saana; Renko, Marjo; Saxen, Harri; Salo, Eeva; Korppi, Matti; Kainulainen, Leena; Heiskanen-Kosma, Tarja; Lindholm, Laura; Vuopio, Jaana; Huotari, Tiina; Rusanen, Jarmo; Uhari, Matti
2016-02-01
The incidence of invasive group A streptococcus (iGAS) infections varies in time and geographically for unknown reasons. We performed a nationwide survey to assess the population-based incidence rates and outcomes of children with iGAS infections. We collected data on patients from hospital discharge registries and the electronic databases of microbiological laboratories in Finland for the period 1996-2010. We then recorded the emm types or serotypes of the strains. The study physician visited all university clinics and collected the clinical data using the same data entry sheet. We identified 151 children with iGAS infection. Varicella preceded iGAS infection in 20% of cases and fasciitis infection in 83% of cases. The annual incidence rate of iGAS infection was 0.93 per 100,000 in 1996-2000, 1.80 in 2001-2005 and 2.50 in 2006-2010. The proportion of emm 1.0 or T1M1 strains peaked in 1996-2000 and again in 2006-2010, to 44% and 37% of all typed isolates. The main clinical diagnoses of the patients were severe soft-tissue infection (46%), sepsis (28%), empyema (10%), osteoarticular infection (9%) and primary peritonitis (5%). Severe pain was the most typical symptom for soft-tissue infections. More than half of the patients underwent surgery and received clindamycin. The readmission rate was 7%, and the case fatality rate was 2%. The incidence rate of pediatric iGAS infections tripled during our study. The increase was not, however, the result of a change in the strain types causing iGAS. Varicella immunization would likely have prevented a significant number of the cases.
van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O
1992-01-01
Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671
Stepwise Evolution of a Buried Inhibitor Peptide over 45 My.
Jayasena, Achala S; Fisher, Mark F; Panero, Jose L; Secco, David; Bernath-Levin, Kalia; Berkowitz, Oliver; Taylor, Nicolas L; Schilling, Edward E; Whelan, James; Mylne, Joshua S
2017-06-01
The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Indarte, Martín; Lazza, Cristian M; Assis, Diego; Caffini, Néstor O; Juliano, María A; Avilés, Francesc X; Daura, Xavier; López, Laura M I; Trejo, Sebastián A
2017-02-01
A new BBI-type protease inhibitor with remarkable structural characteristics was purified, cloned, and sequenced from seeds of Maclura pomifera , a dicotyledonous plant belonging to the Moraceae family. In this work, we report a Bowman-Birk inhibitor (BBI) isolated, purified, cloned, and characterized from Maclura pomifera seeds (MpBBI), the first of this type from a species belonging to Moraceae family. MpBBI was purified to homogeneity by RP-HPLC, total RNA was extracted from seeds of M. pomifera, and the 3'RACE-PCR method was applied to obtain the cDNA, which was cloned and sequenced. Peptide mass fingerprinting (PMF) analysis showed correspondence between the in silico-translated protein and MpBBI, confirming that it corresponds to a new plant protease inhibitor. The obtained cDNA encoded a polypeptide of 65 residues and possesses 10 cysteine residues, with molecular mass of 7379.27, pI 6.10, and extinction molar coefficient of 9105 M -1 cm -1 . MpBBI inhibits strongly trypsin with K i in the 10 -10 M range and was stable in a wide array of pH and extreme temperatures. MpBBI comparative modeling was applied to gain insight into its 3D structure and highlighted some distinguishing features: (1) two non-identical loops, (2) loop 1 (CEEESRC) is completely different from any known BBI, and (3) the amount of disulphide bonds is also different from any reported BBI from dicot plants.
Graham, D A; Mawhinney, K A; German, A; Foster, J C; Adair, B M; Merza, M
1999-03-01
Isotype- and subclass-specific indirect enzyme-linked immunosorbent assays were developed to detect parainfluenza-3 virus-specific IgG1, IgG2, IgM, and IgA responses. Sera were treated with protein G-agarose prior to testing for specific IgM and IgA to eliminate the possibility of false-positive results due to IgM-rheumatoid factor and to remove interisotypic competition due to specific IgG. IgM and IgA absorbance values were expressed as a percentage of the absorbance values of positive reference sera included on each plate (S/P%), and respective positive/negative threshold values of 15.0% and 28.0% were determined. The mean interval between experimental infection of 3 calves and initial detection of specific IgG1 and IgG2 responses was 8.0 and 9.3 days respectively, rising rapidly to an initial plateau 13.7 and 11.0 days postinfection (dpi). Reinfection of these calves at 30 dpi resulted in further rapid increases, with higher plateau values reached 13.0 (IgG1) and 13.7 (IgG2) days later. The mean interval between infection and the first positive IgM and IgA responses was 6.7 and 12.3 days, respectively. IgM S/P% values peaked at 13.0 dpi, with all 3 calves showing a secondary anamnestic response to reinfection, peaking 4.7 days later. The IgA response to initial infection was weak, with only 2 calves showing an obvious peak response at 15.0 dpi. A strong anamnestic IgA response to reinfection occurred in 2 calves, with a peak response 9.5 days later. Apparent biphasic and triphasic IgM and IgA responses were evident in some calves. Acute and convalescent serum samples from 80 calves involved in 17 outbreaks of respiratory disease were tested for specific IgM and IgA. Positive IgM results were detected in 15 outbreaks, with 71 sera from 44 calves testing positive. Although IgA-positive results were detected in the same 15 outbreaks, only 42 sera from 31 calves were positive. In a previous study, seroconversion was detected in 21 of these calves from 10 outbreaks. Thus the diagnostic potential of the assays was in the order IgM > IgA > seroconversion. The correlations between IgM and IgA, IgM and seroconversion, and IgA and seroconversion results for each calf were 73.8%, 58.8% and 62.5%, respectively.
Ertekin, Özlem; Öztürk, Selma; Öztürk, Zafer Ziya
2016-08-11
This study introduces the use of an IgA isotype aflatoxin (AF) specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM) immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM) formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1.
Ertekin, Özlem; Öztürk, Selma; Öztürk, Zafer Ziya
2016-01-01
This study introduces the use of an IgA isotype aflatoxin (AF) specific monoclonal antibody for the development of a highly sensitive Quartz Crystal Microbalance (QCM) immunobiosensor for the detection of AF in inhibitory immunoassay format. The higher molecular weight of IgA antibodies proved an advantage over commonly used IgG antibodies in label free immunobiosensor measurements. IgA and IgG antibodies with similar affinity for AF were used in the comparative studies. Sensor surface was prepared by covalent immobilization of AFB1, using self assembled monolayer (SAM) formed on gold coated Quartz Crystal, with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) method using a diamine linker. Nonspecific binding to the surface was decreased by minimizing the duration of EDC/NHS activation. Sensor surface was chemically blocked after AF immobilization without any need for protein blocking. This protein free sensor chip endured harsh solutions with strong ionic detergent at high pH, which is required for the regeneration of the high affinity antibody-antigen interaction. According to the obtained results, the detection range with IgA antibodies was higher than IgG antibodies in QCM immunosensor developed for AFB1. PMID:27529243
Zhang, Shulan; Wu, Ziyan; Luo, Jing; Ding, Xuefeng; Hu, Chaojun; Li, Ping; Deng, Chuiwen; Zhang, Fengchun; Qian, Jiaming; Li, Yongzhe
2015-10-01
The need for reliable biomarkers for distinguishing Crohn disease (CD) from ulcerative colitis (UC) is increasing. This study aimed at evaluating the diagnostic potential of anti-GP2 antibodies as a biomarker in Chinese patients with CD. In addition, a variety of autoantibodies, including anti-saccharomyces cerevisiae antibodies (ASCA), perinuclear anti-neutrophil cytoplasmic antibodies (PANCA), anti-intestinal goblet cell autoantibodies (GAB), and anti-pancreatic autoantibodies (PAB), were evaluated.A total of 91 subjects were prospectively enrolled in this study, including 35 patients with CD, 35 patients with UC, 13 patients with non-IBD gastrointestinal diseases as disease controls (non-IBD DC), and 8 healthy controls (HC). The diagnosis of IBD was determined based on the Lennard-Jones criteria, and the clinical phenotypes of the IBD patients were determined based on the Montreal Classification.Anti-GP2 IgG antibodies were significantly elevated in patients with CD, compared with patients with UC (P = 0.0038), HC (P = 0.0055), and non-IBD DC (P = 0.0063). The prevalence of anti-GP2 IgG, anti-GP2 IgA and anti-GP2 IgA, or IgG antibodies in patients with CD was 40.0%, 37.1%, and 54.3%, respectively, which were higher than those in non-IBD DC (anti-GP2 IgG, 15.4%; anti-GP2 IgA, 7.7%; and anti-GP2 IgA or IgG, 23.1%) and those in patients with UC (anti-GP2 IgG, 11.4%; anti-GP2 IgA, 2.9%; and anti-GP2 IgA or IgG, 14.3%). For distinguishing CD from UC, the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratios (LR+) were 40%, 88.6%, 77.8%, and 3.51 for anti-GP2 IgG, 37.1%, 97.1%, 92.9%, and 13.0 for anti-GP2 IgA, and 54.3%, 85.3%, 79.2%, and 3.69 for anti-GP2 IgA or IgG. For CD diagnosis, the combination of anti-GP2 antibodies with ASCA IgA increased the sensitivity to 68.6% with moderate loss of specificity to 74.3%. Spearman's rank of order revealed a significantly positive correlation of anti-GP2 IgG with ileocolonic location of disease (L3) (P = 0.043) and a negative correlation of anti-GP2 IgA with biologic therapy (P = 0.012).Our findings suggest that anti-GP2 antibodies could serve as a biomarker for distinguishing patients with CD from patients with UC, and the combination of anti-GP2 antibodies with ASCA IgA may improve the predictive power.
Faller, Nicolas; Gautschi, Ivan; Schild, Laurent
2014-01-01
Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
Ibrahim, Ahmed Ragaa Nour; Kawamoto, Seiji; Aki, Tsunehiro; Shimada, Yayoi; Rikimaru, Satoshi; Onishi, Nobukazu; Babiker, Elfadil Elfadl; Oiso, Isao; Hashimoto, Kunihiko; Hayashi, Takaharu; Ono, Kazuhisa
2010-01-01
Japanese cedar (Cryptomeria japonica) pollen is a major cause of seasonal pollinosis in Japan. Protease activity in the pollen grains may trigger pro-allergic responses but no such proteases have yet been identified as pollen allergens. We report the molecular cloning and immunochemical characterization of a novel C. japonica pollen allergen belonging to the aspartic protease family. We focused on the C. japonica pollen allergen spot No. 63 (CPA63, 47.5% IgE binding frequency) on our 2-dimensional IgE immunoblot map. The internal amino acid sequences were determined using time-of-flight mass spectrometry. Full-length cpa63 cDNA was cloned by rapid amplification of cDNA ends (RACE)-PCR. Recombinant CPA63 (r-CPA63) was expressed using the baculovirus-insect cell culture system and its IgE binding capacity was analyzed by enzyme-linked immunosorbent assay (ELISA). The proteolytic activity of r-CPA63 was also assessed using a putative mature enzyme produced upon autolysis. cpa63 cDNA encoded a 472 amino acid polypeptide showing about 40% sequence identity to members of the plant atypical aspartic protease family. ELISA showed that r-CPA63 was recognized by IgE antibodies in the serum of 58% (18/31) of Japanese cedar pollinosis patients. We also demonstrated an aspartic protease-like enzyme activity of the putative mature r-CPA63. We have identified the first plant aspartic protease allergen from Japanese cedar pollen. The availability of the CPA63 sequence and its recombinant allergen production system are useful not only for pharmaceutical applications but also for further examination of the role of protease activity in the pathogenesis of cedar pollinosis. 2010 S. Karger AG, Basel.
Kallikreins - The melting pot of activity and function.
Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan
2016-03-01
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Structural and biochemical characterization of the inhibitor complexes of XMRV protease
Li, Mi; Gustchina, Alla; Matúz, Krisztina; Tözsér, Jozsef; Namwong, Sirilak; Goldfarb, Nathan E.; Dunn, Ben M.; Wlodawer, Alexander
2012-01-01
Summary Interactions between the protease (PR) encoded by the xenotropic murine leukemia virus-related virus (XMRV) and a number of potential inhibitors have been investigated by biochemical and structural techniques. It was observed that several inhibitors used clinically against HIV PR exhibit nanomolar or even subnanomolar values of Ki, depending on exact experimental conditions. TL-3, a universal inhibitor of retroviral proteases, as well as some inhibitors originally shown to inhibit plasmepsins were also quite potent, whereas inhibition by pepstatin A was considerably weaker. Crystal structures of the complexes of XMRV PR with TL-3, amprenavir, and pepstatin A were solved at high resolution and compared to the structures of these inhibitors complexed with other retropepsins. Whereas TL-3 and amprenavir bind in a predictable manner spanning the substrate-binding site of the enzyme, two molecules of pepstatin A bind simultaneously in an unprecedented manner, leaving the catalytic water molecule in place. PMID:21951660
Epithelial Integrity Is Maintained by a Matriptase-Dependent Proteolytic Pathway
List, Karin; Kosa, Peter; Szabo, Roman; Bey, Alexandra L.; Wang, Chao Becky; Molinolo, Alfredo; Bugge, Thomas H.
2009-01-01
A pericellular proteolytic pathway initiated by the transmembrane serine protease matriptase plays a critical role in the terminal differentiation of epidermal tissues. Matriptase is constitutively expressed in multiple other epithelia, suggesting a putative role of this membrane serine protease in general epithelial homeostasis. Here we generated mice with conditional deletion of the St14 gene, encoding matriptase, and show that matriptase indeed is essential for the maintenance of multiple types of epithelia in the mouse. Thus, embryonic or postnatal ablation of St14 in epithelial tissues of diverse origin and function caused severe organ dysfunction, which was often associated with increased permeability, loss of tight junction function, mislocation of tight junction-associated proteins, and generalized epithelial demise. The study reveals that the homeostasis of multiple simple and stratified epithelia is matriptase-dependent, and provides an important animal model for the exploration of this membrane serine protease in a range of physiological and pathological processes. PMID:19717635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampaio, S.O.; Mei, C.; Butcher, E.C.
The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less
Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.
Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R
1997-01-01
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617
Nascimento, Fernanda Santos; Suzuki, Lisandra Akemi; Rossi, Cláudio Lúcio
2008-08-01
To assess the value of detecting IgA antibodies for the diagnosis of a recently acquired primary Toxoplasma infection. IgA antibodies were screened in sera from 87 women with different serological profiles of Toxoplasma gondii IgM and IgG antibodies and Toxoplasma-specific IgG avidity. The IgM and IgG antibodies and the IgG avidity were measured with an automated Vitek Immuno Diagnostic Assay System (VIDAS). Anti-T.gondii IgA was measured with Platelia Toxo IgA TMB kits. All 12 sera obtained from women with clinical and/or serological evidence of a recently acquired Toxoplasma infection were positive for IgA. In 42 serum samples obtained more than 6 months after T. gondii infection from women with no clinical evidence of infection, but who had a positive IgM test and a high IgG avidity index, the IgA-enzyme linked immunosorbent assay (ELISA) test results were positive, negative, and doubtful in 16 (38.1%), 23 (54.8%), and 3 (7.1%) sera, respectively. In eight women, IgA was detected in sera collected more than 9 months after the onset of infection. The IgA test result was also positive in 11 of 12 sera (91.7%) obtained from women with no clinical evidence of toxoplasmosis, but who had a positive IgM test and a borderline IgG avidity index. The IgA-ELISA was negative in 21 sera obtained more than 2 years after the onset of T. gondii infection from women with no clinical evidence of toxoplasmosis, but who had a negative IgM test and a positive IgG test. These results show that IgA is not a dependable marker for a recently acquired primary Toxoplasma infection. Copyright (c) 2008 John Wiley & Sons, Ltd.
Wang, Q; Liu, Q; Ma, Y; Rui, H; Zhang, Y
2007-11-01
To characterize the luxO gene in fish pathogen Vibrio alginolyticus MVP01 and investigate its roles in regulation of extracellular products (ECP) and siderophore production. The luxO gene was cloned from V. alginolyticus MVP01. Genetic analysis revealed that it encoded a protein with high similarity to other LuxO homologues. The luxO in-frame deletion mutant and rpoN null mutant were constructed with suicide plasmids. We demonstrated that sole deletion in LuxO increased the secretion of extracellular protease and haemolytic products, but decreased siderophore production for V. alginolyticus MVP01. Mutants with null rpoN displayed significantly enhanced protease level and siderophore production while notable reduction in haemolytic activities of ECP. Vibrio alginolyticus harbours functional luxO gene that regulates the secretion of extracellular protease and haemolytic materials as well as siderophore production in either sigma(54) dependent or independent manners. The current study demonstrated that V. alginolyticus MVP01 produces extracellular protease and haemolytic activity material as well as siderophore, which may be characteristics of the virulence of the strain. Revelations that secretion of these products is under the regulation of LuxO and sigma(54) as well as the potential quorum sensing systems in V. alginolyticus MVP01 will expedite the understanding of vibriosis pathogenesis.
Acevedo, J P; Rodriguez, V; Saavedra, M; Muñoz, M; Salazar, O; Asenjo, J A; Andrews, B A
2013-02-01
Cloning, expression and characterization of a new cold-adapted protease with potential biotechnological application, isolated from Antarctic bacteria. A subtilisin-like gene was isolated from several Antarctic bacterial genus using CODPEHOP-designed primers and a genome walking method. This gene encodes a precursor protein, which undergoes an autocatalytic cleavage resulting in a 34.6 kDa active cold-adapted protease with a maximum activity at 25-35°C and optimum pH of 8.0-9.0. It showed a higher catalytic efficiency at lower temperatures compared to its mesophilic counterpart. Heat-induced inactivation resulted in a very low melting point. Local packing analysis using the homology model indicated Ala284 as an important cold-adaptation determinant, which was corroborated by the site-directed mutagenesis. A new thermolabile subtilisin-like protease has been successfully cloned and analysed, and an important hot spot in the evolution of the cold adaptation and substrate specificity of this enzyme was identified and tested. This work reports a new cold-adapted protease with a vast representation amongst Antarctic genus, suggesting therefore its evolutionary success in this cold environment. Likewise, important sites for genetic potentiation have been identified, which are extrapolated to other enzymes of the same kind. © 2012 The Society for Applied Microbiology.
The higher frequency of IgA deficiency among Swedish twins is not explained by HLA haplotypes.
Frankowiack, M; Kovanen, R-M; Repasky, G A; Lim, C K; Song, C; Pedersen, N L; Hammarström, L
2015-01-01
Serum immunoglobulin A (IgA) concentrations were determined in 12 600 adult Swedish twins, applying a high-throughput reverse-phase protein microarray technique. The prevalence of IgA deficiency (IgAD) was found to be 1:241 in monozygotic (MZ) twins and 1:198 in dizygotic (DZ) twins. Hence, the prevalence in twins is markedly elevated as compared with the normal Swedish adult population (1:600). The twins did not show a difference in the frequency of HLA haplotypes in comparison with almost 40 000 healthy Swedish controls. As expected, the risk-conveying HLA alleles A*01, B*08 and DRB1*01 were overrepresented among the IgAD twins and were also associated with significantly lower mean serum IgA concentrations in the twin cohort. In contrast, significantly higher mean IgA concentrations were found among individuals carrying the protective HLA alleles B*07 and DRB1*15. Exome sequencing data from two MZ twin pairs discordant for the deficiency showed no differences between the siblings. Model fitting analyses derived a heritability of 35% and indicate that genetic influences are modestly important for IgAD. The probandwise concordance rates for IgAD were found to be 31% for MZ and 13% for DZ twins.
Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela
2008-01-01
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381
Camacho, M T; Outschoorn, I; Kovácová, E; Téllez, A
2000-03-06
High levels of IgG1, IgG3 and IgA2 antibodies have been observed in patients with Q fever following Coxiella burnetii infection. This IgG subclass distribution is more typical of viral and autoimmune diseases than of bacterial infections. It seemed, therefore, of interest to carry out a prospective study of the distribution of immunoglobulin subclasses after vaccination with phase I C. burnetii tricloroacetic soluble extracts to detect possible differences with respect to natural infection. The antibody response found in vaccinees was mainly restricted to the IgG1, IgG2 and IgA1 subclasses. These findings confirm differences in isotype distribution when compared to those of patients with acute or chronic Coxiella infections and opens an area of interest with respect to the role of IgA subclasses.
Liu, Binbin; Zhang, Jing; Koetzner, Cheri A.; Jones, Susan A.; Lin, Qishan
2017-01-01
The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618. PMID:28542603
Development and characterization of an effective food allergy model in Brown Norway rats.
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida
2015-01-01
Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.
Development and Characterization of an Effective Food Allergy Model in Brown Norway Rats
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J.; Franch, Àngels; Castell, Margarida
2015-01-01
Background Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. Objective The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Methods Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Results Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. Conclusions These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression. PMID:25923134
O'Neal, Christine M.; Harriman, Gregory R.; Conner, Margaret E.
2000-01-01
Immunoglobulin A (IgA) is the primary immune response induced in the intestine by rotavirus infection, but vaccination with virus-like particles induces predominantly IgG, not IgA. To definitively assess the role of IgA in protection from rotavirus infection, IgA knockout mice, which are devoid of serum and secretory IgA, were infected and then rechallenged with murine rotavirus at either 6 weeks or 10 months. Following primary rotavirus infection, IgA knockout mice cleared virus as effectively as IgA normal control mice. Rotavirus-infected IgA knockout mice produced no serum or fecal IgA but did have high levels of antirotavirus serum IgG and IgM and fecal IgG, whereas IgA normal control mice made both serum IgA and IgG and fecal IgA. Both IgA normal and IgA knockout mice were totally protected from rotavirus challenge at 42 days. Ten months following a primary infection, both IgA normal and knockout mice still had high levels of serum and fecal antirotavirus antibody and were totally protected from rotavirus challenge. To determine if compensatory mechanisms other than IgG were responsible for protection from rotavirus infection in IgA knockout mice, mice were depleted of CD4+ T cells or CD8+ T cells. No changes in the level of protection were seen in depleted mice. These data show that fecal or systemic IgA is not essential for protection from rotavirus infection and suggest that in the absence of IgA, IgG may play a significant role in protection from mucosal pathogens. PMID:10756022
Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae.
Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V; Simões, Nelson
2010-10-01
Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 10(4) s(-1) m(-1) against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control.
Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry
NASA Astrophysics Data System (ADS)
Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.
2007-01-01
Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.
Phillpotts, R J; Lescott, T L; Jacobs, S C
2000-10-01
Vaccinia virus (VV) recombinants that contain the genes encoding the Venezuelan equine encephalitis virus (VEEV) structural gene region (C-E3-E2-6 K-E1) solidly protect mice against peripheral challenge with virulent VEEV, but provide only partial protection against airborne challenge. To improve upon these results we focussed on the principal antigens involved in protection. VV recombinants encoding the structural genes E3-E2-6 K-E1, E3-E2-6 K or 6 K-E1 were prepared and evaluated for their ability to protect Balb/c mice after a single dorsal scarification with 10(8) PFU against peripheral or airborne challenge with virulent VEEV. The antibody response was also examined. Our experiments provide new evidence that truncates of the VEEV structural region (E3-E2-6 K-E1, E3-E2-6 K), cloned and expressed in VV, protect against challenge with virulent virus. They also confirm the important role of E2 in protection. However, we were unable to improve upon previously reported levels of protection against airborne challenge. A substantial level of circulating antibodies and the presence of local IgA (not always induced by mucosal immunization) (Greenway et al., 1992) appear essential for protection against the airborne virus. Current VV-VEEV recombinants seem unable to elicit this level of immune response and further improvements are therefore required to increase the immunogenicity of VV-VEEV vaccines.
Serrano, M; Cabrera-Marante, O; Martínez-Flores, J A; Morales, P; Pérez, D; Mora, S; García, F; González, E; Paz-Artal, E; Morales, J M; Serrano, A
2016-11-01
Immunoglobulin (Ig)A anti-β 2 -glycoprotein I (aB2GP1) antibodies are associated with thrombotic events, cardiovascular morbidity, and death in dialysis patients. About 30% of patients with chronic renal disease are positive for IgA aB2GP1; however, the origin of these antibodies is unknown. It has been speculated that dialysis membranes, age, or etiology of renal base disease are possible precipitating factors, although these factors do not appear to be the source of antibodies. B2GP1 is a protein of 326 amino acids grouped into five domains. Eight polymorphisms have been described; the most important are Val/Leu 247 , which appears to predispose aB2GP1 antibody production in patients with anti-phospholipid syndrome, and Trp/Ser 316 , which appears to have protective antibody production of aB2GP1. DNA samples from 92 patients with renal failure on hemodialysis were randomly collected with a 1:1 ratio for the positivity for IgA aB2GP1. Forty-six samples were positive for IgA aB2GP1 (group 1) and 46 negative for IgA aB2GP1 (group 2). All samples were anonymized to study polymorphism Val/Leu 247 and polymorphism Trp/Ser 316 . No significant differences were observed between those who were positive or negative for IgA aB2GP1 in patients with renal failure treated with hemodialysis and the polymorphism located in codons 247 and 316. The two groups of patients have the same prevalence in polymorphisms 247 and 316, and therefore there appears not to be a genetic predisposition in our population. New trigger factors must be studied. Copyright © 2016 Elsevier Inc. All rights reserved.
Berger, K L; Scherer, J; Ranga, M; Sha, N; Stern, J O; Quinson, A-M; Kukolj, G
2015-10-01
Analysis of data pooled from multiple phase 2 (SILEN-C1 to 3) and phase 3 studies (STARTVerso1 to 4) of the hepatitis C virus (HCV) nonstructural protein 3/4A (NS3/4A) protease inhibitor faldaprevir plus pegylated interferon alpha/ribavirin (PR) provides a comprehensive evaluation of baseline and treatment-emergent NS3/4A amino acid variants among HCV genotype-1 (GT-1)-infected patients. Pooled analyses of GT-1a and GT-1b NS3 population-based pretreatment sequences (n = 3,124) showed that faldaprevir resistance-associated variants (RAVs) at NS3 R155 and D168 were rare (<1%). No single, noncanonical NS3 protease or NS4A cofactor baseline polymorphism was associated with a reduced sustained virologic response (SVR) to faldaprevir plus PR, including Q80K. The GT-1b NS3 helicase polymorphism T344I was associated with reduced SVR to faldaprevir plus PR (P < 0.0001) but was not faldaprevir specific, as reduced SVR was also observed with placebo plus PR. Among patients who did not achieve SVR and had available NS3 population sequences (n = 507 GT-1a; n = 349 GT-1b), 94% of GT-1a and 83% of GT-1b encoded faldaprevir treatment-emergent RAVs. The predominant GT-1a RAV was R155K (88%), whereas GT-1b encoded D168 substitutions (78%) in which D168V was predominant (67%). The novel GT-1b NS3 S61L substitution emerged in 7% of virologic failures as a covariant with D168V, most often among the faldaprevir breakthroughs; S61L in combination with D168V had a minimal impact on faldaprevir susceptibility compared with that for D168V alone (1.5-fold difference in vitro). The median time to loss of D168 RAVs among GT-1b-infected patients who did not have a sustained virologic response at 12 weeks posttreatment (non-SVR12) after virologic failure was 5 months, which was shorter than the 14 months for R155 RAVs among GT-1a-infected non-SVR12 patients, suggesting that D168V is less fit than R155K in the absence of faldaprevir selective pressure. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A unique evolution of the kidney phenotype in a patient with autosomal recessive Alport syndrome.
Vischini, Gisella; Kapp, Meghan E; Wheeler, Ferrin C; Hopp, Laszlo; Fogo, Agnes B
2018-03-09
Alport syndrome is due to mutations in one of the genes encoding (α3,4,5) type IV collagen resulting in defective type IV collagen, a key component of the glomerular basement membrane (GBM). The GBM is initially thin, and with ongoing remodeling, develops a thickened basket-woven appearance. We report a unique case of a 9-year-old boy who was biopsied for hematuria and proteinuria, diagnosed as IgA nephropathy, with normal GBM appearance and thickness. Due to a family history of hematuria and chronic kidney disease, he subsequently underwent genetic evaluation and a mutation of α3 type IV collagen (COL4A3) was detected. Additional studies of the initial biopsy demonstrated abnormal type IV collagen immunostaining. A repeat biopsy 4years later showed characteristic glomerular basement membrane morphology of Alport syndrome, and scarring consistent with sequelae of IgA nephropathy. This is the first description of this unusual transition from an initial normal appearance of the glomerular basement membrane to the classic Alport phenotype. Copyright © 2018. Published by Elsevier Inc.
Gómez Román, Victor Raúl; Vinner, Lasse; Grevstad, Berit; Hansen, Jesper Juhl; Wegmann, Frank; Spetz, Anna-Lena; Fomsgaard, Anders
2010-12-15
The New Zealand white rabbit model (Oryctolagus cuniculus) is widely used to test whether HIV vaccine candidates elicit systemic antibody responses; however, its use in mucosal immunology has not been fully exploited due to the difficulty in collecting mucosal specimens longitudinally and reproducibly. Here we describe feasible and non-feasible methods to collect vaginal and nasal specimens from nulliparous rabbits. Non-feasible methods were those resulting in poor reproducibility and considerable animal twitching during sampling, whereas feasible methods resulted in no animal twitching and potential for sampling reproducibility. Standard operating procedures (SOPs) were implemented to collect vaginal swabs yielding total IgA titres ranging from 12,500 to 312,500. Intranasal immunisation with a naked DNA vaccine encoding HIV gp140 elicited HIV envelope-specific IgA detectable in nasal but not in vaginal secretions. Our methods provide an alternative to reliably assess pre- and post-vaccination mucosal antibody titres longitudinally in rabbits as part of mucosal HIV vaccine immunogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens
Jang, Hyesun; Elaish, Mohamed; KC, Mahesh; Abundo, Michael C.; Ghorbani, Amir; Lee, Chang-Won
2018-01-01
Outbreaks of novel highly pathogenic avian influenza viruses have been reported in poultry species in the United States since 2014. These outbreaks have proven the limitations of biosecurity control programs, and new tools are needed to reinforce the current avian influenza control arsenal. Some enzootic countries have implemented inactivated influenza vaccine (IIV) in their control programs, but there are serious concerns that a long-term use of IIV without eradication may result in the selection of novel antigenically divergent strains. A broadly protective vaccine is needed, such as live-attenuated influenza vaccine (LAIV). We showed in our previous studies that pc4-LAIV (a variant that encodes a C-terminally truncated NS1 protein) can provide significant protection against heterologous challenge virus in chickens vaccinated at 2–4 weeks of age through upregulation of innate and adaptive immune responses. The current study was conducted to compare the performances of pc4-LAIV and IIV in young chickens vaccinated at 1 day of age. A single dose of pc4-LAIV was able to induce stronger innate and mucosal IgA responses and protect young immunologically immature chickens better than a single dose of IIV. Most importantly, when 1-day-old chickens were intranasally primed with pc4-LAIV and subcutaneously boosted with IIV three weeks later, they showed a rapid, robust, and highly cross-reactive serum antibody response and a high level of mucosal IgA antibody response. This vaccination regimen warrants further optimization to increase its range of protection. PMID:29624615
Bautista-Marquez, Aurora; Velasquez, Daniel E; Esparza-Aguilar, Marcelino; Luna-Cruz, Maria; Ruiz-Moran, Tatiana; Sugata, Ken; Jiang, Baoming; Parashar, Umesh; Patel, Manish; Richardson, Vesta
2016-10-17
We examined potential risk factors on vaccine virus shedding and antibody seroresponse to human rotavirus vaccine (Rotarix) in Mexican infants. Two doses of Rotarix were administered to infants during the first two visits for their routine childhood immunization (∼8 and 15weeks of age) in Mexico City. Infant's characteristics and socioeconomic indicators were obtained, including history of long-term feeding practices (exclusively/predominantly breastfed and exclusively/predominantly non-breastfed). Two serum specimens were collected, one during the second rotavirus vaccine visit and one 7weeks later. Stool specimens were collected between days 4-7 after each of the two rotavirus vaccine doses. Rotavirus IgA and IgG titers in serum were determined by enzyme immunoassays (EIA) and rotavirus shedding in stool was assessed by EIA and confirmed by RT-PCR. The overall rotavirus IgA geometric mean titers (GMT) increased significantly post dose 2 from post dose 1 [176 (95%CI: 113-273) to 335 (238-471); p=0.020). Infants who were exclusively/predominantly breastfed were less likely to shed vaccine virus in stool than those who were formula-fed (22% vs. 43%, p=0.016). Infants who were breastfed had lower rotavirus IgA titers than those who were formula-fed after dose 1 [GMT: 145 (84-250) vs. 267 (126-566) p=0.188] and dose 2 [236 (147-378) vs.578 (367-910), p=0.007]. Infants who shed vaccine virus post dose 1 had significantly higher serum IgA GMT than those who did not shed [425 (188-965) vs. 150 (84-266), p=0.038]. Breastfeeding was linked with the reduction of both stool vaccine shedding, and IgA seroresponse. The reduced rotavirus replication in the gut and shedding after dose 1 may explain in part the lower IgA response in serum. Published by Elsevier Ltd.
Liu, Juan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Hesong; Wu, Bangyuan; Deng, Yuanxin; Wang, Kangping
2013-05-02
Fluoride is an environmental and industrial pollutant that affects various organs in humans and animals. The cecal tonsil is an important component of the mucosal immune system and performs important and unique immune functions. In the present study, we investigated the effects of dietary high fluorine on the quantities of IgA+ B cells in the cecal tonsil by immunohistochemistry, and the immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) contents in the cecal tonsil by ELISA. A total of 280 one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet (fluorine 22.6 mg/kg) or the same diet supplemented with 400, 800 and 1,200 mg/kg fluorine (high fluorine groups I, II and III) in the form of sodium fluoride, respectively, throughout a 42-day experimental period. The results showed that the quantities of IgA+ B cells were lower (p < 0.05 or p < 0.01) and the IgA, IgG, and IgM contents were decreased (p < 0.05 or p < 0.01) in high fluorine groups II and III in comparison with those of control group. It was concluded that dietary fluorine, in the 800-1,200 mg/kg range, could reduce the numbers of the IgA+ B cells and immunoglobulin contents in the cecal tonsil, implying the local mucosal immune function was ultimately impacted in broilers.
Liu, Juan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Hesong; Wu, Bangyuan; Deng, Yuanxin; Wang, Kangping
2013-01-01
Fluoride is an environmental and industrial pollutant that affects various organs in humans and animals. The cecal tonsil is an important component of the mucosal immune system and performs important and unique immune functions. In the present study, we investigated the effects of dietary high fluorine on the quantities of IgA+ B cells in the cecal tonsil by immunohistochemistry, and the immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) contents in the cecal tonsil by ELISA. A total of 280 one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet (fluorine 22.6 mg/kg) or the same diet supplemented with 400, 800 and 1,200 mg/kg fluorine (high fluorine groups I, II and III) in the form of sodium fluoride, respectively, throughout a 42-day experimental period. The results showed that the quantities of IgA+ B cells were lower (p < 0.05 or p < 0.01) and the IgA, IgG, and IgM contents were decreased (p < 0.05 or p < 0.01) in high fluorine groups II and III in comparison with those of control group. It was concluded that dietary fluorine, in the 800–1,200 mg/kg range, could reduce the numbers of the IgA+ B cells and immunoglobulin contents in the cecal tonsil, implying the local mucosal immune function was ultimately impacted in broilers. PMID:23644827
Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong
2015-01-01
A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.
Liu, Yuchun; Yan, Qiaojuan; Yang, Shaoqing; Jiang, Zhengqiang
2015-07-15
A novel exochitinase gene (Echi47) was directly cloned from the pig fecal environment DNA using the genomic walking PCR technique and expressed in Escherichia coli BL21 (DE3). Echi47 has an open reading frame (ORF) of 1,161 bp encoding 386 amino acids. The amino acid sequence of Echi47 showed 36% identity with that of chitinase from Coprinellus congregatus. The recombinant exochitinase was purified with specific activity toward colloidal chitin of 6.84 U/mg. Echi47 was optimally active at pH 5.0 and 40 °C, respectively. When colloidal chitin was used as substrate, N-acetylchitobiose [(GlcNAc)2] was mostly produced at the initial stage, suggesting that it is an exochitinase. Echi47 exhibited excellent resistance to pepsin, trypsin, proteinase K, and flavor protease. Under simulated alimentary tract conditions, Echi47 was stable and active, releasing 21.1 mg of N-acetylchitooligosaccharides from 80 mg of colloidal chitin. These properties make Echi47 a potential additive in the food and feed industries.
Pérez, D; Martínez-Flores, J A; Serrano, M; Lora, D; Paz-Artal, E; Morales, J M; Serrano, A
2016-10-01
In recent years, we have been witnessing increased clinical interest in the determination of IgA anti-beta 2-glycoprotein I (aB2GPI) antibodies as well as increased demand for this test. Some ELISA-based diagnostic systems for IgA aB2GPI antibodies detection are suboptimal to detect it. The aim of our study was to determine whether the diagnostic yield of modern detection systems based on automatic platforms to measure IgA aB2GPI is equivalent to that of the well-optimized ELISA-based assays. In total, 130 patients were analyzed for IgA aB2GPI by three fully automated immunoassays using an ELISA-based assay as reference. The three systems were also analyzed for IgG aB2GPI with 58 patients. System 1 was able to detect IgA aB2GPI with good sensitivity and kappa index (99% and 0.72, respectively). The other two systems had also poor sensitivity (20% and 15%) and kappa index (0.10 and 0.07), respectively. On the other hand, kappa index for IgG aB2GPI was >0.89 in the three systems. Some analytical methods to detect IgA aB2GPI are suboptimal as well as some ELISA-based diagnostic systems. It is important that the scientific community work to standardize analytical methods to determine IgA aB2GPI antibodies. © 2016 John Wiley & Sons Ltd.
Doni, Bharati R; Patil, Santosh; Peerapur, Basavaraj V; Kadaganchi, Harish; Bhat, Kishore G
2013-06-01
To estimate the salivary immunoglobulin A (IgA) levels in tobacco chewers, tobacco smokers and normal subjects and to compare the salivary IgA levels among tobacco chewers and tobacco smokers. The study group consisted of 80 subjects (tobacco users), 40 tobacco chewers and 40 tobacco smokers. Unstimulated whole saliva was collected from all tobacco users and 40 healthy age- and gender-matched non-tobacco users as control group. The study and control groups were divided into four subgroups based on age range. Salivary IgA levels were estimated by single radial immunodiffusion assay (SRID). All data were analysed using statistical software and to compare the results in three groups, single-factor analysis of variance was applied. The mean salivary IgA level in control group was 16.76 ± 1.37 mg/dl (SD); in tobacco chewers it was 7.89 ± 0.61 mg/dl (SD) and in tobacco smokers it was 6.55 ± 0.99 mg/dl (SD). The salivary IgA levels were decreased in tobacco chewers and tobacco smokers compared with the controls. Among the tobacco users, tobacco smokers had much reduced salivary IgA levels compared to tobacco chewers. All of these results were highly significant (P<0.001). The present study showed that tobacco chewers and tobacco smokers had decreased salivary IgA levels and among tobacco users, tobacco smokers had much reduced salivary IgA levels compared to tobacco chewers in unstimulated whole saliva.
Frutos, Silvia; Rodriguez-Mias, Ricard A; Madurga, Sergio; Collinet, Bruno; Reboud-Ravaux, Michèle; Ludevid, Dolors; Giralt, Ernest
2007-01-01
HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.
Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J
2011-08-15
We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.
Shapira, Assaf; Gal-Tanamy, Meital; Nahary, Limor; Litvak-Greenfeld, Dana; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai
2011-01-01
The synthesis of inactive enzyme precursors, also known as “zymogens,” serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated “zymogenized” chimeric toxins (which we denote “zymoxins”). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the “zymoxin” approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected. PMID:21264238
Complement factor H-related proteins in IgA nephropathy-sometimes a gentle nudge does the trick.
Thurman, Joshua M; Laskowski, Jennifer
2017-10-01
Complement activation probably contributes to glomerular inflammation and damage in IgA nephropathy. In this issue, 2 groups report that levels of factor H-related protein 1 are elevated in patients with IgA nephropathy and correlate with disease progression. These studies provide new evidence that the complement cascade is important to the pathogenesis of this disease. These results also suggest that factor H-related protein 1 levels may be useful for identifying those patients at high risk of disease progression. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice
Planer, Joseph D.; Peng, Yangqing; Kau, Andrew L.; Blanton, Laura V.; Ndao, I. Malick; Tarr, Phillip I.; Warner, Barbara B.; Gordon, Jeffrey I.
2016-01-01
Immunoglobulin A (IgA), the major class of antibody secreted by the gut mucosa, is an important contributor to gut barrier function1–3. The repertoire of IgA bound to gut bacteria reflects both T cell-dependent and -independent pathways4,5, plus glycans present on the antibody’s secretory component6. Human gut bacterial taxa targeted by IgA in the setting of intestinal barrier dysfunction are capable of producing intestinal pathology when isolated and transferred to gnotobiotic mice7,8. A complex reorientation of gut immunity occurs as infants transition from passively acquired IgA present in breast milk to host-derived IgA9–11. How IgA responses co-develop with assembly of the microbiota during this period remains poorly understood. Here, we (i) identify a set of age-discriminatory bacterial taxa whose representations define a program of microbiota assembly/maturation during the first 2 postnatal years that is shared across 40 healthy USA twin pairs; (ii) describe a pattern of progression of gut mucosal IgA responses to bacterial members of the microbiota that is highly distinctive for family members (twin pairs) during the first several postnatal months then generalizes across pairs in the second year; and (iii) assess the effects of zygosity, birth mode and breast feeding. Age-associated differences in these IgA responses can be recapitulated in young germ-free mice, colonized with fecal microbiota obtained from two twin pairs at 6 and 18 months of age, and fed a sequence of human diets that simulate the transition from milk feeding to complementary foods. The majority of these responses were robust to diet suggesting that ‘intrinsic’ properties of community members play a dominant role in dictating IgA responses. The approach described can be used to define gut mucosal immune development in health and disease states and help discover ways for repairing or preventing perturbations in this facet of host immunity. PMID:27279225
Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice.
Planer, Joseph D; Peng, Yangqing; Kau, Andrew L; Blanton, Laura V; Ndao, I Malick; Tarr, Phillip I; Warner, Barbara B; Gordon, Jeffrey I
2016-06-09
Immunoglobulin A (IgA), the major class of antibody secreted by the gut mucosa, is an important contributor to gut barrier function. The repertoire of IgA bound to gut bacteria reflects both T-cell-dependent and -independent pathways, plus glycans present on the antibody's secretory component. Human gut bacterial taxa targeted by IgA in the setting of barrier dysfunction are capable of producing intestinal pathology when isolated and transferred to gnotobiotic mice. A complex reorientation of gut immunity occurs as infants transition from passively acquired IgA present in breast milk to host-derived IgA. How IgA responses co-develop with assembly of the microbiota during this period remains poorly understood. Here, we (1) identify a set of age-discriminatory bacterial taxa whose representations define a program of microbiota assembly and maturation during the first 2 postnatal years that is shared across 40 healthy twin pairs in the USA; (2) describe a pattern of progression of gut mucosal IgA responses to bacterial members of the microbiota that is highly distinctive for family members (twin pairs) during the first several postnatal months then generalizes across pairs in the second year; and (3) assess the effects of zygosity, birth mode, and breast feeding. Age-associated differences in these IgA responses can be recapitulated in young germ-free mice, colonized with faecal microbiota obtained from two twin pairs at 6 and 18 months of age, and fed a sequence of human diets that simulate the transition from milk feeding to complementary foods. Most of these responses were robust to diet, suggesting that 'intrinsic' properties of community members play a dominant role in dictating IgA responses. The approach described can be used to define gut mucosal immune development in health and disease states and to help discover ways of repairing or preventing perturbations in this facet of host immunity.
Identification of a Novel Host-Specific IgM Protease in Streptococcus suis
Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter
2013-01-01
Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300
Jenvey, C; Caraguel, C; Howarth, G B; Riley, C B
2012-12-01
Prior to the start of endogenous production of immunoglobulins (Igs), absorption of maternal Igs is important to protect against pathogens in the early neonatal period. It is possible that mare- or foal-associated factors may influence neonatal IgA concentrations. The temporal relationships among serum and milk IgA concentrations in Thoroughbred mare-foal pairs were explored to determine if periparturient mare- and foal-associated factors contribute to the prediction of foal serum IgA concentrations. Blood and milk samples as well as complete veterinary records, were collected for 84 Thoroughbred mare-foal pairs from one month before to 2 months after parturition. Samples were tested using enzyme-linked immunosorbent assay (ELISA) for concentrations of IgA. Pairwise correlation coefficients were estimated (P < 0.01) and simple linear regression used to investigate unconditional associations between mare IgA levels, mare and foal risk factors and foal serum IgA concentration at 12 h. Backwards, stepwise elimination of nonsignificant factors was used to create a final model. There were significant temporal relationships among mare serum IgA and among colostrum and milk IgA concentrations within mares (P < 0.01). Mare serum IgA concentrations up to one month before parturition were associated with foal serum IgA concentrations at all time points and with colostrum and milk IgA concentrations. Mare serum IgA at -28 days and parity were associated with foal serum IgA concentration at 12 h (P < 0.001). Mare serum IgA concentrations up to 28 days before parturition, together with mare parity, are indicative of neonatal foal serum IgA concentrations. Mare serum and colostrum IgA concentrations may be useful peripartum predictors of neonatal mucosal immune status, enabling earlier intervention to prevent the consequences of mucosal infections.
Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.
Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna
2015-01-01
Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901
Kherraf, Zine-Eddine; Christou-Kent, Marie; Karaouzene, Thomas; Amiri-Yekta, Amir; Martinez, Guillaume; Vargas, Alexandra S; Lambert, Emeline; Borel, Christelle; Dorphin, Béatrice; Aknin-Seifer, Isabelle; Mitchell, Michael J; Metzler-Guillemain, Catherine; Escoffier, Jessica; Nef, Serge; Grepillat, Mariane; Thierry-Mieg, Nicolas; Satre, Véronique; Bailly, Marc; Boitrelle, Florence; Pernet-Gallay, Karin; Hennebicq, Sylviane; Fauré, Julien; Bottari, Serge P; Coutton, Charles; Ray, Pierre F; Arnoult, Christophe
2017-08-01
Azoospermia, characterized by the absence of spermatozoa in the ejaculate, is a common cause of male infertility with a poorly characterized etiology. Exome sequencing analysis of two azoospermic brothers allowed the identification of a homozygous splice mutation in SPINK2, encoding a serine protease inhibitor believed to target acrosin, the main sperm acrosomal protease. In accord with these findings, we observed that homozygous Spink2 KO male mice had azoospermia. Moreover, despite normal fertility, heterozygous male mice had a high rate of morphologically abnormal spermatozoa and a reduced sperm motility. Further analysis demonstrated that in the absence of Spink2, protease-induced stress initiates Golgi fragmentation and prevents acrosome biogenesis leading to spermatid differentiation arrest. We also observed a deleterious effect of acrosin overexpression in HEK cells, effect that was alleviated by SPINK2 coexpression confirming its role as acrosin inhibitor. These results demonstrate that SPINK2 is necessary to neutralize proteases during their cellular transit toward the acrosome and that its deficiency induces a pathological continuum ranging from oligoasthenoteratozoospermia in heterozygotes to azoospermia in homozygotes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Stuyven, E.; Verdonck, F.; Van Hoek, I.; Daminet, S.; Duchateau, L.; Remon, J. P.; Goddeeris, B. M.; Cox, E.
2010-01-01
The effect of oral administration of β-1,3/1,6-glucans from Saccharomyces cerevisiae on humoral immunity in domestic dogs is not known. In this study, 15 beagle dogs were orally given MacroGard tablets, which contain 150 mg of this β-glucan, daily for 4 weeks. At the end of this period, the total serum immunoglobulin A (IgA) level decreased significantly in the group treated with the glucan compared to that in the control group as well as compared to the concentrations before supplementation. In contrast, the total serum IgM level rose significantly, whereas no effect on the IgG level occurred. Similar changes were seen in Bordetella-specific IgA and IgM titers following vaccination during the supplementation period. The IgA concentration also became significantly lower in the saliva and tears of the glucan group than in the placebo group. The effects disappeared 1 week after the cessation of the supplementation. In conclusion, the results showed a temporary change in the isotype profile during glucan supplementation. PMID:20032218
Salivary Biomarker Responses to Two Final Matches in Women’s Professional Football
Maya, Javiera; Marquez, Pablo; Peñailillo, Luis; Contreras-Ferrat, Ariel; Deldicque, Louise; Zbinden-Foncea, Hermann
2016-01-01
The aim of this study was to examine the link between salivary concentrations of cortisol, testosterone, immunoglobulin A (IgA) and the rate of perceived exertion (RPE) as a measure of internal load after two final matches played 3 days apart by professional women football players. Saliva samples were taken before and after the two matches (M1, M2). RPE was used to monitor the exercise intensity after each match. Testosterone concentrations increased after each match (M1: +42%, p = 0.002; M2: +50%, p < 0.001) while cortisol increased only after M1 (+116%, p < 0.001). The testosterone-to-cortisol ratio decreased only after M1 (-32.4%, p < 0.001). IgA concentration did not change after any match. Testosterone concentrations were correlated with IgA concentrations after each match (M1: R = 0.59, p = 0.008; M2: R=0.51, p = 0.02). RPE was correlated with cortisol concentrations after M1 (R = 0.57; p = 0.01), but not after M2 (R = 0.38; p = 0.07). All these results suggest that salivary cortisol and testosterone concentrations increase especially after the first match of a final, without affecting IgA levels. We speculate that increased testosterone concentration in women after football matches may play a protecting role against immune suppression usually observed after intense exercise. Key points In our sample space, IgA concentrations did not change for teams even, before and after separated match. Suggesting that salivary IgA determinations after physical activities remain under debate. Testosterone concentrations were the only one hormone showing a consequent increase in both matches after physical activity carrying. The T/C ratio decrease only after M1 according with a higher cortisol level reach after M1 get-together, suggesting a differential impact over anxiety-associated team performance. So M2 play gives a more stable psychological state. PMID:27274677
Monoclonal IgA Antibodies for Aflatoxin Immunoassays
Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma
2016-01-01
Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470
Glomerular Diseases: Emerging Tests and Therapies for IgA Nephropathy
Kiryluk, Krzysztof; Appel, Gerald B.
2014-01-01
Summary The last decade has seen major progress in understanding the pathogenesis as well as the prognosis and treatment of patients with IgA nephropathy (IgAN). Although the diagnostic criterion of a kidney biopsy demonstrating dominant or codominant IgA deposition remains unchanged, much more is known about the genetic and environmental factors predisposing to disease development and progression. These advances have led to the identification of novel diagnostic and prognostic markers. Among the most promising clinically are genetic profiling, quantification of galactose-deficient IgA1 levels, and measurement of anti-IgA1 immunoglobulins. While targeted treatment for IgAN remains elusive, there is mounting evidence for therapeutic interventions that alter the disease course. The appropriate validation and integration of these discoveries into clinical care represent a major challenge, but one that holds tremendous promise for refining prognostication, guiding therapy, and improving the lives of patients with IgAN. PMID:24071652
Glomerular diseases: emerging tests and therapies for IgA nephropathy.
Canetta, Pietro A; Kiryluk, Krzysztof; Appel, Gerald B
2014-03-01
The last decade has seen major progress in understanding the pathogenesis as well as the prognosis and treatment of patients with IgA nephropathy (IgAN). Although the diagnostic criterion of a kidney biopsy demonstrating dominant or codominant IgA deposition remains unchanged, much more is known about the genetic and environmental factors predisposing to disease development and progression. These advances have led to the identification of novel diagnostic and prognostic markers. Among the most promising clinically are genetic profiling, quantification of galactose-deficient IgA1 levels, and measurement of anti-IgA1 immunoglobulins. While targeted treatment for IgAN remains elusive, there is mounting evidence for therapeutic interventions that alter the disease course. The appropriate validation and integration of these discoveries into clinical care represent a major challenge, but one that holds tremendous promise for refining prognostication, guiding therapy, and improving the lives of patients with IgAN.
Biomarkers of IgA vasculitis nephritis in children
Pillebout, Evangeline; Jamin, Agnès; Ayari, Hamza; Housset, Pierre; Pierre, Melissa; Sauvaget, Virginia; Viglietti, Denis; Deschenes, Georges
2017-01-01
Henoch–Schönlein purpura is a systemic vasculitis characterized by IgA deposits, which target the skin, joints, and kidneys, among other organs. In children, prognosis is often good but little is known about biomarkers of pediatric nephritis. We hypothesized that biological markers, including cytokines, immunoglobulins, IgA-immune complexes, IgA glycosylation and neutrophil gelatinase-associated lipocalin (NGAL), may discriminate IgA vasculitis (IgAV) pediatric patients with renal involvement from those without renal involvement. Fifty children at the time of IgAV rash between 2010 and 2015 were prospectively enrolled and compared to 21 controls. All patients were assessed for clinical and biological parameters at the time of diagnosis, including the levels of cytokines, immunoglobulins, immune complexes, IgA glycosylation and NGAL in serum and urine. Among IgAV patients, 33 patients exhibited nephritis (IgAV-N) and 17 children were without nephritis (IgAV-woN). The serum level of galactose-deficient (Gd)-IgA1 (p<0.01) and the urinary concentrations of IgA, IgG, IgM, IL-6, IL-8, IL-10, IgA-IgG complexes and IgA-sCD89 complexes (p<0.001 for all) were higher in the IgAV-N patients than in the IgAV-woN patients. Among those markers, urinary IgA and IgM had the highest AUC (0.86 and 0.87 respectively, p<0.0001). This prospective cohort study furthers our understanding of the pathophysiology of IgAV. We identified biomarkers that are able to distinguish patients initially with or without nephritis. To conclude, serum Gd-IgA1 and urinary IgA, IgG, IgM, IL-6, IL-8, IL-10, and IgA-IgG and IgA-sCD89 complexes could identify IgAV pediatric patients with renal involvement at the time of diagnosis. PMID:29190714
Paul, M; Petersen, E; Szczapa, J
2001-05-01
We determined the value of a new serological assay detecting Toxoplasma-specific immunoglobulin M (IgM) and IgA antibodies at birth for use in mass neonatal screening. The incidence of congenital infection in newborns was compared with data from an epidemiological investigation on the seroprevalence of Toxoplasma in the studied population. Peripheral blood was collected on Guthrie cards during the first 3 days of life and tested for anti-Toxoplasma IgA and IgM using a noncommercial immunocapture enzyme-linked immunosorbent assay (ELISA). When the screening assay was positive, serum samples from the child and the mother were collected for use in Western blotting comparative immunological profile analysis and traditional serological tests for determination of specific IgG, IgM, and IgA antibodies. From December 1998 to April 2000, 17,653 filter paper samples from live-born neonates were successively screened. Congenital T. gondii infection was finally confirmed in 19 newborns. In traditional assays, 13 of 19 infants were IgM and IgA positive using filter paper eluates at birth, 1 child was positive only for IgM, 1 patient was positive for IgM and borderline for IgA, 1 had an equivocal level of IgA, and 3 cases were confirmed only by the Western blot assay. The prevalence of Toxoplasma-specific IgA and/or IgM in filter paper samples at birth was 1 per 929 live-born neonates (1.08/1,000) or about 1 per 523 children (1.9/1,000) born to nonimmune women with a potential risk of primary T. gondii infection during pregnancy, compared to the actual seropositivity rate of 43.7%. The diagnostic sensitivity of the combined IgA-IgM ELISA using neonatal filter paper specimens was not more than 95%, the positive predictive value of the test was 82.6%, and the diagnostic specificity was calculated to be 99.9%. The combined IgA-IgM ELISA is a valuable method for the diagnosis of congenital toxoplasmosis at birth and fulfills criteria for neonatal screening programs. The method showed a good diagnostic sensitivity in neonates untreated prenatally who were born in an area of high seroprevalence of T. gondii infection.
Do we need to measure total serum IgA to exclude IgA deficiency in coeliac disease?
Sinclair, D; Saas, M; Turk, A; Goble, M; Kerr, D
2006-01-01
Background Screening for IgA deficiency in patients with coeliac disease is essential because of the increased incidence of IgA deficiency associated with the disease, which usually relies on the estimation of IgA levels in each case. Aim To devise a method of excluding IgA deficiency without measuring total serum IgA in each case. Materials and methods The optical density readings on enzyme‐linked immunosorbent assay (ELISA) of 608 routine samples received for tissue transglutaminase (TTG) antibody testing for coeliac disease were compared with their total IgA concentrations. Dilution experiments were also carried out to ensure linear relationships between optical density on ELISA and IgA concentrations and to compare the sensitivities for TTG and endomysium antibodies in TTG‐positive samples. Results and discussion A clear relationship was shown between total IgA concentration and TTG optical density readings by ELISA. To ensure a positive TTG result if antibodies are present, it was possible to recommend an optical density level above which all samples have sufficient IgA. Samples with optical density <0.05 should be investigated further by estimating total IgA and, if low, samples should be subjected to immunofluorescence microscopy testing for IgA and IgG endomysium antibodies. Conclusions An easier, more cost‐effective and practical way of excluding IgA deficiency in the investigation on coeliac disease is reported. PMID:16489174
Montero-Barrientos, M.; Hermosa, R.; Cardoza, R. E.; Gutiérrez, S.; Monte, E.
2011-01-01
The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum. PMID:21421791
Baleva, Marta P; Mihaylova, Snejina; Yankova, Petja; Atanasova, Iliana; Nikolova-Vlahova, Milena; Naumova, Elissaveta
2016-01-01
Selective IgA deficiency (IgAD) is the most prevalent type of primary immune deficiencies, but partial IgA deficiency is even more common. Addison's disease is a rare condition associated with primary adrenal insufficiency due to infection or autoimmune destruction of the adrenals. The association between IgA deficiency and Addison's disease is very rare. We observed a 22-year-old male patient with marked darkening of the skin, especially on the palms and areolae, jaundice on the skin and sclera, astheno-adynamia, hypotension (80/50 mm Hg), and pain in the right hypochondrium. The laboratory investigations revealed increased serum levels of total and indirect bilirubin, AST, ALT, GGT and LDH, negative HBsAg, anti-HBc IgM, anti-HCV and anti-HAV IgM, very low serum IgA levels (0.16 g/l) with normal IgG and IgM, negative ANA, ANCA, AMA, LKM-1, anti-GAD-60, anti-IA-2, anti-thyroglobulin antibodies, a mild increase in anti-TPO antibodies titer, a marked increase in IgG anti-tissue transglutaminase antibodies, with no typical changes in cellular immunity, negative T-SPOT-TB test, HLA - A*01; B*08; DRB1*03; DQB1*02, karyotype - 46, XY. We present a rare case of partial IgA deficiency with Addison's disease, hepatitis, thyroiditis and positive anti-tissue transglutaminase antibodies. IgAD and some autoimmune disorders share several predisposing HLA genes, thus explaining the increased prevalence of IgAD in certain patient groups.
Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae
2016-06-28
To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.
Serum IgG subclass antibodies to a variety of food antigens in patients with coeliac disease.
Hvatum, M; Scott, H; Brandtzaeg, P
1992-01-01
Levels of serum IgA, IgG, and IgG subclass antibodies to a variety of dietary antigens were determined by enzyme linked immunosorbent assays in 14 adults with untreated coeliac disease and in 10 disease controls selected because of raised total IgG activities. The untreated coeliacs showed somewhat higher total IgG activity (p approximately 0.05) and significantly raised IgA and IgG1 + IgG3 activities to gliadin but reduced IgG4 activity (p less than 0.02) compared with the controls. High IgA and IgG1 + IgG3 activities were positively correlated (r = 0.67, p less than 0.01), and so were IgG and IgG4 activities (r = 0.64, p less than 0.02). Conversely, a high IgG2 response to gliadin appeared related to a low IgA response (r = 0.55, p less than 0.05). The IgG2 response was most prominent to oat flour antigens, followed by IgG1; and the main response to soy antigens resided in IgG1, followed by IgG2 in both disease groups. There was no difference in antibody activities to oat and soy between the two groups, and raised activity to bovine serum albumin was seldom encountered. The IgA activity to alpha-lactalbumin and ovalbumin tended to be increased in the coeliacs compared with the controls. The IgG4 subclass dominated the IgG response to beta-lactoglobulin and ovalbumin and was often raised to alpha-lactalbumin, especially in the disease controls. The IgG subclass pattern to casein parallelled that to gliadin with dominance of the IgG1- and IgG3-subclass activities, especially in the coeliacs. The phlogistic potential of a response in these two subclasses might be relevant to the pathogenesis of coeliac disease and could contribute to a raised IgA gliadin response by increasing mucosal permeability. IgA activity seemed to be highest against antigens usually involved in IgE mediated food allergy. PMID:1612478
Mikulic, Josip; Longet, Stéphanie; Favre, Laurent; Benyacoub, Jalil; Corthesy, Blaise
2017-01-01
The importance of secretory IgA in controlling the microbiota is well known, yet how the antibody affects the perception of the commensals by the local immune system is still poorly defined. We have previously shown that the transport of secretory IgA in complex with bacteria across intestinal microfold cells results in an association with dendritic cells in Peyer’s patches. However, the consequences of such an interaction on dendritic cell conditioning have not been elucidated. In this study, we analyzed the impact of the commensal Lactobacillus rhamnosus, alone or associated with secretory IgA, on the responsiveness of dendritic cells freshly recovered from mouse Peyer’s patches, mesenteric lymph nodes, and spleen. Lactobacillus rhamnosus-conditioned mucosal dendritic cells are characterized by increased expression of Toll-like receptor regulatory proteins [including single immunoglobulin interleukin-1 receptor-related molecule, suppressor of cytokine signaling 1, and Toll-interacting molecule] and retinaldehyde dehydrogenase 2, low surface expression of co-stimulatory markers, high anti- versus pro-inflammatory cytokine production ratios, and induction of T regulatory cells with suppressive function. Association with secretory IgA enhanced the anti-inflammatory/regulatory Lactobacillus rhamnosus-induced conditioning of mucosal dendritic cells, particularly in Peyer’s patches. At the systemic level, activation of splenic dendritic cells exposed to Lactobacillus rhamnosus was partially dampened upon association with secretory IgA. These data suggest that secretory IgA, through coating of commensal bacteria, contributes to the conditioning of mucosal dendritic cells toward tolerogenic profiles essential for the maintenance of intestinal homeostasis. PMID:26972771
Grellet, A; Heilmann, R M; Polack, B; Feugier, A; Boucraut-Baralon, C; Grandjean, D; Grützner, N; Suchodolski, J S; Steiner, J M; Chastant-Maillard, S
2016-07-01
Fecal calprotectin and immunoglobulin A (IgA) are markers of intestinal inflammation and immunity in adult dogs. Fecal calprotectin and IgA concentrations in puppies are not influenced by fecal moisture in puppies but by enteropathogen shedding. Three hundred and twenty-four puppies. Fecal consistency was assessed by gross examination. Fecal moisture was evaluated before and after lyophilization. Canine parvovirus and coronavirus were detected in feces by qPCR and qRT-PCR respectively. Giardia intestinalis antigen was quantified by ELISA. The standard McMaster flotation technique was used to detect eggs and oocysts in feces. Fecal calprotectin and IgA concentrations were quantified by in-house radioimmunoassays. For each marker (IgA and calprotectin), a strong positive correlation was observed between concentration in fresh feces and concentration in fecal dry matter. 75.6% of the puppies were found to be infected by at ≥1 of the enteropathogens evaluated. Fecal calprotectin concentration was significantly influenced by age (P = .001), with higher concentrations in younger puppies, but not by viral (P = .863) or parasitic infection (P = .791). Fecal IgA concentration was significantly influenced by enteropathogen shedding (P = .01), with a lower fecal IgA concentration in puppies shedding at ≥1 enteropathogen compared to puppies without any enteropathogen shedding, but not by age. Fecal calprotectin and IgA are of no diagnostic value to detect presence of enteropathogens in clinically healthy puppies or puppies with abnormal feces, but could help to better understand the maturation of digestive tract. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Böttcher, Malin F; Jenmalm, Maria C; Björkstén, Bengt
2003-02-01
The relationship between breast-feeding, IgA production and development of atopic disease in children is a matter of controversy. Some of this controversy might be due to individual differences in the composition of breast milk. The aim of this study was to relate the levels of cytokines, chemokines and secretory (S)-IgA antibodies in breast milk to the development of atopic manifestation and salivary IgA production in infants. Cytokine, chemokine and SIgA levels, as measured with enzyme-linked immunosorbent assay (ELISA), in colostrum and mature milk were analyzed in relation to the development of positive skin-prick tests (SPT), allergic symptoms and salivary IgA antibody production during the first 2 years of life in 53 infants. There was no association between levels of IL-4, -5, -6, -8, -10, -13, -16, IFN-gamma, TGF-beta1, -beta2, RANTES, eotaxin or SIgA levels in the breast milk with either SPT-positivity, development of allergic symptoms or salivary IgA levels during the first 2 years of life in the infants. Thus, differences in the composition of cytokines, chemokines and SIgA in breast milk did not, to any major degree, affect the development of a positive SPT, atopic symptoms, nor salivary IgA antibody production during the first 2 years of life.
Yan, D; Zhou, H R; Brooks, K H; Pestka, J J
1997-09-26
Dietary exposure to vomitoxin (VT) results in hyperelevated serum IgA and IgA nephropathy in mice. To assess the possible role of cytokines in this IgA dysregulation, the effects of a single oral exposure in B6C3F1 male mice to 0, 5 or 25 mg/kg BW VT on production of IgA and cytokines in Peyer's patch (PP) and spleen cell cultures were evaluated. IgA levels were increased significantly in PP cell cultures prepared from mice at 2 or 24 h after oral exposure to VT and subsequently stimulated with phorbol myristate acetate (PMA) and ionomycin (ION) or with lipopolysaccharide (LPS). Significant effects on IgA production were not observed in spleen cell cultures. Since cytokines such as IL-2, IL-4, IL-5 and IL-6 have been shown to promote IgA production, the effect of the same VT exposure regimen on secretion of these mediators was determined in PP and spleen cultures. Supernatant IL-2 and IL-4 levels were unaffected by the prior treatment of animals with VT. In contrast, IL-5 levels were increased significantly in 7-day PP cell cultures obtained 2 h after VT exposure both with and without PMA + ION exposure but not in other cultures. IL-6 levels were increased significantly in LPS-treated cultures prepared from PP at 2 and 24 h following exposure to VT. IL-6 levels were also elevated significantly in both PMA + ION or LPS treated cultures from spleen isolated at 2 h but not 24 h post VT exposure. To determine whether IL-5 or IL-6 play a role in IgA hyperelevation in vitro, PP and spleen cells from mice obtained 2 h after exposure to 25 mg/kg VT were cultured in the presence of neutralizing cytokine antibodies (Abs) and IgA production was monitored. Consistent with IL-5's previously documented role in IgA production, anti-IL-5 decreased IgA levels to background in cultures of both control and VT-exposed PP or spleen cells in the presence of either PMA + ION or LPS. Similar results were seen with addition of anti-IL-6. IgA levels were decreased to a lesser extent in PP cells cultured with LPS and in spleen cells cultured with PMA + ION from VT-exposed mice to which anti-IL-2 Ab was added. Thus, the potential for enhanced IgA production exists in lymphocytes as early as 2 h and as late as 24 h after a single oral exposure to VT and this may be related to the increased capacity to secrete helper cytokines of T cell and macrophage origin. Taken together, the results suggest that the superinduction of cytokine expression may, in part, be responsible for upregulation of IgA secretion in mice exposed orally to VT.
Carapetis, Jonathan R; Jacoby, Peter; Carville, Kylie; Ang, Seong-Jin Joel; Curtis, Nigel; Andrews, Ross
2014-08-01
The use of clindamycin and intravenous immunoglobulin (IVIG) in treatment of invasive group A streptococcal (iGAS) infection, and the need for prophylactic antibiotics in close contacts, remains contentious. Controlled trials are unlikely to be conducted, so prospective, observational studies provide the best data to inform practice. We conducted population-based, prospective, active surveillance of iGAS infections throughout the state of Victoria, Australia (population 4.9 million), from March 2002 through August 2004. Eighty-four cases of severe iGAS infection (streptococcal toxic shock syndrome, necrotizing fasciitis, septic shock, or GAS cellulitis with shock) were identified. Clindamycin-treated patients had more severe disease than clindamycin-untreated patients but lower mortality (15% vs 39%; odds ratio [OR], 0.28; 95% confidence interval [CI], .10-.80). Among those who received concurrent IVIG, the fatality rate was lower still (7%). The adjusted point estimate of the OR for mortality was lower in clindamycin-treated patients (0.31; 95% CI, .09-1.12) and clindamycin plus IVIG-treated patients (0.12; 95% CI, .01-1.29) compared with clindamycin-untreated patients. Three confirmed cases of iGAS infection occurred in household contacts of index cases. The incidence rate of iGAS disease in contacts was 2011 (95% CI, 413-5929) times higher than the population incidence in Victoria. Our data suggest that clindamycin treatment of patients with severe iGAS infections substantially reduces mortality and that this effect may be enhanced by concurrent treatment with IVIG. The dramatically increased risk of iGAS disease among household contacts within 1 month of the index case highlights a potential role for antibiotic prophylaxis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Specific IgA and IgG antibodies in paired serum and breast milk samples in human strongyloidiasis.
Mota-Ferreira, Daniela M L; Gonçalves-Pires, Maria do Rosário F; Júnior, Alvaro Ferreira; Sopelete, Mônica C; Abdallah, Vânia O S; Costa-Cruz, Julia M
2009-02-01
Strongyloidiasis, caused by the nematode Strongyloides stercoralis, is one of the major worldwide parasitic infections in humans. Breastfeeding may offer a potential protection against this infection. Feces, serum and milk samples were obtained from 90 lactating women from Clinical Hospital of Universidade Federal de Uberlândia, Brazil. The fecal samples were collected for parasitological diagnosis and the serum and milk samples were examined for specific S. stercoralis IgA and IgG antibodies using the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). Fecal examination showed that the rate of prevalence of S. stercoralis infection in the lactating women was 4.4%. IFAT manifested a 16.7% positivity rate for specific IgA antibody in serum and a 28.9% rate in milk samples; specific IgG was 41.1% in serum and 25.5% in milk samples. According to ELISA the positivity rate for specific IgA antibody was 21.1% in serum and 42.2% in milk samples; specific IgG was 40% in serum and 18.9% in milk samples. In serum samples, these immunological tests showed a concurrence of 91.1% and 94.4%, respectively, in detecting specific IgA and IgG antibodies. In milk samples, they showed a concurrence of 70% and 78.9%, respectively, in detecting specific IgA and IgG antibodies. There was a statistically significant difference between concordant and discordant results of immunological tests (P<0.0001). IFAT and ELISA highly concurred in their detection of specific S. stercoralis IgA and IgG antibodies in serum and in milk samples reconfirming prior studies that the serological method is a complement to the direct diagnosis of the parasite, and suggesting that immunological methods using milk samples can also be helpful. Furthermore, in endemic areas, infants may acquire antibodies to S. stercoralis from breast milk, possibly, contributing to the enhancement of specific mucosal immunity against this parasite.
Astronomo, Rena D; Santra, Sampa; Ballweber-Fleming, Lamar; Westerberg, Katharine G; Mach, Linh; Hensley-McBain, Tiffany; Sutherland, Laura; Mildenberg, Benjamin; Morton, Georgeanna; Yates, Nicole L; Mize, Gregory J; Pollara, Justin; Hladik, Florian; Ochsenbauer, Christina; Denny, Thomas N; Warrier, Ranjit; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Ferrari, Guido; Shaw, George M; Xia, Shi-Mao; Liao, Hua-Xin; Montefiori, David C; Tomaras, Georgia D; Haynes, Barton F; McElrath, Juliana M
2016-12-01
HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1 JR-CSF and HIV-1 Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Kurohane, Kohta; Nagano, Kyoko; Nakanishi, Katsuhiro; Iwata, Koki; Miyake, Masaki; Imai, Yasuyuki
2014-01-01
Shiga toxin 1 (Stx1) is a virulence factor of enterohaemorrhagic Escherichia coli strains such as O157:H7 and Shigella dysenteriae. To prevent entry of Stx1 from the mucosal surface, an immunoglobulin A (IgA) specific for Stx1 would be useful. Due to the difficulty of producing IgA monoclonal antibodies (mAb) against the binding subunit of Stx1 (Stx1B) in mice, we took advantage of recombinant technology that combines the heavy chain variable region from Stx1B-specific IgG1 mAb and the Fc region from IgA. The resulting hybrid IgG/IgA was stably expressed in Chinese hamster ovary cells as a dimeric hybrid IgG/IgA. We separated the dimeric hybrid IgG/IgA from the monomeric one by size-exclusion chromatography. The dimer fraction, confirmed by immunoblot analyses, was used for toxin neutralization assays. The dimeric IgG/IgA was shown to neutralize Stx1 toxicity toward Vero cells by assaying their viability. To compare the relative effectiveness of the dimeric hybrid IgG/IgA and parental IgG1 mAb, Stx1-induced apoptosis was examined using 2 different cell lines, Ramos and Vero cells. The hybrid IgG/IgA inhibited apoptosis more efficiently than the parental IgG1 mAb in both cases. The results indicated that the use of high affinity binding sites as variable regions of IgA would increase the utility of IgA specific for virulence factors.
Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea.
Clemente, Alfonso; Arques, Maria C; Dalmais, Marion; Le Signor, Christine; Chinoy, Catherine; Olias, Raquel; Rayner, Tracey; Isaac, Peter G; Lawson, David M; Bendahmane, Abdelhafid; Domoney, Claire
2015-01-01
Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving or abolishing the corresponding inhibitory activity, along with associated molecular markers for breeding programmes. The potential for making large changes to plant protein profiles for improved and sustainable food production through diversity is illustrated. The strategy employed here to reduce anti-nutritional proteins in seeds may be extended to allergens and other seed proteins with negative nutritional effects. Additionally, the novel variants described for pea will assist future studies of the biological role and health-related properties of so-called anti-nutrients.
Naidoo, Vanessa L.; Mann, Jaclyn K.; Noble, Christie; Adland, Emily; Carlson, Jonathan M.; Thomas, Jake; Brumme, Chanson J.; Thobakgale-Tshabalala, Christina F.; Brumme, Zabrina L.; Goulder, Philip J. R.
2017-01-01
ABSTRACT In the large majority of cases, HIV infection is established by a single variant, and understanding the characteristics of successfully transmitted variants is relevant to prevention strategies. Few studies have investigated the viral determinants of mother-to-child transmission. To determine the impact of Gag-protease-driven viral replication capacity on mother-to-child transmission, the replication capacities of 148 recombinant viruses encoding plasma-derived Gag-protease from 53 nontransmitter mothers, 48 transmitter mothers, and 47 infected infants were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. All study participants were infected with HIV-1 subtype C. There was no significant difference in replication capacities between the nontransmitter (n = 53) and transmitter (n = 44) mothers (P = 0.48). Infant-derived Gag-protease NL4-3 recombinant viruses (n = 41) were found to have a significantly lower Gag-protease-driven replication capacity than that of viruses derived from the mothers (P < 0.0001 by a paired t test). High percent similarities to consensus subtype C Gag, p17, p24, and protease sequences were also found in the infants (n = 28) in comparison to their mothers (P = 0.07, P = 0.002, P = 0.03, and P = 0.02, respectively, as determined by a paired t test). These data suggest that of the viral quasispecies found in mothers, the HIV mother-to-child transmission bottleneck favors the transmission of consensus-like viruses with lower viral replication capacities. IMPORTANCE Understanding the characteristics of successfully transmitted HIV variants has important implications for preventative interventions. Little is known about the viral determinants of HIV mother-to-child transmission (MTCT). We addressed the role of viral replication capacity driven by Gag, a major structural protein that is a significant determinant of overall viral replicative ability and an important target of the host immune response, in the MTCT bottleneck. This study advances our understanding of the genetic bottleneck in MTCT by revealing that viruses transmitted to infants have a lower replicative ability as well as a higher similarity to the population consensus (in this case HIV subtype C) than those of their mothers. Furthermore, the observation that “consensus-like” virus sequences correspond to lower in vitro replication abilities yet appear to be preferentially transmitted suggests that viral characteristics favoring transmission are decoupled from those that enhance replicative capacity. PMID:28637761
Lermann, Ulrich; Morschhäuser, Joachim
2008-11-01
A well-known virulence attribute of the human-pathogenic yeast Candida albicans is the secretion of aspartic proteases (Saps), which may contribute to colonization and infection of different host niches by degrading tissue barriers, destroying host defence molecules, or digesting proteins for nutrient supply. The role of individual Sap isoenzymes, which are encoded by a large gene family, for the pathogenicity of C. albicans has been investigated by assessing the virulence of mutants lacking specific SAP genes and by studying the expression pattern of the SAP genes in various models of superficial and systemic infections. We used a recombination-based genetic reporter system to detect the induction of the SAP1-SAP6 genes during infection of reconstituted human vaginal epithelium. Only SAP5, but none of the other tested SAP genes, was detectably activated in this in vitro infection model. To directly address the importance of the SAP1-SAP6 genes for invasion of reconstituted human epithelia (RHE), we constructed a set of mutants of the wild-type C. albicans model strain SC5314 in which either single or multiple SAP genes were specifically deleted. Even mutants lacking all of the SAP1-SAP3 or the SAP4-SAP6 genes displayed the same capacity to invade and damage both oral and vaginal RHE as their wild-type parental strain, in contrast to a nonfilamentous efg1Delta mutant that was avirulent under these conditions. We therefore conclude from these results that the secreted aspartic proteases Sap1p-Sap6p are not required for invasion of RHE by C. albicans.
Role of AAA(+)-proteins in peroxisome biogenesis and function.
Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang
2016-05-01
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Waldmann, T A; Broder, S; Goldman, C K; Frost, K; Korsmeyer, S J; Medici, M A
1983-01-01
The pathogenesis of the immunoglobulin deficiency of 20 patients with ataxia telangiectasia was studied using an in vitro immunoglobulin biosynthesis system. 10 patients had no detectable IgA in their serum as assessed by radial diffusion in agar and 3 had a reduced serum IgA concentration. The peripheral blood mononuclear cells of 17 of the patients and 17 normal controls were cultured with pokeweed mitogen for 12 d and the immunoglobulin in the supernatants measured. The immunoglobulin synthesis was below the lower limit of the normal 95% confidence interval for IgM in 5 patients, for IgG in 8, and for IgA in 14. The mononuclear cells from 9 of the 10 patients with a serum IgA concentration less than 0.1 mg/ml failed to synthesize IgA in vitro. None of the patients manifested excessive suppressor cell activity. All patients had reduced but measurable helper T cell activity for immunoglobulin synthesis by co-cultured normal pokeweed mitogen-stimulated B cells (geometric mean 22% of normal). Furthermore, the addition of normal irradiated T cells to patient peripheral blood mononuclear cells led to an augmentation of IgM synthesis in 15 of 17 and to increased IgG synthesis in 9 of the 17 patients studied, including 9 of the 12 patients who had synthesized IgG before the addition of the irradiated T cells. In addition, IgA synthesis was increased in all eight patients examined that had serum IgA concentrations greater than 0.1 mg/ml. These studies suggest that a helper T cell defect contributes to the diminished immunoglobulin synthesis. However, a helper T cell defect does not appear to be the sole cause since there was no IgA synthesis by the peripheral blood mononuclear cells of 9 of the 10 patients with a profoundly reduced serum IgA even when co-cultured with normal T cells. Furthermore, the cells of the nine patients with profoundly reduced IgA levels examined also failed to produce IgA when stimulated with the relatively helper T cell-independent polyclonal activators, Nocardia water soluble mitogen or Epstein-Barr virus. Taken together these data support the view that the reduced immunoglobulin synthesis of these patients is due to defects of both B cells and helper T cells. Such a broad defect in lymphocyte maturation taken in conjunction with our demonstration of persistent alpha fetoprotein production by ataxia telangiectasia patients provides support for the proposal that these patients exhibit a generalized defect in tissue differentiation. PMID:6822665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuanhui; College of Life Sciences and Bioengineering, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044; He, Jinsheng, E-mail: jshhe@bjtu.edu.cn
Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSVmore » vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.« less
Schlaudecker, Elizabeth P; Steinhoff, Mark C; Omer, Saad B; McNeal, Monica M; Roy, Eliza; Arifeen, Shams E; Dodd, Caitlin N; Raqib, Rubhana; Breiman, Robert F; Zaman, K
2013-01-01
Antenatal immunization of mothers with influenza vaccine increases serum antibodies and reduces the rates of influenza illness in mothers and their infants. We report the effect of antenatal immunization on the levels of specific anti-influenza IgA levels in human breast milk. (ClinicalTrials.gov identifier NCT00142389; http://clinicaltrials.gov/ct2/show/NCT00142389). The Mother's Gift study was a prospective, blinded, randomized controlled trial that assigned 340 pregnant Bangladeshi mothers to receive either trivalent inactivated influenza vaccine, or 23-valent pneumococcal polysaccharide vaccine during the third trimester. We evaluated breast milk at birth, 6 weeks, 6 months, and 12 months, and serum at 10 weeks and 12 months. Milk and serum specimens from 57 subjects were assayed for specific IgA antibody to influenza A/New Caledonia (H1N1) using an enzyme-linked immunosorbent assay (ELISA) and a virus neutralization assay, and for total IgA using ELISA. Influenza-specific IgA levels in breast milk were significantly higher in influenza vaccinees than in pneumococcal controls for at least 6 months postpartum (p = 0.04). Geometric mean concentrations ranged from 8.0 to 91.1 ELISA units/ml in vaccinees, versus 2.3 to 13.7 ELISA units/mL in controls. Virus neutralization titers in milk were 1.2 to 3 fold greater in vaccinees, and correlated with influenza-specific IgA levels (r = 0.86). Greater exclusivity of breastfeeding in the first 6 months of life significantly decreased the expected number of respiratory illness with fever episodes in infants of influenza-vaccinated mothers (p = 0.0042) but not in infants of pneumococcal-vaccinated mothers (p = 0.4154). The sustained high levels of actively produced anti-influenza IgA in breast milk and the decreased infant episodes of respiratory illness with fever suggest that breastfeeding may provide local mucosal protection for the infant for at least 6 months. Studies are needed to determine the cellular and immunologic mechanisms of breast milk-mediated protection after antepartum immunization. ClinicalTrials.gov NCT00142389.
Lin, Michael K; Yang, Jin; Hsu, Chun Wei; Gore, Anuradha; Bassuk, Alexander G; Brown, Lewis M; Colligan, Ryan; Sengillo, Jesse D; Mahajan, Vinit B; Tsang, Stephen H
2018-05-05
High-temperature requirement protein A1 (HTRA1) is a serine protease secreted by a number of tissues including retinal pigment epithelium (RPE). A promoter variant of the gene encoding HTRA1 is part of a mutant allele that causes increased HTRA1 expression and contributed to age-related macular degeneration (AMD) in genomewide association studies. AMD is characterized by pathological development of drusen, extracellular deposits of proteins and lipids on the basal side of RPE. The molecular pathogenesis of AMD is not well understood, and understanding dysregulation of the extracellular matrix may be key. We assess the high-risk genotype at 10q26 by proteomic comparison of protein levels of RPE cells with and without the mutation. We show HTRA1 protein level is increased in high-risk RPE cells along with several extracellular matrix proteins, including known HTRA1 cleavage targets LTBP-1 and clusterin. In addition, two novel targets of HTRA1 have been identified: EFEMP1, an extracellular matrix protein mutated in Doyne honeycomb retinal dystrophy, a genetic eye disease similar to AMD, and thrombospondin 1 (TSP1), an inhibitor of angiogenesis. Our data support the role of RPE extracellular deposition with potential effects in compromised barrier to neovascularization in exudative AMD. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Predominate HIV1-specific IgG activity in various mucosal compartments of HIV1-infected individuals.
Lü, F X
2000-10-01
Evaluating mucosal humoral immunity is important for understanding local immunity induced by HIV infection or vaccination and designing prophylactic strategies. To characterize the mucosal humoral immunity following HIV infection, the levels of immunoglobulins (Igs), antibodies (Abs), and HIV1-specific Ab activity were evaluated in cervicovaginal secretions (CVS), saliva, breast milk, and sera of HIV-infected individuals. HIV1-specific IgG activity was significantly higher than that of IgA in CVS, saliva, and breast milk. The highest HIV1-specific IgG activity was found in breast milk. The data suggest that anti-HIV1 Abs in CVS were most likely serum derived. However, HIV1-specific Abs in saliva and breast milk were mainly locally produced. The prevalence of HIV1-specific Abs in seropositive subjects was 97% for IgG and 95% for IgA in CVS, 100% for IgG and 80% for IgA in saliva, and 59% for IgG and 94% for IgA in breast milk. These data provide evidence for both a better understanding of the nature of humoral mucosal responses after HIV1 infection and the development of strategies to induce desirable functional mucosal immunity for preventing HIV transmission. Copyright 2000 Academic Press.
Järvinen, Kirsi M.; Westfall, Jennifer E.; Seppo, Max S.; James, Aisha K.; Tsuang, Angela J.; Feustel, Paul J.; Sampson, Hugh A.; Berin, Cecilia
2014-01-01
Background The role of maternal avoidance diets in the prevention of food allergies is currently under debate. Little is known regarding the effects of such diets on human milk (HM) composition or induction of infant humoral responses. Objective To assess the association of maternal cow’s milk (CM) avoidance during breastfeeding with specific IgA levels in HM and development of cow’s milk allergy (CMA) in infants. Methods We utilized HM and infant serum samples from a prospective birth cohort of 145 dyads. Maternal serum and HM samples were assessed for casein and beta-lactoglobulin (BLG)-specific IgA and IgG by ELISA; 21 mothers prophylactically initiated a strict maternal CM avoidance diet due to a sibling’s history of food allergy and 16 due to atopic eczema or regurgitation/vomiting seen in their infants within the first 3 months of life. Infants’ sera were assessed for casein and BLG-specific IgG, IgA and IgE; CMA was confirmed by an oral food challenge. The impact of HM on BLG uptake was assessed in transcytosis assays utilizing Caco-2 intestinal epithelial cell line. Results Mothers avoiding CM had lower casein- and BLG-specific IgA in HM than mothers with no CM restriction (p=0.019 and p=0.047). Their infants had lower serum casein- and BLG-specific IgG1 (p=0.025 and p<0.001) and BLG-specific IgG4 levels (p=0.037) and their casein- and BLG-specific IgA levels were less often detectable than those with no CM elimination diet (p=0.003 and p=0.007). Lower CM-specific IgG4 and IgA levels in turn were associated with infant CMA. Transcytosis of BLG was impaired by HM with high, but not low levels of specific IgA. Conclusions Maternal CM avoidance was associated with lower levels of mucosal specific IgA levels and development of CMA in infants. Clinical relevance HM IgA may play a role in preventing excessive, uncontrolled food antigen uptake in the gut lumen and thereby in the prevention of CMA. PMID:24164317
Järvinen, K M; Westfall, J E; Seppo, M S; James, A K; Tsuang, A J; Feustel, P J; Sampson, H A; Berin, C
2014-01-01
The role of maternal avoidance diets in the prevention of food allergies is currently under debate. Little is known regarding the effects of such diets on human milk (HM) composition or induction of infant humoral responses. To assess the association of maternal cow's milk (CM) avoidance during breastfeeding with specific IgA levels in HM and development of cow's milk allergy (CMA) in infants. We utilized HM and infant serum samples from a prospective birth cohort of 145 dyads. Maternal serum and HM samples were assessed for casein and beta-lactoglobulin (BLG)-specific IgA and IgG by ELISA; 21 mothers prophylactically initiated a strict maternal CM avoidance diet due to a sibling's history of food allergy and 16 due to atopic eczema or regurgitation/vomiting seen in their infants within the first 3 months of life. Infants' sera were assessed for casein and BLG-specific IgG, IgA and IgE; CMA was confirmed by an oral food challenge. The impact of HM on BLG uptake was assessed in transcytosis assays utilizing Caco-2 intestinal epithelial cell line. Mothers avoiding CM had lower casein- and BLG-specific IgA in HM than mothers with no CM restriction (P = 0.019 and P = 0.047). Their infants had lower serum casein- and BLG-specific IgG(1) (P = 0.025 and P < 0.001) and BLG-specific IgG(4) levels (P = 0.037), and their casein- and BLG-specific IgA levels were less often detectable than those with no CM elimination diet (P = 0.003 and P = 0.007). Lower CM-specific IgG4 and IgA levels in turn were associated with infant CMA. Transcytosis of BLG was impaired by HM with high, but not low levels of specific IgA. Maternal CM avoidance was associated with lower levels of mucosal-specific IgA levels and the development of CMA in infants. HM IgA may play a role in preventing excessive, uncontrolled food antigen uptake in the gut lumen and thereby in the prevention of CMA. © 2013 John Wiley & Sons Ltd.
Mapping protease substrates using a biotinylated phage substrate library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholle, M. D.; Kriplani, U.; Pabon, A.
We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobicmore » is the scissile bond.« less
Yao, Yufeng; Xie, Yi; Kim, Kwang Sik
2006-04-01
Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis.
Cheuvart, Brigitte; Neuzil, Kathleen M; Steele, A Duncan; Cunliffe, Nigel; Madhi, Shabir A; Karkada, Naveen; Han, Htay Htay; Vinals, Carla
2014-01-01
Clinical trials of the human rotavirus vaccine Rotarix™ (RV1) have demonstrated significant reductions in severe rotavirus gastroenteritis (RVGE) in children worldwide. However, no correlate of vaccine efficacy (VE) has yet been established. This paper presents 2 analyses which aimed to investigate whether serum anti-RV IgA measured by ELISA 1 or 2 mo post-vaccination can serve as a correlate of efficacy against RVGE: (1) In a large Phase III efficacy trial (Rota-037), the Prentice criteria for surrogate endpoints was applied to anti-RV IgA seropositivity 1 mo post-vaccination. These criteria determine whether a significant vaccine group effect can be predicted from the surrogate, namely seropositivity (anti-RV IgA concentration>20 U/mL); (2) Among other GSK-sponsored RV1 VE studies, 8 studies which assessed immunogenicity at 1 or 2 mo post-vaccination in all or a sub-cohort of enrolled subjects and had at least 10 RVGE episodes were included in a meta-analysis to measure the regression between clinical VE and VE predicted from immunogenicity (VE1). In Rota-037, anti-RV IgA seropositivity post-vaccination was associated with a lower incidence of any or severe RVGE, however, the proportion of vaccine group effect explained by seropositivity was only 43.6% and 32.7% respectively. This low proportion was due to the vaccine group effect observed in seronegative subjects. In the meta-analysis, the slope of the regression between clinical VE and VE1 was statistically significant. These two independent analyses support the hypothesis that post-vaccination anti-RV IgA seropositivity (antibody concentration ≥20 U/mL) may serve as a useful correlate of efficacy in clinical trials of RV1 vaccines.
Chintalacharuvu, S R; Yamashita, M; Bagheri, N; Blanchard, T G; Nedrud, J G; Lamm, M E; Tomino, Y; Emancipator, S N
2008-09-01
Immunoglobulin A (IgA) glycosylation, recognized as an important pathogenic factor in IgA nephropathy (IgAN), is apparently controlled by the polarity of T helper (Th) cytokine responses. To examine the role of cytokine polarity in IgAN, inbred mice were immunized by intraperitoneal priming with inactivated Sendai virus (SeV) emulsified in either complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), which promote Th1- or Th2-immune response, respectively, and then boosted identically twice orally with aqueous suspensions of inactivated virus. Next, some mice were challenged intranasally with infectious SeV. Mice primed with CFA or IFA had equal reductions in nasal viral titre relative to non-immune controls, and equally increased serum levels of SeV-specific IgA antibody. Mice primed with CFA showed higher SeV-specific IgG than those with IFA. Splenocytes from mice primed with IFA produced copious amounts of interleukin (IL)-4 and IL-5, but little interferon-gamma and IL-2; those primed with CFA had reciprocal cytokine recall responses. Total serum IgA and especially SeV-specific IgA from mice primed with IFA showed a selective defect in sialylation and galactosylation. Although the frequency and intensity of glomerular deposits and haematuria did not differ, glomerulonephritis in mice primed with IFA and challenged with infectious virus was more severe than in those given CFA, as judged by serum creatinine level. We conclude that the polarity of T cell cytokines controls the pattern of IgA glycosylation and exerts direct or indirect effects on functional glomerular responses to immune complex deposition.
de Silva, Thushan I; Gould, Victoria; Mohammed, Nuredin I; Cope, Alethea; Meijer, Adam; Zutt, Ilse; Reimerink, Johan; Kampmann, Beate; Hoschler, Katja; Zambon, Maria; Tregoning, John S
2017-10-01
We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity. Copyright © 2017 Elsevier B.V. All rights reserved.
Karray, H; Ayadi, W; Fki, L; Hammami, A; Daoud, J; Drira, M M; Frikha, M; Jlidi, R; Middeldorp, J M
2005-04-01
Nasopharyngeal carcinoma (NPC) in Tunisia is characterized by its bimodal age distribution involving juvenile patients of 10-24 years and adult patients of 40-60 years. Three serological techniques were compared for primary diagnosis (N = 117) and post-treatment monitoring (N = 21) of NPC patients separated in two age groups. Immunofluorescence assay (IFA) was used as the "gold standard" for detection of IgG and IgA antibodies reactive with Epstein-Barr virus (EBV) early (EA) and viral capsid (VCA) antigens. Results were compared with ELISA measuring IgG and IgA antibody reactivity to defined EBNA1, EA, and VCA antigens. Immunoblot was used to reveal the molecular diversity underlying the anti-EBV IgG and IgA antibody responses. The results indicate that young NPC patients have significantly more restricted anti-EBV IgG and IgA antibody responses with aberrant IgG VCA/EA levels in 78% compared to 91.7% in elder patients. IgA VCA/EA was detected in 50% of young patients versus 89.4% for the elder group (P < 0.001). Immunoblot revealed a reduced overall diversity of EBV antigen recognition for both IgG and IgA in young patients. A good concordance was observed between ELISA and IFA for primary NPC diagnosis with 81-91% overall agreement. Even better agreement (95-100%) was found for antibody changes during follow-up monitoring, showing declining reactivity in patients in remission and increasing reactivity in patients with persistent disease or relapse. ELISA for IgA anti-VCA-p18 and immunoblot proved most sensitive for predicting tumor relapse. VCA-p18 IgA ELISA seems suitable for routine diagnosis and early detection of NPC complication. (c) 2005 Wiley-Liss, Inc.
Pre- and Posttransplant IgA Anti-Fab Antibodies to Predict Long-term Kidney Graft Survival.
Amirzargar, M A; Amirzargar, A; Basiri, A; Hajilooi, M; Roshanaei, G; Rajabi, G; Solgi, G
2015-05-01
Immunologic factors are reliable markers for allograft monitoring, because of their seminal role in rejection process. One of these factors is the immunoglobulin (Ig)A anti-Fab of the IgG antibody. This study aimed to evaluate the predictive value of pre- and posttransplant levels of this marker for kidney allograft function and survival. Sera samples of 59 living unrelated donor kidney recipients were collected before and after transplantation (days 7, 14, and 30) and investigated for IgA anti-Fab of IgG antibody levels using enzyme-linked immunosorbent assay in relation with allograft outcome. Among 59 patients, 15 cases (25%) including 10 with acute rejection and 5 with chronic rejection episodes showed graft failure during a mean of 5 years of follow-up. High posttransplant levels of IgA anti-Fab antibodies were observed more frequently in patients with stable graft function (SGF) compared with patients with graft failure (P = 2 × 10(-6)). None of patients with acute or chronic rejection episodes had high levels of IgA anti-Fab antibodies at day 30 posttransplant compared with the SGF group (P = 10(-6) and P = .01, respectively). In addition, high levels of IgA anti-Fab antibody correlated with lesser concentration of serum creatinine at 1 month posttransplantation (P = .01). Five-year graft survival was associated with high levels of pre- and posttransplant IgA anti-Fab antibodies (P = .02 and P = .003, respectively). Our findings indicate the protective effect of higher levels of IgA anti-Fab antibodies regarding to kidney allograft outcomes and long-term graft survival. Copyright © 2015 Elsevier Inc. All rights reserved.
Murthy, Vijaya; Willis, Rohan; Romay-Penabad, Zurina; Ruiz-Limón, Patricia; Martínez-Martínez, Laura A; Jatwani, Shraddha; Jajoria, Praveen; Seif, Alan; Alarcón, Graciela S; Papalardo, Elizabeth; Liu, Jigna; Vilá, Luis M; McGwin, Gerald; McNearney, Terry A; Maganti, Rashmi; Sunkureddi, Prashanth; Parekh, Trisha; Tarantino, Michael; Akhter, Ehtisham; Fang, Hong; Gonzalez, Emilio B; Binder, Walter R; Norman, Gary L; Shums, Zakera; Teodorescu, Marius; Reveille, John D; Petri, Michelle; Pierangeli, Silvia S
2013-12-01
To examine the prevalence of isolated IgA anti-β2 -glycoprotein I (anti-β2 GPI) positivity and the association of these antibodies, and a subgroup that bind specifically to domain IV/V of β2 GPI, with clinical manifestations of the antiphospholipid syndrome (APS) in 3 patient groups and to evaluate the pathogenicity of IgA anti-β2 GPI in a mouse model of thrombosis. Patients with systemic lupus erythematosus (SLE) from a multiethnic, multicenter cohort (LUpus in MInorities, NAture versus nurture [LUMINA]) (n = 558), patients with SLE from the Hopkins Lupus Cohort (n = 215), and serum samples referred to the Antiphospholipid Standardization Laboratory (APLS) (n = 5,098) were evaluated. IgA anti-β2 GPI titers and binding to domain IV/V of β2 GPI were examined by enzyme-linked immunosorbent assay (ELISA). CD1 mice were inoculated with purified IgA anti-β2 GPI antibodies, and surgical procedures and ELISAs were performed to evaluate thrombus development and tissue factor (TF) activity. A total of 198 patients were found to be positive for IgA anti-β2 GPI isotype, and 57 patients were positive exclusively for IgA anti-β2 GPI antibodies. Of these, 13 of 23 patients (56.5%) in the LUMINA cohort, 17 of 17 patients (100%) in the Hopkins cohort, and 10 of 17 patients (58.9%) referred to APLS had at least one APS-related clinical manifestation. Fifty-four percent of all the IgA anti-β2 GPI-positive serum samples reacted with domain IV/V of anti-β2 GPI, and 77% of those had clinical features of APS. Isolated IgA anti-β2 GPI positivity was associated with an increased risk of arterial thrombosis (P < 0.001), venous thrombosis (P = 0.015), and all thrombosis (P < 0.001). The association between isolated IgA anti-β2 GPI and arterial thrombosis (P = 0.0003) and all thrombosis (P = 0.0003) remained significant after adjusting for other risk factors for thrombosis. In vivo mouse studies demonstrated that IgA anti-β2 GPI antibodies induced significantly larger thrombi and higher TF levels compared to controls. Isolated IgA anti-β2 GPI-positive titers may identify additional patients with clinical features of APS. Testing for these antibodies when other antiphospholipid tests are negative and APS is suspected is recommended. IgA anti-β2 GPI antibodies directed to domain IV/V of β2 GPI represent an important subgroup of clinically relevant antiphospholipids. Copyright © 2013 by the American College of Rheumatology.
Value of Isolated IgA anti-β2GPI Positivity in the Diagnosis of the Antiphospholipid Syndrome
Murthy, Vijaya; Willis, Rohan; Romay-Penabad, Zurina; Ruiz-Limón, Patricia; Martínez-Martínez, Laura A.; Jatwani, Shraddha; Jajoria, Praveen; Seif, Alan; Alarcón, Graciela S.; Papalardo, Elizabeth; Liu, Jigna; Vilá, Luis M.; McGwin, Gerald; McNearney, Terry A.; Maganti, Rashmi; Sunkureddi, Prashanth; Parekh, Trisha; Tarantino, Michael; Akhter, Ehtisham; Fang, Hong; Gonzalez, Emilio B.; Binder, Walter R.; Norman, Gary L.; Shums, Zakera; Teodorescu, Marius; Reveille, John D.; Petri, Michelle; Pierangeli, Silvia S.
2014-01-01
Purpose To examine the prevalence of isolated IgA anti-β2Glycoprotein I (anti-β2GPI) positivity and the association of these antibodies, and a subgroup that bind specifically to domain IV/V of β2GPI, with clinical manifestations of the Antiphospholipid Syndrome (APS) in three patients groups. The pathogenicity of IgA anti-β2GPI was also evaluated in a mouse model of thrombosis. Methods Patients with systemic lupus erythematosus (SLE) from a multiethnic, multicenter cohort (LUpus in MInorities, NAture versus nurture [LUMINA]) (n=558), patients with SLE from the Hopkins Lupus Cohort (n=215), and serum samples referred to the Antiphospholipid Standardization Laboratory (APLS) (n=5,098) were evaluated. IgA anti-β2GPI titers and binding to domain IV/V of β2GPI were examined by enzyme-linked immunosorbent assay (ELISA). CD1 mice were inoculated with purified IgA anti- β2GPI antibodies, and surgical procedures and ELISAs were performed to evaluate thrombus development and tissue factor (TF) activity. Results A total of 198 patients were found to be positive for IgA anti-β2GPI isotype, and 57 patients were positive exclusively for IgA anti-β2GPI antibodies. Of these, 13 of 23 patients (56.5%) in the LUMINA cohort, 17 of 17 patients (100%) in the Hopkins cohort, and 10 of 17 patients (58.9%) referred to APLS had at least one APS-related clinical manifestation. Fifty-four percent of all the IgA anti-β2GPI positive serum samples reacted with domain IV/V of anti-β2GPI, and 77% of those had clinical features of APS. Isolated IgA anti-β2GPI positivity was associated with an increased risk for arterial thrombosis (p<0.001), venous thrombosis (p=0.015) and all thrombosis (p<0.001). The association between isolated IgA anti-β2GPI and arterial thrombosis (p=0.0003) and all thrombosis (p=0.0003) remained significant after adjusting for other risk factors for thrombosis. In vivo mouse studies demonstrated that IgA anti-β2GPI antibodies induced significantly larger thrombi and higher TF levels compared to controls. Conclusion Isolated IgA anti-β2GPI positive titers may identify additional patients with clinical features of APS. Testing for these antibodies when other antiphospholipid (aPL) tests are negative and APS is suspected is recommended. IgA anti-β2GPI antibodies directed to domain IV/V of β2GPI represent an important subgroup of clinically relevant antiphospholipids. PMID:23983008
Rossi, Francesca; Petrucci, Maria Teresa; Guffanti, Andrea; Marcheselli, Luigi; Rossi, Davide; Callea, Vincenzo; Vincenzo, Federico; De Muro, Marianna; Baraldi, Alessandra; Villani, Oreste; Musto, Pellegrino; Bacigalupo, Andrea; Gaidano, Gianluca; Avvisati, Giuseppe; Goldaniga, Maria; Depaoli, Lorenzo; Baldini, Luca
2009-07-01
The presenting clinico-hematologic features of 1,283 patients with IgG and IgA monoclonal gammopathies of undetermined significance (MGUS) were correlated with the frequency of evolution into multiple myeloma (MM). Two IgG MGUS populations were evaluated: a training sample (553 patients) and a test sample (378 patients); the IgA MGUS population consisted of 352 patients. Forty-seven of the 553 training group patients and 22 of 378 test group IgG patients developed MM after a median follow-up of 6.7 and 3.6 years, respectively. Multivariate analysis showed that serum monoclonal component (MC) levels of < or =1.5 g/dL, the absence of light-chain proteinuria and normal serum polyclonal immunoglobulin levels defined a prognostically favorable subset of patients, and could be used to stratify the patients into three groups at different 10-year risk of evolution (hazard ratio, 1.0, 5.04, 11.2; P < 0.001). This scoring system was validated in the test sample. Thirty of the 352 IgA patients developed MM after a median follow-up of 4.8 years, and multivariate analysis showed that hemoglobin levels of <12.5 g/dL and reduced serum polyclonal immunoglobulin correlated with progression. A pooled statistical analysis of all of the patients confirmed the validity of Mayo Clinic risk model showing that IgA class, serum MC levels, and light-chain proteinuria are the most important variables correlated with disease progression. Using simple variables, we validated a prognostic model for IgG MGUS. Among the IgA cases, the possible prognostic role of hemoglobin emerged in addition to a decrease in normal immunoglobulin levels.
Chen, Chung-Jen; Lin, Kuei-Hsiang; Lin, Shih-Chang; Tsai, Wen-Chan; Yen, Jeng-Hsien; Chang, Shun-Jen; Lu, Sheng-Nan; Liu, Hong-Wen
2005-01-01
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with rare remission and recurrent flare. Epstein-Barr virus (EBV) infection has been reported to be strongly associated with SLE in the United States, but with an inconclusive role in Asia. We investigated the role of EBV infection in patients with SLE in Taiwan, with one of the highest population densities in Asia. We conducted case-control studies to test whether EBV infection was associated with adult SLE in Taiwan. In the first study, 36 adults with SLE and 36 sex and age matched controls were enrolled for examination of serum IgG, IgM, and IgA antibody against EBV-virus capsid antigen (EBV-VCA). In the second study, another 36 adult lupus cases and 36 matched controls were enrolled to confirm the high prevalence of IgA antibody against EBV-VCA found in the first study. Further, both groups of SLE patients were combined to analyze the association between the existence of IgA antibody against EBV-VCA and disease activity (determined by SLEDAI score) and disease flare in patients with SLE. In the first study, IgA antibody against EBV-VCA was the only marker with significantly higher prevalence in adults with SLE compared to healthy adults (36.1% vs 5.6%; p < 0.005). In the second study, we confirmed that the prevalence of IgA antibody against EBV-VCA was indeed higher in adults with SLE (38.9% vs 2.8%; p < 0.001). With further analysis (pooling analysis), adult SLE patients with IgA antibody against EBV-VCA had higher disease activity compared to SLE patients without IgA antibody against EBV-VCA (SLEDAI 7.8 +/- 6.6 vs 3.3 +/- 2.1; p < 0.001). SLE patients with flare showed much higher prevalence of IgA antibody against EBV-VCA compared to those without flare (81.3% vs 25.0%; p < 0.001). This is the first evidence that IgA antibody against EBV-VCA is strongly associated with disease flare in SLE patients. It suggests that EBV reactivation may contribute toward the disease flare of SLE.
Clinical and pathological analysis of IgA nephropathy with chronic renal failure.
Liu, Yuyuan; Hu, Qinfeng; Shen, Ping; Tang, Li; Yuan, Gang; Zhou, Yongmei; Chai, Huaqi
2016-10-01
To investigative clinical and pathological characteristics of IgA nephropathy with chronic renal failure. Clinical and pathological findings from 65 cases of IgA nephropathy with chronic renal failure were reviewed. Pathological characteristics of all the cases were analyzed according to WHO definition and Oxford Classification. Evaluating the severity of pathological lesions by the Katafuchi R semiquantitative scoring system, and analyzing their relationship with clinical indexes of renal function. Of all 65 cases the male and female ratio was 1.4, and the mean age was 37 ± 13 years old. Levels of systolic pressure, mean arterial pressure (MAP), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), album (Alb), serum IgG and 24 h urinary protein were related with eGRF level (p < 0.05, respectively). The most common pathological type was proliferative sclerosis glomerulonephritis (PSGN) and M1S1E0T0 according to WHO definition and Oxford Classification, respectively, and most of the 65 cases had glomerulosclerosis. Simple IgA deposition was the most common immunopathologic type. Of all the cases, 44.6% accompanied with C3 while 4.6% with C1q. Further analysis revealed there were no relationships between severity of pathological lesion and levels of clinical indexes (Scr and eGRF) (p > 0.05). IgA nephropathy with chronic renal failure usually occurred in young adults, and it had severe clinical condition and pathological changes, while there was no significant relationship between them.
Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D
2016-08-01
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T.; Dennison, S. Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S. Munir; Haynes, Barton F.; Tomaras, Georgia D.
2016-01-01
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo. PMID:27579713
C1 finite elements on non-tensor-product 2d and 3d manifolds
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2015-01-01
Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070
C1 finite elements on non-tensor-product 2d and 3d manifolds.
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2016-01-01
Geometrically continuous ( G k ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C k also for non-tensor-product layout. This paper describes and analyzes one such concrete C 1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G 1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O ( h 3 ) convergence in the L ∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.
Subramaniam, Renuka; Dassanayake, Rohana P; Norimine, Junzo; Brown, Wendy C; Knowles, Donald P; Srikumaran, Subramaniam
2010-10-15
Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a result of PMN lysis and degranulation. It is conceivable that PMNs of BHS exhibit decreased quantity and/or activity of SERPIN B1 which results in enhanced tissue injury and decreased bacterial clearance in pneumonic lungs of BHS. The objective of this study was to clone and express SERPIN B1 of BHS and DS, and develop antibodies to facilitate quantification of SERPIN B1. The 1,134bp cDNA of SERPIN B1 of BHS and DS encodes a polypeptide of 377 amino acids. SERPIN B1 of BHS and DS exhibits 100% identity at the nucleotide and amino acid levels. The amino acid sequence of ovine (BHS/DS) SERPIN B1 displays 69%, 71%, 74%, 78% and 80% identity with that of rats, dogs, mice, humans and horses, respectively. Ovine SERPIN B1 expressed in Escherichia coli was used to develop polyclonal antibodies in mice. Western blot analysis revealed the specificity of these antibodies for ovine rSERPIN B1. (c) 2010 Elsevier B.V. All rights reserved.
Evaluation of salivary glucose, IgA and flow rate in diabetic patients: a case-control study.
Bakianian Vaziri, P; Vahedi, M; Mortazavi, H; Abdollahzadeh, Sh; Hajilooi, M
2010-01-01
An association between diabetes mellitus and alterations in the oral cavity has been noted. In this study, we evaluated differences between salivary IgA, glucose and flow rate in diabetic patients compared with healthy controls. Forty patients with type 1 diabetes, 40 patients with type 2 diabetes and 40 healthy controls were selected. Whole unstimulated saliva samples were collected by the standard method and the salivary flow rate was determined. Nephelometric and Pars method were used to measure salivary IgA and salivary glucose concentrations, respectively. Statistical analysis was performed by Chi-square and t test. There were no significant differences in salivary IgA and glucose concentrations between type 1 and type 2 diabetic patients and their matched control subjects (P>0.05). Salivary flow rate was significantly lower in diabetic patients (P<0.05). In addition, DMFT was higher in diabetic patients than the controls. Determination of salivary constituents may be useful in the description and management of oral findings in diabetic patients.
Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley
2015-01-01
ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis. PMID:25694594
Yanagibashi, Tsutomu; Hosono, Akira; Oyama, Akihito; Tsuda, Masato; Hachimura, Satoshi; Takahashi, Yoshimasa; Itoh, Kikuji; Hirayama, Kazuhiro; Takahashi, Kyoko; Kaminogawa, Shuichi
2009-02-01
The gut mucosal immune system is crucial in host defense against infection by pathogenic microbacteria and viruses via the production of IgA. Previous studies have shown that intestinal commensal bacteria enhance mucosal IgA production. However, it is poorly understood how these bacteria induce IgA production and which genera of intestinal commensal bacteria induce IgA production effectively. In this study, we compared the immunomodulatory effects of Bacteroides and Lactobacillus on IgA production by Peyer's patches lymphocytes. IgA production by Peyer's patches lymphocytes co-cultured with Bacteroides was higher than with Lactobacillus. In addition, the expression of activation-induced cytidine deaminase increased in co-culture with Bacteroides but not with Lactobacillus. We found that intestinal commensal bacteria elicited IgA production. In particular, Bacteroides induced the differentiation of Peyer's patches B cell into IgA(+) B cells by increasing activation-induced cytidine deaminase expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin
Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that anmore » rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.« less
Takenaka, Shinji; Umeda, Mayo; Senba, Hisanori; Koyama, Dai; Tanaka, Kosei; Yoshida, Ken-Ichi; Doi, Mikiharu
2017-01-01
Aspergillus repens strain MK82 produces an aspartic protease (PepA_MK82) that efficiently decolorises red-pigmented proteins during dried bonito fermentation. However, further expansion of the industrial applications of PepA_MK82 requires the high-level production and efficient preparation of the recombinant enzyme. The genomic DNA and cDNA fragments encoding the protease were cloned from strain MK82 and sequenced. Phylogenetic analysis of PepA_MK82 and comparisons with previously reported fungal aspartic proteases showed that PepA_MK 82 clusters with different groups of these enzymes. Heterologous expression of PepA_MK82 in Pichia pastoris yielded preparations of higher purity than obtained with an Escherichia coli expression system. Total protease activity in a 100-mL culture of the P. pastoris transformant was 14 times higher than that from an equivalent culture of A. repense MK82. The recombinant PepA_MK82 was easily obtained via acetone precipitation; the final recovery was 83%. PepA_MK82 and its recombinant had similar characteristics in terms of their optimal pH, thermostability, and decolorisation activity. The recombinant was also able to decolorise flaked, dried bonito and to bleach a blood-stained cloth. Given its ability to hydrolyse and decolorise red-pigmented proteins, recombinant PepA_MK8 can be exploited in the food industry and as a stain-removal agent in laundry applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ying-Chuan; Perryman, Alexander L.; Olson, Arthur J.
2011-06-01
Crystal structures of the 6s-98S FIV protease chimera with darunavir and lopinavir bound have been determined at 1.7 and 1.8 Å resolution, respectively. A chimeric feline immunodeficiency virus (FIV) protease (PR) has been engineered that supports infectivity but confers sensitivity to the human immunodeficiency virus (HIV) PR inhibitors darunavir (DRV) and lopinavir (LPV). The 6s-98S PR has five replacements mimicking homologous residues in HIV PR and a sixth which mutated from Pro to Ser during selection. Crystal structures of the 6s-98S FIV PR chimera with DRV and LPV bound have been determined at 1.7 and 1.8 Å resolution, respectively. Themore » structures reveal the role of a flexible 90s loop and residue 98 in supporting Gag processing and infectivity and the roles of residue 37 in the active site and residues 55, 57 and 59 in the flap in conferring the ability to specifically recognize HIV PR drugs. Specifically, Ile37Val preserves tertiary structure but prevents steric clashes with DRV and LPV. Asn55Met and Val59Ile induce a distinct kink in the flap and a new hydrogen bond to DRV. Ile98Pro→Ser and Pro100Asn increase 90s loop flexibility, Gln99Val contributes hydrophobic contacts to DRV and LPV, and Pro100Asn forms compensatory hydrogen bonds. The chimeric PR exhibits a comparable number of hydrogen bonds, electrostatic interactions and hydrophobic contacts with DRV and LPV as in the corresponding HIV PR complexes, consistent with IC{sub 50} values in the nanomolar range.« less
Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.
Wang, Yuguang; Zhan, Yanan; Wu, Chuan; Gong, Shilong; Zhu, Ning; Chen, Sixue; Li, Haiying
2012-08-01
An open reading frame encoding a cysteine protease inhibitor, cystatin was isolated from the buds of sugar beet monosomic addition line M14 (BvM14) using 5'-/3'-RACE method. It encoded a polypeptide of 104 amino acids with conserved G and PW motifs, the consensus phytocystatin sequence LARFAV and the active site QVVAG. The protein showed significant homology to other plant cystatins. BvM14-cystatin was expressed ubiquitously in roots, stems, leaves and flower tissues with relatively high abundance in developing stems and roots. It was found to be localized in the nucleus, cytoplasm and plasma membrane. Recombinant BvM14-cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Salt-stress treatment induced BvM14-cystatin transcript levels in the M14 seedlings. Homozygous Arabidopsis plants over-expressing BvM14-cystatin showed enhanced salt tolerance. Taken together, these data improved understanding of the functions of BvM14-cystatin and highlighted the possibility of employing the cystatin in engineering plants for enhanced salt tolerance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation
Wallace, Meghan A.; D, Carey-Ann; Burnham; Virgin, Herbert W.; Stappenbeck, Thaddeus S.
2014-01-01
Summary The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control1-5. In many cases, the microbiota is the presumed culprit of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice6,7. In conventionally raised mice, the microbiome is transmitted from the dam2,8,9. Here we show that microbially–driven dichotomous fecal IgA levels in WT mice within the same facility mimic the effects of chromosomal mutations. We observed in multiple facilities that vertically-transmissible bacteria in IgA-Low mice dominantly lowered fecal IgA levels in IgA-High mice after cohousing or fecal transplantation. In response to injury, IgA-Low mice showed increased damage that was transferable by fecal transplantation and driven by fecal IgA differences. We found that bacteria from IgA-Low mice degraded the secretory component (SC) of SIgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose fecal IgA as one marker of microbial variability and conclude that cohousing and/or fecal transplantation enables analysis of progeny from different dams. PMID:25686606
Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin[C][W
Elliott, Alysha G.; Delay, Christina; Liu, Huanle; Phua, Zaiyang; Rosengren, K. Johan; Benfield, Aurélie H.; Panero, Jose L.; Colgrave, Michelle L.; Jayasena, Achala S.; Dunse, Kerry M.; Anderson, Marilyn A.; Schilling, Edward E.; Ortiz-Barrientos, Daniel; Craik, David J.; Mylne, Joshua S.
2014-01-01
The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1’s additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure. PMID:24681618
Determining Protease Activity In Vivo by Fluorescence Cross-Correlation Analysis
Kohl, Tobias; Haustein, Elke; Schwille, Petra
2005-01-01
To date, most biochemical approaches to unravel protein function have focused on purified proteins in vitro. Whereas they analyze enzyme performance under assay conditions, they do not necessarily tell us what is relevant within a living cell. Ideally, cellular functions should be examined in situ. In particular, association/dissociation reactions are ubiquitous, but so far there is no standard technique permitting online analysis of these processes in vivo. Featuring single-molecule sensitivity combined with intrinsic averaging, fluorescence correlation spectroscopy is a minimally invasive technique ideally suited to monitor proteins. Moreover, endogenous fluorescence-based assays can be established by genetically encoding fusions of autofluorescent proteins and cellular proteins, thus avoiding the disadvantages of in vitro protein labeling and subsequent delivery to cells. Here, we present an in vivo protease assay as a model system: Green and red autofluorescent proteins were connected by Caspase-3- sensitive and insensitive protein linkers to create double-labeled protease substrates. Then, dual-color fluorescence cross-correlation spectroscopy was employed to study the protease reaction in situ. Allowing assessment of multiple dynamic parameters simultaneously, this method provided internal calibration and improved experimental resolution for quantifying protein stability. This approach, which is easily extended to reversible protein-protein interactions, seems very promising for elucidating intracellular protein functions. PMID:16055538
Butts, Carter T.; Bierma, Jan C.; Martin, Rachel W.
2016-01-01
In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. PMID:27353064
Mirza, Shaper; Wilson, Landon; Benjamin, William H.; Novak, Jan; Barnes, Stephen; Hollingshead, Susan K.; Briles, David E.
2011-01-01
It is known that apolactoferrin, the iron-free form of human lactoferrin, can kill many species of bacteria, including Streptococcus pneumoniae. Lactoferricin, an N-terminal peptide of apolactoferrin, and fragments of it are even more bactericidal than apolactoferrin. In this study we found that apolactoferrin must be cleaved by a serine protease in order for it to kill pneumococci. The serine protease inhibitors were able to block killing by apolactoferrin but did not block killing by a lactoferrin-derived peptide. Thus, the killing of pneumococci by apolactoferrin appears to require a protease to release a lactoferricin-like peptide(s). Incubation of apolactoferrin with growing pneumococci resulted in a 12-kDa reduction in its molecular mass, of which about 7 to 8 kDa of the reduction was protease dependent. Capsular type 2 and 19F strains with mutations in the gene encoding the major cell wall-associated serine protease, prtA, lost much of their ability to degrade apolactoferrin and were relatively resistant to killing by apolactoferrin (P < 0.001). Recombinant PrtA was also able to cleave apolactoferrin, reducing its mass by about 8 kDa, and greatly enhance the killing activity of the solution containing the apolactoferrin and its cleavage products. Mass spectroscopy revealed that PrtA makes a major cut between amino acids 78 and 79 of human lactoferrin, removing the N-terminal end of the molecule (about 8.6 kDa). The simplest interpretation of these data is that the mechanism by which apolactoferrin kills Streptococcus pneumoniae requires the release of a lactoferricin-like peptide(s) and that it is this peptide(s), and not the intact apolactoferrin, which kills pneumococci. PMID:21422179
Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy.
Yasutake, Junichi; Suzuki, Yusuke; Suzuki, Hitoshi; Hiura, Naoko; Yanagawa, Hiroyuki; Makita, Yuko; Kaneko, Etsuji; Tomino, Yasuhiko
2015-08-01
Galactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN). Although many researchers have measured serum levels of Gd-IgA1 using snail helix aspersa agglutinin (HAA) lectin-based assay, the lectin-dependent assay has some serious problems in robustness. In this study, we aimed to establish a more robust and stable enzyme-linked immunosorbent assay (ELISA) method that uses a specific monoclonal antibody to recognize a hinge region in human Gd-IgA1 (Gd-IgA1 ELISA). Rats were immunized with human Gd-IgA1 hinge region peptide to obtain Gd-IgA1-specific monoclonal antibody KM55. Gd-IgA1 ELISA for specifically detecting serum Gd-IgA1 was consequently constructed. Serum Gd-IgA1 concentrations in human subjects were measured using KM55 ELISA assay. To further confirm specificity of the Gd-IgA1-specific antibody, KM55 was also applied for immunofluorescence staining of glomerular Gd-IgA1 in paraffin-embedded sections of renal biopsy specimens. Measurement of serum levels of Gd-IgA1 in human subjects by Gd-IgA1 ELISA revealed increased serum Gd-IgA1 level in patients with IgAN compared with patients with other renal diseases or non-renal diseases. Importantly, the results obtained from Gd-IgA1 ELISA positively correlated with those from the HAA lectin-based assay (R = 0.75). Immunofluorescence staining of renal biopsy specimens with KM55 detected glomerular co-localization of Gd-IgA1 and IgA. This novel lectin-independent method with KM55 for measuring serum levels of Gd-IgA1 can pave the way for more convincing diagnosis and activity assessment of IgAN, and can expedite clinical research to better understand this difficult disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA.
Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy
Yasutake, Junichi; Suzuki, Yusuke; Suzuki, Hitoshi; Hiura, Naoko; Yanagawa, Hiroyuki; Makita, Yuko; Kaneko, Etsuji; Tomino, Yasuhiko
2015-01-01
Background Galactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN). Although many researchers have measured serum levels of Gd-IgA1 using snail helix aspersa agglutinin (HAA) lectin-based assay, the lectin-dependent assay has some serious problems in robustness. In this study, we aimed to establish a more robust and stable enzyme-linked immunosorbent assay (ELISA) method that uses a specific monoclonal antibody to recognize a hinge region in human Gd-IgA1 (Gd-IgA1 ELISA). Methods Rats were immunized with human Gd-IgA1 hinge region peptide to obtain Gd-IgA1-specific monoclonal antibody KM55. Gd-IgA1 ELISA for specifically detecting serum Gd-IgA1 was consequently constructed. Serum Gd-IgA1 concentrations in human subjects were measured using KM55 ELISA assay. To further confirm specificity of the Gd-IgA1-specific antibody, KM55 was also applied for immunofluorescence staining of glomerular Gd-IgA1 in paraffin-embedded sections of renal biopsy specimens. Results Measurement of serum levels of Gd-IgA1 in human subjects by Gd-IgA1 ELISA revealed increased serum Gd-IgA1 level in patients with IgAN compared with patients with other renal diseases or non-renal diseases. Importantly, the results obtained from Gd-IgA1 ELISA positively correlated with those from the HAA lectin-based assay (R = 0.75). Immunofluorescence staining of renal biopsy specimens with KM55 detected glomerular co-localization of Gd-IgA1 and IgA. Conclusion This novel lectin-independent method with KM55 for measuring serum levels of Gd-IgA1 can pave the way for more convincing diagnosis and activity assessment of IgAN, and can expedite clinical research to better understand this difficult disease. PMID:26109484
Seo, Jin
2013-01-01
Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence. PMID:24082078
IgA Function in Relation to the Intestinal Microbiota.
Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C
2018-04-26
IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.
Chen, Xue; Wang, Yao; Zhou, Yan; Sun, Yawen; Ding, Weina; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong
2014-01-01
This study investigated changes in resting-state functional connectivity (rsFC) of posterior cingulate cortex (PCC) in smokers and nonsmokers with Internet gaming addiction (IGA). Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group) underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA. PMID:25506057
Reljic, R; Clark, S O; Williams, A; Falero-Diaz, G; Singh, M; Challacombe, S; Marsh, P D; Ivanyi, J
2006-01-01
Intranasal inoculation of mice with monoclonal IgA against the α-crystallin (acr1) antigen can diminish the tuberculous infection in the lungs. As this effect has been observed only over a short-term, we investigated if it could be extended by inoculation of IFNγ 3 days before infection, and further coinoculations with IgA, at 2 h before and 2 and 7 days after aerosol infection with Mycobacterium tuberculosis H37Rv. This treatment reduced the lung infection at 4 weeks more than either IgA or IFNγ alone (i.e. 17-fold, from 4·2 × 107 to 2·5 × 106 CFU, P = 0·006), accompanied also by lower granulomatous infiltration of the lungs. IFNγ added prior to infection of mouse peritoneal macrophages with IgA-opsonized bacilli resulted in a synergistic increase of nitric oxide and TNFα production and a 2–3 fold decrease in bacterial counts. Our improved results suggest, that combined treatment with IFNγ and IgA could be developed towards prophylactic treatment of AIDS patients, or as an adjunct to chemotherapy. PMID:16487246
Dysfunctions of the Iga system: a common link between intestinal and renal diseases
Papista, Christina; Berthelot, Laureline; Monteiro, Renato C
2011-01-01
Immunoglobulin A (Iga)-isotype antibodies play an important role in immunity owing to their structure, glycosylation, localization and receptor interactions. Dysfunctions in this system can lead to multiple types of pathology. This review describes the characteristics of Iga and discusses the involvement of abnormalities in the Iga system on the development of celiac disease and Iga nephropathy. PMID:21278767
de Jesus, Laura Néspoli Nassar Pansini; Tonini, Aline de Castro Zacche; Barros, Geisa Baptista; Coelho-dos-Reis, Jordana Grazziela A; Béla, Samantha Ribeiro; Antonelli, Lis Ribeiro do Valle; Machado, Anderson Silva; Carneiro, Ana Carolina Aguiar Vasconcelos; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Ferro, Eloísa A V; Mineo, José Roberto; Bahia-Oliveira, Lilian Maria Garcia; Martins-Filho, Olindo Assis; Lemos, Elenice Moreira
2016-01-01
This study intended to apply the flow cytometric analysis of IgA and IgG reactivity and intracytoplasmic cytokine analysis to understand and decode the clinical aspects of infants with ocular congenital toxoplasmosis. The Toxoplasma gondii-infected infants (TOXO) were subdivided according to their clinical aspects based on the absence (NRL), presence of active (ARL), active/cicatricial (ACRL) or cicatricial retinochoroidal lesions (CRL) and compared to non-infected controls (NI). The reactivity of anti-T. gondii IgG subclasses resembles the clinical aspects of ocular lesions. IgG and IgG1 discriminate infants with cicatricial lesions (ACRL and CRL) from both ARL and NLR. IgG2 and IgG3 are particularly higher in ACRL and CRL as compared to NLR. No differences were observed when IgG4 reactivity was evaluated. Thus, the results indicated that the reactivity patterns of IgA, IgG and IgG subclasses are able to discriminate ARL, ACRL and CRL from NLR or NI. IgA and IgG subclasses are relevant serological biomarkers with diagnostic and prognostic applicability, respectively. Moreover, IgA and IgG1 were closely related to cytokine production by innate/adaptive immunity cells. IgA reactivity was directly associated to TNF-α-derived from neutrophils, monocytes and CD8(+) T-cells, while IgG1 was inversely correlated with IFN-γ-producing CD4(+) and CD8(+) T-cells but positively correlated with IL-10(+) B-cells. These findings provide insights on the relationship between the cytokine production by innate/adaptive immunity and the antibody pattern of infants with ocular congenital toxoplasmosis. In addition, the present study supports the use of flow cytometric serology as a potential tool for the diagnosis and monitoring of ocular lesions in T. gondii-infected infants in the clinical setting. Copyright © 2015 Elsevier B.V. All rights reserved.
2011-01-01
Background Pemphigoids are rare diseases associated with IgG, IgE and IgA autoantibodies against collagen XVII/BP180. An entity of the pemphigoid group is the lamina lucida-type of linear IgA disease (IgA pemphigoid) characterized by IgA autoantibodies against BP180. While for the detection of IgG and IgE autoantibodies specific to collagen XVII several ELISA systems have been established, no quantitative immunoassay has been yet developed for IgA autoantibodies. Therefore, the aim of the present study was to develop an ELISA to detect IgA autoantibodies against collagen XVII in the sera of patients with pemphigoids. Methods We expressed a soluble recombinant form of the collagen XVII ectodomain in mammalian cells. Reactivity of IgA autoantibodies from patients with IgA pemphigoid was assessed by immunofluorescence microscopy and immunoblot analysis. ELISA test conditions were determined by chessboard titration experiments. The sensitivity, specificity and the cut-off were determined by receiver-operating characteristics analysis. Results The optimized assay was carried out using sera from patients with IgA pemphigoid (n = 30) and healthy donors (n = 105). By receiver operating characteristics (ROC) analysis, an area under the curve of 0.993 was calculated, indicating an excellent discriminatory capacity. Thus, a sensitivity and specificity of 83.3% and 100%, respectively, was determined for a cut-off point of 0.48. As additional control groups, sera from patients with bullous pemphigoid (n = 31) and dermatitis herpetiformis (n = 50), a disease associated with IgA autoantibodies against epidermal transglutaminase, were tested. In 26% of bullous pemphigoid patients, IgA autoantibodies recognized the ectodomain of collagen XVII. One of 50 (2%) of dermatitis herpetiformis patients sera slightly topped the cut-off value. Conclusions We developed the first ELISA for the specific and sensitive detection of serum IgA autoantibodies specific to collagen XVII in patients with pemphigoids. This immunoassay should prove a useful tool for clinical and translational research and should essentially improve the diagnosis and disease monitoring of patients with IgA pemphigoid. Moreover, our findings strongly suggest that IgA pemphigoid and IgG bullous pemphigoid represent two ends of the clinical spectrum of an immunological loss of tolerance against components of hemidesmosomes, which is mediated by both IgG and IgA autoantibodies. PMID:21619684
Simon, J. K.; Maciel, M.; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K. L.; Levine, M. M.; Sztein, M. B.
2011-01-01
We studied the induction of antigen-specific IgA memory B cells (BM) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107, 108 or 109 CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA BM cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show the induction of significant LPS-specific IgA BM cells in anti-LPS IgA seroresponders. Positive correlations were found between anti-LPS IgA BM cells and anti-LPS IgA in serum and stool; IgA BM cell responses to IpaB were also observed. These BM cell responses are likely play an important role in modulating the magnitude and longevity of the humoral response. PMID:21388888
Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.
2016-01-01
ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. PMID:27747296
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beale, M.G.; Nash, G.S.; Bertovich, M.J.
1982-01-01
The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml)more » and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.« less
Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E
2014-05-01
The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.
Exon Shuffling and Origin of Scorpion Venom Biodiversity
Wang, Xueli; Gao, Bin; Zhu, Shunyi
2016-01-01
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences. PMID:28035955
Exon Shuffling and Origin of Scorpion Venom Biodiversity.
Wang, Xueli; Gao, Bin; Zhu, Shunyi
2016-12-26
Scorpion venom is a complex combinatorial library of peptides and proteins with multiple biological functions. A combination of transcriptomic and proteomic techniques has revealed its enormous molecular diversity, as identified by the presence of a large number of ion channel-targeted neurotoxins with different folds, membrane-active antimicrobial peptides, proteases, and protease inhibitors. Although the biodiversity of scorpion venom has long been known, how it arises remains unsolved. In this work, we analyzed the exon-intron structures of an array of scorpion venom protein-encoding genes and unexpectedly found that nearly all of these genes possess a phase-1 intron (one intron located between the first and second nucleotides of a codon) near the cleavage site of a signal sequence despite their mature peptides remarkably differ. This observation matches a theory of exon shuffling in the origin of new genes and suggests that recruitment of different folds into scorpion venom might be achieved via shuffling between body protein-coding genes and ancestral venom gland-specific genes that presumably contributed tissue-specific regulatory elements and secretory signal sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, S.; Murty, V.V.V.S.; Chaganti, R.S.K.
The human fibroblast activation protein {alpha} (FAP{alpha}) is an inducible cell surface glycoprotein of M{sub r} 95,000 recognized by a number of monoclonal antibodies (mAbs), including the prototype mAb F19. Immunohistochemical studies have shown that FAP{alpha} expression in vivo is tightly regulated, with transient expression in some fetal mesenchymal tissues but absence of expression in most normal adult tissues. Reexpression of FAP{alpha} is observed in the reactive stromal fibroblasts of several common types of epithelial cancers, including >90% of breast, colorectal, and lung carcinomas and healing wounds. Cloning and sequence analysis of an FAP{alpha}-specific cDNA has revealed that the moleculemore » is encoded by a novel gene, FAP, which shows sequence similarity to members of the serine protease family of integral membrane proteins, namely dipeptidyl peptidase IV (DPPIV, also known as lymphocyte activation antigen, CD26, or adenosine dearoinase binding protein) and DPPX, a DPPIV-related molecule of unknown function. 15 refs., 1 fig.« less
Nagayama, Tatsuhiko; Sugimoto, Miki; Ikeda, Shuntaro; Kume, Shinichi
2014-04-01
The present study was conducted to clarify the effects of astaxanthin-enriched yeast on the concentration of immunoglobulin A (IgA), the numbers of IgA antibody-secreting cells (ASC) and the messenger RNA (mRNA) expression of IgA C-region in the jejunum and ileum of weanling mice. Weanling mice were fed rodent feed or astaxanthin-enriched yeast-supplemented rodent feed for 7, 14 or 21 days. Supplemental astaxanthin-enriched yeast increased the numbers of IgA ASC in the jejunum and ileum after 7, 14 and 21 days of treatment. Supplemental astaxanthin-enriched yeast increased IgA concentrations in the jejunum after 21 days of treatment, but IgA concentrations in the ileum were not affected by the treatment. The mRNA expressions of IgA C-region in the jejunum after 14 and 21 days of treatment and the ileum after 14 days of treatment were enhanced by supplementation of astaxanthin-enriched yeast. These results indicate that supplementation of astaxanthin-enriched yeast is effective to enhance the numbers of IgA ASC in the jejunum and ileum and IgA concentrations in the ileum of weanling mice. © 2013 Japanese Society of Animal Science.
Scarcity of autoreactive human blood IgA+ memory B cells
Prigent, Julie; Lorin, Valérie; Kök, Ayrin; Hieu, Thierry; Bourgeau, Salomé
2016-01-01
Class‐switched memory B cells are key components of the “reactive” humoral immunity, which ensures a fast and massive secretion of high‐affinity antigen‐specific antibodies upon antigenic challenge. In humans, IgA class‐switched (IgA+) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B‐cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa‐tropic viruses and commensal bacteria. However, the IgA+ memory B‐cell compartment contains fewer polyreactive clones and importantly, only rare self‐reactive clones compared to IgG+ memory B cells. Self‐reactivity of IgAs is acquired following B‐cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B‐cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B‐cell populations. PMID:27469325
Nationwide epidemiological survey of childhood IgA vasculitis associated hospitalization in the USA.
Okubo, Yusuke; Nochioka, Kotaro; Sakakibara, Hiroshi; Hataya, Hiroshi; Terakawa, Toshiro; Testa, Marcia; Sundel, Robert P
2016-11-01
At the national level, IgA vasculitis-related hospitalizations among children in the USA are scarce. Furthermore, nationwide epidemiology and hospital course of children with IgA vasculitis have not been fully described in the USA, and disparities by race/ethnicity remain unknown. Hospital discharge records of patients aged 19 years or younger were obtained from the 2003, 2006, 2009, and 2012 Kids' Inpatient Database, and they were weighted to estimate the annual hospitalization rates with respect to age, gender, and race/ethnicity in the USA. Annual hospitalization rates were calculated using weighted case estimates and US census data. Negative binomial regression was used to ascertain the factors associated with length of hospital stay. Total annual hospitalization rates showed a significant decreasing trend, ranging from 2.45 per 100,000 children in 2003 to 1.89 per 100,000 children in 2012 (p < 0.001). The peak ages of the hospitalized children with IgA vasculitis were 2 and 7 years, and male-to-female ratios were 1.38-1.44. Factors associated with length of hospital stay were patients' ages (10-14 and 15-19 years), race/ethnicity (Hispanic, Asian, and Pacific Islander), comorbid electrolyte abnormality, GI hemorrhage, intussusception, renal symptoms, and GI symptoms. The annual hospitalization rates for IgA vasculitis are declining in the USA across multiple age groups. GI and renal manifestations are associated with increased length of hospital stay.
Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi
2014-05-01
The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.
Olsson, Mia; Frankowiack, Marcel; Tengvall, Katarina; Roosje, Petra; Fall, Tove; Ivansson, Emma; Bergvall, Kerstin; Hansson-Hamlin, Helene; Sundberg, Katarina; Hedhammar, Ake; Lindblad-Toh, Kerstin; Hammarström, Lennart
2014-08-15
Immunoglobulin A (IgA) serves as the basis of the secretory immune system by protecting the lining of mucosal sites from pathogens. In both humans and dogs, IgA deficiency (IgAD) is associated with recurrent infections of mucosal sites and immune-mediated diseases. Low concentrations of serum IgA have previously been reported to occur in a number of dog breeds but no generally accepted cut-off value has been established for canine IgAD. The current study represents the largest screening to date of IgA in dogs in terms of both number of dogs (n=1267) and number of breeds studied (n=22). Serum IgA concentrations were quantified by using capture ELISA and were found to vary widely between breeds. We also found IgA to be positively correlated with age (p<0.0001). Apart from the two breeds previously reported as predisposed to low IgA (Shar-Pei and German shepherd), we identified six additional breeds in which ≥ 10% of all tested dogs had very low (<0.07 g/l) IgA concentrations (Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever, Bullterrier, Golden retriever and Labrador retriever). In addition, we discovered low IgA concentrations to be significantly associated with canine atopic dermatitis (CAD, p<0.0001) and pancreatic acinar atrophy (PAA, p=0.04) in German shepherds. Copyright © 2014 Elsevier B.V. All rights reserved.
Tornai, Tamas; Palyu, Eszter; Vitalis, Zsuzsanna; Tornai, Istvan; Tornai, David; Antal-Szalmas, Peter; Norman, Gary L; Shums, Zakera; Veres, Gabor; Dezsofi, Antal; Par, Gabriella; Par, Alajos; Orosz, Peter; Szalay, Ferenc; Lakatos, Peter Laszlo; Papp, Maria
2017-01-01
AIM To assess the prevalence of a panel of serologic markers that reflect gut barrier dysfunction in a mixed cohort of pediatric and adult primary sclerosing cholangitis (PSC) patients. METHODS Sera of 67 PSC patients [median age (range): 32 (5-79) years, concomitant IBD: 67% and cirrhosis: 20%] were assayed for the presence of antibodies against to F-actin (AAA IgA/IgG) and gliadin (AGA IgA/IgG)] and for serum level of intestinal fatty acid-binding protein (I-FABP) by ELISA. Markers of lipopolysaccharide (LPS) exposure [LPS binding protein (LBP)] and various anti-microbial antibodies [anti-OMP Plus IgA and endotoxin core IgA antibody (EndoCAb)] were also determined. Poor disease outcome was defined as orthotopic liver transplantation and/or liver-related death during the follow-up [median: 99 (14-106) mo]. One hundred and fifty-three healthy subjects (HCONT) and 172 ulcerative colitis (UC) patients were the controls. RESULTS A total of 28.4%, 28.0%, 9% and 20.9% of PSC patients were positive for AAA IgA, AAA IgG, AGA IgA and AGA IgG, respectively. Frequencies of AAA IgA and AAA IgG (P < 0.001, for both) and AGA IgG (P = 0.01, for both) but not AGA IgA were significantly higher compared to both of the HCONT and the UC groups. In survival analysis, AAA IgA-positivity was revealed as an independent predictor of poor disease outcome after adjusting either for the presence of cirrhosis [HR = 5.15 (1.27-20.86), P = 0.022 or for the Mayo risk score (HR = 4.24 (0.99-18.21), P = 0.052]. AAA IgA-positivity was significantly associated with higher frequency of anti-microbial antibodies (P < 0.001 for EndoCab IgA and P = 0.012 for anti-OMP Plus IgA) and higher level of the enterocyte damage marker (median I-FABPAAA IgA pos vs neg: 365 vs 166 pg/mL, P = 0.011), but not with serum LBP level. CONCLUSION Presence of IgA type AAA identified PSC patients with progressive disease. Moreover, it is associated with enhanced mucosal immune response to various microbial antigens and enterocyte damage further highlighting the importance of the gut-liver interaction in PSC. PMID:28839442
Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo. PMID:28107409
Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G
2017-01-01
Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.
The lethal cargo of Myxococcus xanthus outer membrane vesicles.
Berleman, James E; Allen, Simon; Danielewicz, Megan A; Remis, Jonathan P; Gorur, Amita; Cunha, Jack; Hadi, Masood Z; Zusman, David R; Northen, Trent R; Witkowska, H Ewa; Auer, Manfred
2014-01-01
Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs) are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including the protein encoded by MXAN_3564 (mepA), an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is part of the long-predicted (yet to date undetermined) extracellular protease suite of M. xanthus.
Moeller, Sina; Canetta, Pietro A; Taylor, Annette K; Arguelles-Grande, Carolina; Snyder, Holly; Green, Peter H; Kiryluk, Krzysztof; Alaedini, Armin
2014-01-01
IgA nephropathy is the most common form of primary glomerulonephritis worldwide. Mucosal infections and food antigens, including wheat gluten, have been proposed as potential contributing environmental factors. Increased immune reactivity to gluten and/or association with celiac disease, an autoimmune disorder triggered by ingestion of gluten, have been reported in IgA nephropathy. However, studies are inconsistent about this association. We aimed to evaluate the proposed link between IgA nephropathy and celiac disease or immune reactivity to gluten by conducting a comprehensive analysis of associated serologic markers in cohorts of well-characterized patients and controls. Study participants included patients with biopsy-proven IgA nephropathy (n = 99), unaffected controls of similar age, gender, and race (n = 96), and patients with biopsy-proven celiac disease (n = 30). All serum specimens were tested for IgG and IgA antibodies to native gliadin and deamidated gliadin, as well as IgA antibody to transglutaminase 2 (TG2). Anti-TG2 antibody-positive nephropathy patients and unaffected controls were subsequently tested for IgA anti-endomysial antibody and genotyped for celiac disease-associated HLA-DQ2 and -DQ8 alleles. In comparison to unaffected controls, there was not a statistically significant increase in IgA or IgG antibody reactivity to gliadin in individuals with IgA nephropathy. In addition, the levels of celiac disease-specific serologic markers, i.e., antibodies to deamidated gliadin and TG2, did not differ between IgA nephropathy patients and unaffected controls. Results of the additional anti-endomysial antibody testing and HLA genotyping were corroborative. The data from this case-control study do not reveal any evidence to suggest a significant role for celiac disease or immune reactivity to gluten in IgA nephropathy.
Moeller, Sina; Canetta, Pietro A.; Taylor, Annette K.; Arguelles-Grande, Carolina; Snyder, Holly; Green, Peter H.; Kiryluk, Krzysztof; Alaedini, Armin
2014-01-01
IgA nephropathy is the most common form of primary glomerulonephritis worldwide. Mucosal infections and food antigens, including wheat gluten, have been proposed as potential contributing environmental factors. Increased immune reactivity to gluten and/or association with celiac disease, an autoimmune disorder triggered by ingestion of gluten, have been reported in IgA nephropathy. However, studies are inconsistent about this association. We aimed to evaluate the proposed link between IgA nephropathy and celiac disease or immune reactivity to gluten by conducting a comprehensive analysis of associated serologic markers in cohorts of well-characterized patients and controls. Study participants included patients with biopsy-proven IgA nephropathy (n = 99), unaffected controls of similar age, gender, and race (n = 96), and patients with biopsy-proven celiac disease (n = 30). All serum specimens were tested for IgG and IgA antibodies to native gliadin and deamidated gliadin, as well as IgA antibody to transglutaminase 2 (TG2). Anti-TG2 antibody-positive nephropathy patients and unaffected controls were subsequently tested for IgA anti-endomysial antibody and genotyped for celiac disease-associated HLA-DQ2 and -DQ8 alleles. In comparison to unaffected controls, there was not a statistically significant increase in IgA or IgG antibody reactivity to gliadin in individuals with IgA nephropathy. In addition, the levels of celiac disease-specific serologic markers, i.e., antibodies to deamidated gliadin and TG2, did not differ between IgA nephropathy patients and unaffected controls. Results of the additional anti-endomysial antibody testing and HLA genotyping were corroborative. The data from this case-control study do not reveal any evidence to suggest a significant role for celiac disease or immune reactivity to gluten in IgA nephropathy. PMID:24732864
Cocoa and cocoa fibre differentially modulate IgA and IgM production at mucosal sites.
Massot-Cladera, Malen; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida
2016-05-01
Previous studies have shown that a 10 % cocoa (C10) diet, containing polyphenols and fibre among others, modifies intestinal and systemic Ig production. The present study aimed at evaluating the impact of C10 on IgA and IgM production in the intestinal and extra-intestinal mucosal compartments, establishing the involvement of cocoa fibre (CF) in such effects. Mechanisms by which C10 intake may affect IgA synthesis in the salivary glands were also studied. To this effect, rats were fed either a standard diet, a diet containing C10, CF or inulin. Intestinal (the gut wash (GW), Peyer's patches (PP) and mesenteric lymph nodes (MLN)) and extra-intestinal (salivary glands) mucosal tissues and blood samples were collected for IgA and IgM quantification. The gene expressions of IgA production- and homing-related molecules were studied in the salivary glands. The C10 diet decreased intestinal IgA and IgM production. Although the CF diet decreased the GW IgA concentration, it increased PP, MLN and serum IgA concentrations. Both the C10 and the CF diets produced a down-regulatory effect on IgA secretion in the extra-intestinal tissues. The C10 diet interacted with the mechanisms involved in IgA synthesis, whereas the CF showed particular effects on the homing and transcytosis of IgA across the salivary glands. Overall, CF was able to up-regulate IgA production in the intestinal-inductor compartments, whereas it down-regulated its production at the mucosal-effector ones. Further studies must be directed to ascertain the mechanisms involved in the effect of particular cocoa components on gut-associated lymphoid tissue.
Snider, D P; Underdown, B J
1986-04-01
We analyzed the appearance and level of Giardia muris-specific antibody of immunoglobulin A (IgA), IgG, and IgM isotypes, at weekly intervals, over the course of a 7-week infection in BALB/c and C57BL/6 mice. Using sensitive immunoradiometric assays, we observed that IgA antibody was the only detectable anti-G. muris antibody in intestinal secretions throughout the course of infection. No secreted IgG or IgM anti-G. muris antibody was detected even in concentrated intestinal secretions. The expulsion of G. muris by the mice was associated closely with the appearance and increasing levels of secreted anti-G. muris IgA antibody. Both IgG and IgA serum antibody to G. muris were detected, but no serum IgM antibody was detected. Serum IgA and IgG anti-G. muris antibody remained at high levels up to 10 weeks following clearance of the parasite. An interesting observation indicated that serum IgA antibody to G. muris developed more slowly in response to infection than secreted IgA antibody. An analysis of the molecular weight distribution of total serum IgA in infected mice determined that infection produced a transient but significant shift in serum IgA to high-molecular-weight (greater than or equal to dimeric IgA) forms. The results indicate that a substantial IgA antibody response occurs in sera and in gut secretions of G. muris-resistant mice and that IgA antibody is the dominant and possibly the only effector antibody active in intestinal secretions during G. muris infection in mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang
Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less
Liu, Qing; Sun, Shujing; Piao, Meizi; Yang, Ji Young
2013-01-01
Protease widely exists in the digestive tract of animals and humans, playing a very important role in protein digestion and absorption. In this study, a high protease-producing strain Planomicrobium sp. L-2 was isolated and identified from the digestive tract of Octopus variabilis. The strain was identified by physiological and biochemical experiments and 16S rDNA sequences analysis. A protease was obtained from the strain Planomicrobium sp. L-2 through ammonium sulfate precipitation, dialysis and enrichment, DEAE-Sephadex A50 anion-exchange chromatography, and Sephadex G-100 gel chromatography. The molecular weight and properties of the protease were characterized, including optimum temperature and pH, thermal stability, protease inhibitions and metal ions. According to our results, the protease from Planomicrobium sp. L-2 strain designated as F1-1 was obtained by three-step separation and purification from crude enzyme. The molecular weight of the protease was 61.4 kDa and its optimum temperature was 40°C. The protease F1-1 showed a broad pH profile for casein hydrolysis between 5.0~11.0. No residual activity was observed after incubation for 40 min at 60°C and 60 min at 50°C. F1-1 protease was inhibited by Mn2+, Hg2+, Pb2+, Zn2+, and Cu2+ ions, as well as PMSF, indicating that the protease F1-1 was a serine protease. Additionally, research basis provided by this study could be considered for industrial application of octopus intestinal proteases. PMID:24551830
Gene cloning, overexpression, and characterization of a xylanase from Penicillium sp. CGMCC 1669.
Liu, Wanli; Shi, Pengjun; Chen, Qiang; Yang, Peilong; Wang, Guozeng; Wang, Yaru; Luo, Huiying; Yao, Bin
2010-09-01
A xylanase-encoding gene, xyn11F63, was isolated from Penicillium sp. F63 CGMCC1669 using degenerated polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR techniques. The full-length chromosomal gene consists of 724 bp, including a 73-bp intron, and encodes a 217 amino acid polypeptide. The deduced amino acid sequence of xyn11F63 shows the highest identity of 70% to the xylanase from Penicillium sp. strain 40, which belongs to glycosyl hydrolases family 11. The gene was overexpressed in Pichia pastoris, and its activity in the culture medium reached 516 U ml(-1). After purification to electrophoretic homogeneity, the enzyme showed maximal activity at pH 4.5 and 40 degrees C, was stable at acidic buffers of pH 4.5-9.0, and was resistant to proteases (proteinase K, trypsin, subtilisin A, and alpha-chymotrypsin). The specific activity, K (m), and V (max) for oat spelt xylan substrate was 7,988 U mg(-1), 22.2 mg ml(-1), and 15,105.7 micromol min(-1) mg(-1), respectively. These properties make XYN11F63 a potential economical candidate for use in feed and food industrial applications.
Zone, J J; Taylor, T B; Kadunce, D P; Meyer, L J
1990-01-01
Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis) were evaluated. Indirect immunofluorescence revealed an IgA anti-basement membrane antibody in 6 of 10 sera with monkey esophagus substrate and 9 of 10 sera with human epidermal substrate. Immunoblotting was performed on epidermal and dermal extracts prepared from skin separated at the basement membrane zone with either sodium chloride or EDTA. Saline-separated skin expressed a 97-kD band in dermal extract alone that was recognized by 4 of 10 sera. EDTA-separated skin expressed the 97-kD band in both epidermal (4 of 10 sera) and dermal (6 of 10 sera) extract. Immunoabsorption of positive sera with epidermis purified an IgA antibody that reacted uniquely with the 97-kD band. In addition, IgA antibody bound to nitrocellulose was eluted from the 97-kD band and found to uniquely bind basement membrane zone. It is likely that the 97-kD protein identified by these techniques is responsible for basement membrane binding of IgA in LABD. Images PMID:2107211
Eison, T. Matthew; Hastings, M. Colleen; Moldoveanu, Zina; Sanders, John T.; Gaber, Lillian; Walker, Patrick D.; Lau, Keith K; Julian, Bruce A.; Novak, Jan; Wyatt, Robert J.
2012-01-01
Objective: To determine whether the absence of mesangial IgG deposits is associated with the absence of elevated blood levels of galactose-deficient IgA1 (Gd-IgA1) in pediatric patients with IgA nephropathy (IgAN). Design and methods: Serum Gd-IgA1 levels were determined by ELISA using an N-acetylgalactosamine-specific lectin from Helix aspersa. Levels of Gd-IgA1 above the 90th percentile for healthy pediatric controls were considered to be elevated. Renal biopsy samples were examined by immunofluorescence for presence and intensity of staining for IgA, IgG, IgM, C3 and C1q and by light microscopy for histological changes. Findings were graded by a single pathologist (L. Gaber) at UTHSC until 2007 and by NephropathTM (Little Rock, AR, USA) thereafter. Staining for the mesangial deposits was considered negative when intensity was trace or less, and positive at greater intensity. Fisher’s exact-test was used to determine significance of 2 × 2 tables. Results: Serum samples were obtained from 30 patients with IgAN diagnosed before age 18 years. Male : female ratio was 2.3 : 1. Twenty were Caucasian and 10 were African-American. Blood was obtained within 3 months of biopsy (incident cases) for 12, while 18 provided blood > 3 months after biopsy (prevalent cases). Serum Gd-IgA1 level was elevated in 23 (77%) of cases and 20 (67%) had a biopsy positive for IgG. Of those 20 patients, 18 (90%) had an elevated serum Gd-IgA1 level, whereas 5 (50%) of patients with biopsies without IgG had a normal serum Gd-IgA1 level (p = 0.026). Summary: In this small study we found a weak association between the absence of IgG in the biopsy and normal serum Gd-IgA1 level. PMID:23006340
Gioia, Jason; Qin, Xiang; Jiang, Huaiyang; Clinkenbeard, Kenneth; Lo, Reggie; Liu, Yamei; Fox, George E.; Yerrapragada, Shailaja; McLeod, Michael P.; McNeill, Thomas Z.; Hemphill, Lisa; Sodergren, Erica; Wang, Qiaoyan; Muzny, Donna M.; Homsi, Farah J.; Weinstock, George M.; Highlander, Sarah K.
2006-01-01
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes. PMID:17015664
Kim, Dong Jun; Kim, Kiwon; Lee, Hae-Woo; Hong, Jin-Pyo; Cho, Maeng Je; Fava, Maurizio; Mischoulon, David; Heo, Jung-Yoon; Jeon, Hong Jin
2017-07-01
The aim of this study was to investigate the association between adult Internet game addiction (IGA) and mental disorders. A total of 1401 adults aged between 18 and 74 years participated in this study. The IGA group had significantly younger patients, and it showed a higher proportion of unmarried and unemployed adults, and higher rates of suicidal ideation, plan, and attempt than the non-IGA group. Multivariate logistic regression indicated that IGA was significantly associated with major depressive disorder, dysthymia, and depressive disorders adjusting for all variables. The Patient Health Questionnaire-9 score was significantly higher in the IGA group than in the non-IGA group for both young adults and middle groups. "Escape from negative emotions like nervousness, sadness, and anger" was the only significant item associated with depression among symptoms of IGA. This study suggests that adults with IGA and depression may use Internet games to escape from negative emotions.
Andrade, Fernanda B; Abreu, Afonso G; Nunes, Kamila O; Gomes, Tânia A T; Piazza, Roxane M F; Elias, Waldir P
2017-06-01
Enteroaggregative Escherichia coli (EAEC) is an agent of acute and persistent diarrhea worldwide, categorized in typical or atypical subgroups. Some EAEC virulence factors are members of the serine protease autotransporters of Enterobacteriaceae (SPATE). The presence of SPATE-encoding genes of different E. coli pathotypes was searched in a large collection of EAEC strains, and a possible association between SPATEs and E. coli phylogroups was investigated. Among 108 typical and 85 atypical EAEC, pic was the most prevalent gene, detected in 47.1% of the strains, followed by sat (24.3%), espI (21.2%), pet (19.2%), sepA (13.5%), sigA (4.1%), eatA (4.1%), vat (1.0%), espP and tsh, detected in one strain (0.5%) each; while epeA and espC were not detected. Phylogenetic analysis demonstrated that 39.9% of the strains belonged to group A, 23.3% to B1, 10.9% to B2, 7.8% to D, 8.8% to E and 1.5% to F. The majority of the SPATE genes were distributed in typical and atypical strains without association with any phylogroup. In addition, pic and pet were strongly associated with typical EAEC and sepA was detected in close association with atypical EAEC. Our data indicate that SPATEs may represent important virulence traits in both subgroups of EAEC. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of oral bacterial lysates on serum immunoglobulins.
Palma-Carlos, A G; Palma-Carlos, M L
1989-11-01
The level of serum immunoglobulins IgG, IgA, IgM and IgE has been studied before and after oral immunotherapy with a bacterial lysate in 88 patients with bronchial asthma, repeated respiratory infection and 12 cases of IgA deficiency. A significant increase in IgA has been observed in 9 patients presenting initially a decreased IgA serum level. In 3 patients without response to the standard treatment an increase in IgA was achieved increasing the dosage of oral bacterial lysate. Oral bacterial lysates could be an useful immunomodulating agent in repeated respiratory infections associated or not with IgA deficiency.
Martin, Valentina; Arcavi, Miriam; Santillan, Graciela; Amendoeira, Maria Regina R.; De Souza Neves, Elizabeth; Griemberg, Gloria; Guarnera, Eduardo; Garberi, Juan C.; Angel, Sergio O.
1998-01-01
The Toxoplasma gondii rhoptry protein Rop2 was expressed in Escherichia coli as a fusion protein containing 44 kDa of the 55-kDa mature Rop2, supplied with six histidyl residues at the N-terminal end (Rop2196–561). Humoral response during Toxoplasma infection of humans was analyzed by immunoglobulin G (IgG), IgA, and IgM enzyme-linked immunosorbent assay with Rop2196–561 as the antigen substrate. The analyzed sera were divided according to T. gondii-specific serological tests (IgG, IgA, or IgM indirect immunofluorescence and IgA or IgM immunosorbent agglutination assay) as group A (IgG+ IgA− IgM−; n = 35), group B (IgG+ IgA+ IgM+; n = 21), group C (IgG+ IgA+ IgM−; n = 5), and group D (IgG+ IgA− IgM+; n = 16). Twenty-six T. gondii-seronegative sera from individuals with other infections were also included (group E). Anti-Rop2 IgG antibodies were detected in 82.8% of group A sera and in 97.6% of the sera with acute-phase marker immunoglobulins (groups B, C, and D). The percentage of IgA antibody reactivity against Rop2196–561 was 17.1% in group A, 50% in group D, and 80.8% in groups B and C. The percentage of IgM antibody reactivity was 0% in groups A and C and 62% in groups B and D. Sera from group E failed to show IgA, IgM, or IgG antibody reactivity. Since T. gondii Rop2 elicits a strong humoral response from an early stage of infection, it is suggested that recombinant Rop2196–561 would be suitable for use in diagnostic systems, in combination with other T. gondii antigens, to detect specific IgG, IgA, and IgM antibodies. PMID:9729528
Stoof, Susanne P.; Buisman, Anne-Marie; van Rooijen, Debbie M.; Boonacker, Rianne; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.
2015-01-01
Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC. PMID:26458006
Stoof, Susanne P; Buisman, Anne-Marie; van Rooijen, Debbie M; Boonacker, Rianne; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M
2015-01-01
Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.
Xu, Weifeng; Santini, Paul A.; Sullivan, John S.; He, Bing; Shan, Meimei; Ball, Susan C.; Dyer, Wayne B.; Ketas, Thomas J.; Chadburn, Amy; Cohen-Gould, Leona; Knowles, Daniel M.; Chiu, April; Sanders, Rogier W.; Chen, Kang; Cerutti, Andrea
2009-01-01
Contact-dependent communication between immune cells generates protection, but also facilitates viral spread. We found that macrophages formed long-range actin-propelled conduits in response to negative factor (Nef), a human immunodeficiency virus type-1 (HIV-1) protein with immunosuppressive functions. Conduits attenuated immunoglobulin G2 (IgG2) and IgA class switching in systemic and intestinal lymphoid follicles by shuttling Nef from infected macrophages to B cells through a guanine exchange factor-dependent pathway involving the amino-terminal anchor, central core and carboxy-terminal flexible loop of Nef. By showing stronger virus-specific IgG2 and IgA responses in patients harboring Nef-deficient virions, our data suggest that HIV-1 exploits intercellular highways as a “Trojan horse” to deliver Nef to B cells and evade humoral immunity systemically and at mucosal sites of entry. PMID:19648924
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong
2013-01-08
Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTVmore » and MDR HIV-1 protease.« less
Pettit, Steven C.; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H.
2003-01-01
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation. PMID:12477841
Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H
2003-01-01
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.
Biondo, Ronaldo; da Silva, Felipe Almeida; Vicente, Elisabete José; Souza Sarkis, Jorge Eduardo; Schenberg, Ana Clara Guerrini
2012-08-07
This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.
Hed, J; Eneström, S
1981-01-01
Formalin is known to mask the antigenicity of immune deposits in glomeruli but not of surface immunoglobulins of isolated lymphocytes. We have shown in mice with experimental passive anti-GBM glomerulonephritis that formalin masks the antigenicity of GBM-bound immunoglobulins only if the tissue is fixed before sectioning. The presence of a high concentration of normal bovine serum during fixation of cryostat sections masks the antigenicity of immune deposits, whereas formalin alone has no obvious effect. The same results were obtained with human immunoglobulins (IgG, IgM and IgA) bound to tissue sections. Protease treatment with pepsin and trypsin restored the ability of the immunoglobulins to be stained. The masking effect seems to be due to extensive cross-linking of environmental proteins which prevents fluorescent conjugates reaching their antigens. Methods for detecting immunoglobulins in tissues must, therefore, take into consideration the influence of fixatives not only on epitopes but also on the environment in which the antigenic determinants are localised.
Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J
2009-12-01
The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.
Liu, H-W; Wang, L-L; Meng, Z; Tang, X; Li, Y-S; Xia, Q-Y; Zhao, P
2017-10-01
Clip domain serine proteases (CLIPs), characterized by one or more conserved clip domains, are essential components of extracellular signalling cascades in various biological processes, especially in innate immunity and the embryonic development of insects. Additionally, CLIPs may have additional non-immune functions in insect development. In the present study, the clip domain serine protease gene Bombyx mori serine protease 95 (BmSP95), which encodes a 527-residue protein, was cloned from the integument of B. mori. Bioinformatics analysis indicated that BmSP95 is a typical CLIP of the subfamily D and possesses a clip domain at the N terminus, a trypsin-like serine protease (tryp_spc) domain at the C terminus and a conserved proline-rich motif between these two domains. At the transcriptional level, BmSP95 is expressed in the integument during moulting and metamorphosis, and the expression pattern is consistent with the fluctuating 20-hydroxyecdysone (20E) titre in B. mori. At the translational level, BmSP95 protein is synthesized in the epidermal cells, secreted as a zymogen and activated in the moulting fluid. Immunofluorescence revealed that BmSP95 is distributed into the old endocuticle in the moulting stage. The expression of BmSP95 was upregulated by 20E. Moreover, expression of BmSP95 was downregulated by pathogen infection. RNA interference-mediated silencing of BmSP95 led to delayed moulting from pupa to moth. These results suggest that BmSP95 is involved in integument remodelling during moulting and metamorphosis. © 2017 The Royal Entomological Society.
Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.
2018-01-01
ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. PMID:29437971
Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei
2017-06-01
The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. Copyright © 2017 Yoshikawa et al.
Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio
2017-01-01
ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. PMID:28331087
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells
Nakagawa, K.; Lokugamage, K.G.; Makino, S.
2017-01-01
Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623
Oshima, Yoichi; Hoshino, Junichi; Suwabe, Tatsuya; Hayami, Noriko; Yamanouchi, Masayuki; Sekine, Akinari; Ueno, Toshiharu; Mizuno, Hiroki; Yabuuchi, Junko; Imafuku, Aya; Kawada, Masahiro; Hiramatsu, Rikako; Hasegawa, Eiko; Sawa, Naoki; Takaichi, Kenmei; Hayashi, Nobukazu; Fujii, Takeshi; Ubara, Yoshifumi
2017-03-01
A 41-year-old man was referred to our hospital for the evaluation of hypergammaglobulinemia (IgG 2898 mg/dL and IgA 587 mg/dL), inflammation (CRP 6.7 mg/dL and serum interleukin-6 (IL-6) 15.1 ng/L), and anemia (Hb 10.9 mg/dL). Castleman's disease (CD) was diagnosed by axillary lymph node biopsy. Five months later, painful purpura (multiple palpable 5 mm lesions) developed on his legs, gradually spreading to the upper limbs, thighs, and trunk, accompanied by arthralgia of the wrists, ankles, and knees. Skin biopsy revealed leukocytoclastic vasculitis with IgA deposits in dermal vessels. Accordingly, IgA vasculitis (Henoch-Schönlein purpura) was diagnosed. Tocilizumab (an anti-IL-6 receptor antibody) was administered intravenously at 8 mg/kg and treatment was repeated at monthly intervals. His purpura and clinical findings specific to CD improved rapidly. CD is well known to cause various skin lesions. The findings in this case indicate that overproduction of IL-6 contributes to IgA vasculitis (Henoch-Schönlein purpura) as well as to the pathogenesis of CD.
Blockade of nitric oxide synthesis modulates rat immunoglobulin A.
Budec, Mirela; Marković, Dragana; Djikić, Dragoslava; Mitrović, Olivera; Drndarević, Neda; Koko, Vesna; Todorović, Vera
2009-01-01
Nitric oxide (NO) is known as a regulator of inflammation and immunity. The purpose of this study was to investigate the influence of this signal molecule on the rat immunoglobulin A (IgA) system using Nomega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of NO synthase. The experiments were performed on adult female Wistar rats showing diestrus day 1 that were treated with L-NAME (30 or 50 mg/kg, s.c.). Untreated and saline-injected animals were used as controls. The rats were sacrificed 3 h following L-NAME or saline administration. The concentration of IgA in serum and intestinal extracts was determined by a sandwich enzyme-linked immunosorbent assay. The number of IgA-expressing cells per area unit of Peyer's patches and the intestinal lamina propria was evaluated using stereological analysis. The results showed that L-NAME decreased the level of IgA in serum and elevated its concentration in intestinal extracts. Additionally, the increased number of IgA+ cells was found in the intestinal lamina propria in both experimental groups. Obtained findings imply that endogenous NO may modulate the IgA system in the rat. Copyright 2009 S. Karger AG, Basel.
Krunic, Aleksandar L; Stone, Kristina L; Simpson, Michael A; McGrath, John A
2013-01-01
Acral peeling skin syndrome (APSS) is a clinically and genetically heterogeneous disorder. We used whole-exome sequencing to identify the molecular basis of APSS in a consanguineous Jordanian-American pedigree. We identified a homozygous nonsense mutation (p.Lys22X) in the CSTA gene, encoding cystatin A, that was confirmed using Sanger sequencing. Cystatin A is a protease inhibitor found in the cornified cell envelope, and loss-of-function mutations have previously been reported in two cases of exfoliative ichthyosis. Our study expands the molecular pathology of APSS and demonstrates the value of next-generation sequencing in the genetic characterization of inherited skin diseases. © 2013 Wiley Periodicals, Inc.
Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.
Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T
2018-03-13
Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.
Natural polyreactive IgA antibodies coat the intestinal microbiota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunker, Jeffrey J.; Erickson, Steven A.; Flynn, Theodore M.
Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. In this paper, we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer’s patches. This selection process occurred independent ofmore » microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. In conclusion, these findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.« less
Natural polyreactive IgA antibodies coat the intestinal microbiota
Bunker, Jeffrey J.; Erickson, Steven A.; Flynn, Theodore M.; ...
2017-09-28
Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. In this paper, we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer’s patches. This selection process occurred independent ofmore » microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. In conclusion, these findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.« less
A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain
2016-09-15
The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less
Melsom, R; Harboe, M; Duncan, M E
1982-01-01
IgA, IgM and IgG anti-M. leprae antibody activity was estimated by solid phase radioimmunoassay in repeated serum samples from cord sera to sera taken 2 years after birth from 29 babies of mothers with lepromatous leprosy (Group 1) and 16 babies of mothers with tuberculoid leprosy and non-leprosy control mothers (Group 2). IgA anti-M. leprae antibody activity could be detected in 30% and IgM anti-M. leprae antibody activity in 50% of cord sera from Group 1, but not in any of the cord sera from Group 2. After birth, there was a significantly higher increase of IgA and IgM anti-M. leprae antibody activity in sera taken 3-6 months after birth from babies of Group 1 compared to Group 2, but the IgA and IgM activity in sera taken after 6 months of age showed the same increase in the two groups. IgG anti-M. leprae antibody activity showed a marked decrease in sera from both Groups 1 and 2 taken 3-6 and 6-9 months after birth compared to the activity in the cord sera. No increase of the IgG activity could be demonstrated even in sera taken 15-24 months after birth in any of the two groups. These findings are discussed in relation to possible transfer of M. leprae bacilli across the placenta, the influence of M. leprae and other mycobacteria exposure on the antibody activity, the poor IgG anti-M. leprae antibody response and subclinical leprosy infection in babies exposed to leprosy below 2 years of age. PMID:6756719
Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells
Bidgood, Susanna R.; Tam, Jerry C. H.; McEwan, William A.; Mallery, Donna L.; James, Leo C.
2014-01-01
IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA–virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment. PMID:25169018
Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells.
Bidgood, Susanna R; Tam, Jerry C H; McEwan, William A; Mallery, Donna L; James, Leo C
2014-09-16
IgA is the most prevalent antibody type on mucosal surfaces and the second most prevalent antibody in circulation, yet its role in immune defense is not fully understood. Here we show that IgA is carried inside cells during virus infection, where it activates intracellular virus neutralization and innate immune signaling. Cytosolic IgA-virion complexes colocalize with the high-affinity antibody receptor tripartite motif-containing protein 21 (TRIM21) and are positive for lysine-48 ubiquitin chains. IgA neutralizes adenovirus infection in a TRIM21- and proteasome-dependent manner in both human and mouse cells. Translocated IgA also potently activates NF-κB signaling pathways in cells expressing TRIM21, whereas viral infection in the absence of antibody or TRIM21 is undetected. TRIM21 recognizes an epitope in IgG Fc that is not conserved in IgA; however, fluorescence anisotropy experiments demonstrate that direct binding to IgA is maintained. We use molecular modeling to show that TRIM21 forms a nonspecific hydrophobic seal around a β-loop structure that is present in IgG, IgM, and IgA, explaining how TRIM21 achieves such remarkable broad antibody specificity. The findings demonstrate that the antiviral protection afforded by IgA extends to the intracellular cytosolic environment.
Pesonen, M; Kallio, M J T; Siimes, M A; Savilahti, E; Ranki, A
2011-05-01
Serum and secretory IgA concentrations have been suggested to be inversely associated with allergic symptoms in children. Furthermore, low maternal milk IgA concentration has been suggested to be associated with the development of cow's milk allergy. Our aim was to explore whether the serum IgA concentrations in infancy and the IgA concentration of maternal milk predict atopic manifestations in childhood and up to age 20 years. A cohort of 200 unselected full-term newborns was prospectively followed up from birth to age 20 years with measurement of serum total IgA at ages 2 and 6 months. The mothers were encouraged to maintain exclusive breastfeeding for as long as possible. Total IgA concentration of maternal milk was measured at birth (colostrum, n=169) and at 2 (n=167) and 6 (n=119) months of lactation. The children were re-assessed at ages 5, 11 and 20 years for the occurrence of allergic symptoms, with skin prick testing and measurement of serum IgE. Children and adolescents with respiratory allergic symptoms and sensitization had a higher serum IgA concentration at age 2 months than the non-atopic subjects. Colostrum and breast milk IgA concentrations were not associated with the development of allergic symptoms in the recipient infant. However, maternal milk IgA concentration at 6 months of lactation was inversely associated with elevated serum total IgE and positive skin prick test to tree pollen in the offspring at age 20 years. Increased serum IgA concentration at age 2 months is associated with the development of subsequent allergic symptoms and sensitization in childhood and adolescence. Maternal milk IgA concentrations are not associated with subsequent allergic symptoms in the recipient infant. The present study provides novel information on the role of IgA in the development of respiratory allergy and sensitization. © 2011 Blackwell Publishing Ltd.
Anti-Cryptosporidium IgA and IgG are useful markers of exposure to Cryptosporidium in human populations, but detection in saliva may be difficult. To evaluate a magnetic microsphere assay for detection of anti-Cryptosporidium IgA and IgG in saliva, recombinant sporozoite gp15 (1...
Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique
2011-08-24
Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy.
Pérez-Cano, Francisco J; Ramírez-Santana, Carolina; Molero-Luís, Marta; Castell, Margarida; Rivero, Montserrat; Castellote, Cristina; Franch, Angels
2009-03-01
The aim of this work was to establish the effect of the cis9,trans11 conjugated linoleic acid (CLA) isomer on mucosal immunity during early life in rats, a period when mucosal immunoglobulin production is poorly developed, as is also the case in humans. CLA supplementation was performed during three life periods: gestation, suckling, and early infancy. The immune status of supplemented animals was evaluated at two time points: at the end of the suckling period (21-day-old rats) and 1 week after weaning (28-day-old rats). Secretory IgA was quantified in intestinal washes from 28-day-old rats by ELISA technique. IgA, TGFbeta, and PPARgamma mRNA expression was measured in small intestine and colon by real time PCR, using Taqman specific probes and primers. IgA mucosal production was enhanced in animals supplemented with CLA during suckling and early infancy: in 28-day-old rats, IgA mRNA expression was increased in small intestine and colon by approximately 6- and 4-fold, respectively, and intestinal IgA protein by approximately 2-fold. TGFbeta gene expression was independent of age and type of tissue considered, and was not modified by dietary CLA. Gene expression of PPARgamma, a possible mediator of CLA's effects was also upregulated in animals receiving CLA during early life. In conclusion, dietary supplementation with CLA during suckling and extended to early infancy enhances development of the intestinal immune response in rats.
Method for the isolation of biologically active monomeric immunoglobulin A from a plasma fraction.
Leibl, H; Tomasits, R; Wolf, H M; Eibl, M M; Mannhalter, J W
1996-04-12
A purification method for immunoglobulin A (IgA) yielding monomeric IgA with a purity of over 97% has been developed. This procedure uses ethanol-precipitated plasma (Cohn fraction III precipitate) as the starting material and includes heparin-Sepharose adsorption, dextran sulfate and ammonium sulfate precipitation, hydroxyapatite chromatography, batch adsorption by an anion-exchange matrix and gel permeation. Additional protein G Sepharose treatment leads to an IgA preparation of greater than 99% purity. The isolated IgA presented with an IgA subclass distribution, equivalent to IgA in unfractionated plasma, and was biologically active, as was shown by its ability to down-modulate Haemophilus influenzae-b-induced IL-6 secretion of human monocytes.
Selective immunoglobulin A deficiency and celiac disease: let's give serology a chance.
Valletta, E; Fornaro, M; Pecori, S; Zanoni, G
2011-01-01
Patients with selective immunoglobulin (Ig) A deficiency have a 10- to 20-fold increased risk of celiac disease. In these patients, serological diagnosis of celiac disease can be difficult, since specific IgA-based assays are usually negative and IgG-specific antibody tests are insufficiently reliable. We describe a girl with selective IgA deficiency who had a troublesome diagnosis of celiac disease that was established only after an unexpected positive test result for antitransglutaminase IgA and antiendomysium IgA. Our observation indicates that IgA-based serology should not be forgotten in patients with selective IgA deficiency, since positive results for antitransglutaminase IgA, antiendomysium IgA, or both can be observed at any time during diagnostic investigations.
Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai
Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung
2016-01-01
An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His69, Asp117, and Ser216. The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5′ donor splice (GT) and 3′ acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai. PMID:27399771
Cloning a Chymotrypsin-Like 1 (CTRL-1) Protease cDNA from the Jellyfish Nemopilema nomurai.
Heo, Yunwi; Kwon, Young Chul; Bae, Seong Kyeong; Hwang, Duhyeon; Yang, Hye Ryeon; Choudhary, Indu; Lee, Hyunkyoung; Yum, Seungshic; Shin, Kyoungsoon; Yoon, Won Duk; Kang, Changkeun; Kim, Euikyung
2016-07-05
An enzyme in a nematocyst extract of the Nemopilema nomurai jellyfish, caught off the coast of the Republic of Korea, catalyzed the cleavage of chymotrypsin substrate in an amidolytic kinetic assay, and this activity was inhibited by the serine protease inhibitor, phenylmethanesulfonyl fluoride. We isolated the full-length cDNA sequence of this enzyme, which contains 850 nucleotides, with an open reading frame of 801 encoding 266 amino acids. A blast analysis of the deduced amino acid sequence showed 41% identity with human chymotrypsin-like (CTRL) and the CTRL-1 precursor. Therefore, we designated this enzyme N. nomurai CTRL-1. The primary structure of N. nomurai CTRL-1 includes a leader peptide and a highly conserved catalytic triad of His(69), Asp(117), and Ser(216). The disulfide bonds of chymotrypsin and the substrate-binding sites are highly conserved compared with the CTRLs of other species, including mammalian species. Nemopilema nomurai CTRL-1 is evolutionarily more closely related to Actinopterygii than to Scyphozoan (Aurelia aurita) or Hydrozoan (Hydra vulgaris). The N. nomurai CTRL1 was amplified from the genomic DNA with PCR using specific primers designed based on the full-length cDNA, and then sequenced. The N. nomurai CTRL1 gene contains 2434 nucleotides and four distinct exons. The 5' donor splice (GT) and 3' acceptor splice sequences (AG) are wholly conserved. This is the first report of the CTRL1 gene and cDNA structures in the jellyfish N. nomurai.
Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease
Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.
2000-01-01
Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609
de Winter, Janneke J; van de Sande, Marleen G; Baerlecken, Niklas; Berg, Inger; Ramonda, Roberta; van der Heijde, Désirée; van Gaalen, Floris A; Witte, Torsten; Baeten, Dominique L
2018-03-01
Anti-CD74 IgG antibodies are reported to be elevated in patients with axial spondyloarthritis (axSpA). This study assessed the diagnostic value of anti-CD74 antibodies in patients with early axSpA. Anti-CD74 IgG and IgA antibodies were first measured in an exploratory cohort of patients with radiographic axSpA (138 patients with ankylosing spondyloarthritis (AS)) and 57 healthy controls and then were measured in patients with early axSpA (n = 274) and with non-SpA chronic back pain (CBP) (n = 319), participating in the spondyloarthritis caught early (SPACE) prospective cohort study of patients under 45 years old with early back pain (for ≥ 3 months, but ≤ 2 years). In the exploratory cohort, anti-CD74 IgG antibodies were present in 79.7% of patients with AS vs. 43.9% of healthy controls (p < 0.001). Anti-CD74 IgA antibodies were present in 28.5% of patients with AS vs. 5.3% of healthy controls (p < 0.001). In the SPACE cohort, anti-CD74 IgG antibody levels were present in 46.4% of the patients with axSpA vs. 47.9% of the patients with CBP (p = 0.71). Anti-CD74 IgA antibodies were present in 54.7% of the patients with axSpA and 37.0% of the patients with CBP (p < 0.001). This resulted in a positive predictive value of 58.8% (compared to a prior probability of 46.2%) and a negative predictive value of 59.1% (compared to a prior probability of 53.8%). In a regression model, total serum IgA was associated with axSpA odds ratio (OR) 1.19, p < 0.001) whereas anti-CD74 IgA was not (OR) 1.01, p = 0.33). Furthermore, anti-CD74 IgA was associated with sacroiliitis on magnetic resonance imaging (MRI) (OR) = 2.50, p = 0.005) and heel enthesitis (OR) = 2.56, p = 0.002). Albeit anti-CD74 IgA is elevated in patients with early axSpA, this elevation is not sufficiently specific to yield significant diagnostic value in patients under 45 years old presenting with early back pain.
HIV-1 protease-substrate coevolution in nelfinavir resistance.
Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A
2014-07-01
Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Blount, Robert J; Daly, Kieran R; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F; Walzer, Peter D; Huang, Laurence
2017-01-01
Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. From October 2008-December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15-129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2-169) IgA response to MsgC1 compared to a 5.00 U (3.52-12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP.
Daly, Kieran R.; Fong, Serena; Chang, Emily; Grieco, Katherine; Greene, Meredith; Stone, Stephen; Balmes, John; Miller, Robert F.; Walzer, Peter D.; Huang, Laurence
2017-01-01
Background Humoral immunity plays an important role against Pneumocystis jirovecii infection, yet clinical and environmental factors that impact bronchoalveolar antibody responses to P. jirovecii remain uncertain. Methods From October 2008—December 2011 we enrolled consecutive HIV-infected adults admitted to San Francisco General Hospital (SFGH) who underwent bronchoscopy for suspected Pneumocystis pneumonia (PCP). We used local air quality monitoring data to assign ozone, nitrogen dioxide, and fine particulate matter exposures within 14 days prior to hospital admission. We quantified serum and bronchoalveolar lavage fluid (BALF) antibody responses to P. jirovecii major surface glycoprotein (Msg) recombinant constructs using ELISA. We then fit linear regression models to determine whether PCP and ambient air pollutants were associated with bronchoalveolar antibody responses to Msg. Results Of 81 HIV-infected patients enrolled, 47 (58%) were diagnosed with current PCP and 9 (11%) had a prior history of PCP. The median CD4+ count was 51 cells/μl (IQR 15–129) and 44% were current smokers. Serum antibody responses to Msg were statistically significantly predictive of BALF antibody responses, with the exception of IgG responses to MsgC8 and MsgC9. Prior PCP was associated with increased BALF IgA responses to Msg and current PCP was associated with decreased IgA responses. For instance, among patients without current PCP, those with prior PCP had a median 73.2 U (IQR 19.2–169) IgA response to MsgC1 compared to a 5.00 U (3.52–12.6) response among those without prior PCP. Additionally, current PCP predicted a 22.5 U (95%CI -39.2, -5.82) lower IgA response to MsgC1. Ambient ozone within the two weeks prior to hospital admission was associated with decreased BALF IgA responses to Msg while nitrogen dioxide was associated with increased IgA responses. Conclusions PCP and ambient air pollutants were associated with BALF IgA responses to P. jirovecii in HIV-infected patients evaluated for suspected PCP. PMID:28692651
Sestak, Karol; Mazumdar, Kaushiki; Midkiff, Cecily C.; Dufour, Jason; Borda, Juan T.; Alvarez, Xavier
2011-01-01
Tissue transglutaminase 2 (tTG2) is an intestinal digestive enzyme which deamidates already partially digested dietary gluten e.g. gliadin peptides. In genetically predisposed individuals, tTG2 triggers autoimmune responses that are characterized by the production of tTG2 antibodies and their direct deposition into small intestinal wall 1,2. The presence of such antibodies constitutes one of the major hallmarks of the celiac disease (CD). Epidermal transglutaminase (eTG) is another member of the transglutaminase family that can also function as an autoantigen in a small minority of CD patients. In these relatively rare cases, eTG triggers an autoimmune reaction (a skin rash) clinically known as dermatitis herpetiformis (DH). Although the exact mechanism of CD and DH pathogenesis is not well understood, it is known that tTG2 and eTG share antigenic epitopes that can be recognized by serum antibodies from both CD and DH patients 3,4. In this study, the confocal microscopy examination of biopsy samples from skin lesions of two rhesus macaques (Macaca mulatta) with dermatitis (Table 1, Fig. 1 and 2) was used to study the affected tissues. In one animal (EM96) a spectral overlap of IgA and tTG2 antibodies (Fig. 3) was demonstrated. The presence of double-positive tTG2+IgA+ cells was focused in the deep epidermis, around the dermal papillae. This is consistent with lesions described in DH patients 3. When EM96 was placed on a gluten-free diet, the dermatitis, as well as tTG2+IgA+ deposits disappeared and were no longer detectable (Figs. 1-3). Dermatitis reappeared however, based on re-introduction of dietary gluten in EM96 (not shown). In other macaques including animal with unrelated dermatitis, the tTG2+IgA+ deposits were not detected. Gluten-free diet-dependent remission of dermatitis in EM96 together with presence of tTG2+IgA+ cells in its skin suggest an autoimmune, DH-like mechanism for the development of this condition. This is the first report of DH-like dermatitis in any non-human primate. PMID:22214930
Aduse-Opoku, J; Slaney, J M; Rangarajan, M; Muir, J; Young, K A; Curtis, M A
1997-08-01
The prpR1 gene of Porphyromonas gingivalis W50 encodes the polyprotein precursor (PrpRI) of an extracellular arginine-specific protease. PrpRI is organized into four distinct domains (pro, alpha, beta, and gamma) and is processed to a heterodimeric protease (RI) which comprises the alpha and beta components in a noncovalent association. The alpha component contains the protease active site, whereas the beta component appears to have a role in adherence and hemagglutination processes. DNA sequences homologous to the coding region for the RI beta component are present at multiple loci on the P. gingivalis chromosome and may represent a family of related genes. In this report, we describe the cloning, sequence analysis, and characterization of one of these homologous loci isolated in plasmid pJM7. The 6,041-bp P. gingivalis DNA fragment in pJM7 contains a major open reading frame of 3,291 bp with coding potential for a protein with an Mr 118,700. An internal region of the deduced sequence (V304 to N768) shows 98% identity to the beta domain of PrpRI, and the recombinant product of pJM7 is immunoreactive with an antibody specific to the RI beta component. The N terminus of the deduced sequence has regional similarity to TonB-linked receptors which are frequently involved in periplasmic translocation of hemin, iron, colicins, or vitamin B12 in other bacteria. We have therefore designated this gene tla (TonB-linked adhesin). In contrast to the parent strain, an isogenic mutant of P. gingivalis W50 in which the tla was insertionally inactivated was unable to grow in medium containing low concentrations of hemin (<2.5 mg liter(-1)), and hemin-depleted cells of this mutant failed to respond to hemin in an agar diffusion plate assay. These data suggest a role for this gene product in hemin acquisition and utilization. Furthermore, the mutant produced significantly less arginine- and lysine-specific protease activities than the parent strain, indicating that there may be a regulatory relationship between tla and other members of this gene family.
Aduse-Opoku, J; Slaney, J M; Rangarajan, M; Muir, J; Young, K A; Curtis, M A
1997-01-01
The prpR1 gene of Porphyromonas gingivalis W50 encodes the polyprotein precursor (PrpRI) of an extracellular arginine-specific protease. PrpRI is organized into four distinct domains (pro, alpha, beta, and gamma) and is processed to a heterodimeric protease (RI) which comprises the alpha and beta components in a noncovalent association. The alpha component contains the protease active site, whereas the beta component appears to have a role in adherence and hemagglutination processes. DNA sequences homologous to the coding region for the RI beta component are present at multiple loci on the P. gingivalis chromosome and may represent a family of related genes. In this report, we describe the cloning, sequence analysis, and characterization of one of these homologous loci isolated in plasmid pJM7. The 6,041-bp P. gingivalis DNA fragment in pJM7 contains a major open reading frame of 3,291 bp with coding potential for a protein with an Mr 118,700. An internal region of the deduced sequence (V304 to N768) shows 98% identity to the beta domain of PrpRI, and the recombinant product of pJM7 is immunoreactive with an antibody specific to the RI beta component. The N terminus of the deduced sequence has regional similarity to TonB-linked receptors which are frequently involved in periplasmic translocation of hemin, iron, colicins, or vitamin B12 in other bacteria. We have therefore designated this gene tla (TonB-linked adhesin). In contrast to the parent strain, an isogenic mutant of P. gingivalis W50 in which the tla was insertionally inactivated was unable to grow in medium containing low concentrations of hemin (<2.5 mg liter(-1)), and hemin-depleted cells of this mutant failed to respond to hemin in an agar diffusion plate assay. These data suggest a role for this gene product in hemin acquisition and utilization. Furthermore, the mutant produced significantly less arginine- and lysine-specific protease activities than the parent strain, indicating that there may be a regulatory relationship between tla and other members of this gene family. PMID:9244265
Presenilins and γ-Secretase: Structure, Function, and Role in Alzheimer Disease
De Strooper, Bart; Iwatsubo, Takeshi; Wolfe, Michael S.
2012-01-01
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline. PMID:22315713
Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.
2013-01-01
Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Detailed examinations of intergranular attack (IGA) in alloy 600 were performed after exposure to simulated PWR primary water at 325°C for 500 h. High-resolution analyses of IGA characteristics were conducted on specimens with either a 1 µm diamond or 1200-grit SiC surface finish using scanning electron microscopy, transmission electron microscopy and atom probe tomography techniques. The diamond-polish finish with very little preexisting subsurface damage revealed attack of high-energy grain boundaries that intersected the exposed surface to depths approaching 2 µm. In all cases, IGA from the surface is localized oxidation consisting of porous, nanocrystalline MO-structure and spinel particles along with regions of faceted wall oxidation. Surprisingly, this continuous IG oxidation transitions to discontinuous, discrete Cr-rich sulfide particles up to 50 nm in diameter. In the vicinity of the sulfides, the grain boundaries were severely Cr depleted (to <1 at%) and enriched in S. The 1200 grit SiC finish surface exhibited a preexisting highly strained recrystallized layer of elongated nanocrystalline matrix grains. Similar IG oxidation and leading sulfide particles were found, but the IGA depth was typically confined to the near-surface ( 400 nm) recrystallized region. Difference in IGA for the two surface finishes indicates that the formation of grain boundary sulfides occurs during the exposure to PWR primary water. The source of S remains unclear, however it is not present as sulfides in the bulk alloy nor is it segregated to bulk grain boundaries.
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
NASA Astrophysics Data System (ADS)
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
Misaki, Taro; Naka, Shuhei; Hatakeyama, Rina; Fukunaga, Akiko; Nomura, Ryota; Isozaki, Taisuke; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans is a major pathogen of human dental caries. Strains harbouring the cnm gene, which encodes Cnm, a collagen-binding protein, contribute to the development of several systemic diseases. In this study, we analysed S. mutans strains isolated from the oral cavity of immunoglobulin (Ig)A nephropathy (IgAN) patients to determine potential relationships between cnm and caries status as well as IgAN conditions. Saliva specimens were collected from 109 IgAN patients and the cnm status of isolated S. mutans strains was determined using PCR. In addition, the dental caries status (decayed, missing or filled teeth [DMFT] index) in patients who agreed to dental consultation (n = 49) was evaluated. The DMFT index and urinary protein levels in the cnm-positive group were significantly higher than those in the cnm-negative group (p < 0.05). Moreover, the urinary protein levels in the high DMFT (≥15) group were significantly higher than those in the low DMFT (<15) group (p < 0.05). Our results show that isolation of cnm-positive S. mutans strains from the oral cavity may be associated with urinary protein levels in IgAN patients, especially those with a high dental caries status. PMID:27811984
Fujikawa, Yukichi; Fujikawa, Ritsuko; Iijima, Noriaki; Esaka, Muneharu
2012-03-01
A cDNA encoding protein with homology to plant secretory phospholipase A₂ (sPLA₂), denoted as Nt1 PLA₂, was isolated from tobacco (Nicotiana tabacum). The cDNA encodes a mature protein of 118 amino acid residues with a putative signal peptide of 29 residues. The mature form of Nt1 PLA₂ has 12 cysteines, Ca²⁺ binding loop and catalytic site domain that are commonly conserved in plant sPLA₂s. The recombinant Nt1 PLA₂ was expressed as a fusion protein with thioredoxin in E. coli BL21 cells and was purified by an ion exchange chromatography after digestion of the fusion proteins by Factor Xa protease to obtain the mature form. Interestingly, Nt1 PLA₂ could hydrolyze the ester bond at the sn-1 position of glycerophospholipids as well as at the sn-2 position, when the activities were determined using mixed-micellar phospholipids with sodium cholate. Both activities for the sn-1 and -2 positions of glycerophospholipids required Ca²⁺ essentially, and maximal activities were found in an alkaline region when phosphatidylcholine, phosphatidylglycerol or phosphatidylethanolamine was used as a substrate. The level of Nt1 PLA₂ mRNA was detected at a higher level in tobacco flowers than stem, leaves and roots, and was induced by salicylic acid.
Wu, Jo Yung Wei; Ko, Huei-Chen; Wong, Tsui-Yin; Wu, Li-An; Oei, Tian Po
2016-01-01
The present study examined the role of positive outcome expectancy in the relationship between peer/parental influence and Internet gaming addiction (IGA) among adolescents in Taiwan. Two thousand, one hundred and four junior high students completed the Chen Internet Addiction Scale for IGA, Parental Influence for IGA, peer influence for IGA, and Positive Outcome Expectancy of Internet Gaming Questionnaire. Results showed that the three types of peer influences (positive attitudes toward Internet gaming, frequency of Internet game use, and invitation to play) and positive outcome expectancy were significantly and positively correlated with IGA. Moreover, peer influence was also positively correlated with positive outcome expectancy. On the other hand, positive outcome expectancy and parental influences had a low correlation. Structural equation modeling analysis revealed that positive outcome expectancy did not mediate the relationship between either type of parental influences and IGA, and only the parent's invitation to play Internet games directly predicted IGA severity. However, peers' positive attitude or the frequency of peers' Internet game use positively predicted IGA and was fully mediated through positive outcome expectancy of Internet gaming. In addition, the frequency of peers' invitation to play Internet games directly and indirectly predicted IGA severity through a partial mediation of positive outcome expectancy of Internet gaming. The overall fit of the model was adequate and was able to explain 25.0 percent of the variance. The findings provide evidence in illuminating the role of peer influences and positive outcome expectancy of Internet gaming in the process of why adolescents may develop IGA.
Kim, Nahyun; Hughes, Tonda L; Park, Chang G; Quinn, Laurie; Kong, In Deok
2016-11-01
Internet gaming addiction (IGA) has been associated with many negative health outcomes, especially for youth; however, few studies have examined the physiological parameters and personality features related to this addiction. This study aimed to identify differences in autonomic functions and distressed (type D) personality traits among Korean adolescent males with and without IGA. In a cross-sectional study, 68 adolescent males were recruited in a Korean city using convenience and snowball sampling methods. For each subject, heart rate variability (HRV) parameters were measured as autonomic functions and questionnaires were used to identify IGA and type D personality traits. Data were analyzed using descriptive analyses, t tests, χ 2 tests, and Pearson's correlation. Most HRV parameters significantly differed between the IGA and non-IGA groups (all p < 0.05). Type D personality total and subscale scores, including those for negative affectivity (NA) and social inhibition, were significantly higher in the IGA group (all p < 0.001). Of the 68 subjects, 46 were classified as having type D personality, with nearly twice as many in the IGA group as in the non-IGA group (p = 0.002). Type D personality total scores negatively correlated with the logarithmic value of total power and low frequency among the HRV parameters (both p < 0.05). Results showed that excessive Internet gaming was related to alterations in autonomic functions and distressed personality traits in male adolescents. These findings provide further understanding of the IGA phenomenon and highlight the need for interventions that address male adolescents with IGA.
NASA Astrophysics Data System (ADS)
Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming
2010-12-01
The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.
Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice.
Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Racine, Rachael; Wilson-Welder, Jennifer; Sanfilippo, Alan M; Salmon, Sharon L; Metzger, Dennis W
2017-09-05
We report that IgA -/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA -/- mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA +/+ and IgA -/- mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA -/- cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cortese, Victor S; Woolums, Amelia; Hurley, David J; Berghaus, Roy; Bernard, John K; Short, Thomas H
2017-05-01
Thirty-two Holstein cows were allocated to receive intranasal vaccination with modified live bovine herpesvirus-1 (BHV-1), bovine respiratory syncytial virus (BRSV) and parainfluenza type 3 virus (PI3V) vaccine either two weeks prior to their projected calving date, or within 24h after calving. Nasal secretions were collected twice at a 12-h interval on the day prior to vaccination (day 0) and at 2, 4, 7, 10 and 14days post vaccination to measure interferon (IFN) alpha, IFN-beta, IFN-gamma, and BHV-1-specific IgA by ELISA. Serum neutralizing antibody titers to BHV-1 and BRSV were measured on days 0, 7, and 14. There was a significant treatment effect (p<0.0004) and interaction (p<0.05) on nasal BHV-1 IgA levels, with higher IgA levels in cows vaccinated within 24h after calving. There was a significant treatment effect on nasal IFN-gamma concentration (p<0.05) and on nasal total IFN concentration (p<0.05), with higher IFN-gamma and total IFN concentrations seen in cows vaccinated within 24h after calving. There was no significant treatment or interaction effect on nasal IFN-alpha or IFN-beta concentrations, or on serum neutralizing titers to BRSV. In spite of prior viral vaccination during the previous lactation, cows vaccinated on the day of calving responded to an intranasal viral vaccination with increased concentrations of IFN-gamma and increased titers of IgA following vaccination which was significantly higher than cows vaccinated precalving. This study is the first to examine respiratory mucosal responses in immunologically mature dairy cattle vaccinated intranasally before and after calving. Copyright © 2017. Published by Elsevier B.V.
Curcumin derivatives as HIV-1 protease inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sui, Z.; Li, J.; Craik, C.S.
1993-12-31
Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.
High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice.
Okai, Shinsaku; Usui, Fumihito; Yokota, Shuhei; Hori-I, Yusaku; Hasegawa, Makoto; Nakamura, Toshinobu; Kurosawa, Manabu; Okada, Seiji; Yamamoto, Kazuya; Nishiyama, Eri; Mori, Hiroshi; Yamada, Takuji; Kurokawa, Ken; Matsumoto, Satoshi; Nanno, Masanobu; Naito, Tomoaki; Watanabe, Yohei; Kato, Tamotsu; Miyauchi, Eiji; Ohno, Hiroshi; Shinkura, Reiko
2016-07-04
Immunoglobulin A (IgA) is the main antibody isotype secreted into the intestinal lumen. IgA plays a critical role in the defence against pathogens and in the maintenance of intestinal homeostasis. However, how secreted IgA regulates gut microbiota is not completely understood. In this study, we isolated monoclonal IgA antibodies from the small intestine of healthy mouse. As a candidate for an efficient gut microbiota modulator, we selected a W27 IgA, which binds to multiple bacteria, but not beneficial ones such as Lactobacillus casei. W27 could suppress the cell growth of Escherichia coli but not L. casei in vitro, indicating an ability to improve the intestinal environment. Indeed W27 oral treatment could modulate gut microbiota composition and have a therapeutic effect on both lymphoproliferative disease and colitis models in mice. Thus, W27 IgA oral treatment is a potential remedy for inflammatory bowel disease, acting through restoration of host-microbial symbiosis.
The effect of chronic alcohol intoxication and smoking on the output of salivary immunoglobulin A.
Waszkiewicz, Napoleon; Zalewska, Anna; Szajda, Slawomir Dariusz; Waszkiewicz, Magdalena; Szulc, Agata; Kepka, Alina; Konarzewska, Beata; Minarowska, Alina; Zalewska-Szajda, Beata; Wilamowska, Dorota; Waszkiel, Danuta; Ladny, Jerzy Robert; Zwierz, Krzysztof
2012-01-01
The effect of chronic alcohol intoxication and smoking on the output of salivary immunoglobulin A (IgA) was studied in 37 volunteers: 17 male smoking patients after chronic alcohol intoxication (AS) and 20 control non-smoking male social drinkers (CNS). The DMFT index (decayed, missing, or filled teeth), gingival index and papilla bleeding index (PBI) were assessed. Concentration of IgA in saliva was determined by ELISA. Salivary flow (SF) and IgA output were significantly decreased in AS compared to CNS. There were no significant correlations between the amount of alcohol/cigarettes as well as the duration of alcohol intoxication/smoking, and SF or IgA output, nor between IgA level and SF. Gingival index was significantly higher in AS than in CNS, and was inversely correlated with IgA salivary level. The worsened periodontal state in smoking alcohol-dependent persons may result from diminished IgA protection of the oral tissues due to its decreased output.
Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J
2004-01-01
Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections. PMID:15186489
Comparative Genomics Provide Insights into Evolution of Trichoderma Nutrition Style
Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan
2014-01-01
Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase–polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma. PMID:24482532
Comparative genomics provide insights into evolution of trichoderma nutrition style.
Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan
2014-02-01
Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.
Liu, Li Na; Cui, Jing; Zhang, Xi; Wei, Tong; Jiang, Peng; Wang, Zhong Quan
2013-01-01
Spirometra erinaceieuropaei cysteine protease (SeCP) in sparganum ES proteins recognized by early infection sera was identified by MALDI-TOF/TOF-MS. The aim of this study was to predict the structures and functions of SeCP protein by using the full length cDNA sequence of SeCP gene with online sites and software programs. The SeCP gene sequence was of 1 053 bp length with a 1011 bp biggest ORF encoding 336-amino acid protein with a complete cathepsin propeptide inhibitor domain and a peptidase C1A conserved domain. The predicted molecular weight and isoelectric point of SeCP were 37.87 kDa and 6.47, respectively. The SeCP has a signal peptide site and no transmembrane domain, located outside the membrane. The secondary structure of SeCP contained 8 α-helixes, 7 β-strands, and 20 coils. The SeCP had 15 potential antigenic epitopes and 19 HLA-I restricted epitopes. Based on the phylogenetic analysis of SeCP, S. erinaceieuropaei has the closest evolutionary status with S. mansonoides. SeCP was a kind of proteolytic enzyme with a variety of biological functions and its antigenic epitopes could provide important insights on the diagnostic antigens and target molecular of antisparganum drugs. PMID:24392448
Wang, Jianghong; Zhou, Xiang; Guo, Kai; Zhang, Xinqi; Lin, Haiping; Montalva, Cristian
2018-01-16
Conidiobolus obscurus is a widespread fungal entomopathogen with aphid biocontrol potential. This study focused on a de novo transcriptomic analysis of C. obscurus. A number of pathogenicity-associated factors were annotated for the first time from the assembled 17 231 fungal unigenes, including those encoding subtilisin-like proteolytic enzymes (Pr1s), trypsin-like proteases, metalloproteases, carboxypeptidases and endochitinases. Many of these genes were transcriptionally up-regulated by at least twofold in mycotized cadavers compared with the in vitro fungal cultures. The resultant transcriptomic database was validated by the transcript levels of three selected pathogenicity-related genes quantified from different in vivo and in vitro material in real-time quantitative polymerase chain reaction (PCR). The involvement of multiple Pr1 proteases in the first stage of fungal infection was also suggested. Interestingly, a unique cytolytic (Cyt)-like δ-endotoxin gene was highly expressed in both mycotized cadavers and fungal cultures, and was more or less distinct from its homologues in bacteria and other fungi. Our findings provide the first global insight into various pathogenicity-related genes in this obligate aphid pathogen and may help to develop novel biocontrol strategy against aphid pests. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Study of the IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujikawa, S.; Yashima, S.; Ohnishi, K.
1995-09-01
IGA/SCC of Alloy 600 steam generator (SG) tubes in the secondary side has been recognized as a matter of great concern for PWRs. IGA/SCC behavior of Alloy 600 and 690 in high temperature solutions were studied using CERT method under potentiostatic conditions. The IGA/SCC susceptible regions were investigated as the function of pH and electrode potential. To understand the cause of IGA/SCC, the electrochemical measurements and surface film analysis were also performed in acidic and alkaline solutions. To verify the results of CERT test, the long term model boiler tests were also carried out. Thermally treated Alloy 690 showed highermore » IGA/SCC resistance than Alloy 600 under both acid and alkaline conditions.« less
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity
Shalapour, Shabnam; Lin, Xue-Jia; Bastian, Ingmar N.; Brain, John; Burt, Alastair D.; Aksenov, Alexander A.; Vrbanac, Alison F.; Li, Weihua; Perkins, Andres; Matsutani, Takaji; Zhong, Zhenyu; Dhar, Debanjan; Navas-Molina, Jose A.; Xu, Jun; Loomba, Rohit; Downes, Michael; Yu, Ruth T.; Evans, Ronald M.; Dorrestein, Pieter C.; Knight, Rob; Benner, Christopher; Anstee, Quentin M.; Karin, Michael
2018-01-01
The role of adaptive immunity in early cancer development is controversial. Here we show that chronic inflammation and fibrosis in humans and mice with non-alcoholic fatty liver disease is accompanied by accumulation of liver-resident immunoglobulin-A-producing (IgA+) cells. These cells also express programmed death ligand 1 (PD-L1) and interleukin-10, and directly suppress liver cytotoxic CD8+ T lymphocytes, which prevent emergence of hepatocellular carcinoma and express a limited repertoire of T-cell receptors against tumour-associated antigens. Whereas CD8+ T-cell ablation accelerates hepatocellular carcinoma, genetic or pharmacological interference with IgA+ cell generation attenuates liver carcinogenesis and induces cytotoxic T-lymphocyte-mediated regression of established hepatocellular carcinoma. These findings establish the importance of inflammation-induced suppression of cytotoxic CD8+ T-lymphocyte activation as a tumour-promoting mechanism. PMID:29144460
Shuib, A S; Chua, C T; Hashim, O H
1998-01-01
Sera of IgA nephropathy (IgAN) patients and normal subjects were analysed by two-dimensional (2-D) gel electrophoresis. Densitometric analysis of the 2-D gels of IgAN patients and normal subjects revealed that their protein maps were comparable. There was no shift of pI values in the major alpha-heavy chain spots. However, the volume of the alpha-heavy chain bands were differently distributed. Distribution was significantly lower at the anionic region in IgAN patients (mean anionic:cationic ratio of 1.184 +/- 0.311) as compared to normal healthy controls (mean anionic:cationic ratio of 2.139 +/- 0.538). Our data are in support of the previously reported findings that IgA1 of IgAN patients were lacking in sialic acid residues.
Cisar, J; Kabat, E A; Liao, J; Potter, M
1974-01-01
Four BALB/c IgA mouse myeloma proteins (W3129, W3434, QUPC 52, and UPC 102) reactive with dextran, four myeloma proteins reactive with fructosans, three IgA (W3082, UPC 61, and Y5476), and one IgG2a (UPC 10), and two human antilevans were studied immunochemically. Quantitative precipitin and inhibition assays showed that W3129, W3434, and QUPC 52 had specificities for isomaltose oligosaccharides similar to those previously found with alpha(1 --> 6)-specific human antidextrans. W3129 and W3434 were most complementary to IM5 but W3129 reacted equally with IM4 and IM3 while W3434 had a greater affinity for IM4 than IM3. QUPC 52 had a larger combining region and was most complementary to IM6. Protein UPC 102 (IgA), like MOPC 104E (IgM) (27), was most complementary to the alpha(1 --> 3)-linked trisaccharide, nigerotriose, and thus differed from J558 (29), which was inhibited best by nigeropentaose. UPC 102 was similar to J558 but they differed from MOPC 104E in their reactions with non-alpha(1 --> 3)-linked disaccharides. The fructosan-specific myeloma proteins fell into two groups with different specificities. The first group, W3082 (IgA), UPC 61 (IgA), and the previously studied J606 (IgG3) (28, 29), reacted with inulin and W3082 and UPC 61 appeared to have identical specificities for beta(2 --> 1)-linked fructofuranosyl residues with maximum complementarity for the tetrasaccharide betaDfructofuranosyl (2 --> 1)betaDfructofuranosyl(2 --> 1)betaDfructofuranosyl(2 --> 6)Dglucose while protein J606 was inhibited best by the trisaccharide betaDfructofuranosyl(2 --> 1)betaDfructofuranosyl(2 --> 6)Dglucose. W3082 and UPC 61 also differed from J606 in their behavior toward sucrose and betaDfructofuranosyl(2 --> 6)Dglucose as compared with alphaDglucosyl(1 --> 3)Dfructose (turanose). The second group containing myeloma proteins UPC 10 (IgG2a) and Y5476 (IgA) behaved similarly to human antilevans in that neither reacted with inulin nor were they inhibited by the beta(2 --> 1)-linked fructose oligosaccharides. Unlike the beta(2 --> 1)-specific proteins, they reacted with perennial rye grass levan that contained over 90% beta(2 --> 6)links. The differences in specificity and site size among homogeneous mouse myeloma proteins reactive with the same antigenic determinant are completely consistent with the concept that they represent products of homogeneous clones selected from the known heterogeneous population of antibody-forming cells.
Lv, Jicheng; Zhang, Hong; Wong, Muh Geot; Jardine, Meg J; Hladunewich, Michelle; Jha, Vivek; Monaghan, Helen; Zhao, Minghui; Barbour, Sean; Reich, Heather; Cattran, Daniel; Glassock, Richard; Levin, Adeera; Wheeler, David; Woodward, Mark; Billot, Laurent; Chan, Tak Mao; Liu, Zhi-Hong; Johnson, David W; Cass, Alan; Feehally, John; Floege, Jürgen; Remuzzi, Giuseppe; Wu, Yangfeng; Agarwal, Rajiv; Wang, Hai-Yan; Perkovic, Vlado
2017-08-01
Guidelines recommend corticosteroids in patients with IgA nephropathy and persistent proteinuria, but the effects remain uncertain. To evaluate the efficacy and safety of corticosteroids in patients with IgA nephropathy at risk of progression. The Therapeutic Evaluation of Steroids in IgA Nephropathy Global (TESTING) study was a multicenter, double-blind, randomized clinical trial designed to recruit 750 participants with IgA nephropathy (proteinuria greater than 1 g/d and estimated glomerular filtration rate [eGFR] of 20 to 120 mL/min/1.73 m2 after at least 3 months of blood pressure control with renin-angiotensin system blockade] and to provide follow-up until 335 primary outcomes occurred. Patients were randomized 1:1 to oral methylprednisolone (0.6-0.8 mg/kg/d; maximum, 48 mg/d) (n = 136) or matching placebo (n = 126) for 2 months, with subsequent weaning over 4 to 6 months. The primary composite outcome was end-stage kidney disease, death due to kidney failure, or a 40% decrease in eGFR. Predefined safety outcomes were serious infection, new diabetes, gastrointestinal hemorrhage, fracture/osteonecrosis, and cardiovascular events. The mean required follow-up was estimated to be 5 years. After randomization of 262 participants (mean age, 38.6 [SD, 11.1] years; 96 [37%] women; eGFR, 59.4 mL/min/1.73 m2; urine protein excretion, 2.40 g/d) and 2.1 years' median follow-up, recruitment was discontinued because of excess serious adverse events. Serious events occurred in 20 participants (14.7%) in the methylprednisolone group vs 4 (3.2%) in the placebo group (P = .001; risk difference, 11.5% [95% CI, 4.8%-18.2%]), mostly due to excess serious infections (11 [8.1%] vs 0; risk difference, 8.1% [95% CI, 3.5%-13.9%]; P < .001), including 2 deaths. The primary renal outcome occurred in 8 participants (5.9%) in the methylprednisolone group vs 20 (15.9%) in the placebo group (hazard ratio, 0.37 [95% CI, 0.17-0.85]; risk difference, 10.0% [95% CI, 2.5%-17.9%]; P = .02). Among patients with IgA nephropathy and proteinuria of 1 g/d or greater, oral methylprednisolone was associated with an increased risk of serious adverse events, primarily infections. Although the results were consistent with potential renal benefit, definitive conclusions about treatment benefit cannot be made, owing to early termination of the trial. clinicaltrials.gov Identifier: NCT01560052.
Epidemiology, outcome and emm types of invasive group A streptococcal infections in Finland.
Siljander, T; Lyytikäinen, O; Vähäkuopus, S; Snellman, M; Jalava, J; Vuopio, J
2010-10-01
In 2006, Finnish nationwide surveillance showed an increase of invasive group A streptococcal (iGAS) disease and clinicians were alarmed by severe disease manifestations, prompting the investigation of recent trends and outcome for iGAS. A case of iGAS was defined as Streptococcus pyogenes isolated from blood or cerebrospinal fluid. Cases during 1998-2007 and isolates during 2004-2007 were included. Case-patients' 7-day outcome was available for 2004-2007. Isolates were emm typed. A total of 1,318 cases of iGAS were identified. The average annual incidence was 2.5/100,000 population. The rate was higher in males than females in persons aged 45-64 years, but lower in persons aged 25-34 years. The annual incidence was highest in 2007 (3.9/100,000). Occasional peaks occurred during midwinter and midsummer. The most common emm types were 28 (21%), 1 (16%), 84 (10%), 75 (7%) and 89 (6%). During 2004-2007, emm1 replaced emm28 as the most predominant type. The overall case fatality was 8%. Cases with emm1 were associated with high case fatality (14% vs. 8% in other types; p < 0.02); that of emm28 infections was 2% (p < 0.01). Changes in emm type prevalence influenced incidence and case fatality. Differences in age- and sex-specific incidence and seasonal patterns suggest variations in predisposing factors and underlying conditions.
Makadiya, Nirajkumar; Gaba, Amit; Tikoo, Suresh K
2015-09-01
The L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells. In contrast, 100K localized predominantly to the cytoplasm of the transfected cells. However, BAdV-3 infection of cells transfected with 100K-enhanced yellow fluorescent protein-expressing plasmid detected fluorescent protein in the nucleus of the cells, suggesting that other viral proteins may be required for the nuclear localization of 100K. Interaction of BAdV-3 100K with BAdV-3 33K protein did not alter the cytoplasmic localization of 100K. However, co-expression of BAdV-3 100K and BAdV-3 protease localized 100K to the nucleolus of the transfected cells. Subsequent analysis suggested that BAdV-3 protease cleaves 100K at two identified potential protease cleavage sites (aa 740-745 and 781-786) in transfected or BAdV-3-infected cells. The cleaved C terminus (107 aa) was localized to the nucleolus of the transfected cells. Further analysis suggested that the cleaved C terminus contains a bipartite nuclear localization signal and utilizes import receptor importin-α3 of the classical importin-α/β transport pathway for nuclear transport. Successful isolation of recombinant BAdV-3 expressing mutant 100K (substitution of alanine for glycine in the potential protease cleavage site) suggested that cytoplasmic cleavage of BAdV-3 100K by adenoviral protease is not essential for virus replication.
Production of interleukin-2 (IL-2) and expression of IL-2 receptor in patients with IgA nephropathy.
Lee, T W; Kim, M J
1992-01-01
IL-2 production has been measured in several disease including type I diabetes mellitus, systemic lupus erythematosus, acquired immunodeficiency syndrome and active pulmonary sarcoidosis and its pathogenetic role was suggested. In IgA nephropathy, altered T cell subsets were reported to be associated with increased synthesis of IgA. The altered IL-2 production and the expression of IL-2 receptor might be involved in the pathogenesis of IgA nephropathy. To investigate the role of T cell mediated immunity in the pathogenesis of IgA nephropathy, the immune parameters such as T cell subsets, NK cell activity, interleukin-2 (IL-2) production and IL-2 receptor expression on peripheral blood mononuclear cells (PBMC) were measured before and/or after phytohemagglutinin (PHA) stimulation in 15 patients with IgA nephropathy. Age and sex matched 15 healthy controls and the correlations between the IL-2 production and immune parameters were evaluated. The mean percentages of T helper/inducer cells (CD4), T suppressor/cytotoxic cells (CD8) and the CD4/CD8 ratio of the patients were not different from those of controls and the proportions of CD8 CD11b cell in the patients (21.0 +/- 3.6%) were significantly lower than those in controls (30.5 +/- 5.3%) (p < 0.005). The production of IL-2 by fresh PBMC of both patients and controls was in undetectable ranges. The production of IL-2 by PHA stimulated PBMC of patients was significantly higher than that of controls (140.03 +/- 43.2 U/ml vs 106.5 +/- 42.1 U/ml, p < 0.05). The proportions of lymphocytes expressing the IL-2 receptor (CD25) before the stimulation with PHA in patients were 1.22 +/- 1.00 percent and were not different from those in controls (1.12 +/- 0.78 percent). The correlations between the production of IL-2 and the concentrations of serum IgA, the degrees of histologic alterations and the proportions of CD8 and CD8CD11b cells were not significant. There was a weak tendency of a positive correlation (p < 0.1) between the production of IL-2 and the proportions of CD4 cells, and the CD4/CD8 ratio showed a significant correlation with the production of IL-2 (p < 0.05). After PHA stimulation, the mean percentages of lymphocytes expressing the IL-2 receptors in patients were increased to 47.6 +/- 8.9 percents which is higher than those (40.4 +/- 9.9%) in controls (p < 0.05). The NK cell activity of the patients was higher than that of controls (75.6 +/- 19.6% vs 56.1 +/- 16.2%, p < 0.005), and was well correlated with the production of IL-2 by PBMC (r = 0.89, p < 0.05). It seemed that patients with IgA nephropathy have an 'latent' cellular immunoregulatory dysfunction that becomes apparent on the stimulation of extrinsic antigens or mitogens.
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Min, Lulin; Wang, Qin; Cao, Liou; Zhou, Wenyan; Yuan, Jiangzi; Zhang, Minfang; Che, Xiajing; Mou, Shan; Fang, Wei; Gu, Leyi; Zhu, Mingli; Wang, Ling; Yu, Zanzhe; Qian, Jiaqi; Ni, Zhaohui
2017-07-18
IgA nephropathy is the most common primary glomerulonephritis and one of the leading causes of end-stage renal disease. We performed a randomized, controlled, prospective, open-label trial to determine whether leflunomide combined with low-dose corticosteroid is safe and effective for the treatment of progressive IgA nephropathy, as compared to full-dose corticosteroid monotherapy. Biopsy-proved primary IgA nephropathy patients with an estimated glomerular filtration rate ≥ 30 ml/min/1.73m2 and proteinuria ≥1.0 g/24h were randomly assigned to receive leflunomide+low-dose corticosteroid (leflunomide group; n = 40) or full-dose corticosteroid (corticosteroids group; n = 45). The primary outcome was renal survival; secondary outcomes were proteinuria and adverse events. After 12 months of treatment and an average follow-up of 88 months, 11.1% vs. 7.5% of patients reached end-stage renal disease and 20% versus 10% of patients had a ≥ 50% increase in serum creatinine in the corticosteroids and leflunomide groups, respectively. Kaplan-Meier analysis did not reveal a between-group difference in these outcomes. Decreases in 24-hour proteinuria were similar in the two groups during the treatment period, but a more marked reduction was observed during follow-up in the leflunomide group. Although the incidence of adverse events was similar in the two groups, serious adverse events were observed only in the corticosteroid group. Thus, leflunomide combined with low-dose corticosteroid is at least as effective as corticosteroid alone for the treatment of progressive IgA nephropathy, and showed a greater reduction of proteinuria during long-term follow-up and fewer severe adverse events.
Gao, Peng
2016-01-01
Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836
Virulence factors and mechanisms of antibiotic resistance of haemophilus influenzae.
Kostyanev, Tomislav S; Sechanova, Lena P
2012-01-01
Haemophilus influenzae is a small gram-negative coccobacillus known as one of the major causes of meningitis, otitis media, sinusitis and epiglottitis, especially in childhood, as well as infections of the lower respiratory tract, eye infections and bacteremia. It has several virulence factors that play a crucial role in patient inflammatory response. Its capsule, the adhesion proteins, pili, the outer membrane proteins, the IgA1 protease and, last but not least, the lipooligosaccharide, increase the virulence of H. influenzae by participating actively in the host invasion the host by the microrganism. Some of these factors are used in vaccine preparations. In the post-vaccine era, an increase has been noticed in many European countries of invasive infections caused by non-encapsulated strains of H. influenzae which have a number of virulence factors, some of which are subject of serious research aiming at creating new vaccines. Numerous mechanisms of antibiotic resistance in H. influenzae are known which can compromise the empirical treatment of infections caused by this microorganism. The increasing incidence of resistance to aminopenicillins, induced not only by enzyme mechanisms but also by a change of their target is turning into a significant problem. Resistance to other antibiotics such as macrolides, tetracyclines, chloramphenicol, trimethoprim/sulfamethoxazole, and fluoroquinolones, commonly used to treat Haemophilus infections has also been described.
Kuribayashi, Takashi; Seita, Tetsuro; Matsumoto, Mariko; Furuhata, Katsunori; Tagata, Kazutoshi; Yamamoto, Shizuo
2009-01-01
A bovine colostral antibody against verotoxin (VT) 2 of Escherichia coli O157:H7 was administered orally to beagle dogs. The antibody remained in the dogs’ small intestine for at least 2 h, whereas little serum antibody remained 1.5 h after administration. Furthermore, the antibody activity of secretory IgA did not change until 2 h after administration; however, the activity of IgG and IgM antibodies decreased by approximately 60% and 40% at 2 h after administration, respectively. Seven beagle dogs inoculated with Escherichia coli O157:H7 producing VT2 were administered bovine colostral antibody or bovine colostral whey without antibody. With administration of bovine colostral whey without antibody, the amount of VT2 in feces decreased gradually after administration and increased again at 5 d after inoculation, whereas bovine colostral antibody significantly reduced the amount of VT2 in feces on the day after administration. In addition, 9 beagle dogs were given bovine colostral antibody, bovine plasma antibody, or saline. The amount of VT2 in feces again decreased significantly more rapidly after administration of bovine colostral antibody than after administration of bovine plasma antibody or saline. PMID:19389308
Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.
Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán
2015-09-24
Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.
Tanaka, T; Kawata, M
1988-08-01
We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU.
Mariscotti, Javier F; García-del Portillo, Francisco
2009-03-01
Intracellular growth attenuator A (IgaA) was identified as a Salmonella enterica regulator limiting bacterial growth inside fibroblasts. Genetic evidence further linked IgaA to repression of the RcsCDB regulatory system, which responds to envelope stress. How IgaA attenuates this system is unknown. Here, we present genome expression profiling data of S. enterica serovar Typhimurium igaA mutants grown at high osmolarity and displaying exacerbated Rcs responses. Transcriptome data revealed that IgaA attenuates gene expression changes requiring phosphorylated RcsB (RcsB~P) activity. Some RcsB-regulated genes, yciGFE and STM1862 (pagO)-STM1863-STM1864, were equally expressed in wild-type and igaA strains, suggesting a maximal expression at low levels of RcsB ~P. Other genes, such as metB, ypeC, ygaC, glnK, glnP, napA, glpA, and nirB, were shown for the first time and by independent methods to be regulated by the RcsCDB system. Interestingly, IgaA-deficient strains with reduced RcsC or RcsD levels exhibited different Rcs responses and distinct virulence properties. spv virulence genes were differentially expressed in most of the analyzed strains. spvA expression required RcsB and IgaA but, unexpectedly, was also impaired upon stimulation of the RcsC-->RcsD-->RcsB phosphorelay. Overproduction of either RcsB(+) or a nonphosphorylatable RcsB(D56Q) variant in strains displaying low spvA expression unveiled that both dephosphorylated RcsB and RcsB~P are required for optimal spvA expression. Taken together, our data support a model with IgaA attenuating the RcsCDB system by favoring the switch of RcsB~P to the dephosphorylated state. This role of IgaA in constantly fine-tuning the RcsB~P/RcsB ratio may ensure the proper expression of important virulence factors, such as the Spv proteins.