Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding
Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.
2010-01-01
During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840
Bacillus subtilis 168 Contains Two Differentially Regulated Genes Encoding l-Asparaginase
Fisher, Susan H.; Wray, Lewis V.
2002-01-01
Expression of the two Bacillus subtilis genes encoding l-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional l-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second l-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression. PMID:11914346
Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.
Fisher, Susan H; Wray, Lewis V
2002-04-01
Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.
Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations
Horner, Aidan J.; Hørlyck, Lone D.; Burgess, Neil
2016-01-01
Although negative emotion can strengthen memory of an event it can also result in memory disturbances, as in post-traumatic stress disorder (PTSD). We examined the effects of negative item content on amygdalar and hippocampal function in memory for the items themselves and for the associations between them. During fMRI, we examined encoding and retrieval of paired associates made up of all four combinations of neutral and negative images. At test, participants were cued with an image and, if recognised, had to retrieve the associated (target) image. The presence of negative images increased item memory but reduced associative memory. At encoding, subsequent item recognition correlated with amygdala activity, while subsequent associative memory correlated with hippocampal activity. Hippocampal activity was reduced by the presence of negative images, during encoding and correct associative retrieval. In contrast, amygdala activity increased for correctly retrieved negative images, even when cued by a neutral image. Our findings support a dual representation account, whereby negative emotion up-regulates the amygdala to strengthen item memory but down-regulates the hippocampus to weaken associative representations. These results have implications for the development and treatment of clinical disorders in which diminished associations between emotional stimuli and their context contribute to negative symptoms, as in PTSD. PMID:26969864
Emotional arousal and memory after deep encoding.
Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica
2018-05-22
Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.
Everaert, Jonas; Koster, Ernst H W
2015-10-01
Emotional biases in attention modulate encoding of emotional material into long-term memory, but little is known about the role of such attentional biases during emotional memory retrieval. The present study investigated how emotional biases in memory are related to attentional allocation during retrieval. Forty-nine individuals encoded emotionally positive and negative meanings derived from ambiguous information and then searched their memory for encoded meanings in response to a set of retrieval cues. The remember/know/new procedure was used to classify memories as recollection-based or familiarity-based, and gaze behavior was monitored throughout the task to measure attentional allocation. We found that a bias in sustained attention during recollection-based, but not familiarity-based, retrieval predicted subsequent memory bias toward positive versus negative material following encoding. Thus, during emotional memory retrieval, attention affects controlled forms of retrieval (i.e., recollection) but does not modulate relatively automatic, familiarity-based retrieval. These findings enhance understanding of how distinct components of attention regulate the emotional content of memories. Implications for theoretical models and emotion regulation are discussed. (c) 2015 APA, all rights reserved).
ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.
Sun, Tongjun; Zhang, Yaxi; Li, Yan; Zhang, Qian; Ding, Yuli; Zhang, Yuelin
2015-12-18
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses.
PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2.
Liu, Yonghong; Qu, Linlin; Liu, Yuanyuan; Roizman, Bernard; Zhou, Grace Guoying
2017-08-15
PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: ( i ) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. ( ii ) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. ( iii ) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. ( iv ) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. ( v ) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.
Sun, Yi-Cheng; Guo, Xiao-Peng; Hinnebusch, B Joseph; Darby, Creg
2012-04-01
Yersinia pestis, which causes bubonic plague, forms biofilms in fleas, its insect vectors, as a means to enhance transmission. Biofilm development is positively regulated by hmsT, encoding a diguanylate cyclase that synthesizes the bacterial second messenger cyclic-di-GMP. Biofilm development is negatively regulated by the Rcs phosphorelay signal transduction system. In this study, we show that Rcs-negative regulation is accomplished by repressing transcription of hmsT.
USDA-ARS?s Scientific Manuscript database
Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A. thaliana BTS...
Hindt, Maria N; Akmakjian, Garo Z; Pivarski, Kara L; Punshon, Tracy; Baxter, Ivan; Salt, David E; Guerinot, Mary Lou
2017-07-19
Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A. thaliana BTS paralogs, BTS LIKE1 (BTSL1) and BTS LIKE2 (BTSL2) encode proteins that act redundantly as negative regulators of the Fe deficiency response. Loss of both of these E3 ligases enhances tolerance to Fe deficiency. We further generated a triple mutant with loss of both BTS paralogs and a partial loss of BTS expression that exhibits even greater tolerance to Fe-deficient conditions and increased Fe accumulation without any resulting Fe toxicity effects. Finally, we identified a mutant carrying a novel missense mutation of BTS that exhibits an Fe deficiency response in the root when grown under both Fe-deficient and Fe-sufficient conditions, leading to Fe toxicity when plants are grown under Fe-sufficient conditions.
Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken
2013-09-01
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.
Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken
2013-01-01
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442
Machiels, Bénédicte; Lété, Céline; de Fays, Katalin; Mast, Jan; Dewals, Benjamin; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent
2011-01-01
All gammaherpesviruses encode a glycoprotein positionally homologous to the Epstein-Barr virus gp350 and the Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1. In this study, we characterized the positional homologous glycoprotein of bovine herpesvirus 4 (BoHV-4), encoded by the Bo10 gene. We identified a 180-kDa gene product, gp180, that was incorporated into the virion envelope. A Bo10 deletion virus was viable but showed a growth deficit associated with reduced binding to epithelial cells. This seemed to reflect an interaction of gp180 with glycosaminoglycans (GAGs), since compared to the wild-type virus, the Bo10 mutant virus was both less infectious for GAG-positive (GAG+) cells and more infectious for GAG-negative (GAG−) cells. However, we could not identify a direct interaction between gp180 and GAGs, implying that any direct interaction must be of low affinity. This function of gp180 was very similar to that previously identified for the murid herpesvirus 4 gp150 and also to that of the Epstein-Barr virus gp350 that promotes CD21+ cell infection and inhibits CD21− cell infection. We propose that such proteins generally regulate virion attachment both by binding to cells and by covering another receptor-binding protein until they are displaced. Thus, they regulate viral tropism both positively and negatively depending upon the presence or absence of their receptor. PMID:21068242
Emotion regulation during the encoding of emotional stimuli: Effects on subsequent memory.
Leventon, Jacqueline S; Bauer, Patricia J
2016-02-01
In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral and electrophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Furthermore, we implemented a reappraisal instruction to manipulate (down-regulate) emotional arousal at encoding to examine the relation between emotional arousal and subsequent memory. Participants (8-year-old girls) viewed emotional scenes as electrophysiological (EEG) data were recorded and participated in a memory task 1 to 5days later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. The reappraisal instruction successfully reduced emotional arousal responses to negative stimuli but not positive stimuli. Similarly, recognition performance in both event-related potentials (ERPs) and behavior was impaired for reappraised negative stimuli but not positive stimuli. The findings indicate that ERPs are sensitive to the reappraisal of negative stimuli in children as young as 8years. Furthermore, the findings suggest an interaction of emotion and memory during the school years, implicating the explanatory role of emotional arousal at encoding on subsequent memory performance in female children as young as 8years. Copyright © 2015 Elsevier Inc. All rights reserved.
Fragile X Mental Retardation Protein Regulates Heterosynaptic Plasticity in the Hippocampus
ERIC Educational Resources Information Center
Connor, Steven A.; Hoeffer, Charles A.; Klann, Eric; Nguyen, Peter V.
2011-01-01
Silencing of a single gene, FMR1, is linked to a highly prevalent form of mental retardation, characterized by social and cognitive impairments, known as fragile X syndrome (FXS). The FMR1 gene encodes fragile X mental retardation protein (FMRP), which negatively regulates translation. Knockout of Fmr1 in mice results in enhanced long-term…
The Cognitive Consequences of Emotion Regulation: An ERP Investigation
Deveney, C.M.; Pizzagalli, D.A.
2008-01-01
Increasing evidence suggests that emotion regulation (ER) strategies modulate encoding of information presented during regulation; however, no studies have assessed the impact of cognitive reappraisal ER strategies on the processing of stimuli presented after the ER period. Participants in the present study regulated emotions to unpleasant pictures and then judged whether a word was negative or neutral. Electromyographic measures (corrugator supercilli) confirmed that individuals increased and decreased negative affect according to ER condition. Event-related potential analyses revealed smallest N400 amplitudes to negative and neutral words presented after decreasing unpleasant emotions and smallest P300 amplitudes to words presented after increasing unpleasant emotions whereas reaction time data failed to show ER modulations. Results are discussed in the context of the developing ER literature, as well as theories of emotional incongruity (N400) and resource allocation (P300). PMID:18221443
Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis.
Byrne, M E; Barley, R; Curtis, M; Arroyo, J M; Dunham, M; Hudson, A; Martienssen, R A
Meristem function in plants requires both the maintenance of stem cells and the specification of founder cells from which lateral organs arise. Lateral organs are patterned along proximodistal, dorsoventral and mediolateral axes. Here we show that the Arabidopsis mutant asymmetric leaves1 (as1) disrupts this process. AS1 encodes a myb domain protein, closely related to PHANTASTICA in Antirrhinum and ROUGH SHEATH2 in maize, both of which negatively regulate knotted-class homeobox genes. AS1 negatively regulates the homeobox genes KNAT1 and KNAT2 and is, in turn, negatively regulated by the meristematic homeobox gene SHOOT MERISTEMLESS. This genetic pathway defines a mechanism for differentiating between stem cells and organ founder cells within the shoot apical meristem and demonstrates that genes expressed in organ primordia interact with meristematic genes to regulate shoot morphogenesis.
Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.
Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y Henry; Pflugfelder, Gert O
2015-01-01
Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.
Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon
2015-11-15
Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.
Bonifield, Heather R.; Yamaguchi, Shigeru; Hughes, Kelly T.
2000-01-01
We investigated the posttranscriptional regulation of flgE, a class 2 gene that encodes the hook subunit protein of the flagella. RNase protection assays demonstrated that the flgE gene was transcribed at comparable levels in numerous strains defective in known steps of flagellar assembly. However, Western analyses of these strains demonstrated substantial differences in FlgE protein levels. Although wild-type FlgE levels were observed in strains with deletions of genes encoding components of the switch complex and the flagellum-specific secretion apparatus, no protein was detected in a strain with deletions of the rod, ring, and hook-associated proteins. To determine whether FlgE levels were affected by the stage of hook–basal-body assembly, Western analysis was performed on strains with mutations at individual loci encompassed by the deletion. FlgE protein was undetectable in rod mutants, intermediate in ring mutants, and wild type in hook-associated protein mutants. The lack of negative regulation in switch complex and flagellum-specific secretion apparatus deletion mutants blocked for flagellar construction prior to rod assembly suggests that these structures play a role in the negative regulation of FlgE. Quantitative Western analyses of numerous flagellar mutants indicate that FlgE levels reflect the stage at which flagellar assembly is blocked. These data provide evidence for negative posttranscriptional regulation of FlgE in response to the stage of flagellar assembly. PMID:10869084
Phan, Vernon T.; Ding, Vivianne W.; Li, Fenglei; Chalkley, Robert J.; Burlingame, Alma; McCormick, Frank
2010-01-01
The neurofibromatosis type 1 (NF1) gene encodes the GTPase-activating protein (GAP) neurofibromin, which negatively regulates Ras activity. The yeast Saccharomyces cerevisiae has two neurofibromin homologs, Ira1 and Ira2. To understand how these proteins are regulated, we utilized an unbiased proteomics approach to identify Ira2 and neurofibromin binding partners. We demonstrate that the Gpb1/Krh2 protein binds and negatively regulates Ira2 by promoting its ubiquitin-dependent proteolysis. We extended our findings to show that in mammalian cells, the ETEA/UBXD8 protein directly interacts with and negatively regulates neurofibromin. ETEA contains both UBA and UBX domains. Overexpression of ETEA downregulates neurofibromin in human cells. Purified ETEA, but not a mutant of ETEA that lacks the UBX domain, ubiquitinates the neurofibromin GAP-related domain in vitro. Silencing of ETEA expression increases neurofibromin levels and downregulates Ras activity. These findings provide evidence for conserved ubiquitination pathways regulating the RasGAP proteins Ira2 (in yeast) and neurofibromin (in humans). PMID:20160012
Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system
Ross, Joseph A.; Ellis, Michael J.; Hossain, Shahan; Haniford, David B.
2013-01-01
Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements. PMID:23510801
Optomotor-Blind Negatively Regulates Drosophila Eye Development by Blocking Jak/STAT Signaling
Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y. Henry; Pflugfelder, Gert O.
2015-01-01
Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. PMID:25781970
Qin, Feng; Kodaira, Ken-Suke; Maruyama, Kyonoshin; Mizoi, Junya; Tran, Lam-Son Phan; Fujita, Yasunari; Morimoto, Kyoko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2011-01-01
The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk. PMID:22013217
Gibert, Marta; Paytubi, Sonia; Beltrán, Sergi; Juárez, Antonio; Balsalobre, Carlos; Madrid, Cristina
2016-12-01
Plasmids of the incompatibility group HI1 (IncHI1) have been isolated from several Gram-negative pathogens and are associated with the spread of multidrug resistance. Their conjugation is tightly regulated and it is inhibited at temperatures higher than 30°C, indicating that conjugation occurs outside warm-blooded hosts. Using R27, the prototype of IncHI1 plasmids, we report that plasmid transfer efficiency in E. coli strongly depends on the physiological state of the donor cells. Conjugation frequency is high when cells are actively growing, dropping sharply when cells enter the stationary phase of growth. Accordingly, our transcriptomic assays show significant downregulation of numerous R27 genes during the stationary phase, including several tra (transfer) genes. Growth phase-dependent regulation of tra genes transcription is independent of H-NS, a silencer of horizontal gene transfer, and ppGpp and RpoS, regulators of the stationary phase, but highly dependent on the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA. The metabolic sensor cAMP, whose synthesis is chromosomally encoded, is also involved in the growth phase regulation of R27 conjugation by modulating htdA expression. Our data suggest that the involvement of regulators encoded by both chromosome and plasmid are required for efficient physiological control of IncHI1 plasmid conjugation. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wang, Ying; Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing
2013-10-01
Small rubber particle protein (SRPP) is a major component of Hevea brasiliensis (H. brasiliensis) latex, which is involved in natural rubber (NR) biosynthesis. However, little information is available on the regulation of SRPP gene (HbSRPP) expression. To study the transcriptional regulation of HbSRPP, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the HbSRPP promoter as bait. One cDNA that encodes the WRKY transcription factor, designated as HbWRKY1, was isolated from H. brasiliensis. HbWRKY1 contains a 1437 bp open reading frame that encodes 478 amino acids. The deduced HbWRKY1 protein was predicted to possess two conserved WRKY domains and a C2H2 zinc-finger motif. HbWRKY1 was expressed at different levels, with the highest transcription in the flower, followed by the bark, latex, and leaf. Furthermore, the co-expression of pHbSRP::GUS with CaMV35S::HbWRKY1 significantly decreased the GUS activity in transgenic tobacco, indicating that HbWRKY1 significantly suppressed the HbSRPP promoter. These results suggested that HbWRKY1 maybe a negative transcription regulator of HbSRPP involved in NR biosynthesis in H. brasiliensis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.
Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.
Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism
Bouillaut, Laurent; Self, William T.
2013-01-01
Clostridium difficile, a proteolytic Gram-positive anaerobe, has emerged as a significant nosocomial pathogen. Stickland fermentation reactions are thought to be important for growth of C. difficile and appear to influence toxin production. In Stickland reactions, pairs of amino acids donate and accept electrons, generating ATP and reducing power in the process. Reduction of the electron acceptors proline and glycine requires the d-proline reductase (PR) and the glycine reductase (GR) enzyme complexes, respectively. Addition of proline in the medium increases the level of PR protein but decreases the level of GR. We report the identification of PrdR, a protein that activates transcription of the PR-encoding genes in the presence of proline and negatively regulates the GR-encoding genes. The results suggest that PrdR is a central metabolism regulator that controls preferential utilization of proline and glycine to produce energy via the Stickland reactions. PMID:23222730
Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.
2008-01-01
Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710
USDA-ARS?s Scientific Manuscript database
A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...
USDA-ARS?s Scientific Manuscript database
For Salmonella to cause disease, it must first invade the intestinal epithelium using genes encoded within Salmonella Pathogenicity Island 1 (SPI1). Previous work has shown that propionate, a short chain fatty acid abundant in the intestine of animal hosts, negatively regulates SPI1 in vitro. Here...
Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing
2011-02-25
Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.
Gabryšová, Leona; Alvarez-Martinez, Marisol; Luisier, Raphaëlle; Cox, Luke S; Sodenkamp, Jan; Hosking, Caroline; Pérez-Mazliah, Damián; Whicher, Charlotte; Kannan, Yashaswini; Potempa, Krzysztof; Wu, Xuemei; Bhaw, Leena; Wende, Hagen; Sieweke, Michael H; Elgar, Greg; Wilson, Mark; Briscoe, James; Metzis, Vicki; Langhorne, Jean; Luscombe, Nicholas M; O'Garra, Anne
2018-05-01
The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4 + T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4 + T cells in disease models involving the T H 1 subset of helper T cells (malaria), T H 2 cells (allergy) and T H 17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in T H 1 and T H 2 responses, T H 17 cell-mediated pathology was reduced in this context, with an accompanying decrease in T H 17 cells and increase in Foxp3 + regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.
Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto
2015-01-01
Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. ‘Superficial scald’ of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz
2017-01-01
ABSTRACT The glucose/mannose-phosphotransferase system (PTS) permease EIIMan encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EIIFru, respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EIIMan. Expression of genes for EIIMan and EIIFru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN. Carbohydrate transport by EIIMan had a negative influence on expression of manLMN but not fruRKI. In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR. Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. PMID:28821551
Lim, Gah-Hyun; Zhu, Shifeng; Clavel, Marion; Yu, Keshun; Navarre, Duroy; Kachroo, Aardra; Deragon, Jean-Marc
2018-01-01
The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4. PMID:29513740
Storbeck, Justin
2013-01-01
I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
Xin, Zhanguo; Mandaokar, Ajin; Chen, Junping; Last, Robert L; Browse, John
2007-03-01
The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.
Negative base encoding in optical linear algebra processors
NASA Technical Reports Server (NTRS)
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J
2015-05-12
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Two spatiotemporally distinct value systems shape reward-based learning in the human brain.
Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G
2015-09-08
Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.
Carles, Cristel C; Choffnes-Inada, Dan; Reville, Keira; Lertpiriyapong, Kvin; Fletcher, Jennifer C
2005-03-01
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1 (ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.
Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J
2009-05-01
Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.
Molecular mechanism for the operation of nitrogen control in cyanobacteria.
Luque, I; Flores, E; Herrero, A
1994-01-01
In cyanobacteria, ammonium exerts a negative regulation of the expression of proteins involved in the assimilation of nitrogen sources alternative to ammonium. In Synechococcus, mRNA levels of genes encoding proteins for nitrate and ammonium assimilation were observed to be negatively regulated by ammonium, and ammonium-regulated transcription start points were identified for those genes. The NtcA protein is a positive regulator of genes subjected to nitrogen control by ammonium. Mutants lacking NtcA exhibited only basal mRNA levels of the regulated genes, even in the absence of ammonium, indicating that NtcA exerts its regulatory action by positively influencing mRNA levels of the nitrogen-regulated genes. NtcA was observed to bind directly to the promoters of nitrogen-regulated genes, and the palindromic DNA sequence GTAN8TAC was identified as a sequence signature for NtcA-target sites. The structure of the nitrogen-, NtcA-regulated promoters of Synechococcus was determined to be constituted by a -10, Pribnow-like box in the form TAN3T, and an NtcA-binding site that substituted for the canonical -35 box. Images PMID:8026471
Jeong, Sun-Wook; Seo, Ho Seong; Kim, Min-Kyu; Choi, Jong-Il; Lim, Heon-Man; Lim, Sangyong
2016-06-01
Deinococcus radiodurans is a poly-extremophilic organism, capable of tolerating a wide variety of different stresses, such as gamma/ultraviolet radiation, desiccation, and oxidative stress. PprM, a cold shock protein homolog, is involved in the radiation resistance of D. radiodurans, but its role in the oxidative stress response has not been investigated. In this study, we investigated the effect of pprM mutation on catalase gene expression. pprM disruption decreased the mRNA and protein levels of KatE1, which is the major catalase in D. radiodurans, under normal culture conditions. A pprM mutant strain (pprM MT) exhibited decreased catalase activity, and its resistance to hydrogen peroxide (H2O2) decreased accordingly compared with that of the wild-type strain. We confirmed that RecG helicase negatively regulates katE1 under normal culture conditions. Among katE1 transcriptional regulators, the positive regulator drRRA was not altered in pprM (-), while the negative regulators perR, dtxR, and recG were activated more than 2.5-fold in pprM MT. These findings suggest that PprM is necessary for KatE1 production under normal culture conditions by down-regulation of katE1 negative regulators.
Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe
2013-11-01
A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild type and mutated promoter sequences. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto
2015-12-01
Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén
2016-10-01
Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories. Copyright © 2016 Elsevier Inc. All rights reserved.
The tumor suppressor PTEN has a critical role in antiviral innate immunity.
Li, Shun; Zhu, Mingzhu; Pan, Ruangang; Fang, Ting; Cao, Yuan-Yuan; Chen, Shuliang; Zhao, Xiaolu; Lei, Cao-Qi; Guo, Lin; Chen, Yu; Li, Chun-Mei; Jokitalo, Eija; Yin, Yuxin; Shu, Hong-Bing; Guo, Deyin
2016-03-01
The gene encoding PTEN is one of the most frequently mutated tumor suppressor-encoding genes in human cancer. While PTEN's function in tumor suppression is well established, its relationship to anti-microbial immunity remains unknown. Here we found a pivotal role for PTEN in the induction of type I interferon, the hallmark of antiviral innate immunity, that was independent of the pathway of the kinases PI(3)K and Akt. PTEN controlled the import of IRF3, a master transcription factor responsible for IFN-β production, into the nucleus. We further identified a PTEN-controlled negative phosphorylation site at Ser97 of IRF3 and found that release from this negative regulation via the phosphatase activity of PTEN was essential for the activation of IRF3 and its import into the nucleus. Our study identifies crosstalk between PTEN and IRF3 in tumor suppression and innate immunity.
Rott, Philippe; Fleites, Laura A; Mensi, Imène; Sheppard, Lauren; Daugrois, Jean-Heinrich; Dow, J Maxwell; Gabriel, Dean W
2013-06-01
The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.
Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.
Wang, Qi; Yang, Shengming; Liu, Jinge; Terecskei, Kata; Ábrahám, Edit; Gombár, Anikó; Domonkos, Ágota; Szűcs, Attila; Körmöczi, Péter; Wang, Ting; Fodor, Lili; Mao, Linyong; Fei, Zhangjun; Kondorosi, Éva; Kaló, Péter; Kereszt, Attila; Zhu, Hongyan
2017-06-27
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula - Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix - ). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.
Zheng, Desen; Burr, Thomas J
2013-07-01
An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.
Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning.
Waskiewicz, A J; Rikhof, H A; Hernandez, R E; Moens, C B
2001-11-01
Homeodomain-containing Hox proteins regulate segmental identity in Drosophila in concert with two partners known as Extradenticle (Exd) and Homothorax (Hth). These partners are themselves DNA-binding, homeodomain proteins, and probably function by revealing the intrinsic specificity of Hox proteins. Vertebrate orthologs of Exd and Hth, known as Pbx and Meis (named for a myeloid ecotropic leukemia virus integration site), respectively, are encoded by multigene families and are present in multimeric complexes together with vertebrate Hox proteins. Previous results have demonstrated that the zygotically encoded Pbx4/Lazarus (Lzr) protein is required for segmentation of the zebrafish hindbrain and proper expression and function of Hox genes. We demonstrate that Meis functions in the same pathway as Pbx in zebrafish hindbrain development, as expression of a dominant-negative mutant Meis results in phenotypes that are remarkably similar to that of lzr mutants. Surprisingly, expression of Meis protein partially rescues the lzr(-) phenotype. Lzr protein levels are increased in embryos overexpressing Meis and are reduced for lzr mutants that cannot bind to Meis. This implies a mechanism whereby Meis rescues lzr mutants by stabilizing maternally encoded Lzr. Our results define two functions of Meis during zebrafish hindbrain segmentation: that of a DNA-binding partner of Pbx proteins, and that of a post-transcriptional regulator of Pbx protein levels.
Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F
2009-03-01
The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.
Bergeron, Sadie A.; Tyurina, Oksana V.; Miller, Emily; Bagas, Andrea; Karlstrom, Rolf O.
2011-01-01
The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (umlty54) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis. PMID:21115611
Zeng, Lin; Chakraborty, Brinta; Farivar, Tanaz; Burne, Robert A
2017-11-01
The glucose/mannose-phosphotransferase system (PTS) permease EII Man encoded by manLMN in the dental caries pathogen Streptococcus mutans has a dominant influence on sugar-specific, CcpA-independent catabolite repression (CR). Mutations in manL affect energy metabolism and virulence-associated traits, including biofilm formation, acid tolerance, and competence. Using promoter::reporter fusions, expression of the manLMN and the fruRKI operons, encoding a transcriptional regulator, a fructose-1-phosphate kinase and a fructose-PTS permease EII Fru , respectively, was monitored in response to carbohydrate source and in mutants lacking CcpA, FruR, and components of EII Man Expression of genes for EII Man and EII Fru was directly regulated by CcpA and CR, as evinced by in vivo and in vitro methods. Unexpectedly, not only was the fruRKI operon negatively regulated by FruR, but also so was manLMN Carbohydrate transport by EII Man had a negative influence on expression of manLMN but not fruRKI In agreement with the proposed role of FruR in regulating these PTS operons, loss of fruR or fruK substantially altered growth on a number of carbohydrates, including fructose. RNA deep sequencing revealed profound changes in gene regulation caused by deletion of fruK or fruR Collectively, these findings demonstrate intimate interconnection of the regulation of two major PTS permeases in S. mutans and reveal novel and important contributions of fructose metabolism to global regulation of gene expression. IMPORTANCE The ability of Streptococcus mutans and other streptococcal pathogens to survive and cause human diseases is directly dependent upon their capacity to metabolize a variety of carbohydrates, including glucose and fructose. Our research reveals that metabolism of fructose has broad influences on the regulation of utilization of glucose and other sugars, and mutants with changes in certain genes involved in fructose metabolism display profoundly different abilities to grow and express virulence-related traits. Mutants lacking the FruR regulator or a particular phosphofructokinase, FruK, display changes in expression of a large number of genes encoding transcriptional regulators, enzymes required for energy metabolism, biofilm development, biosynthetic and degradative processes, and tolerance of a spectrum of environmental stressors. Since fructose is a major component of the modern human diet, the results have substantial significance in the context of oral health and the development of dental caries. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp; Eizuru, Yoshito
2010-06-04
Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteinsmore » interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.« less
Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko
2005-02-01
Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.
ERIC Educational Resources Information Center
Siomi, Haruhiko; Ishizuka, Akira; Siomi, Mikiko C.
2004-01-01
Fragile X syndrome is the most common heritable form of mental retardation caused by loss-of-function mutations in the "FMR1" gene. The "FMR1" gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. Recent work in "Drosophila melanogaster" has shown that the fly homolog of…
Nitric oxide negatively regulates mammalian adult neurogenesis
NASA Astrophysics Data System (ADS)
Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori
2003-08-01
Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.
Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding.
Vecerek, Branislav; Moll, Isabella; Bläsi, Udo
2007-02-21
The Fe2+-dependent Fur protein serves as a negative regulator of iron uptake in bacteria. As only metallo-Fur acts as an autogeneous repressor, Fe2+scarcity would direct fur expression when continued supply is not obviously required. We show that in Escherichia coli post-transcriptional regulatory mechanisms ensure that Fur synthesis remains steady in iron limitation. Our studies revealed that fur translation is coupled to that of an upstream open reading frame (uof), translation of which is downregulated by the non-coding RNA (ncRNA) RyhB. As RyhB transcription is negatively controlled by metallo-Fur, iron depletion creates a negative feedback loop. RyhB-mediated regulation of uof-fur provides the first example for indirect translational regulation by a trans-encoded ncRNA. In addition, we present evidence for an iron-responsive decoding mechanism of the uof-fur entity. It could serve as a backup mechanism of the RyhB circuitry, and represents the first link between iron availability and synthesis of an iron-containing protein.
Thorley, Craig; Dewhurst, Stephen A; Abel, Joseph W; Knott, Lauren M
2016-07-01
The police often appeal for eyewitnesses to events that were unlikely to have been emotive when observed. An eyewitness, however, may be in a negative mood whilst encoding or retrieving such events as mood can be influenced by a range of personal, social, and environmental factors. For example, bad weather can induce a negative mood. This experiment compared the impact of negative and neutral moods during encoding and/or retrieval upon eyewitness recall of a non-emotive event. A negative mood during encoding had no impact upon the number of correct details recalled (provided participants were in a neutral mood at retrieval) but a negative mood during retrieval impaired the number of correct details recalled (provided participants were in a neutral mood at encoding). A negative mood at both time points enhanced the number of correct details recalled, demonstrating a mood-dependent memory enhancement. The forensic implications of these findings are discussed.
Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.
2013-01-01
ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465
Misstear, Karen; Chanas, Simon A.; Rezaee, S. A. Rahim; Colman, Rachel; Quinn, Laura L.; Long, Heather M.; Goodyear, Oliver; Lord, Janet M.; Hislop, Andrew D.
2012-01-01
Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200. PMID:22491458
Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety
Fernandes, Myra A.
2017-01-01
We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information. PMID:29280957
Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety.
Lee, Christopher; Fernandes, Myra A
2017-12-27
We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.
Cesario, Jeffry M.; Landin Malt, Andre; Deacon, Lindsay J.; Sandberg, Magnus; Vogt, Daniel; Tang, Zuojian; Zhao, Yangu; Brown, Stuart; Rubenstein, John L.; Jeong, Juhee
2015-01-01
Cleft palate is a common birth defect in humans. Therefore, understanding the molecular genetics of palate development is important from both scientific and medical perspectives. Lhx6 and Lhx8 encode LIM homeodomain transcription factors, and inactivation of both genes in mice resulted in profound craniofacial defects including cleft secondary palate. The initial outgrowth of the palate was severely impaired in the mutant embryos, due to decreased cell proliferation. Through genome-wide transcriptional profiling, we discovered that p57Kip2 (Cdkn1c), encoding a cell cycle inhibitor, was up-regulated in the prospective palate of Lhx6−/−;Lhx8−/− mutants. p57Kip2 has been linked to Beckwith–Wiedemann syndrome and IMAGe syndrome in humans, which are developmental disorders with increased incidents of palate defects among the patients. To determine the molecular mechanism underlying the regulation of p57Kip2 by the Lhx genes, we combined chromatin immunoprecipitation, in silico search for transcription factor-binding motifs, and in vitro reporter assays with putative cis-regulatory elements. The results of these experiments indicated that LHX6 and LHX8 regulated p57Kip2 via both direct and indirect mechanisms, with the latter mediated by Forkhead box (FOX) family transcription factors. Together, our findings uncovered a novel connection between the initiation of palate development and a cell cycle inhibitor via LHX. We propose a model in which Lhx6 and Lhx8 negatively regulate p57Kip2 expression in the prospective palate area to allow adequate levels of cell proliferation and thereby promote normal palate development. This is the first report elucidating a molecular genetic pathway downstream of Lhx in palate development. PMID:26071365
De Taeye, Leen; Pourtois, Gilles; Meurs, Alfred; Boon, Paul; Vonck, Kristl; Carrette, Evelien; Raedt, Robrecht
2015-01-01
Patients with epilepsy have a high prevalence of comorbid mood disorders. This study aims to evaluate whether negative affect in epilepsy is associated with dysfunction of emotion regulation. Event-related potentials (ERPs) are used in order to unravel the exact electrophysiological time course and investigate whether a possible dysfunction arises during early (attention) and/or late (regulation) stages of emotion control. Fifty epileptic patients with (n = 25) versus without (n = 25) comorbid negative affect plus twenty-five matched controls were recruited. ERPs were recorded while subjects performed a face- or house-matching task in which fearful, sad or neutral faces were presented either at attended or unattended spatial locations. Two ERP components were analyzed: the early vertex positive potential (VPP) which is normally enhanced for faces, and the late positive potential (LPP) that is typically larger for emotional stimuli. All participants had larger amplitude of the early face-sensitive VPP for attended faces compared to houses, regardless of their emotional content. By contrast, in patients with negative affect only, the amplitude of the LPP was significantly increased for unattended negative emotional expressions. These VPP results indicate that epilepsy with or without negative affect does not interfere with the early structural encoding and attention selection of faces. However, the LPP results suggest abnormal regulation processes during the processing of unattended emotional faces in patients with epilepsy and comorbid negative affect. In conclusion, this ERP study reveals that early object-based attention processes are not compromised by epilepsy, but instead, when combined with negative affect, this neurological disease is associated with dysfunction during the later stages of emotion regulation. As such, these new neurophysiological findings shed light on the complex interplay of epilepsy with negative affect during the processing of emotional visual stimuli and in turn might help to better understand the etiology and maintenance of mood disorders in epilepsy.
Xiang, Jing-Jing; Zhang, Guang-Heng; Qian, Qian; Xue, Hong-Wei
2012-01-01
Leaf rolling is an important agronomic trait in rice (Oryza sativa) breeding and moderate leaf rolling maintains the erectness of leaves and minimizes shadowing between leaves, leading to improved photosynthetic efficiency and grain yields. Although a few rolled-leaf mutants have been identified and some genes controlling leaf rolling have been isolated, the molecular mechanisms of leaf rolling still need to be elucidated. Here we report the isolation and characterization of SEMI-ROLLED LEAF1 (SRL1), a gene involved in the regulation of leaf rolling. Mutants srl1-1 (point mutation) and srl1-2 (transferred DNA insertion) exhibit adaxially rolled leaves due to the increased numbers of bulliform cells at the adaxial cell layers, which could be rescued by complementary expression of SRL1. SRL1 is expressed in various tissues and is expressed at low levels in bulliform cells. SRL1 protein is located at the plasma membrane and predicted to be a putative glycosylphosphatidylinositol-anchored protein. Moreover, analysis of the gene expression profile of cells that will become epidermal cells in wild type but probably bulliform cells in srl1-1 by laser-captured microdissection revealed that the expression of genes encoding vacuolar H+-ATPase (subunits A, B, C, and D) and H+-pyrophosphatase, which are increased during the formation of bulliform cells, were up-regulated in srl1-1. These results provide the transcript profile of rice leaf cells that will become bulliform cells and demonstrate that SRL1 regulates leaf rolling through inhibiting the formation of bulliform cells by negatively regulating the expression of genes encoding vacuolar H+-ATPase subunits and H+-pyrophosphatase, which will help to understand the mechanism regulating leaf rolling. PMID:22715111
Uncapher, Melina R; Wagner, Anthony D
2009-02-01
The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.
Zhao, Yunpo; Cocco, Claudia; Domenichini, Severine; Samson, Marie-Laure; Rabinow, Leonard
2015-11-15
The IMD pathway induces the innate immune response to infection by gram-negative bacteria. We demonstrate strong female-to-male sex transformations in double mutants of the IMD pathway in combination with Doa alleles. Doa encodes a protein kinase playing a central role in somatic sex determination through its regulation of alternative splicing of dsx transcripts. Transcripts encoding two specific Doa isoforms are reduced in Rel null mutant females, supporting our genetic observations. A role for the IMD pathway in somatic sex determination is further supported by the induction of female-to-male sex transformations by Dredd mutations in sensitized genetic backgrounds. In contrast, mutations in either dorsal or Dif, the two other NF-κB paralogues of Drosophila, display no effects on sex determination, demonstrating the specificity of IMD signaling. Our results reveal a novel role for the innate immune IMD signaling pathway in the regulation of somatic sex determination in addition to its role in response to microbial infection, demonstrating its effects on alternative splicing through induction of a crucial protein kinase. Copyright © 2015 Elsevier Inc. All rights reserved.
Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.
Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L
2018-01-15
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.
Potting, Christoph; Crochemore, Christophe; Moretti, Francesca; Nigsch, Florian; Schmidt, Isabel; Manneville, Carole; Carbone, Walter; Knehr, Judith; DeJesus, Rowena; Lindeman, Alicia; Maher, Rob; Russ, Carsten; McAllister, Gregory; Reece-Hoyes, John S; Hoffman, Gregory R; Roma, Guglielmo; Müller, Matthias; Sailer, Andreas W; Helliwell, Stephen B
2018-01-09
PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type. Copyright © 2018 the Author(s). Published by PNAS.
Han, Gil-Soo; Carman, George M
2017-08-11
The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Antigenic profiling of Yersinia pestis infection in the Wyoming coyote (Canis latrans)
Vernati, G.; Edwards, W.H.; Rocke, T.E.; Little, S.F.; Andrews, G.P.
2011-01-01
Although Yersinia pestis is classified as a "high-virulence" pathogen, some host species are variably susceptible to disease. Coyotes (Canis latrans) exhibit mild, if any, symptoms during infection, but antibody production occurs postinfection. This immune response has been reported to be against the F1 capsule, although little subsequent characterization has been conducted. To further define the nature of coyote humoral immunity to plague, qualitative serology was conducted to assess the antiplague antibody repertoire. Humoral responses to six plasmid-encoded Y. pestis virulence factors were first examined. Of 20 individual immune coyotes, 90% were reactive to at least one other antigen in the panel other than F1. The frequency of reactivity to low calcium response plasmid (pLcr)-encoded Yersinia protein kinase A (YpkA) and Yersinia outer protein D (YopD) was significantly greater than that previously observed in a murine model for plague. Additionally, both V antigen and plasminogen activator were reactive with over half of the serum samples tested. Reactivity to F1 was markedly less frequent in coyotes (35%). Twenty previously tested antibody-negative samples were also examined. While the majority were negative across the panel, 15% were positive for 1-3 non-F1 antigens. In vivo-induced antigen technology employed to identify novel chromosomal genes of Y. pestis that are up-regulated during infection resulted in the identification of five proteins, including a flagellar component (FliP) that was uniquely reactive with the coyote serum compared with immune serum from two other host species. Collectively, these data suggest that humoral immunity to pLcr-encoded antigens and the pesticin plasmid (pPst)-encoded Pla antigen may be relevant to plague resistance in coyotes. The serologic profile of Y. pestis chromosomal antigens up-regulated in vivo specific to C. latrans may provide insight into the differences in the pathogen-host responses during Y. pestis infection.
The role of attention in emotional memory enhancement in pathological and healthy aging.
Sava, Alina-Alexandra; Paquet, Claire; Dumurgier, Julien; Hugon, Jacques; Chainay, Hanna
2016-01-01
After short delays between encoding and retrieval, healthy young participants have better memory performance for emotional stimuli than for neutral stimuli. Divided-attention paradigms suggest that this emotional enhancement of memory (EEM) is due to different attention mechanisms involved during encoding: automatic processing for negative stimuli, and controlled processing for positive stimuli. As far as we know, no study on the influence of these factors on EEM in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients, as compared to healthy young and older controls, has been conducted. Thus, the goal of our study was to ascertain whether the EEM in these populations depends on the attention resources available at encoding. Participants completed two encoding phases: full attention (FA) and divided attention (DA), followed by two retrieval phases (recognition tasks). There was no EEM on the discrimination accuracy, independently of group and encoding condition. Nevertheless, all participants used a more liberal response criterion for the negative and positive stimuli than for neutral ones. In AD patients, larger numbers of false recognitions for negative and positive stimuli than for neutral ones were observed after both encoding conditions. In MCI patients and in healthy older and younger controls this effect was observed only for negative stimuli, and it depended on the encoding condition. Thus, this effect was observed in young controls after both encoding conditions, in older controls after the DA encoding, and in MCI patients after the FA encoding. In conclusion, our results suggest that emotional valence does not always enhance discrimination accuracy. Nevertheless, in certain conditions related to the attention resources available at encoding, emotional valence, especially the negative one, enhances the subjective feeling of familiarity and, consequently, engenders changes in response bias. This effect seems to be sensitive to the age and the pathology of participants.
Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.
2011-01-01
Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208
Wang, Yuna; Dang, Fengfeng; Liu, Zhiqin; Wang, Xu; Eulgem, Thomas; Lai, Yan; Yu, Lu; She, Jianju; Shi, Youliang; Lin, Jinhui; Chen, Chengcong; Guan, Deyi; Qiu, Ailian; He, Shuilin
2013-02-01
WRKY transcription factors are encoded by large gene families across the plant kingdom. So far, their biological and molecular functions in nonmodel plants, including pepper (Capsicum annuum) and other Solanaceae, remain poorly understood. Here, we report on the functional characterization of a new group I WRKY protein from pepper, termed CaWRKY58. Our data indicate that CaWRKY58 can be localized to the nucleus and can activate the transcription of the reporter β-glucuronidase (GUS) gene driven by the 35S core promoter with two copies of the W-box in its proximal upstream region. In pepper plants infected with the bacterial pathogen Ralstonia solanacearum, CaWRKY58 transcript levels showed a biphasic response, manifested in an early/transient down-regulation and late up-regulation. CaWRKY58 transcripts were suppressed by treatment with methyl jasmonate and abscisic acid. Tobacco plants overexpressing CaWRKY58 did not show any obvious morphological phenotypes, but exhibited disease symptoms of greater severity than did wild-type plants. The enhanced susceptibility of CaWRKY58-overexpressing tobacco plants correlated with the decreased expression of hypersensitive response marker genes, as well as various defence-associated genes. Consistently, CaWRKY58 pepper plants silenced by virus-induced gene silencing (VIGS) displayed enhanced resistance to the highly virulent R. solanacearum strain FJC100301, and this was correlated with enhanced transcripts of defence-related pepper genes. Our results suggest that CaWRKY58 acts as a transcriptional activator of negative regulators in the resistance of pepper to R. solanacearum infection. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
Hu, Yang; Chen, Longfei; Akhberdi, Oren; Yu, Xi; Liu, Yanjie; Zhu, Xudong
2018-01-01
Sensing the environmental signals, the canonical Gα-cAMP/PKA pathway modulates mycelial growth and development, and negatively regulates some secondary metabolism in filamentous fungi, e.g. aflatoxin in Aspergillus nidulans. Here we report the characterization of this signaling pathway in Chaetomium globosum, a widely spread fungus known for synthesizing abundant secondary metabolites, e.g. chaetoglobosin A (ChA). RNAi-mediated knockdown of a putative Gα-encoding gene gna-1, led to plural changes in phenotype, e.g. albino mycelium, significant restriction on perithecium development and decreased production of ChA. RNA-seq profiling and qRT-PCR verified significantly fall in expression of corresponding genes, e.g. pks-1 and CgcheA. These defects could be restored by simultaneous knock-down of the pkaR gene encoding a regulatory subunit of cAMP-dependent protein kinase A (PKA), suggesting that pkaR had a negative effect on the above mentioned traits. Confirmatively, the intracellular level of cAMP in wild-type strain was about 3.4-fold to that in gna-1 silenced mutant pG14, and addition of a cAMP analog, 8-Br-cAMP, restored the same defects, e.g., the expression of CgcheA. Furthermore, the intracellular cAMP in gna-1 and pkaR double silenced mutant was approaching the normal level. The following activity inhibition experiment proved that the expression of CgcheA was indeed regulated by PKA. Down-regulation of LaeA/VeA/SptJ expression in gna-1 mutant was also observed, implying that Gα signaling may crosstalk to other regulatory pathways. Taken together, this study proposes that the heterotrimeric Gα protein-cAMP/PKA signaling pathway positively mediates the sexual development, melanin biosynthesis, and secondary metabolism in C. globosum. PMID:29652900
Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio
2012-01-01
Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505
Yan, Junhui; Wang, Biao; Zhong, Yunpeng; Yao, Luming; Cheng, Linjing; Wu, Tianlong
2015-09-01
Soybean flavonoids, a group of important signaling molecules in plant-environment interaction, ubiquitously exist in soybean and are tightly regulated by many genes. Here we reported that GmMYB100, a gene encoding a R2R3 MYB transcription factor, is involved in soybean flavonoid biosynthesis. GmMYB100 is mainly expressed in flowers, leaves and immature embryo, and its level is decreased after pod ripening. Subcellular localization assay indicates that GmMYB100 is a nuclear protein. GmMYB100 has transactivation ability revealed by a yeast functional assay; whereas bioinformatic analysis suggests that GmMYB100 has a negative function in flavonoid biosynthesis. GmMYB100-overexpression represses the transcript levels of flavonoid-related genes in transgenic soybean hairy roots and Arabidopsis, and inhibits isoflavonoid (soybean) and flavonol (Arabidopsis) production in transgenic plants. Furthermore, the transcript levels of six flavonoid-related genes and flavonoid (isoflavonoid and flavone aglycones) accumulation are elevated in the GmMYB100-RNAi transgenic hairy roots. We also demonstrate that GmMYB100 protein depresses the promoter activities of soybean chalcone synthase and chalcone isomerase. These findings indicate that GmMYB100 is a negative regulator in soybean flavonoid biosynthesis pathway.
Cyclin A and the retinoblastoma gene product complex with a common transcription factor.
Bandara, L R; Adamczewski, J P; Hunt, T; La Thangue, N B
1991-07-18
The retinoblastoma gene (Rb) product is a negative regulator of cellular proliferation, an effect that could be mediated in part at the transcriptional level through its ability to complex with the sequence-specific transcription factor DRTF1. This interaction is modulated by adenovirus E1a, which sequesters the Rb protein and several other cellular proteins, including cyclin A, a molecule that undergoes cyclical accumulation and destruction during each cell cycle and which is required for cell cycle progression. Cyclin A, which also complexes with DRTF1, facilitates the efficient assembly of the Rb protein into the complex. This suggests a role for cyclin A in regulating transcription and defines a transcription factor through which molecules that regulate the cell cycle in a negative fashion, such as Rb, and in a positive fashion, such as cyclin A, interact. Mutant loss-of-function Rb alleles, which occur in a variety of tumour cells, also fail to complex with E1a and large T antigen. Here we report on a naturally occurring loss-of-function Rb allele encoding a protein that fails to complex with DRTF1. This might explain how mutation in the Rb gene prevents negative growth control.
Uncapher, Melina; Wagner, Anthony D.
2010-01-01
The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591
Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.
2000-01-01
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090
Xu, Dongmei; Liu, Guang; Cheng, Lin; Lu, Xinhua; Chen, Wenqing; Deng, Zixin
2013-01-01
Background Muraymycin, a potent translocase I (MraY) inhibitor, is produced by Streptomyces sp. NRRL30471. The muraymycin gene cluster (mur) was recently cloned, and bioinformatic analysis of mur34 revealed its encoding product exhibits high homology to a large family of proteins, including KanI and RacI in individual biosynthetic pathway of kanamycin and ribostamycin. However, the precise role of these proteins remains unknown. Principal Findings Here we report the identification of Mur34 as the novel negative regulator involved in muraymycin biosynthesis. Independent disruption of mur34 on chromosome and cosmid directly resulted in significant improvement of muraymycin production by at least 10 folds, thereof confirming the negative function of Mur34 during muraymycin biosynthesis and realizing the engineered production of muraymycin in heterologous host. Gene expression analysis indicated that the transcription level of the mur genes in mur34 mutant (DM-5) was dramatically enhanced by ca. 30 folds. Electrophoretic mobility shift assay (EMSA) showed that Mur34 specifically bound to the promoter region of mur33. Further experiments showed that a 28-bp region downstream of the transcription start point (TSP) was protected by His6Mur34, and the −10 region is essential for the activity of mur33 promoter. Conclusions Mur34 plays an unambiguously negative role in muraymycin biosynthesis via binding to the upstream of mur33. More importantly, Mur34 represents a novel family of regulators acting in negative manner to regulate the secondary metabolites biosynthesis in bacteria. PMID:24143177
Control of jasmonate biosynthesis and senescence by miR319 targets.
Schommer, Carla; Palatnik, Javier F; Aggarwal, Pooja; Chételat, Aurore; Cubas, Pilar; Farmer, Edward E; Nath, Utpal; Weigel, Detlef
2008-09-23
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.
Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar
2010-02-01
Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.
NASA Technical Reports Server (NTRS)
Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.
2003-01-01
CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.
Jiang, Yanjuan; Yu, Diqiu
2016-08-01
Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.
Yersinia Type III Secretion System Master Regulator LcrF
Schwiesow, Leah; Lam, Hanh
2015-01-01
Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters. PMID:26644429
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels.
Hernández-Prieto, Miguel A; Lin, Yuankui; Chen, Min
2017-02-09
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina , multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA , we detected a similar transcriptional pattern for psbJ and psbU , which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. Copyright © 2017 Hernandez-Prieto et al.
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels
Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min
2016-01-01
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439
Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development
Huang, Mingkun; Hu, Yilong; Liu, Xu; Li, Yuge; Hou, Xingliang
2015-01-01
Arabidopsis LEAFY COTYLEDON1 (LEC1) transcription factor is a master regulator that shapes plant embryo development and post-embryonic seedling establishment. Loss-of-function of LEC1 alters the cotyledon identity, causing the formation of ectopic trichomes, which does not occur in wild-type seedlings, implying that LEC1 might regulate embryonic cell fate determination during post-embryonic development. To test this hypothesis, we compared the expression of trichome development-related genes between the wild-type and the lec1 mutant. We observed that transcripts of GLABROUS1 (GL1), GL2, and GL3, genes encoding the positive regulators in trichome development, were significantly upregulated, while the TRICHOMELESS1 (TCL2), ENHANCER OF TRY AND CPC1 (ETC1), and ETC2 genes, encoding the negative regulators in trichome development, were downregulated in the lec1 mutant. Furthermore, overexpression of LEC1 activated the expressions of TCL2, CAPPICE (CPC), and ETC1, resulting in production of cotyledonary leaves with no or fewer trichomes during vegetative development. In addition, we demonstrated that LEC1 interacts with TCL2 in yeast and in vitro. A genetic experiment showed that loss-of-function of GL2 rescued the ectopic trichome formation in the lec1 mutant. These findings strongly support that LEC1 regulates trichome development, providing direct evidence for the role of LEC1 in cell fate determination during post-embryonic development. PMID:26579186
Hartmann, Torsten; Baronian, Grégory; Nippe, Nadine; Voss, Meike; Schulthess, Bettina; Wolz, Christiane; Eisenbeis, Janina; Schmidt-Hohagen, Kerstin; Gaupp, Rosmarie; Sunderkötter, Cord; Beisswenger, Christoph; Bals, Robert; Somerville, Greg A.; Herrmann, Mathias; Molle, Virginie; Bischoff, Markus
2014-01-01
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus. PMID:25193664
Mattson, Julia T; Wang, Tracy H; de Chastelaine, Marianne; Rugg, Michael D
2014-12-01
It has consistently been reported that "negative" subsequent memory effects--lower study activity for later remembered than later forgotten items--are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item-context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item-context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan
2018-01-01
Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua . It's important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua , named AaEIN3 . Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua , indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1 , and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway.
Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan
2018-01-01
Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It’s important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway. PMID:29675029
Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.
Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa
2012-01-01
RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.
Electrophysiological correlates of encoding and retrieving emotional events.
Koenig, Stefanie; Mecklinger, Axel
2008-04-01
This study examined the impact of emotional content on encoding and retrieval processes. Event-related potentials were recorded in a source recognition memory task. During encoding, a posterior positivity for positive and negative pictures (250-450 ms) that presumably reflects attentional capturing of emotionally valenced stimuli was found. Additionally, positive events, which were also rated as less arousing than negative events, gave rise to anterior and posterior slow wave activity as compared with neutral and negative events and also showed enhanced recognition memory. It is assumed that positive low-arousing events enter controlled and elaborated encoding processes that are beneficial for recognition memory performance. The high arousal of negative events may interfere with controlled encoding mechanisms and attenuate item recognition and the quality of remembering. Moreover, topographically distinct late posterior negativities were obtained for the retrieval of the context features location and time that support the view that this component reflects processes in service of reconstructing the study episode by binding together contextual details with an item and that varies with the kind of episodic detail to be retrieved. (Copyright) 2008 APA.
Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn
2014-07-01
Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and subsequently more resistant to misinformation effects. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya.
Madroñero, Johana; Rodrigues, Silas P; Antunes, Tathiana F S; Abreu, Paolla M V; Ventura, José A; Fernandes, A Alberto R; Fernandes, Patricia Machado Bueno
2018-03-21
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Mattson, Julia T.; Wang, Tracy H.; de Chastelaine, Marianne; Rugg, Michael D.
2014-01-01
It has consistently been reported that “negative” subsequent memory effects—lower study activity for later remembered than later forgotten items—are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item–context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item–context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. PMID:23904464
Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S
2013-01-01
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.
Tremmel, Daniel M.; Resad, Sedat; Little, Christopher J.; Wesley, Cedric S.
2013-01-01
The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis. PMID:23861806
Wu, Panpan; Pan, Hui; Zhang, Congming; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhou, Ying; Ye, Bang-ce; Weaver, David T; Zhang, Lixin; Zhang, Buchang
2014-07-01
Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.
Emerging Directions in Emotional Episodic Memory.
Dolcos, Florin; Katsumi, Yuta; Weymar, Mathias; Moore, Matthew; Tsukiura, Takashi; Dolcos, Sanda
2017-01-01
Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory , (2) The Role of Emotion Regulation in the Impact of Emotion on Memory , (3) The Impact of Emotion on Associative or Relational Memory , and (4) The Role of Individual Differences in Emotional Memory . Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories.
Emerging Directions in Emotional Episodic Memory
Dolcos, Florin; Katsumi, Yuta; Weymar, Mathias; Moore, Matthew; Tsukiura, Takashi; Dolcos, Sanda
2017-01-01
Building upon the existing literature on emotional memory, the present review examines emerging evidence from brain imaging investigations regarding four research directions: (1) Social Emotional Memory, (2) The Role of Emotion Regulation in the Impact of Emotion on Memory, (3) The Impact of Emotion on Associative or Relational Memory, and (4) The Role of Individual Differences in Emotional Memory. Across these four domains, available evidence demonstrates that emotion- and memory-related medial temporal lobe brain regions (amygdala and hippocampus, respectively), together with prefrontal cortical regions, play a pivotal role during both encoding and retrieval of emotional episodic memories. This evidence sheds light on the neural mechanisms of emotional memories in healthy functioning, and has important implications for understanding clinical conditions that are associated with negative affective biases in encoding and retrieving emotional memories. PMID:29255432
NASA Astrophysics Data System (ADS)
Nawan Hasrimi, Adila; Budiharjo, Anto; Nur Jannah, Siti
2018-05-01
Vibrio parahaemolyticus is hallophilic gram-negative bacteria that live as natural inhabitant in aquatic environment. All Vibrio parahaemolyticus strain known to have thermolabile hemolysin encoded by tlh gene as species marker. Thermostable direct hemolysin encoded by tdh gene is responsible for regulating virulence factor in Vibrio parhaemolyticus. Aim of this research is to detect tlh and tdh gene from water of L. vannamei aquaculture in Rembang regency. Colonies of green-blueish bacteria grew from isolation of L. vannamei aquaculture water in CD-VP media which was identified as Vibrio parahaemolyticus. Colonies of V. parahaemolyticus grew to be small and green-blueish bacteria colonies in TCBS agar. Result of molecular analysis showed that bacteria isolated from water sample are specifically identified as Vibrio parahaemolyticus bacteria by the detection of tlh gene. Vibrio parahaemolyticus isolated from water of L. vannamei aquaculture detected as tdh negative that indicates tdh gene is not present in isolated bacteria. Vibrio parahaemolyticus isolate were cultured in Wagatsuma agar for tdh gene confirmation test that showed Kanagawa negative result, which indicated that V. parahaemolyticus did not produce thermostable direct hemolysin. These results showed that Vibrio parahaemolyticus isolated from aquatic environment of L. vannamei aquaculture in Rembang regency did not show virulence factors.
Effect of post-encoding emotion on recollection and familiarity for pictures.
Wang, Bo; Ren, Yanju
2017-07-01
Although prior studies have examined the effect of post-encoding emotional arousal on recognition memory for words, it is unknown whether the enhancement effect observed on words generalizes to pictures. Furthermore, prior studies using words have showed that the effect of emotional arousal can be modulated by stimuli valence and delay in emotion induction, but it is unclear whether such modulation can extend to pictures and whether other factors such as encoding method (incidental vs. intentional encoding) can be modulatory. Five experiments were conducted to answer these questions. In Experiment 1, participants encoded a list of neutral and negative pictures and then watched a 3-min neutral or negative video. The delayed test showed that negative arousal impaired recollection regardless of picture valence but had no effect on familiarity. Experiment 2 replicated the above findings. Experiment 3 was similar to Experiment 1 except that participants watched a 3-min neutral, negative, or positive video and conducted free recall before the recognition test. Unlike the prior two experiments, the impairment effect of negative arousal disappeared. Experiment 4, where the free recall task was eliminated, replicated the results from Experiment 3. Experiment 5 replicated Experiments 1 and 2 and further showed that the impairment effects of negative arousal could be modulated by delay in emotion induction but not by encoding method or stimuli valence. Taken together, the current study suggests that the enhancement effect observed on words may not generalize to pictures.
Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei
2016-01-01
Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760
Acerbi, Enzo; Viganò, Elena; Poidinger, Michael; Mortellaro, Alessandra; Zelante, Teresa; Stella, Fabio
2016-01-01
T helper 17 (TH17) cells represent a pivotal adaptive cell subset involved in multiple immune disorders in mammalian species. Deciphering the molecular interactions regulating TH17 cell differentiation is particularly critical for novel drug target discovery designed to control maladaptive inflammatory conditions. Using continuous time Bayesian networks over a time-course gene expression dataset, we inferred the global regulatory network controlling TH17 differentiation. From the network, we identified the Prdm1 gene encoding the B lymphocyte-induced maturation protein 1 as a crucial negative regulator of human TH17 cell differentiation. The results have been validated by perturbing Prdm1 expression on freshly isolated CD4+ naïve T cells: reduction of Prdm1 expression leads to augmentation of IL-17 release. These data unravel a possible novel target to control TH17 polarization in inflammatory disorders. Furthermore, this study represents the first in vitro validation of continuous time Bayesian networks as gene network reconstruction method and as hypothesis generation tool for wet-lab biological experiments. PMID:26976045
Andresen, Vibeke; Pise-Masison, Cynthia A.; Sinha-Datta, Uma; Bellon, Marcia; Valeri, Valerio; Washington Parks, Robyn; Cecchinato, Valentina; Fukumoto, Risaku; Nicot, Christophe
2011-01-01
Disease development in human T-cell leukemia virus type 1 (HTLV-1)–infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein. Expressed separately, p13 localizes to the mitochondria, whereas in the presence of Tax, part of it is ubiquitinated, stabilized, and rerouted to the nuclear speckles. The p13 protein directly binds Tax, decreases Tax binding to the CBP/p300 transcriptional coactivator, and, by reducing Tax transcriptional activity, suppresses viral expression. Because Tax stabilizes its own repressor, these findings suggest that HTLV-1 has evolved a complex mechanism to control its own replication. Further, these results highlight the importance of studying the function of the HTLV-1 viral proteins, not only in isolation, but also in the context of full viral replication. PMID:21677314
Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency.
Nett, Isabelle Re; Mulas, Carla; Gatto, Laurent; Lilley, Kathryn S; Smith, Austin
2018-06-12
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Sawada, Yoshiaki; Umetsu, Asami; Komatsu, Yuki; Kitamura, Jun; Suzuki, Hiroyuki; Asami, Tadao; Fukuda, Machiko; Honda, Ichiro; Mitsuhashi, Wataru; Nakajima, Masatoshi; Toyomasu, Tomonobu
2012-01-01
DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.
Identification of a negative regulator of gibberellin action, HvSPY, in barley.
Robertson, M; Swain, S M; Chandler, P M; Olszewski, N E
1998-01-01
To broaden our understanding of the molecular mechanisms of gibberellin (GA) action, we isolated a spindly clone (HvSPY) from barley cultivar Himalaya and tested whether the HvSPY protein would modulate GA action in barley aleurone. The HvSPY cDNA showed high sequence identity to Arabidopsis SPY along its entire length, and the barley protein functionally complemented the spy-3 mutation. HvSPY and SPY proteins showed sequence relatedness with animal O-linked N-acetylglucosamine transferases (OGTs), suggesting that they may also have OGT activity. HvSPY has a locus distinct from that of Sln, a mutation that causes the constitutive GA responses of slender barley, which phenotypically resembles Arabidopsis spy mutants. The possibility that the HvSPY gene encodes a negative regulator of GA action was tested by expressing HvSPY in a barley aleurone transient assay system. HvSPY coexpression largely abolished GA3-induced activity of an alpha-amylase promoter. Surprisingly, HvSPY coexpression increased reporter gene activity from an abscisic acid (ABA)-inducible gene promoter (dehydrin), even in the absence of exogenous ABA. These results show that HvSPY modulates the transcriptional activities of two hormonally regulated promoters: negatively for a GA-induced promoter and positively for an ABA-induced promoter. PMID:9634587
Wang, Huan; Seo, Jang-Kyun; Gao, Shang; Cui, Xinping; Jin, Hailing
2017-01-01
Summary Plants fine-tune their sophisticated immunity systems in response to pathogen infections. We previously showed that AtlsiRNA-1, a bacteria-induced plant endogenous small interfering RNA, silences the AtRAP gene, which encodes a putative RNA binding protein.In this study, we demonstrate that AtRAP functions as a negative regulator in plant immunity by characterizing molecular and biological responses of the knockout mutant and overexpression lines of AtRAP upon bacterial infection.AtRAP is localized in chloroplasts and physically interacts with Low Sulfur Upregulated 2 (LSU2), which positively regulates plant defense. Our results suggest that AtRAP negatively regulates defense responses by suppressing LSU2 through physical interaction. We also detected downregulation of the transcription factor GOLDEN2-LIKE 1 (GLK1) in atrap-1 using microarray analysis. The glk1 glk2 double mutant showed enhanced resistance to Pseudomonas syringae pv. tomato, which is consistent with a previous study showing enhanced resistance of a glk1 glk2 double mutant to Hyaloperonospora arabidopsidis.Taken together, our data suggest that silencing of AtRAP by AtlsiRNA-1 upon bacterial infection triggers defense responses through regulation of LSU2 and GLK1. PMID:28656601
Enhanced Right Amygdala Activity in Adolescents during Encoding of Positively-Valenced Pictures
Vasa, Roma A.; Pine, Daniel S.; Thorn, Julia M.; Nelson, Tess E.; Spinelli, Simona; Nelson, Eric; Maheu, Francoise S.; Ernst, Monique; Bruck, Maggie; Mostofsky, Stewart H.
2010-01-01
While studies among adults implicate the amygdala and interconnecting brain regions in encoding emotional stimuli, few studies have examined whether developmental changes occur within this emotional-memory network during adolescence. The present study examined whether adolescents and adults differentially engaged the amygdala and hippocampus during successful encoding of emotional pictures, with either positive or negative valence. Eighteen adults and twelve adolescents underwent event-related fMRI while encoding emotional pictures. Approximately 30 minutes later, outside the scanner, subjects were asked to recall the pictures seen during the scan. Age group differences in brain activity in the amygdala and hippocampus during encoding of the pictures that were later successfully and unsuccessfully recalled were separately compared for the positive and negative pictures. Adolescents, relative to adults, demonstrated enhanced activity in the right amygdala during encoding of positive pictures that were later recalled compared to not recalled. There were no age group differences in amygdala or hippocampal activity during successful encoding of negative pictures. The findings of preferential activity within the adolescent right amygdala during successful encoding of positive pictures may have implications for the increased reward and novelty seeking behavior, as well as elevated rates of psychopathology, observed during this distinct developmental period. PMID:21127721
Rice, Gillian I; Bond, Jacquelyn; Asipu, Aruna; Brunette, Rebecca L; Manfield, Iain W; Carr, Ian M; Fuller, Jonathan C; Jackson, Richard M; Lamb, Teresa; Briggs, Tracy A; Ali, Manir; Gornall, Hannah; Couthard, Lydia R; Aeby, Alec; Attard-Montalto, Simon P; Bertini, Enrico; Bodemer, Christine; Brockmann, Knut; Brueton, Louise A; Corry, Peter C; Desguerre, Isabelle; Fazzi, Elisa; Cazorla, Angels Garcia; Gener, Blanca; Hamel, Ben C J; Heiberg, Arvid; Hunter, Matthew; van der Knaap, Marjo S; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre G; Lourenco, Charles M; Marom, Daphna; McDermott, Michael F; van der Merwe, William; Orcesi, Simona; Prendiville, Julie S; Rasmussen, Magnhild; Shalev, Stavit A; Soler, Doriette M; Shinawi, Marwan; Spiegel, Ronen; Tan, Tiong Y; Vanderver, Adeline; Wakeling, Emma L; Wassmer, Evangeline; Whittaker, Elizabeth; Lebon, Pierre; Stetson, Daniel B; Bonthron, David T; Crow, Yanick J
2009-07-01
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
Rice, Gillian I; Bond, Jacquelyn; Asipu, Aruna; Brunette, Rebecca L; Manfield, Iain W; Carr, Ian M; Fuller, Jonathan C; Jackson, Richard M; Lamb, Teresa; Briggs, Tracy A; Ali, Manir; Gornall, Hannah; Couthard, Lydia R; Aeby, Alec; Attard-Montalto, Simon P; Bertini, Enrico; Bodemer, Christine; Brockmann, Knut; Brueton, Louise A; Corry, Peter C; Desguerre, Isabelle; Fazzi, Elisa; Cazorla, Angels Garcia; Gener, Blanca; Hamel, Ben C J; Heiberg, Arvid; Hunter, Matthew; van der Knaap, Marjo S; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre G; Lourenco, Charles M; Marom, Daphna; McDermott, Michael F; van der Merwe, William; Orcesi, Simona; Prendiville, Julie S; Rasmussen, Magnhild; Shalev, Stavit A; Soler, Doriette M; Shinawi, Marwan; Spiegel, Ronen; Tan, Tiong Y; Vanderver, Adeline; Wakeling, Emma L; Wassmer, Evangeline; Whittaker, Elizabeth; Lebon, Pierre; Stetson, Daniel B; Bonthron, David T; Crow, Yanick J
2014-01-01
Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response. PMID:19525956
Tecalco-Cruz, Angeles C.; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina
2012-01-01
The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified. PMID:22674574
Tecalco-Cruz, Angeles C; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina
2012-08-03
The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified.
Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.
2012-01-01
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongchang; Zhang, Xinyu; Zhu, Shouhong
Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity.more » Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton. - Highlights: • GhSARP1 expression was regulated by various abiotic stresses. • GhSARP1 have E3 ligase activity in vitro and locate on the plasma membrane. • Overexpression of GhSARP1 in Arabidopsis reduced the salt tolerance.« less
Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan
2016-10-01
Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.
Weafer, Jessica; Gallo, David A; de Wit, Harriet
2014-01-01
Stimulant drugs facilitate both encoding and retrieval of salient information in laboratory animals, but less is known about their effects on memory for emotionally salient visual images in humans. The current study investigated dextroamphetamine (AMP) effects on memory for emotional pictures in healthy humans, by administering the drug only at encoding, only at retrieval, or at both encoding and retrieval. During the encoding session, all participants viewed standardized positive, neutral, and negative pictures from the International Affective Picture System (IAPS). 48 hours later they attended a retrieval session testing their cued recollection of these stimuli. Participants were randomly assigned to one of four conditions (N=20 each): condition AP (20 mg AMP at encoding and placebo (PL) at retrieval); condition PA (PL at encoding and AMP at retrieval); condition AA (AMP at encoding and retrieval); or condition PP (PL at encoding and retrieval). Amphetamine produced its expected effects on physiological and subjective measures, and negative pictures were recollected more frequently than neutral pictures. However, contrary to hypotheses, AMP did not affect recollection for positive, negative, or neutral stimuli, whether it was administered at encoding, retrieval, or at both encoding and retrieval. Moreover, recollection accuracy was not state-dependent. Considered in light of other recent drug studies in humans, this study highlights the sensitivity of drug effects to memory testing conditions and suggests future strategies for translating preclinical findings to human behavioral laboratories.
Weafer, Jessica; Gallo, David A.; de Wit, Harriet
2014-01-01
Stimulant drugs facilitate both encoding and retrieval of salient information in laboratory animals, but less is known about their effects on memory for emotionally salient visual images in humans. The current study investigated dextroamphetamine (AMP) effects on memory for emotional pictures in healthy humans, by administering the drug only at encoding, only at retrieval, or at both encoding and retrieval. During the encoding session, all participants viewed standardized positive, neutral, and negative pictures from the International Affective Picture System (IAPS). 48 hours later they attended a retrieval session testing their cued recollection of these stimuli. Participants were randomly assigned to one of four conditions (N = 20 each): condition AP (20 mg AMP at encoding and placebo (PL) at retrieval); condition PA (PL at encoding and AMP at retrieval); condition AA (AMP at encoding and retrieval); or condition PP (PL at encoding and retrieval). Amphetamine produced its expected effects on physiological and subjective measures, and negative pictures were recollected more frequently than neutral pictures. However, contrary to hypotheses, AMP did not affect recollection for positive, negative, or neutral stimuli, whether it was administered at encoding, retrieval, or at both encoding and retrieval. Moreover, recollection accuracy was not state-dependent. Considered in light of other recent drug studies in humans, this study highlights the sensitivity of drug effects to memory testing conditions and suggests future strategies for translating preclinical findings to human behavioral laboratories. PMID:24587355
Gristwood, Tamzin; Fineran, Peter C; Everson, Lee; Salmond, George P C
2008-07-01
The Gram-negative enterobacterium, Serratia sp. ATCC 39006 synthesizes several secondary metabolites, including prodigiosin (Pig) and a carbapenem antibiotic (Car). A complex hierarchical network of regulatory proteins control Pig and Car production. In this study we characterize a TetR family regulator, PigZ, which represses transcription of a divergently transcribed putative resistance-nodulation-cell-division (RND) efflux pump, encoded by zrp (PigZ repressed pump) ADBC, via direct binding to the zrpA-pigZ intergenic region. Unusually, this putative RND pump contains two predicted membrane fusion proteins (MFPs), ZrpA and ZrpD. A mutation in pigZ resulted in multiple phenotypic changes, including exoenzyme production, motility and differential regulation of Pig and Car production. A polar suppressor mutation, within zrpA, restored all tested phenotypes to parental strain levels, indicating that the changes observed are due to the increase in expression of ZrpADBC in the absence of the repressor, PigZ. Genomic deletions of zrpA and zrpD indicate that the MFP ZrpD, but not ZrpA, is essential for activity of the putative pump. Bioinformatic analysis revealed that putative RND efflux pumps encoding two MFP components are not uncommon, particularly among plant-associated, Gram-negative bacteria. In addition, based on phylogenetic analysis, we propose that these pairs of MFPs consist of two distinct subtypes.
Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun
2017-10-01
This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity.
Johnson, Kaeli C M; Xia, Shitou; Feng, Xiaoqi; Li, Xin
2015-08-01
SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations.
Mortimer, Leanne; Moreau, France; MacDonald, Justin A; Chadee, Kris
2016-10-01
Inflammasomes are positioned to rapidly escalate the intensity of inflammation by activating interleukin (IL)-1β, IL-18 and cell death by pyroptosis. However, negative regulation of inflammasomes remains poorly understood, as is the signaling cascade that dampens inflammasome activity. We found that rapid NLRP3 inflammasome activation was directly inhibited by protein kinase A (PKA), which was induced by prostaglandin E2 (PGE2) signaling via the PGE2 receptor E-prostanoid 4 (EP4). PKA directly phosphorylated the cytoplasmic receptor NLRP3 and attenuated its ATPase function. We found that Ser295 in human NLRP3 was critical for rapid inhibition and PKA phosphorylation. Mutations in NLRP3-encoding residues adjacent to Ser295 have been linked to the inflammatory disease CAPS (cryopyrin-associated periodic syndromes). NLRP3-S295A phenocopied the human CAPS mutants. These data suggest that negative regulation at Ser295 is critical for restraining the NLRP3 inflammasome and identify a molecular basis for CAPS-associated NLRP3 mutations.
Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury
Logan, Mary A.; Hackett, Rachel; Doherty, Johnna; Sheehan, Amy; Speese, Sean D.; Freeman, Marc R.
2012-01-01
Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function, and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial reponses to axon injury are molecularly encoded by unique isoforms of the Drosophila engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a novel immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II/Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates a balance of opposing Draper-I/-II signaling events is essential to maintain glial sensitivity to brain injury. PMID:22426252
Chen, Xiaobo; Wang, Ji; Zhu, Ming; Jia, Haihong; Liu, Dongdong; Hao, Lili; Guo, Xingqi
2015-11-01
Mitogen-activated protein kinase (MAPK) cascades mediate various responses in plants. As the top component, MAP3Ks deserve more attention; however, little is known about the role of MAP3Ks, especially in cotton, a worldwide economic crop. In this study, a gene encoding a putative Raf-like MAP3K, GhMAP3K40, was isolated. GhMAP3K40 expression was induced by stress and multiple signal molecules. The plants overexpressing GhMAP3K40 had an enhanced tolerance to drought and salt stress at the germination stage. However, at the seedling stage, the transgenic plants suffered more severe damage after drought, exposure to pathogens and oxidative stress. The defence-related genes and the antioxidant system were activated in transgenic palnts, suggesting that GhMAP3K40 positively regulate the defence response. The transgenic plants were less able to prevent pathogenic invasion, which was due to defects in the cell structure of the leaves. The root system of the control plants were stronger compared with the transgenic plants. These results indicated a negative role of GhMAP3K40 in growth and development and GhMAP3K40 possibly caused the defects by down-regulating the lignin biosynthesis. Overall, these results suggest that GhMAP3K40 may positively regulate defence response but cause reduced tolerance to biotic and abiotic stress by negatively regulating growth and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lagares, Antonio; Borella, Germán Ceizel; Linne, Uwe; Becker, Anke
2017-01-01
ABSTRACT Riboregulation has a major role in the fine-tuning of multiple bacterial processes. Among the RNA players, trans-encoded untranslated small RNAs (sRNAs) regulate complex metabolic networks by tuning expression from multiple target genes in response to numerous signals. In Sinorhizobium meliloti, over 400 sRNAs are expressed under different stimuli. The sRNA MmgR (standing for Makes more granules Regulator) has been of particular interest to us since its sequence and structure are highly conserved among the alphaproteobacteria and its expression is regulated by the amount and quality of the bacterium's available nitrogen source. In this work, we explored the biological role of MmgR in S. meliloti 2011 by characterizing the effect of a deletion of the internal conserved core of mmgR (mmgRΔ33–51). This mutation resulted in larger amounts of polyhydroxybutyrate (PHB) distributed into more intracellular granules than are found in the wild-type strain. This phenotype was expressed upon cessation of balanced growth owing to nitrogen depletion in the presence of surplus carbon (i.e., at a carbon/nitrogen molar ratio greater than 10). The normal PHB accumulation was complemented with a wild-type mmgR copy but not with unrelated sRNA genes. Furthermore, the expression of mmgR limited PHB accumulation in the wild type, regardless of the magnitude of the C surplus. Quantitative proteomic profiling and quantitative reverse transcription-PCR (qRT-PCR) revealed that the absence of MmgR results in a posttranscriptional overexpression of both PHB phasin proteins (PhaP1 and PhaP2). Together, our results indicate that the widely conserved alphaproteobacterial MmgR sRNA fine-tunes the regulation of PHB storage in S. meliloti. IMPORTANCE High-throughput RNA sequencing has recently uncovered an overwhelming number of trans-encoded small RNAs (sRNAs) in diverse prokaryotes. In the nitrogen-fixing alphaproteobacterial symbiont of alfalfa root nodules Sinorhizobium meliloti, only four out of hundreds of identified sRNA genes have been functionally characterized. Thus, uncovering the biological role of sRNAs currently represents a major issue and one that is particularly challenging because of the usually subtle quantitative regulation contributed by most characterized sRNAs. Here, we have characterized the function of the broadly conserved alphaproteobacterial sRNA gene mmgR in S. meliloti. Our results strongly suggest that mmgR encodes a negative regulator of the accumulation of polyhydroxybutyrate, the major carbon and reducing power storage polymer in S. meliloti cells growing under conditions of C/N overbalance. PMID:28167519
The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer.
de Souza, F S; Gawantka, V; Gómez, A P; Delius, H; Ang, S L; Niehrs, C
1999-01-01
The anterior endomesoderm of the early Xenopus gastrula is a part of Spemann's organizer and is important for head induction. Here we describe Xblimp1, which encodes a zinc finger transcriptional repressor expressed in the anterior endomesoderm. Xblimp1 represses trunk mesoderm and induces anterior endomesoderm in a cooperative manner with the pan-endodermal gene Mix.1. Furthermore, Xblimp1 can cooperate with the BMP inhibitor chordin to induce ectopic heads, while a dominant-negative Xblimp1 inhibits head formation. The head inducer cerberus is positively regulated by Xblimp1 and is able to rescue microcephalic embryos caused by dominant-negative Xblimp1. Our results indicate that Xblimp1 is required for anterior endomesodermal cell fate and head induction. PMID:10545117
Wang, Bo; Sun, Bukuan
2017-03-01
The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.
Recapitulation of Emotional Source Context during Memory Retrieval
Bowen, Holly J.; Kensinger, Elizabeth A.
2016-01-01
Recapitulation involves the reactivation of cognitive and neural encoding processes at retrieval. In the current study, we investigated the effects of emotional valence on recapitulation processes. Participants encoded neutral words presented on a background face or scene that was negative, positive or neutral. During retrieval, studied and novel neutral words were presented alone (i.e., without the scene or face) and participants were asked to make a remember, know or new judgment. Both the encoding and retrieval tasks were completed in the fMRI scanner. Conjunction analyses were used to reveal the overlap between encoding and retrieval processing. These results revealed that, compared to positive or neutral contexts, words that were recollected and previously encoded in a negative context showed greater encoding-to-retrieval overlap, including in the ventral visual stream and amygdala. Interestingly, the visual stream recapitulation was not enhanced within regions that specifically process faces or scenes but rather extended broadly throughout visual cortices. These findings elucidate how memories for negative events can feel more vivid or detailed than positive or neutral memories. PMID:27923474
Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter
2016-08-01
Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
A serine proteinase homologue, SPH-3, plays a central role in insect immunity.
Felföldi, Gabriella; Eleftherianos, Ioannis; Ffrench-Constant, Richard H; Venekei, István
2011-04-15
Numerous vertebrate and invertebrate genes encode serine proteinase homologues (SPHs) similar to members of the serine proteinase family, but lacking one or more residues of the catalytic triad. These SPH proteins are thought to play a role in immunity, but their precise functions are poorly understood. In this study, we show that SPH-3 (an insect non-clip domain-containing SPH) is of central importance in the immune response of a model lepidopteran, Manduca sexta. We examine M. sexta infection with a virulent, insect-specific, Gram-negative bacterium Photorhabdus luminescens. RNA interference suppression of bacteria-induced SPH-3 synthesis severely compromises the insect's ability to defend itself against infection by preventing the transcription of multiple antimicrobial effector genes, but, surprisingly, not the transcription of immune recognition genes. Upregulation of the gene encoding prophenoloxidase and the activity of the phenoloxidase enzyme are among the antimicrobial responses that are severely attenuated on SPH-3 knockdown. These findings suggest the existence of two largely independent signaling pathways controlling immune recognition by the fat body, one governing effector gene transcription, and the other regulating genes encoding pattern recognition proteins.
Liu, Tzu-Ling; Chen, Nai-Feng; Cheng, Shih-Kuen
2017-02-01
Emotional items are often remembered more clearly than neutral items. However, whether stimuli embedded in an emotional context are more resistant to directed forgetting than those presented in a neutral context remains unclear. This question was tested by recording event-related potentials (ERPs) in an item-method directed forgetting paradigm involving neutral words that were embedded in neutral or negative contexts. During the study phase, participants were asked to associate a neutral word with a negative or neutral picture. A remember (R) or forget (F) cue was then designated to indicate whether the word was a to-be-remembered (TBR) or to-be-forgotten (TBF) word. In the test phase, participants were asked to identify all previously presented old words regardless of the R/F cues. The behavioral results indicated a significant interaction between the valence of the encoding contexts and the R/F cues. The hit rate was lower for the TBR words encoded in negative contexts relative to those encoded in neutral contexts. No such valence effect was observed in the hit rates of the TBF words. For the ERP data, the R cues elicited a P3b-like effect that has been linked to the selective rehearsal of the TBR items. This effect was more sustained in the negative encoding context than in the neutral context. The F cues elicited a frontal positivity that has been linked to the active inhibition of the TBF words; however, this positivity was not modulated by the valence of the encoding context. The sustained P3b-like effect for the R cues in the negative encoding context might reflect a compensative encoding for the TBR words caused by the attention-capturing negative contexts. Therefore, we argue that the emotional context affected the selective elaboration of the TBR words; however, we also argue that there was no supportive evidence of an emotional effect on the forgetting of TBF items. Copyright © 2016 Elsevier B.V. All rights reserved.
Fouragnan, Elsa; Retzler, Chris; Philiastides, Marios G
2018-03-25
Learning occurs when an outcome differs from expectations, generating a reward prediction error signal (RPE). The RPE signal has been hypothesized to simultaneously embody the valence of an outcome (better or worse than expected) and its surprise (how far from expectations). Nonetheless, growing evidence suggests that separate representations of the two RPE components exist in the human brain. Meta-analyses provide an opportunity to test this hypothesis and directly probe the extent to which the valence and surprise of the error signal are encoded in separate or overlapping networks. We carried out several meta-analyses on a large set of fMRI studies investigating the neural basis of RPE, locked at decision outcome. We identified two valence learning systems by pooling studies searching for differential neural activity in response to categorical positive-versus-negative outcomes. The first valence network (negative > positive) involved areas regulating alertness and switching behaviours such as the midcingulate cortex, the thalamus and the dorsolateral prefrontal cortex whereas the second valence network (positive > negative) encompassed regions of the human reward circuitry such as the ventral striatum and the ventromedial prefrontal cortex. We also found evidence of a largely distinct surprise-encoding network including the anterior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal and electrophysiological evidence this meta-analysis points to a sequential and distributed encoding of different components of the RPE signal, with potentially distinct functional roles. © 2018 Wiley Periodicals, Inc.
The role of AIRE in human autoimmune disease.
Akirav, Eitan M; Ruddle, Nancy H; Herold, Kevan C
2011-01-01
The autoimmune regulator (AIRE) gene encodes a transcription factor involved in the presentation of tissue-restricted antigens during T-cell development in the thymus. Mutations of this gene lead to type 1 autoimmune polyglandular syndrome (APS-1), also termed autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is characterized by the clinical presentation of at least two of a triad of underlying disorders: Addison disease, hypoparathyroidism and chronic mucocutaneous candidiasis. This Review describes the process of positive and negative selection of developing T cells in the thymus and the role of AIRE as a regulator of peripheral antigen presentation. Furthermore, it addresses how mutations of this gene lead to the failure to eliminate autoreactive T cells, which can lead to clinical autoimmune syndromes.
Dysregulation of the Phosphatidylinositol 3-kinase Pathway in Thyroid Neoplasia
Paes, John E.; Ringel, Matthew D.
2008-01-01
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is an important regulator of many cellular events, including apoptosis, proliferation, and motility. Enhanced activation of this pathway can occur through several mechanisms, such as inactivation of its negative regulator, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and activating mutations and gene amplification of the gene encoding the catalytic subunit of PI3K (PIK3CA). These genetic abnormalities have been particularly associated with follicular thyroid neoplasia and anaplastic thyroid cancer, suggesting an important role for PI3K signaling in these disorders. In this review, the role of PI3K pathway activation in thyroid cancer will be discussed, with a focus on recent advances. PMID:18502332
Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.
2017-01-01
Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506
Li, Na; Yan, Yunhuan; Zhang, Angke; Gao, Jiming; Zhang, Chong; Wang, Xue; Hou, Gaopeng; Zhang, Gaiping; Jia, Jinbu; Zhou, En-Min; Xiao, Shuqi
2016-12-13
Many viruses encode microRNAs (miRNAs) that are small non-coding single-stranded RNAs which play critical roles in virus-host interactions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically impactful viruses in the swine industry. The present study sought to determine whether PRRSV encodes miRNAs that could regulate PRRSV replication. Four viral small RNAs (vsRNAs) were mapped to the stem-loop structures in the ORF1a, ORF1b and GP2a regions of the PRRSV genome by bioinformatics prediction and experimental verification. Of these, the structures with the lowest minimum free energy (MFE) values predicted for PRRSV-vsRNA1 corresponded to typical stem-loop, hairpin structures. Inhibition of PRRSV-vsRNA1 function led to significant increases in viral replication. Transfection with PRRSV-vsRNA1 mimics significantly inhibited PRRSV replication in primary porcine alveolar macrophages (PAMs). The time-dependent increase in the abundance of PRRSV-vsRNA1 mirrored the gradual upregulation of PRRSV RNA expression. Knockdown of proteins associated with cellular miRNA biogenesis demonstrated that Drosha and Argonaute (Ago2) are involved in PRRSV-vsRNA1 biogenesis. Moreover, PRRSV-vsRNA1 bound specifically to the nonstructural protein 2 (NSP2)-coding sequence of PRRSV genome RNA. Collectively, the results reveal that PRRSV encodes a functional PRRSV-vsRNA1 which auto-regulates PRRSV replication by directly targeting and suppressing viral NSP2 gene expression. These findings not only provide new insights into the mechanism of the pathogenesis of PRRSV, but also explore a potential avenue for controlling PRRSV infection using viral small RNAs.
Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee
2012-12-01
WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Moon, Kyung; Six, David A.; Lee, Hyun-Jung; Raetz, Christian R.H.; Gottesman, Susan
2013-01-01
Summary The PhoQ/PhoP two-component system activates many genes for lipopolysaccharide (LPS) modification when cells are grown at low Mg2+ concentrations. An additional target of PhoQ and PhoP is MgrR, an Hfq-dependent small RNA that negatively regulates expression of eptB, also encoding a protein that carries out LPS modification. Examination of LPS confirmed that MgrR effectively silences EptB; the phosphoethanolamine modification associated with EptB is found in ΔmgrR::kan but not mgrR+ cells. Sigma E has been reported to positively regulate eptB, although the eptB promoter does not have the expected Sigma E recognition motifs. The effects of Sigma E and deletion of mgrR on levels of eptB mRNA were independent, and the same 5′ end was found in both cases. In vitro transcription and the behavior of transcriptional and translational fusions demonstrate that Sigma E acts directly at the level of transcription initiation for eptB, from the same start point as Sigma 70. The results suggest that when Sigma E is active, synthesis of eptB transcript outstrips MgrR-dependent degradation; presumably the modification of LPS is important under these conditions. Adding to the complexity of eptB regulation is a second sRNA, ArcZ, which also directly and negatively regulates eptB. PMID:23659637
Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A
2009-04-01
The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.
Ye, Libin; Zheng, Xiaolin; Zheng, Hongjian
2014-04-01
The syp locus includes four genes encoding putative regulators, six genes encoding glycosyltransferases, two encoding export proteins, and six other genes encoding unidentified functional proteins associated with biofilm formation and symbiotic colonization. However, the individual functions of the respective genes remain unclear. Amino acid alignment indicates that sypQ is presumably involved in biosynthesizing poly-N-acetylglucosamine (PNAG), which is proposed to be a critical virulence factor in pathogen infection and is regarded as a target for protective immunity against a variety of Gram-negative/positive pathogens. However, no evidence showing that Vibrio parahaemolyticus also produces PNAG has been reported. Herein, the V. parahaemolyticus is confirmed to possess potential for producing PNAG for the first time. Our results indicated that gene sypQ is associated with PNAG biosynthesis and PNAG is involved in pathogen colonization. We propose that the function of pgaC in Escherichia coli could be taken over by sypQ from V. parahaemolyticus. We also tested whether PNAG can be used as a target against V. parahaemolyticus when it infects Pseudosciaena crocea. Our results showed that PNAG isolated from V. parahaemolyticus is an effective agent for decreasing V. parahaemolyticus invasion, implying that PNAG could be used to develop an effective vaccine against V. parahaemolyticus infection.
Circadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway
Beaver, Laura Michelle; Hooven, Louisa Ada; Butcher, Shawn Michael; Krishnan, Natraj; Sherman, Katherine Alice; Chow, Eileen Shin-Yeu; Giebultowicz, Jadwiga Maria
2010-01-01
Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The ϵ-isoform of the PAR-domain protein 1 (Pdp1ε) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1ε increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and α-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity. PMID:20348229
2014-01-01
Background Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Methods Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. Results We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Conclusions Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology. PMID:24731550
Ambrosio, Maria Raffaella; Navari, Mohsen; Di Lisio, Lorena; Leon, Eduardo Andres; Onnis, Anna; Gazaneo, Sara; Mundo, Lucia; Ulivieri, Cristina; Gomez, Gonzalo; Lazzi, Stefano; Piris, Miguel Angel; Leoncini, Lorenzo; De Falco, Giulia
2014-01-01
Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.
Li, Mingzhuo; Li, Yanzhi; Guo, Lili; Gong, Niandi; Pang, Yongzheng; Jiang, Wenbo; Liu, Yajun; Jiang, Xiaolan; Zhao, Lei; Wang, Yunsheng; Xie, De-Yu; Gao, Liping; Xia, Tao
2017-01-01
Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is characterized to encode a R2R3-MYB transcription factor. It is shown to repressively control the phenylpropanoid and shikimate pathway. PMID:28659938
Negative words enhance recognition in nonclinical high dissociators: An fMRI study.
de Ruiter, Michiel B; Veltman, Dick J; Phaf, R Hans; van Dyck, Richard
2007-08-01
Memory encoding and retrieval were studied in a nonclinical sample of participants that differed in the amount of reported dissociative experiences (trait dissociation). Behavioral as well as functional imaging (fMRI) indices were used as convergent measures of memory functioning. In a deep vs. shallow encoding paradigm, the influence of dissociative style on elaborative and avoidant encoding was studied, respectively. Furthermore, affectively neutral and negative words were presented, to test whether the effects of dissociative tendencies on memory functioning depended on the affective valence of the stimulus material. Results showed that (a) deep encoding of negative vs. neutral stimuli was associated with higher levels of semantic elaboration in high than in low dissociators, as indicated by increased levels of activity in hippocampus and prefrontal cortex during encoding and higher memory performance during recognition, (b) high dissociators were generally characterized by higher levels of conscious recollection as indicated by increased activity of the hippocampus and posterior parietal areas during recognition, (c) nonclinical high dissociators were not characterized by an avoidant encoding style. These results support the notion that trait dissociation in healthy individuals is associated with high levels of elaborative encoding, resulting in high levels of conscious recollection. These abilities, in addition, seem to depend on the salience of the presented stimulus material.
Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F
2000-01-01
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.
Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Lundqvist, Katarina; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2012-01-01
Tissue factor pathway inhibitor 2 (TFPI-2) is a matrix-associated serine protease inhibitor with an enigmatic function in vivo. Here, we describe that TFPI-2 is present in fibrin of wounds and also expressed in skin, where it is up-regulated upon wounding. Neutrophil elastase cleaved TFPI-2, and a C-terminal fragment was found to bind to bacteria. Similarly, a prototypic peptide representing this C-terminal part, EDC34, bound to bacteria and bacterial lipopolysaccharide, and induced bacterial permeabilization. The peptide also induced leakage in artificial liposomes, and displayed a random coil conformation upon interactions with liposomes as well as lipopolysaccharide. EDC34 was antibacterial against both Gram-negative and Gram-positive bacteria in physiological buffer conditions. The results demonstrate that the C-terminus of TFPI-2 encodes for antimicrobial activity, and may be released during wounding.
Reinhart, Alexandria A.; Powell, Daniel A.; Nguyen, Angela T.; O'Neill, Maura; Djapgne, Louise; Wilks, Angela; Ernst, Robert K.
2014-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence. PMID:25510881
NF-κB deregulation in Hodgkin lymphoma.
Weniger, Marc A; Küppers, Ralf
2016-08-01
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genes affecting sensitivity to serotonin in Caenorhabditis elegans.
Schafer, W R; Sanchez, B M; Kenyon, C J
1996-07-01
Regulating the response of a postsynaptic cell to neurotransmitter is an important mechanism for controlling synaptic strength, a process critical to learning. We have begun to define and characterize genes that may control sensitivity to the neurotransmitter serotonin in the nematode Caenorhabditis elegans by identifying serotonin-hypersensitive mutants. We reported previously that mutations in the gene unc-2, which encodes a putative calcium channel subunit, result in hypersensitivity to serotonin. Here we report that mutants defective in the unc-36 gene, which encodes a homologue of a calcium channel auxiliary subunit, are also serotonin-hypersensitive. Moreover, the unc-36 gene appears to be required in the same cells as unc-2 for control of the same behaviors. Mutations in several other genes, including unc-8, unc-10, unc-20, unc-35, unc-75, unc-77, and snt-1 also result in hypersensitivity to serotonin. Several of these mutations have previously been shown to confer resistance to acetylcholinesterase inhibitors, suggesting that they may affect acetylcholine release. Moreover, we found that mutations that decrease acetylcholine synthesis cause defective egg-laying and serotonin hypersensitivity. Thus, acetylcholine appears to negatively regulate the response to serotonin and may participate in the process of serotonin desensitization.
Genes Affecting Sensitivity to Serotonin in Caenorhabditis Elegans
Schafer, W. R.; Sanchez, B. M.; Kenyon, C. J.
1996-01-01
Regulating the response of a postsynaptic cell to neurotransmitter is an important mechanism for controlling synaptic strength, a process critical to learning. We have begun to define and characterize genes that may control sensitivity to the neurotransmitter serotonin in the nematode Caenorhabditis elegans by identifying serotonin-hypersensitive mutants. We reported previously that mutations in the gene unc-2, which encodes a putative calcium channel subunit, result in hypersensitivity to serotonin. Here we report that mutants defective in the unc-36 gene, which encodes a homologue of a calcium channel auxiliary subunit, are also serotonin-hypersensitive. Moreover, the unc-36 gene appears to be required in the same cells as unc-2 for control of the same behaviors. Mutations in several other genes, including unc-8, unc-10, unc-20, unc-35, unc-75, unc-77, and snt-1 also result in hypersensitivity to serotonin. Several of these mutations have previously been shown to confer resistance to acetylcholinesterase inhibitors, suggesting that they may affect acetylcholine release. Moreover, we found that mutations that decrease acetylcholine synthesis cause defective egg-laying and serotonin hypersensitivity. Thus, acetylcholine appears to negatively regulate the response to serotonin and may participate in the process of serotonin desensitization. PMID:8807295
Ligerot, Yasmine; de Saint Germain, Alexandre; Troadec, Christelle; Citerne, Sylvie; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Estelle, Mark; Debellé, Frédéric
2017-01-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner. PMID:29220348
Ligerot, Yasmine; de Saint Germain, Alexandre; Waldie, Tanya; Troadec, Christelle; Citerne, Sylvie; Kadakia, Nikita; Pillot, Jean-Paul; Prigge, Michael; Aubert, Grégoire; Bendahmane, Abdelhafid; Leyser, Ottoline; Estelle, Mark; Debellé, Frédéric; Rameau, Catherine
2017-12-01
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.
Zhu, Y; Lin, E C
1988-05-01
L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.
Zhu, Y; Lin, E C
1988-01-01
L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341
Cloning of cardiac, kidney, and brain promoters of the feline ncx1 gene.
Barnes, K V; Cheng, G; Dawson, M M; Menick, D R
1997-04-25
The Na+-Ca2+ exchanger (NCX1) plays a major role in calcium efflux and therefore in the control and regulation of intracellular calcium in the heart. The exchanger has been shown to be regulated at several levels including transcription. NCX1 mRNA levels are up-regulated in both cardiac hypertrophy and failure. In this work, the 5'-end of the ncx1 gene has been cloned to study the mechanisms that mediate hypertrophic stimulation and cardiac expression. The feline ncx1 gene has three exons that encode 5'-untranslated sequences that are under the control of three tissue-specific promoters. The cardiac promoter drives expression in cardiocytes, but not in mouse L cells. Although it contains at least one enhancer (-2000 to -1250 base pairs (bp)) and one or more negative elements (-1250 to -250 bp), a minimum promoter (-250 to +200 bp) is sufficient for cardiac expression and alpha-adrenergic stimulation.
Shedding light on the role of AT-hook/PPC domain protein in Arabidopsis thaliana
Ng, Kian-Hong
2010-01-01
Flower reproductive development is a complex process involving well-coordinated control of transcriptional regulation cascades. AGAMOUS (AG) plays an instrumental role in the specification and differentiation of reproductive organs in Arabidopsis thaliana. We recently characterized a downstream target gene of AG, GIANT KILLER (GIK), which encodes for an AT-hook/plants and prokaryotes conserved (PPC) domain protein. We found that overexpression of GIK leads to severe reproductive defects and downregulation of genes involved in patterning and differentiation of reproductive floral organs. We showed that GIK is a matrix protein, and GIK-mediated gene regulation requires binding of GIK to matrix associated region (MAR) of the target genes. We further showed that GIK-mediated negative regulation of one of the target genes, ETTIN (ETT), is associated with changes of chromatin histone modification at ETT promoter, suggesting that GIK acts as a gene expression modulator through chromatin organization. PMID:20173412
INITIATION AND REGULATION OF PARAMYXOVIRUS TRANSCRIPTION AND REPLICATION
Noton, Sarah L.; Fearns, Rachel
2015-01-01
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle. PMID:25683441
Initiation and regulation of paramyxovirus transcription and replication.
Noton, Sarah L; Fearns, Rachel
2015-05-01
The paramyxovirus family has a genome consisting of a single strand of negative sense RNA. This genome acts as a template for two distinct processes: transcription to generate subgenomic, capped and polyadenylated mRNAs, and genome replication. These viruses only encode one polymerase. Thus, an intriguing question is, how does the viral polymerase initiate and become committed to either transcription or replication? By answering this we can begin to understand how these two processes are regulated. In this review article, we present recent findings from studies on the paramyxovirus, respiratory syncytial virus, which show how its polymerase is able to initiate transcription and replication from a single promoter. We discuss how these findings apply to other paramyxoviruses. Then, we examine how trans-acting proteins and promoter secondary structure might serve to regulate transcription and replication during different phases of the paramyxovirus replication cycle. Copyright © 2015 Elsevier Inc. All rights reserved.
Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel
2009-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.
Rey, Thomas; Bonhomme, Maxime; Chatterjee, Abhishek; Gavrin, Aleksandr; Toulotte, Justine; Yang, Weibing; André, Olivier; Jacquet, Christophe; Schornack, Sebastian
2017-12-16
The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Porter, Stephen; ten Brinke, Leanne; Riley, Sean N; Baker, Alysha
2014-01-01
We examined the relation between emotion and susceptibility to misinformation using a novel paradigm, the ambiguous stimuli affective priming (ASAP) paradigm. Participants (N = 88) viewed ambiguous neutral images primed either at encoding or retrieval to be interpreted as either highly positive or negative (or neutral/not primed). After viewing the images, they either were asked misleading or non-leading questions. Following a delay, memory accuracy for the original images was assessed. Results indicated that any emotional priming at encoding led to a higher susceptibility to misinformation relative to priming at recall. In particular, inducing a negative interpretation of the image at encoding led to an increased susceptibility of false memories for major misinformation (an entire object not actually present in the scene). In contrast, this pattern was reversed when priming was used at recall; a negative reinterpretation of the image decreased memory distortion relative to unprimed images. These findings suggest that, with precise experimental control, the experience of emotion at event encoding, in particular, is implicated in false memory susceptibility.
NASA Astrophysics Data System (ADS)
Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd
2015-09-01
Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.
A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus.
Nishida, Hanna; Tanaka, Sachiko; Handa, Yoshihiro; Ito, Momoyo; Sakamoto, Yuki; Matsunaga, Sachihiro; Betsuyaku, Shigeyuki; Miura, Kenji; Soyano, Takashi; Kawaguchi, Masayoshi; Suzaki, Takuya
2018-02-05
Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.
Negative emotional content disrupts the coherence of episodic memories.
Bisby, James A; Horner, Aidan J; Bush, Daniel; Burgess, Neil
2018-02-01
Events are thought to be stored in episodic memory as coherent representations, in which the constituent elements are bound together so that a cue can trigger reexperience of all elements via pattern completion. Negative emotional content can strongly influence memory, but opposing theories predict strengthening or weakening of memory coherence. Across a series of experiments, participants imagined a number of person-location-object events with half of the events including a negative element (e.g., an injured person), and memory was tested across all within event associations. We show that the presence of a negative element reduces memory for associations between event elements, including between neutral elements encoded after a negative element. The presence of a negative element reduces the coherence with which a multimodal event is remembered. Our results, supported by a computational model, suggest that coherent retrieval from neutral events is supported by pattern completion, but that negative content weakens associative encoding which impairs this process. Our findings have important implications for understanding the way traumatic events are encoded and support therapeutic strategies aimed at restoring associations between negative content and its surrounding context. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A
2015-09-23
Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually "tuned-in" to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control "informational capture" at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. Copyright © 2015 the authors 0270-6474/15/3513125-09$15.00/0.
Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.
2015-01-01
Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually “tuned-in” to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control “informational capture” at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. PMID:26400942
Sympathetic arousal increases a negative memory bias in young women with low sex hormone levels
Nielsen, Shawn E.; Barber, Sarah J.; Chai, Audrey; Clewett, David V.; Mather, Mara
2015-01-01
Emotionally arousing events are typically better attended to and remembered than neutral ones. Current theories propose that arousal-induced increases in norepinephrine during encoding bias attention and memory in favor of affectively salient stimuli. Here, we tested this hypothesis by manipulating levels of physiological arousal prior to encoding and examining how it influenced memory for emotionally salient images, particularly those that are negative rather than positive in valence. We also tested whether sex steroid hormones interact with noradrenergic activity to influence these emotional memory biases in women. Healthy naturally cycling women and women on hormonal contraception completed one of the following physiological arousal manipulations prior to viewing a series of negative, positive and neutral images: 1) Immediate handgrip arousal – isometric handgrip immediately prior to encoding, 2) Residual handgrip arousal – isometric handgrip 15 min prior to encoding, or 3) No handgrip. Sympathetic arousal was measured throughout the session via pupil diameter changes. Levels of 17β-estradiol and progesterone were measured via salivary samples. Memory performance was assessed approximately 10 minutes after encoding using a surprise free recall test. The results indicated that handgrip successfully increased sympathetic arousal compared to the control task. Under immediate handgrip arousal, women showed enhanced memory for negative images over positive images; this pattern was not observed in women assigned to the residual and no-handgrip arousal conditions. Additionally, under immediate handgrip arousal, both high estradiol and progesterone levels attenuated the memory bias for negative over positive images. Follow-up hierarchical linear models revealed consistent effects when accounting for trial-by-trial variability in normative International Affective Picture System valence and arousal ratings. These findings suggest that heightened sympathetic arousal interacts with estradiol and progesterone levels during encoding to increase the mnemonic advantage of negative over positive emotional material. PMID:26276087
Gilli, Francesca; Navone, Nicole Désirée; Perga, Simona; Marnetto, Fabiana; Caldano, Marzia; Capobianco, Marco; Pulizzi, Annalisa; Malucchi, Simona; Bertolotto, Antonio
2011-07-01
In a recent genome-wide transcriptional analysis, we identified a gene signature for multiple sclerosis (MS), which reverted back to normal during pregnancy. Reversion was particularly evident for 7 genes: SOCS2, TNFAIP3, NR4A2, CXCR4, POLR2J, FAM49B, and STAG3L1, most of which encode negative regulators of inflammation. To corroborate dysregulation of genes, to evaluate the prognostic value of genes, and to study modulation of genes during different treatments. Comparison study. Italian referral center for MS. Quantitative polymerase chain reaction measurements were performed for 274 patients with MS and 60 healthy controls. Of the 274 patients with MS, 113 were treatment-naive patients in the initial stages of their disorder who were followed up in real-world clinical settings and categorized on the basis of disease course. The remaining 161 patients with MS received disease-modifying therapies (55 patients were treated with interferon beta, 52 with glatiramer acetate, and 54 with natalizumab) for a mean (SD) of 12 (2) months. Gene expression levels, relapse rate, and change in Expanded Disability Status Scale. We found a dysregulated gene pathway (P ≤ .006), with a downregulation of genes encoding negative regulators. The SOCS2, NR4A2, and TNFAIP3 genes were inversely correlated with both relapse rate (P ≤ .002) and change in Expanded Disability Status Scale (P ≤ .005). SOCS2 was modulated by both interferon beta and glatiramer acetate, TNFAIP3 was modulated by glatiramer acetate, and NR4A2 was not altered at all. No changes were induced by natalizumab. We demonstrate that there is a new molecular pathogenic mechanism that underlies the initiation and progression of MS. Defects in negative-feedback loops of inflammation lead to an overactivation of the immune system so as to predispose the brain to inflammation-sensitive MS.
Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu
2017-01-01
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143
Positive and negative emotional contexts unevenly predict episodic memory.
Martínez-Galindo, Joyce Graciela; Cansino, Selene
2015-09-15
The aim of this study was to investigate whether the recognition of faces with neutral expressions differs when they are encoded under different emotional contexts (positive, negative or non-emotional). The effects of the emotional valence context on the subsequent memory effect (SME) and the autonomic responses were also examined. Twenty-eight participants performed a betting-game task in which the faces of their virtual opponents were presented in each trial. The probability of winning or losing was manipulated to generate positive or negative contexts, respectively. Additionally, the participants performed the same task without betting as a non-emotional condition. After the encoding phase, an old/new paradigm was performed for the faces of the virtual opponents. The recognition was superior for the faces encoded in the positive contexts than for the faces encoded in the non-emotional contexts. The skin conductance response amplitude was equivalent for both of the emotional contexts. The N170 and P300 components at occipital sites and the frontal slow wave manifested SMEs that were modulated by positive contexts; neither negative nor non-emotional contexts influenced these effects. The behavioral and neurophysiological data demonstrated that positive contexts are stronger predictors of episodic memory than negative or non-emotional contexts. Copyright © 2015 Elsevier B.V. All rights reserved.
Rossi-Arnaud, Clelia; Spataro, Pietro; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo
2018-01-01
The present study examined predictions of the early-phase-elevated-attention hypothesis of the attentional boost effect (ABE), which suggests that transient increases in attention at encoding, as instantiated in the ABE paradigm, should enhance the recognition of neutral and positive items (whose encoding is mostly based on controlled processes), while having small or null effects on the recognition of negative items (whose encoding is primarily based on automatic processes). Participants were presented a sequence of negative, neutral and positive stimuli (pictures in Experiment 1, words in Experiment 2) associated to target (red) squares, distractor (green) squares or no squares (baseline condition). They were told to attend to the pictures/words and simultaneously press the spacebar of the computer when a red square appeared. In a later recognition task, stimuli associated to target squares were recognised better than stimuli associated to distractor squares, replicating the standard ABE. More importantly, we also found that: (a) the memory enhancement following target detection occurred with all types of stimuli (neutral, negative and positive) and (b) the advantage of negative stimuli over neutral stimuli was intact in the DA condition. These findings suggest that the encoding of negative stimuli depends on both controlled (attention-dependent) and automatic (attention-independent) processes.
Shigemune, Yayoi; Abe, Nobuhito; Suzuki, Maki; Ueno, Aya; Mori, Etsuro; Tashiro, Manabu; Itoh, Masatoshi; Fujii, Toshikatsu
2010-05-01
It is known that emotion and reward motivation promote long-term memory formation. It remains unclear, however, how and where emotion and reward are integrated during episodic memory encoding. In the present study, subjects were engaged in intentional encoding of photographs under four different conditions that were made by combining two factors (emotional valence, negative or neutral; and monetary reward value, high or low for subsequent successful recognition) during H2 15O positron emission tomography (PET) scanning. As for recognition performance, we found significant main effects of emotional valence (negative>neutral) and reward value (high value>low value), without an interaction between the two factors. Imaging data showed that the left amygdala was activated during the encoding conditions of negative pictures relative to neutral pictures, and the left orbitofrontal cortex was activated during the encoding conditions of high reward pictures relative to low reward pictures. In addition, conjunction analysis of these two main effects detected right hippocampal activation. Although we could not find correlations between recognition performance and activity of these three regions, we speculate that the right hippocampus may integrate the effects of emotion (processed in the amygdala) and monetary reward (processed in the orbitofrontal cortex) on episodic memory encoding. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Source memory that encoding was self-referential: the influence of stimulus characteristics.
Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K
2017-10-01
Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.
Delay, Christina; Imin, Nijat; Djordjevic, Michael A
2013-12-01
The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.
Hyytiäinen, H; Montesano, M; Palva, E T
2001-08-01
The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.
Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species
Wythe, Joshua D.; Liu, Jiandong; Cartry, Jerome; Vogler, Georg; Mohapatra, Bhagyalaxmi; Otway, Robyn T.; Huang, Yu; King, Isabelle N.; Maillet, Marjorie; Zheng, Yi; Crawley, Timothy; Taghli-Lamallem, Ouarda; Semsarian, Christopher; Dunwoodie, Sally; Winlaw, David; Harvey, Richard P.; Fatkin, Diane; Towbin, Jeffrey A.; Molkentin, Jeffery D.; Srivastava, Deepak; Ocorr, Karen; Bruneau, Benoit G.
2011-01-01
Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1. PMID:21690310
Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle
2016-01-01
Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shp1 regulates T cell homeostasis by limiting IL-4 signals
Johnson, Dylan J.; Pao, Lily I.; Dhanji, Salim; Murakami, Kiichi
2013-01-01
The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell–intrinsic role of Shp1, we characterized mice with a T cell–specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1fl/fl CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4+ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1-deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes. PMID:23797092
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas
Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel
2018-01-01
ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins. PMID:29669886
Tao, Zhangsheng; Huang, Yi; Zhang, Lida; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2017-01-01
Silique shattering resistance is one of the most important agricultural traits in oil crop breeding. Seed shedding from siliques prior to and during harvest causes devastating losses in oilseed yield. Lignin biosynthesis in the silique walls is thought to affect silique-shattering resistance in oil crops. Here, we identified and characterized B. napus LATE FLOWERING (BnLATE), which encodes a Cys2/His2-type zinc-finger protein. Heterologous expression of BnLATE under the double enhanced CaMV 35S promoter (D35S) in wild-type Arabidopsis plants resulted in a marked decrease in lignification in the replum, valve layer (carpel) and dehiscence zone. pBnLATE::GUS activity was strong in the yellowing silique walls of transgenic lines. Furthermore, the expression pattern of BnLATE and the lignin content gradient in the silique walls at 48 days after pollination (DAP) of 73290, a B. napus silique shattering-resistant line, are similar to those in transgenic Arabidopsis lines expressing BnLATE. Transcriptome sequencing of the silique walls revealed that genes encoding peroxidases, which polymerize monolignols and lignin in the phenylpropanoid pathway, were down-regulated at least two-fold change in the D35S::BnLATE transgenic lines. pBnLATE::BnLATE transgenic lines were further used to identify the function of BnLATE, and the results showed that lignification in the carpel and dehiscence zone of yellowing silique also remarkably decreased compared with the wild-type control, the silique shattering-resistance and expression pattern of peroxidase genes are very similar to results with D35S::BnLATE. These results suggest that BnLATE is a negative regulator of lignin biosynthesis in the yellowing silique walls, and promotes silique-shattering resistance in B. napus through restraining the polymerization of monolignols and lignin. PMID:28081140
Altered Expression of SPINDLY Affects Gibberellin Response and Plant Development1
Swain, Stephen M.; Tseng, Tong-seung; Olszewski, Neil E.
2001-01-01
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development. PMID:11457967
Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens
Quelas, J. I.; Mesa, S.; Mongiardini, E. J.; Jendrossek, D.
2016-01-01
ABSTRACT Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4. Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2. IMPORTANCE In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer and the network responsible for microoxic metabolism through the interaction between the gene regulators phaR and fixK2. These results contribute to the understanding of the physiological conditions required for polyhydroxybutyrate biosynthesis. The interaction between these two main metabolic pathways is also reflected in the symbiotic phenotypes of soybeans inoculated with phaR mutants, which were more competitive for nodulation and enhanced dry matter production by the plants. Therefore, this knowledge may be applied to the development of superior strains to be used as improved inoculants for soybean crops. PMID:27208130
Salinero, Alicia C; Knoll, Elisabeth R; Zhu, Z Iris; Landsman, David; Curcio, M Joan; Morse, Randall H
2018-02-01
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.
MyomiR-133 regulates brown fat differentiation through Prdm16.
Trajkovski, Mirko; Ahmed, Kashan; Esau, Christine C; Stoffel, Markus
2012-12-01
Brown adipose tissue (BAT) uses the chemical energy of lipids and glucose to produce heat, a function that can be induced by cold exposure or diet. A key regulator of BAT is the gene encoding PR domain containing 16 (Prdm16), whose expression can drive differentiation of myogenic and white fat precursors to brown adipocytes. Here we show that after cold exposure, the muscle-enriched miRNA-133 is markedly downregulated in BAT and subcutaneous white adipose tissue (SAT) as a result of decreased expression of its transcriptional regulator Mef2. miR-133 directly targets and negatively regulates PRDM16, and inhibition of miR-133 or Mef2 promotes differentiation of precursors from BAT and SAT to mature brown adipocytes, thereby leading to increased mitochondrial activity. Forced expression of miR-133 in brown adipogenic conditions prevents the differentiation to brown adipocytes in both BAT and SAT precursors. Our results point to Mef2 and miR-133 as central upstream regulators of Prdm16 and hence of brown adipogenesis in response to cold exposure in BAT and SAT.
Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme.
Nishimura, Noriyuki; Tsuchiya, Wataru; Moresco, James J; Hayashi, Yuki; Satoh, Kouji; Kaiwa, Nahomi; Irisa, Tomoko; Kinoshita, Toshinori; Schroeder, Julian I; Yates, John R; Hirayama, Takashi; Yamazaki, Toshimasa
2018-06-06
Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.
Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri
2011-01-01
The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926
Fossat, Nicolas; Ip, Chi Kin; Jones, Vanessa J; Studdert, Joshua B; Khoo, Poh-Lynn; Lewis, Samara L; Power, Melinda; Tourle, Karin; Loebel, David A F; Kwan, Kin Ming; Behringer, Richard R; Tam, Patrick P L
2015-06-01
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity. © 2015. Published by The Company of Biologists Ltd.
Bombyx mori cyclin-dependent kinase inhibitor is involved in regulation of the silkworm cell cycle.
Tang, X-F; Zhou, X-L; Zhang, Q; Chen, P; Lu, C; Pan, M-H
2018-06-01
Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of the cell cycle. They can bind to cyclin-dependent kinase (CDK)-cyclin complexes and inhibit CDK activities. We identified a single homologous gene of the CDK interacting protein/kinase inhibitory protein (Cip/Kip) family, BmCKI, in the silkworm, Bombyx mori. The gene transcribes two splice variants: a 654-bp-long BmCKI-L (the longer splice variant) encoding a protein with 217 amino acids and a 579-bp-long BmCKI-S (the shorter splice variant) encoding a protein with 192 amino acids. BmCKI-L and BmCKI-S contain the Cip/Kip family conserved cyclin-binding domain and the CDK-binding domain. They are localized in the nucleus and have an unconventional bipartite nuclear localization signal at amino acid residues 181-210. Overexpression of BmCKI-L or BmCKI-S affected cell cycle progression; the cell cycle was arrested in the first gap phase of cell cycle (G1). RNA interference of BmCKI-L or BmCKI-S led to cells accumulating in the second gap phase and the mitotic phase of cell cycle (G2/M). Both BmCKI-L and BmCKI-S are involved in cell cycle regulation and probably have similar effects. The transgenic silkworm with BmCKI-L overexpression (BmCKI-L-OE), exhibited embryonic lethal, larva developmental retardation and lethal phenotypes. These results suggest that BmCKI-L might regulate the growth and development of silkworm. These findings clarify the function of CKIs and increase our understanding of cell cycle regulation in the silkworm. © 2018 The Royal Entomological Society.
Eisenhut, Marion; Georg, Jens; Klähn, Stephan; Sakurai, Isamu; Mustila, Henna; Zhang, Pengpeng; Hess, Wolfgang R.; Aro, Eva-Mari
2012-01-01
The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon. PMID:22854963
Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.
2017-01-01
O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784
RNA-guided transcriptional regulation
Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.
2016-02-23
Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.
Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü, Shiyou; Xiong, Liming
2014-01-01
The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. PMID:24812105
Itier, Roxane J; Taylor, Margot J
2002-02-01
Using ERPs in a face recognition task, we investigated whether inversion and contrast reversal, which seem to disrupt different aspects of face configuration, differentially affected encoding and memory for faces. Upright, inverted, and negative (contrast-reversed) unknown faces were either immediately repeated (0-lag) or repeated after 1 intervening face (1-lag). The encoding condition (new) consisted of the first presentation of items correctly recognized in the two repeated conditions. 0-lag faces were recognized better and faster than 1-lag faces. Inverted and negative pictures elicited longer reaction times, lower hit rates, and higher false alarm rates than upright faces. ERP analyses revealed that negative and inverted faces affected both early (encoding) and late (recognition) stages of face processing. Early components (N170, VPP) were delayed and enhanced by both inversion and contrast reversal which also affected P1 and P2 components. Amplitudes were higher for inverted faces at frontal and parietal sites from 350 to 600 ms. Priming effects were seen at encoding stages, revealed by shorter latencies and smaller amplitudes of N170 for repeated stimuli, which did not differ depending on face type. Repeated faces yielded more positive amplitudes than new faces from 250 to 450 ms frontally and from 400 to 600 ms parietally. However, ERP differences revealed that the magnitude of this repetition effect was smaller for negative and inverted than upright faces at 0-lag but not at 1-lag condition. Thus, face encoding and recognition processes were affected by inversion and contrast-reversal differently.
NASA Astrophysics Data System (ADS)
Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin
2015-09-01
Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.
Nucleostemin Delays Cellular Senescence and Negatively Regulates TRF1 Protein Stability▿ †
Zhu, Qubo; Yasumoto, Hiroaki; Tsai, Robert Y. L.
2006-01-01
Nucleostemin (NS) encodes a nucleolar GTP-binding protein highly enriched in the stem cells and cancer cells. To determine its biological activity in vivo, we generated NS loss- and gain-of-function mouse models. The embryogenesis of homozygous NS-null (NS−/−) mice was aborted before the blastula stage. Although the growth and fertility of heterozygous NS-null (NS+/−) mice appeared normal, NS+/− mouse embryonic fibroblasts (MEFs) had fewer NS proteins, a lower population growth rate, and higher percentages of senescent cells from passage 5 (P5) to P7 than their wild-type littermates. Conversely, transgenic overexpression of NS could rescue the NS−/− embryo in a dose-dependent manner, increase the population growth rate, and reduce the senescent percentage of MEFs. Cell cycle analyses revealed increased pre-G1 percentages in the late-passage NS+/− MEF cultures compared to the wild-type cultures. We demonstrated that NS could interact with telomeric repeat-binding factor 1 (TRF1) and enhance the degradation but not the ubiquitination of the TRF1 protein, which negatively regulates telomere length and is essential for early embryogenesis. This work demonstrates the roles of NS in establishing early embryogenesis and delaying cellular senescence of MEFs and reveals a mechanism of a NS-regulated degradation of TRF1. PMID:17000763
Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants
Gáliková, Martina; Diesner, Max; Klepsatel, Peter; Hehlert, Philip; Xu, Yanjun; Bickmeyer, Iris; Predel, Reinhard; Kühnlein, Ronald P.
2015-01-01
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation. PMID:26275422
Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain
Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.
2012-01-01
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758
Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A
2015-12-01
Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2015-12-01
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.
Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L
2015-10-30
MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.
Pickard, Mark R; Williams, Gwyn T
2014-06-01
The putative tumour suppressor and apoptosis-promoting gene, growth arrest-specific 5 (GAS5), encodes long ncRNA (lncRNA) and snoRNAs. Its expression is down-regulated in breast cancer, which adversely impacts patient prognosis. In this preclinical study, the consequences of decreased GAS5 expression for breast cancer cell survival following treatment with chemotherapeutic agents are addressed. In addition, functional responses of triple-negative breast cancer cells to GAS5 lncRNA are examined, and mTOR inhibition as a strategy to enhance cellular GAS5 levels is investigated. Breast cancer cell lines were transfected with either siRNA to GAS5 or with a plasmid encoding GAS5 lncRNA and the effects on breast cancer cell survival were determined. Cellular responses to mTOR inhibitors were evaluated by assaying culture growth and GAS5 transcript levels. GAS5 silencing attenuated cell responses to apoptotic stimuli, including classical chemotherapeutic agents; the extent of cell death was directly proportional to cellular GAS5 levels. Imatinib action in contrast, was independent of GAS5. GAS5 lncRNA promoted the apoptosis of triple-negative and oestrogen receptor-positive cells but only dual PI3K/mTOR inhibition was able to enhance GAS5 levels in all cell types. Reduced GAS5 expression attenuates apoptosis induction by classical chemotherapeutic agents in breast cancer cells, providing an explanation for the relationship between GAS5 expression and breast cancer patient prognosis. Clinically, this relationship may be circumvented by the use of GAS5-independent drugs such as imatinib, or by restoration of GAS5 expression. The latter may be achieved by the use of a dual PI3K/mTOR inhibitor, to improve apoptotic responses to conventional chemotherapies.
Zeng, Yong; Loker, Eric S.
2013-01-01
Peptidoglycan (PGN) recognition proteins (PGRPs) and gram-negative bacteria binding proteins (GNBPs) play an essential role in Toll/Imd signaling pathways in arthropods. The existence of homologous pathways involving PGRPs and GNBPs in other major invertebrate phyla such as the Mollusca remains unclear. In this paper, we report four full-length PGRP cDNAs and one full-length GNBP cDNA cloned from the snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, designated as BgPGRPs and BgGNBP, respectively. Three transcripts are generated from a long form PGRP gene (BgPGRP-LA) by alternative splicing and one from a short form PGRP gene (BgPGRP-SA). BgGNBP encodes a putative secreted protein. Northern blots demonstrated that expression of BgPGRP-SA and BgGNBP was down-regulated in B. glabrata at 6 h after exposure to three types of microbes. No significant changes in expression were observed in snails at 2 days post-exposure (dpe) to the trematodes Echinostoma paraensei or S. mansoni. However, up-regulation of BgPGRP-SA in M line snails at later time points of infection with E. paraensei (i.e., 12 and 17 dpe) was observed. Our study revealed that exposure to either microbes or trematodes did not alter the expression levels of BgPGRP-LAs, which were consistently low. This study provides new insights into the potential pathogen recognition capabilities of molluscs, indicates that further studies of the Toll/Imd pathways in this phylum are in order, and provides additional ways to judge the importance of this pathway in the evolution of internal defense across the animal phyla. PMID:17805526
Lagares, Antonio; Ceizel Borella, Germán; Linne, Uwe; Becker, Anke; Valverde, Claudio
2017-04-15
Riboregulation has a major role in the fine-tuning of multiple bacterial processes. Among the RNA players, trans -encoded untranslated small RNAs (sRNAs) regulate complex metabolic networks by tuning expression from multiple target genes in response to numerous signals. In Sinorhizobium meliloti , over 400 sRNAs are expressed under different stimuli. The sRNA MmgR (standing for M akes m ore g ranules R egulator) has been of particular interest to us since its sequence and structure are highly conserved among the alphaproteobacteria and its expression is regulated by the amount and quality of the bacterium's available nitrogen source. In this work, we explored the biological role of MmgR in S. meliloti 2011 by characterizing the effect of a deletion of the internal conserved core of mmgR ( mmgR Δ33-51 ). This mutation resulted in larger amounts of polyhydroxybutyrate (PHB) distributed into more intracellular granules than are found in the wild-type strain. This phenotype was expressed upon cessation of balanced growth owing to nitrogen depletion in the presence of surplus carbon (i.e., at a carbon/nitrogen molar ratio greater than 10). The normal PHB accumulation was complemented with a wild-type mmgR copy but not with unrelated sRNA genes. Furthermore, the expression of mmgR limited PHB accumulation in the wild type, regardless of the magnitude of the C surplus. Quantitative proteomic profiling and quantitative reverse transcription-PCR (qRT-PCR) revealed that the absence of MmgR results in a posttranscriptional overexpression of both PHB phasin proteins (PhaP1 and PhaP2). Together, our results indicate that the widely conserved alphaproteobacterial MmgR sRNA fine-tunes the regulation of PHB storage in S. meliloti IMPORTANCE High-throughput RNA sequencing has recently uncovered an overwhelming number of trans -encoded small RNAs (sRNAs) in diverse prokaryotes. In the nitrogen-fixing alphaproteobacterial symbiont of alfalfa root nodules Sinorhizobium meliloti , only four out of hundreds of identified sRNA genes have been functionally characterized. Thus, uncovering the biological role of sRNAs currently represents a major issue and one that is particularly challenging because of the usually subtle quantitative regulation contributed by most characterized sRNAs. Here, we have characterized the function of the broadly conserved alphaproteobacterial sRNA gene mmgR in S. meliloti Our results strongly suggest that mmgR encodes a negative regulator of the accumulation of polyhydroxybutyrate, the major carbon and reducing power storage polymer in S. meliloti cells growing under conditions of C/N overbalance. Copyright © 2017 American Society for Microbiology.
Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N
2017-01-01
We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Discovery of Herpes B Virus-Encoded MicroRNAs▿
Besecker, Michael I.; Harden, Mallory E.; Li, Guanglin; Wang, Xiu-Jie; Griffiths, Anthony
2009-01-01
Herpes B virus (BV) naturally infects macaque monkeys and is a close relative of herpes simplex virus. BV can zoonotically infect humans to cause a rapidly ascending encephalitis with ∼80% mortality. Therefore, BV is a serious danger to those who come into contact with these monkeys or their tissues and cells. MicroRNAs are regulators of gene expression, and there have been reports of virus-encoded microRNAs. We hypothesize that BV-encoded microRNAs are important for the regulation of viral and cellular genes. Herein, we report the discovery of three herpes B virus-encoded microRNAs. PMID:19144716
Hu, Yun; Liu, Enkai; Bai, Xiaojia; Zhang, Aili
2010-03-01
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Simmons, Michael J; Haley, Kevin J; Grimes, Craig D; Raymond, John D; Niemi, Jarad B
2002-01-01
Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry(+), Delta2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline. PMID:12019234
Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M
2002-10-15
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
Virus-encoded miRNAs in Ebola virus disease.
Duy, Janice; Honko, Anna N; Altamura, Louis A; Bixler, Sandra L; Wollen-Roberts, Suzanne; Wauquier, Nadia; O'Hearn, Aileen; Mucker, Eric M; Johnson, Joshua C; Shamblin, Joshua D; Zelko, Justine; Botto, Miriam A; Bangura, James; Coomber, Moinya; Pitt, M Louise; Gonzalez, Jean-Paul; Schoepp, Randal J; Goff, Arthur J; Minogue, Timothy D
2018-04-24
Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.
A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii
Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.
2004-01-01
Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793
Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie
2011-10-07
Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.
Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.
Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A
2017-04-01
Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Source memory that encoding was self-referential: the influence of stimulus characteristics
Durbin, Kelly A.; Mitchell, Karen J.; Johnson, Marcia K.
2017-01-01
Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one’s self-schema, and that depends, in part, on the stimulus’ valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation. PMID:28276984
Faghihi, Faramarz; Moustafa, Ahmed A.
2015-01-01
Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde messenger in neurons with synapses as low and band-pass filters to obtain high encoding efficiency in different environmental and physiological conditions. PMID:25972786
The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity
Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.
2016-01-01
Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374
Sharma, Vijay K; Bearson, Shawn M D; Bearson, Bradley L
2010-05-01
Quorum-sensing (QS) signalling pathways are important regulatory networks for controlling the expression of genes promoting adherence of enterohaemorrhagic Escherichia coli (EHEC) O157 : H7 to epithelial cells. A recent study has shown that EHEC O157 : H7 encodes a luxR homologue, called sdiA, which upon overexpression reduces the expression of genes encoding flagellar and locus of enterocyte effacement (LEE) proteins, thus negatively impacting on the motility and intimate adherence phenotypes, respectively. Here, we show that the deletion of sdiA from EHEC O157 : H7 strain 86-24, and from a hha (a negative regulator of ler) mutant of this strain, enhanced bacterial adherence to HEp-2 epithelial cells of the sdiA mutant strains relative to the strains containing a wild-type copy of sdiA. Quantitative reverse transcription PCR showed that the expression of LEE-encoded genes ler, espA and eae in strains with the sdiA deletions was not significantly different from that of the strains wild-type for sdiA. Similarly, no additional increases in the expression of LEE genes were observed in a sdiA hha double mutant strain relative to that observed in the hha deletion mutant. While the expression of fliC, which encodes flagellin, was enhanced in the sdiA mutant strain, the expression of fliC was reduced by several fold in the hha mutant strain, irrespective of the presence or absence of sdiA, indicating that the genes sdiA and hha exert opposing effects on the expression of fliC. The strains with deletions in sdiA or hha showed enhanced expression of csgA, encoding curlin of the curli fimbriae, with the expression of csgA highest in the sdiA hha double mutant, suggesting an additive effect of these two gene deletions on the expression of csgA. No significant differences were observed in the expression of the genes lpfA and fimA of the operons encoding long polar and type 1 fimbriae in the sdiA mutant strain. These data indicate that SdiA has no significant effect on the expression of LEE genes, but that it appears to act as a strong repressor of genes encoding flagella and curli fimbriae, and the alleviation of the SdiA-mediated repression of these genes in an EHEC O157 : H7 sdiA mutant strain contributes to enhanced bacterial motility and increased adherence to HEp-2 epithelial cells.
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-07-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance
Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping
2015-01-01
Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1–4) encoding 8′-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. PMID:25956880
Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie
2013-03-01
To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.
The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction.
Popa, Simina M; Clifton, Donald K; Steiner, Robert A
2008-01-01
Neurons that produce gonadotropin-releasing hormone (GnRH) reside in the basal forebrain and drive reproductive function in mammals. Understanding the circuitry that regulates GnRH neurons is fundamental to comprehending the neuroendocrine control of puberty and reproduction in the adult. This review focuses on a family of neuropeptides encoded by the Kiss1 gene, the kisspeptins, and their cognate receptor, GPR54, which have been implicated in the regulation of GnRH secretion. Kisspeptins are potent secretagogues for GnRH, and the Kiss1 gene is a target for regulation by gonadal steroids (e.g., estradiol and testosterone), metabolic factors (e.g., leptin), photoperiod, and season. Kiss1 neurons in the arcuate nucleus may regulate the negative feedback effect of gonadal steroids on GnRH and gonadotropin secretion in both sexes. The expression of Kiss1 in the anteroventral periventricular nucleus (AVPV) is sexually dimorphic, and Kiss1 neurons in the AVPV may participate in the generation of the preovulatory GnRH/luteinizing hormone (LH) surge in the female rodent. Kiss1 neurons have emerged as primary transducers of internal and environmental cues to regulate the neuroendocrine reproductive axis.
Bernard, D J; Woodruff, T K
2001-04-01
Inhibin binding protein (InhBP) and the transforming growth factor-beta (TGF beta) type III receptor, beta glycan, have been identified as putative inhibin coreceptors. Here we cloned the InhBP cDNA in rats and predict that it encodes a large membrane-spanning protein that is part of the Ig superfamily, as has been described for humans. Two abundant InhBP transcripts (4.4 and 1.8 kb) were detected in the adult rat pituitary. The larger transcript encodes the full-length protein while the 1.8-kb transcript (InhBP-short or InhBP-S) corresponds to a splice variant of the receptor. This truncated isoform contains only the N-terminal signal peptide and first two (of 12) Ig-like domains observed in the full-length InhBP (InhBP-long or InhBP-L). InhBP-S does not contain a transmembrane domain and is predicted to be a soluble protein. Beta glycan was also detected in the pituitary; however, it was most abundant within the intermediate lobe. Although we also observed beta glycan immunopositive cells in the anterior pituitary, they rarely colocalized with FSH beta-producing cells. We next examined physiological regulation of the coreceptors across the rat estrous cycle. Like circulating inhibin A and inhibin B levels, pituitary InhBP-L and InhBP-S mRNA levels were dynamically regulated across the cycle and were negatively correlated with serum FSH levels. Expression of both forms of InhBP was also positively correlated with serum inhibin B, but not inhibin A, levels. These data are particularly interesting in light of our in vitro observations that InhBP may function as an inhibin B-specific coreceptor. Pituitary beta glycan mRNA levels did not fluctuate across the cycle nor did they correlate with serum FSH. These observations, coupled with its pattern of expression within the pituitary, indicate that beta glycan likely functions as more than merely an inhibin coreceptor within the pituitary. A direct role for InhBP or beta glycan in regulation of pituitary FSH by inhibin in vivo has yet to be determined, but the demonstration of dynamic regulation of pituitary InhBP and its negative relation to serum FSH across the estrous cycle is an important step in this direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Apel, William A.; DeVeaux, Linda C.
Alicyclobacillus acidocaldarius is a thermoacidophilic bacterium capable of growth on sugars from plant biomass. Carbon catabolite repression (CCR) allows bacteria to focus cellular resources on a sugar that provides efficient growth, but also allows sequential, rather than simultaneous use when more than one sugar is present. The A. acidocaldarius genome encodes all components of CCR, but transporters encoded are multifacilitator superfamily and ATP-binding cassette type transporters, uncommon for CCR. Therefore, global transcriptome analysis of A. acidocaldarius grown on xylose or fructose was performed in chemostats, followed by attempted induction of CCR with glucose or arabinose. A. acidocaldarius grew while simultaneouslymore » metabolizing xylose and glucose, xylose and arabinose, and fructose and glucose, indicating CCR did not control carbon metabolism. Microarrays showed down-regulation of genes during growth on one sugar compared to two. Regulation occurred primarily in genes: 1) encoding regulators, 2) encoding enzymes for cell synthesis, and 3) encoding sugar transporters.« less
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-01-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA. PMID:8943327
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-12-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.
Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai
2006-02-01
Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.
Lippok, Bernadette; Birkenbihl, Rainer P; Rivory, Gaelle; Brümmer, Janna; Schmelzer, Elmon; Logemann, Elke; Somssich, Imre E
2007-04-01
WRKY transcription factors regulate distinct parts of the plant defense transcriptome. Expression of many WRKY genes themselves is induced by pathogens or pathogen-mimicking molecules. Here, we demonstrate that Arabidopsis WRKY33 responds to various stimuli associated with plant defense as well as to different kinds of phytopathogens. Although rapid pathogen-induced AtWRKY33 expression does not require salicylic acid (SA) signaling, it is dependent on PAD4, a key regulator upstream of SA. Activation of AtWRKY33 is independent of de novo protein synthesis, suggesting that it is at least partly under negative regulatory control. We show that a set of three WRKY-specific cis-acting DNA elements (W boxes) within the AtWRKY33 promoter is required for efficient pathogen- or PAMP-triggered gene activation. This strongly indicates that WRKY transcription factors are major components of the regulatory machinery modulating immediate to early expression of this gene in response to pathogen attack.
Rodriguez Viales, Rebecca; Diotel, Nicolas; Ferg, Marco; Armant, Olivier; Eich, Julia; Alunni, Alessandro; März, Martin; Bally-Cuif, Laure; Rastegar, Sepand; Strähle, Uwe
2015-03-01
The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals. © 2014 AlphaMed Press.
Richard-Greenblatt, Melissa; Bach, Horacio; Adamson, John; Peña-Diaz, Sandra; Li, Wu; Steyn, Adrie J. C.; Av-Gay, Yossef
2015-01-01
Ergothioneine (EGT) is synthesized in mycobacteria, but limited knowledge exists regarding its synthesis, physiological role, and regulation. We have identified Rv3701c from Mycobacterium tuberculosis to encode for EgtD, a required histidine methyltransferase that catalyzes first biosynthesis step in EGT biosynthesis. EgtD was found to be phosphorylated by the serine/threonine protein kinase PknD. PknD phosphorylates EgtD both in vitro and in a cell-based system on Thr213. The phosphomimetic (T213E) but not the phosphoablative (T213A) mutant of EgtD failed to restore EGT synthesis in a ΔegtD mutant. The findings together with observed elevated levels of EGT in a pknD transposon mutant during in vitro growth suggests that EgtD phosphorylation by PknD negatively regulates EGT biosynthesis. We further showed that EGT is required in a nutrient-starved model of persistence and is needed for long term infection of murine macrophages. PMID:26229105
Kuo, Calvin J.; LaMontagne, Kenneth R.; Garcia-Cardeña, Guillermo; Ackley, Brian D.; Kalman, Daniel; Park, Susan; Christofferson, Rolf; Kamihara, Junne; Ding, Yuan-Hua; Lo, Kin-Ming; Gillies, Stephen; Folkman, Judah; Mulligan, Richard C.; Javaherian, Kashi
2001-01-01
Collagen XVIII (c18) is a triple helical endothelial/epithelial basement membrane protein whose noncollagenous (NC)1 region trimerizes a COOH-terminal endostatin (ES) domain conserved in vertebrates, Caenorhabditis elegans and Drosophila. Here, the c18 NC1 domain functioned as a motility-inducing factor regulating the extracellular matrix (ECM)-dependent morphogenesis of endothelial and other cell types. This motogenic activity required ES domain oligomerization, was dependent on rac, cdc42, and mitogen-activated protein kinase, and exhibited functional distinction from the archetypal motogenic scatter factors hepatocyte growth factor and macrophage stimulatory protein. The motility-inducing and mitogen-activated protein kinase–stimulating activities of c18 NC1 were blocked by its physiologic cleavage product ES monomer, consistent with a proteolysis-dependent negative feedback mechanism. These data indicate that the collagen XVIII NC1 region encodes a motogen strictly requiring ES domain oligomerization and suggest a previously unsuspected mechanism for ECM regulation of motility and morphogenesis. PMID:11257123
Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei
2011-11-01
Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.
The rpoE operon regulates heat stress response in Burkholderia pseudomallei.
Vanaporn, Muthita; Vattanaviboon, Paiboon; Thongboonkerd, Visith; Korbsrisate, Sunee
2008-07-01
Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.
Merino-Puerto, Victoria; Herrero, Antonia
2013-01-01
The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria. PMID:23813733
Le, Dung Tien; Nguyen, Kim-Lien; Chu, Ha Duc; Vu, Nam Tuan; Pham, Thu Thi Ly; Tran, Lam-Son Phan
2018-05-28
In plants, two types of methionine sulfoxide reductase (MSR) exist, namely methionine-S-sulfoxide reductase (MSRA) and methionine-R-sulfoxide reductase (MSRB). These enzymes catalyze the reduction of methionine sulfoxides (MetO) back to methionine (Met) by a catalytic cysteine (Cys) and one or two resolving Cys residues. Interestingly, a group of MSRA encoded by plant genomes does not have a catalytic residue. We asked that if this group of MSRA did not have any function (as fitness), why it was not lost during the evolutionary process. To challenge this question, we analyzed the gene family encoding MSRA in soybean (GmMSRAs). We found seven genes encoding GmMSRAs, which included three segmental duplicated pairs. Among them, a pair of duplicated genes, namely GmMSRA1 and GmMSRA6, was without a catalytic Cys residue. Pseudogenes were ruled out as their transcripts were detected in various tissues and their Ka/Ks ratio indicated a negative selection pressure. In vivo analysis in Δ3MSR yeast strain indicated that the GmMSRA6 did not have activity toward MetO, contrasting to GmMSRA3 which had catalytic Cys and had activity. When exposed to H 2 O 2 -induced oxidative stress, GmMSRA6 did not confer any protection to the Δ3MSR yeast strain. Overexpression of GmMSRA6 in Arabidopsis thaliana did not alter the plant's phenotype under physiological conditions. However, the transgenic plants exhibited slightly higher sensitivity toward salinity-induced stress. Taken together, this data suggested that the plant MSRAs without the catalytic Cys are not enzymatically active and their existence may be explained by a role in regulating plant MSR activity via dominant-negative substrate competition mechanism.
Innovative Methods for High Resolution Imaging
2012-08-02
findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix factorization for...on their findings, recent publication, and presentations in the areas of lenslet array imaging , wavefront encoding, and non-negative matrix...Computational Optical Sensing and Imaging . 2007/06/18 00:00:00, . : , 2012/07/16 15:30:42 9 Kelly N. Smith, V. Paul Pauca, Arun Ross, Todd Torgersen, Michael C
Hahm, Jarang; Lee, Hyekyoung; Park, Hyojin; Kang, Eunjoo; Kim, Yu Kyeong; Chung, Chun Kee; Kang, Hyejin; Lee, Dong Soo
2017-01-01
To explain gating of memory encoding, magnetoencephalography (MEG) was analyzed over multi-regional network of negative correlations between alpha band power during cue (cue-alpha) and gamma band power during item presentation (item-gamma) in Remember (R) and No-remember (NR) condition. Persistent homology with graph filtration on alpha-gamma correlation disclosed topological invariants to explain memory gating. Instruction compliance (R-hits minus NR-hits) was significantly related to negative coupling between the left superior occipital (cue-alpha) and the left dorsolateral superior frontal gyri (item-gamma) on permutation test, where the coupling was stronger in R than NR. In good memory performers (R-hits minus false alarm), the coupling was stronger in R than NR between the right posterior cingulate (cue-alpha) and the left fusiform gyri (item-gamma). Gating of memory encoding was dictated by inter-regional negative alpha-gamma coupling. Our graph filtration over MEG network revealed these inter-regional time-delayed cross-frequency connectivity serve gating of memory encoding. PMID:28169281
Level of processing modulates the neural correlates of emotional memory formation
Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2010-01-01
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176
Level of processing modulates the neural correlates of emotional memory formation.
Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto
2011-04-01
Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.
Salinero, Alicia C.; Knoll, Elisabeth R.; Zhu, Z. Iris
2018-01-01
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. PMID:29462141
Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha
2014-07-18
Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated thatmore » TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.« less
DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy.
Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A; Frey, Norbert
2009-06-19
Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors.
DYRK1A Is a Novel Negative Regulator of Cardiomyocyte Hypertrophy*
Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A.; Frey, Norbert
2009-01-01
Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors. PMID:19372220
Valdés, Ana Elisa; Overnäs, Elin; Johansson, Henrik; Rada-Iglesias, Alvaro; Engström, Peter
2012-11-01
Plants perceiving drought activate multiple responses to improve survival, including large-scale alterations in gene expression. This article reports on the roles in the drought response of two Arabidopsis thaliana homeodomain-leucine zipper class I genes; ATHB7 and ATHB12, both strongly induced by water-deficit and abscisic acid (ABA). ABA-mediated transcriptional regulation of both genes is shown to depend on the activity of protein phosphatases type 2C (PP2C). ATHB7 and ATHB12 are, thus, targets of the ABA signalling mechanism defined by the PP2Cs and the PYR/PYL family of ABA receptors, with which the PP2C proteins interact. Our results from chromatin immunoprecipitation and gene expression analyses demonstrate that ATHB7 and ATHB12 act as positive transcriptional regulators of PP2C genes, and thereby as negative regulators of abscisic acid signalling. In support of this notion, our results also show that ATHB7 and ATHB12 act to repress the transcription of genes encoding the ABA receptors PYL5 and PYL8 in response to an ABA stimulus. In summary, we demonstrate that ATHB7 and ATHB12 have essential functions in the primary response to drought, as mediators of a negative feedback effect on ABA signalling in the plant response to water deficit.
Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen
Pitman, Jeffrey L.; Orth, Anthony P.; Gekakis, Nicholas
2009-01-01
Background Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention. Methodology An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action. Conclusion/Significance Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome. PMID:19727444
Zatyka, Malgorzata; Da Silva Xavier, Gabriela; Bellomo, Elisa A.; Leadbeater, Wendy; Astuti, Dewi; Smith, Joel; Michelangeli, Frank; Rutter, Guy A.; Barrett, Timothy G.
2015-01-01
Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and secretion. In this study, single cell Ca2+ imaging with fura-2 and direct measurements of free cytosolic ATP concentration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic free Ca2+ concentration ([Ca2+]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase (SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1 in calcium homeostasis. PMID:25274773
GlpR is a direct transcriptional repressor of fructose metabolic genes in Haloferax volcanii.
Martin, Jonathan H; Rawls, Katie Sherwood; Chan, Jou Chin; Hwang, Sungmin; Martinez-Pastor, Mar; McMillan, Lana J; Prunetti, Laurence; Schmid, Amy K; Maupin-Furlow, Julie A
2018-06-18
DeoR-type helix-turn-helix (HTH) domain proteins are transcriptional regulators of sugar and nucleoside metabolism in diverse bacteria and occur in select archaea. In the model archaeon Haloferax volcanii , previous work implicated GlpR, a DeoR-type transcriptional regulator, in transcriptional repression of glpR and the gene encoding the fructose-specific phosphofructokinase ( pfkB ) during growth on glycerol. However, the global regulon governed by GlpR remained unclear. Here we compared transcriptomes of wild type and Δ glpR mutant strains grown on glycerol and glucose to detect significant transcript level differences for nearly 50 new genes regulated by GlpR. By coupling computational prediction of GlpR binding sequences with in vivo and in vitro DNA binding experiments, we determined that GlpR directly controls genes encoding enzymes in fructose degradation, including fructose bisphosphate aldolase, a central control point in glycolysis. GlpR also directly controls other transcription factors. In contrast, other metabolic pathways appear to be under indirect influence of GlpR. In vitro experiments demonstrated that GlpR purifies as a tetramer that binds the effector molecule fructose-1-phosphate (F1P). These results suggest that Hfx. volcanii GlpR functions as a direct negative regulator of fructose degradation during growth on carbon sources other than fructose, such as glucose and glycerol, and that GlpR bears striking functional similarity to bacterial DeoR-type regulators. IMPORTANCE Many archaea are extremophiles, able to thrive in habitats of extreme salinity, pH and temperature. These biological properties are ideal for applications in biotechnology. However, limited knowledge of archaeal metabolism is a bottleneck that prevents broad use of archaea as microbial factories for industrial products. Here we characterize how sugar uptake and use is regulated in a species that lives in high salinity. We demonstrate that a key sugar regulatory protein in this archaeal species functions using molecular mechanisms conserved with distantly related bacterial species. Copyright © 2018 American Society for Microbiology.
Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A; Lü, Shiyou; Xiong, Liming
2014-07-01
The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.
TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN
Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao
2015-01-01
Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712
TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.
Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao
2015-09-01
Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.
Unterweger, Daniel; Kitaoka, Maya; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Moloney, Jessica; Sosa, Oscar; Silva, David; Duran-Gonzalez, Jorge; Provenzano, Daniele; Pukatzki, Stefan
2012-01-01
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.
Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min
2009-08-01
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.
DHEA Enhances Emotion Regulation Neurocircuits and Modulates Memory for Emotional Stimuli
Sripada, Rebecca K; Marx, Christine E; King, Anthony P; Rajaram, Nirmala; Garfinkel, Sarah N; Abelson, James L; Liberzon, Israel
2013-01-01
Dehydroepiandrosterone (DHEA) is a neurosteroid with anxiolytic, antidepressant, and antiglucocorticoid properties. It is endogenously released in response to stress, and may reduce negative affect when administered exogenously. Although there have been multiple reports of DHEA's antidepressant and anxiolytic effects, no research to date has examined the neural pathways involved. In particular, brain imaging has not been used to link neurosteroid effects to emotion neurocircuitry. To investigate the brain basis of DHEA's impact on emotion modulation, patients were administered 400 mg of DHEA (N=14) or placebo (N=15) and underwent 3T fMRI while performing the shifted-attention emotion appraisal task (SEAT), a test of emotional processing and regulation. Compared with placebo, DHEA reduced activity in the amygdala and hippocampus, enhanced connectivity between the amygdala and hippocampus, and enhanced activity in the rACC. These activation changes were associated with reduced negative affect. DHEA reduced memory accuracy for emotional stimuli, and also reduced activity in regions associated with conjunctive memory encoding. These results demonstrate that DHEA reduces activity in regions associated with generation of negative emotion and enhances activity in regions linked to regulatory processes. Considering that activity in these regions is altered in mood and anxiety disorders, our results provide initial neuroimaging evidence that DHEA may be useful as a pharmacological intervention for these conditions and invite further investigation into the brain basis of neurosteroid emotion regulatory effects. PMID:23552182
Memory for emotional words: The role of semantic relatedness, encoding task and affective valence.
Ferré, Pilar; Fraga, Isabel; Comesaña, Montserrat; Sánchez-Casas, Rosa
2015-01-01
Emotional stimuli have been repeatedly demonstrated to be better remembered than neutral ones. The aim of the present study was to test whether this advantage in memory is mainly produced by the affective content of the stimuli or it can be rather accounted for by factors such as semantic relatedness or type of encoding task. The valence of the stimuli (positive, negative and neutral words that could be either semantically related or unrelated) as well as the type of encoding task (focused on either familiarity or emotionality) was manipulated. The results revealed an advantage in memory for emotional words (either positive or negative) regardless of semantic relatedness. Importantly, this advantage was modulated by the encoding task, as it was reliable only in the task which focused on emotionality. These findings suggest that congruity with the dimension attended at encoding might contribute to the superiority in memory for emotional words, thus offering us a more complex picture of the underlying mechanisms behind the advantage for emotional information in memory.
Liu, Jian-Zhong; Horstman, Heidi D.; Braun, Edward; Graham, Michelle A.; Zhang, Chunquan; Navarre, Duroy; Qiu, Wen-Li; Lee, Yeunsook; Nettleton, Dan; Hill, John H.; Whitham, Steven A.
2011-01-01
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species. PMID:21878550
Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Elizabeth-sharon
2008-01-01
Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-I (TCF-1) (gene name Tcli). To identify additional regulators of T cell specification, a cDNA libnlrY from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were identified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expressionmore » of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin{sup -}Sca-1{sup +}Kit{sup +}CD27{sup -}) and multipotent progenitors (Lin{sup -}Sca-l{sup +}Kit{sup +}CD27{sup +}), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bclllb, TCF-I (Tcli), and HEBalt, Notch target Deltexl, Deltex3L, Fkbp5, Eval, and Tmem13l. Like GATA3 and Deltexl, Bclllb, Fkbp5, and Eval were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only BcIlI band HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative I and double negative 2) corresponding to T lineage specification. Bclllb was uniquely T lineage restricted and induced by NotchlDelta signaling specifically upon entry into the T lineage differentiation pathway.« less
Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase.
Gangaiah, Dharanesh; Labandeira-Rey, Maria; Zhang, Xinjun; Fortney, Kate R; Ellinger, Sheila; Zwickl, Beth; Baker, Beth; Liu, Yunlong; Janowicz, Diane M; Katz, Barry P; Brautigam, Chad A; Munson, Robert S; Hansen, Eric J; Spinola, Stanley M
2014-02-11
To adapt to stresses encountered in stationary phase, Gram-negative bacteria utilize the alternative sigma factor RpoS. However, some species lack RpoS; thus, it is unclear how stationary-phase adaptation is regulated in these organisms. Here we defined the growth-phase-dependent transcriptomes of Haemophilus ducreyi, which lacks an RpoS homolog. Compared to mid-log-phase organisms, cells harvested from the stationary phase upregulated genes encoding several virulence determinants and a homolog of hfq. Insertional inactivation of hfq altered the expression of ~16% of the H. ducreyi genes. Importantly, there were a significant overlap and an inverse correlation in the transcript levels of genes differentially expressed in the hfq inactivation mutant relative to its parent and the genes differentially expressed in stationary phase relative to mid-log phase in the parent. Inactivation of hfq downregulated genes in the flp-tad and lspB-lspA2 operons, which encode several virulence determinants. To comply with FDA guidelines for human inoculation experiments, an unmarked hfq deletion mutant was constructed and was fully attenuated for virulence in humans. Inactivation or deletion of hfq downregulated Flp1 and impaired the ability of H. ducreyi to form microcolonies, downregulated DsrA and rendered H. ducreyi serum susceptible, and downregulated LspB and LspA2, which allow H. ducreyi to resist phagocytosis. We propose that, in the absence of an RpoS homolog, Hfq serves as a major contributor of H. ducreyi stationary-phase and virulence gene regulation. The contribution of Hfq to stationary-phase gene regulation may have broad implications for other organisms that lack an RpoS homolog. Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi, which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.
Schmal, Christoph; Reimann, Peter; Staiger, Dorothee
2013-01-01
The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7) and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this, transcriptional repression of AtGRP7 and AtGRP8 by LHY and CCA1 induces oscillations of the toggle switch, leading to the observed high-amplitude oscillations of AtGRP7 mRNA. PMID:23555221
Perego, M
1997-08-05
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.
Perego, Marta
1997-01-01
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction. PMID:9238025
OsGRF4 controls grain shape, panicle length and seed shattering in rice
Sun, Pingyong; Zhang, Wuhan; Wang, Yihua; He, Qiang; Shu, Fu; Liu, Hai; Wang, Jie; Wang, Jianmin; Yuan, Longping
2016-01-01
Abstract Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth‐Regulating Factor 4 (OsGRF4), which encodes a growth‐regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high‐yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth. PMID:26936408
Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization.
Liu, Xiaolei; Yang, Qin; Wang, Yuan; Wang, Linhai; Fu, Ying; Wang, Xuelu
2018-02-23
Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.
The dissociable effects of stereotype threat on older adults’ memory encoding and retrieval
Krendl, Anne C.; Ambady, Nalini; Kensinger, Elizabeth A.
2015-01-01
The present study asks how subliminal exposure to negative stereotypes about age-related memory deficits affects older adults’ memory performance. Whereas prior research has focused on the effect of “stereotype threat” on older adults’ memory for neutral material, the present study additionally examines the effect on memory for positive and negative words, as well as whether the subliminal “threat” has a larger impact on memory performance when it occurs prior to encoding or prior to retrieval (as compared to a control condition). Results revealed that older adults’ memory impairments were most pronounced when the threat was placed prior to retrieval as compared to when the threat was placed prior to encoding or no threat occurred. Moreover, the threat specifically increased false memory rates, particularly for neutral items compared to positive and negative ones. These results emphasize that stereotype threat effects vary depending upon the phase of memory it impacts. PMID:26029498
Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A
2016-08-01
Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.
Brown, Darby G.; Swanson, Jill K.; Allen, Caitilyn
2007-01-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>107 CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds. PMID:17337552
Brown, Darby G; Swanson, Jill K; Allen, Caitilyn
2007-05-01
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds.
Khan, Muhammad Sarwar; Hameed, Waqar; Nozoe, Mikio; Shiina, Takashi
2007-05-01
The functional analysis of genes encoded by the chloroplast genome of tobacco by reverse genetics is routine. Nevertheless, for a small number of genes their deletion generates heteroplasmic genotypes, complicating their analysis. There is thus the need for additional strategies to develop deletion mutants for these genes. We have developed a homologous copy correction-based strategy for deleting/mutating genes encoded on the chloroplast genome. This system was used to produce psbA knockouts. The resulting plants are homoplasmic and lack photosystem II (PSII) activity. Further, the deletion mutants exhibit a distinct phenotype; young leaves are green, whereas older leaves are bleached, irrespective of light conditions. This suggests that senescence is promoted by the absence of psbA. Analysis of the transcript levels indicates that NEP (nuclear-encoded plastid RNA polymerase)-dependent plastid genes are up regulated in the psbA deletion mutants, whereas the bleached leaves retain plastid-encoded plastid RNA polymerase activity. Hence, the expression of NEP-dependent plastid genes may be regulated by photosynthesis, either directly or indirectly.
Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming
2016-01-28
WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.
Kim, Jun Hyeok; Hyun, Woo Young; Nguyen, Hoai Nguyen; Jeong, Chan Young; Xiong, Liming; Hong, Suk-Whan; Lee, Hojoung
2015-03-01
Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that Arabidopsis AtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.
Bi, Yanqi; Pei, Guangsheng; Sun, Tao; Chen, Zixi; Chen, Lei; Zhang, Weiwen
2018-01-01
Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans -encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans -encoded sRNA Nc117 was determined to be 102 nucleotides using 3' RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans -encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans -encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.
The Microprocessor controls the activity of mammalian retrotransposons
Heras, Sara R.; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L.; Cáceres, Javier F.
2013-01-01
More than half of the human genome is made of Transposable Elements. Their ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human LINE-1 (Long INterspersed Element 1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons acting as a defender of human genome integrity. PMID:23995758
The Microprocessor controls the activity of mammalian retrotransposons.
Heras, Sara R; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L; Cáceres, Javier F
2013-10-01
More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons and a defender of human genome integrity.
Yeast Ras regulates the complex that catalyzes the first step in GPI-anchor biosynthesis at the ER.
Sobering, Andrew K; Watanabe, Reika; Romeo, Martin J; Yan, Benjamin C; Specht, Charles A; Orlean, Peter; Riezman, Howard; Levin, David E
2004-05-28
The yeast ERI1 gene encodes a small ER-localized protein that associates in vivo with GTP bound Ras2 in an effector loop-dependent manner. We showed previously that loss of Eri1 function results in hyperactive Ras phenotypes. Here, we demonstrate that Eri1 is a component of the GPI-GlcNAc transferase (GPI-GnT) complex in the ER, which catalyzes transfer of GlcNAc from UDP-GlcNAc to an acceptor phosphatidylinositol, the first step in the production of GPI-anchors for cell surface proteins. We also show that GTP bound Ras2 associates with the GPI-GnT complex in vivo and inhibits its activity, indicating that yeast Ras uses the ER as a signaling platform from which to negatively regulate the GPI-GnT. We propose that diminished GPI-anchor protein production contributes to hyperactive Ras phenotypes.
Goldin, Philippe; Ramel, Wiveka; Gross, James
2014-01-01
This study examined the effects of mindfulness-based stress reduction (MBSR) on the brain-behavior mechanisms of self-referential processing in patients with social anxiety disorder (SAD). Sixteen patients underwent functional magnetic resonance imaging while encoding self-referential, valence, and orthographic features of social trait adjectives. Post-MBSR, 14 patients completed neuroimaging. Compared to baseline, MBSR completers showed (a) increased self-esteem and decreased anxiety, (b) increased positive and decreased negative self-endorsement, (c) increased activity in a brain network related to attention regulation, and (d) reduced activity in brain systems implicated in conceptual-linguistic self-view. MBSR-related changes in maladaptive or distorted social self-view in adults diagnosed with SAD may be related to modulation of conceptual self-processing and attention regulation. Self-referential processing may serve as a functional biobehavioral target to measure the effects of mindfulness training. PMID:25568592
Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.
Avet-Rochex, Amélie; Carvajal, Nancy; Christoforou, Christina P; Yeung, Kelvin; Maierbrugger, Katja T; Hobbs, Carl; Lalli, Giovanna; Cagin, Umut; Plachot, Cedric; McNeill, Helen; Bateman, Joseph M
2014-09-01
Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR)/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk), which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc) as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem/progenitor cells, suggesting that the role of Unk in neurogenesis may be conserved in mammals.
Chainay, Hanna; Sava, Alexandra; Michael, George A; Landré, Lionel; Versace, Rémy; Krolak-Salmon, Pierre
2014-01-01
There is some discrepancy in the results regarding emotional enhancement of memory (EEM) in Alzheimer's disease (AD). Some studies report better retrieval of emotional information, especially positive, than neutral information. This observation is similar to the positivity effect reported in healthy older adults. It was suggested that this effect is due to privileged, deeper and more controlled processing of positive information. One way of testing this is to control both the intention to encode the information and the cognitive resources involved during encoding. Studies investigating EEM in AD patients did not systematically control the nature of encoding. Consequently, the purpose of our study was to examine EEM in AD while manipulating the nature of encoding. Two experiments were conducted. In Experiment 1 the intention to encode stimuli was manipulated by giving or not giving instructions to participants about the subsequent retrieval. In Experiment 2 cognitive resources involved during encoding were varied (low vs high). In both experiments participants performed immediate recognition task of negative, positive and neutral pictures. 41 mild AD patients and 44 older healthy adults participated in Exp. 1, and 17 mild AD patients and 20 older healthy adults participated in Exp. 2. AD patients did not present EEM. Positivity effect, better performance for positive than neutral and negative pictures was observed with older healthy adults. The data suggest that EEM is disturbed in mild AD patients, with respect to both negative and positive stimuli, at least concerning laboratory, not real-life material. They also suggest there is a positivity effect in healthy older adults and lend support to the idea that this effect is due to preferential cognitive processing of positive information in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.
Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B
2013-02-01
Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.
Peñalosa-Ruiz, Georgina; Aranda, Cristina; Ongay-Larios, Laura; Colon, Maritrini; Quezada, Hector; Gonzalez, Alicia
2012-01-01
Background Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase. Principal Findings Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function. Conclusions ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1 repressor. Presented results indicate that alanine could act as ALT2 Nrg1-co-repressor. PMID:23049841
Echenique-Rivera, Hebert; Muzzi, Alessandro; Del Tordello, Elena; Seib, Kate L; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide
2011-05-01
During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.
Del Tordello, Elena; Seib, Kate L.; Francois, Patrice; Rappuoli, Rino; Pizza, Mariagrazia; Serruto, Davide
2011-01-01
During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism. PMID:21589640
Jiang, Hong; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming
2017-02-20
A PKS1 gene responsible for the melanin biosynthesis and a NPG1 gene in Aureobasidium melanogenum XJ5-1 were cloned and characterized. An ORF of the PKS1 gene encoding a protein with 2165 amino acids contained 6495bp while an ORF of the NPG1 gene encoding a protein with 340 amino acids had 1076bp. After analysis of their promoters, it was found that expression of both the PKS1 gene and the NPG1 gene was repressed by nitrogen sources and glucose, respectively. The PKS deduced from the cloned gene consisted of one ketosynthase, one acyl transferase, two acyl carrier proteins, one thioesterase and one cyclase while the PPTase belonged to the family Sfp-type. After disruption of the PKS1 gene and the NPG1 gene, expression of the PKS1 gene and the NPG1 gene and the melanin biosynthesis in the disruptants K5 and DP107 disappeared and expression of the PKS1 gene in the disruptant DP107 was also negatively influenced. However, after the NPG1 gene was complemented in the disruptant DP107, the melanin biosynthesis in the complementary strain BP17 was restored and expression of the PKS1 gene and the NPG1 gene was greatly enhanced, suggesting that the PKS was indeed activated and regulated by the PPTase and expression of the PKS1 gene and the NPG1 gene had a coordinate regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Goldin, Philippe; Ziv, Michal; Jazaieri, Hooria; Gross, James J.
2012-01-01
Background: Social anxiety disorder (SAD) is characterized by distorted self-views. The goal of this study was to examine whether mindfulness-based stress reduction (MBSR) alters behavioral and brain measures of negative and positive self-views. Methods: Fifty-six adult patients with generalized SAD were randomly assigned to MBSR or a comparison aerobic exercise (AE) program. A self-referential encoding task was administered at baseline and post-intervention to examine changes in behavioral and neural responses in the self-referential brain network during functional magnetic resonance imaging. Patients were cued to decide whether positive and negative social trait adjectives were self-descriptive or in upper case font. Results: Behaviorally, compared to AE, MBSR produced greater decreases in negative self-views, and equivalent increases in positive self-views. Neurally, during negative self versus case, compared to AE, MBSR led to increased brain responses in the posterior cingulate cortex (PCC). There were no differential changes for positive self versus case. Secondary analyses showed that changes in endorsement of negative and positive self-views were associated with decreased social anxiety symptom severity for MBSR, but not AE. Additionally, MBSR-related increases in dorsomedial prefrontal cortex (DMPFC) activity during negative self-view versus case were associated with decreased social anxiety related disability and increased mindfulness. Analysis of neural temporal dynamics revealed MBSR-related changes in the timing of neural responses in the DMPFC and PCC for negative self-view versus case. Conclusion: These findings suggest that MBSR attenuates maladaptive habitual self-views by facilitating automatic (i.e., uninstructed) recruitment of cognitive and attention regulation neural networks. This highlights potentially important links between self-referential and cognitive-attention regulation systems and suggests that MBSR may enhance more adaptive social self-referential processes in patients with SAD. PMID:23133411
Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.
Li, Lihong; Xue, Meizhao; Yi, Huilan
2016-10-05
Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Heat Shock Response of Archaeoglobus fulgidus†
Rohlin, Lars; Trent, Jonathan D.; Salmon, Kirsty; Kim, Unmi; Gunsalus, Robert P.; Liao, James C.
2005-01-01
The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms. PMID:16109946
Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.
2011-01-01
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317
Intrusive Memories of Distressing Information: An fMRI Study
Battaglini, Eva; Liddell, Belinda; Das, Pritha; Malhi, Gin; Felmingham, Kim
2016-01-01
Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI) to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42) viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13) demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13). Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC) and dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories. PMID:27685784
USDA-ARS?s Scientific Manuscript database
We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...
Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.
2015-01-01
Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216
Shin, Jung-Ho; Oh, So-Young; Kim, Soon-Jong; Roe, Jung-Hye
2007-01-01
In various bacteria, Zur, a zinc-specific regulator of the Fur family, regulates genes for zinc transport systems to maintain zinc homeostasis. It has also been suggested that Zur controls zinc mobilization by regulating some ribosomal proteins. The antibiotic-producing soil bacterium Streptomyces coelicolor contains four genes for Fur family regulators, and one (named zur) is located downstream of the znuACB operon encoding a putative zinc uptake transporter. We found that zinc specifically repressed the level of znuA transcripts and that this level was derepressed in a Δzur mutant. Purified Zur existing as homodimers bound to the znuA promoter region in the presence of zinc, confirming the role of Zur as a zinc-responsive repressor. We analyzed transcripts for paralogous forms of ribosomal proteins L31 (RpmE1 and RpmE2) and L33 (RpmG2 and RpmG3) for their dependence on Zur and found that RpmE2 and RpmG2 with no zinc-binding motif of conserved cysteines (C's) were negatively regulated by Zur. C-negative RpmG3 and C-positive RpmE1 were not regulated by Zur. Instead, they were regulated by the sigma factor σR as predicted from their promoter sequences. The rpmE1 and rpmG3 genes were partially induced by EDTA in a manner dependent on σR, suggesting that zinc depletion may stimulate the σR regulatory system. This finding reflects a link between thiol-oxidizing stress and zinc depletion. We determined the Zur-binding sites within znuA and rpmG2 promoter regions by footprinting analyses and identified a consensus inverted repeat sequence (TGaaAatgatTttCA, where uppercase letters represent the nucleotides common to all sites analyzed). This sequence closely matches that for mycobacterial Zur and allows the prediction of more genes in the Zur regulon. PMID:17416659
Kark, Sarah M.; Kensinger, Elizabeth A.
2015-01-01
While prior work has shown greater retrieval-related reactivation in the ventral visual stream for emotional stimuli compared to neutral stimuli, the effects of valence on retrieval-related recapitulation of successful encoding processes (Dm effects) have yet to be investigated. Here, seventeen participants (aged 19–35) studied line drawings of negative, positive, or neutral images followed immediately by the complete photo. After a 20-minute delay, participants performed a challenging recognition memory test, distinguishing the studied line drawing outlines from novel ones. First, results replicated earlier work by demonstrating that negative and positive hits elicited greater ventral occipito-temporal cortex (VOTC) activity than neutral hits during both encoding and retrieval. Moreover, the amount of activation in portions of the VOTC correlated with the magnitude of participants’ emotional memory enhancement. Second, results revealed significant retrieval-related recapitulation of Dm effects (Hits > Misses) in VOTC (anterior inferior temporal gyri) only for negative stimuli. Third, connectivity between the amygdala and fusiform gyrus during the encoding of negative stimuli increased the likelihood of fusiform activation during successful retrieval. Together, these results suggest that recapitulation in posterior VOTC reflects memory for the affective dimension of the stimuli (Emotional Hits > Neutral Hits) and the magnitude of activation in some of these regions is related to superior emotional memory. Moreover, for negative stimuli, recapitulation in more anterior portions of the VOTC is greater for remembered than forgotten items. The current study offers new evidence for effects of emotion on recapitulation of activity and functional connectivity in support of memory. PMID:26459096
Kark, Sarah M; Kensinger, Elizabeth A
2015-11-01
While prior work has shown greater retrieval-related reactivation in the ventral visual stream for emotional stimuli compared to neutral stimuli, the effects of valence on retrieval-related recapitulation of successful encoding processes (Dm effects) have yet to be investigated. Here, seventeen participants (aged 19-35) studied line drawings of negative, positive, or neutral images followed immediately by the complete photo. After a 20-min delay, participants performed a challenging recognition memory test, distinguishing the studied line drawing outlines from novel ones. First, results replicated earlier work by demonstrating that negative and positive hits elicited greater ventral occipito-temporal cortex (VOTC) activity than neutral hits during both encoding and retrieval. Moreover, the amount of activation in portions of the VOTC correlated with the magnitude of participants' emotional memory enhancement. Second, results revealed significant retrieval-related recapitulation of Dm effects (Hits>Misses) in VOTC (anterior inferior temporal gyri) only for negative stimuli. Third, connectivity between the amygdala and fusiform gyrus during the encoding of negative stimuli increased the likelihood of fusiform activation during successful retrieval. Together, these results suggest that recapitulation in posterior VOTC reflects memory for the affective dimension of the stimuli (Emotional Hits>Neutral Hits) and the magnitude of activation in some of these regions is related to superior emotional memory. Moreover, for negative stimuli, recapitulation in more anterior portions of the VOTC is greater for remembered than forgotten items. The current study offers new evidence for effects of emotion on recapitulation of activity and functional connectivity in support of memory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guillery-Girard, Bérengère; Clochon, Patrice; Giffard, Bénédicte; Viard, Armelle; Egler, Pierre-Jean; Baleyte, Jean-Marc; Eustache, Francis; Dayan, Jacques
2013-09-01
"Travelling in time," a central feature of episodic memory is severely affected among individuals with Post Traumatic Stress Disorder (PTSD) with two opposite effects: vivid traumatic memories are unorganized in temporality (bottom-up processes), non-traumatic personal memories tend to lack spatio-temporal details and false recognitions occur more frequently that in the general population (top-down processes). To test the effect of these two types of processes (i.e. bottom-up and top-down) on emotional memory, we conducted two studies in healthy and traumatized adolescents, a period of life in which vulnerability to emotion is particularly high. Using negative and neutral images selected from the international affective picture system (IAPS), stimuli were divided into perceptual images (emotion generated by perceptual details) and conceptual images (emotion generated by the general meaning of the material). Both categories of stimuli were then used, along with neutral pictures, in a memory task with two phases (encoding and recognition). In both populations, we reported a differential effect of the emotional material on encoding and recognition. Negative perceptual scenes induced an attentional capture effect during encoding and enhanced the recollective distinctiveness. Conversely, the encoding of conceptual scenes was similar to neutral ones, but the conceptual relatedness induced false memories at retrieval. However, among individuals with PTSD, two subgroups of patients were identified. The first subgroup processed the scenes faster than controls, except for the perceptual scenes, and obtained similar performances to controls in the recognition task. The second subgroup group desmonstrated an attentional deficit in the encoding task with no benefit from the distinctiveness associated with negative perceptual scenes on memory performances. These findings provide a new perspective on how negative emotional information may have opposite influences on memory in normal and traumatized individuals. It also gives clues to understand how intrusive memories and overgeneralization takes place in PTSD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E
2017-04-15
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong
2008-11-01
Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.
An fMRI investigation of the cognitive reappraisal of negative memories
Holland, Alisha C.; Kensinger, Elizabeth A.
2013-01-01
Episodic memory retrieval can be influenced by individuals’ current goals, including those that are emotional in nature. Participants underwent an fMRI scan while reappraising, or changing the way they thought about aversive images they had previously encoded, to down-regulate (i.e., decrease), up-regulate (i.e., increase), or maintain the emotional intensity associated with their recall. A conjunction analysis between down- and up-regulation during the entire 12-sec recall period revealed that both commonly activated reappraisal-related regions, particularly in the lateral and medial prefrontal cortex (PFC). However, when we analyzed a reappraisal instruction phase prior to recall and then divided the recall phase into the time when individuals were first searching for their memories and later elaborating on their details, we found that down- and up-regulation engaged greater neural activity at different time points. Up-regulation engaged greater PFC activity than down-regulation or maintenance during the reappraisal instruction phase. In contrast, down-regulation engaged greater lateral PFC activity as images were being searched for and retrieved. Maintaining the emotional intensity associated with the aversive images engaged similar regions to a greater extent than either reappraisal condition as participants elaborated on the details of the images they were holding in mind. Our findings suggest that down- and up-regulation engage similar neural regions during memory retrieval, but differ in the timing of this engagement. PMID:23500898
Collins, Morgan E.; Black, Joshua J.
2017-01-01
ABSTRACT Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2. How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation. IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae. In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry. PMID:28432100
NASA Astrophysics Data System (ADS)
Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.
2016-11-01
How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.
What a relief! A role for dopamine in positive (but not negative) valence.
Sharpe, Melissa J
2018-02-27
We have long known that dopamine encodes the predictive relationship between cues and rewards. But what about relief learning? In this issue of Neuropsychopharmacology, Meyer et al. show that the same circuits encoding rewarding events also encode relief from aversive events. And this appears to be in a manner distinct from encoding of the aversive event itself. So does dopamine only contribute to learning about positive events? And are these events encoded in the same way regardless of how that positive experience came about? Not quite. Turns out, the devil is in the details.
Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions.
Ernst, Lena H; Lutz, Elisabeth; Ehlis, Ann-Christine; Fallgatter, Andreas J; Reif, Andreas; Plichta, Michael M
2013-01-01
Regulation of automatic approach and avoidance behavior requires affective and cognitive control, which are both influenced by a genetic variation in the gene encoding Monoamine Oxidase A (termed MAOA-uVNTR). The current study investigated MAOA genotype as a moderator of prefrontal cortical activation measured with functional near-infrared spectroscopy (fNIRS) in 37 healthy young adults during performance of the approach-avoidance task with positive and negative pictures. Carriers of the low- compared to the high-expressing genetic variant (MAOA-L vs. MAOA-H) showed increasing regulatory activity in the right dorsolateral prefrontal cortex (DLPFC) during incompatible conditions (approach negative, avoid positive). This might have been a compensatory mechanism for stronger emotional reactions as shown in previous studies and might have prevented any influence of incompatibility on behavior. In contrast, fewer errors but also lower activity in the right DLPFC during processing of negative compared to positive stimuli indicated MAOA-H carriers to have used other regulatory areas. This resulted in slower reaction times in incompatible conditions, but--in line with the known better cognitive regulation efficiency--allowed them to perform incompatible reactions without activating the DLPFC as the highest control instance. Carriers of one low- and one high-expressing allele lay as an intermediate group between the reactions of the low- and high-expressing groups. The relatively small sample size and restriction to fNIRS for assessment of cortical activity limit our findings. Nevertheless, these first results suggest monoam-inergic mechanisms to contribute to interindividual differences in the two basic behavioral principles of approach and avoidance and their neuronal correlates. Copyright © 2013 S. Karger AG, Basel.
Lin, Ta-Hui; Huang, Shih-Chien
2012-01-01
HtpX is an integral cytoplasmic membrane metalloprotease well conserved in numerous bacteria. A recent study showed that expression of the Bacillus subtilis htpX gene is under dual negative control by Rok and a novel type of transcriptional regulator, YkrK. Here we report that expression of the B. subtilis htpX gene is strongly heat inducible. Contrary to the previous prediction, ykrK expression has been found to be not subject to autoregulation. We have identified the htpX promoter and the authentic ykrK promoter, which is also distinct from the previously predicted one. We have redefined a conserved inverted repeat sequence to be the YkrK operator, which is somewhat different from the previously proposed one. We provide evidence that YkrK is not a substrate of HtpX and that heat induction of htpX is not YkrK mediated. We have also found that the absence of FtsH or HtpX alone did not impair B. subtilis cell viability on LB agar plates at high temperature, whereas the absence of both FtsH and HtpX caused a severe growth defect under heat stress. This finding supports the notion that FtsH and HtpX may have partially overlapping functions in heat resistance. Finally, we show that htpX expression is subject to transient negative control by sigB under heat stress in a Rok- and YkrK-independent manner. Triple negative control of htpX expression at high temperature by rok, sigB, and ykrK may help cells to prevent uncontrolled and detrimental oversynthesis of the HtpX protease. PMID:23042994
Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan
2018-06-14
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.
Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G
2014-07-01
Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi
2009-06-01
The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J.; Kang, Seongman; Ahn, Kwangseog
2006-01-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells. PMID:16699020
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J; Kang, Seongman; Ahn, Kwangseog
2006-06-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.
Lateralized interactive social content and valence processing within the human amygdala
Vrtička, Pascal; Sander, David; Vuilleumier, Patrik
2013-01-01
In the past, the amygdala has generally been conceptualized as a fear-processing module. Recently, however, it has been proposed to respond to all stimuli that are relevant with respect to the current needs, goals, and values of an individual. This raises the question of whether the human amygdala may differentiate between separate kinds of relevance. A distinction between emotional (vs. neutral) and social (vs. non-social) relevance is supported by previous studies showing that the human amygdala preferentially responds to both emotionally and socially significant information, and these factors might even display interactive encoding properties. However, no investigation has yet probed a full 2 (positive vs. negative valence) × 2 (social vs. non-social content) processing pattern, with neutral images as an additional baseline. Applying such an extended orthogonal factorial design, our fMRI study demonstrates that the human amygdala is (1) more strongly activated for neutral social vs. non-social information, (2) activated at a similar level when viewing social positive or negative images, but (3) displays a valence effect (negative vs. positive) for non-social images. In addition, this encoding pattern is not influenced by cognitive or behavioral emotion regulation mechanisms, and displays a hemispheric lateralization with more pronounced effects on the right side. Finally, the same valence × social content interaction was found in three additional cortical regions, namely the right fusiform gyrus, right anterior superior temporal gyrus, and medial orbitofrontal cortex. Overall, these findings suggest that valence and social content processing represent distinct kinds of relevance that interact within the human amygdala as well as in a more extensive cortical network, likely subserving a key role in relevance detection. PMID:23346054
Chand, Subodh K; Nanda, Satyabrata; Joshi, Raj K
2016-01-01
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5' RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars.
Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.
Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M
2013-05-01
The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.
Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora
Edmunds, Adam C.; Castiblanco, Luisa F.; Sundin, George W.
2013-01-01
The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis. PMID:23475975
Carvalho, Raquel F; Szakonyi, Dóra; Simpson, Craig G; Barbosa, Inês C R; Brown, John W S; Baena-González, Elena; Duque, Paula
2016-08-01
The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. © 2016 American Society of Plant Biologists. All rights reserved.
Barbosa, Inês C.R.
2016-01-01
The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana. Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars. PMID:27436712
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn
2010-04-16
We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less
Galli, Giulia; Griffiths, Victoria A; Otten, Leun J
2014-03-01
It has been shown that the effectiveness with which unpleasant events are encoded into memory is related to brain activity set in train before the events. Here, we assessed whether encoding-related activity before an aversive event can be modulated by emotion regulation. Electrical brain activity was recorded from the scalps of healthy women while they performed an incidental encoding task on randomly intermixed unpleasant and neutral visual scenes. A cue presented 1.5 s before each picture indicated the upcoming valence. In half of the blocks of trials, the instructions emphasized to let emotions arise in a natural way. In the other half, participants were asked to decrease their emotional response by adopting the perspective of a detached observer. Memory for the scenes was probed 1 day later with a recognition memory test. Brain activity before unpleasant scenes predicted later memory of the scenes, but only when participants felt their emotions and did not detach from them. The findings indicate that emotion regulation can eliminate the influence of anticipatory brain activity on memory encoding. This may be relevant for the understanding and treatment of psychiatric diseases with a memory component.
Li, Zhichao; He, Chaoying
2015-01-01
Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759
Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.
Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles
2008-03-28
NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.
A Screen for Modifiers of Hedgehog Signaling in Drosophila melanogaster Identifies swm and mts
Casso, David J.; Liu, Songmei; Iwaki, D. David; Ogden, Stacey K.; Kornberg, Thomas B.
2008-01-01
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway—patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn+ finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity. PMID:18245841
Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi
2017-02-01
Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.
Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu
2016-01-01
Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most functions up regulated during VI would lead to cell death. These differences are discussed in the frame of a multilayered response to non self in fungi. PMID:27148175
De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A
2017-05-01
Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Glial Cells in the Genesis and Regulation of Circadian Rhythms
Chi-Castañeda, Donají; Ortega, Arturo
2018-01-01
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian “master clock,” which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called “clock genes.” A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as “clock-controlled genes.” In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis. PMID:29483880
Asahina, Masashi; Tamaki, Yuji; Sakamoto, Tomoaki; Shibata, Kyomi; Nomura, Takahito; Yokota, Takao
2014-08-01
In this study the relationship between blue light- and brassinosteroid-enhanced leaf lamina bending and unrolling in rice was investigated. Twenty-four hours (h) irradiation with white or blue light increased endogenous brassinosteroid levels, especially those of typhasterol and castasterone, in aerial tissues of rice seedlings. There was an accompanying up-regulation of transcript levels of CYP85A1/OsDWARF, encoding an enzyme catalyzing C-6 oxidation, after 6h under either white or blue light. These effects were not observed in seedlings placed under far-red or red light regimes. It was concluded that blue light up-regulates the levels of several cytochrome P450 enzymes including CYP85A1, thereby promoting the synthesis of castasterone, a biologically active brassinosteroid in rice. Based on these findings, it is considered that blue light-mediated rice leaf bending and unrolling are consequences of the enhanced biosynthesis of endogenous castasterone. In contrast to aerial tissues, brassinosteroid synthesis in roots appeared to be negatively regulated by white, blue and red light but positively controlled by far-red light. Copyright © 2014 Elsevier Ltd. All rights reserved.
A.P., Sudheesh
2017-01-01
ABSTRACT Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3′-end processing and expression of pre-mRNAs encoding key anti-invasive factors (KISS1R, CDH1, NME1, CDH13, FEZ1, and WIF1) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP–PIPKIα-mediated 3′-end processing as a key anti-invasive mechanism in breast cancer. PMID:29203642
A P, Sudheesh; Laishram, Rakesh S
2018-03-01
Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.
Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng
2014-01-01
Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.
Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J
2015-07-27
Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.
Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu
2013-04-01
Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.
Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4.
Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier
2008-12-22
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2-EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.
Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4
Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier
2008-01-01
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2–EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies. PMID:19075289
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening
2017-01-01
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790
An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.
MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M
2017-03-13
DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.
Zhao, Chunhua; Lin, Zhao; Dong, Hongjun; Zhang, Yanping; Li, Yin
2017-06-01
Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA ::Tn 5 mutant in a screen for increased yield of an end product derived from pyruvate ( n -butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n -butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions. IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products. Copyright © 2017 American Society for Microbiology.
Zeng, Jie; Deng, Wanyan; Yang, Wenmin; Luo, Hongping; Duan, Xiangke; Xie, Longxiang; Li, Ping; Wang, Rui; Fu, Tiwei; Abdalla, Abualgasim Elgaili; Xie, Jianping
2016-01-01
Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections. PMID:27349953
Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki
2016-01-01
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283
Fiévet, Anouchka; My, Laetitia; Cascales, Eric; Ansaldi, Mireille; Pauleta, Sofia R.; Moura, Isabel; Dermoun, Zorah; Bernard, Christophe S.; Dolla, Alain; Aubert, Corinne
2011-01-01
Analysis of sequenced bacterial genomes revealed that the genomes encode more than 30% hypothetical and conserved hypothetical proteins of unknown function. Among proteins of unknown function that are conserved in anaerobes, some might be determinants of the anaerobic way of life. This study focuses on two divergent clusters specifically found in anaerobic microorganisms and mainly composed of genes encoding conserved hypothetical proteins. We show that the two gene clusters DVU2103-DVU2104-DVU2105 (orp2) and DVU2107-DVU2108-DVU2109 (orp1) form two divergent operons transcribed by the σ54-RNA polymerase. We further demonstrate that the σ54-dependent transcriptional regulator DVU2106, located between orp1 and orp2, collaborates with σ54-RNA polymerase to orchestrate the simultaneous expression of the divergent orp operons. DVU2106, whose structural gene is transcribed by the σ70-RNA polymerase, negatively retrocontrols its own expression. By using an endogenous pulldown strategy, we identify a physiological complex composed of DVU2103, DVU2104, DVU2105, DVU2108, and DVU2109. Interestingly, inactivation of DVU2106, which is required for orp operon transcription, induces morphological defects that are likely linked to the absence of the ORP complex. A putative role of the ORP proteins in positioning the septum during cell division is discussed. PMID:21531797
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W
Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine
2012-01-01
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403
Guo, Fengguang; Lei, Jiaxin; Sun, Yucheng; Chi, Yong Hun; Ge, Feng; Patil, Bhimanagouda S; Koiwa, Hisashi; Zeng, Rensen; Zhu-Salzman, Keyan
2012-01-01
The furanocoumarin compound bergapten is a plant secondary metabolite that has anti-insect function. When incorporated into artificial diet, it retarded cowpea bruchid development, decreased fecundity, and caused mortality at a sufficient dose. cDNA microarray analysis indicated that cowpea bruchid altered expression of 543 midgut genes in response to dietary bergapten. Among these bergapten-regulated genes, 225 have known functions; for instance, those encoding proteins related to nutrient transport and metabolism, development, detoxification, defense and various cellular functions. Such differential gene regulation presumably facilitates the bruchids' countering the negative effect of dietary bergapten. Many genes did not have homology (E-value cutoff 10(-6)) with known genes in a BlastX search (206), or had homology only with genes of unknown function (112). Interestingly, when compared with the transcriptomic profile of cowpea bruchids treated with dietary soybean cysteine protease inhibitor N (scN), 195 out of 200 coregulated midgut genes are oppositely regulated by the two compounds. Simultaneous administration of bergapten and scN attenuated magnitude of change in selected oppositely-regulated genes, as well as led to synergistic delay in insect development. Therefore, targeting insect vulnerable sites that may compromise each other's counter-defensive response has the potential to increase the efficacy of the anti-insect molecules.
Wnt signaling regulates pancreatic β cell proliferation
Rulifson, Ingrid C.; Karnik, Satyajit K.; Heiser, Patrick W.; ten Berge, Derk; Chen, Hainan; Gu, Xueying; Taketo, Makoto M.; Nusse, Roel; Hebrok, Matthias; Kim, Seung K.
2007-01-01
There is widespread interest in defining factors and mechanisms that stimulate proliferation of pancreatic islet cells. Wnt signaling is an important regulator of organ growth and cell fates, and genes encoding Wnt-signaling factors are expressed in the pancreas. However, it is unclear whether Wnt signaling regulates pancreatic islet proliferation and differentiation. Here we provide evidence that Wnt signaling stimulates islet β cell proliferation. The addition of purified Wnt3a protein to cultured β cells or islets promoted expression of Pitx2, a direct target of Wnt signaling, and Cyclin D2, an essential regulator of β cell cycle progression, and led to increased β cell proliferation in vitro. Conditional pancreatic β cell expression of activated β-catenin, a crucial Wnt signal transduction protein, produced similar phenotypes in vivo, leading to β cell expansion, increased insulin production and serum levels, and enhanced glucose handling. Conditional β cell expression of Axin, a potent negative regulator of Wnt signaling, led to reduced Pitx2 and Cyclin D2 expression by β cells, resulting in reduced neonatal β cell expansion and mass and impaired glucose tolerance. Thus, Wnt signaling is both necessary and sufficient for islet β cell proliferation, and our study provides previously unrecognized evidence of a mechanism governing endocrine pancreas growth and function. PMID:17404238
OsGRF4 controls grain shape, panicle length and seed shattering in rice.
Sun, Pingyong; Zhang, Wuhan; Wang, Yihua; He, Qiang; Shu, Fu; Liu, Hai; Wang, Jie; Wang, Jianmin; Yuan, Longping; Deng, Huafeng
2016-10-01
Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
Zheng, Desen; Hao, Guixia; Cursino, Luciana; Zhang, Hongsheng; Burr, Thomas J
2012-09-01
The characterization of Tn5 transposon insertional mutants of Agrobacterium vitis strain F2/5 revealed a gene encoding a predicted LysR-type transcriptional regulator, lhnR (for 'LysR-type regulator associated with HR and necrosis'), and an immediate upstream operon consisting of three open reading frames (lhnABC) required for swarming motility, surfactant production and the induction of a hypersensitive response (HR) on tobacco and necrosis on grape. The operon lhnABC is unique to A. vitis among the sequenced members in Rhizobiaceae. Mutagenesis of lhnR and lhnABC by gene disruption and complementation of ΔlhnR and ΔlhnABC confirmed their roles in the expression of these phenotypes. Mutation of lhnR resulted in complete loss of HR, swarming motility, surfactant production and reduced necrosis, whereas mutation of lhnABC resulted in loss of swarming motility, delayed and reduced HR development and reduced surfactant production and necrosis. The data from promoter-green fluorescent protein (gfp) fusions showed that lhnR suppresses the expression of lhnABC and negatively autoregulates its own expression. It was also shown that lhnABC negatively affects its own expression and positively affects the transcription of lhnR. lhnR and lhnABC constitute a regulatory circuit that coordinates the transcription level of lhnR, resulting in the expression of swarming, surfactant, HR and necrosis phenotypes. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
The New Rga Locus Encodes a Negative Regulator of Gibberellin Response in Arabidopsis Thaliana
Silverstone, A. L.; Mak, PYA.; Martinez, E. C.; Sun, T.
1997-01-01
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway. PMID:9215910
Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.
Schuhmacher, D A; Klose, K E
1999-03-01
The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.
Andersson, R A; Palva, E T; Pirhonen, M
1999-07-01
The main virulence factors of Erwinia carotovora subsp. carotovora, the secreted, extracellular cell-wall-degrading enzymes, are controlled by several regulatory mechanisms. We have isolated transposon mutants with reduced virulence on tobacco. One of these mutants, with a mutation in a gene designated expM, was characterized in this study. This mutant produces slightly reduced amounts of extracellular enzymes in vitro and the secretion of the enzymes is also affected. The expM wild-type allele was cloned together with an upstream gene, designated expL, that has an unknown function. The expM gene was sequenced and found to encode a protein with similarity to the RssB/SprE protein of Escherichia coli and the MviA protein of Salmonella typhimurium. These proteins belong to a new type of two-component response regulators that negatively regulate the stability of the Sigma factor RpoS (sigma s) at the protein level. The results of this study suggest that ExpM has a similar function in E. carotovora subsp. carotovora. We also provide evidence that the overproduction of RpoS in the expM mutant is an important factor for the reduced virulence phenotype and that it partly causes the observed phenotype seen in vitro. However, an expM/rpoS double mutant is still affected in secretion of extracellular enzymes, suggesting that ExpM in addition to RpoS also acts on other targets.
Knecht, Hans; Mai, Sabine
2017-06-27
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is expressed in germinal-center-derived, mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells in classical EBV-positive Hodgkin's lymphoma (cHL). LMP1 expression in EBV-negative H-cell lines results in a significantly increased number of RS cells. In a conditional, germinal-center-derived B-cell in vitro system, LMP1 reversibly down-regulates the shelterin proteins, telomeric repeat binding factor (TRF)1, TRF2, and protection of telomeres (POT)1. This down-regulation is associated with progressive 3D shelterin disruption, resulting in telomere dysfunction, progression of complex chromosomal rearrangements, and multinuclearity. TRF2 appears to be the key player. Thus, we hypothesize that the 3D interaction of telomeres and TRF2 is disrupted in H cells, and directly associated with the formation of H and RS cells. Using quantitative 3D co-immuno-TRF2-telomere fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) applied to monolayers of primary H and RS cells, we demonstrate TRF2-telomere dysfunction in EBV-positive cHL. However, in EBV-negative cHL a second molecular mechanism characterized by massive up-regulation of TRF2, but attrition of telomere signals, is also identified. These facts point towards a shelterin-related pathogenesis of cHL, where two molecularly disparate mechanisms converge at the level of 3D Telomere-TRF2 interactions, leading to the formation of RS cells.
Liang, Guanxiang; Malmuthuge, Nilusha; Bao, Hua; Stothard, Paul; Griebel, Philip J; Guan, Le Luo
2016-08-11
Postnatal development of the mammalian mucosal immune system is crucial for responding to the rapid colonization by commensal bacteria and possible exposure to pathogens. This study analyzed expression patterns for mRNAs and their relationship with microRNAs (miRNAs) in the bovine small intestine during the critical neonatal period (0 to 42 days). This analysis revealed molecular mechanisms regulating the postnatal development of the intestinal mucosal immune system. Small intestine samples (jejunum and ileum) were collected from newborn male, Holstein calves immediately post-partum (n = 3) and at 7 (n = 5), 21 (n = 5), and 42 (n = 5) days of age and the transcriptomes were profiled using RNA-Seq. When analyzing all time points collectively, greater expression of genes encoding the complement functional pathway, as well as lower expression of genes encoding Toll-like receptors and NOD-like receptors were observed in the jejunum when compared to the ileum. In addition, significant changes in the expression of immune-related genes were detected within the first week post-partum in both jejunum and ileum. For example, increased expression of genes encoding tight junction proteins (claudin 1, claudin 4 and occludin), an antimicrobial peptide (Regenerating Islet-Derived 3-γ), NOD-like receptors (NACHT, LRR and PYD domain-containing protein 3), regulatory T cell marker (forkhead box P3), and both anti-inflammatory (interleukin 10) and pro-inflammatory (interleukin 8) cytokines was observed throughout the small intestine of 7-day-old calves when compared to newborn calves. Moreover, the expression of mucosal immune-related genes were either positively or negatively correlated with total bacterial population depending on both intestinal region and age. The integrated analysis of miRNAs and mRNAs supported the conclusion that miRNAs may regulate temporal changes in the expression of genes encoding tight junction proteins (miR-335), cytokines (miR-335) and bacterial recognition (miR-100) during the first week of small intestine development. The rapid development of transcriptional differences between jejunum and ileum reveal that these two intestinal regions make distinct contributions to the intestinal mucosal immune system during the early neonatal period. In addition, transcriptome analysis indicates that the first week after birth is a very dynamic developmental period for the intestinal mucosal immune system and these changes may be regulated by both miRNAs and microbial colonization. Findings from this study indicate that a detailed analysis of both the abundance and diversity of the colonizing microbiome may be necessary to understand factors regulating the rapid development of the mucosal immune system during the first week of life.
miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus
Serva, Andrius; Knapp, Bettina; Tsai, Yueh-Tso; Claas, Christoph; Lisauskas, Tautvydas; Matula, Petr; Harder, Nathalie; Kaderali, Lars; Rohr, Karl; Erfle, Holger; Eils, Roland; Braga, Vania; Starkuviene, Vytaute
2012-01-01
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease. PMID:23285084
Shen, Jiangchuan; Walsh, Brenna J C; Flores-Mireles, Ana Lidia; Peng, Hui; Zhang, Yifan; Zhang, Yixiang; Trinidad, Jonathan C; Hultgren, Scott J; Giedroc, David P
2018-05-17
Recent studies of hydrogen sulfide (H 2 S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme Fe II persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.
Zaroff, Samantha; Leone, Paola; Markov, Vladimir; Francis, Jeremy S
2015-03-01
N-acetylaspartate (NAA) provides a non-invasive clinical index of neuronal metabolic integrity across the entire neurodegenerative spectrum. While NAA function is not comprehensively defined, reductions in the brain are associated with compromised mitochondrial metabolism and are tightly linked to ATP. We have undertaken an analysis of abnormalities in NAA during early stage pathology in the 5xFAD mouse model of familial Alzheimer's disease and show here that dysregulated expression of the gene encoding for the rate-limiting NAA synthetic enzyme (Nat8L) is associated with deficits in mitochondrial oxidative phosphorylation in this model system. Downreguation of Nat8L is particularly pronounced in the 5xFAD hippocampus, and is preceded by a significant upregulation of oligodendrocytic aspartoacylase (aspa), which encodes for the sole known NAA-catabolizing enzyme in the brain. Reductions in 5xFAD NAA and Nat8L cannot be accounted for by discrepancies in either neuron content or activity of the substrate-providing malate-aspartate shuttle, thereby implicating transcriptional regulation in a coordinated response to pathological energetic crisis. A central role for ASPA in this response is supported by a parallel developmental analysis showing highly significant increases in Nat8L expression in an ASPA-null mouse model during a period of early postnatal development normally punctuated by the transcriptional upregulation of aspa. These results provide preliminary evidence of a signaling mechanism in Alzheimer's disease that involves cross talk between neurons and oligodendrocytes, and suggest that ASPA acts to negatively regulate Nat8L expression. This mechanism is proposed to be a fundamental means by which the brain conserves available substrate during energy crises. Copyright © 2015 Elsevier Inc. All rights reserved.
cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli.
Nosho, Kazuki; Fukushima, Hiroko; Asai, Takehiro; Nishio, Masahiro; Takamaru, Reiko; Kobayashi-Kirschvink, Koseki Joseph; Ogawa, Tetsuhiro; Hidaka, Makoto; Masaki, Haruhiko
2018-03-01
A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.
Muscholl-Silberhorn, Albrecht B.
2000-01-01
Conjugative transfer of Enterococcus faecalis-specific sex pheromone plasmids relies on an adhesin, called aggregation substance, to confer a tight cell-to-cell contact between the mating partners. To analyze the dependence of pAD1-encoded aggregation substance, Asa1, on pheromone induction, a variety of upstream fragments were fused to an α-amylase reporter gene, amyL, by use of a novel promoter probe vector, pAMY-em1. For pheromone-regulated α-amylase activity, a total of at least six genes, traB, traC, traA, traE1, orfY, and orf1, are required: TraB efficiently represses asa1 (by a mechanism unrelated to its presumptive function in pheromone shutdown, since a complete shutdown is observed exclusively in the presence of traC); only traC can relieve traB-mediated repression in a pheromone-dependent manner. In addition to traB, traA is required but not sufficient for negative control. Mutational inactivation of traE1, orfY, or orf1, respectively, results in a total loss of α-amylase activity for constructs normally mediating constitutive expression. Inversion of a fragment covering traA, P0, and traE1 without disrupting any gene or control element switches off amyL or asa1 expression, indicating the involvement of a cis-acting, orientation-dependent factor (as had been shown for plasmid pCF10). Unexpectedly, pAD1 represses all pAMY-em1 derivatives in trans, while its own pheromone-dependent functions are unaffected. The discrepancy between the new data and those of former studies defining TraE1 as a trans-acting positive regulator is discussed. PMID:10850999
Li, Shan-Shan; Yang, Min; Chen, Yong-Ping; Tang, Xin-Yue; Zhang, Sheng-Guo; Ni, Shun-Lan; Yang, Nai-Bin; Lu, Ming-Qin
2018-05-28
Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Negative Priming in Free Recall Reconsidered
ERIC Educational Resources Information Center
Hanczakowski, Maciej; Beaman, C. Philip; Jones, Dylan M.
2016-01-01
Negative priming in free recall is the finding of impaired memory performance when previously ignored auditory distracters become targets of encoding and retrieval. This negative priming has been attributed to an aftereffect of deploying inhibitory mechanisms that serve to suppress auditory distraction and minimize interference with learning and…
Personal relevance modulates the positivity bias in recall of emotional pictures in older adults.
Tomaszczyk, Jennifer C; Fernandes, Myra A; MacLeod, Colin M
2008-02-01
Some studies have suggested that older adults remember more positive than negative valence information, relative to younger adults, whereas other studies have reported no such difference. We tested whether differences in encoding instructions and in personal relevance could account for these inconsistencies. Younger and older adults were instructed either to passively view positive, negative, and neutral pictures or to actively categorize them by valence. On a subsequent incidental recall test, older adults recalled equal numbers of positive and negative pictures, whereas younger adults recalled negative pictures best. There was no effect of encoding instructions. Crucially, when the pictures were grouped into high and low personal relevance, a positivity bias emerged in older adults only for low-relevance pictures, suggesting that the personal relevance of pictures may be the factor underlying cross-study differences.
Is the encoding of Reward Prediction Error reliable during development?
Keren, Hanna; Chen, Gang; Benson, Brenda; Ernst, Monique; Leibenluft, Ellen; Fox, Nathan A; Pine, Daniel S; Stringaris, Argyris
2018-05-16
Reward Prediction Errors (RPEs), defined as the difference between the expected and received outcomes, are integral to reinforcement learning models and play an important role in development and psychopathology. In humans, RPE encoding can be estimated using fMRI recordings, however, a basic measurement property of RPE signals, their test-retest reliability across different time scales, remains an open question. In this paper, we examine the 3-month and 3-year reliability of RPE encoding in youth (mean age at baseline = 10.6 ± 0.3 years), a period of developmental transitions in reward processing. We show that RPE encoding is differentially distributed between the positive values being encoded predominantly in the striatum and negative RPEs primarily encoded in the insula. The encoding of negative RPE values is highly reliable in the right insula, across both the long and the short time intervals. Insula reliability for RPE encoding is the most robust finding, while other regions, such as the striatum, are less consistent. Striatal reliability appeared significant as well once covarying for factors, which were possibly confounding the signal to noise ratio. By contrast, task activation during feedback in the striatum is highly reliable across both time intervals. These results demonstrate the valence-dependent differential encoding of RPE signals between the insula and striatum, and the consistency of RPE signals or lack thereof, during childhood and into adolescence. Characterizing the regions where the RPE signal in BOLD fMRI is a reliable marker is key for estimating reward-processing alterations in longitudinal designs, such as developmental or treatment studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Neutral details associated with emotional events are encoded: evidence from a cued recall paradigm.
Mickley Steinmetz, Katherine R; Knight, Aubrey G; Kensinger, Elizabeth A
2016-11-01
Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall-instead of previously used recognition memory tasks-would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information.
Effects of Acute Methamphetamine on Emotional Memory Formation in Humans: Encoding vs Consolidation
Ballard, Michael E.; Weafer, Jessica; Gallo, David A.; de Wit, Harriet
2015-01-01
Understanding how stimulant drugs affect memory is important for understanding their addictive potential. Here we examined the effects of acute d-methamphetamine (METH), administered either before (encoding phase) or immediately after (consolidation phase) study on memory for emotional and neutral images in healthy humans. Young adult volunteers (N = 60) were randomly assigned to either an encoding group (N = 29) or a consolidation group (N = 31). Across three experimental sessions, they received placebo and two doses of METH (10, 20 mg) either 45 min before (encoding) or immediately after (consolidation) viewing pictures of emotionally positive, neutral, and negative scenes. Memory for the pictures was tested two days later, under drug-free conditions. Half of the sample reported sleep disturbances following the high dose of METH, which affected their memory performance. Therefore, participants were classified as poor sleepers (less than 6 hours; n = 29) or adequate sleepers (6 or more hours; n = 31) prior to analyses. For adequate sleepers, METH (20 mg) administered before encoding significantly improved memory accuracy relative to placebo, especially for emotional (positive and negative), compared to neutral, stimuli. For poor sleepers in the encoding group, METH impaired memory. METH did not affect memory in the consolidation group regardless of sleep quality. These results extend previous findings showing that METH can enhance memory for salient emotional stimuli but only if it is present at the time of study, where it can affect both encoding and consolidation. METH does not appear to facilitate consolidation if administered after encoding. The study also demonstrates the important role of sleep in memory studies. PMID:25679982
Photorhabdus luminescens genes induced upon insect infection
Münch, Anna; Stingl, Lavinia; Jung, Kirsten; Heermann, Ralf
2008-01-01
Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI) approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18) were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known to regulate the expression of toxin genes, including tccC1 (encoding an insecticidal toxin complex), and others encoding putative toxins. A comparably high number of metabolic genes or operons were observed to be induced upon infection; among these were eutABC, hutUH, and agaZSVCD, which encode proteins involved in ethanolamine, histidine and tagatose degradation, respectively. The results reflect rearrangements in metabolism and the use of other metabolites available from the insect. Furthermore, enhanced activity of promoters controlling the expression of genes encoding enzymes linked to antibiotic production and/or resistance was observed. Antibiotic production and resistance may influence competition with other bacteria, and thus might be important for a successful infection. Lastly, several genes of unknown function were identified that may represent novel pathogenicity factors. Conclusion We show that a DFI screen is useful for identifying genes or operons induced by chemical stimuli, such as diluted insect homogenate. A bioinformatics comparison of motifs similar to known promoters is a powerful tool for identifying regulated genes or operons. We conclude that signals for the regulation of those genes or operons induced in P. luminescens upon insect infection may represent a wide variety of compounds that make up the insect host. Our results provide insight into the complex response to the host that occurs in a bacterial pathogen, particularly reflecting the potential for metabolic shifts and other specific changes associated with virulence. PMID:18489737
An expanding universe of small proteins.
Hobbs, Errett C; Fontaine, Fanette; Yin, Xuefeng; Storz, Gisela
2011-04-01
Historically, small proteins (sproteins) of less than 50 amino acids, in their final processed forms or genetically encoded as such, have been understudied. However, both serendipity and more recent focused efforts have led to the identification of a number of new sproteins in both Gram-negative and Gram-positive bacteria. Increasing evidence demonstrates that sproteins participate in a wide array of cellular processes and exhibit great diversity in their mechanisms of action, yet general principles of sprotein function are emerging. This review highlights examples of sproteins that participate in cell signaling, act as antibiotics and toxins, and serve as structural proteins. We also describe roles for sproteins in detecting and altering membrane features, acting as chaperones, and regulating the functions of larger proteins. Published by Elsevier Ltd.
Yao, Li-li
2015-01-01
Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes. PMID:26519391
Peano, Clelia; Chiaramonte, Fabrizio; Motta, Sara; Pietrelli, Alessandro; Jaillon, Sebastien; Rossi, Elio; Consolandi, Clarissa; Champion, Olivia L.; Michell, Stephen L.; Freddi, Luca; Falciola, Luigi; Basilico, Fabrizio; Garlanda, Cecilia; Mauri, Pierluigi; De Bellis, Gianluca; Landini, Paolo
2014-01-01
Burkholderia thailandensis, although normally avirulent for mammals, can infect macrophages in vitro and has occasionally been reported to cause pneumonia in humans. It is therefore used as a model organism for the human pathogen B. pseudomallei, to which it is closely related phylogenetically. We characterized the B. thailandensis clinical isolate CDC2721121 (BtCDC272) at the genome level and studied its response to environmental cues associated with human host colonization, namely, temperature and oxygen limitation. Effects of the different growth conditions on BtCDC272 were studied through whole genome transcription studies and analysis of proteins associated with the bacterial cell surface. We found that growth at 37°C, compared to 28°C, negatively affected cell motility and flagella production through a mechanism involving regulation of the flagellin-encoding fliC gene at the mRNA stability level. Growth in oxygen-limiting conditions, in contrast, stimulated various processes linked to virulence, such as lipopolysaccharide production and expression of genes encoding protein secretion systems. Consistent with these observations, BtCDC272 grown in oxygen limitation was more resistant to phagocytosis and strongly induced the production of inflammatory cytokines from murine macrophages. Our results suggest that, while temperature sensing is important for regulation of B. thailandensis cell motility, oxygen limitation has a deeper impact on its physiology and constitutes a crucial environmental signal for the production of virulence factors. PMID:24671187
Zebrafish Dmrta2 regulates neurogenesis in the telencephalon.
Yoshizawa, Akio; Nakahara, Yoshinari; Izawa, Toshiaki; Ishitani, Tohru; Tsutsumi, Makiko; Kuroiwa, Atsushi; Itoh, Motoyuki; Kikuchi, Yutaka
2011-11-01
Although recent findings showed that some Drosophila doublesex and Caenorhabditis elegans mab-3 related genes are expressed in neural tissues during development, their functions have not been fully elucidated. Here, we isolated a zebrafish mutant, ha2, that shows defects in telencephalic neurogenesis and found that ha2 encodes Doublesex and MAB-3 related transcription factor like family A2 (Dmrta2). dmrta2 expression is restricted to the telencephalon, diencephalon and olfactory placode during somitogenesis. We found that the expression of the proneural gene, neurogenin1, in the posterior and dorsal region of telencephalon (posterior-dorsal telencephalon) is markedly reduced in this mutant at the 14-somite stage without any defects in cell proliferation or cell death. In contrast, the telencephalic expression of her6, a Hes-related gene that is known to encode a negative regulator of neurogenin1, expands dramatically in the ha2 mutant. Based on over-expression experiments and epistatic analyses, we propose that zebrafish Dmrta2 controls neurogenin1 expression by repressing her6 in the posterior-dorsal telencephalon. Furthermore, the expression domains of the telencephalic marker genes, foxg1 and emx3, and the neuronal differentiation gene, neurod, are downregulated in the ha2 posterior-dorsal telencephalon during somitogenesis. These results suggest that Dmrta2 plays important roles in the specification of the posterior-dorsal telencephalic cell fate during somitogenesis. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander
2015-01-01
Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471
Vicente, Rebeca L.; Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.
2016-01-01
Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application. PMID:27977736
Stibitz, S; Weiss, A A; Falkow, S
1988-01-01
The vir locus of Bordetella pertussis apparently encodes a trans-acting positive regulator that is required for the coordinate expression of genes associated with virulence: pertussis toxin, filamentous hemagglutinin (FHA), hemolysin, and adenylate cyclase toxin. DNA clones of vir and of genes required for the synthesis of some of the factors under vir control were obtained with DNA probes from the chromosomal DNA surrounding sites of Tn5 insertion mutations that inactivated those genes. Two vir clones were found which also contained genes required for the proper expression of FHA in B. pertussis. The plasmids which contained both the fha and vir genes expressed immunologically reactive FHA in Escherichia coli, as detected by colony blots, whereas plasmids which contained only fha or vir were negative in this assay. The regulation of FHA production in E. coli, as in B. pertussis, was temperature dependent and inhibited by high concentrations of either magnesium ions or nicotinic acid, indicating that the sequences cloned in E. coli contained the information required to preserve the physiological responses seen in B. pertussis. Further characterization of the vir-fha clones by Tn5 mutagenesis in E. coli and by the return of cloned sequences to B. pertussis in trans and to the B. pertussis chromosome led to the localization of the vir locus, the structural gene for FHA, and genes that are possibly required for the synthesis and export of FHA. Images PMID:2898470
Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L.; Martin, Cathie; Bailey, Paul
2012-01-01
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285
Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng
2015-01-01
This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin E receptors 4 (EP4) in the articular chondrocytes.
Cook, Matthew S.; Munger, Steven C.; Nadeau, Joseph H.; Capel, Blanche
2011-01-01
Human germ cell tumors show a strong sensitivity to genetic background similar to Dnd1Ter/Ter mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1Ter/Ter mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1Ter/Ter; Bax–/– double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1Ter/Ter germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1 and p21Cip1. P27Kip1 and P21Cip1 protein are both significantly decreased in Dnd1Ter/Ter germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility. PMID:21115610
Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.
Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola
2017-08-01
MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.
Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil
2012-06-01
Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-01-01
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. PMID:26363073
Discovering Hematopoietic Mechanisms Through Genome-Wide Analysis of GATA Factor Chromatin Occupancy
Fujiwara, Tohru; O'Geen, Henriette; Keles, Sunduz; Blahnik, Kimberly; Linnemann, Amelia K.; Kang, Yoon-A; Choi, Kyunghee; Farnham, Peggy J.; Bresnick, Emery H.
2009-01-01
SUMMARY GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis. PMID:19941826
NECAPs are negative regulators of the AP2 clathrin adaptor complex.
Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J; Hollopeter, Gunther
2018-01-18
Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1 , the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. © 2018, Beacham et al.
NECAPs are negative regulators of the AP2 clathrin adaptor complex
Beacham, Gwendolyn M; Partlow, Edward A; Lange, Jeffrey J
2018-01-01
Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2. PMID:29345618
Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V
2018-05-01
Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540
Chen, Justin L; Walton, Kelly L; Hagg, Adam; Colgan, Timothy D; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A
2017-06-27
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle.
Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; Andò, Sebastiano; Maggiolini, Marcello
2008-08-01
Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-alpha and -beta, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17beta-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5'-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5'-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells.
Chen, Justin L.; Walton, Kelly L.; Hagg, Adam; Colgan, Timothy D.; Johnson, Katharine; Qian, Hongwei; Gregorevic, Paul; Harrison, Craig A.
2017-01-01
The transforming growth factor-β (TGF-β) network of ligands and intracellular signaling proteins is a subject of intense interest within the field of skeletal muscle biology. To define the relative contribution of endogenous TGF-β proteins to the negative regulation of muscle mass via their activation of the Smad2/3 signaling axis, we used local injection of adeno-associated viral vectors (AAVs) encoding ligand-specific antagonists into the tibialis anterior (TA) muscles of C57BL/6 mice. Eight weeks after AAV injection, inhibition of activin A and activin B signaling produced moderate (∼20%), but significant, increases in TA mass, indicating that endogenous activins repress muscle growth. Inhibiting myostatin induced a more profound increase in muscle mass (∼45%), demonstrating a more prominent role for this ligand as a negative regulator of adult muscle mass. Remarkably, codelivery of activin and myostatin inhibitors induced a synergistic response, resulting in muscle mass increasing by as much as 150%. Transcription and protein analysis indicated that this substantial hypertrophy was associated with both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis (recently identified as a positive regulator of muscle mass). Analyses indicated that hypertrophy was primarily driven by an increase in protein synthesis, but a reduction in ubiquitin-dependent protein degradation pathways was also observed. In models of muscular dystrophy and cancer cachexia, combined inhibition of activins and myostatin increased mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of specifically targeting multiple Smad2/3-activating ligands in skeletal muscle. PMID:28607086
Bassis, Christine M; Visick, Karen L
2010-03-01
Bacteria produce different types of biofilms under distinct environmental conditions. Vibrio fischeri has the capacity to produce at least two distinct types of biofilms, one that relies on the symbiosis polysaccharide Syp and another that depends upon cellulose. A key regulator of biofilm formation in bacteria is the intracellular signaling molecule cyclic diguanylate (c-di-GMP). In this study, we focused on a predicted c-di-GMP phosphodiesterase encoded by the gene binA, located directly downstream of syp, a cluster of 18 genes critical for biofilm formation and the initiation of symbiotic colonization of the squid Euprymna scolopes. Disruption or deletion of binA increased biofilm formation in culture and led to increased binding of Congo red and calcofluor, which are indicators of cellulose production. Using random transposon mutagenesis, we determined that the phenotypes of the DeltabinA mutant strain could be disrupted by insertions in genes in the bacterial cellulose biosynthesis cluster (bcs), suggesting that cellulose production is negatively regulated by BinA. Replacement of critical amino acids within the conserved EAL residues of the EAL domain disrupted BinA activity, and deletion of binA increased c-di-GMP levels in the cell. Together, these data support the hypotheses that BinA functions as a phosphodiesterase and that c-di-GMP activates cellulose biosynthesis. Finally, overexpression of the syp regulator sypG induced binA expression. Thus, this work reveals a mechanism by which V. fischeri inhibits cellulose-dependent biofilm formation and suggests that the production of two different polysaccharides may be coordinated through the action of the cellulose inhibitor BinA.
Cheng, Hongtao; Liu, Hongbo; Deng, Yong; Xiao, Jinghua; Li, Xianghua; Wang, Shiping
2015-01-01
Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae. PMID:25624395
Caille, Olivier; Rossier, Claude; Perron, Karl
2007-01-01
The effects of copper (Cu) on trace metal and antibiotic resistance of Pseudomonas aeruginosa have been investigated. Cu treatments induced resistance not only to this metal but also, surprisingly, to zinc (Zn). Quantitative reverse transcription-PCR (qRT-PCR) revealed that after Cu treatment the transcription of the czcRS two-component system (TCS) operon was enhanced as well as that of the czcCBA operon encoding an efflux pump specific for zinc, cadmium, and cobalt. Cu treatments at the same time caused a decrease in the production of OprD porin, resulting in resistance to the carbapenem antibiotic imipenem. The CzcR regulator was known to repress oprD. However, Cu was still able to decrease the production of OprD and induce imipenem resistance in a czcRS knockout mutant. This strongly suggested that another Cu-dependent regulatory system was acting negatively on oprD expression. TCS regulator genes copR-copS have been shown to be involved in Cu tolerance in P. aeruginosa. qRT-PCR showed that overproduction of the CopR or of the CzcR regulator resulted in increased transcription of the czcC gene as well as in a decrease in oprD gene transcription, either in the wild-type strain or in the czcRS knockout mutant. Overproduction experiments suggest that a metal-dependent mechanism operates at the posttranscriptional level to control the production of the CzcCBA efflux pump. This study shows that CopR is a new negative regulator of OprD porin and that it links Zn, Cu, and imipenem resistances by interacting with the CzcRS TCS. PMID:17449606
Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng
2014-09-01
The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.
Chand, Subodh K.; Nanda, Satyabrata; Joshi, Raj K.
2016-01-01
MicroRNAs (miRNAs) are a class of post-transcriptional regulators that negatively regulate gene expression through target mRNA cleavage or translational inhibition and play important roles in plant development and stress response. In the present study, six conserved miRNAs from garlic (Allium sativum L.) were analyzed to identify differentially expressed miRNAs in response to Fusarium oxysporum f. sp. cepae (FOC) infection. Stem-loop RT-PCR revealed that miR394 is significantly induced in garlic seedlings post-treatment with FOC for 72 h. The induction of miR394 expression during FOC infection was restricted to the basal stem plate tissue, the primary site of infection. Garlic miR394 was also upregulated by exogenous application of jasmonic acid. Two putative targets of miR394 encoding F-box domain and cytochrome P450 (CYP450) family proteins were predicted and verified using 5′ RLM-RACE (RNA ligase mediated rapid amplification of cDNA ends) assay. Quantitative RT-PCR showed that the transcript levels of the predicted targets were significantly reduced in garlic plants exposed to FOC. When garlic cultivars with variable sensitivity to FOC were exposed to the pathogen, an upregulation of miR394 and down regulation of the targets were observed in both varieties. However, the expression pattern was delayed in the resistant genotypes. These results suggest that miR394 functions in negative modulation of FOC resistance and the difference in timing and levels of expression in variable genotypes could be examined as markers for selection of FOC resistant garlic cultivars. PMID:26973694
Bless, H; Mackie, D M; Schwarz, N
1992-10-01
This study investigated the independent effects of induced mood on the encoding of persuasive messages and on the assessment of attitude judgments. In Experiment 1, positive or negative mood was induced either before the encoding of a counterattitudinal message or before the assessment of attitude judgments. When mood was induced before message presentation, Ss in a bad mood were more persuaded by strong than by weak arguments, whereas Ss in a good mood were equally persuaded by strong and by weak arguments. When Ss encoded the message in a neutral mood, however, the advantage of strong over weak arguments was more pronounced when Ss were in a good rather than in a bad mood at the time of attitude assessment. In Experiment 2, Ss exposed to a counterattitudinal message composed of either strong or weak arguments formed either a global evaluation or a detailed representation of the message. Positive, negative, or neutral mood was then induced. Ss in a good mood were most likely and Ss in a negative mood least likely to base their reported attitudes on global evaluations.
Satz, Alexander L; Hochstrasser, Remo; Petersen, Ann C
2017-04-10
To optimize future DNA-encoded library design, we have attempted to quantify the library size at which the signal becomes undetectable. To accomplish this we (i) have calculated that percent yields of individual library members following a screen range from 0.002 to 1%, (ii) extrapolated that ∼1 million copies per library member are required at the outset of a screen, and (iii) from this extrapolation predict that false negative rates will begin to outweigh the benefit of increased diversity at library sizes >10 8 . The above analysis is based upon a large internal data set comprising multiple screens, targets, and libraries; we also augmented our internal data with all currently available literature data. In theory, high false negative rates may be overcome by employing larger amounts of library; however, we argue that using more than currently reported amounts of library (≫10 nmoles) is impractical. The above conclusions may be generally applicable to other DNA encoded library platforms, particularly those platforms that do not allow for library amplification.
Goldstein, Brandon L.; Hayden, Elizabeth P.; Klein, Daniel N.
2014-01-01
Depressed individuals exhibit memory biases on the self-referent encoding task (SRET), such that those with depression exhibit poorer recall of positive, and enhanced recall of negative, trait adjectives (referred to as positive and negative processing biases). However, it is unclear when SRET biases emerge, whether they are stable, and if biases predict, or are predicted by, depressive symptoms. To address this, a community sample of 434 children completed the SRET and a depressive symptoms measure at ages 6 and 9. Negative and positive processing exhibited low, but significant, stability. At ages 6 and 9, depressive symptoms correlated with higher negative, and lower positive, SRET processing. Importantly, lower positive processing at age 6 predicted increased symptoms at age 9. However, negative processing at age 6 did not predict depressive symptoms at age 9, and depressive symptoms at age 6 did not predict SRET processing scores at age 9. This suggests that less positive processing may reflect vulnerability for future depressive symptoms. PMID:25530070
Connolly, Samantha L; Abramson, Lyn Y; Alloy, Lauren B
2016-01-01
Negative information processing biases have been hypothesised to serve as precursors for the development of depression. The current study examined negative self-referent information processing and depressive symptoms in a community sample of adolescents (N = 291, Mage at baseline = 12.34 ± 0.61, 53% female, 47.4% African-American, 49.5% Caucasian and 3.1% Biracial). Participants completed a computerised self-referent encoding task (SRET) and a measure of depressive symptoms at baseline and completed an additional measure of depressive symptoms nine months later. Several negative information processing biases on the SRET were associated with concurrent depressive symptoms and predicted increases in depressive symptoms at follow-up. Findings partially support the hypothesis that negative information processing biases are associated with depressive symptoms in a nonclinical sample of adolescents, and provide preliminary evidence that these biases prospectively predict increases in depressive symptoms.
Buratto, Luciano G.; Pottage, Claire L.; Brown, Charity; Morrison, Catriona M.; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated. PMID:25330251
Buratto, Luciano G; Pottage, Claire L; Brown, Charity; Morrison, Catriona M; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated.
The habenula encodes negative motivational value associated with primary punishment in humans.
Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P
2014-08-12
Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.
Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B
2004-11-05
In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.
Nakada, Yuji; Jiang, Ying; Nishijyo, Takayuki; Itoh, Yoshifumi; Lu, Chung-Dar
2001-01-01
Pseudomonas aeruginosa PAO1 utilizes agmatine as the sole carbon and nitrogen source via two reactions catalyzed successively by agmatine deiminase (encoded by aguA; also called agmatine iminohydrolase) and N-carbamoylputrescine amidohydrolase (encoded by aguB). The aguBA and adjacent aguR genes were cloned and characterized. The predicted AguB protein (Mr 32,759; 292 amino acids) displayed sequence similarity (≤60% identity) to enzymes of the β-alanine synthase/nitrilase family. While the deduced AguA protein (Mr 41,190; 368 amino acids) showed no significant similarity to any protein of known function, assignment of agmatine deiminase to AguA in this report discovered a new family of carbon-nitrogen hydrolases widely distributed in organisms ranging from bacteria to Arabidopsis. The aguR gene encoded a putative regulatory protein (Mr 24,424; 221 amino acids) of the TetR protein family. Measurements of agmatine deiminase and N-carbamoylputrescine amidohydrolase activities indicated the induction effect of agmatine and N-carbamoylputrescine on expression of the aguBA operon. The presence of an inducible promoter for the aguBA operon in the aguR-aguB intergenic region was demonstrated by lacZ fusion experiments, and the transcription start of this promoter was localized 99 bp upstream from the initiation codon of aguB by S1 nuclease mapping. Experiments with knockout mutants of aguR established that expression of the aguBA operon became constitutive in the aguR background. Interaction of AguR overproduced in Escherichia coli with the aguBA regulatory region was demonstrated by gel retardation assays, supporting the hypothesis that AguR serves as the negative regulator of the aguBA operon, and binding of agmatine and N-carbamoylputrescine to AguR would antagonize its repressor function. PMID:11673419
USDA-ARS?s Scientific Manuscript database
The qseBC encoded quorum-sensing system (QS) regulates motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in response to bacterial autoinducer-3 (AI-3) and mammalian stress hormones epinephrine (E) and norepinephrine (NE). The qseC gene encodes a sensory kinase that post-autophosphorylati...
Nishiyama, Shoko; Slack, Olga A. L.; Lokugamage, Nandadeva; Hill, Terence E.; Juelich, Terry L.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Gong, Bin; Freiberg, Alexander N.; Ikegami, Tetsuro
2016-01-01
ABSTRACT Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker. PMID:27248570
Nishiyama, Shoko; Slack, Olga A L; Lokugamage, Nandadeva; Hill, Terence E; Juelich, Terry L; Zhang, Lihong; Smith, Jennifer K; Perez, David; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro
2016-11-16
Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.
Qi, Kai
2014-01-01
Pichia guilliermondii is a Crabtree-negative yeast that does not normally exhibit respirofermentative metabolism under aerobic conditions, and methods to trigger this metabolism may have applications for physiological study and industrial applications. In the present study, CAT8, which encodes a putative global transcriptional activator, was disrupted in P. guilliermondii. This yeast's ethanol titer increased by >20-fold compared to the wild type (WT) during aerobic fermentation using glucose. A comparative transcriptional analysis indicated that the expression of genes in the tricarboxylic acid cycle and respiratory chain was repressed in the CAT8-disrupted (ΔCAT8) strain, while the fermentative pathway genes were significantly upregulated. The respiratory activities in the ΔCAT8 strain, indicated by the specific oxygen uptake rate and respiratory state value, decreased to one-half and one-third of the WT values, respectively. In addition, the expression of HAP4, a transcriptional respiratory activator, was significantly repressed in the ΔCAT8 strain. Through disruption of HAP4, the ethanol production of P. guilliermondii was also increased, but the yield and titer were lower than that in the ΔCAT8 strain. A further transcriptional comparison between ΔCAT8 and ΔHAP4 strains suggested a more comprehensive reprogramming function of Cat8 in the central metabolic pathways. These results indicated the important role of CAT8 in regulating the glucose metabolism of P. guilliermondii and that the regulation was partially mediated by repressing HAP4. The strategy proposed here might be applicable to improve the aerobic fermentation capacity of other Crabtree-negative yeasts. PMID:24747899
Seo, Sang Woo; Gao, Ye; Kim, Donghyuk; Szubin, Richard; Yang, Jina; Cho, Byung-Kwan; Palsson, Bernhard O
2017-05-19
A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.
Collins, Morgan E; Black, Joshua J; Liu, Zhengchang
2017-07-01
Haa1 is a transcription factor that adapts Saccharomyces cerevisiae cells to weak organic acid stresses by activating the expression of various genes. Many of these genes encode membrane proteins, such as TPO2 and YRO2 How Haa1 is activated by weak acids is not clear. Here, we show that casein kinase I isoform Hrr25 is an important negative regulator of Haa1. Haa1 is known to be multiply phosphorylated. We found that mutations in HRR25 lead to reduced Haa1 phosphorylation and increased expression of Haa1 target genes and that Hrr25 interacts with Haa1. The other three casein kinase I isoforms, Yck1, Yck2, and Yck3, do not seem to play critical roles in Haa1 regulation. Hrr25 has a 200-residue C-terminal region, including a proline- and glutamine-rich domain. Our data suggest that the C-terminal region of Hrr25 is required for normal inhibition of expression of Haa1 target genes TPO2 and YRO2 and is important for cell growth but is not required for cell morphogenesis. We propose that Hrr25 is an important regulator of cellular adaptation to weak acid stress by inhibiting Haa1 through phosphorylation. IMPORTANCE Our study has revealed the casein kinase I protein Hrr25 to be a negative regulator of Haa1, a transcription factor mediating the cellular response to stresses caused by weak acids. Many studies have focused on the target genes of Haa1 and their roles in weak acid stress responses, but little has been reported on the regulatory mechanism of Haa1. Weak acids, such as acetic acid, have long been used for food preservation by slowing down the growth of fungal species, including S. cerevisiae In the biofuel industry, acetic acid in the lignocellulosic hydrolysates limits the production of ethanol, which is undesirable. By understanding how Haa1 is regulated, we can make advances in the field of food sciences to better preserve food and engineer acetic acid-resistant strains that will increase productivity in the biofuel industry. Copyright © 2017 American Society for Microbiology.
Effects of aging on neural connectivity underlying selective memory for emotional scenes
Waring, Jill D.; Addis, Donna Rose; Kensinger, Elizabeth A.
2012-01-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults’ encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults’ connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. PMID:22542836
Effects of aging on neural connectivity underlying selective memory for emotional scenes.
Waring, Jill D; Addis, Donna Rose; Kensinger, Elizabeth A
2013-02-01
Older adults show age-related reductions in memory for neutral items within complex visual scenes, but just like young adults, older adults exhibit a memory advantage for emotional items within scenes compared with the background scene information. The present study examined young and older adults' encoding-stage effective connectivity for selective memory of emotional items versus memory for both the emotional item and its background. In a functional magnetic resonance imaging (fMRI) study, participants viewed scenes containing either positive or negative items within neutral backgrounds. Outside the scanner, participants completed a memory test for items and backgrounds. Irrespective of scene content being emotionally positive or negative, older adults had stronger positive connections among frontal regions and from frontal regions to medial temporal lobe structures than did young adults, especially when items and backgrounds were subsequently remembered. These results suggest there are differences between young and older adults' connectivity accompanying the encoding of emotional scenes. Older adults may require more frontal connectivity to encode all elements of a scene rather than just encoding the emotional item. Published by Elsevier Inc.
Role of prefrontal cortex and the midbrain dopamine system in working memory updating
D’Ardenne, Kimberlee; Eshel, Neir; Luka, Joseph; Lenartowicz, Agatha; Nystrom, Leigh E.; Cohen, Jonathan D.
2012-01-01
Humans are adept at switching between goal-directed behaviors quickly and effectively. The prefrontal cortex (PFC) is thought to play a critical role by encoding, updating, and maintaining internal representations of task context in working memory. It has also been hypothesized that the encoding of context representations in PFC is regulated by phasic dopamine gating signals. Here we use multimodal methods to test these hypotheses. First we used functional MRI (fMRI) to identify regions of PFC associated with the representation of context in a working memory task. Next we used single-pulse transcranial magnetic stimulation (TMS), guided spatially by our fMRI findings and temporally by previous event-related EEG recordings, to disrupt context encoding while participants performed the same working memory task. We found that TMS pulses to the right dorsolateral PFC (DLPFC) immediately after context presentation, and well in advance of the response, adversely impacted context-dependent relative to context-independent responses. This finding causally implicates right DLPFC function in context encoding. Finally, using the same paradigm, we conducted high-resolution fMRI measurements in brainstem dopaminergic nuclei (ventral tegmental area and substantia nigra) and found phasic responses after presentation of context stimuli relative to other stimuli, consistent with the timing of a gating signal that regulates the encoding of representations in PFC. Furthermore, these responses were positively correlated with behavior, as well as with responses in the same region of right DLPFC targeted in the TMS experiment, lending support to the hypothesis that dopamine phasic signals regulate encoding, and thereby the updating, of context representations in PFC. PMID:23086162
Salomäki, T; Karonen, T; Siljamäki, P; Savijoki, K; Nyman, T A; Varmanen, P; Iivanainen, A
2015-01-01
The environmental pathogen Streptococcus uberis causes intramammary infections in dairy cows. Because biofilm growth might contribute to Strep. uberis mastitis, we conducted a biological screen to identify genes potentially involved in the regulation of biofilm growth. By screening a transposon mutant library of Strep. uberis, we determined that the disruption of 13 genes (including hasA, coaC, clpP, miaA, nox and uidA) led to increased biofilm formation. One of the genes (SUB1382) encoded a homologue of the LiaR response regulator (RR) of the Bacillus subtilis two-component signalling system (TCS). Electrophoretic mobility shift assays revealed that DNA binding by LiaR was greatly enhanced by phosphorylation. Two-dimensional differential in-gel electrophoresis analyses of the liaR mutant and the parental Strep. uberis strain revealed five differentially produced proteins with at least a 1·5-fold change in relative abundance (P < 0·05). The DNA-binding protein LiaR is a potential regulator of biofilm formation by Strep. uberis. Several molecular primary and downstream targets involved in biofilm formation by Strep. uberis were identified. This provides a solid foundation for further studies on the regulation of biofilm formation in this important pathogen. © 2014 The Society for Applied Microbiology.
Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha; Harvald, Eva Bang; Færgeman, Nils J; Aguilaniu, Hugo; Fabrizio, Paola
2017-07-27
In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1 -deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals.
MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress.
Ding, Yanfei; Wang, Yi; Jiang, Zhihua; Wang, Feijuan; Jiang, Qiong; Sun, Junwei; Chen, Zhixiang; Zhu, Cheng
2017-07-26
MicroRNAs (miRNAs) are 21-24-nucleotide-long RNAs that function as ubiquitous post-transcriptional regulators of gene expression in plants and animals. Increasing evidence points to the important role of miRNAs in plant responses to abiotic and biotic stresses. Cadmium (Cd) is a nonessential heavy metal highly toxic to plants. Although many genes encoding metal transporters have been characterized, the mechanisms for the regulation of the expression of the heavy-metal transporter genes are largely unknown. In this study, we found that the expression of miR268 in rice was significantly induced under Cd stress. By contrast, expression of natural resistance-associated macrophage protein 3 (NRAMP3), a target gene of miR268, was dramatically decreased by Cd treatment. Overexpression of miR268 inhibited rice seedling growth under Cd stress. The transgenic miR268-overexpressing plant leaves contained increased levels of hydrogen peroxide and malondialdehyde, and their seedlings accumulated increased levels of Cd when compared to those in wild-type plants. These results indicate that miR268 acts as a negative regulator of rice's tolerance to Cd stress. Thus, miRNA-guided regulation of gene expression plays an important role in plant responses to heavy-metal stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Joonhyuk; Rajagopal, Abbhirami; Xu, Yi -Fan
Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient P i. P i-limitation induces upregulation of inositol heptakisphosphate (IP 7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate themore » PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Moreover, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of P i starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.« less
AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes.
Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K; Gramajo, Hugo; Rodriguez, Eduardo
2015-10-01
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Choi, Joonhyuk; Rajagopal, Abbhirami; Xu, Yi -Fan; ...
2017-05-17
Saccharomyces cerevisiae responds to changes in extracellular inorganic phosphate (Pi) availability by regulating the activity of the phosphate-responsive (PHO) signaling pathway, enabling cells to maintain intracellular levels of the essential nutrient P i. P i-limitation induces upregulation of inositol heptakisphosphate (IP 7) synthesized by the inositol hexakisphosphate kinase Vip1, triggering inhibition of the Pho80/Pho85 cyclin-cyclin dependent kinase (CDK) complex by the CDK inhibitor Pho81, which upregulates the PHO regulon through the CDK target and transcription factor Pho4. To identify genes that are involved in signaling upstream of the Pho80/Pho85/Pho81 complex and how they interact with each other to regulate themore » PHO pathway, we performed genome-wide screens with the synthetic genetic array method. We identified more than 300 mutants with defects in signaling upstream of the Pho80/Pho85/Pho81 complex, including AAH1, which encodes an adenine deaminase that negatively regulates the PHO pathway in a Vip1-dependent manner. Moreover, we showed that even in the absence of VIP1, the PHO pathway can be activated under prolonged periods of P i starvation, suggesting complexity in the mechanisms by which the PHO pathway is regulated.« less
AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes
Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K.; Gramajo, Hugo
2015-01-01
Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. PMID:26187964
Non-coding RNAs—Novel targets in neurotoxicity
Tal, Tamara L.; Tanguay, Robert L.
2012-01-01
Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481
Johnson, Christopher M; Chen, Yuqing; Lee, Heejin; Ke, Ailong; Weaver, Keith E; Dunny, Gary M
2014-03-04
Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3' polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q-like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons.
Johnson, Christopher M.; Chen, Yuqing; Lee, Heejin; Ke, Ailong; Weaver, Keith E.; Dunny, Gary M.
2014-01-01
Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3′ polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q–like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons. PMID:24550474
Merchant, Soroush; Huang, Naiyan; Korbelik, Mladen
2010-12-01
Treatment of solid tumors by photodynamic therapy (PDT) was recently shown to trigger a strong acute phase response. Using the mouse Lewis lung carcinoma (LLC) model, the present study examined complement and pentraxin proteins as PDT-induced acute phase reactants. The results show a distinct pattern of changes in the expression of genes encoding these proteins in the tumor, as well as host liver and spleen, following PDT mediated by photosensitizer Photofrin™. These changes were influenced by glucocorticoid hormones, as evidenced by transcriptional activation of glucocorticoid receptor and the upregulation of gene encoding this receptor. The expression of gene for glucocorticoid-induced zipper (GILZ) protein, whose activity is particularly susceptible to glucocorticoid regulation, was also changed in PDT-treated tumors. A direct demonstration that tumor PDT induces glucocorticoid hormone upregulation is provided by documenting elevated levels of serum corticosterone in mice bearing PDT-treated LLC tumors. Tumor response to PDT was negatively affected by blocking glucocorticoid receptor activity, which suggests that glucocorticoid hormones have a positive impact on the therapeutic outcome with this therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
Identification of a Polyomavirus microRNA Highly Expressed in Tumors
Chen, Chun Jung; Cox, Jennifer E.; Azarm, Kristopher; Wylie, Karen N.; Woolard, Kevin D.; Pesavento, Patricia A.; Sullivan, Christopher S.
2014-01-01
Polyomaviruses (PyVs) are associated with tumors including Merkel cell carcinoma (MCC). Several PyVs encode microRNAs (miRNAs) but to date no abundant PyV miRNAs have been reported in tumors. To better understand the function of the Merkel cell PyV (MCPyV) miRNA, we examined phylogenetically-related viruses for miRNA expression. We show that two primate PyVs and the more distantly-related raccoon PyV (RacPyV) encode miRNAs that share genomic position and partial sequence identity with MCPyV miRNAs. Unlike MCPyV miRNA in MCC, RacPyV miRNA is highly abundant in raccoon tumors. RacPyV miRNA negatively regulates reporters of early viral (T antigen) transcripts, yet robust viral miRNA expression is tolerated in tumors. We also identify raccoon miRNAs expressed in RacPyV-associated neuroglial brain tumors, including several likely oncogenic miRNAs (oncomiRs). This work describes the first PyV miRNA abundantly expressed in tumors and is consistent with a possible role for both host and viral miRNAs in RacPyV-associated tumors. PMID:25514573
CDH4 suppresses the progression of salivary adenoid cystic carcinoma via E-cadherin co-expression.
Xie, Jian; Feng, Yan; Lin, Ting; Huang, Xiao-Yu; Gan, Rui-Huan; Zhao, Yong; Su, Bo-Hua; Ding, Lin-Can; She, Lin; Chen, Jiang; Lin, Li-Song; Lin, Xu; Zheng, Da-Li; Lu, You-Guang
2016-12-13
The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.
Neutral Details Associated with Emotional Events are Encoded: Evidence from a Cued Recall Paradigm
Steinmetz, Katherine R. Mickley; Knight, Aubrey G.; Kensinger, Elizabeth A.
2015-01-01
Enhanced emotional memory often comes at the cost of memory for surrounding background information. Narrowed-encoding theories suggest that this is due to narrowed attention for emotional information at encoding, leading to impaired encoding of background information. Recent work has suggested that an encoding-based theory may be insufficient. Here, we examined whether cued recall – instead of previously used recognition memory tasks - would reveal evidence that non-emotional information associated with emotional information was effectively encoded. Participants encoded positive, negative, or neutral objects on neutral backgrounds. At retrieval, they were given either the item or the background as a memory cue and were asked to recall the associated scene element. Counter to narrowed-encoding theories, emotional items were more likely than neutral items to trigger recall of the associated background. This finding suggests that there is a memory trace of this contextual information and that emotional cues may facilitate retrieval of this information. PMID:26220708
ArcR modulates biofilm formation in the dental plaque colonizer Streptococcus gordonii.
Robinson, J C; Rostami, N; Casement, J; Vollmer, W; Rickard, A H; Jakubovics, N S
2018-04-01
Biofilm formation and cell-cell sensing by the pioneer dental plaque colonizer Streptococcus gordonii are dependent upon arginine. This study aimed to identify genetic factors linking arginine-dependent responses and biofilm formation in S. gordonii. Isogenic mutants disrupted in genes required for the biosynthesis or catabolism of arginine, or for arginine-dependent gene regulation, were screened for their ability to form biofilms in a static culture model. Biofilm formation by a knockout mutant of arcR, encoding an arginine-dependent regulator of transcription, was reduced to < 50% that of the wild-type whereas other strains were unaffected. Complementation of S. gordonii ∆arcR with a plasmid-borne copy of arcR restored the ability to develop biofilms. By DNA microarray analysis, 25 genes were differentially regulated in S. gordonii ∆arcR compared with wild-type under arginine-replete conditions including eight genes encoding components of phosphotransferase systems for sugar uptake. By contrast, disruption of argR or ahrC genes, which encode paralogous arginine-dependent regulators, each resulted in significant changes in the expression of more than 100 genes. Disruption of a gene encoding a putative extracellular protein that was strongly regulated in S. gordonii ∆arcR had a minor impact on biofilm formation. We hypothesize that genes regulated by ArcR form a critical pathway linking arginine sensing to biofilm formation in S. gordonii. Further elucidation of this pathway may provide new targets for the control of dental plaque formation by inhibiting biofilm formation by a key pioneer colonizer of tooth surfaces. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313
Wilson, Charlotte M.; Klingeman, Dawn M.; Schlachter, Caleb; ...
2016-12-21
Organisms regulate gene expression in response to the environment to coordinate metabolic reactions.Clostridium thermocellumexpresses enzymes for both lignocellulose solubilization and its fermentation to produce ethanol. In one LacI regulator termed GlyR3 inC. thermocellumATCC 27405 we identified a repressor of neighboring genes with repression relieved by laminaribiose (a β-1,3 disaccharide). To better understand the threeC. thermocellumLacI regulons, deletion mutants were constructed using the genetically tractable DSM1313 strain. DSM1313lacIgenes Clo1313_2023, Clo1313_0089, and Clo1313_0396 encode homologs of GlyR1, GlyR2, and GlyR3 from strain ATCC 27405, respectively. Furthermore, growth on cellobiose or pretreated switchgrass was unaffected by any of the gene deletions under controlled-pHmore » fermentations. Global gene expression patterns from time course analyses identified glycoside hydrolase genes encoding hemicellulases, including cellulosomal enzymes, that were highly upregulated (5- to 100-fold) in the absence of each LacI regulator, suggesting that these were repressed under wild-type conditions and that relatively few genes were controlled by each regulator under the conditions tested. Clo1313_2022, encoding lichenase enzyme LicB, was derepressed in a ΔglyR1strain. Higher expression of Clo1313_1398, which encodes the Man5A mannanase, was observed in a ΔglyR2strain, and α-mannobiose was identified as a probable inducer for GlyR2-regulated genes. For the ΔglyR3strain, upregulation of the two genes adjacent toglyR3in thecelC-glyR3-licAoperon was consistent with earlier studies. Electrophoretic mobility shift assays have confirmed LacI transcription factor binding to specific regions of gene promoters. IMPORTANCEUnderstandingC. thermocellumgene regulation is of importance for improved fundamental knowledge of this industrially relevant bacterium. Most LacI transcription factors regulate local genomic regions; however, a small number of those genes encode global regulatory proteins with extensive regulons. This study indicates that there are small specificC. thermocellumLacI regulons. Finally, the identification of LacI repressor activity for hemicellulase gene expression is a key result of this work and will add to the small body of existing literature on the area of gene regulation inC. thermocellum.« less
Does stress remove the HDAC brakes for the formation and persistence of long-term memory?
White, André O; Wood, Marcelo A
2014-07-01
It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
TSC1 regulates the balance between effector and regulatory T cells.
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine; Elly, Chris; Kim, Gisen; Murai, Masako; Kronenberg, Mitchell; Liu, Yun-Cai
2013-12-01
Mammalian target of rapamycin (mTOR) plays a crucial role in the control of T cell fate determination; however, the precise regulatory mechanism of the mTOR pathway is not fully understood. We found that T cell-specific deletion of the gene encoding tuberous sclerosis 1 (TSC1), an upstream negative regulator of mTOR, resulted in augmented Th1 and Th17 differentiation and led to severe intestinal inflammation in a colitis model. Conditional Tsc1 deletion in Tregs impaired their suppressive activity and expression of the Treg marker Foxp3 and resulted in increased IL-17 production under inflammatory conditions. A fate-mapping study revealed that Tsc1-null Tregs that lost Foxp3 expression gained a stronger effector-like phenotype compared with Tsc1-/- Foxp3+ Tregs. Elevated IL-17 production in Tsc1-/- Treg cells was reversed by in vivo knockdown of the mTOR target S6K1. Moreover, IL-17 production was enhanced by Treg-specific double deletion of Tsc1 and Foxo3a. Collectively, these studies suggest that TSC1 acts as an important checkpoint for maintaining immune homeostasis by regulating cell fate determination.
Does stress remove the HDAC brakes for the formation and persistence of long-term memory?
White, André O.; Wood, Marcelo A.
2013-01-01
It has been known for numerous decades that gene expression is required for long-lasting forms of memory. In the past decade, the study of epigenetic mechanisms in memory processes has revealed yet another layer of complexity in the regulation of gene expression. Epigenetic mechanisms do not only provide complexity in the protein regulatory complexes that control coordinate transcription for specific cell function, but the epigenome encodes critical information that integrates experience and cellular history for specific cell functions as well. Thus, epigenetic mechanisms provide a unique mechanism of gene expression regulation for memory processes. This may be why critical negative regulators of gene expression, such as histone deacetylases (HDACs), have powerful effects on the formation and persistence of memory. For example, HDAC inhibition has been shown to transform a subthreshold learning event into robust long-term memory and also generate a form of long-term memory that persists beyond the point at which normal long-term memory fails. A key question that is explored in this review, from a learning and memory perspective, is whether stress-dependent signaling drives the formation and persistence of long-term memory via HDAC-dependent mechanisms. PMID:24149059
Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel
2007-01-01
Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403
Kitaoka, Maya; Miyata, Sarah T.; Brooks, Teresa M.; Unterweger, Daniel; Pukatzki, Stefan
2011-01-01
The Gram-negative bacterium Vibrio cholerae is the etiological agent of cholera, a disease characterized by the release of high volumes of watery diarrhea. Many medically important proteobacteria, including V. cholerae, carry one or multiple copies of the gene cluster that encodes the bacterial type VI secretion system (T6SS) to confer virulence or interspecies competitiveness. Structural similarity and sequence homology between components of the T6SS and the cell-puncturing device of T4 bacteriophage suggest that the T6SS functions as a molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Although our understanding of how the structural T6SS apparatus assembles is developing, little is known about how this system is regulated. Here, we report on the contribution of the activator of the alternative sigma factor 54, VasH, as a global regulator of the V. cholerae T6SS. Using bioinformatics and mutational analyses, we identified domains of the VasH polypeptide that are essential for its ability to initiate transcription of T6SS genes and established a universal role for VasH in endemic and pandemic V. cholerae strains. PMID:21949076
Wang, Lijun; Wang, Weiwei; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Gong, Qingguo; Shi, Yunyu
2015-01-01
Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σs subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell. PMID:25670676
Abh and AbrB Control of Bacillus subtilis Antimicrobial Gene Expression▿
Strauch, Mark A.; Bobay, Benjamin G.; Cavanagh, John; Yao, Fude; Wilson, Angelo; Le Breton, Yoann
2007-01-01
The Bacillus subtilis abh gene encodes a protein whose N-terminal domain has 74% identity to the DNA-binding domain of the global regulatory protein AbrB. Strains with a mutation in abh showed alterations in the production of antimicrobial compounds directed against some other Bacillus species and gram-positive microbes. Relative to its wild-type parental strain, the abh mutant was found deficient, enhanced, or unaffected for the production of antimicrobial activity. Using lacZ fusions, we examined the effects of abh upon the expression of 10 promoters known to be regulated by AbrB, including five that transcribe well-characterized antimicrobial functions (SdpC, SkfA, TasA, sublancin, and subtilosin). For an otherwise wild-type background, the results show that Abh plays a negative regulatory role in the expression of four of the promoters, a positive role for the expression of three, and no apparent regulatory role in the expression of the other three promoters. Binding of AbrB and Abh to the promoter regions was examined using DNase I footprinting, and the results revealed significant differences. The transcription of abh is not autoregulated, but it is subject to a degree of AbrB-afforded negative regulation. The results indicate that Abh is part of the complex interconnected regulatory system that controls gene expression during the transition from active growth to stationary phase. PMID:17720793
Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia
Li, Yue; Liang, Minggao; Zhang, Zhaolei
2014-01-01
Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML prognostic marker. Together, we provided a novel framework that successfully integrated the TCGA and ENCODE data in revealing AML-specific regulatory program at global level. PMID:25340776
Huang, Hao; Mackel, Brian J; Grove, Anne
2013-11-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.
Huang, Hao; Mackel, Brian J.
2013-01-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress. PMID:23995633
Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w
Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara
2004-01-01
In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392
Nykyri, Johanna; Mattinen, Laura; Niemi, Outi; Adhikari, Satish; Kõiv, Viia; Somervuo, Panu; Fang, Xin; Auvinen, Petri; Mäe, Andres; Palva, E. Tapio; Pirhonen, Minna
2013-01-01
In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers. PMID:24040039
Nykyri, Johanna; Mattinen, Laura; Niemi, Outi; Adhikari, Satish; Kõiv, Viia; Somervuo, Panu; Fang, Xin; Auvinen, Petri; Mäe, Andres; Palva, E Tapio; Pirhonen, Minna
2013-01-01
In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.
Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback
Lee, Myeong Min; Schiefelbein, John
2002-01-01
In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants. PMID:11910008
Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.
Lee, Myeong Min; Schiefelbein, John
2002-03-01
In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.
Multifunctional Nature of the Arenavirus RING Finger Protein Z
Fehling, Sarah Katharina; Lennartz, Frank; Strecker, Thomas
2012-01-01
Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle. PMID:23202512
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O; Podbielski, Andreas
2007-12-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network.
Kreikemeyer, Bernd; Nakata, Masanobu; Köller, Thomas; Hildisch, Hendrikje; Kourakos, Vassilios; Standar, Kerstin; Kawabata, Shigetada; Glocker, Michael O.; Podbielski, Andreas
2007-01-01
Many Streptococcus pyogenes (group A streptococcus [GAS]) virulence factor- and transcriptional regulator-encoding genes cluster together in discrete genomic regions. Nra is a central regulator of the FCT region. Previous studies exclusively described Nra as a transcriptional repressor of adhesin and toxin genes. Here transcriptome and proteome analysis of a serotype M49 GAS strain and an isogenic Nra mutant of this strain revealed the complete Nra regulon profile. Nra is active in all growth phases tested, with the largest regulon in the transition phase. Almost exclusively, virulence factor-encoding genes are repressed by Nra; these genes include the GAS pilus operon, the capsule synthesis operon, the cytolysin-mediated translocation system genes, all Mga region core virulence genes, and genes encoding other regulators, like the Ihk/Irr system, Rgg, and two additional RofA-like protein family regulators. Surprisingly, our experiments revealed that Nra additionally acts as a positive regulator, mostly for genes encoding proteins and enzymes with metabolic functions. Epidemiological investigations revealed strong genetic linkage of one particular Nra-repressed regulator, Ralp3 (SPy0735), with a gene encoding Epf (extracellular protein factor from Streptococcus suis). In a serotype-specific fashion, this ralp3 epf gene block is integrated, most likely via transposition, into the eno sagA virulence gene block, which is present in all GAS serotypes. In GAS serotypes M1, M4, M12, M28, and M49 this novel discrete genetic region is therefore designated the eno ralp3 epf sagA (ERES) pathogenicity region. Functional experiments showed that Epf is a novel GAS plasminogen-binding protein and revealed that Ralp3 activity counteracts Nra and MsmR regulatory activity. In addition to the Mga and FCT regions, the ERES region is the third discrete chromosomal pathogenicity region. All of these regions are transcriptionally linked, adding another level of complexity to the known GAS growth phase-dependent regulatory network. PMID:17893125
Roh, Hyun Cheol; Collier, Sara; Deshmukh, Krupa; Guthrie, James; Robertson, J. David; Kornfeld, Kerry
2013-01-01
Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF) family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals. PMID:23717214
Sharma, V K; Bayles, D O; Alt, D P; Looft, T; Brunelle, B W; Stasko, J A
2017-03-08
Escherichia coli O157:H7 (O157) strain 86-24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR - ) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR + ) capable of producing curli fimbriae and biofilms. To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR + isolate was compared to the CR - parental isolate. Of the 242 genes expressed differentially in the CR + isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR + isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR + and CR - isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR + isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR + isolate at the insertion site of the duplicated sequence. Complementation of CR + isolate with rcsB of the CR - parent restored parental phenotypes to the CR + isolate. The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Emotional arousal impairs association-memory: Roles of amygdala and hippocampus.
Madan, Christopher R; Fujiwara, Esther; Caplan, Jeremy B; Sommer, Tobias
2017-08-01
Emotional arousal is well-known to enhance memory for individual items or events, whereas it can impair association memory. The neural mechanism of this association memory impairment by emotion is not known: In response to emotionally arousing information, amygdala activity may interfere with hippocampal associative encoding (e.g., via prefrontal cortex). Alternatively, emotional information may be harder to unitize, resulting in reduced availability of extra-hippocampal medial temporal lobe support for emotional than neutral associations. To test these opposing hypotheses, we compared neural processes underlying successful and unsuccessful encoding of emotional and neutral associations. Participants intentionally studied pairs of neutral and negative pictures (Experiments 1-3). We found reduced association-memory for negative pictures in all experiments, accompanied by item-memory increases in Experiment 2. High-resolution fMRI (Experiment 3) indicated that reductions in associative encoding of emotional information are localizable to an area in ventral-lateral amygdala, driven by attentional/salience effects in the central amygdala. Hippocampal activity was similar during both pair types, but a left hippocampal cluster related to successful encoding was observed only for negative pairs. Extra-hippocampal associative memory processes (e.g., unitization) were more effective for neutral than emotional materials. Our findings suggest that reduced emotional association memory is accompanied by increases in activity and functional coupling within the amygdala. This did not disrupt hippocampal association-memory processes, which indeed were critical for successful emotional association memory formation. Copyright © 2017 Elsevier Inc. All rights reserved.
On the asymmetric effects of mind-wandering on levels of processing at encoding and retrieval.
Thomson, David R; Smilek, Daniel; Besner, Derek
2014-06-01
The behavioral consequences of off-task thought (mind-wandering) on primary-task performance are now well documented across an increasing range of tasks. In the present study, we investigated the consequences of mind-wandering on the encoding of information into memory in the context of a levels-of-processing framework (Craik & Lockhart, 1972). Mind-wandering was assessed via subjective self-reports in response to thought probes that were presented under both semantic (size judgment) and perceptual (case judgment) encoding instructions. Mind-wandering rates during semantic encoding negatively predicted subsequent recognition memory performance, whereas no such relation was observed during perceptual encoding. We discuss the asymmetric effects of mind-wandering on levels of processing in the context of attentional-resource accounts of mind-wandering.
Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis
2012-01-01
Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.
Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.
Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei
2018-06-08
Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis
2012-01-01
Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role. PMID:23118940
Zhu, Xiaoyan; Guo, Shuang; Wang, Zhongwei; Du, Qing; Xing, Yadi; Zhang, Tianquan; Shen, Wenqiang; Sang, Xianchun; Ling, Yinghua; He, Guanghua
2016-06-13
As the indispensable part of plant, leaf blade mainly functions as the production workshops where organic substance is produced by photosynthesis. Leaf colour mutation is a genetic phenomenon that has a high frequency and is easily identified. The mutations always exhibit negative impact on the development of plants in any of the different stages of growth. Up to now, numerous genes involved in leaf colour mutations have been cloned. In this study, a yellow-green leaf mutant, yellow-green leaf 8 (ygl8), with stable genetic phenotype, has been screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by EMS. The levels of Chl a, Chl b and total chlorophyll were significantly lower in ygl8 than those in the WT throughout the whole growth period, while no clear change was noted in the Chl a/b ratio. Transmission electron microscopy demonstrated that the lamellae were clearly intumescent and intricately stacked in ygl8. Furthermore, compared with those of the WT, the stomatal conductance, intercellular CO2 concentration, photosynthetic rate and transpiration rate of ylg8 were all significantly lower. Map-based cloning results showed that Loc_Os01g73450, encoding a chloroplast-targeted UMP kinase, corresponded to Ygl8 and played an important role in regulating leaf colour in rice (Oryza sativa). Complementation of ygl8 with the WT DNA sequence of Loc_Os01g73450 led to restoration of the normal phenotype, and transgenic RNA interference plants showed a yellow-green colour. Analysis of the spatial and temporal expression of Ygl8 indicated that it was highly expressed in leaf blades and weakly expressed in other tissues. qRT-PCR also showed that the expression levels of the major Photosystem I core subunits plastome-encoded PsaA, PsaB and PsbC were significantly reduced in ygl8. The expression levels of nuclear-encoded gene involved in Chl biosynthesis HEMC, HEME, and PORA were also decreased when compared with the wild-type. Independent of Chl biosynthesis and photosystem, YGL8 may affect the structure and function of chloroplasts grana lamellae by regulating plastid genome encoded thylakoid membrane constitutive gene expression and indirectly influences Chl biosynthesis.
Effects of Emotional Valence and Arousal on Time Perception
Van Volkinburg, Heather; Balsam, Peter
2016-01-01
We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491
Lin, Chentao; Thomashow, Michael F.
1992-01-01
Previous studies have indicated that changes in gene expression occur in Arabidopsis thaliana L. (Heyn) during cold acclimation and that certain of the cor (cold-regulated) genes encode polypeptides that share the unusual property of remaining soluble upon boiling in aqueous solution. Here, we identify a cDNA clone for a cold-regulated gene encoding one of the “boiling-stable” polypeptides, COR15. DNA sequence analysis indicated that the gene, designated cor15, encodes a 14.7-kilodalton hydrophilic polypeptide having an N-terminal amino acid sequence that closely resembles transit peptides that target proteins to the stromal compartment of chloroplasts. Immunological studies indicated that COR15 is processed in vivo and that the mature polypeptide, COR 15m, is present in the soluble fraction of chloroplasts. Possible functions of COR 15m are discussed. ImagesFigure 1Figure 4Figure 5Figure 6Figure 7 PMID:16668917
Influence of encoding focus and stereotypes on source monitoring event-related-potentials.
Leynes, P Andrew; Nagovsky, Irina
2016-01-01
Source memory, memory for the origin of a memory, can be influenced by stereotypes and the information of focus during encoding processes. Participants studied words from two different speakers (male or female) using self-focus or other-focus encoding. Source judgments for the speaker׳s voice and Event-Related Potentials (ERPs) were recorded during test. Self-focus encoding increased dependence on stereotype information and the Late Posterior Negativity (LPN). The results link the LPN with an increase in systematic decision processes such as consulting prior knowledge to support an episodic memory judgment. In addition, other-focus encoding increased conditional source judgments and resulted in weaker old/new recognition relative to the self-focus encoding. The putative correlate of recollection (LPC) was absent during this condition and this was taken as evidence that recollection of partial information supported source judgments. Collectively, the results suggest that other-focus encoding changes source monitoring processing by altering the weight of specific memory features. Copyright © 2015 Elsevier B.V. All rights reserved.
Mangels, Jennifer A; Manzi, Alberto; Summerfield, Christopher
2010-03-01
In social interactions, it is often necessary to rapidly encode the association between visually presented faces and auditorily presented names. The present study used event-related potentials to examine the neural correlates of associative encoding for multimodal face-name pairs. We assessed study-phase processes leading to high-confidence recognition of correct pairs (and consistent rejection of recombined foils) as compared to lower-confidence recognition of correct pairs (with inconsistent rejection of recombined foils) and recognition failures (misses). Both high- and low-confidence retrieval of face-name pairs were associated with study-phase activity suggestive of item-specific processing of the face (posterior inferior temporal negativity) and name (fronto-central negativity). However, only those pairs later retrieved with high confidence recruited a sustained centro-parietal positivity that an ancillary localizer task suggested may index an association-unique process. Additionally, we examined how these processes were influenced by massed repetition, a mnemonic strategy commonly employed in everyday situations to improve face-name memory. Differences in subsequent memory effects across repetitions suggested that associative encoding was strongest at the initial presentation, and thus, that the initial presentation has the greatest impact on memory formation. Yet, exploratory analyses suggested that the third presentation may have benefited later memory by providing an opportunity for extended processing of the name. Thus, although encoding of the initial presentation was critical for establishing a strong association, the extent to which processing was sustained across subsequent immediate (massed) presentations may provide additional encoding support that serves to differentiate face-name pairs from similar (recombined) pairs by providing additional encoding opportunities for the less dominant stimulus dimension (i.e., name).
C. elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity
Zhang, Yanmei; Xu, Jinling; Puscau, Cristina; Kim, Yongsoon; Wang, Xi; Alam, Hena; Hu, Patrick J.
2008-01-01
SUMMARY Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals. PMID:18241854
Tlapák, Hana; Rydzewski, Kerstin; Schulz, Tino; Weschka, Dennis; Schunder, Eva; Heuner, Klaus
2017-06-01
Legionella oakridgensis causes Legionnaires' disease but is known to be less virulent than Legionella pneumophila L. oakridgensis is one of the Legionella species that is nonflagellated. The genes of the flagellar regulon are absent, except those encoding the alternative sigma-28 factor (FliA) and its anti-sigma-28 factor (FlgM). Similar to L. oakridgensis , Legionella adelaidensis and Legionella londiniensis , located in the same phylogenetic clade, have no flagellar regulon, although both are positive for fliA and flgM Here, we investigated the role and function of both genes to better understand the role of FliA, the positive regulator of flagellin expression, in nonflagellated strains. We demonstrated that the FliA gene of L. oakridgensis encodes a functional sigma-28 factor that enables the transcription start from the sigma-28-dependent promoter site. The investigations have shown that FliA is necessary for full fitness of L. oakridgensis Interestingly, expression of FliA-dependent genes depends on the growth phase and temperature, as already shown for L. pneumophila strains that are flagellated. In addition, we demonstrated that FlgM is a negative regulator of FliA-dependent gene expression. FlgM seems to be degraded in a growth-phase- and temperature-dependent manner, instead of being exported into the medium as reported for most bacteria. The degradation of FlgM leads to an increase of FliA activity. IMPORTANCE A less virulent Legionella species, L. oakridgensis , causes Legionnaires' disease and is known to not have flagella, even though L. oakridgensis has the regulator of flagellin expression (FliA). This protein has been shown to be involved in the expression of virulence factors. Thus, the strain was chosen for use in this investigation to search for FliA target genes and to identify putative virulence factors of L. oakridgensis One of the five major target genes of FliA identified here encodes the anti-FliA sigma factor FlgM. Interestingly, in contrast to most homologs in other bacteria, FlgM in L. oakridgensis seems not to be transported from the cell so that FliA gets activated. In L. oakridgensis , FlgM seems to be degraded by protease activities. Copyright © 2017 American Society for Microbiology.
2012-01-01
Background LEF1/TCF transcription factors and their activator β-catenin are effectors of the canonical Wnt pathway. Although Wnt/β-catenin signaling has been implicated in neurodegenerative and psychiatric disorders, its possible role in the adult brain remains enigmatic. To address this issue, we sought to identify the genetic program activated by β-catenin in neurons. We recently showed that β-catenin accumulates specifically in thalamic neurons where it activates Cacna1g gene expression. In the present study, we combined bioinformatics and experimental approaches to find new β-catenin targets in the adult thalamus. Results We first selected the genes with at least two conserved LEF/TCF motifs within the regulatory elements. The resulting list of 428 putative LEF1/TCF targets was significantly enriched in known Wnt targets, validating our approach. Functional annotation of the presumed targets also revealed a group of 41 genes, heretofore not associated with Wnt pathway activity, that encode proteins involved in neuronal signal transmission. Using custom polymerase chain reaction arrays, we profiled the expression of these genes in the rat forebrain. We found that nine of the analyzed genes were highly expressed in the thalamus compared with the cortex and hippocampus. Removal of nuclear β-catenin from thalamic neurons in vitro by introducing its negative regulator Axin2 reduced the expression of six of the nine genes. Immunoprecipitation of chromatin from the brain tissues confirmed the interaction between β-catenin and some of the predicted LEF1/TCF motifs. The results of these experiments validated four genes as authentic and direct targets of β-catenin: Gabra3 for the receptor of GABA neurotransmitter, Calb2 for the Ca2+-binding protein calretinin, and the Cacna1g and Kcna6 genes for voltage-gated ion channels. Two other genes from the latter cluster, Cacna2d2 and Kcnh8, appeared to be regulated by β-catenin, although the binding of β-catenin to the regulatory sequences of these genes could not be confirmed. Conclusions In the thalamus, β-catenin regulates the expression of a novel group of genes that encode proteins involved in neuronal excitation. This implies that the transcriptional activity of β-catenin is necessary for the proper excitability of thalamic neurons, may influence activity in the thalamocortical circuit, and may contribute to thalamic pathologies. PMID:23157480
Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast*
Soto-Cardalda, Aníbal; Fakas, Stylianos; Pascual, Florencia; Choi, Hyeon-Son; Carman, George M.
2012-01-01
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway. PMID:22128164
Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh; ...
2017-03-23
During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh
During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less
Rhouma, Mohamed; Fairbrother, John Morris; Thériault, William; Beaudry, Francis; Bergeron, Nadia; Laurent-Lewandowski, Sylvette; Letellier, Ann
2017-01-05
Enterotoxigenic Escherichia coli (ETEC) strains producing multiple enterotoxins are important causes of post-weaning diarrhea (PWD) in pigs. The aim of the present study was to investigate the fecal presence of ETEC enterotoxin as well as F4 and F18 genes as an indicator of colistin sulfate (CS) efficacy for treatment of PWD in pigs. Forty-eight piglets were weaned at the age of 21 days, and were divided into four groups: challenged treated, challenged untreated, unchallenged treated, and unchallenged untreated. Challenge was performed using 10 9 CFU of an ETEC: F4 strain, and treatment was conducted using oral CS at the dose of 50,000 IU/kg. The fecal presence of genes encoding for STa, STb, LT, F4 and F18 was detected using PCR. The PCR amplification of ETEC virulence genes showed that nearly 100% of pigs excreted genes encoding for STa and STb toxins in the feces before the challenge. These genes, in the absence of the gene encoding F4, were considered as a marker for F4-negative ETEC. One day after ETEC: F4 oral challenge pigs in the two challenged groups excreted the genes encoding LT and F4 in the feces. These genes were considered as a marker for F4-positive ETEC. However, the gene encoding F18 was not detected in any fecal samples of the 4 groups throughout the experiment. After only 3 days of successive oral treatment with CS, a significant reduction in both the F4-positive and negative ETEC populations was observed in the challenged treated group compared to the challenged untreated group (p < 0.0001). Our study is among the first to report that under controlled farming conditions, oral CS treatment had a significant effect on both fecal F4-positive and F4-negative ETEC in pigs. However, CS clinical efficiency was correlated with non-detection of F4-positive ETEC in the feces. Furthermore the fecal presence of F4-negative ETEC was not associated with clinical symptoms of post-weaning diarrhea in pigs.
Kacprzak, Magdalena M; Lewandowska, Irmina; Matthews, Rowena G; Paszewski, Andrzej
2003-01-01
Roles played by homocysteine and choline in the regulation of MS (methionine synthase) have been examined in fungi. The Aspergillus nidulans metH gene encoding MS was cloned and characterized. Its transcription was not regulated by methionine, but was enhanced by homocysteine and repressed by choline and betaine. MS activity levels were regulated in a similar way. The repression by betaine was due to its metabolic conversion to choline, which was found to be very efficient in A. nidulans. Betaine and choline supplementation stimulated growth of leaky metH mutants apparently by decreasing the demand for methyl groups and thus saving methionine and S -adenosylmethionine. We have also found that homocysteine stimulates transcription of MS-encoding genes in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PMID:12954077
Distinctive amygdala subregions involved in emotion-modulated Stroop interference
Han, Hyun Jung; Lee, Kanghee; Kim, Hyun Taek; Kim, Hackjin
2014-01-01
Despite the well-known role of the amygdala in mediating emotional interference during tasks requiring cognitive resources, no definite conclusion has yet been reached regarding the differential roles of functionally and anatomically distinctive subcomponents of the amygdala in such processes. In this study, we examined female participants and attempted to separate the neural processes for the detection of emotional information from those for the regulation of cognitive interference from emotional distractors by adding a temporal gap between emotional stimuli and a subsequent cognitive Stroop task. Reaction time data showed a significantly increased Stroop interference effect following emotionally negative stimuli compared with neutral stimuli, and functional magnetic resonance imaging data revealed that the anterior ventral amygdala (avAMYG) showed greater responses to negative stimuli compared with neutral stimuli. In addition, individuals who scored high in neuroticism showed greater posterior dorsal amygdala (pdAMYG) responses to incongruent compared with congruent Stroop trials following negative stimuli, but not following neutral stimuli. Taken together, the findings of this study demonstrated functionally distinctive contributions of the avAMYG and pdAMYG to the emotion-modulated Stroop interference effect and suggested that the avAMYG encodes associative values of emotional stimuli whereas the pdAMYG resolves cognitive interference from emotional distractors. PMID:23543193
DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins
Min, Xiang Jia; Hickey, Donal A.
2007-01-01
Abstract Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins. PMID:17974594
The role of encoding and attention in facial emotion memory: an EEG investigation.
Brenner, Colleen A; Rumak, Samuel P; Burns, Amy M N; Kieffaber, Paul D
2014-09-01
Facial expressions are encoded via sensory mechanisms, but meaning extraction and salience of these expressions involve cognitive functions. We investigated the time course of sensory encoding and subsequent maintenance in memory via EEG. Twenty-nine healthy participants completed a facial emotion delayed match-to-sample task. P100, N170 and N250 ERPs were measured in response to the first stimulus, and evoked theta power (4-7Hz) was measured during the delay interval. Negative facial expressions produced larger N170 amplitudes and greater theta power early in the delay. N170 amplitude correlated with theta power, however larger N170 amplitude coupled with greater theta power only predicted behavioural performance for one emotion condition (very happy) out of six tested (see Supplemental Data). These findings indicate that the N170 ERP may be sensitive to emotional facial expressions when task demands require encoding and retention of this information. Furthermore, sustained theta activity may represent continued attentional processing that supports short-term memory, especially of negative facial stimuli. Further study is needed to investigate the potential influence of these measures, and their interaction, on behavioural performance. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Gupta, Adarsh K; Hein, Gary L; Graybosch, Robert A; Tatineni, Satyanarayana
2018-05-01
High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed the transitive pathway of RNA silencing. Additionally, a Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) mutant lacking the suppressor of RNA silencing (ΔP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient WSMV. Furthermore, HPWMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV encodes two suppressors of RNA silencing. Published by Elsevier Inc.
Markers of preparatory attention predict visual short-term memory performance.
Murray, Alexandra M; Nobre, Anna C; Stokes, Mark G
2011-05-01
Visual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d'). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability. Copyright © 2011. Published by Elsevier Ltd.
Volberg, Gregor; Goldhacker, Markus; Hanslmayr, Simon
2016-01-01
Abstract The method of loci is one, if not the most, efficient mnemonic encoding strategy. This spatial mnemonic combines the core cognitive processes commonly linked to medial temporal lobe (MTL) activity: spatial and associative memory processes. During such processes, fMRI studies consistently demonstrate MTL activity, while electrophysiological studies have emphasized the important role of theta oscillations (3–8 Hz) in the MTL. However, it is still unknown whether increases or decreases in theta power co-occur with increased BOLD signal in the MTL during memory encoding. To investigate this question, we recorded EEG and fMRI separately, while human participants used the spatial method of loci or the pegword method, a similarly associative but nonspatial mnemonic. The more effective spatial mnemonic induced a pronounced theta power decrease source localized to the left MTL compared with the nonspatial associative mnemonic strategy. This effect was mirrored by BOLD signal increases in the MTL. Successful encoding, irrespective of the strategy used, elicited decreases in left temporal theta power and increases in MTL BOLD activity. This pattern of results suggests a negative relationship between theta power and BOLD signal changes in the MTL during memory encoding and spatial processing. The findings extend the well known negative relation of alpha/beta oscillations and BOLD signals in the cortex to theta oscillations in the MTL. PMID:28101523
Cultural differences in hedonic emotion regulation after a negative event.
Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G
2014-08-01
Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.
Riboregulation of bacterial and archaeal transposition.
Ellis, Michael J; Haniford, David B
2016-05-01
The coexistence of transposons with their hosts depends largely on transposition levels being tightly regulated to limit the mutagenic burden associated with frequent transposition. For 'DNA-based' (class II) bacterial transposons there is growing evidence that regulation through small noncoding RNAs and/or the RNA-binding protein Hfq are prominent mechanisms of defense against transposition. Recent transcriptomics analyses have identified many new cases of antisense RNAs (asRNA) that potentially could regulate the expression of transposon-encoded genes giving the impression that asRNA regulation of DNA-based transposons is much more frequent than previously thought. Hfq is a highly conserved bacterial protein that plays a central role in posttranscriptional gene regulation and stress response pathways in many bacteria. Three different mechanisms for Hfq-directed control of bacterial transposons have been identified to date highlighting the versatility of this protein as a regulator of bacterial transposons. There is also evidence emerging that some DNA-based transposons encode RNAs that could regulate expression of host genes. In the case of IS200, which appears to have lost its ability to transpose, contributing a regulatory RNA to its host could account for the persistence of this mobile element in a wide range of bacterial species. It remains to be seen how prevalent these transposon-encoded RNA regulators are, but given the relatively large amount of intragenic transcription in bacterial genomes, it would not be surprising if new examples are forthcoming. WIREs RNA 2016, 7:382-398. doi: 10.1002/wrna.1341 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Molecular evolution of nitrogen assimilatory enzymes in marine prasinophytes.
Ghoshroy, Sohini; Robertson, Deborah L
2015-01-01
Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe
2017-01-01
The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843
Wilf, Nabil M; Salmond, George P C
2012-03-01
Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of rpoS, which encodes σ(S), the stationary phase sigma factor subunit of RNA polymerase. An S39006 hfq deletion mutant showed decreased transcript levels of rpoS. Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of rpoS. Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both C. elegans and potato, characterization of an S39006 rpoS mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the rpoS mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of rpoS mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.
Kisspeptin Expression in Guinea Pig Hypothalamus: Effects of 17β-Estradiol
Bosch, Martha A.; Xue, Changhui; Rønnekleiv, Oline K.
2013-01-01
Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17β-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle. PMID:22173890
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku
2015-09-01
Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. Copyright © 2015 Elsevier Ltd. All rights reserved.
Barakat, Tahsin Stefan; Loos, Friedemann; van Staveren, Selma; Myronova, Elvira; Ghazvini, Mehrnaz; Grootegoed, J Anton; Gribnau, Joost
2014-03-20
X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors. We found that the X-encoded trans-acting and dose-dependent XCI-activator RNF12 acts in concert with the cis-regulatory region containing Jpx, Ftx, and Xpr to activate Xist and to overcome repression by Tsix. RNF12 acts at two subsequent steps; two active copies of Rnf12 drive initiation of XCI, and one copy needs to remain active to maintain XCI toward establishment of the Xi. This two-step mechanism ensures that XCI is very robust and fine-tuned, preventing XCI of both X chromosomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Huang, Li; Liu, Qinfang; Zhang, Lijie; Zhang, Quan; Hu, Liang; Li, Changyao; Wang, Shengnan; Li, Jiangnan; Zhang, Yuanfeng; Yu, Huibin; Wang, Yan; Zhong, Zhaohua; Xiong, Tao; Xia, Xueshan; Wang, Xiaojun; Yu, Li; Deng, Guohua; Cai, Xuehui; Cui, Shangjin; Weng, Changjiang
2015-11-13
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular role of the PAX5-ETV6 oncoprotein in promoting B-cell acute lymphoblastic leukemia.
Smeenk, Leonie; Fischer, Maria; Jurado, Sabine; Jaritz, Markus; Azaryan, Anna; Werner, Barbara; Roth, Mareike; Zuber, Johannes; Stanulla, Martin; den Boer, Monique L; Mullighan, Charles G; Strehl, Sabine; Busslinger, Meinrad
2017-03-15
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6 + B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development. © 2017 The Authors.
Xiang, Nan; Guo, Xinbo; Liu, Fengyuan; Li, Quan; Hu, Jianguang; Brennan, Charles Stephen
2017-06-10
Sweet corn is one of the most widely planted crops in China. Sprouting of grains is a new processes to increase the nutritional value of grain products. The present study explores the effects of light on the nutritional quality of sweet corn sprouts. Gene expression of phenolic biosynthesis, phytochemical profiles and antioxidant activity were studied. Two treatments (light and dark) were selected and the morphological structure of sweet corn sprouts, as well as their biochemical composition were investigated to determine the effects of light on the regulation of genes responsible for nutritional compounds. Transcription analyses for three key-encoding genes in the biosynthesis of the precursors of phenolic were studied. Results revealed a negative regulation in the expression of Zm PAL with total phenolic content (TPC) in the light group. TPC and total flavonoid content (TFC) increased during germination and this was correlated with an increase in antioxidant activity ( r = 0.95 and 1.0). The findings illustrate that the nutritional value of sweet corn for the consumer can be improved through germination to the euphylla stage.
The roles of ERAS during cell lineage specification of mouse early embryonic development.
Zhao, Zhen-Ao; Yu, Yang; Ma, Huai-Xiao; Wang, Xiao-Xiao; Lu, Xukun; Zhai, Yanhua; Zhang, Xiaoxin; Wang, Haibin; Li, Lei
2015-08-01
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development. © 2015 The Authors.
Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis
Liao, Peng; Wang, Weichao; Li, Yu; Wang, Rui; Jin, Jiali; Pang, Weijuan; Chen, Yunfei; Shen, Mingyue; Wang, Xinbo; Jiang, Dongyang; Pang, Jinjiang; Liu, Mingyao; Lin, Xia; Feng, Xin-Hua; Wang, Ping; Ge, Xin
2017-01-01
SCP1 as a nuclear transcriptional regulator acts globally to silence neuronal genes and to affect the dephosphorylation of RNA Pol ll. However, we report the first finding and description of SCP1 as a plasma membrane-localized protein in various cancer cells using EGFP- or other epitope-fused SCP1. Membrane-located SCP1 dephosphorylates AKT at serine 473, leading to the abolishment of serine 473 phosphorylation that results in suppressed angiogenesis and a decreased risk of tumorigenesis. Consistently, we observed increased AKT phosphorylation and angiogenesis followed by enhanced tumorigenesis in Ctdsp1 (which encodes SCP1) gene - knockout mice. Importantly, we discovered that the membrane localization of SCP1 is crucial for impeding angiogenesis and tumor growth, and this localization depends on palmitoylation of a conserved cysteine motif within its NH2 terminus. Thus, our study discovers a novel mechanism underlying SCP1 shuttling between the plasma membrane and nucleus, which constitutes a unique pathway in transducing AKT signaling that is closely linked to angiogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.22058.001 PMID:28440748
Rated Measures of Narrative Structure for Written Smoking-Cessation Texts
Sanders-Jackson, Ashley
2014-01-01
This article describes the effect of a series of rated measures of narrative structure on recognition memory, agreement on story-relevant beliefs, and intention to engage in a health-related behavior—in this case smoking cessation. Using short smoking-cessation stories as stimuli, data were collected in a nationally representative sample of adult smokers (n = 1,312). Results suggested that messages rated as more sequential improved encoding and messages rated as containing more context decreased encoding. Messages rated high in transportation were associated with increased recognition, agreement with story-relevant beliefs, and intention to quit. Both positive and negative emotion were positively associated with intention to quit, but were negatively associated with recognition memory. PMID:24447036
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2017-01-01
Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072
Shames, Stephanie R.; Liu, Luying; Havey, James C.; Schofield, Whitman B.; Goodman, Andrew L.; Roy, Craig R.
2017-01-01
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires’ disease. A single strain of L. pneumophila encodes a repertoire of over 300 different effector proteins that are delivered into host cells by the Dot/Icm type IV secretion system during infection. The large number of L. pneumophila effectors has been a limiting factor in assessing the importance of individual effectors for virulence. Here, a transposon insertion sequencing technology called INSeq was used to analyze replication of a pool of effector mutants in parallel both in a mouse model of infection and in cultured host cells. Loss-of-function mutations in genes encoding effector proteins resulted in host-specific or broad virulence phenotypes. Screen results were validated for several effector mutants displaying different virulence phenotypes using genetic complementation studies and infection assays. Specifically, loss-of-function mutations in the gene encoding LegC4 resulted in enhanced L. pneumophila in the lungs of infected mice but not within cultured host cells, which indicates LegC4 augments bacterial clearance by the host immune system. The effector proteins RavY and Lpg2505 were important for efficient replication within both mammalian and protozoan hosts. Further analysis of Lpg2505 revealed that this protein functions as a metaeffector that counteracts host cytotoxicity displayed by the effector protein SidI. Thus, this study identified a large cohort of effectors that contribute to L. pneumophila virulence positively or negatively and has demonstrated regulation of effector protein activities by cognate metaeffectors as being critical for host pathogenesis. PMID:29133401
USDA-ARS?s Scientific Manuscript database
Modern tomato (Solanum lycopersicum) varieties are bred for recessive uniform ripening (u) light green fruit phenotypes to facilitate maturity determinations without information about the underlying gene. We show that U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines the...
Taboo words: the effect of emotion on memory for peripheral information.
Guillet, Rebecca; Arndt, Jason
2009-09-01
In three experiments, we examined memory for peripheral information that occurred in the same context as emotion-inducing information. In the first two experiments, participants studied either a sentence (Experiment 1) or a pair of words (Experiments 2A-2C) containing a neutral peripheral word, as well as a neutral, negative-valence, or taboo word, to induce an emotional response. At retrieval, the participants were asked to recall the neutral peripheral word from a sentence fragment or emotion-inducing word cue. In Experiment 3, we presented word pairs at encoding and tested memory with associative recognition. In all three experiments, memory for peripheral words was enhanced when it was encoded in the presence of emotionally arousing taboo words but not when it was encoded in the presence of words that were only negative in valence. These data are consistent with priority-binding theory (MacKay et al., 2004) and inconsistent with the attention-narrowing hypothesis (Easterbrook, 1959), as well as with object-based binding theory (Mather, 2007).
Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less
Spontaneous Recovery of Consummatory Behavior, But Not of Consummatory Successive Negative Contrast
ERIC Educational Resources Information Center
Norris, Jacob N.; Daniel, Alan M.; Papini, Mauricio R.
2008-01-01
Five experiments were designed to study spontaneous recovery (SR) in two situations involving consummatory behavior: consummatory successive negative contrast (cSNC) and consummatory extinction (cE). SR of consummatory suppression should occur if incentive downshift induces an egocentric memory encoding information about the emotional reaction to…
Rinker, Jennifer A.; Fulmer, Diana B.; Trantham-Davidson, Heather; Smith, Maren L.; Williams, Robert W.; Lopez, Marcelo F.; Randall, Patrick K.; Chandler, L. Judson; Miles, Michael F.; Becker, Howard C.; Mulholland, Patrick J.
2016-01-01
Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlate with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction. PMID:27432260
Boyce, Kylie J.; McLauchlan, Alisha; Schreider, Lena; Andrianopoulos, Alex
2015-01-01
During infection, pathogens must utilise the available nutrient sources in order to grow while simultaneously evading or tolerating the host’s defence systems. Amino acids are an important nutritional source for pathogenic fungi and can be assimilated from host proteins to provide both carbon and nitrogen. The hpdA gene of the dimorphic fungus Penicillium marneffei, which encodes an enzyme which catalyses the second step of tyrosine catabolism, was identified as up-regulated in pathogenic yeast cells. As well as enabling the fungus to acquire carbon and nitrogen, tyrosine is also a precursor in the formation of two types of protective melanin; DOPA melanin and pyomelanin. Chemical inhibition of HpdA in P. marneffei inhibits ex vivo yeast cell production suggesting that tyrosine is a key nutrient source during infectious growth. The genes required for tyrosine catabolism, including hpdA, are located in a gene cluster and the expression of these genes is induced in the presence of tyrosine. A gene (hmgR) encoding a Zn(II)2-Cys6 binuclear cluster transcription factor is present within the cluster and is required for tyrosine induced expression and repression in the presence of a preferred nitrogen source. AreA, the GATA-type transcription factor which regulates the global response to limiting nitrogen conditions negatively regulates expression of cluster genes in the absence of tyrosine and is required for nitrogen metabolite repression. Deletion of the tyrosine catabolic genes in the cluster affects growth on tyrosine as either a nitrogen or carbon source and affects pyomelanin, but not DOPA melanin, production. In contrast to other genes of the tyrosine catabolic cluster, deletion of hpdA results in no growth within macrophages. This suggests that the ability to catabolise tyrosine is not required for macrophage infection and that HpdA has an additional novel role to that of tyrosine catabolism and pyomelanin production during growth in host cells. PMID:25812137
Frädrich, Claudia; March, Anika; Fiege, Kerstin; Hartmann, Anja; Jahn, Dieter
2012-01-01
Bacillus subtilis forms acetoin under anaerobic fermentative growth conditions and as a product of the aerobic carbon overflow metabolism. Acetoin formation from pyruvate requires α-acetolactate synthase and acetolactate decarboxylase, both encoded by the alsSD operon. The alsR gene, encoding the LysR-type transcriptional regulator AlsR, was found to be essential for the in vivo expression of alsSD in response to anaerobic acetate accumulation, the addition of acetate, low pH, and the aerobic stationary phase. The expressions of the alsSD operon and the alsR regulatory gene were independent of other regulators of the anaerobic regulatory network, including ResDE, Fnr, and ArfM. A negative autoregulation of alsR was observed. In vitro transcription from the alsSD promoter using purified B. subtilis RNA polymerase required AlsR. DNA binding studies with purified recombinant AlsR in combination with promoter mutagenesis experiments identified a 19-bp high-affinity palindromic binding site (TAAT-N11-ATTA) at positions −76 to −58 (regulatory binding site [RBS]) and a low-affinity site (AT-N11-AT) at positions −41 to −27 (activator binding site [ABS]) upstream of the transcriptional start site of alsSD. The RBS and ABS were found to be essential for in vivo alsSD transcription. AlsR binding to both sites induced the formation of higher-order, transcription-competent complexes. The AlsR protein carrying the S100A substitution at the potential coinducer binding site still bound to the RBS and ABS. However, AlsR(S100A) failed to form the higher-order complex and to initiate in vivo and in vitro transcription. A model for AlsR promoter binding and transcriptional activation was deduced. PMID:22178965
Kasar, S; Underbayev, C; Yuan, Y; Hanlon, M; Aly, S; Chang, V; Batish, M; Gavrilova, T; Badiane, F; Degheidy, H; Marti, G; Raveche, E
2014-01-01
Genetic lesions and other regulatory events lead to silencing of the 13q14 locus in a majority of chronic lymphocytic leukemia (CLL) patients. This locus encodes a pair of critical pro-apoptotic microRNAs, miR-15a/16-1. Decreased levels of miR-15a/16-1 are critical for the increased survival exhibited by CLL cells. Similarly, in a de novo murine model of CLL, the NZB strain, germline-encoded regulation of the syntenic region resulted in decreased miR-15a/16-1. In this paper we have identified additional molecular mechanisms regulating miR-15a/16-1 levels and shown that the transcription factor BSAP (B cell Specific Activator Protein) directly interacts with Dleu2, the host gene containing the mir-15a/16-1 loci and via negative regulation of the Dleu2 promoter results in repression of mir-15a/16 expression. CLL patient B cell expression levels of BSAP were increased compared to control sources of B cells. With the use of siRNA mediated repression, the levels of BSAP were decreased in vitro in the NZB derived malignant B1 cell line, LNC, and in ex vivo CLL patient PBMC. BSAP knockdown led to an increase in the expression of miR-15a/16-1 and an increase in apoptosis and a cell cycle arrest in both the cell line and patient PBMC. Moreover, using Dleu2 promoter analysis by chromatin immunoprecipitation (ChIP) assay we have shown that BSAP directly interacts with the Dleu2 promoter. Derepression of the Dleu2 promoter via inhibition of histone deacetylation combined with BSAP knockdown increased miR-15a/16 expression and increased malignant B cell death. In summary, therapy targeting enhanced host gene Dleu2 transcription may augment CLL therapy. PMID:23995789
Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha; Harvald, Eva Bang; Færgeman, Nils J.; Aguilaniu, Hugo; Fabrizio, Paola
2017-01-01
In yeast, the broadly conserved acyl-CoA–binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene expression studies we have demonstrated that HIF-1, a master transcriptional regulator of adaptation to hypoxia, plays a central role in orchestrating the anti-aging response induced by MAA-1 deficiency. This response relies on the activation of molecular chaperones known to contribute to maintenance of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1 –deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins in the age-associated decline in proteostasis in mammals. PMID:28758895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin-Mao; University of Chinese Academy of Sciences, Beijing; Lü, Shi-You
Abstracts: The Cytosolic Protein Response (CPR) in the cytosol and the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD) in the endoplasmic reticulum are major pathways of the cellular proteostasis network. However, despite years of effort, how these protein quality control systems coordinated in vivo remains largely unknown, particularly in plants. In this study, the roles of two evolutionarily conserved ERAD pathways (DOA10 and HRD1) in heat stress response were investigated through reverse genetic approaches in Arabidopsis. Phenotypic analysis of the mutants showed that the two ERAD pathways additively play negative roles in heat tolerance, which was demonstrated by higher survivalmore » rate and lower electrolyte leakage in the loss of function mutants compared to the wild type plants. Importantly, gene expression analysis revealed that the mutant plants showed elevated transcriptional regulation of several downstream genes, including those encoding CPR and UPR marker genes, under both basal and heat stress conditions. Finally, multiple components of ERAD genes exhibited rapid response to increasing temperature. Taken together, our data not only unravels key insights into the crosstalk between different protein quality control processes, but also provides candidate genes to genetically improve plant heat tolerance in the future. - Highlights: • ERAD pathways cooperatively regulate plant thermotolerance. • ERAD pathways cooperatively regulate UPR and CPR. • ERAD components gene expression are upregulated by heat stress.« less