von Wettstein-Knowles, Penny
2017-07-10
The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.
Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A
1993-01-01
The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280
2008-04-01
IID on A pril 23, 2008 jb.asm .org D ow nloaded from metabolite-producing clusters encoding nonribosomal peptide or polyketide synthetases...BMA1848) encod- ing a subunit of acetolactate synthase III. The resultant mutant was not able to grow on minimal glucose medium and, similar to what has...caused by the wild type. BMAA1204 is a 4,200-residue CDS annotated as encoding a putative polyketide synthase (PKS) in COG family 0332. PKSs are
Xu, Yuquan; Espinosa-Artiles, Patricia; Schubert, Vivien; Xu, Ya-ming; Zhang, Wei; Lin, Min; Gunatilaka, A. A. Leslie; Süssmuth, Roderich
2013-01-01
10,11-Dehydrocurvularin is a prevalent fungal phytotoxin with heat shock response and immune-modulatory activities. It features a dihydroxyphenylacetic acid lactone polyketide framework with structural similarities to resorcylic acid lactones like radicicol or zearalenone. A genomic locus was identified from the dehydrocurvularin producer strain Aspergillus terreus AH-02-30-F7 to reveal genes encoding a pair of iterative polyketide synthases (A. terreus CURS1 [AtCURS1] and AtCURS2) that are predicted to collaborate in the biosynthesis of 10,11-dehydrocurvularin. Additional genes in this locus encode putative proteins that may be involved in the export of the compound from the cell and in the transcriptional regulation of the cluster. 10,11-Dehydrocurvularin biosynthesis was reconstituted in Saccharomyces cerevisiae by heterologous expression of the polyketide synthases. Bioinformatic analysis of the highly reducing polyketide synthase AtCURS1 and the nonreducing polyketide synthase AtCURS2 highlights crucial biosynthetic programming differences compared to similar synthases involved in resorcylic acid lactone biosynthesis. These differences lead to the synthesis of a predicted tetraketide starter unit that forms part of the 12-membered lactone ring of dehydrocurvularin, as opposed to the penta- or hexaketide starters in the 14-membered rings of resorcylic acid lactones. Tetraketide N-acetylcysteamine thioester analogues of the starter unit were shown to support the biosynthesis of dehydrocurvularin and its analogues, with yeast expressing AtCURS2 alone. Differential programming of the product template domain of the nonreducing polyketide synthase AtCURS2 results in an aldol condensation with a different regiospecificity than that of resorcylic acid lactones, yielding the dihydroxyphenylacetic acid scaffold characterized by an S-type cyclization pattern atypical for fungal polyketides. PMID:23335766
Producing dicarboxylic acids using polyketide synthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.
The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.
von Wettstein-Knowles, Penny
2017-01-01
The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue–grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase—the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols. PMID:28698520
Polyketide synthases from poison hemlock (Conium maculatum L.).
Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko
2015-11-01
Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs. © 2015 FEBS.
Zhang, Wenjun; Ames, Brian D.; Tsai, Shiou-Chuan; Tang, Yi
2006-01-01
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity. PMID:16597959
Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A
2017-09-01
Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Zhang, Jian; Zhu, Liuyang; Chen, Haoyu; Li, Min; Zhu, Xiaojuan; Gao, Qiang; Wang, Depei; Zhang, Ying
2016-12-28
The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.
Producing biofuels using polyketide synthases
Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D
2013-04-16
The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.
USDA-ARS?s Scientific Manuscript database
Fusaric acid (FA), a phytotoxic polyketide produced by Fusarium oxysporum f. sp. vasinfectum (FOV), has been shown to be associated with disease symptoms on cotton. A gene located upstream of the polyketide synthase gene responsible for the biosynthesis of FA is predicted to encode a member of the ...
Nowrousian, Minou
2009-04-01
During fungal fruiting body development, hyphae aggregate to form multicellular structures that protect and disperse the sexual spores. Analysis of microarray data revealed a gene cluster strongly upregulated during fruiting body development in the ascomycete Sordaria macrospora. Real time PCR analysis showed that the genes from the orthologous cluster in Neurospora crassa are also upregulated during development. The cluster encodes putative polyketide biosynthesis enzymes, including a reducing polyketide synthase. Analysis of knockout strains of a predicted dehydrogenase gene from the cluster showed that mutants in N. crassa and S. macrospora are delayed in fruiting body formation. In addition to the upregulated cluster, the N. crassa genome comprises another cluster containing a polyketide synthase gene, and five additional reducing polyketide synthase (rpks) genes that are not part of clusters. To study the role of these genes in sexual development, expression of the predicted rpks genes in S. macrospora (five genes) and N. crassa (six genes) was analyzed; all but one are upregulated during sexual development. Analysis of knockout strains for the N. crassa rpks genes showed that one of them is essential for fruiting body formation. These data indicate that polyketides produced by RPKSs are involved in sexual development in filamentous ascomycetes.
The Polyketide Synthase Gene pks4 of Trichoderma reesei Provides Pigmentation and Stress Resistance
Atanasova, Lea; Knox, Benjamin P.; Kubicek, Christian P.; Baker, Scott E.
2013-01-01
Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi. PMID:24036343
Lim, Si-Kyu; Ju, Jianhua; Zazopoulos, Emmanuel; Jiang, Hui; Seo, Jeong-Woo; Chen, Yihua; Feng, Zhiyang; Rajski, Scott R; Farnet, Chris M; Shen, Ben
2009-10-23
iso-Migrastatin and related glutarimide-containing polyketides are potent inhibitors of tumor cell migration and their implied potential as antimetastatic agents for human cancers has garnered significant attention. Genome scanning of Streptomyces platensis NRRL 18993 unveiled two candidate gene clusters (088D and mgs); each encodes acyltransferase-less type I polyketide synthases commensurate with iso-migrastatin biosynthesis. Both clusters were inactivated by lambda-RED-mediated PCR-targeting mutagenesis in S. platensis; iso-migrastatin production was completely abolished in the DeltamgsF mutant SB11012 strain, whereas inactivation of 088D-orf7 yielded the SB11006 strain that exhibited no discernible change in iso-migrastatin biosynthesis. These data indicate that iso-migrastatin production is governed by the mgs cluster. Systematic gene inactivation allowed determination of the precise boundaries of the mgs cluster and the essentiality of the genes within the mgs cluster in iso-migrastatin production. The mgs cluster consists of 11 open reading frames that encode three acyltransferase-less type I polyketide synthases (MgsEFG), one discrete acyltransferase (MgsH), a type II thioesterase (MgsB), three post-PKS tailoring enzymes (MgsIJK), two glutarimide biosynthesis enzymes (MgsCD), and one regulatory protein (MgsA). A model for iso-migrastatin biosynthesis is proposed based on functional assignments derived from bioinformatics and is further supported by the results of in vivo gene inactivation experiments.
Lim, Si-Kyu; Ju, Jianhua; Zazopoulos, Emmanuel; Jiang, Hui; Seo, Jeong-Woo; Chen, Yihua; Feng, Zhiyang; Rajski, Scott R.; Farnet, Chris M.; Shen, Ben
2009-01-01
iso-Migrastatin and related glutarimide-containing polyketides are potent inhibitors of tumor cell migration and their implied potential as antimetastatic agents for human cancers has garnered significant attention. Genome scanning of Streptomyces platensis NRRL 18993 unveiled two candidate gene clusters (088D and mgs); each encodes acyltransferase-less type I polyketide synthases commensurate with iso-migrastatin biosynthesis. Both clusters were inactivated by λ-RED-mediated PCR-targeting mutagenesis in S. platensis; iso-migrastatin production was completely abolished in the ΔmgsF mutant SB11012 strain, whereas inactivation of 088D-orf7 yielded the SB11006 strain that exhibited no discernible change in iso-migrastatin biosynthesis. These data indicate that iso-migrastatin production is governed by the mgs cluster. Systematic gene inactivation allowed determination of the precise boundaries of the mgs cluster and the essentiality of the genes within the mgs cluster in iso-migrastatin production. The mgs cluster consists of 11 open reading frames that encode three acyltransferase-less type I polyketide synthases (MgsEFG), one discrete acyltransferase (MgsH), a type II thioesterase (MgsB), three post-PKS tailoring enzymes (MgsIJK), two glutarimide biosynthesis enzymes (MgsCD), and one regulatory protein (MgsA). A model for iso-migrastatin biosynthesis is proposed based on functional assignments derived from bioinformatics and is further supported by the results of in vivo gene inactivation experiments. PMID:19726666
Unexpected link between polyketide synthase and calcium carbonate biomineralization.
Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki
2015-01-01
Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent experiments demonstrate that the products of medaka PKS, most likely polyketides or their derivatives, act as nucleation facilitators in otolith mineralization. The generality of this novel PKS function is supported by the essential role of echinoderm PKS in calcareous skeleton formation together with the presence of PKSs in a much wider range of animals from coral to vertebrates. The present study first links PKS to biomineralization and provides a genetic cue for biogeochemistry of carbon and calcium cycles.
Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F
2011-08-02
A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.
Coppin, Evelyne; Silar, Philippe
2007-08-01
In the filamentous fungus Podospora anserina, many pigmentation mutations map to the median region of the complex locus '14', called segment '29'. The data presented in this paper show that segment 29 corresponds to a gene encoding a polyketide synthase, designated PaPKS1, and identifies two mutations that completely or partially abolish the activity of the PaPKS1 polypeptide. We present evidence that the P. anserina green pigment is a (DHN)-melanin. Using the powerful genetic system of PaPKS1 cloning, we demonstrate that in P. anserina trans-duplicated sequences are subject to the RIP process as previously demonstrated for the cis-duplicated regions.
Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin.
Zhou, Yongjun; Murphy, Annabel C; Samborskyy, Markiyan; Prediger, Patricia; Dias, Luiz Carlos; Leadlay, Peter F
2015-06-18
Conglobatin is an unusual C2-symmetrical macrodiolide from the bacterium Streptomyces conglobatus with promising antitumor activity. Insights into the genes and enzymes that govern both the assembly-line production of the conglobatin polyketide and its dimerization are essential to allow rational alterations to be made to the conglobatin structure. We have used a rapid, direct in vitro cloning method to obtain the entire cluster on a 41-kbp fragment, encoding a modular polyketide synthase assembly line. The cloned cluster directs conglobatin biosynthesis in a heterologous host strain. Using a model substrate to mimic the conglobatin monomer, we also show that the conglobatin cyclase/thioesterase acts iteratively, ligating two monomers head-to-tail then re-binding the dimer product and cyclizing it. Incubation of two different monomers with the cyclase produces hybrid dimers and trimers, providing the first evidence that conglobatin analogs may in future become accessible through engineering of the polyketide synthase. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The type I fatty acid and polyketide synthases: a tale of two megasynthases
Tsai, Shiou-Chuan
2008-01-01
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897
Clearing the skies over modular polyketide synthases.
Sherman, David H; Smith, Janet L
2006-09-19
Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.
Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes
Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A
2016-01-01
Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357
USDA-ARS?s Scientific Manuscript database
A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. ORF4, putatively encoding a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous recombinants failed to produce det...
USDA-ARS?s Scientific Manuscript database
A bioinformatic study was conducted to identify the putative genes in the biocontrol agent Trichoderma virens that encode for non-ribosomal peptide synthetases (NRPS). Gene expression analysis of 22 putative NRPSs and 4 NRPS/PKS (polyketide synthase) hybrid enzymes was conducted in the presence and...
Yu, T W; Bibb, M J; Revill, W P; Hopwood, D A
1994-01-01
A fragment of DNA was cloned from the Streptomyces griseus K-63 genome by using genes (act) for the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor as a probe. Sequencing of a 5.4-kb segment of the cloned DNA revealed a set of five gris open reading frames (ORFs), corresponding to the act PKS genes, in the following order: ORF1 for a ketosynthase, ORF2 for a chain length-determining factor, ORF3 for an acyl carrier protein, ORF5 for a ketoreductase, and ORF4 for a cyclase-dehydrase. Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS. These genes, encoding a PKS that is programmed differently from those for other aromatic PKSs so far available, will provide further valuable material for analysis of the programming mechanism by the construction and analysis of strains carrying hybrid PKS. Images PMID:8169211
Gay, Darren C; Wagner, Drew T; Meinke, Jessica L; Zogzas, Charles E; Gay, Glen R; Keatinge-Clay, Adrian T
2016-03-01
Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. Copyright © 2015 Elsevier Inc. All rights reserved.
Gay, Darren C.; Wagner, Drew T.; Meinke, Jessica L.; Zogzas, Charles E.; Gay, Glen R.; Keatinge-Clay, Adrian T.
2016-01-01
Polyketides such as the clinically-valuable antibacterial agent mupirocin are constructed by architecturally-sophisticated assembly lines known as trans-acyltransferase polyketide synthases. Organelle-sized megacomplexes composed of several copies of trans-acyltransferase polyketide synthase assembly lines have been observed by others through transmission electron microscopy to be located at the Bacillus subtilis plasma membrane, where the synthesis and export of the antibacterial polyketide bacillaene takes place. In this work we analyze ten crystal structures of trans-acyltransferase polyketide synthases ketosynthase domains, seven of which are reported here for the first time, to characterize a motif capable of zippering assembly lines into a megacomplex. While each of the three-helix LINKS (Laterally-INteracting Ketosynthase Sequence) motifs is observed to similarly dock with a spatially-reversed copy of itself through hydrophobic and ionic interactions, the amino acid sequences of this motif are not conserved. Such a code is appropriate for mediating homotypic contacts between assembly lines to ensure the ordered self-assembly of a noncovalent, yet tightly-knit, enzymatic network. LINKS-mediated lateral interactions would also have the effect of bolstering the vertical association of the polypeptides that comprise a polyketide synthase assembly line. PMID:26724270
Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.
2016-01-01
The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957
Polyketides, toxins and pigments in Penicillium marneffei.
Tam, Emily W T; Tsang, Chi-Ching; Lau, Susanna K P; Woo, Patrick C Y
2015-10-30
Penicillium marneffei (synonym: Talaromyces marneffei) is the most important pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS pandemic, particularly in China and other Southeast Asian countries, has led to the emergence of P. marneffei infection as an important AIDS-defining condition. Recently, we published the genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. This number is much higher than those of Coccidioides immitis and Histoplasma capsulatum, important pathogenic thermally dimorphic fungi in the Western world. Phylogenetically, these polyketide synthase genes were distributed evenly with their counterparts found in Aspergillus species and other fungi, suggesting that polyketide synthases in P. marneffei did not diverge from lineage-specific gene duplication through a recent expansion. Gene knockdown experiments and ultra-high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase genes were involved in the biosynthesis of various pigments in P. marneffei, including melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and ankaflavin, some of which were mycotoxins and virulence factors of the fungus.
Fahad, Ahmed al; Abood, Amira; Fisch, Katja M.; Osipow, Anna; Davison, Jack; Avramović, Marija; Butts, Craig P.; Piel, Jörn; Simpson, Thomas J.
2014-01-01
An FAD-dependent monooxygenase encoding gene (SorbC) was cloned from Penicillium chrysogenum E01-10/3 and expressed as a soluble protein in Escherichia coli. The enzyme efficiently performed the oxidative dearomatisation of sorbicillin and dihydrosorbicillin to give sorbicillinol and dihydrosorbicillinol respectively. Bioinformatic examination of the gene cluster surrounding SorbC indicated the presence of two polyketide synthase (PKS) encoding genes designated sorbA and sorbB. The gene sorbA-encodes a highly reducing iterative PKS while SorbB encodes a non-reducing iterative PKS which features a reductive release domain usually involved in the production of polyketide aldehydes. Using these observations and previously reported results from isotopic feeding experiments a new and simpler biosynthetic route to the sorbicillin class of secondary metabolites is proposed which is consistent with all reported experimental results. PMID:25580210
Engineer Novel Anticancer Bioagents
2009-10-01
Nonribosomally by Bacteria Gene depH is depicted as one of the three post- nonribosomal peptide synthetase (NRPS; dark red)/ polyketide synthase (PKS... polyketide synthase -NRPS pathway for FK228 biosynthesis in C. violaceum no. 968 (Cheng et al., 2007). This pathway would lead to the production of an imme...biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem. Biol. 11, 33–45
Zheng, Desen; Burr, Thomas J
2013-07-01
An Sfp-type phosphopantetheinyl transferase (PPTase) encoding gene F-avi5813 in Agrobacterium vitis F2/5 was found to be required for the induction of a tobacco hypersensitive response (HR) and grape necrosis. Sfp-type PPTases are post-translation modification enzymes that activate acyl-carry protein (ACP) domains in polyketide synthases (PKS) and peptidyl-carrier protein (PCP) domains of nonribosomal peptide synthases (NRPS). Mutagenesis of PKS and NRPS genes in A. vitis led to the identification of a PKS gene (F-avi4330) and NRPS gene (F-avi3342) that are both required for HR and necrosis. The gene immediately downstream of F-avi4330 (F-avi4329) encoding a predicted aminotransferase was also found to be required for HR and necrosis. Regulation of F-avi4330 and F-avi3342 by quorum-sensing genes avhR, aviR, and avsR and by a lysR-type regulator, lhnR, was investigated. It was determined that F-avi4330 expression is positively regulated by avhR, aviR, and lhnR and negatively regulated by avsR. F-avi3342 was found to be positively regulated by avhR, aviR, and avsR and negatively regulated by lhnR. Our results suggest that a putative hybrid peptide-polyketide metabolite synthesized by F-avi4330 and F-avi3342 is associated with induction of tobacco HR and grape necrosis. This is the first report that demonstrates that NRPS and PKS play essential roles in conferring the unique ability of A. vitis to elicit a non-host-specific HR and host-specific necrosis.
Tsai, Shiou-Chuan Sheryl
2018-06-20
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Omura, S; Ikeda, H; Ishikawa, J; Hanamoto, A; Takahashi, C; Shinose, M; Takahashi, Y; Horikawa, H; Nakazawa, H; Osonoe, T; Kikuchi, H; Shiba, T; Sakaki, Y; Hattori, M
2001-10-09
Streptomyces avermitilis is a soil bacterium that carries out not only a complex morphological differentiation but also the production of secondary metabolites, one of which, avermectin, is commercially important in human and veterinary medicine. The major interest in this genus Streptomyces is the diversity of its production of secondary metabolites as an industrial microorganism. A major factor in its prominence as a producer of the variety of secondary metabolites is its possession of several metabolic pathways for biosynthesis. Here we report sequence analysis of S. avermitilis, covering 99% of its genome. At least 8.7 million base pairs exist in the linear chromosome; this is the largest bacterial genome sequence, and it provides insights into the intrinsic diversity of the production of the secondary metabolites of Streptomyces. Twenty-five kinds of secondary metabolite gene clusters were found in the genome of S. avermitilis. Four of them are concerned with the biosyntheses of melanin pigments, in which two clusters encode tyrosinase and its cofactor, another two encode an ochronotic pigment derived from homogentiginic acid, and another polyketide-derived melanin. The gene clusters for carotenoid and siderophore biosyntheses are composed of seven and five genes, respectively. There are eight kinds of gene clusters for type-I polyketide compound biosyntheses, and two clusters are involved in the biosyntheses of type-II polyketide-derived compounds. Furthermore, a polyketide synthase that resembles phloroglucinol synthase was detected. Eight clusters are involved in the biosyntheses of peptide compounds that are synthesized by nonribosomal peptide synthetases. These secondary metabolite clusters are widely located in the genome but half of them are near both ends of the genome. The total length of these clusters occupies about 6.4% of the genome.
USDA-ARS?s Scientific Manuscript database
A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. The ORF4 CDS, putatively encoding a hybrid polyketide synthase/nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous, but not heterolog...
The Design of a Molecular Assembly Line Based on Biological Molecules
2003-06-01
and will demonstrate how one can construct a purely synthetic analogue of a polyketide synthase . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...scaffold in programmed assembly and molecular electronics. It is based on the principles of the biological molecules polyketide synthase and kinesin, and in...stereoselective centers) with any reasonable yield, not including the R&D and process development time. Figure 1.6 shows how a polyketide synthase
Otsuka, Miyuki; Ichinose, Koji; Fujii, Isao; Ebizuka, Yutaka
2004-01-01
Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain on modules 2 and 4 and the presence of longer interdomain regions more than 200 amino acids in length on each module. Involvement of the PKS genes in NCZ biosynthesis was demonstrated by heterologous expression of the cluster in Streptomyces coelicolor CH999, which produced the apparent NCZ biosynthetic intermediates dechloroneocarzillin A and dechloroneocarzilin B. Disruption of ORF5 resulted in a failure of NCZ production, providing further evidence that the cluster is essential for NCZ biosynthesis. Mechanistic consideration of NCZ formation indicates the iterative use of at least one module of the PKS, which subsequently releases its product by decarboxylation to generate an NCZ skeleton, possibly catalyzed by a type II thioesterase encoded by ORF7. This is a novel type I PKS system of bacterial origin for the biosynthesis of a reduced polyketide chain. Additionally, the protein encoded by ORF3, located upstream of the PKS genes, closely resembles the FADH2-dependent halogenases involved in the formation of halometabolites. The ORF3 protein could be responsible for the halogenation of NCZs, presenting a unique example of a halogenase involved in the biosynthesis of an aliphatic halometabolite. PMID:15328113
Engineering modular polyketide synthases for production of biofuels and industrial chemicals.
Cai, Wenlong; Zhang, Wenjun
2018-04-01
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie
2012-11-01
ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.
Preparation of a Burkholderia Mallei Vaccine
2000-01-01
together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which... on to apoptosis; hence, virulent mycobacteria will survive in those macrophages. To assess any similarity between Mycobacterium and Burkholderia...the presence of an open reading frame encoding for a type I polyketide synthase from Streptomyces species (data not 13 shown). We are currently
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Hiroyuki; Kondo, Shin; Kato, Ryohei
2007-07-01
An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α =more » β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.« less
Producing alpha-olefins using polyketide synthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.
2018-01-02
The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael
2010-12-06
The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene ismore » a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.« less
Throckmorton, Kurt; Lim, Fang Yun; Kontoyiannis, Dimitrios P.; Zheng, Weifa; Keller, Nancy P.
2016-01-01
Summary Filamentous fungi are renowned for the production of bioactive secondary metabolites. Typically, one distinct metabolite is generated from a specific secondary metabolite cluster. Here, we characterize the newly described trypacidin (tpc) cluster in the opportunistic human pathogen Aspergillus fumigatus. We find that this cluster as well as the previously characterized endocrocin (enc) cluster both contribute to the production of the spore metabolite endocrocin. Whereas trypacidin is eliminated when only tpc cluster genes are deleted, endocrocin production is only eliminated when both the tpc and enc non-reducing polyketide synthase-encoding genes, tpcC and encA, respectively, are deleted. EncC, an anthrone oxidase, converts the product released from EncA to endocrocin as a final product. In contrast, endocrocin synthesis by the tpc cluster likely results from incomplete catalysis by TpcK (a putative decarboxylase), as its deletion results in a nearly 10-fold increase in endocrocin production. We suggest endocrocin is likely a shunt product in all related non-reducing polyketide synthase clusters containing homologues of TpcK and TpcL (a putative anthrone oxidase), e.g. geodin and monodictyphenone. This finding represents an unusual example of two physically discrete secondary metabolite clusters generating the same natural product in one fungal species by distinct routes. PMID:26242966
Lessons from 455 Fusarium polyketide synthases
USDA-ARS?s Scientific Manuscript database
In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...
Matharu, A L; Cox, R J; Crosby, J; Byrom, K J; Simpson, T J
1998-12-01
It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.
Gemperlein, Katja; Zipf, Gregor; Bernauer, Hubert S; Müller, Rolf; Wenzel, Silke C
2016-01-01
Long-chain polyunsaturated fatty acids (LC-PUFAs) can be produced de novo via polyketide synthase-like enzymes known as PUFA synthases, which are encoded by pfa biosynthetic gene clusters originally discovered from marine microorganisms. Recently similar gene clusters were detected and characterized in terrestrial myxobacteria revealing several striking differences. As the identified myxobacterial producers are difficult to handle genetically and grow very slowly we aimed to establish heterologous expression platforms for myxobacterial PUFA synthases. Here we report the heterologous expression of the pfa gene cluster from Aetherobacter fasciculatus (SBSr002) in the phylogenetically distant model host bacteria Escherichia coli and Pseudomonas putida. The latter host turned out to be the more promising PUFA producer revealing higher production rates of n-6 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). After several rounds of genetic engineering of expression plasmids combined with metabolic engineering of P. putida, DHA production yields were eventually increased more than threefold. Additionally, we applied synthetic biology approaches to redesign and construct artificial versions of the A. fasciculatus pfa gene cluster, which to the best of our knowledge represents the first example of a polyketide-like biosynthetic gene cluster modulated and synthesized for P. putida. Combination with the engineering efforts described above led to a further increase in LC-PUFA production yields. The established production platform based on synthetic DNA now sets the stage for flexible engineering of the complex PUFA synthase. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Aromatic polyketide synthases from 127 Fusarium: pas de deux for chemical diversity
USDA-ARS?s Scientific Manuscript database
Fusarium species collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including mycotoxins, of great concern. Many Fusarium NPs are derived from polyketide synthases (PKSs), large enzymes that catalyze the condensation of simple carboxylic acids. To gain ...
Xu, Xinxin; Liu, Ling; Zhang, Fan; Wang, Wenzhao; Li, Jinyang; Guo, Liangdong; Che, Yongsheng; Liu, Gang
2014-01-24
The diphenyl ether pestheic acid was isolated from the endophytic fungus Pestalotiopsis fici, which is proposed to be the biosynthetic precursor of the unique chloropupukeananes. The pestheic acid biosynthetic gene (pta) cluster was identified in the fungus through genome scanning. Sequence analysis revealed that this gene cluster encodes a nonreducing polyketide synthase, a number of modification enzymes, and three regulators. Gene disruption and intermediate analysis demonstrated that the biosynthesis proceeded through formation of the polyketide backbone, cyclization of a polyketo acid to a benzophenone, chlorination, and formation of the diphenyl ether skeleton through oxidation and hydrolyzation. A dihydrogeodin oxidase gene, ptaE, was essential for diphenyl ether formation, and ptaM encoded a flavin-dependent halogenase catalyzing chlorination in the biosynthesis. Identification of the pta cluster laid the foundation to decipher the genetic and biochemical mechanisms involved in the pathway. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard
2017-04-01
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
Throckmorton, Kurt; Wiemann, Philipp; Keller, Nancy P.
2015-01-01
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi. PMID:26378577
Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum▿†
Regueira, Torsten Bak; Kildegaard, Kanchana Rueksomtawin; Hansen, Bjarne Gram; Mortensen, Uffe H.; Hertweck, Christian; Nielsen, Jens
2011-01-01
Mycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene cluster in the genome of Penicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway of P. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering. PMID:21398490
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1
Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram
2016-01-01
Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and their relative substrate selectivities. PMID:27268960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas; ...
2017-08-23
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
Cortés, Jesús; Velasco, Javier; Foster, Graham; Blackaby, Andrew P; Rudd, Brian A M; Wilkinson, Barrie
2002-06-01
The soluble, diffusible red-brown pigment produced by a Saccharopolyspora erythraea "red variant" has been shown to contain glycosylated and polymerized derivatives of 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). Flaviolin is a spontaneous oxidation product of 1,3,6,8-tetrahydroxynaphthalene (THN), which is biosynthesized in bacteria by a chalcone synthase-like (CS-like) type III polyketide synthase (PKS). A fragment of the gene responsible for THN biosynthesis in S. erythraea E_8-7 was amplified by polymerase chain reaction (PCR) using degenerate primers based on conserved regions of known plant CS and bacterial CS-like genes. From the isolated fragment, a suicide vector was prepared, which was subsequently used to disrupt the red-brown pigment-producing (rpp) locus in S. erythraea, generating a mutant that displayed an albino phenotype. Chromosomal DNA from the albino mutant was subsequently used in a vector-recapture protocol to isolate a plasmid that contained an insert spanning the entire rpp locus. Sequencing of the insert revealed that the disrupted open reading frame (ORF) encodes a CS-like protein displaying 69% sequence identity to the rppA gene of Streptomyces griseus. The S. griseus rppA gene encodes RppA, the first characterized bacterial CS-like protein, which is sufficient in vitro for the synthesis of THN from malonyl-CoA. The rppA disruption mutant and rppA sequence provided a means by which to address the mechanism of diffusible pigment biosynthesis, as well as to investigate any link between this and the modulation of erythromycin A titre, which has been observed for S. erythraea variants.
Mallika, V; Sivakumar, K C; Jaichand, S; Soniya, E V
2010-07-13
Type III Polyketide synthases (PKS) are family of proteins considered to have significant roles in the biosynthesis of various polyketides in plants, fungi and bacteria. As these proteins shows positive effects to human health, more researches are going on regarding this particular protein. Developing a tool to identify the probability of sequence being a type III polyketide synthase will minimize the time consumption and manpower efforts. In this approach, we have designed and implemented PKSIIIpred, a high performance prediction server for type III PKS where the classifier is Support Vector Machines (SVMs). Based on the limited training dataset, the tool efficiently predicts the type III PKS superfamily of proteins with high sensitivity and specificity. The PKSIIIpred is available at http://type3pks.in/prediction/. We expect that this tool may serve as a useful resource for type III PKS researchers. Currently work is being progressed for further betterment of prediction accuracy by including more sequence features in the training dataset.
Bruegger, Joel; Haushalter, Bob; Vagstad, Anna; Shakya, Gaurav; Mih, Nathan; Townsend, Craig A.; Burkart, Michael D.; Tsai, Shiou-Chuan
2013-01-01
SUMMARY Protein•protein interactions, which often involve interactions between an acyl carrier protein (ACP) and its partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal non-reducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ a mechanism-based crosslinker to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP•KS interactions, and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediate key interactions with the negatively-charged ACP surface. Such complementary/matching contact pairs can serve as “adapter surfaces” for future efforts to generate new polyketides using NR-PKSs. PMID:23993461
Evolution of polyketide synthesis in a Dothideomycete forest pathogen
USDA-ARS?s Scientific Manuscript database
Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in or...
Allison, Kim; Robbins, Thomas; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Khosla, Chaitan; DeMirci, Hasan; McPhillips, Scott E.; Hollenbeck, Michael; Soltis, Michael; Cohen, Aina E.
2017-01-01
The crystal structure of the trans-acyltrans-ferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed. PMID:28832129
Phylogenomic and Domain Analysis of Iterative Polyketide Synthases in Aspergillus Species
Lin, Shu-Hsi; Yoshimoto, Miwa; Lyu, Ping-Chiang; Tang, Chuan-Yi; Arita, Masanori
2012-01-01
Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK. PMID:22844193
Zhang, Xiaolin; Chen, Zhi; Li, Meng; Wen, Ying; Song, Yuan; Li, Jilun
2006-10-01
Ivermectin, 22, 23-dihydroavermectin B1, is commercially important in human, veterinary medicine, and pesticides. It is currently synthesized by chemical reduction of the double bond between C22 and C23 of avermectins B1, which are a mixture of B1a (>80%) and B1b (<20%) produced by fermentation of Streptomyces avermitilis. The cost of ivermectin is much higher than that of avermectins B1 owing to the necessity of region-specific hydrogenation at C22-C23 of avermectins B1 with rhodium chloride as the catalyst for producing ivermectin. Here we report that ivermectin can be produced directly by fermentation of recombinant strains constructed through targeted genetic engineering of the avermectin polyketide synthase (PKS) in S. avermitilis Olm73-12, which produces only avermectins B and not avermectins A and oligomycin. The DNA region encoding the dehydratase (DH) and ketoreductase (KR) domains of module 2 from the avermectin PKS in S. avermitilis Olm73-12 was replaced by the DNA fragment encoding the DH, enoylreductase, and KR domains from module 4 of the pikromycin PKS of Streptomyces venezuelae ATCC 15439 using a gene replacement vector pXL211. Twenty-seven of mutants were found to produce a small amount of 22, 23-dihydroavermectin B1a and avermectin B1a and B2a by high performance liquid chromatography and liquid chromatography mass spectrometry analysis. This study might provide a route to the low-cost production of ivermectin by fermentation.
Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R
1992-05-01
A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.
Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases
Bond, Carly; Tang, Yi; Li, Li
2016-01-01
Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. PMID:26850128
Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases.
Bond, Carly; Tang, Yi; Li, Li
2016-04-01
Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs. Copyright © 2016 Elsevier Inc. All rights reserved.
Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey
2016-05-10
The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Chiho; Quantum Beam Science Directorate, Japan Atomic Energy Agency; Taura, Futoshi
Polyketide synthase-1 from C. sativa has been crystallized. The crystal diffracted to 1.55 Å resolution with sufficient quality for further structure determination. Polyketide synthase-1 (PKS-1) is a novel type III polyketide synthase that catalyzes the biosynthesis of hexanoyl triacetic acid lactone in Cannabis sativa (Mexican strain). PKS-1 was overproduced in Escherichia coli, purified and finally crystallized in two different space groups. The crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M calcium acetate and 20%(w/v) polyethylene glycol 3350 diffracted to 1.65 Å resolution and belonged to space group P1, with unit-cell parameters a = 54.3, b =more » 59.3, c = 62.6 Å, α = 69, β = 81, γ = 80°. Another crystal obtained in 0.1 M HEPES buffer pH 7.5 containing 0.2 M sodium chloride and 20%(w/v) polyethylene glycol 3350 diffracted to 1.55 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.3, b = 110, c = 130 Å. These data will enable us to determine the crystal structure of PKS-1.« less
Eustáquio, Alessandra S; McGlinchey, Ryan P; Liu, Yuan; Hazzard, Christopher; Beer, Laura L; Florova, Galina; Alhamadsheh, Mamoun M; Lechner, Anna; Kale, Andrew J; Kobayashi, Yoshihisa; Reynolds, Kevin A; Moore, Bradley S
2009-07-28
Polyketides are among the major classes of bioactive natural products used to treat microbial infections, cancer, and other diseases. Here we describe a pathway to chloroethylmalonyl-CoA as a polyketide synthase building block in the biosynthesis of salinosporamide A, a marine microbial metabolite whose chlorine atom is crucial for potent proteasome inhibition and anticancer activity. S-adenosyl-L-methionine (SAM) is converted to 5'-chloro-5'-deoxyadenosine (5'-ClDA) in a reaction catalyzed by a SAM-dependent chlorinase as previously reported. By using a combination of gene deletions, biochemical analyses, and chemical complementation experiments with putative intermediates, we now provide evidence that 5'-ClDA is converted to chloroethylmalonyl-CoA in a 7-step route via the penultimate intermediate 4-chlorocrotonyl-CoA. Because halogenation often increases the bioactivity of drugs, the availability of a halogenated polyketide building block may be useful in molecular engineering approaches toward polyketide scaffolds.
Ishikawa, Fumihiro; Sugimoto, Hiroyasu; Kakeya, Hideaki
2016-11-17
Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl-CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl-CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self-malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self-acylation. This lack of self-malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein-protein interaction between the fatty acid and polyketide synthases in the Adm assembly line. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inhibition Kinetics and Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase†,‡
Korman, Tyler Paz; Tan, Yuhong; Wong, Justin; Luo, Rui; Tsai, Shiou-Chuan
2008-01-01
Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5–10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns. PMID:18205400
Inhibition Kinetics And Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korman, T.P.; Tan, Y.-H.; Wong, J.
Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5-10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP{sup +} and the inhibitor emodin were solved with the wild type and P94L mutant ofmore » actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns.« less
Wang, Hao; Fewer, David P; Holm, Liisa; Rouhiainen, Leo; Sivonen, Kaarina
2014-06-24
Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.
NASA Astrophysics Data System (ADS)
Ray, Lauren; Valentic, Timothy R.; Miyazawa, Takeshi; Withall, David M.; Song, Lijiang; Milligan, Jacob C.; Osada, Hiroyuki; Takahashi, Shunji; Tsai, Shiou-Chuan; Challis, Gregory L.
2016-12-01
Type I modular polyketide synthases assemble diverse bioactive natural products. Such multienzymes typically use malonyl and methylmalonyl-CoA building blocks for polyketide chain assembly. However, in several cases more exotic alkylmalonyl-CoA extender units are also known to be incorporated. In all examples studied to date, such unusual extender units are biosynthesized via reductive carboxylation of α, β-unsaturated thioesters catalysed by crotonyl-CoA reductase/carboxylase (CCRC) homologues. Here we show using a chemically-synthesized deuterium-labelled mechanistic probe, and heterologous gene expression experiments that the unusual alkylmalonyl-CoA extender units incorporated into the stambomycin family of polyketide antibiotics are assembled by direct carboxylation of medium chain acyl-CoA thioesters. X-ray crystal structures of the unusual β-subunit of the acyl-CoA carboxylase (YCC) responsible for this reaction, alone and in complex with hexanoyl-CoA, reveal the molecular basis for substrate recognition, inspiring the development of methodology for polyketide bio-orthogonal tagging via incorporation of 6-azidohexanoic acid and 8-nonynoic acid into novel stambomycin analogues.
Chizzali, Cornelia; Gaid, Mariam M.; Belkheir, Asma K.; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger
2012-01-01
Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple ‘Golden Delicious’, nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple ‘Holsteiner Cox,’ heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple ‘Cox Orange,’ expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells. PMID:22158676
Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong
2015-01-01
Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395
Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong
2015-01-27
In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.
Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E
2012-07-31
Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.
Molecular architectures of benzoic acid-specific type III polyketide synthases
Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.
2017-01-01
Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980
Xu, Yuquan; Zhou, Tong; Zhang, Shuwei; Espinosa-Artiles, Patricia; Wang, Luoyi; Zhang, Wei; Lin, Min; Gunatilaka, A A Leslie; Zhan, Jixun; Molnár, István
2014-08-26
Combinatorial biosynthesis aspires to exploit the promiscuity of microbial anabolic pathways to engineer the synthesis of new chemical entities. Fungal benzenediol lactone (BDL) polyketides are important pharmacophores with wide-ranging bioactivities, including heat shock response and immune system modulatory effects. Their biosynthesis on a pair of sequentially acting iterative polyketide synthases (iPKSs) offers a test case for the modularization of secondary metabolic pathways into "build-couple-pair" combinatorial synthetic schemes. Expression of random pairs of iPKS subunits from four BDL model systems in a yeast heterologous host created a diverse library of BDL congeners, including a polyketide with an unnatural skeleton and heat shock response-inducing activity. Pairwise heterocombinations of the iPKS subunits also helped to illuminate the innate, idiosyncratic programming of these enzymes. Even in combinatorial contexts, these biosynthetic programs remained largely unchanged, so that the iPKSs built their cognate biosynthons, coupled these building blocks into chimeric polyketide intermediates, and catalyzed intramolecular pairing to release macrocycles or α-pyrones. However, some heterocombinations also provoked stuttering, i.e., the relaxation of iPKSs chain length control to assemble larger homologous products. The success of such a plug and play approach to biosynthesize novel chemical diversity bodes well for bioprospecting unnatural polyketides for drug discovery.
Janevska, Slavica; Arndt, Birgit; Niehaus, Eva-Maria; Burkhardt, Immo; Rösler, Sarah M.; Brock, Nelson L.; Humpf, Hans-Ulrich; Dickschat, Jeroen S.; Tudzynski, Bettina
2016-01-01
The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B–F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity. PMID:27856636
Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris
2016-01-01
Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515
Type III Polyketide Synthases: Discovery, Characterization, and Engineering
ERIC Educational Resources Information Center
Pitel, Sheryl Beth Rubin
2009-01-01
The polyketides are a diverse group of natural products with important applications in medicine and industry. Industry, especially the pharmaceutical industry, is under pressure to deliver "greener" chemical syntheses that are less environmentally damaging and incorporate renewable resources. There exists potential to replace current…
Chen, Longfei; Li, Yingying; Zhang, Qian; Wang, Dan; Akhberdi, Oren; Wei, Dongsheng; Pan, Jiao; Zhu, Xudong
2017-02-01
Pestalotiollide B, an analog of dibenzodioxocinones which are inhibitors of cholesterol ester transfer proteins, is produced by Pestalotiopsis microspora NK17. To increase the production of pestalotiollide B, we attempted to eliminate competing polyketide products by deleting the genes responsible for their biosynthesis. We successfully deleted 41 out of 48 putative polyketide synthases (PKSs) in the genome of NK17. Nine of the 41 PKS deleted strains had significant increased production of pestalotiollide B (P < 0.05). For instance, deletion of pks35, led to an increase of pestalotiollide B by 887%. We inferred that these nine PKSs possibly lead to branch pathways that compete for precursors with pestalotiollide B, or that convert the product. Deletion of some other PKS genes such as pks8 led to a significant decrease of pestalotiollide B, suggesting they are responsible for its biosynthesis. Our data demonstrated that improvement of pestalotiollide B production can be achieved by eliminating competing polyketides.
Producing a trimethylpentanoic acid using hybrid polyketide synthases
Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D
2014-10-07
The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.
Origin of the Allyl Group in FK506 Biosynthesis*
Goranovič, Dušan; Kosec, Gregor; Mrak, Peter; Fujs, Štefan; Horvat, Jaka; Kuščer, Enej; Kopitar, Gregor; Petković, Hrvoje
2010-01-01
FK506 (tacrolimus) is a secondary metabolite with a potent immunosuppressive activity, currently registered for use as immunosuppressant after organ transplantation. FK506 and FK520 are biogenetically related natural products that are synthesized by combined polyketide synthase/nonribosomal peptide synthetase systems. The entire gene cluster for biosynthesis of FK520 from Streptomyces hygroscopicus var. ascomyceticus has been cloned and sequenced. On the other hand, the FK506 gene cluster from Streptomyces sp. MA6548 (ATCC55098) was sequenced only partially, and it was reasonable to expect that additional genes would be required for the provision of substrate supply. Here we report the identification of a previously unknown region of the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 containing genes encoding the provision of unusual building blocks for FK506 biosynthesis as well as a regulatory gene. Among others, we identified a group of genes encoding biosynthesis of the extender unit that forms the allyl group at carbon 21 of FK506. Interestingly, we have identified a small independent diketide synthase system involved in the biosynthesis of the allyl group. Inactivation of one of these genes, encoding an unusual ketosynthase domain, resulted in an FK506 nonproducing strain, and the production was restored when a synthetic analog of the allylmalonyl-CoA extender unit was added to the cultivation medium. Based on our results, we propose a biosynthetic pathway for the provision of an unusual five-carbon extender unit, which is carried out by a novel diketide synthase complex. PMID:20194504
Hornung, Claudia; Poehlein, Anja; Haack, Frederike S.; Schmidt, Martina; Dierking, Katja; Pohlen, Andrea; Schulenburg, Hinrich; Blokesch, Melanie; Plener, Laure; Jung, Kirsten; Bonge, Andreas; Krohn-Molt, Ines; Utpatel, Christian; Timmermann, Gabriele; Spieck, Eva; Pommerening-Röser, Andreas; Bode, Edna; Bode, Helge B.; Daniel, Rolf; Schmeisser, Christel; Streit, Wolfgang R.
2013-01-01
Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes. PMID:23405110
Gaffoor, Iffa; Brown, Daren W.; Plattner, Ron; Proctor, Robert H.; Qi, Weihong; Trail, Frances
2005-01-01
Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism. PMID:16278459
ClusterMine360: a database of microbial PKS/NRPS biosynthesis
Conway, Kyle R.; Boddy, Christopher N.
2013-01-01
ClusterMine360 (http://www.clustermine360.ca/) is a database of microbial polyketide and non-ribosomal peptide gene clusters. It takes advantage of crowd-sourcing by allowing members of the community to make contributions while automation is used to help achieve high data consistency and quality. The database currently has >200 gene clusters from >185 compound families. It also features a unique sequence repository containing >10 000 polyketide synthase/non-ribosomal peptide synthetase domains. The sequences are filterable and downloadable as individual or multiple sequence FASTA files. We are confident that this database will be a useful resource for members of the polyketide synthases/non-ribosomal peptide synthetases research community, enabling them to keep up with the growing number of sequenced gene clusters and rapidly mine these clusters for functional information. PMID:23104377
Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.
Shulse, Christine N; Allen, Eric E
2011-01-01
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.
Nikolouli, Katerina; Mossialos, Dimitris
2012-08-01
Non-ribosomal peptide synthetases (NRPS) and type-I polyketide synthases (PKS-I) are multimodular enzymes involved in biosynthesis of oligopeptide and polyketide secondary metabolites produced by microorganisms such as bacteria and fungi. New findings regarding the mechanisms underlying NRPS and PKS-I evolution illustrate how microorganisms expand their metabolic potential. During the last decade rapid development of bioinformatics tools as well as improved sequencing and annotation of microbial genomes led to discovery of novel bioactive compounds synthesized by NRPS and PKS-I through genome-mining. Taking advantage of these technological developments metagenomics is a fast growing research field which directly studies microbial genomes or specific gene groups and their products. Discovery of novel bioactive compounds synthesized by NRPS and PKS-I will certainly be accelerated through metagenomics, allowing the exploitation of so far untapped microbial resources in biotechnology and medicine.
Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower.
Ruocco, Michelina; Baroncelli, Riccardo; Cacciola, Santa Olga; Pane, Catello; Monti, Maurilia Maria; Firrao, Giuseppe; Vergara, Mariarosaria; Magnano di San Lio, Gaetano; Vannacci, Giovanni; Scala, Felice
2018-01-06
The early phases of Diaporthe helianthi pathogenesis on sunflower are characterized by the production of phytotoxins that may play a role in host colonisation. In previous studies, phytotoxins of a polyketidic nature were isolated and purified from culture filtrates of virulent strains of D. helianthi isolated from sunflower. A highly aggressive isolate (7/96) from France contained a gene fragment of a putative nonaketide synthase (lovB) which was conserved in a virulent D. helianthi population. In order to investigate the role of polyketide synthases in D. helianthi 7/96, a draft genome of this isolate was examined. We were able to find and phylogenetically analyse 40 genes putatively coding for polyketide synthases (PKSs). Analysis of their domains revealed that most PKS genes of D. helianthi are reducing PKSs, whereas only eight lacked reducing domains. Most of the identified PKSs have orthologs shown to be virulence factors or genetic determinants for toxin production in other pathogenic fungi. One of the genes (DhPKS1) corresponded to the previously cloned D. helianthi lovB gene fragment and clustered with a nonribosomal peptide synthetase (NRPS) -PKS hybrid/lovastatin nonaketide like A. nidulans LovB. We used DhPKS1 as a case study and carried out its disruption through Agrobacterium-mediated transformation in the isolate 7/96. D. helianthi DhPKS1 deleted mutants were less virulent to sunflower compared to the wild type, indicating a role for this gene in the pathogenesis of the fungus. The PKS sequences analysed and reported here constitute a new genomic resource that will be useful for further research on the biology, ecology and evolution of D. helianthi and generally of fungal plant pathogens.
Kohli, Gurjeet S; John, Uwe; Figueroa, Rosa I; Rhodes, Lesley L; Harwood, D Tim; Groth, Marco; Bolch, Christopher J S; Murray, Shauna A
2015-05-28
Marine microbial protists, in particular, dinoflagellates, produce polyketide toxins with ecosystem-wide and human health impacts. Species of Gambierdiscus produce the polyether ladder compounds ciguatoxins and maitotoxins, which can lead to ciguatera fish poisoning, a serious human illness associated with reef fish consumption. Genes associated with the biosynthesis of polyether ladder compounds are yet to be elucidated, however, stable isotope feeding studies of such compounds consistently support their polyketide origin indicating that polyketide synthases are involved in their biosynthesis. Here, we report the toxicity, genome size, gene content and transcriptome of Gambierdiscus australes and G. belizeanus. G. australes produced maitotoxin-1 and maitotoxin-3, while G. belizeanus produced maitotoxin-3, for which cell extracts were toxic to mice by IP injection (LD50 = 3.8 mg kg(-1)). The gene catalogues comprised 83,353 and 84,870 unique contigs, with genome sizes of 32.5 ± 3.7 Gbp and 35 ± 0.88 Gbp, respectively, and are amongst the most comprehensive yet reported from a dinoflagellate. We found three hundred and six genes involved in polyketide biosynthesis, including one hundred and ninety-two ketoacyl synthase transcripts, which formed five unique phylogenetic clusters. Two clusters were unique to these maitotoxin-producing dinoflagellate species, suggesting that they may be associated with maitotoxin biosynthesis. This work represents a significant step forward in our understanding of the genetic basis of polyketide production in dinoflagellates, in particular, species responsible for ciguatera fish poisoning.
Genetic Insights Into Pyralomicin Biosynthesis in Nonomuraea spiralis IMC A-0156
Flatt, Patricia M.; Wu, Xiumei; Perry, Steven; Mahmud, Taifo
2013-01-01
The biosynthetic gene cluster for the pyralomicin antibiotics has been cloned and sequenced from Nonomuraea spiralis IMC A-0156. The 41-kb gene cluster contains 27 ORFs predicted to encode all of the functions for pyralomicin biosynthesis. This includes non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) required for the formation of the benzopyranopyrrole core unit, as well as a suite of tailoring enzymes (e.g., four halogenases, an O-methyltransferase, and an N-glycosyltransferase) necessary for further modifications of the core structure. The N-glycosyltransferase is predicted to transfer either glucose or a pseudosugar (cyclitol) to the aglycone. A gene cassette encoding C7-cyclitol biosynthetic enzymes was identified upstream of the benzopyranopyrrole-specific ORFs. Targeted disruption of the gene encoding the N-glycosyltransferase, prlH, abolished pyralomicin production and recombinant expression of PrlA confirms the activity of this enzyme as a sugar phosphate cyclase (SPC) involved in the formation of the C7-cyclitol moiety. PMID:23607523
Ma, Ming; Kwong, Thomas; Lim, Si-Kyu; Ju, Jianhua; Lohman, Jeremy R.; Shen, Ben
2013-01-01
The iso-migrastatin (iso-MGS) biosynthetic gene cluster from Streptomyces platensis NRRL 18993 consists of 11 genes, featuring an acyltransferase (AT)-less type I polyketide synthase (PKS) and three tailoring enzymes MgsIJK. Systematic inactivation of mgsIJK in S. platensis enabled us to (i) identify two nascent products (10 and 13) of the iso-MGS AT-less type I PKS, establishing an unprecedented novel feature for AT-less type I PKSs, and (ii) account for the formation of all known post-PKS biosynthetic intermediates (10-17) generated by the three tailoring enzymes MgsIJK, which possessed significant substrate promiscuities. PMID:23394593
Schindler, Daniel; Nowrousian, Minou
2014-07-01
Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology. Copyright © 2014 Elsevier Inc. All rights reserved.
Recognition of Acyl Carrier Proteins by Ketoreductases in Assembly Line Polyketide Synthases
Ostrowski, Matthew P.; Cane, David E.; Khosla, Chaitan
2016-01-01
Ketoreductases (KRs) are the most widespread tailoring domains found in individual modules of assembly line polyketide synthases (PKSs), and are responsible for controlling the configurations of both the α-methyl and β-hydroxyl stereogenic centers in the growing polyketide chain. Because they recognize substrates that are covalently bound to acyl carrier proteins (ACPs) within the same PKS module, we sought to quantify the extent to which protein-protein recognition contributes to the turnover of these oxidoreductive enzymes using stand-alone domains from the 6-deoxyerythronolide B synthase (DEBS). Reduced 2-methyl-3-hydroxyacyl-ACP substrates derived from two enantiomeric acyl chains and four distinct ACP domains were synthesized and presented to four distinct KR domains. Two KRs, from DEBS modules 2 and 5, displayed little preference for oxidation of substrates tethered to their cognate ACP domains over those attached to the other ACP domains tested. In contrast, the KR from DEBS module 1 showed a ca. 10-50-fold preference for substrate attached to its native ACP domain, whereas the KR from DEBS module 6 actually displayed a ca. 10-fold preference for the ACP from DEBS module 5. Our findings suggest that recognition of the ACP by a KR domain is unlikely to affect the rate of native assembly line polyketide biosynthesis. In some cases, however, unfavorable KR-ACP interactions may suppress the rate of substrate processing when KR domains are swapped to construct hybrid PKS modules. PMID:27118242
In Vitro Biosynthesis of Unnatural Enterocin and Wailupemycin Polyketides¥
Kalaitzis, John A.; Cheng, Qian; Thomas, Paul M.; Kelleher, Neil L.; Moore, Bradley S.
2009-01-01
Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways. PMID:19215142
In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides.
Kalaitzis, John A; Cheng, Qian; Thomas, Paul M; Kelleher, Neil L; Moore, Bradley S
2009-03-27
Nature has evolved finely tuned strategies to synthesize rare and complex natural products such as the enterocin family of polyketides from the marine bacterium Streptomyces maritimus. Herein we report the directed ex vivo multienzyme syntheses of 24 unnatural 5-deoxyenterocin and wailupemycin F and G analogues, 18 of which are new. We have generated molecular diversity by priming the enterocin biosynthesis enzymes with unnatural substrates and have illustrated further the uniqueness of this type II polyketide synthase by way of exploiting its unusual starter unit biosynthesis pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
Alvin, A; Kalaitzis, J A; Sasia, B; Neilan, B A
2016-05-01
To initiate a genetic and bioactivity-based screening programme of culturable endophytes to identify micro-organisms capable of producing bioactive polyketides and peptides. Fungal endophytes were isolated from flowers, leaves and roots of Rhoeo spathacea, revealing a community consisting of Colletotrichum sp., Fusarium sp., Guignardia sp., Phomopsis sp., Phoma sp. and Microdochium sp. Genetic screening showed that all isolates had polyketide synthase (PKS) genes and most had nonribosomal peptide synthetase (NRPS) genes. Ethyl acetate extracts of the fungal isolates exhibited antiproliferative activity against at least one of the seven bacterial and mycobacterial test strains. Nuclear Magnetic Resonance -guided fractionation of the crude extract from a Fusarium sp. strain which exhibited strong antiproliferative activity against Mycobacterium tuberculosis resulted in the isolation of the polyketide javanicin. This compound was active against Myco. tuberculosis (MIC = 25 μg ml(-1)) and Mycobacterium phlei (MIC = 50 μg ml(-1)). The medicinal plant R. spathacea hosts a variety of fungal endophytes capable of producing antibacterial and antimycobacterial compounds. There is a positive correlation between the presence of PKS and/or NRPS encoding genes in endophytes and the bioactivity of their respective organic extracts. This is the first report on the fungal endophytic diversity of R. spathacea, and the isolation of an antimycobacterial compound from the plant which has been traditionally used for the treatment of tuberculosis symptoms. © 2016 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
Greule, Anja; Intra, Bungonsiri; Flemming, Stephan; Rommel, Marcel G E; Panbangred, Watanalai; Bechthold, Andreas
2016-11-23
We report the draft genome sequence of Actinokineospora bangkokensis 44EHW T , the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain.
Zheng, Desen; Burr, Thomas J
2016-02-01
Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.
Thuan, Nguyen Huy; Dhakal, Dipesh; Pokhrel, Anaya Raj; Chu, Luan Luong; Van Pham, Thi Thuy; Shrestha, Anil; Sohng, Jae Kyung
2018-05-01
Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.
Cheng, Yi-Qiang; Yang, Min; Matter, Andrea M
2007-06-01
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.
Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium.
Brown, Daren W; Proctor, Robert H
2016-04-01
Species of the fungus Fusarium collectively cause disease on almost all crop plants and produce numerous natural products (NPs), including some of the mycotoxins of greatest concern to agriculture. Many Fusarium NPs are derived from polyketide synthases (PKSs), large multi-domain enzymes that catalyze sequential condensation of simple carboxylic acids to form polyketides. To gain insight into the biosynthesis of polyketide-derived NPs in Fusarium, we retrieved 488 PKS gene sequences from genome sequences of 31 species of the fungus. In addition to these apparently functional PKS genes, the genomes collectively included 81 pseudogenized PKS genes. Phylogenetic analysis resolved the PKS genes into 67 clades, and based on multiple lines of evidence, we propose that homologs in each clade are responsible for synthesis of a polyketide that is distinct from those synthesized by PKSs in other clades. The presence and absence of PKS genes among the species examined indicated marked differences in distribution of PKS homologs. Comparisons of Fusarium PKS genes and genes flanking them to those from other Ascomycetes provided evidence that Fusarium has the genetic potential to synthesize multiple NPs that are the same or similar to those reported in other fungi, but that have not yet been reported in Fusarium. The results also highlight ways in which such analyses can help guide identification of novel Fusarium NPs and differences in NP biosynthetic capabilities that exist among fungi. Published by Elsevier Inc.
2015-01-01
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro “domain swapped” NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis. PMID:24815013
A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis
NASA Astrophysics Data System (ADS)
Cohen, Douglas R.; Townsend, Craig A.
2018-02-01
Dynemicin A is a member of a subfamily of enediyne antitumour antibiotics characterized by a 10-membered carbocycle fused to an anthraquinone, both of polyketide origin. Sequencing of the dynemicin biosynthetic gene cluster in Micromonospora chersina previously identified an enediyne polyketide synthase (PKS), but no anthraquinone PKS, suggesting gene(s) for biosynthesis of the latter were distant from the core dynemicin cluster. To identify these gene(s), we sequenced and analysed the genome of M. chersina. Sequencing produced a short list of putative PKS candidates, yet CRISPR-Cas9 mutants of each locus retained dynemicin production. Subsequently, deletion of two cytochromes P450 in the dynemicin cluster suggested that the dynemicin enediyne PKS, DynE8, may biosynthesize the anthraquinone. Together with 18O-labelling studies, we now present evidence that DynE8 produces the core scaffolds of both the enediyne and anthraquinone, and provide a working model to account for their formation from the programmed octaketide of the enediyne PKS.
Stewart, Charles; Vickery, Christopher R; Burkart, Michael D; Noel, Joseph P
2013-06-01
Type III plant polyketide synthases (PKSs) biosynthesize a dazzling array of polyphenolic products that serve important roles in both plant and human health. Recent advances in structural characterization of these enzymes and new tools from the field of chemical biology have facilitated exquisite probing of plant PKS iterative catalysis. These tools have also been used to exploit type III PKSs as biocatalysts to generate new chemicals. Going forward, chemical, structural and biochemical analyses will provide an atomic resolution understanding of plant PKSs and will serve as a springboard for bioengineering and scalable production of valuable molecules in vitro, by fermentation and in planta. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).
Yahyaa, Mosaab; Ali, Samah; Davidovich-Rikanati, Rachel; Ibdah, Muhammad; Shachtier, Alona; Eyal, Yoram; Lewinsohn, Efraim; Ibdah, Mwafaq
2017-08-01
Apple (Malus x domestica Brokh.) is a widely cultivated deciduous tree species of significant economic importance. Apple leaves accumulate high levels of flavonoids and dihydrochalcones, and their formation is dependent on enzymes of the chalcone synthase family. Three CHS genes were cloned from apple leaves and expressed in Escherichia coli. The encoded recombinant enzymes were purified and functionally characterized. In-vitro activity assays indicated that MdCHS1, MdCHS2 and MdCHS3 code for proteins exhibiting polyketide synthase activity that accepted either p-dihydrocoumaroyl-CoA, p-coumaroyl-CoA, or cinnamoyl-CoA as starter CoA substrates in the presence of malonyl-CoA, leading to production of phloretin, naringenin chalcone, and pinocembrin chalcone. MdCHS3 coded a chalcone-dihydrochalcone synthase enzyme with narrower substrate specificity than the previous ones. The apparent Km values of MdCHS3 for p-dihydrocoumaryl-CoA and p-coumaryl-CoA were both 5.0 μM. Expression analyses of MdCHS genes varied according to tissue type. MdCHS1, MdCHS2 and MdCHS3 expression levels were associated with the levels of phloretin accumulate in the respective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels
Zargar, Amin; Bailey, Constance B.; Haushalter, Robert W.; ...
2017-04-17
Advances in retooling microorganisms have enabled bioproduction of ‘drop-in’ biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gasturbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), ‘drop-in’ biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical propertiesmore » (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel.« less
Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.
Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D
2017-06-01
Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.
Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian
2015-11-06
Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Copyright © 2015, American Association for the Advancement of Science.
Stalk cell differentiation without polyketides in the cellular slime mold.
Sato, Yukie G; Suarez, Teresa; Saito, Tamao
2016-07-01
Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides.
2013-01-01
Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303
Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia
2015-01-01
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology. © 2015 Elsevier Ltd. All rights reserved.
Novel Artificial Natural Products Against Breast Cancer Through Combinatorial Biosynthesis
2002-07-01
compounds normally produced by a certain strain. Our investigations on the discovery of novel natural metabolites using type II polyketide synthase ...limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations. THIS TECHNICAL REPORT HAS... polyketides remain the central group of natural products in this research area, since this class of natural products form one of the largest and most
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Sun, Wei-Wen; Bruno, Kenneth S.
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes or non-ribosomal peptide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. More interestingly, further experiments revealedmore » that the aspulvinone E produced by two different genes accumulates in different fungal compartments. And this spatial control of aspulvinone E production is likely to be regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is inserted in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. The study also identified one trans-prenyltransferase AbpB which is capable of prenylating two different substrates aspulvinones and butyrolactones. In total, our study shows the first example in which the locally distribution of the same natural product could lead to its incorporation into different SM pathways.« less
Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?
Eichholz, Karsten; Beszteri, Bánk; John, Uwe
2012-01-01
Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807
Pang, Xiuhua; Aigle, Bertrand; Girardet, Jean-Michel; Mangenot, Sophie; Pernodet, Jean-Luc; Decaris, Bernard; Leblond, Pierre
2004-01-01
Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the β-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production. PMID:14742212
2015-01-01
The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively. Lasiodiplodin production was reconstituted in the heterologous host by co-expressing an O-methyltransferase also encoded in the lasiodiplodin cluster, while a glutathione-S-transferase was found not to be necessary for heterologous production. Clarification of the biogenesis of known resorcylide congeners in the heterologous host helped to disentangle the roles that biosynthetic irregularities and chemical interconversions play in generating chemical diversity. Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed “stuttering” by fungal iPKSs. The close global and domain-level sequence similarities of the orthologous BDL synthases across different structural subclasses implicate repeated horizontal gene transfers and/or cluster losses in different fungal lineages. The absence of straightforward correlations between enzyme sequences and product structural features (the size of the macrocycle, the conformation of the exocyclic methyl group, or the extent of reduction by the hrPKS) suggest that BDL structural variety is the result of a select few mutations in key active site cavity positions. PMID:24597618
Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W
2018-02-20
The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.
Díaz-Sánchez, Violeta; Avalos, Javier; Limón, M Carmen
2012-10-01
Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus Fusarium fujikuroi. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other Fusarium strains, we have identified the F. fujikuroi orthologue, called fusA. The participation of fusA in fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the fusA mRNA levels in the cell. Illumination of the cultures results in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the fusA gene exhibit no external phenotypic alterations, including morphology and conidiation, except for a lack of the characteristic yellow and/or orange pigmentation of fusarins. Moreover, the fusA mutants are less efficient than the wild type at degrading cellophane on agar cultures, a trait associated with pathogenesis functions in Fusarium oxysporum. The fusA mutants, however, are not affected in their capacities to grow on plant tissues.
Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina.
Elshobary, Mostafa E; Osman, Mohamed E; Abo-Shady, Atef M; Komatsu, Emy; Perreault, Hélène; Sorensen, John; Piercey-Normore, Michele D
2016-01-01
Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina. © 2016 by The Mycological Society of America.
The enzymology of polyether biosynthesis.
Liu, Tiangang; Cane, David E; Deng, Zixin
2009-01-01
Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.
Toblerols: Cyclopropanol-Containing Polyketide Modulators of Antibiosis in Methylobacteria.
Ueoka, Reiko; Bortfeld-Miller, Miriam; Morinaka, Brandon I; Vorholt, Julia A; Piel, Jörn
2018-01-22
Trans-AT polyketide synthases (PKSs) are a family of biosynthetically versatile modular type I PKSs that generate bioactive polyketides of impressive structural diversity. In this study, we detected, in the genome of several bacteria a cryptic, architecturally unusual trans-AT PKS gene cluster which eluded automated PKS prediction. Genomic mining of one of these strains, the model methylotroph Methylobacterium extorquens AM1, revealed unique epoxide- and cyclopropanol-containing polyketides named toblerols. Relative and absolute stereochemistry were determined by NMR experiments, chemical derivatization, and the comparison of CD data between the derivatized natural product and a synthesized model compound. Biosynthetic data suggest that the cyclopropanol moiety is generated by carbon-carbon shortening of a more extended precursor. Surprisingly, a knock-out strain impaired in polyketide production showed strong inhibitory activity against other methylobacteria in contrast to the wild-type producer. The activity was inhibited by complementation with toblerols, thus suggesting that these compounds modulate an as-yet unknown methylobacterial antibiotic. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nocardiopsis species: a potential source of bioactive compounds.
Bennur, T; Ravi Kumar, A; Zinjarde, S S; Javdekar, V
2016-01-01
Members of the genus Nocardiopsis are an ecologically versatile and biotechnologically important group of Actinomycetes. Most of the isolates are halotolerant or halophilic and they prevail in soils, marine environments or hypersaline locations. To aid their survival under these conditions, they mainly produce extremozymes, compatible solutes, surfactants and bioactive compounds. The current review details the bioactive compounds obtained for this genus. Important antimicrobial agents obtained from this genus include polyketides, phenzines, quinoline alkaloids, terphenyls, proteins, thiopeptides and amines. Polyketides and peptides displaying potent anticancer activities are also significant. Tumour promoting agents, P-glycoprotein (P-gp) inhibitors, immunomodulators and protein kinase inhibitors are other relevant products obtained from Nocardiopsis species. Structurally, polyketides (synthesized by polyketide synthases) and peptides (made by nonribosomal peptide synthetases or cyclodipeptide synthases) are important compounds. Considered here are also toxins, anti photoaging and adipogenic agents produced by this genus. The gene clusters mediating the synthesis of bioactive compounds have been described. Commercially available products (Apoptolidins and K-252a) derived from this genus have also been described. This review highlights the significance of a single genus in producing an assortment of compounds with varied biological activities. On account of these features, the members of this genus have established a place for themselves and are of considerable value in producing compounds with profound bio-medical applications. © 2015 The Society for Applied Microbiology.
Bunet, Robert; Riclea, Ramona; Laureti, Luisa; Hôtel, Laurence; Paris, Cédric; Girardet, Jean-Michel; Spiteller, Dieter; Dickschat, Jeroen S.; Leblond, Pierre; Aigle, Bertrand
2014-01-01
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones. PMID:24498152
Fungi on the Skin: Dermatophytes and Malassezia
White, Theodore C.; Findley, Keisha; Dawson, Thomas L.; Scheynius, Annika; Boekhout, Teun; Cuomo, Christina A.; Xu, Jun; Saunders, Charles W.
2014-01-01
Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms. PMID:25085959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Antonia; Knox, Benjamin P.; Bruno, Kenneth S.
2014-06-02
Ochratoxin A (OTA) is a potent mycotoxin produced by Aspergillus and Penicillium species and is a common contaminant of a wide variety of food commodities, with Aspergillus carbonarius being the main producer of OTA contamination in grapes and wine. The molecular structure of OTA is composed of a dihydroisocoumarin ring linked to phenylalanine and, as shown in different producing fungal species, a polyketide synthase (PKS) is a component of the OTA biosynthetic pathway. Similar to observations in other filamentous ascomycetes, the genome sequence of A. carbonarius contains a large number of genes predicted to encode PKSs. In this work amore » pks gene identified within the putative OTA cluster of A. carbonarius, designated as AcOTApks, was inactivated and the resulting mutant strain was unable to produce OTA, confirming the role of AcOTApks in this biosynthetic pathway. AcOTApks protein is characteristic of the highly reduced (HR)-PKS family, and also contains a putative methyltransferase domain likely responsible for the addition of the methyl group to the OTA polyketide structure. AcOTApks is different from the ACpks protein that we previously described which showed an expression profile compatible with OTA production. We performed phylogenetic analyses of the β-ketosynthase and acyl-transferase domains of the OTA PKSs which had been identified and characterized in different OTA producing fungal species. The phylogenetic results were similar for both the two domains analyzed and showed that OTA PKS of A. carbonarius, Aspergillus niger, and Aspergillus ochraceus clustered in a monophyletic group with 100% bootstrap support suggesting a common origin, while the other OTA PKSs analyzed were phylogenetically distant. A qRT-PCR assay monitored AcOTApks expression during fungal growth and concomitant production of OTA by A. carbonarius in synthetic grape medium. A clear correlation between the expression profile of AcOTApks and kinetics of OTA production was observed with AcOTApks which reached its maximum level of transcription before OTA accumulation in mycelium reached its highest level, confirming the fact that gene transcription always precedes phenotypic production.« less
Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.
2014-01-01
Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302
Ochratoxin A production by Penicillium thymicola.
Nguyen, Hai D T; McMullin, David R; Ponomareva, Ekaterina; Riley, Robert; Pomraning, Kyle R; Baker, Scott E; Seifert, Keith A
2016-08-01
Ochratoxin A (OTA) is a mycotoxin produced by some Aspergillus and Penicillium species that grow on economically important agricultural crops and food products. OTA is classified as Group 2B carcinogen and is potently nephrotoxic, which is the basis for its regulation in some jurisdictions. Using high resolution mass spectroscopy, OTA and ochratoxin B (OTB) were detected in liquid culture extracts of Penicillium thymicola DAOMC 180753 isolated from Canadian cheddar cheese. The genome of this strain was sequenced, assembled and annotated to probe for putative genes involved in OTA biosynthesis. Known OTA biosynthetic genes from Penicillium verrucosum or Penicillium nordicum, two related Penicillium species that produce OTA, were not found in P. thymicola. However, a gene cluster containing a polyketide synthase (PKS) and PKS-nonribosomal peptide synthase (NRPS) hybrid encoding genes were located in the P. thymicola genome that showed a high degree of similarity to OTA biosynthetic enzymes of Aspergillus carbonarius and Aspergillus ochraceus. This is the first report of ochratoxin from P. thymicola and a new record of the species in Canada. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi
2016-07-01
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Jahn, Linda; Schafhauser, Thomas; Wibberg, Daniel; Rückert, Christian; Winkler, Anika; Kulik, Andreas; Weber, Tilmann; Flor, Liane; van Pée, Karl-Heinz; Kalinowski, Jörn; Ludwig-Müller, Jutta; Wohlleben, Wolfgang
2017-09-10
Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Tiangang; Lin, Xin; Zhou, Xiufen; Deng, Zixin; Cane, David E.
2008-01-01
Summary The polyketide backbone of the polyether ionophore antibiotic nanchangmycin (1) is assembled by a modular polyketide synthase in Streptomyces nanchangensis NS3226. The ACP-bound polyketide is thought to undergo a cascade of oxidative cyclizations to generate the characteristic polyether. Deletion of the glycosyl transferase gene nanG5 resulted in accumulation of the corresponding nanchangmycin aglycone (6). The discrete thioesterase NanE exhibited a nearly 17-fold preference for hydrolysis of 4, the N-acetylcysteamine (SNAC) thioester of nanchangmycin, over 7, the corresponding SNAC derivative of the aglycone, consistent with NanE-catalyzed hydrolysis of ACP-bound nanchangmycin being the final step in the biosynthetic pathway. Site directed mutagenesis established that Ser96, His261, and Asp120, the proposed components of the NanE catalytic triad, were all essential for thioesterase activity, while Trp97 was shown to influence the preference for polyether over polyketide substrates. PMID:18482697
Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann
2015-01-01
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803
Barajas, Jesus F.; Shakya, Gaurav; Moreno, Gabriel; Rivera, Heriberto; Jackson, David R.; Topper, Caitlyn L.; Vagstad, Anna L.; La Clair, James J.; Townsend, Craig A.; Burkart, Michael D.; Tsai, Shiou-Chuan
2017-01-01
Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of “atom replacement” mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4′-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4′-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein–substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide “atom-replaced” mimetic in a NR-PKS active site that could prove general for other PKS domains. PMID:28484029
Paolo, William F; Dadachova, Ekaterina; Mandal, Piyali; Casadevall, Arturo; Szaniszlo, Paul J; Nosanchuk, Joshua D
2006-01-01
Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear. PMID:16784529
Challis, Gregory L.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.
2012-01-01
There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism. PMID:23028578
2013-01-01
Background Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmacutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. Results A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and idenified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specfic compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some other factors may affect polyketide synthesis that include activities of the individual catalytic domains and release of the product from the synthase of PksCT. Conclusions An efficient P. pastoris expression system of fungal polyketides was successfully constructed. It produced a high production of 6-MSA and holds potential for future industrial application of 6-MSA and other fungal polyketides. PMID:24011431
Gao, Limei; Cai, Menghao; Shen, Wei; Xiao, Siwei; Zhou, Xiangshan; Zhang, Yuanxing
2013-09-08
Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmaceutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a variety of heterologous proteins. In this work, we aim to develop a P. pastoris based in vivo fungal polyketide production system for first time and evaluate its feasibility for future industrial application. A recombinant P. pastoris GS115-NpgA-ATX with Aspergillus nidulans phosphopantetheinyl transferase (PPtase) gene npgA and Aspergillus terrus 6-methylsalicylic acid (6-MSA) synthase (6-MSAS) gene atX was constructed. A specific compound was isolated and identified as 6-MSA by HPLC, LC-MS and NMR. Transcription of both genes were detected. In 5-L bioreactor, the GS115-NpgA-ATX grew well and produced 6-MSA quickly until reached a high value of 2.2 g/L by methanol induction for 20 hours. Thereafter, the cells turned to death ascribing to high concentration of antimicrobial 6-MSA. The distribution of 6-MSA changed that during early and late induction phase it existed more in supernatant while during intermediate stage it mainly located intracellular. Different from 6-MSA production strain, recombinant M. purpureus pksCT expression strains for citrinin intermediate production, no matter PksCT located in cytoplasm or in peroxisomes, did not produce any specific compound. However, both npgA and pksCT transcripted effectively in cells and western blot analysis proved the expression of PPtase. Then the PPTase was expressed and purified, marked by fluorescent probes, and reacted with purified ACP domain and its mutant ACPm of PksCT. Fluoresence was only observed in ACP but not ACPm, indicating that the PPTase worked well with ACP to make it bioactive holo-ACP. Thus, some other factors may affect polyketide synthesis that include activities of the individual catalytic domains and release of the product from the synthase of PksCT. An efficient P. pastoris expression system of fungal polyketides was successfully constructed. It produced a high production of 6-MSA and holds potential for future industrial application of 6-MSA and other fungal polyketides.
Kalaitzis, John A; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C; Moore, Bradley S
2011-11-15
Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete 'Streptomyces maritimus'. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here, we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kalaitzis, John A.; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C.; Moore, Bradley S.
2011-01-01
Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete “Streptomyces maritimus”. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. PMID:21531566
Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L
2016-09-13
Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.
Cook, Daniel; Rimando, Agnes M; Clemente, Thomas E; Schröder, Joachim; Dayan, Franck E; Nanayakkara, N P Dhammika; Pan, Zhiqiang; Noonan, Brice P; Fishbein, Mark; Abe, Ikuro; Duke, Stephen O; Baerson, Scott R
2010-03-01
Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8',11',14'-pentadecatrienyl]resorcinol) derived from an unusual 16:3Delta(9,12,15) fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols.
Cook, Daniel; Rimando, Agnes M.; Clemente, Thomas E.; Schröder, Joachim; Dayan, Franck E.; Nanayakkara, N.P. Dhammika; Pan, Zhiqiang; Noonan, Brice P.; Fishbein, Mark; Abe, Ikuro; Duke, Stephen O.; Baerson, Scott R.
2010-01-01
Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8′,11′,14′-pentadecatrienyl]resorcinol) derived from an unusual 16:3Δ9,12,15 fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols. PMID:20348430
Fungi on the skin: dermatophytes and Malassezia.
White, Theodore C; Findley, Keisha; Dawson, Thomas L; Scheynius, Annika; Boekhout, Teun; Cuomo, Christina A; Xu, Jun; Saunders, Charles W
2014-08-01
Several human skin diseases and disorders are associated with two groups of fungi, the dermatophytes and Malassezia. Although these skin-related problems are not generally life threatening, they are among the most common diseases and disorders of mankind. These fungi are phylogenetically divergent, with the dermatophytes within the Ascomycota and Malassezia within Basidiomycota. Genome analysis indicates that the adaptations to the skin environment are different in these two groups of fungi. Malassezia are dependent on host lipids and secrete lipases and phospholipases that likely release host fatty acids. The dermatophytes encode multiple enzymes with potential roles in modulating host interactions: polyketide synthases, nonribosomal peptide synthetases, LysM, proteases, kinases, and pseudokinases. These two fungal groups have maximized their interactions with the host using two very different mechanisms. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
A singular enzymatic megacomplex from Bacillus subtilis.
Straight, Paul D; Fischbach, Michael A; Walsh, Christopher T; Rudner, David Z; Kolter, Roberto
2007-01-02
Nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and hybrid NRPS/PKS are of particular interest, because they produce numerous therapeutic agents, have great potential for engineering novel compounds, and are the largest enzymes known. The predicted masses of known enzymatic assembly lines can reach almost 5 megadaltons, dwarfing even the ribosome (approximately 2.6 megadaltons). Despite their uniqueness and importance, little is known about the organization of these enzymes within the native producer cells. Here we report that an 80-kb gene cluster, which occupies approximately 2% of the Bacillus subtilis genome, encodes the subunits of approximately 2.5 megadalton active hybrid NRPS/PKS. Many copies of the NRPS/PKS assemble into a single organelle-like membrane-associated complex of tens to hundreds of megadaltons. Such an enzymatic megacomplex is unprecedented in bacterial subcellular organization and has important implications for engineering novel NRPS/PKSs.
2006-05-26
are four polyketide synthase (PKS) and nonribos- omal pepeide synthase (NRPS) clusters involved in the production and regulation of secondary...specific genomic regions, we derived molecular explanations for previously-known metabolic differences, discovered potentially new ones , and found that...Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium
Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements
2010-01-22
in Materials and Methods. b NRPS, nonribosomal peptide synthase ; PKS, polyketide synthase ; RND, resistance nodulation-division like pump. Losada et al...genomics, genome erosion, bacterial virulence. ª The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology...creativecommons.org/licenses/by-nc/ 2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original
Huang, Tingting; Wang, Yemin; Yin, Jun; Du, Yanhua; Tao, Meifeng; Xu, Jing; Chen, Wenqing; Lin, Shuangjun; Deng, Zixin
2011-01-01
Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo. PMID:21454714
NASA Astrophysics Data System (ADS)
Rao, H. C. Yashavantha; Rakshith, Devaraju; Gurudatt, D. M.; Satish, Sreedharamurthy
2016-06-01
Advanced approach in probing for polyketide antimicrobials requires novel genomics and chromatographic strategies. An endophytic strain CLA68 was isolated from the root of Combretum latifolium Blume (Combretaceae) collected from the Western Ghats of Southern India. Strain CLA68 was then identified as Nocardiopsis prasina by its characteristic culture morphology and analysis of 16S rRNA gene sequence. Biosynthetic polyketide synthase genes were investigated using two pairs of degenerate primers. Ethyl acetate extract of CLA68 exhibited broad spectrum activity against a panel of test human pathogens. PKS type-I gene detection and chromatographic strategy yielded a robust polyketide antimicrobial compound which identified as nocapyrone E. Minimum inhibitory concentration of the purified compound against MRSA and other human pathogens ranged between 25 and 100 μg/ml. The present work highlights the utility of N. prasina CLA68 as potential source for antimicrobial polyketide nocapyrone E which could help to combat multidrug-resistant pathogens. This study demonstrates feasibility of PKS type-I gene-based molecular approach and chemical investigation by chromatographic approach is the best method for prediction and rapid discovery of novel polyketides from endosymbiotic actinomycetes. The sequence data of this endosymbiotic actinomycete is deposited in GenBank under the accession no. KP269077.
Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution.
Rui, Zhe; Zhang, Wenjun
2016-01-01
Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery.
Nara, Ayako; Hashimoto, Takuya; Komatsu, Mamoru; Nishiyama, Makoto; Kuzuyama, Tomohisa; Ikeda, Haruo
2017-05-01
Bafilomycins A 1 , C 1 and B 1 (setamycin) produced by Kitasatospora setae KM-6054 belong to the plecomacrolide family, which exhibit antibacterial, antifungal, antineoplastic and immunosuppressive activities. An analysis of gene clusters from K. setae KM-6054 governing the biosynthesis of bafilomycins revealed that it contains five large open reading frames (ORFs) encoding the multifunctional polypeptides of bafilomycin polyketide synthases (PKSs). These clustered PKS genes, which are responsible for bafilomycin biosynthesis, together encode 11 homologous sets of enzyme activities, each catalyzing a specific round of polyketide chain elongation. The region contains an additional 13 ORFs spanning a distance of 73 287 bp, some of which encode polypeptides governing other key steps in bafilomycin biosynthesis. Five ORFs, BfmB, BfmC, BfmD, BfmE and BfmF, were involved in the formation of methoxymalonyl-acyl carrier protein (ACP). Two possible regulatory genes, bfmR and bfmH, were found downstream of the above genes. A gene-knockout analysis revealed that BfmR was only a transcriptional regulator for the transcription of bafilomycin biosynthetic genes. Two genes, bfmI and bfmJ, were found downstream of bfmH. An analysis of these gene-disruption mutants in addition to an enzymatic analysis of BfmI and BfmJ revealed that BfmJ activated fumarate and BfmI functioned as a catalyst to form a fumaryl ester at the C21 hydroxyl residue of bafilomycin A 1 . A comparative analysis of bafilomycin gene clusters in K. setae KM-6054, Streptomyces lohii JCM 14114 and Streptomyces griseus DSM 2608 revealed that each ORF of both gene clusters in two Streptomyces strains were quite similar to each other. However, each ORF of gene cluster in K. setae KM-6054 was of lower similarity to that of corresponding ORF in the two Streptomyces species.
ClusterCAD: a computational platform for type I modular polyketide synthase design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eng, Clara H.; Backman, Tyler W H; Bailey, Constance B.
Here, we present ClusterCAD, a web-based toolkit designed to leverage the collinear structure and deterministic logic of type I modular polyketide synthases (PKSs) for synthetic biology applications. The unique organization of these megasynthases, combined with the diversity of their catalytic domain building blocks, has fueled an interest in harnessing the biosynthetic potential of PKSs for the microbial production of both novel natural product analogs and industrially relevant small molecules. However, a limited theoretical understanding of the determinants of PKS fold and function poses a substantial barrier to the design of active variants, and identifying strategies to reliably construct functional PKSmore » chimeras remains an active area of research. In this work, we formalize a paradigm for the design of PKS chimeras and introduce ClusterCAD as a computational platform to streamline and simplify the process of designing experiments to test strategies for engineering PKS variants. ClusterCAD provides chemical structures with stereochemistry for the intermediates generated by each PKS module, as well as sequence- and structure-based search tools that allow users to identify modules based either on amino acid sequence or on the chemical structure of the cognate polyketide intermediate. ClusterCAD can be accessed at https://clustercad.jbei.org and at http://clustercad.igb.uci.edu.« less
Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, Andrew; Poust, Sean; Rond, Tristan de
2015-10-26
Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design–build–test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS’ first extensionmore » module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to “debug” PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.« less
ClusterCAD: a computational platform for type I modular polyketide synthase design
Eng, Clara H.; Backman, Tyler W H; Bailey, Constance B.; ...
2017-10-11
Here, we present ClusterCAD, a web-based toolkit designed to leverage the collinear structure and deterministic logic of type I modular polyketide synthases (PKSs) for synthetic biology applications. The unique organization of these megasynthases, combined with the diversity of their catalytic domain building blocks, has fueled an interest in harnessing the biosynthetic potential of PKSs for the microbial production of both novel natural product analogs and industrially relevant small molecules. However, a limited theoretical understanding of the determinants of PKS fold and function poses a substantial barrier to the design of active variants, and identifying strategies to reliably construct functional PKSmore » chimeras remains an active area of research. In this work, we formalize a paradigm for the design of PKS chimeras and introduce ClusterCAD as a computational platform to streamline and simplify the process of designing experiments to test strategies for engineering PKS variants. ClusterCAD provides chemical structures with stereochemistry for the intermediates generated by each PKS module, as well as sequence- and structure-based search tools that allow users to identify modules based either on amino acid sequence or on the chemical structure of the cognate polyketide intermediate. ClusterCAD can be accessed at https://clustercad.jbei.org and at http://clustercad.igb.uci.edu.« less
Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans
Chizzali, Cornelia
2012-01-01
Summary Biphenyls and dibenzofurans are the phytoalexins of the Pyrinae, a subtribe of the plant family Rosaceae. The Pyrinae correspond to the long-recognized Maloideae. Economically valuable species of the Pyrinae are apples and pears. Biphenyls and dibenzofurans are formed de novo in response to infection by bacterial and fungal pathogens. The inducible defense compounds were also produced in cell suspension cultures after treatment with biotic and abiotic elicitors. The antimicrobial activity of the phytoalexins was demonstrated. To date, 10 biphenyls and 17 dibenzofurans were isolated from 14 of the 30 Pyrinae genera. The most widely distributed compounds are the biphenyl aucuparin and the dibenzofuran γ-cotonefuran. The biosynthesis of the two classes of defense compounds is not well understood, despite the importance of the fruit crops. More recent studies have revealed simultaneous accumulation of biphenyls and dibenzofurans, suggesting sequential, rather than the previously proposed parallel, biosynthetic pathways. Elicitor-treated cell cultures of Sorbus aucuparia served as a model system for studying phytoalexin metabolism. The key enzyme that forms the carbon skeleton is biphenyl synthase. The starter substrate for this type-III polyketide synthase is benzoyl-CoA. In apples, biphenyl synthase is encoded by a gene family, members of which are differentially regulated. Metabolism of the phytoalexins may provide new tools for designing disease control strategies for fruit trees of the Pyrinae subtribe. PMID:22563359
Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; ...
2015-09-23
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. Themore » nuclear genome of C. tobin is small (59 Mb), compact (~40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. In conclusion, the Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. Themore » nuclear genome of C. tobin is small (59 Mb), compact (~40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. In conclusion, the Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.« less
Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling
2016-01-01
Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Javidpour, Pouya; Korman, Tyler Paz; Shakya, Gaurav; Tsai, Shiou-Chuan
2011-01-01
Type II polyketides include antibiotics such as tetracycline, and chemotherapeutics such as daunorubicin. Type II polyketides are biosynthesized by the type II polyketide synthase (PKS) that consists of 5 – 10 stand-alone domains. In many type II PKSs, the type II ketoreductase (KR) specifically reduce the C9-carbonyl group. How the type II KR achieves such a high regio-specificity, and the nature of stereo-specificity, are not well understood. Sequence alignment of KRs led to a hypothesis that a well-conserved 94-XGG-96 motif may be involved in controlling the stereochemistry. The stereo-specificity of single, double and triple mutant combinations of P94L, G95D and G96D were analyzed in vitro and in vivo for the actinorhodin KR (actKR). The P94L mutation is sufficient to change the stereospecificity of actKR. Binary and ternary crystal structures of both wild type and P94L actKR were solved. Together with assay results, docking simulations, and co-crystal structures, a model for stereochemical control is presented herein that elucidates how type II polyketides are introduced into the substrate pocket such that the C9-carbonyl can be reduced with high regio- and stereo-specificities. The molecular features of actKR important for regio- and stereo-specificities can potentially be applied to biosynthesize new polyketides via protein engineering that rationally controls polyketide ketoreduction. PMID:21506596
Klaus, Maja; Ostrowski, Matthew P.; Austerjost, Jonas; Robbins, Thomas; Lowry, Brian; Cane, David E.; Khosla, Chaitan
2016-01-01
The potential for recombining intact polyketide synthase (PKS) modules has been extensively explored. Both enzyme-substrate and protein-protein interactions influence chimeric PKS activity, but their relative contributions are unclear. We now address this issue by studying a library of 11 bimodular and 8 trimodular chimeric PKSs harboring modules from the erythromycin, rifamycin, and rapamycin synthases. Although many chimeras yielded detectable products, nearly all had specific activities below 10% of the reference natural PKSs. Analysis of selected bimodular chimeras, each with the same upstream module, revealed that turnover correlated with the efficiency of intermodular chain translocation. Mutation of the acyl carrier protein (ACP) domain of the upstream module in one chimera at a residue predicted to influence ketosynthase-ACP recognition led to improved turnover. In contrast, replacement of the ketoreductase domain of the upstream module by a paralog that produced the enantiomeric ACP-bound diketide caused no changes in processing rates for each of six heterologous downstream modules compared with those of the native diketide. Taken together, these results demonstrate that protein-protein interactions play a larger role than enzyme-substrate recognition in the evolution or design of catalytically efficient chimeric PKSs. PMID:27246853
Dong, Xu; Bailey, Christopher D.; Williams, Christopher; Crosby, John; Simpson, Thomas J.
2016-01-01
Polyketides are secondary metabolites which display both valuable pharmaceutical and agrochemical properties. Biosynthesis is performed by polyketide synthases (PKSs), and the acyl carrier protein (ACP), a small acidic protein, that transports the growing polyketide chain and is essential for activity. Here we report the synthesis of two aromatic probes and a linear octaketide mimic that have been tethered to actinorhodin ACP. These experiments were aimed at probing the ACP's capacity to sequester a non-polar versus a phenolic aromatic ring (that more closely mimics a polyketide intermediate) as well as investigations with extended polyketide chain surrogates. The binding of these mimics has been assessed using high-resolution solution NMR studies and high-resolution structure determination. These results reveal that surprisingly a PKS ACP is able to bind and sequester a bulky non-polar substrate containing an aromatic ring in a fatty acid type binding mode, but the introduction of even a small degree of polarity favours a markedly different association at a surface site that is distinct from that employed by fatty acid ACPs. PMID:28936328
McDowall, Kenneth J.; Thamchaipenet, Arinthip; Hunter, Iain S.
1999-01-01
Physiological studies have shown that Streptomyces rimosus produces the polyketide antibiotic oxytetracycline abundantly when its mycelial growth is limited by phosphate starvation. We show here that transcripts originating from the promoter for one of the biosynthetic genes, otcC (encoding anhydrotetracycline oxygenase), and from a promoter for the divergent otcX genes peak in abundance at the onset of antibiotic production induced by phosphate starvation, indicating that the synthesis of oxytetracycline is controlled, at least in part, at the level of transcription. Furthermore, analysis of the sequences of the promoters for otcC, otcX, and the polyketide synthase (otcY) genes revealed tandem repeats having significant similarity to the DNA-binding sites of ActII-Orf4 and DnrI, which are Streptomyces antibiotic regulatory proteins (SARPs) related to the OmpR family of transcription activators. Together, the above results suggest that oxytetracycline production by S. rimosus requires a SARP-like transcription factor that is either produced or activated or both under conditions of low phosphate concentrations. We also provide evidence consistent with the otrA resistance gene being cotranscribed with otcC as part of a polycistronic message, suggesting a simple mechanism of coordinate regulation which ensures that resistance to the antibiotic increases in proportion to production. PMID:10322002
Cheng, Yi-Qiang; Tang, Gong-Li; Shen, Ben
2002-01-01
Leinamycin (LNM), produced by Streptomyces atroolivaceus, is a thiazole-containing hybrid peptide-polyketide natural product structurally characterized with an unprecedented 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a 18-member macrolactam ring. LNM exhibits a broad spectrum of antimicrobial and antitumor activities, most significantly against tumors that are resistant to clinically important anticancer drugs, resulting from its DNA cleavage activity in the presence of a reducing agent. Using a PCR approach to clone a thiazole-forming nonribosomal peptide synthetase (NRPS) as a probe, we localized a 172-kb DNA region from S. atroolivaceus S-140 that harbors the lnm biosynthetic gene cluster. Sequence analysis of 11-kb DNA revealed three genes, lnmG, lnmH, and lnmI, and the deduced product of lnmI is characterized by domains characteristic to both NRPS and polyketide synthase (PKS). The involvement of the cloned gene cluster in LNM biosynthesis was confirmed by disrupting the lnmI gene to generate non-LNM-producing mutants and by characterizing LnmI as a hybrid NRPS-PKS megasynthetase, the NRPS module of which specifies for l-Cys and catalyzes thiazole formation. These results have now set the stage for full investigations of LNM biosynthesis and for generation of novel LNM analogs by combinatorial biosynthesis. PMID:12446651
Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus
USDA-ARS?s Scientific Manuscript database
Xenorhabdus and Photorhabdus species produce many specialized metabolites derived from non-ribosomal synthetase (NRPS) or polyketide synthase (PKS) with utilities in maintaining a complex life cycle. Both bacteria undergo a symbiosis with nematodes which is then followed by an insect pathogenic phas...
Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin
2013-01-01
Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.
Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin
2013-01-01
Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10–11 and 5–13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment. PMID:24358188
Wu, Changsheng; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P
2017-07-18
The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI-02 (1) and propose a mechanism for the biogenesis of its 3,4-dihydronaphthalen-1(2H)-one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act-like qin gene cluster by overexpression of the pathway-specific activator. Mining of this strain also identified dehydroxy-GTRI-02 (2), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzawa, Satoshi; Deng, Kai; Wang, George
2016-08-22
Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed in this paper the segments of AT domains and associated linkers in AT exchanges in vitro andmore » have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. Finally, these results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.« less
Allelopathic Polyketides from an Endolichenic Fungus Myxotrichum SP. by Using OSMAC Strategy.
Yuan, Chao; Guo, Yu-Hua; Wang, Hai-Ying; Ma, Xiao-Jun; Jiang, Tao; Zhao, Jun-Ling; Zou, Zhong-Mei; Ding, Gang
2016-02-03
Three new polyketides myxotritones A-C (2-4), together with a new natural product 7,8-dihydro-7R,8S-dihydroxy-3,7-dimethyl-2-benzopyran-6-one (1) were obtained from the endolichenic fungus Myxotrichum sp. by using OMSAC (One Strain, Many Compounds) method. The planar structures of these new compounds were determined by NMR experiment and HRESIMS data, and the absolute configuration of 1 was established by X-ray diffraction, and the stereochemistry of the new compounds 2-4 were determined by same biosynthesis origin, and similar CD spectra with 1. Allelopathic test showed that compound 4 significantly retarded root elongation of Arabidopsis thaliana seed, indicating that this fungus might contribute to the defense of its host lichen. From the view of biosynthetic pathway, all four compounds 1-4 might be originated from Non-Reduced Polyketide synthase (NR-PKS).
Peng, Yun-Feng; Chen, Wen-Chao; Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia
2016-01-01
The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10-15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.
Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian
2007-07-01
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.
Guo, Jian; Wang, Yuanhua; Li, Baozhong; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang
2017-06-10
Aureobasidium pullulans is an increasingly attractive host for bio-production of pullulan, heavy oil, polymalic acid, and a large spectrum of extracellular enzymes. To date, genetic manipulation of A. pullulans mainly relies on time-consuming conventional restriction enzyme digestion and ligation methods. In this study, we present a one-step homologous recombination-based method for rapid genetic manipulation in A. pullulans. Overlaps measuring >40bp length and 10μg DNA segments for homologous recombination provided maximum benefits to transformation of A. pullulans. This optimized method was successfully applied to PKSIII gene (encodes polyketide synthase) knock-out and gltP gene (encodes glycolipid transfer protein) knock-in. After disruption of PKSIII gene, secretion of melanin decreased slightly. The melanin purified from disruptant showed lower reducing capacity compared with that of the parent strain, leading to a decrease in exopolysaccharide production. Knock-in of gltP gene resulted in at least 4.68-fold increase in heavy oil production depending on the carbon source used, indicating that gltP can regulate heavy oil synthesis in A. pullulans. Copyright © 2017 Elsevier B.V. All rights reserved.
Engh, Ines; Nowrousian, Minou; Kück, Ulrich
2007-10-01
The filamentous ascomycete Sordaria macrospora accumulates melanin during sexual development. The four melanin biosynthesis genes pks, teh, sdh and tih were isolated and their homology to genes involved in 1,8 dihydroxynaphthalene (DHN) melanin biosynthesis was shown. The presence of DHN melanin in S. macrospora was further confirmed by disrupting the pks gene encoding a putative polyketide synthase and by RNA interference-mediated silencing of the sdh gene encoding a putative scytalone dehydratase. Because melanin occurs in fruiting bodies that develop through several intermediate stages within 7 days of growth, a Northern analysis of a developmental time-course was conducted. These data revealed a time-dependent regulation of teh and sdh transcript levels. Comparing the transcriptional expression by real-time PCR of melanin biosynthesis genes in the wild type under conditions allowing or repressing sexual development, a significant downregulation during vegetative growth was detected. Quantitative real-time PCR and Northern blot analysis of melanin biosynthesis gene expression in different developmental mutants confirmed that melanin biosynthesis is linked to fruiting body development and is under the control of specific regulatory genes that participate in sexual differentiation.
USDA-ARS?s Scientific Manuscript database
The fungus Slafractonia leguminicola, the causal agent of blackpatch disease of legumes produces two mycotoxins slaframine and swainsonine, causing slobbers’ symptoms and locoism of grazing animals, respectively. The genetics of this important fungus is poorly understood. This work aimed to develop ...
2011-03-25
379 1317617 BG1320 (06415) NS pksR – Polyketide synthase BSU17720 (71.0) G:C C:S 1698/2574 1326096 BG1327 (06450) NS ebrB – multidrug resistance...frameshift mutation in the mmgD gene on the C-terminus of the 2-methylcitrate synthase homolog of B. atrophaeus strain Detrick-1. Arrow indicates the...lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole
Wang, Peng; Gao, Xue; Chooi, Yit-Heng; Deng, Zixin; Tang, Yi
2011-08-01
Tetracyclines are clinically important aromatic polyketides whose biosynthesis is catalysed by bacterial type II polyketide synthases (PKSs). Tetracyclines are biosynthesized starting with an amide-containing malonamate starter unit and the resulting C-2 carboxyamide is critical for the antibiotic activities. In this work, we genetically verified that an amidotransferase, OxyD, and a thiolase, OxyP, are involved in the biosynthesis and incorporation of the starter unit. First, two mutations, R248T and D268N, were found to be present in OxyD* encoded in Streptomyces rimosus ATCC 13224, a strain that produces the acetate-primed 2-acetyl-2-decarboxyamido-oxytetracycline (ADOTC) instead of the malonamate-primed oxytetracycline (OTC). Homology modelling suggested that in particular D268N may inactivate OxyD. Complementation of S. rimosus ATCC 13224 with wild-type OxyD restored OTC biosynthesis, thereby confirming the essential role of OxyD in the synthesis of the amide starter unit. Second, using a series of knockout and complementation approaches, we demonstrated that OxyP is most likely involved in maintaining fidelity of the amide-priming process via hydrolysis of the competing acetate priming starter units. While the inactivation of OxyP does not eliminate OTC biosynthesis, the ratio of acetate-primed ADOTC to malonamate-primed OTC is significantly increased. This suggests that OxyP plays an ancillary role in OTC biosynthesis and is important for minimizing the levels of ADOTC, a shunt product that has much weaker antibiotic activities than OTC.
Chang, Chenchen; Huang, Rong; Yan, Yan; Ma, Hongmin; Dai, Zheng; Zhang, Benying; Deng, Zixin; Liu, Wen; Qu, Xudong
2015-04-01
Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi
Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity ofmore » the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.« less
Vickery, Christopher R; Cardenas, Javier; Bowman, Marianne E; Burkart, Michael D; Da Silva, Nancy A; Noel, Joseph P
2018-06-01
Polyketides are attractive compounds for uses ranging from biorenewable chemical precursors to high-value therapeutics. In many cases, synthesis in a heterologous host is required to produce these compounds in industrially relevant quantities. The type III polyketide synthase 2-pyrone synthase (2-PS) from Gerbera hybrida was used for the production of triacetic acid lactone (TAL) in Saccharomyces cerevisiae. Initial in vitro characterization of 2-PS led to the identification of active site variants with improved kinetic properties relative to wildtype. Further in vivo evaluation in S. cerevisiae suggested certain 2-PS mutations altered enzyme stability during fermentation. In vivo experiments also revealed beneficial cysteine to serine mutations that were not initially explored due to their distance from the active site of 2-PS, leading to the design of additional 2-PS enzymes. While these variants showed varying catalytic efficiencies in vitro, they exhibited up to 2.5-fold increases in TAL production when expressed in S. cerevisiae. Coupling of the 2-PS variant [C35S,C372S] to an engineered S. cerevisiae strain led to over 10 g/L TAL at 38% of theoretical yield following fed-batch fermentation, the highest reported to date. Our studies demonstrate the success of a coupled in vitro/in vivo approach to engineering enzymes and provide insight on cysteine-rich enzymes and design principles toward their use in non-native microbial hosts. © 2018 Wiley Periodicals, Inc.
Mycobacterium ahvazicum sp. nov., the nineteenth species of the Mycobacterium simiae complex.
Bouam, Amar; Heidarieh, Parvin; Shahraki, Abodolrazagh Hashemi; Pourahmad, Fazel; Mirsaeidi, Mehdi; Hashemzadeh, Mohamad; Baptiste, Emeline; Armstrong, Nicholas; Levasseur, Anthony; Robert, Catherine; Drancourt, Michel
2018-03-07
Four slowly growing mycobacteria isolates were isolated from the respiratory tract and soft tissue biopsies collected in four unrelated patients in Iran. Conventional phenotypic tests indicated that these four isolates were identical to Mycobacterium lentiflavum while 16S rRNA gene sequencing yielded a unique sequence separated from that of M. lentiflavum. One representative strain AFP-003 T was characterized as comprising a 6,121,237-bp chromosome (66.24% guanosine-cytosine content) encoding for 5,758 protein-coding genes, 50 tRNA and one complete rRNA operon. A total of 2,876 proteins were found to be associated with the mobilome, including 195 phage proteins. A total of 1,235 proteins were found to be associated with virulence and 96 with toxin/antitoxin systems. The genome of AFP-003 T has the genetic potential to produce secondary metabolites, with 39 genes found to be associated with polyketide synthases and non-ribosomal peptide syntases and 11 genes encoding for bacteriocins. Two regions encoding putative prophages and three OriC regions separated by the dnaA gene were predicted. Strain AFP-003 T genome exhibits 86% average nucleotide identity with Mycobacterium genavense genome. Genetic and genomic data indicate that strain AFP-003 T is representative of a novel Mycobacterium species that we named Mycobacterium ahvazicum, the nineteenth species of the expanding Mycobacterium simiae complex.
Cochrane, Rachel V K; Sanichar, Randy; Lambkin, Gareth R; Reiz, Béla; Xu, Wei; Tang, Yi; Vederas, John C
2016-01-11
The antimalarial agent cladosporin is a nanomolar inhibitor of the Plasmodium falciparum lysyl-tRNA synthetase, and exhibits activity against both blood- and liver-stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it is biosynthesized by a highly reducing (HR) and a non-reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism and subsequent heterologous expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the identity of the putative gene cluster. Incorporation of a pentaketide intermediate analogue indicated a 5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. Advanced-intermediate analogues were synthesized and incorporated by Cla3 to furnish new cladosporin analogues. A putative lysyl-tRNA synthetase resistance gene was identified in the cladosporin gene cluster. Analysis of the active site emphasizes key structural features thought to be important in resistance to cladosporin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shevchuk, Olga; Pägelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel; Steinert, Michael
2014-11-01
L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease. Copyright © 2014 Elsevier GmbH. All rights reserved.
Ahmadi, Mahmoud Kamal; Fawaz, Samar; Jones, Charles H.; Zhang, Guojian
2015-01-01
Yersiniabactin (Ybt) is a mixed nonribosomal peptide-polyketide natural product natively produced by the pathogen Yersinia pestis. The compound enables iron scavenging capabilities upon host infection and is biosynthesized by a nonribosomal peptide synthetase featuring a polyketide synthase module. This pathway has been engineered for expression and biosynthesis using Escherichia coli as a heterologous host. In the current work, the biosynthetic process for Ybt formation was improved through the incorporation of a dedicated step to eliminate the need for exogenous salicylate provision. When this improvement was made, the compound was tested in parallel applications that highlight the metal-chelating nature of the compound. In the first application, Ybt was assessed as a rust remover, demonstrating a capacity of ∼40% compared to a commercial removal agent and ∼20% relative to total removal capacity. The second application tested Ybt in removing copper from a variety of nonbiological and biological solution mixtures. Success across a variety of media indicates potential utility in diverse scenarios that include environmental and biomedical settings. PMID:26025901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poust, S; Phelan, RM; Deng, K
The gem-dimethyl groups in polyketide-derived natural products add steric bulk and, accordingly, lend increased stability to medicinal compounds, however, our ability to rationally incorporate this functional group in modified natural products is limited. In order to characterize the mechanism of gem-dimethyl group formation, with a goal toward engineering of novel compounds containing this moiety, the gem-dimethyl group producing polyketide synthase (PKS) modules of yersiniabactin and epothilone were characterized using mass spectrometry. The work demonstrated, contrary to the canonical understanding of reaction order in PKSs, that methylation can precede condensation in gem-dimethyl group producing PKS modules. Experiments showed that both PKSsmore » are able to use dimethylmalonyl acyl carrier protein (ACP) as an extender unit. Interestingly, for epothilone module8, use of dimethylmalonyl-ACP appeared to be the sole route to form a gem-dimethylated product, while the yersiniabactin PKS could methylate before or after ketosynthase condensation.« less
Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E
2017-03-01
The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR 0 ) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR 0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2- 2 H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP + in the presence of redox-inactive, recombinant NanKR1 0 or NanKR5 0 , from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR7 0 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR 0 -catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2- 2 H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR 0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR 0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.
Xie, Xinqiang; Garg, Ashish; Khosla, Chaitan; Cane, David E.
2017-01-01
The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly-generated, transiently-formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations. PMID:28157306
Padmanaban, Vishnu Priya; Verma, Pankaj; Venkatabaskaran, Srividhyalakshmi; Keppayan, Thirupathi; Gopal, Dharani; Sekar, Ashok Kumar; Ramalingam, Kirubagaran
2017-02-01
Microbial-derived natural products from extreme niches such as deepsea are known to possess structural and functional novelty. With this background, the present study was designed to investigate the bioprospecting potential and systematics of a deep-sea derived piezotolerant bacterial strain NIOT-Ch-40, showing affiliation to the genus Streptomyces based on 16S RNA gene similarity. Preliminary screening for the presence of biosynthetic genes like polyketide synthase I, polyketide synthase II, non ribosomal peptide synthase, 3-amino-5-hydroxybenzoic acid synthase and spiroindimicin followed by antibacterial activity testing confirmed the presence of potent bioactivity. The secondary metabolites produced during fermentation in Streptomyces broth at 28 °C for 7 days were extracted with ethyl acetate. The extract exhibited a specific inhibitory activity against Gram-positive bacteria and was significantly effective (p < 0.0001) against methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration and minimum bactericidal concentration against MRSA was 1.5 µg/mL, which was statistically significant in comparison with erythromycin. A multifaceted analysis of the Streptomyces spp. was carried out to delineate the strain NIOT-Ch-40 at a higher resolution which includes morphological, biochemical and molecular studies. Piezotolerance studies and comparison of fatty acid profiles at high pressures revealed that it could be considered as one of the taxonomic markers, especially for the strains isolated from the deep sea environments. In conclusion, the observation of comparative studies with reference strains indicated towards the strain NIOT-Ch-40 as an indigenous marine piezotolerant Streptomyces sp. with a higher probability of obtaining novel bioactive metabolites.
Strain Prioritization and Genome Mining for Enediyne Natural Products
Yan, Xiaohui; Ge, Huiming; Huang, Tingting; Hindra; Yang, Dong; Teng, Qihui; Crnovčić, Ivana; Li, Xiuling; Rudolf, Jeffrey D.; Lohman, Jeremy R.; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Van Nieuwerburgh, Filip; Rader, Christoph
2016-01-01
ABSTRACT The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. PMID:27999165
The genome of the social amoeba Dictyostelium discoideum
Eichinger, L.; Pachebat, J.A.; Glöckner, G.; Rajandream, M.-A.; Sucgang, R.; Berriman, M.; Song, J.; Olsen, R.; Szafranski, K.; Xu, Q.; Tunggal, B.; Kummerfeld, S.; Madera, M.; Konfortov, B. A.; Rivero, F.; Bankier, A. T.; Lehmann, R.; Hamlin, N.; Davies, R.; Gaudet, P.; Fey, P.; Pilcher, K.; Chen, G.; Saunders, D.; Sodergren, E.; Davis, P.; Kerhornou, A.; Nie, X.; Hall, N.; Anjard, C.; Hemphill, L.; Bason, N.; Farbrother, P.; Desany, B.; Just, E.; Morio, T.; Rost, R.; Churcher, C.; Cooper, J.; Haydock, S.; van Driessche, N.; Cronin, A.; Goodhead, I.; Muzny, D.; Mourier, T.; Pain, A.; Lu, M.; Harper, D.; Lindsay, R.; Hauser, H.; James, K.; Quiles, M.; Babu, M. Madan; Saito, T.; Buchrieser, C.; Wardroper, A.; Felder, M.; Thangavelu, M.; Johnson, D.; Knights, A.; Loulseged, H.; Mungall, K.; Oliver, K.; Price, C.; Quail, M.A.; Urushihara, H.; Hernandez, J.; Rabbinowitsch, E.; Steffen, D.; Sanders, M.; Ma, J.; Kohara, Y.; Sharp, S.; Simmonds, M.; Spiegler, S.; Tivey, A.; Sugano, S.; White, B.; Walker, D.; Woodward, J.; Winckler, T.; Tanaka, Y.; Shaulsky, G.; Schleicher, M.; Weinstock, G.; Rosenthal, A.; Cox, E.C.; Chisholm, R. L.; Gibbs, R.; Loomis, W. F.; Platzer, M.; Kay, R. R.; Williams, J.; Dear, P. H.; Noegel, A. A.; Barrell, B.; Kuspa, A.
2005-01-01
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes encode ~12,500 predicted proteins, a high proportion of which have long repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal rDNA element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal/fungal lineage after the plant/animal split, but Dictyostelium appears to have retained more of the diversity of the ancestral genome than either of these two groups. PMID:15875012
Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T.; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga
2013-01-01
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs. PMID:23538871
Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga
2013-03-28
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.
Müller, Christina A.; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C. A.; Wellington, Elizabeth M. H.
2015-01-01
Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894
USDA-ARS?s Scientific Manuscript database
The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 55 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins....
USDA-ARS?s Scientific Manuscript database
To evaluate the total contribution of polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways to M. robertsii fitness and virulence, mutants deleted for mrpptA, a gene required for their activation were generated. 'mrpptA strains failed to produce any of the nonribosomal peptid...
USDA-ARS?s Scientific Manuscript database
Ustilago maydis, causal agent of corn smut disease, is a dimorphic fungus alternating between a saprobic budding haploid, and an obligate pathogenic filamentous dikaryon. Maize responds to U. maydis colonization by producing tumorous structures, and only within these does the fungus sporulate, produ...
Xu, Dong-Bo; Ma, Min; Deng, Zi-Xin; Hong, Kui
2015-07-01
The type II polyketide synthase (PKS) natural product enterocin (1) was isolated from a mangrove-derived novel species Streptomyces qinglanensis 172205 guided by genome sequence, and its putative biosynthetic gene cluster was revealed. Its natural analogues 5-deoxyenterocin (2) and wailupemycin A-C (3-5) were also identified by tandem mass spectrometry. By feeding experiments with aryl acids, strain 172205 was proved to incorporate partial exogenous starter units into enterocin- and wailupemycin-based analogues, thus being a new and suitable microorganism for engineering unnatural enc-derived polyketide metabolites. In addition, biological assays indicated that enterocin showed obvious inhibitory activity against β-amyloid protein (Aβ1-42) fibrillation and moderate cytotoxicity against HeLa and HepG2 for the first time.
Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna
2017-10-01
Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC < 7 μg/mL). The title compounds were characterized by comprehensive nuclear magnetic resonance and mass spectroscopic experiments. Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allergens/Antigens, toxins and polyketides of important Aspergillus species.
Bhetariya, Preetida J; Madan, Taruna; Basir, Seemi Farhat; Varma, Anupam; Usha, Sarma P
2011-04-01
The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.
Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae.
Chung, K-R; Ehrenshaft, M; Wetzel, D K; Daub, M E
2003-11-01
We have successfully adapted plasmid insertion and restriction enzyme-mediated integration (REMI) to produce cercosporin toxin-deficient mutants in the asexual phytopathogenic fungus Cercospora nicotianae. The use of pre-linearized plasmid or restriction enzymes in the transformation procedure significantly decreased the transformation frequency, but promoted a complicated and undefined mode of plasmid integration that leads to mutations in the C. nicotianae genome. Vector DNA generally integrated in multiple copies, and no increase in single-copy insertion was observed when enzymes were added to the transformation mixture. Out of 1873 transformants tested, 39 putative cercosporin toxin biosynthesis ( ctb) mutants were recovered that showed altered levels of cercosporin production. Seven ctb mutants were recovered using pre-linearized plasmids without the addition of enzymes, and these were considered to be non-REMI mutants. The correlation between a specific insertion and a mutant phenotype was confirmed using rescued plasmids as gene disruption vectors in the wild-type strain. Six out of fifteen rescued plasmids tested yielded cercosporin-deficient transformants when re-introduced into the wild-type strain, suggesting a link between the insertion site and the cercosporin-deficient phenotype. Sequence analysis of a fragment flanking the insert site recovered from one insertion mutant showed it to be disrupted in sequences with high homology to the acyl transferase domain of polyketide synthases from other fungi. Disruption of this polyketide synthase gene ( CTB1) using a rescued plasmid resulted in mutants that were defective in cercosporin production. Thus, we provide the first molecular evidence that cercosporin is synthesized via a polyketide pathway as previously hypothesized.
Chip-based polyketide biosynthesis and functionalization.
Ku, Bosung; Cha, Junhoe; Srinivasan, Aravind; Kwon, Seok Joon; Jeong, Jae-Choel; Sherman, David H; Dordick, Jonathan S
2006-01-01
We demonstrate construction and novel compound synthesis from a synthetic metabolic pathway consisting of a type III polyketide synthase (PKS) known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS) from Streptomyces coelicolor and soybean peroxidase (SBP) in a microfluidic platform. THNS immobilized to Ni-NTA agarose beads is prepacked into a microfluidic channel, while SBP is covalently attached to the walls of a second microfluidic channel precoated with a reactive poly(maleic anhydride) derivative. The result is a tandem, two-step biochip that enables the synthesis of novel polyketide derivatives. The first microchannel, consisting of THNS, results in the conversion of malonyl-CoA to flaviolin in yields up to 40% with a residence time of 6 min. This conversion is similar to that obtained in several-milliliter batch reactions after 2 h. Linking this microchannel to the SBP microchannel results in biflaviolin synthesis. During the course of this work, we discovered that the substrate specificity of THNS could be manipulated by simply changing the reaction pH. As a result, the starter acyl-CoA specificity can be broadened to yield a series of truncated pyrone products. When combined with variations in the ratio of acyl-CoA and malonyl-CoA (extender substrate) feed rates, high yields of the pyrone products could be achieved, which is further structurally diversified from self- and cross-coupling in the SBP microchannel. The ability to rapidly evaluate the effects of reaction conditions and synthetic multienzyme pathways on a microfludic platform provides a new paradigm for performing metabolic pathway engineering, namely, the reconstruction of pathways for use in new compound discovery.
Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinIzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian
2013-01-01
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence. PMID:23357949
Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul
2015-10-01
Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang
The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species,more » while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.« less
Takeda, Itaru; Umemura, Myco; Koike, Hideaki; Asai, Kiyoshi; Machida, Masayuki
2014-08-01
Despite their biological importance, a significant number of genes for secondary metabolite biosynthesis (SMB) remain undetected due largely to the fact that they are highly diverse and are not expressed under a variety of cultivation conditions. Several software tools including SMURF and antiSMASH have been developed to predict fungal SMB gene clusters by finding core genes encoding polyketide synthase, nonribosomal peptide synthetase and dimethylallyltryptophan synthase as well as several others typically present in the cluster. In this work, we have devised a novel comparative genomics method to identify SMB gene clusters that is independent of motif information of the known SMB genes. The method detects SMB gene clusters by searching for a similar order of genes and their presence in nonsyntenic blocks. With this method, we were able to identify many known SMB gene clusters with the core genes in the genomic sequences of 10 filamentous fungi. Furthermore, we have also detected SMB gene clusters without core genes, including the kojic acid biosynthesis gene cluster of Aspergillus oryzae. By varying the detection parameters of the method, a significant difference in the sequence characteristics was detected between the genes residing inside the clusters and those outside the clusters. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110
2012-01-01
Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest. PMID:22443545
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek, Patrick; Szczepanowski, Rafael; Rückert, Christian; Kalinowski, Jörn; Klein, Andreas; Selber, Klaus; Wehmeier, Udo F; Stoye, Jens; Pühler, Alfred
2012-03-23
Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.
Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny
2016-03-09
Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny
2016-01-01
Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211
Schröder, J; Raiber, S; Berger, T; Schmidt, A; Schmidt, J; Soares-Sello, A M; Bardshiri, E; Strack, D; Simpson, T J; Veit, M; Schröder, G
1998-06-09
Heterologous screening of a cDNA library from Pinusstrobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinus sylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.
USDA-ARS?s Scientific Manuscript database
A genetically unique strain of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton seedlings in Australia in 1993. Since that time the disease spread rapidly despite stringent containment practices. The Australian biotype isolates of Fusarium oxysporum f. sp. vasinfec...
Park, Hye Min; Singh, Digar; Lee, Choong Hwan
2016-01-01
Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions. PMID:26863302
Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan
2016-01-01
Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.
Interkingdom Gene Transfer of a Hybrid NPS/PKS from Bacteria to Filamentous Ascomycota
Lawrence, Daniel P.; Kroken, Scott; Pryor, Barry M.; Arnold, A. Elizabeth
2011-01-01
Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota. PMID:22140558
Wagner, Drew T; Zhang, Zhicheng; Meoded, Roy A; Cepeda, Alexis J; Piel, Jörn; Keatinge-Clay, Adrian T
2018-04-20
trans-Acyltransferase assembly lines possess enzymatic domains often not observed in their better characterized cis-acyltransferase counterparts. Within this repertoire of largely unexplored biosynthetic machinery is a class of enzymes called the pyran synthases that catalyze the formation of five- and six-membered cyclic ethers from diverse polyketide chains. The 1.55 Å resolution crystal structure of a pyran synthase domain excised from the ninth module of the sorangicin assembly line highlights the similarity of this enzyme to the ubiquitous dehydratase domain and provides insight into the mechanism of ring formation. Functional assays of point mutants reveal the central importance of the active site histidine that is shared with the dehydratases as well as the supporting role of a neighboring semiconserved asparagine.
Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele
2015-08-01
Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Flores-Sanchez, Isvett Josefina; Gang, David Roger
2013-11-01
Ginger (Zingiber officinale Rosc.) and turmeric (Curcuma longa L.), members of the Zingiberaceae, are widely used in traditional Asian cuisines and herbal medicine. Gingerols and diarylheptanoids, important compounds from these plants, appear to be produced by enzymes of the type III polyketide synthase class. Previous efforts to detect activity of such enzymes in tissues from these plants were only marginally successful in turmeric and completely unsuccessful in ginger because of very rapid hydrolysis of the hydroxycinnamoyl-CoA substrates (p-coumaroyl-CoA, feruloyl-CoA and caffeoyl-CoA) in these assays, presumably due to the presence of thioesterases in these tissues. In order to determine whether such thioesterase activities were specific and could be reduced so that the polyketide synthase activities could be better characterized, three inhibitors of the thioesterase domain of fatty acid synthase were tested in assays with leaf and rhizome crude protein extracts from these plants: orlistat, a reduced form of lipstatin, and peptide 1 and peptide 2 from hydrolysates of soybean β-conglycinin. Results of these analyses indicated that specific thioesterases do exist in these plants and that they could indeed be inhibited, with highest inhibition occurring with a mixture of these three compounds, leading for example to a reduction of caffeoyl-CoA hydrolysis in leaves and rhizomes of ginger by 40-fold and 27-fold, respectively. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Calderone, Christopher T; Kowtoniuk, Walter E; Kelleher, Neil L; Walsh, Christopher T; Dorrestein, Pieter C
2006-06-13
The pksX gene cluster from Bacillus subtilis is predicted to encode the biosynthesis of an as yet uncharacterized hybrid nonribosomal peptide/polyketide secondary metabolite. We used a combination of biochemical and mass spectrometric techniques to assign functional roles to the proteins AcpK, PksC, PksL, PksF, PksG, PksH, and PksI, and we conclude that they act to incorporate an acetate-derived beta-methyl branch on an acetoacetyl-S-carrier protein and ultimately generate a Delta(2)-isoprenyl-S-carrier protein. This work highlights the power of mass spectrometry to elucidate the functions of orphan biosynthetic enzymes, and it details a mechanism by which single-carbon beta-branches can be inserted into polyketide-like structures. This pathway represents a noncanonical route to the construction of prenyl units and serves as a prototype for the intersection of isoprenoid and polyketide biosynthetic manifolds in other natural product biosynthetic pathways.
Multimodular biocatalysts for natural product assembly
NASA Astrophysics Data System (ADS)
Schwarzer, Dirk; Marahiel, Mohamed A.
2001-03-01
Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.
Tang, Xiaoyu; Li, Jie; Millán-Aguiñaga, Natalie; Zhang, Jia Jia; O'Neill, Ellis C; Ugalde, Juan A; Jensen, Paul R; Mantovani, Simone M; Moore, Bradley S
2015-12-18
Recent genome sequencing efforts have led to the rapid accumulation of uncharacterized or "orphaned" secondary metabolic biosynthesis gene clusters (BGCs) in public databases. This increase in DNA-sequenced big data has given rise to significant challenges in the applied field of natural product genome mining, including (i) how to prioritize the characterization of orphan BGCs and (ii) how to rapidly connect genes to biosynthesized small molecules. Here, we show that by correlating putative antibiotic resistance genes that encode target-modified proteins with orphan BGCs, we predict the biological function of pathway specific small molecules before they have been revealed in a process we call target-directed genome mining. By querying the pan-genome of 86 Salinispora bacterial genomes for duplicated house-keeping genes colocalized with natural product BGCs, we prioritized an orphan polyketide synthase-nonribosomal peptide synthetase hybrid BGC (tlm) with a putative fatty acid synthase resistance gene. We employed a new synthetic double-stranded DNA-mediated cloning strategy based on transformation-associated recombination to efficiently capture tlm and the related ttm BGCs directly from genomic DNA and to heterologously express them in Streptomyces hosts. We show the production of a group of unusual thiotetronic acid natural products, including the well-known fatty acid synthase inhibitor thiolactomycin that was first described over 30 years ago, yet never at the genetic level in regards to biosynthesis and autoresistance. This finding not only validates the target-directed genome mining strategy for the discovery of antibiotic producing gene clusters without a priori knowledge of the molecule synthesized but also paves the way for the investigation of novel enzymology involved in thiotetronic acid natural product biosynthesis.
Steps towards the synthetic biology of polyketide biosynthesis.
Cummings, Matthew; Breitling, Rainer; Takano, Eriko
2014-02-01
Nature is providing a bountiful pool of valuable secondary metabolites, many of which possess therapeutic properties. However, the discovery of new bioactive secondary metabolites is slowing down, at a time when the rise of multidrug-resistant pathogens and the realization of acute and long-term side effects of widely used drugs lead to an urgent need for new therapeutic agents. Approaches such as synthetic biology are promising to deliver a much-needed boost to secondary metabolite drug development through plug-and-play optimized hosts and refactoring novel or cryptic bacterial gene clusters. Here, we discuss this prospect focusing on one comprehensively studied class of clinically relevant bioactive molecules, the polyketides. Extensive efforts towards optimization and derivatization of compounds via combinatorial biosynthesis and classical engineering have elucidated the modularity, flexibility and promiscuity of polyketide biosynthetic enzymes. Hence, a synthetic biology approach can build upon a solid basis of guidelines and principles, while providing a new perspective towards the discovery and generation of novel and new-to-nature compounds. We discuss the lessons learned from the classical engineering of polyketide synthases and indicate their importance when attempting to engineer biosynthetic pathways using synthetic biology approaches for the introduction of novelty and overexpression of products in a controllable manner. © 2013 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.
Ross, Avena C; Xu, Ying; Lu, Liang; Kersten, Roland D; Shao, Zongze; Al-Suwailem, Abdulaziz M; Dorrestein, Pieter C; Qian, Pei-Yuan; Moore, Bradley S
2013-01-23
Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.
Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria
Ross, Avena C.; Xu, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Pei-Yuan; Moore, Bradley S.
2013-01-01
Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multi-module skipping and iteration. Preliminary biochemical analysis of the N-terminal NRPS module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N-terminus. PMID:23270364
SeMPI: a genome-based secondary metabolite prediction and identification web server.
Zierep, Paul F; Padilla, Natàlia; Yonchev, Dimitar G; Telukunta, Kiran K; Klementz, Dennis; Günther, Stefan
2017-07-03
The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon
2017-06-15
Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.
2009-05-01
not reveal any interesting proteins (Data is not shown). All of the spots turned out to be keratins. 3.1.2.2 Conclusions on puromycin toxicity...hamster) Odorant-binding protein precursor - Rattus norvegicus (Rat) 0.543 2.105 Oleandomycin polyketide synthase , modules 5...Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not
Graduate Training in Environmental and Marine Microbiology
1999-05-31
metabolites biosynthesized by modular Type I polyketide synthases (PKS-I). We are investigating the possibility that "E. sertula" is the...completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information...the course of this grant. They have or soon will graduate ( one Masters and one Ph.D.) and have received awards based on their work. Due to these
Bioactivity Assessment of Indian Origin-Mangrove Actinobacteria against Candida albicans.
Pavan Kumar, J G S; Gomathi, Ajitha; Gothandam, K M; Vasconcelos, Vitor
2018-02-12
Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates) were found to have a potential antifungal activity against all the tested C. albicans . GC-MS results revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides. Overall, the strains possess a wide spectrum of antifungal properties which affords the production of significant bioactive metabolites as potential antibiotics.
Komaki, Hisayuki; Sakurai, Kenta; Hosoyama, Akira; Kimura, Akane; Igarashi, Yasuhiro; Tamura, Tomohiko
2018-05-02
To identify the species of butyrolactol-producing Streptomyces strain TP-A0882, whole genome-sequencing of three type strains in a close taxonomic relationship was performed. In silico DNA-DNA hybridization using the genome sequences suggested that Streptomyces sp. TP-A0882 is classified as Streptomyces diastaticus subsp. ardesiacus. Strain TP-A0882, S. diastaticus subsp. ardesiacus NBRC 15402 T , Streptomyces coelicoflavus NBRC 15399 T , and Streptomyces rubrogriseus NBRC 15455 T harbor at least 14, 14, 10, and 12 biosynthetic gene clusters (BGCs), respectively, coding for nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). All 14 gene clusters were shared by S. diastaticus subsp. ardesiacus strains TP-A0882 and NBRC 15402 T , while only four gene clusters were shared by the three distinct species. Although BGCs for bacteriocin, ectoine, indole, melanine, siderophores such as deferrioxamine, terpenes such as albaflavenone, hopene, carotenoid and geosmin are shared by the three species, many BGCs for secondary metabolites such as butyrolactone, lantipeptides, oligosaccharide, some terpenes are species-specific. These results indicate the possibility that strains belonging to the same species possess the same set of secondary metabolite-biosynthetic pathways, whereas strains belonging to distinct species have species-specific pathways, in addition to some common pathways, even if the strains are taxonomically close.
Bioactivity Assessment of Indian Origin—Mangrove Actinobacteria against Candida albicans
Pavan Kumar, J. G. S.; Gomathi, Ajitha; Vasconcelos, Vitor
2018-01-01
Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. The isolated actinobacteria VITGAP240 and VITGAP241 (two isolates) were found to have a potential antifungal activity against all the tested C. albicans. GC-MS results revealed that the actinobacterial compounds were belonging to heterocyclic, polyketides and peptides. Overall, the strains possess a wide spectrum of antifungal properties which affords the production of significant bioactive metabolites as potential antibiotics. PMID:29439535
Bunet, Robert; Mendes, Marta V.; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand
2008-01-01
Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to γ-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of γ-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating γ-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group. PMID:18296523
Bunet, Robert; Mendes, Marta V; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand
2008-05-01
Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to gamma-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of gamma-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating gamma-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group.
Fang, Jie; Zhang, Yiping; Huang, Lijuan; Jia, Xinying; Zhang, Qi; Zhang, Xu; Tang, Gongli; Liu, Wen
2008-01-01
Tetrocarcin A (TCA), produced by Micromonospora chalcea NRRL 11289, is a spirotetronate antibiotic with potent antitumor activity and versatile modes of action. In this study, the biosynthetic gene cluster of TCA was cloned and localized to a 108-kb contiguous DNA region. In silico sequence analysis revealed 36 putative genes that constitute this cluster (including 11 for unusual sugar biosynthesis, 13 for aglycone formation, and 4 for glycosylations) and allowed us to propose the biosynthetic pathway of TCA. The formation of d-tetronitrose, l-amicetose, and l-digitoxose may begin with d-glucose-1-phosphate, share early enzymatic steps, and branch into different pathways by competitive actions of specific enzymes. Tetronolide biosynthesis involves the incorporation of a 3-C unit with a polyketide intermediate to form the characteristic spirotetronate moiety and trans-decalin system. Further substitution of tetronolide with five deoxysugars (one being a deoxynitrosugar) was likely due to the activities of four glycosyltransferases. In vitro characterization of the first enzymatic step by utilization of 1,3-biphosphoglycerate as the substrate and in vivo cross-complementation of the bifunctional fused gene tcaD3 (with the functions of chlD3 and chlD4) to ΔchlD3 and ΔchlD4 in chlorothricin biosynthesis supported the highly conserved tetronate biosynthetic strategy in the spirotetronate family. Deletion of a large DNA fragment encoding polyketide synthases resulted in a non-TCA-producing strain, providing a clear background for the identification of novel analogs. These findings provide insights into spirotetronate biosynthesis and demonstrate that combinatorial-biosynthesis methods can be applied to the TCA biosynthetic machinery to generate structural diversity. PMID:18586939
Identification and characterization of multiple curcumin synthases from the herb Curcuma longa.
Katsuyama, Yohei; Kita, Tomoko; Horinouchi, Sueharu
2009-09-03
Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcuminoid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 synthesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the substrates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the turmeric and in different cultivars.
Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...
2015-07-14
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. PMID:8990300
Hong, S T; Carney, J R; Gould, S J
1997-01-01
The genes for the complete pathways for two polycyclic aromatic polyketides of the angucyclinone class have been cloned and heterologously expressed. Genomic DNAs of Streptomyces rimosus NRRL 3016 and Streptomyces strain WP 4669 were partially digested with MboI, and libraries (ca. 40-kb fragments) in Escherichia coli XL1-Blue MR were prepared with the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes from each organism. After transfer of the four clusters to Streptomyces lividans TK24, expression of one cluster from each organism was established through the identification of pathway-specific products by high-performance liquid chromatography with photodiode array detection. Peaks were identified from the S. rimosus cluster (pksRIM-1) for tetrangulol, tetrangomycin, and fridamycin E. Peaks were identified from the WP 4669 cluster (pksWP-2) for tetrangulol, 19-hydroxytetrangulol, 8-O-methyltetrangulol, 19-hydroxy-8-O-methyltetrangulol, and PD 116740. Structures were confirmed by 1H nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry.
Xiang, Longkuan; Kalaitzis, John A.; Moore, Bradley S.
2004-01-01
The bacteriostatic natural product enterocin from the marine microbe “Streptomyces maritimus” has an unprecedented carbon skeleton that is derived from an aromatic polyketide biosynthetic pathway. Its caged tricyclic, nonaromatic core is derived from a linear poly-β-ketide precursor that formally undergoes a Favorskii-like oxidative rearrangement. In vivo characterization of the gene encM through mutagenesis and heterologous biosynthesis demonstrated that its protein product not only is solely responsible for the oxidative C—C rearrangement, but also facilitates two aldol condensations plus two heterocycle forming reactions. In total, at least five chiral centers and four rings are generated by this multifaceted flavoprotein. Heterologous expression of the enterocin biosynthesis genes encABCDLMN in Streptomyces lividans resulted in the formation of the rearranged metabolite desmethyl-5-deoxyenterocin and the shunt products wailupemycins D-G. Addition of the methyltransferase gene encK, which was previously proposed through mutagenesis to additionally assist EncM in the Favorskii rearrangement, shifted the production to the O-methyl derivative 5-deoxyenterocin. The O-methyltransferase EncK seems to be specific for the pyrone ring of enterocin, because bicyclic polyketides bearing pyrone rings are not methylated in vivo. Expression of encM with different combinations of homologous actinorhodin biosynthesis genes did not result in the production of oxidatively rearranged enterocin-actinorhodin hybrid compounds as anticipated, suggesting that wild-type EncM may be specific for its endogenous type II polyketide synthase or for benzoyl-primed polyketide precursors. PMID:15505225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Drew T.; Zeng, Jia; Bailey, Constance B.
In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observedmore » in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.« less
Bender, C L; Palmer, D A; Peñaloza-Vázquez, A; Rangaswamy, V; Ullrich, M
1998-01-01
Many P. syringae pathovars are known to produce low-molecular-weight, diffusible toxins in infected host plants. These phytotoxins reproduce some of the symptoms of the relevant bacterial disease and are effective at very low concentrations. Phytotoxins generally enhance the virulence of the P. syringae pathovar which produces them, but are not required for pathogenesis. Genes encoding phytotoxin production have been identified and cloned from several P. syringae pathovars. With the exception of coronatine, toxin biosynthetic gene clusters are generally chromosomally encoded. In several pathovars, the toxin biosynthetic gene cluster also contains a resistance gene which functions to protect the producing strain from the biocidal effects of the toxin. In the case of phaseolotoxin, a resistance gene (argK) has been utilized to engineer phaseolotoxin-resistant tobacco plants. Although P. syringae phytotoxins can induce very similar effects in plants (chlorosis and necrosis), their biosynthesis and mode of action can be quite different. Knowledge of the biosynthetic pathways to these toxins and the cloning of the structural genes for their biosynthesis has relevance to the development of new bioactive compounds with altered specificity. For example, polyketides constitute a huge family of structurally diverse natural products including antibiotics, chemotherapeutic compounds, and antiparasitics. Most of the research on polyketide synthesis in bacteria has focused on compounds synthesized by Streptomyces or other actinomycetes. It is also important to note that it is now possible to utilize a genetic rather than synthetic approach to biosynthesize novel polyketides with altered biological properties (Hutchinson and Fujii, 1995; Kao et al., 1994; Donadio et al., 1993; Katz and Donadio, 1993). Most of the reprogramming or engineering of novel polyketides has been done using actinomycete PKSs, but much of this technology could also be applied to polyketides synthesized by Pseudomonas when sufficient sequence information is available. It is important to note that Pseudomonas produces a variety of antimicrobial compounds from the polyketide pathway, including mupirocin (pseudomonic acid) (Feline et al., 1977), pyoluteorin (Cuppels et al., 1986), and 2-4 diacetylphloroglucinol (Phl) (Bangera and Thomashow, 1996). Pseudomonic acid is valued for its pharmaceutical properties as an antibiotic (Aldridge, 1992), whereas pyoluteorin and Phl have antifungal properties (Howell and Stipanovic, 1980; Keel et al., 1992). A thorough understanding of the biosynthetic pathway to polyketide phytotoxins such as coronatine may ultimately lead to the development of novel compounds with altered biological properties. Thus, specific genes in the biosynthetic pathways of P. syringae phytotoxins could be deployed in other systems to develop new compounds with a wide range of activities.
Algorithms for Automated DNA Assembly
2010-01-01
polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA, 101, 15573–15578. 16. Shetty,R.P., Endy,D. and Knight,T.F. Jr (2008) Engineering BioBrick vectors...correct theoretical construction scheme is de- veloped manually, it is likely to be suboptimal by any number of cost metrics. Modular, robust and...to an exhaustive search on a small synthetic dataset and our results show that our algorithms can quickly find an optimal solution. Comparison with
Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.
König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian
2013-05-27
Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An overview of rapamycin: from discovery to future perspectives.
Yoo, Young Ji; Kim, Hanseong; Park, Sung Ryeol; Yoon, Yeo Joon
2017-05-01
Rapamycin is an immunosuppressive metabolite produced from several actinomycete species. Besides its immunosuppressive activity, rapamycin and its analogs have additional therapeutic potentials, including antifungal, antitumor, neuroprotective/neuroregenerative, and lifespan extension activities. The core structure of rapamycin is derived from (4R,5R)-4,5-dihydrocyclohex-1-ene-carboxylic acid that is extended by polyketide synthase. The resulting linear polyketide chain is cyclized by incorporating pipecolate and further decorated by post-PKS modification enzymes. Herein, we review the discovery and biological activities of rapamycin as well as its mechanism of action, mechanistic target, biosynthesis, and regulation. In addition, we introduce the many efforts directed at enhancing the production of rapamycin and generating diverse analogs and also explore future perspectives in rapamycin research. This review will also emphasize the remarkable pilot studies on the biosynthesis and production improvement of rapamycin by Dr. Demain, one of the world's distinguished scientists in industrial microbiology and biotechnology.
Gould, S J; Hong, S T; Carney, J R
1998-01-01
The genes for most of the biosynthesis of the kinamycin antibiotics have been cloned and heterologously expressed. Genomic DNA of Streptomyces murayamaensis was partially digested with MboI and a library of approximately 40 kb fragments in E. coli XL1-BlueMR was prepared using the cosmid vector pOJ446. Hybridization with the actI probe from the actinorhodin polyketide synthase genes identified two clusters of polyketide genes. After transferal of these clusters to S. lividans ZX7, expression of one cluster was established by HPLC with photodiode array detection. Peaks were identified from the kin cluster for dehydrorabelomycin, kinobscurinone, and stealthin C, which are known intermediates in kinamycin biosynthesis. Two shunt metabolites, kinafluorenone and seongomycin were also identified. The structure of the latter was determined from a quantity obtained from large-scale fermentation of one of the clones.
Borejsza-Wysocki, W.; Hrazdina, G.
1996-01-01
p-Hydroxyphenylbutan-2-one, the characteristic aroma compound of raspberries (Rubus idaeus L.), is synthesized from p-coumaryl-coenzyme A and malonyl-coenzyme A in a two-step reaction sequence that is catalyzed by benzalacetone synthase and benzalacetone reductase (W. Borejsza-Wysocki and G. Hrazdina [1994] Phytochemistry 35: 623-628). Benzalacetone synthase condenses one malonate with p-coumarate to form the pathway intermediate p-hydroxyphenylbut-3-ene-2-one (p-hydroxybenzalacetone) in a reaction that is similar to those catalyzed by chalcone and stilbene synthases. We have obtained an enzyme preparation from ripe raspberries that was preferentially enriched in benzalacetone synthase (approximately 170-fold) over chalcone synthase (approximately 14-fold) activity. This preparation was used to characterize benzalacetone synthase and to develop polyclonal antibodies in rabbits. Benzalacetone synthase showed similarity in its molecular properties to chalcone synthase but differed distinctly in its substrate specificity, response to 2-mercaptoethanol and ethylene glycol, and induction in cell-suspension cultures. The product of the enzyme, p-hydroxybenzalacetone, inhibited mycelial growth of the raspberry pathogen Phytophthora fragariae var rubi at 250 [mu]M. We do not know whether the dual activity in the benzalacetone synthase preparation is the result of a bifunctional enzyme or is caused by contamination with chalcone synthase that was also present. The rapid induction of the enzyme in cell-suspension cultures upon addition of yeast extract and the toxicity of its product, p-hydroxybenzalacetone, to phytopathogenic fungi also suggest that the pathway may be part of a plant defense response. PMID:12226219
Satou, Ryutaro; Miyanaga, Akimasa; Ozawa, Hiroki; Funa, Nobutaka; Katsuyama, Yohei; Miyazono, Ken-ichi; Tanokura, Masaru; Ohnishi, Yasuo; Horinouchi, Sueharu
2013-11-22
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.
Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro
2010-01-01
Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C6-C7-C6 diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C6-C3 coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H2O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C6-C7-C6 scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes. PMID:21041675
Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro
2010-11-16
Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.
A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis
2009-09-15
Quadri LE: Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases . Mol Microbiol 2000, 37:1-12. 51. Chou CJ...opportunities for therapeutic intervention. Results: We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in... on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5’-O-(N-salicylsulfamoyl) adenosine
2005-12-01
polyketide synthase ), some TTSS genes (e.g., BMAA1617 putative hrp protein and BMAA1619 hypo- thetical protein), and cell envelope synthesis genes (e.g...License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the...burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1989-05-01
different polyketide synthases have varying 13 ESNIB 89-05 degrees of conserved DNA sequence homology so that Protein Design genes for one antibiotic (for...information on this myosin isoform of any organism. Ex-wthwo 2kAandtolkaliorregulatory light chains (16 to21pression of this novel myosin was studied...expected with any new material. The industrial com- an accurate displacement. One of these was by L. Kiese- munity with its tremendous market is probably
Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du
2015-11-01
The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Matilla, Miguel A; Leeper, Finian J; Salmond, George P C
2015-01-01
Polyketides represent an important class of bioactive natural products with a broad range of biological activities. We identified recently a large trans-acyltransferase (AT) polyketide synthase gene cluster responsible for the biosynthesis of the antifungal, anti-oomycete and antitumor haterumalide, oocydin A (ooc). Using genome sequencing and comparative genomics, we show that the ooc gene cluster is widespread within biocontrol and phytopathogenic strains of the enterobacteria, Serratia and Dickeya. The analysis of in frame deletion mutants confirmed the role of a hydroxymethylglutaryl-coenzyme A synthase cassette, three flavin-dependent tailoring enzymes, a free-standing acyl carrier protein and two hypothetical proteins in oocydin A biosynthesis. The requirement of the three trans-acting AT domains for the biosynthesis of the macrolide was also demonstrated. Expression of the ooc gene cluster was shown to be positively regulated by an N-acyl-L-homoserine lactone-based quorum sensing system, but operating in a strain-dependent manner. At a post-transcriptional level, the RNA chaperone, Hfq, plays a key role in oocydin A biosynthesis. The Hfq-dependent regulation is partially mediated by the stationary phase sigma factor, RpoS, which was also shown to positively regulate the synthesis of the macrolide. Our results reveal differential regulation of the divergently transcribed ooc transcriptional units, highlighting the complexity of oocydin A production. PMID:25753587
The killer of Socrates: Coniine and Related Alkaloids in the Plant Kingdom.
Hotti, Hannu; Rischer, Heiko
2017-11-14
Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing death by suffocation in mammals. Coniine's most famous victim is Socrates who was sentenced to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two historical records: It is the first alkaloid the chemical structure of which was established (in 1881), and that was chemically synthesized (in 1886). In plants, coniine and twelve closely related alkaloids are known from poison hemlock ( Conium maculatum L.), and several Sarracenia and Aloe species. Recent work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase. A transamination reaction incorporates nitrogen from l-alanine and non-enzymatic cyclization leads to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants where it occurs. Lately there has been renewed interest in coniine's medical uses particularly for pain relief without an addictive side effect.
Roles of type II thioesterases and their application for secondary metabolite yield improvement.
Kotowska, Magdalena; Pawlik, Krzysztof
2014-09-01
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an "assembly line" and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such "unnatural" natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)--discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.
Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria
Shishido, Tania K.; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P.; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina
2015-01-01
Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria. PMID:26474830
Smith, Wyatt C.; Xiang, Longkuan; Shen, Ben
2000-01-01
The macrotetrolides are a family of cyclic polyethers derived from tetramerization, in a stereospecific fashion, of the enantiomeric nonactic acid (NA) and its homologs. Isotope labeling experiments established that NA is of polyketide origin, and biochemical investigations demonstrated that 2-methyl-6,8-dihydroxynon-2E-enoic acid can be converted into NA by a cell-free preparation from Streptomyces lividans that expresses nonS. These results lead to the hypothesis that macrotetrolide biosynthesis involves a pair of enantiospecific polyketide pathways. In this work, a 55-kb contiguous DNA region was cloned from Streptomyces griseus DSM40695, a 6.3-kb fragment of which was sequenced to reveal five open reading frames, including the previously reported nonR and nonS genes. Inactivation of nonS in vivo completely abolished macrotetrolide production. Complementation of the nonS mutant by the expression of nonS in trans fully restored its macrotetrolide production ability, with a distribution of individual macrotetrolides similar to that for the wild-type producer. In contrast, fermentation of the nonS mutant in the presence of exogenous (±)-NA resulted in the production of nonactin, monactin, and dinactin but not in the production of trinactin and tetranactin. These results prove the direct involvement of nonS in macrotetrolide biosynthesis. The difference in macrotetrolide production between in vivo complementation of the nonS mutant by the plasmid-borne nonS gene and fermentation of the nonS mutant in the presence of exogenously added (±)-NA suggests that NonS catalyzes the formation of (−)-NA and its homologs, supporting the existence of a pair of enantiospecific polyketide pathways for macrotetrolide biosynthesis in S. griseus. The latter should provide a model that can be used to study the mechanism by which polyketide synthase controls stereochemistry during polyketide biosynthesis. PMID:10858335
Khelaifia, S; Caputo, A; Djossou, F; Raoult, D
2017-01-01
We report the draft genome sequence of Haloferax alexandrinus strain Arc-hr (CSUR P798), isolated from the human gut of a 10-year-old Amazonian individual. Its 3 893 626 bp genome exhibits a 66.00% GC content. The genome of the strain Arc-hr contains 37 genes identified as ORFans, seven genes associated to halocin and 11 genes associated with polyketide synthases or nonribosomal peptide synthetases.
Geranyl diphosphate synthase large subunit, and methods of use
Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.
2001-10-16
A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.
Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg
2011-01-01
Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632
Biosynthesis and molecular genetics of polyketides in marine dinoflagellates.
Kellmann, Ralf; Stüken, Anke; Orr, Russell J S; Svendsen, Helene M; Jakobsen, Kjetill S
2010-03-31
Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided.
NASA Astrophysics Data System (ADS)
Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo
2010-10-01
Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.
Biosynthesis and Molecular Genetics of Polyketides in Marine Dinoflagellates
Kellmann, Ralf; Stüken, Anke; Orr, Russell J. S.; Svendsen, Helene M.; Jakobsen, Kjetill S.
2010-01-01
Marine dinoflagellates are the single most important group of algae that produce toxins, which have a global impact on human activities. The toxins are chemically diverse, and include macrolides, cyclic polyethers, spirolides and purine alkaloids. Whereas there is a multitude of studies describing the pharmacology of these toxins, there is limited or no knowledge regarding the biochemistry and molecular genetics involved in their biosynthesis. Recently, however, exciting advances have been made. Expressed sequence tag sequencing studies have revealed important insights into the transcriptomes of dinoflagellates, whereas other studies have implicated polyketide synthase genes in the biosynthesis of cyclic polyether toxins, and the molecular genetic basis for the biosynthesis of paralytic shellfish toxins has been elucidated in cyanobacteria. This review summarises the recent progress that has been made regarding the unusual genomes of dinoflagellates, the biosynthesis and molecular genetics of dinoflagellate toxins. In addition, the evolution of these metabolic pathways will be discussed, and an outlook for future research and possible applications is provided. PMID:20479965
Hong, Hui; Samborskyy, Markiyan; Lindner, Frederick; Leadlay, Peter F
2016-01-18
Desertomycin A is an aminopolyol polyketide containing a macrolactone ring. We have proposed that desertomycin A and similar compounds (marginolactones) are formed by polyketide synthases primed not with γ-aminobutanoyl-CoA but with 4-guanidinylbutanoyl-CoA, to avoid facile cyclization of the starter unit. This hypothesis requires that there be a final-stage de-amidination of the corresponding guanidino-substituted natural product, but no enzyme for such a process has been described. We have now identified candidate amidinohydrolase genes within the desertomycin and primycin clusters. Deletion of the putative desertomycin amidinohydrolase gene dstH in Streptomyces macronensis led to the accumulation of desertomycin B, the guanidino form of the antibiotic. Also, purified DstH efficiently catalyzed the in vitro conversion of desertomycin B into the A form. Hence this amidinohydrolase furnishes the missing link in this proposed naturally evolved example of protective-group chemistry. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Edith E., E-mail: ed.mueller@salk.at; Mayr, Johannes A., E-mail: h.mayr@salk.at; Zimmermann, Franz A., E-mail: f.zimmermann@salk.at
2012-01-20
Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complexmore » II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.« less
Li, Yang; Fiers, William D; Bernard, Steffen M; Smith, Janet L; Aldrich, Courtney C; Fecik, Robert A
2014-12-19
Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel set of chemical probes for the study of ketoreductase domains of polyketide synthases. This chemical tool-based approach was validated using the ketoreductase of pikromycin module 2 (PikKR2) as a model system. Triketide substrate mimics 12 and 13 were designed to increase stability (incorporating a nonhydrolyzable thioether linkage) and minimize nonessential functionality (truncating the phosphopantetheinyl arm). PikKR2 reduction product identities as well as steady-state kinetic parameters were determined by a combination of LC-MS/MS analysis of synthetic standards and a NADPH consumption assay. The d-hydroxyl product is consistent with bioinformatic analysis and results from a complementary biochemical and molecular biological approach. When compared to widely employed substrates in previous studies, diketide 63 and trans-decalone 64, substrates 12 and 13 showed 2-10 fold lower K(M) values (2.4 ± 0.8 and 7.8 ± 2.7 mM, respectively), indicating molecular recognition of intermediate-like substrates. Due to an abundance of the nonreducable enol-tautomer, the k(cat) values were attenuated by as much as 15-336 fold relative to known substrates. This study reveals the high stereoselectivity of PikKR2 in the face of gross substrate permutation, highlighting the utility of a chemical probe-based approach in the study of polyketide ketoreductases.
Ma, Xiaohui; Guo, Juan; Ma, Ying; Jin, Baolong; Zhan, Zhilai; Yuan, Yuan; Huang, Luqi
2016-07-01
To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.
Schäfer, Martin; Le, Tung B K; Hearnshaw, Stephen J; Maxwell, Anthony; Challis, Gregory L; Wilkinson, Barrie; Buttner, Mark J
2015-06-19
Simocyclinone D8 (SD8) is a potent DNA gyrase inhibitor produced by Streptomyces antibioticus Tü6040. The simocyclinone (sim) biosynthetic gene cluster has been sequenced and a hypothetical biosynthetic pathway has been proposed. The tetraene linker in SD8 was suggested to be the product of a modular type I polyketide synthase working in trans with two monofunctional enzymes. One of these monofunctional enzymes, SimC7, was proposed to supply a dehydratase activity missing from two modules of the polyketide synthase. In this study, we report the function of SimC7. We isolated the entire ~72-kb sim cluster on a single phage artificial chromosome clone and produced simocyclinone heterologously in a Streptomyces coelicolor strain engineered for improved antibiotic production. Deletion of simC7 resulted in the production of a novel simocyclinone, 7-oxo-SD8, which unexpectedly carried a normal tetraene linker but was altered in the angucyclinone moiety. We demonstrate that SimC7 is an NAD(P)H-dependent ketoreductase that catalyzes the conversion of 7-oxo-SD8 into SD8. 7-oxo-SD8 was essentially inactive as a DNA gyrase inhibitor, and the reduction of the keto group by SimC7 was shown to be crucial for high-affinity binding to the enzyme. Thus, SimC7 is an angucyclinone ketoreductase that is essential for the biological activity of simocyclinone. Copyright © 2015. Published by Elsevier Ltd.
Mares, Joise Hander; Gramacho, Karina Peres; Santos, Everton Cruz; da Silva Santiago, André; Santana, Juliano Oliveira; de Sousa, Aurizângela Oliveira; Alvim, Fátima Cerqueira; Pirovani, Carlos Priminho
2017-08-17
Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches' broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants. In this study, we determined a comparative proteomic profile of M. perniciosa basidiospores during germination by two-dimensional SDS-PAGE and mass spectrometry. A total of 316 proteins were identified. Molecular changes during the development of the germinative tube were identified by a hierarchical clustering analysis based on the differential accumulation of proteins. Proteins associated with fungal filamentation, such as septin and kinesin, were detected only 4 h after germination (hag). A transcription factor related to biosynthesis of the secondary metabolite fumagillin, which can form hybrids with polyketides, was induced 2 hag, and polyketide synthase was observed 4 hag. The accumulation of ATP synthase, binding immunoglobulin protein (BiP), and catalase was validated by western blotting. In this study, we showed variations in protein expression during the early germination stages of fungus M. perniciosa. Proteins associated with fungal filamentation, and consequently with virulence, were detected in basidiospores 4 hag., for example, septin and kinesin. We discuss these results and propose a model of the germination of fungus M. perniciosa. This research can help elucidate the mechanisms underlying basic processes of host invasion and to develop strategies for control of the disease.
Upadhyay, Srijana; Xu, Xinping
2016-01-01
ABSTRACT Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. PMID:27879337
Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg
2011-05-20
Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Dholakiya, Riddhi N; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H; Jha, Bhavanath
2017-01-01
Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15-C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria ( Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria ( Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H 2 O 2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria , isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising antibacterial activities. However, fractionation and further characterization of active compounds from S. variabilis RD-5 are needed for their optimum utilization toward antibacterial purposes.
Dholakiya, Riddhi N.; Kumar, Raghawendra; Mishra, Avinash; Mody, Kalpana H.; Jha, Bhavanath
2017-01-01
Bacterial secondary metabolites possess a wide range of biologically active compounds including antibacterial and antioxidants. In this study, a Gram-positive novel marine Actinobacteria was isolated from sea sediment which showed 84% 16S rRNA gene sequence (KT588655) similarity with Streptomyces variabilis (EU841661) and designated as Streptomyces variabilis RD-5. The genus Streptomyces is considered as a promising source of bioactive secondary metabolites. The isolated novel bacterial strain was characterized by antibacterial characteristics and antioxidant activities. The BIOLOG based analysis suggested that S. variabilis RD-5 utilized a wide range of substrates compared to the reference strain. The result is further supported by statistical analysis such as AWCD (average well color development), heat-map and PCA (principal component analysis). The whole cell fatty acid profiling showed the dominance of iso/anteiso branched C15–C17 long chain fatty acids. The identified strain S. variabilis RD-5 exhibited a broad spectrum of antibacterial activities for the Gram-negative bacteria (Escherichia coli NCIM 2065, Shigella boydii NCIM, Klebsiella pneumoniae, Enterobacter cloacae, Pseudomonas sp. NCIM 2200 and Salmonella enteritidis NCIM), and Gram-positive bacteria (Bacillus subtilis NCIM 2920 and Staphylococcus aureus MTCC 96). Extract of S. variabilis strain RD-5 showed 82.86 and 89% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and metal chelating activity, respectively, at 5.0 mg/mL. While H2O2 scavenging activity was 74.5% at 0.05 mg/mL concentration. Furthermore, polyketide synthases (PKSs types I and II), an enzyme complex that produces polyketides, the encoding gene(s) detected in the strain RD-5 which may probably involve for the synthesis of antibacterial compound(s). In conclusion, a novel bacterial strain of Actinobacteria, isolated from the unexplored sea sediment of Alang, Gulf of Khambhat (Gujarat), India showed promising antibacterial activities. However, fractionation and further characterization of active compounds from S. variabilis RD-5 are needed for their optimum utilization toward antibacterial purposes. PMID:29270160
Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)
Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.
2015-01-01
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528
Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji
2016-07-01
To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.
Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa
Marks, M. David; Tian, Li; Wenger, Jonathan P.; Omburo, Stephanie N.; Soto-Fuentes, Wilfredo; He, Ji; Gang, David R.; Weiblen, George D.; Dixon, Richard A.
2009-01-01
RNA isolated from the glands of a Δ9-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands. PMID:19581347
Yu, Xi; Liu, Heng; Niu, Xueliang; Akhberdi, Oren; Wei, Dongsheng; Wang, Dan; Zhu, Xudong
2017-10-01
G-protein-mediated signaling pathways regulate fungal morphogenesis, development and secondary metabolism. In this study, we report a gene, pgα1, that putatively encodes the α-subunit of a group I G protein in Pestalotiopsis microspora NK17, which is known to produce various secondary metabolites, including the antitumor drug taxol and pestalotiollide B (PB). Mutants of pgα1 showed retarded vegetative growth, aging of the mycelium, premature conidiation, deformed conidia, significantly increased melanin production, and a sharp decrease in PB production. The introduction of extra copies of pgα1 led to a different phenotype that was characterized by enhanced production of PB. qRT-PCR revealed that the expression of pks1, which encodes melanin polyketide synthase, an enzyme that is involved in 1, 8-dihydroxynaphthalene (DHN) melanin biosynthesis, was up regulated by 55-fold in the absence of pgα1. Changes in conidiation and PB production in pgα1 mutants were able to be restored by the addition of exogenous cAMP. The deficiencies of PB production and conidiation in Δpgα1 were not able to be rescued by deletion or overexpression of a previously reported histone deacetylase gene (hid1), suggesting that pgα1 is able to override the effect of hid1 on PB production and conidiation. Our results suggested that the G protein-cAMP pathway plays a critical role in vegetative growth as well as in asexual development of P. microspora. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less
Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben
2016-03-01
The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.
The Tomato Terpene Synthase Gene Family1[W][OA
Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran
2011-01-01
Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655
Comparative Genomics Provide Insights into Evolution of Trichoderma Nutrition Style
Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan
2014-01-01
Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase–polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma. PMID:24482532
Complete Genome Sequence of the Soil Actinomycete Kocuria rhizophila▿
Takarada, Hiromi; Sekine, Mitsuo; Kosugi, Hiroki; Matsuo, Yasunori; Fujisawa, Takatomo; Omata, Seiha; Kishi, Emi; Shimizu, Ai; Tsukatani, Naofumi; Tanikawa, Satoshi; Fujita, Nobuyuki; Harayama, Shigeaki
2008-01-01
The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds. PMID:18408034
Comparative genomics provide insights into evolution of trichoderma nutrition style.
Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan
2014-02-01
Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.
Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W
2009-01-01
Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.
Engene, Niclas; Rottacker, Erin C; Kaštovský, Jan; Byrum, Tara; Choi, Hyukjae; Ellisman, Mark H; Komárek, Jiří; Gerwick, William H
2012-05-01
The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.
Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110).
May, Daniel S; Chen, Wei-Lun; Lantvit, Daniel D; Zhang, Xiaoli; Krunic, Aleksej; Burdette, Joanna E; Eustaquio, Alessandra; Orjala, Jimmy
2017-04-28
Merocyclophanes C and D (1 and 2) were isolated from the cell extract of the cultured cyanobacterium UIC 10110. The structures were determined by one-dimensional nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry and confirmed by 2D NMR techniques. The absolute configurations were determined using electronic circular dichroism spectroscopy. Merocyclophanes C and D represent the first known analogues of the merocyclophane core structure, a recently discovered scaffold of [7,7] paracyclophanes characterized by an α-branched methyl at C-1/C-14; 1 and 2 showed antiproliferative activity against the MDA-MB-435 cell line with IC 50 values of 1.6 and 0.9 μM, respectively. Partial 16S analysis determined UIC 10110 to be a Nostoc sp., and it was found to clade with UIC 10062 Nostoc sp., the only other strain known to produce merocyclophanes. The genome of UIC 10110 was sequenced, and a biosynthetic gene cluster was identified that is proposed to encode type I and type III polyketide synthases that are potentially responsible for production of the merocyclophanes; however, further experiments will be required to verify the true function of the gene cluster. The gene cluster provides a genetic basis for the observed structural differences of the [7,7] paracyclophane core structures.
Molecular screening of xerophilic Aspergillus strains producing mycophenolic acid.
Mouhamadou, Bello; Sage, Lucile; Périgon, Sophie; Séguin, Virginie; Bouchart, Valérie; Legendre, Patrick; Caillat, Mathilde; Yamouni, Hayet; Garon, David
2017-02-01
Mycophenolic acid (MPA) is the fungal secondary metabolite displaying several biological properties. Up to now, screening of fungal strains producing MPA has mainly been the result of the search of this molecule in their culture medium by chemical methods. Here we developed a molecular approach by targeting the expression level of the MpaC gene encoding the polyketide synthase, one of the key enzymes involved in the MPA synthesis. Thirty xerophilic Aspergillus strains were identified using the RNA polymerase II subunit and the β-tubulin genes. Seven Aspergillus species were evidenced. The expression level of the MpaC gene was quantified and compared to the MPA production rate. Only Aspergillus pseudoglaucus and all the eight strains of this species produced MPA. While the MpaC gene was not expressed or weakly expressed in the MPA non-producing strains, all the A. pseudoglaucus strains presented a high level of expression of this gene. The highest expression level of the MpaC gene among the MPA non-producing strains was significantly lower than the lowest expression level of this gene in the MPA producing strains. To our knowledge, this is the first study that demonstrates the effectiveness of molecular approach for the screening of MPA-producing species. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Mahan, Kristina M.; Klingeman, Dawn Marie; Robert L. Hettich; ...
2016-01-21
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. In addition, the 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content.
Klingeman, Dawn M.; Hettich, Robert L.; Parry, Ronald J.
2016-01-01
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. The 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content. PMID:26798098
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, Kristina M.; Klingeman, Dawn Marie; Robert L. Hettich
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. In addition, the 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content.
Discriminating the reaction types of plant type III polyketide synthases
Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu
2017-01-01
Abstract Motivation: Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. Results: We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. Availability and Implementation: pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/ Contact: goto@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334262
Horsman, Geoff P.; Chen, Yihua; Thorson, Jon S.; Shen, Ben
2010-01-01
Enediynes are potent antitumor antibiotics that are classified as 9- or 10-membered according to the size of the enediyne core structure. However, almost nothing is known about enediyne core biosynthesis, and the determinants of 9- versus 10-membered enediyne core biosynthetic divergence remain elusive. Previous work identified enediyne-specific polyketide synthases (PKSEs) that can be phylogenetically distinguished as being involved in 9- versus 10-membered enediyne biosynthesis, suggesting that biosynthetic divergence might originate from differing PKSE chemistries. Recent in vitro studies have identified several compounds produced by the PKSE and associated thioesterase (TE), but condition-dependent product profiles make it difficult to ascertain a true catalytic difference between 9- and 10-membered PKSE-TE systems. Here we report that PKSE chemistry does not direct 9- versus 10-membered enediyne core biosynthetic divergence as revealed by comparing the products from three 9-membered and two 10-membered PKSE-TE systems under identical conditions using robust in vivo assays. Three independent experiments support a common catalytic function for 9- and 10-membered PKSEs by the production of a heptaene metabolite from: (i) all five cognate PKSE-TE pairs in Escherichia coli; (ii) the C-1027 and calicheamicin cognate PKSE-TEs in Streptomyces lividans K4-114; and (iii) selected native producers of both 9- and 10-membered enediynes. Furthermore, PKSEs and TEs from different 9- and 10-membered enediyne biosynthetic machineries are freely interchangeable, revealing that 9- versus 10-membered enediyne core biosynthetic divergence occurs beyond the PKSE-TE level. These findings establish a starting point for determining the origins of this biosynthetic divergence. PMID:20534556
Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.
Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben
2015-10-13
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.
Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases
Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben
2015-01-01
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866
Onwueme, Kenolisa C.; Ferreras, Julian A.; Buglino, John; Lima, Christopher D.; Quadri, Luis E. N.
2004-01-01
Mycobacterium tuberculosis (Mt) produces complex virulence-enhancing lipids with scaffolds consisting of phthiocerol and phthiodiolone dimycocerosate esters (PDIMs). Sequence analysis suggested that PapA5, a so-called polyketide-associated protein (Pap) encoded in the PDIM synthesis gene cluster, as well as PapA5 homologs found in Mt and other species, are a subfamily of acyltransferases. Studies with recombinant protein confirmed that PapA5 is an acetyltransferase. Deletion analysis in Mt demonstrated that papA5 is required for PDIM synthesis. We propose that PapA5 catalyzes diesterification of phthiocerol and phthiodiolone with mycocerosate. These studies present the functional characterization of a Pap and permit inferences regarding roles of other Paps in the synthesis of complex lipids, including the antibiotic rifamycin. PMID:15070765
Nakamura, H.; Wang, J. X.
2015-01-01
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering. PMID:29218151
Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo
2014-07-01
Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Batista, Andrea N L; Santos-Pinto, José Roberto A Dos; Batista, João M; Souza-Moreira, Tatiana M; Santoni, Mariana M; Zanelli, Cleslei F; Kato, Massuo J; López, Silvia N; Palma, Mario S; Furlan, Maysa
2017-05-26
Peperomia obtusifolia, an ornamental plant from the Piperaceae family, accumulates a series of secondary metabolites with interesting biological properties. From a biosynthesis standpoint, this species produces several benzopyrans derived from orsellinic acid, which is a polyketide typically found in fungi. Additionally, the chiral benzopyrans were reported as racemic and/or as diastereomeric mixtures, which raises questions about the level of enzymatic control in the cyclization step for the formation of the 3,4-dihydro-2H-pyran moiety. Therefore, this article describes the use of shotgun proteomic and transcriptome studies as well as phytochemical profiling for the characterization of the main biosynthesis pathways active in P. obtusifolia. This combined approach resulted in the identification of a series of proteins involved in its secondary metabolism, including tocopherol cyclase and prenyltransferases. The activity of these enzymes was supported by the phytochemical profiling performed in different organs of P. obtusifolia. However, the polyketide synthases possibly involved in the production of orsellinic acid could not be identified, suggesting that orsellinic acid may be produced by endophytes intimately associated with the plant.
Monoterpene synthases from common sage (Salvia officinalis)
Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan
1999-01-01
cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.
Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha
2015-03-01
The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in localized combination of conserved residues.
Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production.
Li, Taotao; Gong, Liang; Wang, Yong; Chen, Feng; Gupta, Vijai Kumar; Jian, Qijie; Duan, Xuewu; Jiang, Yueming
2017-07-05
Fusarium proliferatum as a fungal pathogen can produce fumonisin which causes a great threat to animal and human health. Proteomic approach was a useful tool for investigation into mycotoxin biosynthesis in fungal pathogens. In this study, we analyzed the fumonisin content and mycelium proteins of Fusarium proliferatum cultivated under the initial pH5 and 10. Fumonisin production after 10days was significantly induced in culture condition at pH10 than pH5. Ninety nine significantly differently accumulated protein spots under the two pH conditions were detected using two dimensional polyacrylamide gel electrophoresis and 89 of these proteins were successfully identified by MALDI-TOF/TOF and LC-ESI-MS/MS analysis. Among these 89 proteins, 45 were up-regulated at pH10 while 44 were up-accumulated at pH5. At pH10, these proteins were found to involve in the modification of fumonisin backbone including up-regulated polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase, which might contribute to the induction of fumonisin production. At pH5, these up-regulated proteins such as l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase might inhibit the condensation of fumonisin backbone, resulting in reduced production of fumonisins. These results may help us to understand the molecular mechanism of the fumonisin synthesis in F. proliferatum. To extend our understanding of the mechanism of the fumonisin biosynthesis of F. proliferatum, we reported the fumonisin production in relation to the differential proteins of F. proliferatum mycelium under two pH culture conditions. Among these 89 identified spots, 45 were up-accumulated at pH10 while 44 were up-accumulated at pH5. Our results revealed that increased fumonisin production at pH10 might be related to the induction of fumonisin biosynthesis caused by up-regulation of polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase. Meanwhile, the up-regulation of l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase at pH5 might be related to the inhibition of the condensation of fumonisin backbone, resulting in reduced production of fumonisin. These results may help us to understand better the molecular mechanism of the fumonisin synthesis in F. proliferatum and then broaden the current knowledge of the mechanism of the fumonisin biosynthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mahan, Kristina M; Klingeman, Dawn M; Hettich, Robert L; Parry, Ronald J; Graham, David E
2016-01-21
Streptomyces vitaminophilus produces pyrrolomycins, which are halogenated polyketide antibiotics. Some of the pyrrolomycins contain a rare nitro group located on the pyrrole ring. The 6.5-Mbp genome encodes 5,941 predicted protein-coding sequences in 39 contigs with a 71.9% G+C content. Copyright © 2016 Mahan et al.
Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).
Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A
2015-11-16
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wang, H-X; Chen, Y-Y; Ge, L; Fang, T-T; Meng, J; Liu, Z; Fang, X-Y; Ni, S; Lin, C; Wu, Y-Y; Wang, M-L; Shi, N-N; He, H-G; Hong, K; Shen, Y-M
2013-07-01
Ansamycins are a family of macrolactams that are synthesized by type I polyketide synthase (PKS) using 3-amino-5-hydroxybenzoic acid (AHBA) as the starter unit. Most members of the family have strong antimicrobial, antifungal, anticancer and/or antiviral activities. We aimed to discover new ansamycins and/or other AHBA-containing natural products from actinobacteria. Through PCR screening of AHBA synthase gene, we identified 26 AHBA synthase gene-positive strains from 206 plant-associated actinomycetes (five positives) and 688 marine-derived actinomycetes (21 positives), representing a positive ratio of 2·4-3·1%. Twenty-five ansamycins, including eight new compounds, were isolated from six AHBA synthase gene-positive strains through TLC-guided fractionations followed by repeated column chromatography. To gain information about those potential ansamycin gene clusters whose products were unknown, seven strains with phylogenetically divergent AHBA synthase genes were subjected to fosmid library construction. Of the seven gene clusters we obtained, three show characteristics for typical ansamycin gene clusters, and other four, from Micromonospora spp., appear to lack the amide synthase gene, which is unusual for ansamycin biosynthesis. The gene composition of these four gene clusters suggests that they are involved in the biosynthesis of a new family of hybrid PK-NRP compounds containing AHBA substructure. PCR screening of AHBA synthase is an efficient approach to discover novel ansamycins and other AHBA-containing natural products. This work demonstrates that the AHBA-based screening method is a useful approach for discovering novel ansamycins and other AHBA-containing natural products from new microbial resources. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Johnston, Chad W; Skinnider, Michael A; Wyatt, Morgan A; Li, Xiang; Ranieri, Michael R M; Yang, Lian; Zechel, David L; Ma, Bin; Magarvey, Nathan A
2015-09-28
Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC-MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products.
Spatial regulation of a common precursor from two distinct genes generates metabolite diversity
Guo, Chun -Jun; Sun, Wei -Wen; Bruno, Kenneth S.; ...
2015-07-13
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPSlike genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas inmore » conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.« less
Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B
2015-01-01
A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.
Gatekeeping versus Promiscuity in the Early Stages of the Andrimid Biosynthetic Assembly Line
Magarvey, Nathan A.; Fortin, Pascal D.; Thomas, Paul M.; Kelleher, Neil L.; Walsh, Christopher T.
2009-01-01
The antibiotic andrimid, a nanomolar inhibitor of bacterial acetyl coenzyme A carboxylase, is generated on an unusual polyketide/nonribosomal pep-tide enzyme assembly line in that all thiolation (T) domains/small-molecule building stations are on separate proteins. In addition, a transglutaminase homologue is used to condense andrimid building blocks together on the andrimid assembly line. The first two modules of the andrimid assembly line yields an octatrienoyl-β-Phe-thioester tethered to the AdmI T domain, with amide bond formation carried out by a free-standing transglutaminase homologue AdmF. Analysis of the aminomutase AdmH reveals its specific conversion from l-Phe to (S)-β-Phe, which in turn is activated by AdmJ and ATP to form (S)-β-Phe-aminoacyl-AMP. AdmJ then transfers the (S)-β-Phe moiety to one of the free-standing T domains, AdmI, but not AdmA, which instead gets loaded with an octatrienoyl group by other enzymes. AdmF, the amide synthase, will accept a variety of acyl groups in place of the octatrienoyl donor if presented on either AdmA or AdmI. AdmF will also use either stereoisomer of phenylalanine or β-Phe when presented on AdmA and AdmI, but not when placed on noncognate T domains. Further, we show the polyketide synthase proteins responsible for the polyunsaturated acyl cap can be bypassed in vitro with N-acetylcysteamine as a low-molecular-weight acyl donor to AdmF and also in vivo in an Escherichia coli strain bearing the andrimid biosynthetic gene cluster with a knockout in admA. PMID:18652473
Cruz, Jorddy N; Costa, José F S; Khayat, André S; Kuca, Kamil; Barros, Carlos A L; Neto, A M J C
2018-05-04
In this work, the binding mechanism of new Polyketide Synthase 13 (Pks13) inhibitors has been studied through molecular dynamics simulation and free energy calculations. The drug Tam1 and its analogs, belonging to the benzofuran class, were submitted to 100 ns simulations, and according to the results obtained for root mean square deviation, all the simulations converged from approximately 30 ns. For the analysis of backbone flotation, the root mean square fluctuations were plotted for the Cα atoms; analysis revealed that the greatest fluctuation occurred in the residues that are part of the protein lid domain. The binding free energy value (ΔG bind ) obtained for the Tam16 lead molecule was of -51.43 kcal/mol. When comparing this result with the ΔG bind values for the remaining analogs, the drug Tam16 was found to be the highest ranked: this result is in agreement with the experimental results obtained by Aggarwal and collaborators, where it was verified that the IC 50 for Tam16 is the smallest necessary to inhibit the Pks13 (IC 50 = 0.19 μM). The energy decomposition analysis suggested that the residues which most interact with inhibitors are: Ser1636, Tyr1637, Asn1640, Ala1667, Phe1670, and Tyr1674, from which the greatest energy contribution to Phe1670 was particularly notable. For the lead molecule Tam16, a hydrogen bond with the hydroxyl of the phenol not observed in the other analogs induced a more stable molecular structure. Aggarwal and colleagues reported this hydrogen bonding as being responsible for the stability of the molecule, optimizing its physic-chemical, toxicological, and pharmacokinetic properties.
Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy
2015-10-13
Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representationmore » of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.« less
Cheng, Juanli; Ma, Jincheng; Lin, Jinshui; Fan, Zhen-Chuan; Cronan, John E.
2012-01-01
Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C16:0), palmitoleic (C16:1) and cis-vaccenic (C18:1) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I. PMID:22194290
Cardenas, Javier; Da Silva, Nancy A
2016-07-01
Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Grindberg, Rashel V.; Ishoey, Thomas; Brinza, Dumitru; Esquenazi, Eduardo; Coates, R. Cameron; Liu, Wei-ting; Gerwick, Lena; Dorrestein, Pieter C.; Pevzner, Pavel; Lasken, Roger; Gerwick, William H.
2011-01-01
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites. PMID:21533272
Shim, Won-Bo; Woloshuk, Charles P.
2001-01-01
Fumonisins are a group of mycotoxins produced in corn kernels by the plant-pathogenic fungus Fusarium verticillioides. A mutant of the fungus, FT536, carrying a disrupted gene named FCC1 (for Fusarium cyclin C1) resulting in altered fumonisin B1 biosynthesis was generated. FCC1 contains an open reading frame of 1,018 bp, with one intron, and encodes a putative 319-amino-acid polypeptide. This protein is similar to UME3 (also called SRB11 or SSN8), a cyclin C of Saccharomyces cerevisiae, and contains three conserved motifs: a cyclin box, a PEST-rich region, and a destruction box. Also similar to the case for C-type cyclins, FCC1 was constitutively expressed during growth. When strain FT536 was grown on corn kernels or on defined minimal medium at pH 6, conidiation was reduced and FUM5, the polyketide synthase gene involved in fumonisin B1 biosynthesis, was not expressed. However, when the mutant was grown on a defined minimal medium at pH 3, conidiation was restored, and the blocks in expression of FUM5 and fumonisin B1 production were suppressed. Our data suggest that FCC1 plays an important role in signal transduction regulating secondary metabolism (fumonisin biosynthesis) and fungal development (conidiation) in F. verticillioides. PMID:11282612
Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A
2016-10-01
Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.
Lee, Wing-Sham; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Jetter, Reinhard
2016-01-01
The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. PMID:27225753
Hen-Avivi, Shelly; Savin, Orna; Racovita, Radu C; Lee, Wing-Sham; Adamski, Nikolai M; Malitsky, Sergey; Almekias-Siegl, Efrat; Levy, Matan; Vautrin, Sonia; Bergès, Hélène; Friedlander, Gilgi; Kartvelishvily, Elena; Ben-Zvi, Gil; Alkan, Noam; Uauy, Cristobal; Kanyuka, Kostya; Jetter, Reinhard; Distelfeld, Assaf; Aharoni, Asaph
2016-06-01
The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular genetic basis underlying the biosynthesis of β-diketones remains unclear. Here, we discovered that the wheat W1 locus contains a metabolic gene cluster mediating β-diketone biosynthesis. The cluster comprises genes encoding proteins of several families including type-III polyketide synthases, hydrolases, and cytochrome P450s related to known fatty acid hydroxylases. The cluster region was identified in both genetic and physical maps of glaucous and glossy tetraploid wheat, demonstrating entirely different haplotypes in these accessions. Complementary evidence obtained through gene silencing in planta and heterologous expression in bacteria supports a model for a β-diketone biosynthesis pathway involving members of these three protein families. Mutations in homologous genes were identified in the barley eceriferum mutants defective in β-diketone biosynthesis, demonstrating a gene cluster also in the β-diketone biosynthesis Cer-cqu locus in barley. Hence, our findings open new opportunities to breed major cereal crops for surface features that impact yield and stress response. © 2016 American Society of Plant Biologists. All rights reserved.
Cimmino, T; Rolain, J-M
2016-07-01
We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.
Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).
Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M
2010-07-01
Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.
Lowell, Andrew N; DeMars, Matthew D; Slocum, Samuel T; Yu, Fengan; Anand, Krithika; Chemler, Joseph A; Korakavi, Nisha; Priessnitz, Jennifer K; Park, Sung Ryeol; Koch, Aaron A; Schultz, Pamela J; Sherman, David H
2017-06-14
Polyketide synthases (PKSs) represent a powerful catalytic platform capable of effecting multiple carbon-carbon bond forming reactions and oxidation state adjustments. We explored the functionality of two terminal PKS modules that produce the 16-membered tylosin macrocycle, using them as biocatalysts in the chemoenzymatic synthesis of tylactone and its subsequent elaboration to complete the first total synthesis of the juvenimicin, M-4365, and rosamicin classes of macrolide antibiotics via late-stage diversification. Synthetic chemistry was employed to generate the tylactone hexaketide chain elongation intermediate that was accepted by the juvenimicin (Juv) ketosynthase of the penultimate JuvEIV PKS module. The hexaketide is processed through two complete modules (JuvEIV and JuvEV) in vitro, which catalyze elongation and functionalization of two ketide units followed by cyclization of the resulting octaketide into tylactone. After macrolactonization, a combination of in vivo glycosylation, selective in vitro cytochrome P450-mediated oxidation, and chemical oxidation was used to complete the scalable construction of a series of macrolide natural products in as few as 15 linear steps (21 total) with an overall yield of 4.6%.
Duke, Stephen O; Baerson, Scott R; Dayan, Franck E; Rimando, Agnes M; Scheffler, Brian E; Tellez, Mario R; Wedge, David E; Schrader, Kevin K; Akey, David H; Arthur, Frank H; De Lucca, Anthony J; Gibson, Donna M; Harrison, Howard F; Peterson, Joseph K; Gealy, David R; Tworkoski, Thomas; Wilson, Charles L; Morris, J Brad
2003-01-01
Recent research of the Agricultural Research Service of USDA on the use of natural products to manage pests is summarized. Studies of the use of both phytochemicals and diatomaceous earth to manage insect pests are discussed. Chemically characterized compounds, such as a saponin from pepper (Capsicum frutescens L), benzaldehyde, chitosan and 2-deoxy-D-glucose are being studied as natural fungicides. Resin glycosides for pathogen resistance in sweet potato and residues of semi-tropical leguminous plants for nematode control are also under investigation. Bioassay-guided isolation of compounds with potential use as herbicides or herbicide leads is underway at several locations. New natural phytotoxin molecular target sites (asparagine synthetase and fructose-1,6-bisphosphate aldolase) have been discovered. Weed control in sweet potato and rice by allelopathy is under investigation. Molecular approaches to enhance allelopathy in sorghum are also being undertaken. The genes for polyketide synthases involved in production of pesticidal polyketide compounds in fungi are found to provide clues for pesticide discovery. Gene expression profiles in response to fungicides and herbicides are being generated as tools to understand more fully the mode of action and to rapidly determine the molecular target site of new, natural fungicides and herbicides.
Mohammad, Hadi H; Connolly, Jack A; Song, Zhongshu; Hothersall, Joanne; Race, Paul R; Willis, Christine L; Simpson, Thomas J; Winn, Peter J; Thomas, Christopher M
2018-04-16
The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.
Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S
2008-05-22
Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.
2015-01-01
Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora’s promising secondary metabolome. PMID:25382643
Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S
2015-03-27
Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.
Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.
Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A
2017-01-20
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
An easy-to-perform photometric assay for methyltransferase activity measurements.
Schäberle, Till F; Siba, Christian; Höver, Thomas; König, Gabriele M
2013-01-01
Methyltransferases (MTs) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to a suitable substrate. Such methylations are important modifications in secondary metabolisms, especially on natural products produced by polyketide synthases and nonribosomal peptide synthetases, many of which are of special interest due to their prominent pharmacological activities (e.g., lovastatin, cyclosporin). To gain basic biochemical knowledge on the methylation process, it is of immense relevance to simplify methods concerning experimental problems caused by a large variety in substrates. Here, we present a photometric method to analyze MT activity by measuring SAM consumption in a coupled enzyme assay. Copyright © 2012 Elsevier Inc. All rights reserved.
Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg
2004-08-01
Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.
Janthanomsuk, Panyawut; Verduyn, Cornelis; Chauvatcharin, Somchai
2015-11-01
Fed-batch, pH auxostat cultivation of the docosahexaenoic acid (DHA)-producing microorganism Aurantiochytrium B072 was performed to obtain high cell density and record high productivity of both total fatty acid (TFA) and DHA. Using glucose feeding by carbon excess (C-excess) and by C-limitation at various feeding rates (70%, 50% or 20% of C-excess), high biomass density was obtained and DHA/TFA content (w/w) was improved from 30% to 37% with a 50% glucose feed rate when compared with C-excess. To understand the biochemistry behind these improvements, lipogenic enzyme assays and in silico metabolic flux calculations were used and revealed that enzyme activity and C-fluxes to TFA were reduced with C-limited feeding but that the carbon flux to the polyketide synthase pathway increased relative to the fatty acid synthase pathway. As a result, a new strategy to improve the DHA to TFA content while maintaining relatively high DHA productivity is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck
2017-02-01
Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.
Escudero, Leticia; Al-Refai, Mahmoud; Nieto, Cristina; Laatsch, Hartmut; Malpartida, Francisco; Seco, Elena M.
2015-01-01
The rimJ gene, which codes for a crotonyl-CoA carboxylase/reductase, lies within the biosynthetic gene cluster for two polyketides belonging to the polyene macrolide group (CE-108 and rimocidin) produced by Streptomyces diastaticus var. 108. Disruption of rimJ by insertional inactivation gave rise to a recombinant strain overproducing new polyene derivatives besides the parental CE-108 (2a) and rimocidin (4a). The structure elucidation of one of them, CE-108D (3a), confirmed the incorporation of an alternative extender unit for elongation step 13. Other compounds were also overproduced in the fermentation broth of rimJ disruptant. The new compounds are in vivo substrates for the previously described polyene carboxamide synthase PcsA. The rimJ disruptant strain, constitutively expressing the pcsA gene, allowed the overproduction of CE-108E (3b), the corresponding carboxamide derivative of CE-108D (3a), with improved pharmacological properties. PMID:26284936
Geranyl diphosphate synthase from mint
Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan
1999-01-01
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.
Geranyl diphosphate synthase from mint
Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.
1999-03-02
A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.
Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang
2015-11-01
Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.
Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro
2004-01-01
Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168
Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg
2002-01-01
Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088
Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.
1999-01-01
A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.
Croteau, Rodney Bruce; Crock, John E.
2005-01-25
A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagnhaufer, C.D.; Arteca, R.N.; Pell, E.J.
When potato plants (Solanum tuberosum L. cv Norland) are subjected to oxone stress ethylene is emitted. Increases in ethylene production are often the result of increased expression of the enzyme ACC synthase. We used the polymerase chain reaction (PCR) to clone a cDNA encoding an ozone-induced ACC synthase. After treating potato plants with 300 ppb ozone for 4 h, RNA was extracted using a guanidinium isothiocyanate method. Using degenerate oligonucleotides corresponding to several conserved regions of ACC synthase sequences reported from different plant tissues as primers, we were able to reverse transcribe the RNA and amplify a cDNA for ACCmore » synthase. The clone is 1098 bp in length encoding for 386 amino acids comprising [approximately]80% of the protein. Computer analysis of the deduced amino acid sequence showed that our clone is 50-70% homologous with ACC synthase genes cloned from other plant tissues. Using the cDNA as a probe in northern analysis we found that there is little or no expression in control tissue: however there is a large increase in the expression of the ACC synthase message in response to ozone treatment.« less
Hanhineva, Kati; Kokko, Harri; Siljanen, Henri; Rogachev, Ilana; Aharoni, Asaph; Kärenlampi, Sirpa O.
2009-01-01
The gene encoding stilbene synthase is frequently used to modify plant secondary metabolism with the aim of producing the self-defence phytoalexin resveratrol. In this study, strawberry (Fragaria×ananassa) was transformed with the NS-Vitis3 gene encoding stilbene synthase from frost grape (Vitis riparia) under the control of the cauliflower mosaic virus 35S and the floral filament-specific fil1 promoters. Changes in leaf metabolites were investigated with UPLC-qTOF-MS (ultra performance liquid chromatography-quadrupole time of flight mass spectrometry) profiling, and increased accumulation of cinnamate, coumarate, and ferulate derivatives concomitantly with a decrease in the levels of flavonols was observed, while the anticipated resveratrol or its derivatives were not detected. The changed metabolite profile suggested that chalcone synthase was down-regulated by the genetic modification; this was verified by decreased chalcone synthase transcript levels. Changes in the levels of phenolic compounds led to increased susceptibility of the transgenic strawberry to grey mould fungus. PMID:19443619
Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L
2011-07-01
The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either α-amyrin and/or β-amyrin synthase. MdOSC1 and MdOSC3 clustered with the multifunctional triterpene synthases, whereas MdOSC2 was most similar to the β-amyrin synthases. © 2011 The New Zealand Institute for Plant and Food Research Limited. Journal compilation © 2011 FEBS.
Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates
Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.
2008-01-01
Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765
Lessons from the synthetic chemist nature.
Jürjens, Gerrit; Kirschning, Andreas; Candito, David A
2015-05-01
This conceptual review examines the ideal multistep synthesis from the perspective of nature. We suggest that besides step- and redox economies, one other key to efficiency is steady state processing with intermediates that are immediately transformed to the next intermediate when formed. We discuss four of nature's strategies (multicatalysis, domino reactions, iteration and compartmentation) that commonly proceed via short-lived intermediates and show that these strategies are also part of the chemist's portfolio. We particularly focus on compartmentation which in nature is found microscopically within cells (organelles) and between cells and on a molecular level on multiprotein scaffolds (e.g. in polyketide synthases) and demonstrate how compartmentation is manifested in modern multistep flow synthesis.
Derntl, Christian; Rassinger, Alice; Srebotnik, Ewald; Mach, Robert L.
2016-01-01
ABSTRACT The industrially used ascomycete Trichoderma reesei secretes a typical yellow pigment during cultivation, while other Trichoderma species do not. A comparative genomic analysis suggested that a putative secondary metabolism cluster, containing two polyketide-synthase encoding genes, is responsible for the yellow pigment synthesis. This cluster is conserved in a set of rather distantly related fungi, including Acremonium chrysogenum and Penicillium chrysogenum. In an attempt to silence the cluster in T. reesei, two genes of the cluster encoding transcription factors were individually deleted. For a complete genetic proof-of-function, the genes were reinserted into the genomes of the respective deletion strains. The deletion of the first transcription factor (termed yellow pigment regulator 1 [Ypr1]) resulted in the full abolishment of the yellow pigment formation and the expression of most genes of this cluster. A comparative high-pressure liquid chromatography (HPLC) analysis of supernatants of the ypr1 deletion and its parent strain suggested the presence of several yellow compounds in T. reesei that are all derived from the same cluster. A subsequent gas chromatography/mass spectrometry analysis strongly indicated the presence of sorbicillin in the major HPLC peak. The presence of the second transcription factor, termed yellow pigment regulator 2 (Ypr2), reduces the yellow pigment formation and the expression of most cluster genes, including the gene encoding the activator Ypr1. IMPORTANCE Trichoderma reesei is used for industry-scale production of carbohydrate-active enzymes. During growth, it secretes a typical yellow pigment. This is not favorable for industrial enzyme production because it makes the downstream process more complicated and thus increases operating costs. In this study, we demonstrate which regulators influence the synthesis of the yellow pigment. Based on these data, we also provide indication as to which genes are under the control of these regulators and are finally responsible for the biosynthesis of the yellow pigment. These genes are organized in a cluster that is also found in other industrially relevant fungi, such as the two antibiotic producers Penicillium chrysogenum and Acremonium chrysogenum. The targeted manipulation of a secondary metabolism cluster is an important option for any biotechnologically applied microorganism. PMID:27520818
Chain elongation and cyclization in type III PKS DpgA.
Wu, Hai-Chen; Li, Yi-San; Liu, Yu-Chen; Lyu, Syue-Yi; Wu, Chang-Jer; Li, Tsung-Lin
2012-04-16
Chain elongation and cyclization of precursors of dihydroxyphenylacetyl-CoA (DPA-CoA) catalyzed by the bacterial type III polyketide synthase DpgA were studied. Two labile intermediates, di- and tri-ketidyl-CoA (DK- and TK-CoA), were proposed and chemically synthesized. In the presence of DpgABD, each of these with [(13)C(3)]malonyl-CoA (MA-CoA) was able to form partially (13)C-enriched DPA-CoA. By NMR and MS analysis, the distribution of (13)C atoms in the partially (13)C-enriched DPA-CoA shed light on how the polyketide chain elongates and cyclizes in the DpgA-catalyzed reaction. Polyketone intermediates elongate in a manner different from that which had been believed: two molecules of DK-CoA, or one DK-CoA plus one acetoacetyl-CoA (AA-CoA), but not two molecules of AA-CoA can form one molecule of DPA-CoA. As a result, polyketidyl-CoA serves as both the starter and extender, whereas polyketone-CoA without the terminal carboxyl group can only act as an extender. The terminal carboxyl group is crucial for the cyclization that likely takes place on CoA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calderone, Christopher T.; Bumpus, Stefanie B.; Kelleher, Neil L.; Walsh, Christopher T.; Magarvey, Nathan A.
2008-01-01
The polyketide signaling metabolites bacillaene and dihydrobacillaene are biosynthesized in Bacillus subtilis on an enzymatic assembly line with both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules acting along with catalytic domains servicing the assembly line in trans. These signaling metabolites possess the unusual starter unit α-hydroxyisocaproate (α-HIC). We show here that it arises from initial activation of α-ketoisocaproate (α-KIC) by the first adenylation domain of PksJ (a hybrid PKS/NRPS) and installation on the pantetheinyl arm of the adjacent thiolation (T) domain. The α-KIC unit is elongated to α-KIC-Gly by the second NRPS module in PksJ as demonstrated by mass spectrometric analysis. The third module of PksJ uses PKS logic and contains an embedded ketoreductase (KR) domain along with two adjacent T domains. We show that this KR domain reduces canonical 3-ketobutyryl chains but also the α-keto group of α-KIC-containing intermediates on the PksJ T-domain doublet. This KR activity accounts for the α-HIC moiety found in the dihydrobacillaene/bacillaene pair and represents an example of an assembly-line dual-function α- and β-KR acting on disparate positions of a growing chain intermediate. PMID:18723688
Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Igarashi, Yasuhiro
2015-01-01
Streptomyces sp. TP-A0598, isolated from seawater, produces lydicamycin, structurally unique type I polyketide bearing two nitrogen-containing five-membered rings, and four congeners TPU-0037-A, -B, -C, and -D. We herein report the 8 Mb draft genome sequence of this strain, together with classification and features of the organism and generation, annotation and analysis of the genome sequence. The genome encodes 7,240 putative ORFs, of which 4,450 ORFs were assigned with COG categories. Also, 66 tRNA genes and one rRNA operon were identified. The genome contains eight gene clusters involved in the production of polyketides and nonribosomal peptides. Among them, a PKS/NRPS gene cluster was assigned to be responsible for lydicamycin biosynthesis and a plausible biosynthetic pathway was proposed on the basis of gene function prediction. This genome sequence data will facilitate to probe the potential of secondary metabolism in marine-derived Streptomyces.
Rott, Markus; Martins, Nádia F.; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Kramer, David M.; Schöttler, Mark A.
2011-01-01
Tobacco (Nicotiana tabacum) plants strictly adjust the contents of both ATP synthase and cytochrome b6f complex to the metabolic demand for ATP and NADPH. While the cytochrome b6f complex catalyzes the rate-limiting step of photosynthetic electron flux and thereby controls assimilation, the functional significance of the ATP synthase adjustment is unknown. Here, we reduced ATP synthase accumulation by an antisense approach directed against the essential nuclear-encoded γ-subunit (AtpC) and by the introduction of point mutations into the translation initiation codon of the plastid-encoded atpB gene (encoding the essential β-subunit) via chloroplast transformation. Both strategies yielded transformants with ATP synthase contents ranging from 100 to <10% of wild-type levels. While the accumulation of the components of the linear electron transport chain was largely unaltered, linear electron flux was strongly inhibited due to decreased rates of plastoquinol reoxidation at the cytochrome b6f complex (photosynthetic control). Also, nonphotochemical quenching was triggered at very low light intensities, strongly reducing the quantum efficiency of CO2 fixation. We show evidence that this is due to an increased steady state proton motive force, resulting in strong lumen overacidification, which in turn represses photosynthesis due to photosynthetic control and dissipation of excitation energy in the antenna bed. PMID:21278125
Gillot, Guillaume; Jany, Jean-Luc; Dominguez-Santos, Rebeca; Poirier, Elisabeth; Debaets, Stella; Hidalgo, Pedro I; Ullán, Ricardo V; Coton, Emmanuel; Coton, Monika
2017-04-01
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Passari, Ajit K; Mishra, Vineet K; Gupta, Vijai K; Saikia, Ratul; Singh, Bhim P
2016-08-26
The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.
Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
Gold, Nicholas D; Gowen, Christopher M; Lussier, Francois-Xavier; Cautha, Sarat C; Mahadevan, Radhakrishnan; Martin, Vincent J J
2015-05-28
L-tyrosine is a common precursor for a wide range of valuable secondary metabolites, including benzylisoquinoline alkaloids (BIAs) and many polyketides. An industrially tractable yeast strain optimized for production of L-tyrosine could serve as a platform for the development of BIA and polyketide cell factories. This study applied a targeted metabolomics approach to evaluate metabolic engineering strategies to increase the availability of intracellular L-tyrosine in the yeast Saccharomyces cerevisiae CEN.PK. Our engineering strategies combined localized pathway engineering with global engineering of central metabolism, facilitated by genome-scale steady-state modelling. Addition of a tyrosine feedback resistant version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase Aro4 from S. cerevisiae was combined with overexpression of either a tyrosine feedback resistant yeast chorismate mutase Aro7, the native pentafunctional arom protein Aro1, native prephenate dehydrogenase Tyr1 or cyclohexadienyl dehydrogenase TyrC from Zymomonas mobilis. Loss of aromatic carbon was limited by eliminating phenylpyruvate decarboxylase Aro10. The TAL gene from Rhodobacter sphaeroides was used to produce coumarate as a simple test case of a heterologous by-product of tyrosine. Additionally, multiple strategies for engineering global metabolism to promote tyrosine production were evaluated using metabolic modelling. The T21E mutant of pyruvate kinase Cdc19 was hypothesized to slow the conversion of phosphoenolpyruvate to pyruvate and accumulate the former as precursor to the shikimate pathway. The ZWF1 gene coding for glucose-6-phosphate dehydrogenase was deleted to create an NADPH deficiency designed to force the cell to couple its growth to tyrosine production via overexpressed NADP(+)-dependent prephenate dehydrogenase Tyr1. Our engineered Zwf1(-) strain expressing TYRC ARO4(FBR) and grown in the presence of methionine achieved an intracellular L-tyrosine accumulation up to 520 μmol/g DCW or 192 mM in the cytosol, but sustained flux through this pathway was found to depend on the complete elimination of feedback inhibition and degradation pathways. Our targeted metabolomics approach confirmed a likely regulatory site at DAHP synthase and identified another possible cofactor limitation at prephenate dehydrogenase. Additionally, the genome-scale metabolic model identified design strategies that have the potential to improve availability of erythrose 4-phosphate for DAHP synthase and cofactor availability for prephenate dehydrogenase. We evaluated these strategies and provide recommendations for further improvement of aromatic amino acid biosynthesis in S. cerevisiae.
Cheng, Jeffrey B.; Russell, David W.
2009-01-01
Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. PMID:15220349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianmin; Weaver, L.M.; Herrmann, K.M.
A cDNA for potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, encodes a 56 KD polypeptide whose amino terminus resembles a chloroplast transit sequence. The cDNA was placed downstream of the phage T7 polymerase recognition sequence in plasmid pGEM-3Z. DNA of the resulting plasmid pGEM-DWZ directed T7 polymerase to synthesize potato DAHP synthase mRNA in vitro. The mRNA was used in wheat germ and rabbit reticulocyte lysates for the synthesis of {sup 35}S-labeled pro-DAHP synthase. The predominant translation product is a 59 KD polypeptide that can be immunoprecipitated by rabbit polyclonal antibodies raised againstmore » the 53 KD DAHP synthase purified from potato tubers. Isolated spinach chloroplasts process the 59 KD pro-DAHP synthase to a 50 KD polypeptide. The processed polypeptide is protected from protease degradation, suggesting uptake of the enzyme into the cell organelle. Fractionation of reisolated chloroplasts after import of pro-DAHP synthase showed mature enzyme in the stroma. The uptake and processing of DAHP synthase is inhibited by antibodies raised against the mature enzyme. Our results are consistent with the assumption that potato contains a nuclear DNA encoded DAHP synthase that is synthesized as a proenzyme and whose mature form resides in the chloroplasts. Our data provide further evidence that green plants synthesize aromatic amino acids in plastids.« less
Skiba, Meredith A; Sikkema, Andrew P; Moss, Nathan A; Lowell, Andrew N; Su, Min; Sturgis, Rebecca M; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L
2018-05-08
The unusual feature of a t-butyl group is found in several marine-derived natural products including apratoxin A, a Sec61 inhibitor produced by the cyanobacterium Moorea bouillonii PNG 5-198. Here, we determine that the apratoxin A t-butyl group is formed as a pivaloyl acyl carrier protein (ACP) by AprA, the polyketide synthase (PKS) loading module of the apratoxin A biosynthetic pathway. AprA contains an inactive "pseudo" GCN5-related N-acetyltransferase domain (ΨGNAT) flanked by two methyltransferase domains (MT1 and MT2) that differ distinctly in sequence. Structural, biochemical, and precursor incorporation studies reveal that MT2 catalyzes unusually coupled decarboxylation and methylation reactions to transform dimethylmalonyl-ACP, the product of MT1, to pivaloyl-ACP. Further, pivaloyl-ACP synthesis is primed by the fatty acid synthase malonyl acyltransferase (FabD), which compensates for the ΨGNAT and provides the initial acyl-transfer step to form AprA malonyl-ACP. Additionally, images of AprA from negative stain electron microscopy reveal multiple conformations that may facilitate the individual catalytic steps of the multienzyme module.
Dong, J G; Kim, W T; Yip, W K; Thompson, G A; Li, L; Bennett, A B; Yang, S F
1991-08-01
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)(+) RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3'-end was intact, it lacked a portion of sequence at the 5'-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5'-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.
Inhibition of Aspergillus parasiticus and cancer cells by marine actinomycete strains
NASA Astrophysics Data System (ADS)
Li, Ping; Yan, Peisheng
2014-12-01
Ten actinomycete strains isolated from the Yellow Sea off China's coasts were identified as belonging to two genera by 16S rDNA phylogenetic analysis: Streptomyces and Nocardiopsis. Six Streptomyces strains (MA10, 2SHXF01-3, MA35, MA05-2, MA05-2-1 and MA08-1) and one Nocardiopsis strain (MA03) were predicted to have the potential to produce aromatic polyketides based on the analysis of the KSα (ketoacyl-synthase) gene in the type II PKS (polyketides synthase) gene cluster. Four strains (MA03, MA01, MA10 and MA05-2) exhibited significant inhibitory effects on mycelia growth (inhibition rate >50%) and subsequent aflatoxin production (inhibition rate >75%) of the mutant aflatoxigenic Aspergillus parasiticus NFRI-95. The ethyl acetate extracts of the broth of these four strains displayed significant inhibitory effects on mycelia growth, and the IC50 values were calculated (MA03: 0.275 mg mL-1, MA01: 0.106 mg mL-1, MA10: 1.345 mg mL-1 and MA05-2: 1.362 mg mL-1). Five strains (2SHXF01-3, MA03, MA05-2, MA01 and MA08-1) were selected based on their high cytotoxic activities. The ethyl acetate extract of the Nocardiopsis strain MA03 was particularly noted for its high antitumor activity against human carcinomas of the cervix (HeLa), lung (A549), kidney (Caki-1) and liver (HepG2) (IC50: 2.890, 1.981, 3.032 and 2.603 μg mL-1, respectively). The extract also remarkably inhibited colony formation of HeLa cells at an extremely low concentration (0.5 μg mL-1). This study highlights that marine-derived actinomycetes are a huge resource of compounds for the biological control of aflatoxin contamination and the development of novel drugs for human carcinomas.
Wan, Xia; Peng, Yun-Feng; Zhou, Xue-Rong; Gong, Yang-Min; Huang, Feng-Hong; Moncalián, Gabriel
2016-02-06
Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC-MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1(Δ9t), C16:1(Δ7)). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation.
Microbial Flora Associated with the Halophyte–Salsola imbricate and Its Biotechnical Potential
Bibi, Fehmida; Strobel, Gary A.; Naseer, Muhammad I.; Yasir, Muhammad; Khalaf Al-Ghamdi, Ahmed A.; Azhar, Esam I.
2018-01-01
Halophytes are associated with the intertidal forest ecosystem of Saudi Arabia and seemingly have an immense potential for yielding useful and important natural products. In this study we have aimed to isolate and characterize the endophytic and rhizospheric bacterial communities from the halophyte, Salsola imbricata, In addition these bacterial strains were identified and selected strains were further studied for bioactive secondary metabolites. At least 168 rhizspheric and endophytic bacteria were isolated and of these 22 were active antagonists against the oomycetous fungal plant pathogens, Phytophthora capsici and Pythium ultimum. Active cultures were mainly identified with molecular techniques (16S r DNA) and this revealed 95.7–100% sequence similarities with relevant type strains. These microorgansims were grouped into four major classes: Actinobacteria, Firmicutes, β-Proteobacteria, and γ-Proteobacteria. Production of fungal cell wall lytic enzymes was detected mostly in members of Actinobacteria and Firmicutes. PCR screening for type I polyketide synthases (PKS-I), type II polyketide synthases (PKS-II) and nonribosomal peptide synthetases (NRPS) revealed 13 of the 22 strains (59%) were positive for at least one of these important biosynthetic genes that are known to be involved in the synthesis of important antibiotics. Four bacterial strains of Actinobacteria with potential antagonistic activity including two rhizobacteria, EA52 (Nocardiopsis sp.), EA58 (Pseudonocardia sp.) and two endophytic bacteria Streptomyces sp. (EA65) and Streptomyces sp. (EA67) were selected for secondary metabolite analyses using LC-MS. As a result, the presence of different bioactive compounds in the culture extracts was detected some of which are already reported for their diverse biological activities including antibiotics such as Sulfamethoxypyridazine, Sulfamerazine, and Dimetridazole. In conclusion, this study provides an insight into antagonistic bacterial population especially the Actinobacteria from S. imbricata, producing antifungal metabolites of medical significance and characterized taxonomically in future. PMID:29445362
Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation
Raisch, Jennifer; Buc, Emmanuel; Bonnet, Mathilde; Sauvanet, Pierre; Vazeille, Emilie; de Vallée, Amélie; Déchelotte, Pierre; Darcha, Claude; Pezet, Denis; Bonnet, Richard; Bringer, Marie-Agnès; Darfeuille-Michaud, Arlette
2014-01-01
AIM: To provide further insight into the characterization of mucosa-associated Escherichia coli (E. coli) isolated from the colonic mucosa of cancer patients. METHODS: Phylogroups and the presence of cyclomodulin-encoding genes of mucosa-associated E. coli from colon cancer and diverticulosis specimens were determined by PCR. Adhesion and invasion experiments were performed with I-407 intestinal epithelial cells using gentamicin protection assay. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) expression in T84 intestinal epithelial cells was measured by enzyme-linked immunosorbent assay and by Western Blot. Gut colonization, inflammation and pro-carcinogenic potential were assessed in a chronic infection model using CEABAC10 transgenic mice. Cell proliferation was analyzed by real-time mRNA quantification of PCNA and immunohistochemistry staining of Ki67. RESULTS: Analysis of mucosa-associated E. coli from colon cancer and diverticulosis specimens showed that whatever the origin of the E. coli strains, 86% of cyclomodulin-positive E. coli belonged to B2 phylogroup and most harbored polyketide synthase (pks) island, which encodes colibactin, and/or cytotoxic necrotizing factor (cnf) genes. In vitro assays using I-407 intestinal epithelial cells revealed that mucosa-associated B2 E. coli strains were poorly adherent and invasive. However, mucosa-associated B2 E. coli similarly to Crohn’s disease-associated E. coli are able to induce CEACAM6 expression in T84 intestinal epithelial cells. In addition, in vivo experiments using a chronic infection model of CEACAM6 expressing mice showed that B2 E. coli strain 11G5 isolated from colon cancer is able to highly persist in the gut, and to induce colon inflammation, epithelial damages and cell proliferation. CONCLUSION: In conclusion, these data bring new insights into the ability of E. coli isolated from patients with colon cancer to establish persistent colonization, exacerbate inflammation and trigger carcinogenesis. PMID:24914378
Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric
2016-01-01
The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666
Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.
2011-01-01
Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin. PMID:21665968
Gómez, Cristina; Horna, Dina H; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J; Braña, Alfredo F; Méndez, Carmen; Salas, José A
2011-08-01
Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glutamate synthase genes have been identified in S. lydicus. The expression of slgE3 is increased up to 9-fold at the onset of streptolydigin biosynthesis and later decreases to ∼2-fold over the basal level. In contrast, the expression of housekeeping glutamate synthases decreases when streptolydigin begins to be synthesized. SlgE1 and SlgE2 are the two subunits of a glutamate mutase that would convert glutamate into 3-methylaspartate. Deletion of slgE1-slgE2 led to the production of two compounds containing a lateral side chain derived from glutamate instead of 3-methylaspartate. Expression of this glutamate mutase also reaches a peak increase of up to 5.5-fold coinciding with the onset of antibiotic production. Overexpression of either slgE3 or slgE1-slgE2 in S. lydicus led to an increase in the yield of streptolydigin.
2014-01-01
Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome modifications. New USER-Bricks with additional functionality can easily be added to the system by future users. The optimized protocol for ATMT of F. avenaceum represents the first reported targeted genome modification by double homologous recombination of this plant pathogen and will allow for future characterization of this fungus. Functional linkage of FaPKS6 to the production of the mycotoxin fusaristatin A serves as a first testimony to this. PMID:25048842
Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575.
Pickens, Lauren B; Kim, Woncheol; Wang, Peng; Zhou, Hui; Watanabe, Kenji; Gomi, Shuichi; Tang, Yi
2009-12-09
SF2575 1 is a tetracycline polyketide produced by Streptomyces sp. SF2575 and displays exceptionally potent anticancer activity toward a broad range of cancer cell lines. The structure of SF2575 is characterized by a highly substituted tetracycline aglycon. The modifications include methylation of the C-6 and C-12a hydroxyl groups, acylation of the 4-(S)-hydroxyl with salicylic acid, C-glycosylation of the C-9 of the D-ring with D-olivose and further acylation of the C4'-hydroxyl of D-olivose with the unusual angelic acid. Understanding the biosynthesis of SF2575 can therefore expand the repertoire of enzymes that can modify tetracyclines, and facilitate engineered biosynthesis of SF2575 analogues. In this study, we identified, sequenced, and functionally analyzed the ssf biosynthetic gene cluster which contains 40 putative open reading frames. Genes encoding enzymes that can assemble the tetracycline aglycon, as well as installing these unique structural features, are found in the gene cluster. Biosynthetic intermediates were isolated from the SF2575 culture extract to suggest the order of pendant-group addition is C-9 glycosylation, C-4 salicylation, and O-4' angelylcylation. Using in vitro assays, two enzymes that are responsible for C-4 acylation of salicylic acid were identified. These enzymes include an ATP-dependent salicylyl-CoA ligase SsfL1 and a putative GDSL family acyltransferase SsfX3, both of which were shown to have relaxed substrate specificity toward substituted benzoic acids. Since the salicylic acid moiety is critically important for the anticancer properties of SF2575, verification of the activities of SsfL1 and SsfX3 sets the stage for biosynthetic modification of the C-4 group toward structure-activity relationship studies of SF2575. Using heterologous biosynthesis in Streptomyces lividans, we also determined that biosynthesis of the SF2575 tetracycline aglycon 8 parallels that of oxytetracycline 4 and diverges after the assembly of 4-keto-anhydrotetracycline 51. The minimal ssf polyketide synthase together with the amidotransferase SsfD produced the amidated decaketide backbone that is required for the formation of 2-naphthacenecarboxamide skeleton. Additional enzymes, such as cyclases C-6 methyltransferase and C-4/C-12a dihydroxylase, were functionally reconstituted.
Multiplex Detection of Aspergillus Species.
Martínez-Culebras, Pedro; Selma, María Victoria; Aznar, Rosa
2017-01-01
Multiplex real-time polymerase chain reaction (PCR) provides a fast and accurate DNA-based tool for the simultaneous amplification of more than one target sequence in a single reaction. Here a duplex real-time PCR assay is described for the simultaneous detection of Aspergillus carbonarius and members of the Aspergillus niger aggregate, which are the main responsible species for ochratoxin A (OTA) contamination in grapes. This single tube reaction targets the beta-ketosynthase and the acyl transferase domains of the polyketide synthase of A. carbonarius and the A. niger aggregate, respectively.Besides, a rapid and efficient fungi DNA extraction procedure is described suitable to be applied in wine grapes. It includes a pulsifier equipment to remove conidia from grapes which prevents releasing of PCR inhibitors.
Sutton, Kristin A.; Breen, Jennifer; Russo, Thomas A.; Schultz, L. Wayne; Umland, Timothy C.
2016-01-01
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301–Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate. PMID:26919521
Sutton, Kristin A; Breen, Jennifer; Russo, Thomas A; Schultz, L Wayne; Umland, Timothy C
2016-03-01
The enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the sixth step of the seven-step shikimate pathway. Chorismate, the product of the pathway, is a precursor for the biosynthesis of aromatic amino acids, siderophores and metabolites such as folate, ubiquinone and vitamin K. The shikimate pathway is present in bacteria, fungi, algae, plants and apicomplexan parasites, but is absent in humans. The EPSP synthase enzyme produces 5-enolpyruvylshikimate 3-phosphate and phosphate from phosphoenolpyruvate and shikimate 3-phosphate via a transferase reaction, and is the target of the herbicide glyphosate. The Acinetobacter baumannii gene encoding EPSP synthase, aroA, has previously been demonstrated to be essential during host infection for the growth and survival of this clinically important drug-resistant ESKAPE pathogen. Prephenate dehydrogenase is also encoded by the bifunctional A. baumannii aroA gene, but its activity is dependent upon EPSP synthase since it operates downstream of the shikimate pathway. As part of an effort to evaluate new antimicrobial targets, recombinant A. baumannii EPSP (AbEPSP) synthase, comprising residues Ala301-Gln756 of the aroA gene product, was overexpressed in Escherichia coli, purified and crystallized. The crystal structure, determined to 2.37 Å resolution, is described in the context of a potential antimicrobial target and in comparison to EPSP synthases that are resistant or sensitive to the herbicide glyphosate.
Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un
2016-12-01
Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.
Chen, Dandan; Zhang, Qi; Zhang, Qinglin; Cen, Peilin
2012-01-01
FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks. PMID:22582065
Peterbauer, T; Mucha, J; Mayer, U; Popp, M; Glössl, J; Richter, A
1999-12-01
Stachyose is the major soluble carbohydrate in seeds of a number of important crop species. It is synthesized from raffinose and galactinol by the action of stachyose synthase (EC 2.4.1.67). We report here on the identification of a cDNA encoding stachyose synthase from seeds of adzuki bean (Vigna angularis Ohwi et Ohashi). Based on internal amino acid sequences of the enzyme purified from adzuki bean, oligonucleotides were designed and used to amplify corresponding sequences from adzuki bean cDNA by RT-PCR, followed by rapid amplification of cDNA ends (RACE-PCR). The complete cDNA sequence comprised 3046 nucleotides and included an open reading frame which encoded a polypeptide of 857 amino acid residues. The entire coding region was amplified by PCR, engineered into the baculovirus expression vector pVL1393 and introduced into Spodoptera frugiperda (Sf21) insect cells for heterologous expression. The recombinant protein was immunologically reactive with polyclonal antibodies raised against stachyose synthase purified from adzuki bean and was shown to be a functional stachyose synthase with the same catalytic properties as its native counterpart. High levels of stachyose synthase mRNA were transiently accumulated midway through seed development, and the enzyme was also present in mature seeds and during germination.
Kaltenegger, Elisabeth; Eich, Eckart; Ober, Dietrich
2013-01-01
Homospermidine synthase (HSS), the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, is known to have its origin in the duplication of a gene encoding deoxyhypusine synthase. To study the processes that followed this gene duplication event and gave rise to HSS, we identified sequences encoding HSS and deoxyhypusine synthase from various species of the Convolvulaceae. We show that HSS evolved only once in this lineage. This duplication event was followed by several losses of a functional gene copy attributable to gene loss or pseudogenization. Statistical analyses of sequence data suggest that, in those lineages in which the gene copy was successfully recruited as HSS, the gene duplication event was followed by phases of various selection pressures, including purifying selection, relaxed functional constraints, and possibly positive Darwinian selection. Site-specific mutagenesis experiments have confirmed that the substitution of sites predicted to be under positive Darwinian selection is sufficient to convert a deoxyhypusine synthase into a HSS. In addition, analyses of transcript levels have shown that HSS and deoxyhypusine synthase have also diverged with respect to their regulation. The impact of protein–protein interaction on the evolution of HSS is discussed with respect to current models of enzyme evolution. PMID:23572540
Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong; Lee, Sang-Woo; Oh, Min-Kyu
2017-02-17
Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5'-untranslated region sequence of gltA encoding citrate synthase was designed using an expression prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate that redistributing carbon flux using genome editing is an efficient engineering tool for metabolite overproduction.
Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing
2016-03-01
Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miyanaga, Akimasa
2017-12-01
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Koczyk, Grzegorz; Dawidziuk, Adam; Popiel, Delfina
2015-11-03
In recent years, the influx of newly sequenced fungal genomes has enabled sampling of secondary metabolite biosynthesis on an unprecedented scale. However, explanations of extant diversity which take into account both large-scale phylogeny reconstructions and knowledge gained from multiple genome projects are still lacking. We analyzed the evolutionary sources of genetic diversity in aromatic polyketide biosynthesis in over 100 model fungal genomes. By reconciling the history of over 400 nonreducing polyketide synthases (NR-PKSs) with corresponding species history, we demonstrate that extant fungal NR-PKSs are clades of distant siblings, originating from a burst of duplications in early Pezizomycotina and thinned by extensive losses. The capability of higher fungi to biosynthesize the simplest precursor molecule (orsellinic acid) is highlighted as an ancestral trait underlying biosynthesis of aromatic compounds. This base activity was modified during early evolution of filamentous fungi, toward divergent reaction schemes associated with biosynthesis of, for example, aflatoxins and fusarubins (C4-C9 cyclization) or various anthraquinone derivatives (C6-C11 cyclization). The functional plasticity is further shown to have been supplemented by modularization of domain architecture into discrete pieces (conserved splice junctions within product template domain), as well as tight linkage of key accessory enzyme families and divergence in employed transcriptional factors. Although the majority of discord between species and gene history is explained by ancient duplications, this landscape has been altered by more recent duplications, as well as multiple horizontal gene transfers. The 25 detected transfers include previously undescribed events leading to emergence of, for example, fusarubin biosynthesis in Fusarium genus. Both the underlying data and the results of present analysis (including alternative scenarios revealed by sampling multiple reconciliation optima) are maintained as a freely available web-based resource: http://cropnet.pl/metasites/sekmet/nrpks_2014. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Heterologous pathway assembly reveals molecular steps of fungal terreic acid biosynthesis.
Kong, Chuixing; Huang, Hezhou; Xue, Ying; Liu, Yiqi; Peng, Qiangqiang; Liu, Qi; Xu, Qin; Zhu, Qiaoyun; Yin, Ying; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao
2018-02-01
Terreic acid is a potential anticancer drug as it inhibits Bruton's tyrosine kinase; however, its biosynthetic molecular steps remain unclear. In this work, the individual reactions of terreic acid biosynthesis were determined by stepwise pathway assembly in a heterologous host, Pichia pastoris, on the basis of previous knockout studies in a native host, Aspergillus terreus. Polyketide synthase AtX was found to catalyze the formation of partially reduced polyketide 6-methylsalicylic acid, followed by 3-methylcatechol synthesis by salicylate 1-monooxygenase AtA-mediated decarboxylative hydroxylation of 6-methylsalicylic acid. Our results show that cytochrome P450 monooxygenase AtE hydroxylates 3-methylcatechol, thus producing the next product, 3-methyl-1,2,4-benzenetriol. A smaller putative cytochrome P450 monooxygenase, AtG, assists with this step. Then, AtD causes epoxidation and hydroxyl oxidation of 3-methyl-1,2,4-benzenetriol and produces a compound terremutin, via which the previously unknown function of AtD was identified as cyclooxygenation. The final step involves an oxidation reaction of a hydroxyl group by a glucose-methanol-choline oxidoreductase, AtC, which leads to the final product: terreic acid. Functions of AtD and AtG were determined for the first time. All the genes were reanalyzed and all intermediates and final products were isolated and identified. Our model fully defines the molecular steps and corrects previous results from the literature.
Ohto, C; Ishida, C; Nakane, H; Muramatsu, M; Nishino, T; Obata, S
1999-05-01
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 degrees C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 degrees C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C10) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).
Croteau, Rodney Bruce; Wildung, Mark Raymond; Lange, Bernd Markus; McCaskill, David G.
2001-01-01
cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.
Fukuda, K; Watanabe, M; Asano, K; Ouchi, K; Takasawa, S
1991-12-01
o-Fluoro-DL-phenylalanine (OFP)-resistant mutants which overproduce beta-phenethyl-alcohol were isolated from a laboratory strain of Saccharomyces cerevisiae. Cells of one of the mutants accumulated tyrosine and phenylalanine 1.5-3 fold more than did wild-type cells. Its 3-deoxy-D-arabino-hepturosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15), encoded by ARO4, was free from feedback inhibition by tyrosine. Genetic analysis revealed that the mutation was controlled by a single dominant gene, ARO4-OFP, encoding feedback-resistant DAHP synthase by tyrosine, and that this gene caused both the OFP resistance and beta-phenethyl-alcohol overproduction. This was supported by molecular genetic studies using cloned ARO4 both from the wild-type and its mutant strain.
Herman, Nicolaus A; Kim, Seong Jong; Li, Jeffrey S; Cai, Wenlong; Koshino, Hiroyuki; Zhang, Wenjun
2017-11-15
Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications.
Eustáquio, Alessandra S.; Janso, Jeffrey E.; Ratnayake, Anokha S.; O’Donnell, Christopher J.; Koehn, Frank E.
2014-01-01
Spliceostatins are potent spliceosome inhibitors biosynthesized by a hybrid nonribosomal peptide synthetase−polyketide synthase (NRPS−PKS) system of the trans-acyl transferase (AT) type. Burkholderia sp. FERM BP-3421 produces hemiketal spliceostatins, such as FR901464, as well as analogs containing a terminal carboxylic acid. We provide genetic and biochemical evidence for hemiketal biosynthesis by oxidative decarboxylation rather than the previously hypothesized Baeyer–Villiger oxidative release postulated to be catalyzed by a flavin-dependent monooxygenase (FMO) activity internal to the last module of the PKS. Inactivation of Fe(II)/α-ketoglutarate–dependent dioxygenase gene fr9P led to loss of hemiketal congeners, whereas the mutant was still able to produce all major carboxylic acid-type compounds. FMO mutants, on the other hand, produced both hemiketal and carboxylic acid analogs containing an exocyclic methylene instead of an epoxide, indicating that the FMO is involved in epoxidation rather than Baeyer–Villiger oxidation. Moreover, recombinant Fr9P enzyme was shown to catalyze hydroxylation to form β-hydroxy acids, which upon decarboxylation led to hemiketal FR901464. Finally, a third oxygenase activity encoded in the biosynthetic gene cluster, the cytochrome P450 monooxygenase Fr9R, was assigned as a 4-hydroxylase based on gene inactivation results. Identification and deletion of the gene involved in hemiketal formation allowed us to generate a strain—the dioxygenase fr9P− mutant—that accumulates only the carboxylic acid-type spliceostatins, which are as potent as the hemiketal analogs, when derivatized to increase cell permeability, but are chemically more stable. PMID:25097259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Robert; Salamov, Asaf; Brown, Daren W.
Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rotmore » classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.« less
Gao, Shigang; Li, Yaqian; Gao, Jinxin; Suo, Yujuan; Fu, Kehe; Li, Yingying; Chen, Jie
2014-07-24
Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China. Genome sequencing of the pathogen will provide important information for globally understanding its virulence mechanism. We report the genome sequences of a highly virulent C. lunata strain. Phylogenomic analysis indicates that C. lunata was evolved from Bipolaris maydis (Cochliobolus heterostrophus). The highly virulent strain has a high potential to evolve into other pathogenic stains based on analyses on transposases and repeat-induced point mutations. C. lunata has a smaller proportion of secreted proteins as well as B. maydis than entomopathogenic fungi. C. lunata and B. maydis have a similar proportion of protein-encoding genes highly homologous to experimentally proven pathogenic genes from pathogen-host interaction database. However, relative to B. maydis, C. lunata possesses not only many expanded protein families including MFS transporters, G-protein coupled receptors, protein kinases and proteases for transport, signal transduction or degradation, but also many contracted families including cytochrome P450, lipases, glycoside hydrolases and polyketide synthases for detoxification, hydrolysis or secondary metabolites biosynthesis, which are expected to be crucial for the fungal survival in varied stress environments. Comparative transcriptome analysis between a lowly virulent C. lunata strain and its virulence-increased variant induced by resistant host selection reveals that the virulence increase of the pathogen is related to pathways of toxin and melanin biosynthesis in stress environments, and that the two pathways probably have some overlaps. The data will facilitate a full revelation of pathogenic mechanism and a better understanding of virulence differentiation of C. lunata.
Feng, Yan; Mannion, Anthony; Ge, Zhongming; Garcia, Alexis; Scott, Kathleen E.; Caron, Tyler J.; Jacobsen, Johanne T.; Victora, Gabriel; Jaenisch, Rudolf; Fox, James G.
2018-01-01
Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli. PMID:29554148
Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.
2014-01-01
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869
Fernández-Bodega, Ángeles; Álvarez-Álvarez, Rubén; Liras, Paloma; Martín, Juan F
2017-08-01
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.
chs-4, a class IV chitin synthase gene from Neurospora crassa.
Din, A B; Specht, C A; Robbins, P W; Yarden, O
1996-02-05
In Saccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by the CSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized as CSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomycete Neurospora crassa and have used a "reverse genetics" approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of a N. crassa gene(designated chs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those of S. cerevisiae and Candida albicans. N. crassa strains in which chs-4 had been inactivated by the Repeat-Induced point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in the chs-4RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme in N. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.
Song, Tian-Yang; Xu, Zi-Fei; Chen, Yong-Hong; Ding, Qiu-Yan; Sun, Yu-Rong; Miao, Yang; Zhang, Ke-Qin; Niu, Xue-Mei
2017-05-24
Types of polyketide synthase-terpenoid synthase (PKS-TPS) hybrid metabolites, including arthrosporols with significant morphological regulatory activity, have been elucidated from nematode-trapping fungus Arthrobotrys oligospora. A previous study suggested that the gene cluster AOL_s00215 in A. oligospora was involved in the production of arthrosporols. Here, we report that disruption of one cytochrome P450 monooxygenase gene AOL_s00215g280 in the cluster resulted in significant phenotypic difference and much aerial hyphae. A further bioassay indicated that the mutant showed a dramatic decrease in the conidial formation but developed numerous traps and killed 85% nematodes within 6 h in contact with prey, in sharp contrast to the wild-type strain with no obvious response. Chemical investigation revealed huge accumulation of three new PKS-TPS epoxycyclohexone derivatives with different oxygenated patterns around the epoxycyclohexone moiety and the absence of arthrosporols in the cultural broth of the mutant ΔAOL_s00215g280. These findings suggested that a study on the biosynthetic pathway for morphological regulatory metabolites in nematode-trapping fungus would provide an efficient way to develop new fungal biocontrol agents.
Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran
2009-06-30
We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.
Schilmiller, Anthony L.; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L.; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L.; Pichersky, Eran
2009-01-01
We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce β-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the “universal” substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes. PMID:19487664
Characterization of the human gene (TBXAS1) encoding thromboxane synthase.
Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T
1994-09-01
The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.
Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping
2015-01-01
Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen responses may play important roles in regulating the yield of oleoresin. These DEGs are worthy of special attention in future studies. PMID:26167875
Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka
2005-01-01
We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.
Molecular and genomic basis of volatile-mediated indirect defense against insects in rice.
Yuan, Joshua S; Köllner, Tobias G; Wiggins, Greg; Grant, Jerome; Degenhardt, Jörg; Chen, Feng
2008-08-01
Rice plants fed on by fall armyworm (Spodoptera frugiperda, FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris. Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase (TPS) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S-linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.
Pereira-Junior, R A; Huarte-Bonnet, C; Paixão, F R S; Roberts, D W; Luz, C; Pedrini, N; Fernandes, É K K
2018-02-23
The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m -2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m -2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs. © 2018 The Society for Applied Microbiology.
Haselier, André; Akbari, Hana; Weth, Agnes; Baumgartner, Werner; Frentzen, Margrit
2010-01-01
Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the formation of cytidinediphosphate diacylglycerol, an essential precursor of anionic phosphoglycerolipids like phosphatidylglycerol or -inositol. In plant cells, CDS isozymes are located in plastids, mitochondria, and microsomes. Here, we show that these isozymes are encoded by five genes in Arabidopsis (Arabidopsis thaliana). Alternative translation initiation or alternative splicing of CDS2 and CDS4 transcripts can result in up to 10 isoforms. Most of the cDNAs encoding the various plant isoforms were functionally expressed in yeast and rescued the nonviable phenotype of the mutant strain lacking CDS activity. The closely related genes CDS4 and CDS5 were found to encode plastidial isozymes with similar catalytic properties. Inactivation of both genes was required to obtain Arabidopsis mutant lines with a visible phenotype, suggesting that the genes have redundant functions. Analysis of these Arabidopsis mutants provided further independent evidence for the importance of plastidial phosphatidylglycerol for structure and function of thylakoid membranes and, hence, for photoautotrophic growth. PMID:20442275
Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages
NASA Astrophysics Data System (ADS)
Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl
1992-04-01
Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.
Yu, Xi; Huo, Liang; Liu, Heng; Chen, Longfei; Wang, Yu; Zhu, Xudong
2015-10-01
Melanin plays an important role in regulating various biological processes in many fungi. However, its biological role in conidiation remains largely elusive. We report here that conidia production, morphogenesis, integrity, germination and their viability in Pestalotiopsis microspora require the polyketide-derived melanin. A polyketide synthase gene, pks1, was identified and demonstrated responsible for melanin biosynthesis in this fungus. A targeted deletion mutant strain Δpks1 displayed a defect in pigmentation of conidia and had an albino colonial phenotype. Interestingly, Δpks1 produced approximately 6-fold as many conidia as the wild type did, suggesting a negative modulation of melanin on conidia production in this fungus. Moreover, the conidia failed to develop into the normal five-cell morphology, rather the three main-body cells separated via constriction at the original septum position to generate three independent mutant conidia. This result suggests a novel role of melanin in the formation of the multi-cellular conidia. Germ tubes could develop from the three different types of mutant conidia and kept elongating, despite a significantly lower germination rate was observed for them. Still more, the unpigmented conidia became permeable to Calcofluor White and DAPI, suggesting the integrity of the conidia was impaired. Deliberate inhibition of melanin biosynthesis by a specific inhibitor, tricyclazole, led to a similar phenotypes. This work demonstrates a new function of fungal melanin in conidial development. Copyright © 2015 Elsevier GmbH. All rights reserved.
Hemmerling, Franziska; Lebe, Karen E; Wunderlich, Johannes; Hahn, Frank
2018-03-08
The divinylcyclopropane (DVC) fragment of the ambruticins is proposed to be formed by a unique polyene cyclisation mechanism, in which the unusual didomain AmbG plays a key role. It is proposed to activate the branched thioester carboxylic acid resulting from polyene cyclisation and to transfer it to its associated acyl carrier protein (ACP). After oxidative decarboxylation, the intermediate is channelled back into polyketide synthase (PKS) processing. AmbG was previously annotated as an adenylation-thiolation didomain with a very unusual substrate selectivity code but has not yet been biochemically studied. On the basis of sequence and homology model analysis, we reannotate AmbG as a fatty acyl:adenylate ligase (FAAL)-acyl carrier protein didomain with unusual substrate specificity. The expected adenylate-forming activity on fatty acids was confirmed by in vitro studies. AmbG also adenylates a number of structurally diverse carboxylic acids, including functionalised fatty acids and unsaturated and aromatic carboxylic acids. HPLC-MS analysis and competition experiments show that AmbG preferentially acylates its ACP with long-chain hydrophobic acids and tolerates a π system and a branch near the carboxylic acid. AmbG is the first characterised example of a FAAL-ACP didomain that is centrally located in a PKS and apparently activates a polyketidic intermediate. This is an important step towards deeper biosynthetic studies such as partial reconstitution of the ambruticin pathway to elucidate DVC formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biosynthesis of Rishirilide B.
Schwarzer, Philipp; Wunsch-Palasis, Julia; Bechthold, Andreas; Paululat, Thomas
2018-03-07
Rishirilide B was isolated from Streptomyces rishiriensis and Streptomyces bottropensis on the basis of its inhibitory activity towards alpha-2-macroglobulin. The biosynthesis of rishirilide B was investigated by feeding experiments with different 13 C labelled precursors using the heterologous host Streptomyces albus J1074::cos4 containing a cosmid encoding of the gene cluster responsible for rishirilide B production. NMR spectroscopic analysis of labelled compounds demonstrate that the tricyclic backbone of rishirilide B is a polyketide synthesized from nine acetate units. One of the acetate units is decarboxylated to give a methyl group. The origin of the starter unit was determined to be isobutyrate.
Mechanisms of fatty acid synthesis in marine fungus-like protists.
Xie, Yunxuan; Wang, Guangyi
2015-10-01
Thraustochytrids are unicellular fungus-like protists and are well known for their ability to produce interesting nutraceutical compounds. Significant efforts have been made to improve their efficient production of important fatty acids (FAs), mostly by optimizing fermentation conditions and selecting highly productive thraustochytrid strains. Furthermore, noticeable improvements have been made in understanding the mechanism of FA biosynthesis, allowing for a better understanding of how thraustochytrids assemble these unique metabolites and how their biosynthesis is coupled with other related pathways. This review summarizes recent achievements on two major FA biosynthesis pathways, the standard pathway and the polyketide synthase pathway, and detail features of individual enzymes involved in FA biosynthesis, biotechnological advances in pathway engineering and enzyme characterization, and the discovery of other pathways that affect the efficiency of FA accumulation. Perspectives of biotechnological potential application of thraustochytrids are also discussed.
Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna
2014-12-17
Seaweed-associated heterotrophic bacterial communities were screened to isolate potentially useful antimicrobial strains, which were characterized by phylogenetic analysis. The bacteria were screened for the presence of metabolite genes involved in natural product biosynthetic pathway, and the structural properties of secondary metabolites were correlated with the genes. Bioactivity-guided isolation of polyene antibiotic 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin from Bacillus subtilis MTCC10403 associated with seaweed Anthophycus longifolius using mass spectrometry and extensive 2D-NMR studies was carried out. The newly isolated macrolactin compound is a bactericidal antibiotic with broad spectrum activity against human opportunistic clinical pathogens. The biosynthetic pathway of 7-O-methyl-5'-hydroxy-3'-heptenoate-macrolactin by means of a stepwise, decarboxylative condensation pathway established the PKS-assisted biosynthesis of the parent macrolactin and the side-chain 5-hydroxyhept-3-enoate moiety attached to the macrolactin ring system at C-7. Antimicrobial activity analysis combined with the results of amplifying genes encoding for polyketide synthetase and nonribosomal peptide synthetase showed that seaweed-associated bacteria had broad-spectrum antimicrobial activity. The present work may have an impact on the exploitation of macrolactins for pharmaceutical and biotechnological applications.
Chemical Probes for the Functionalization of Polyketide Intermediates**
Riva, Elena; Wilkening, Ina; Gazzola, Silvia; Li, W M Ariel; Smith, Luke; Leadlay, Peter F; Tosin, Manuela
2014-01-01
A library of functionalized chemical probes capable of reacting with ketosynthase-bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl-ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology. PMID:25212788
NASA Astrophysics Data System (ADS)
Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.
2016-11-01
How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.
ATP Synthase Diseases of Mitochondrial Genetic Origin
Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza
2018-01-01
Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542
Mizuno, Kouichi; Okuda, Akira; Kato, Misako; Yoneyama, Naho; Tanaka, Hiromi; Ashihara, Hiroshi; Fujimura, Tatsuhito
2003-01-16
In coffee and tea plants, caffeine is synthesized from xanthosine via a pathway that includes three methylation steps. We report the isolation of a bifunctional coffee caffeine synthase (CCS1) clone from coffee endosperm by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique using previously reported sequence information for theobromine synthases (CTSs). The predicted amino acid sequences of CCS1 are more than 80% identical to CTSs and are about 40% similar to those of tea caffeine synthase (TCS1). Interestingly, CCS1 has dual methylation activity like tea TCS1.
Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus
2000-01-01
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554
Puziss, J W; Hardy, T A; Johnson, R B; Roach, P J; Hieter, P
1994-01-01
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3. Images PMID:8264650
Bunet, Robert; Song, Lijiang; Mendes, Marta Vaz; Corre, Christophe; Hotel, Laurence; Rouhier, Nicolas; Framboisier, Xavier; Leblond, Pierre; Challis, Gregory L.; Aigle, Bertrand
2011-01-01
The genome sequence of Streptomyces ambofaciens, a species known to produce the congocidine and spiramycin antibiotics, has revealed the presence of numerous gene clusters predicted to be involved in the biosynthesis of secondary metabolites. Among them, the type II polyketide synthase-encoding alp cluster was shown to be responsible for the biosynthesis of a compound with antibacterial activity. Here, by means of a deregulation approach, we gained access to workable amounts of the antibiotics for structure elucidation. These compounds, previously designated as alpomycin, were shown to be known members of kinamycin family of antibiotics. Indeed, a mutant lacking AlpW, a member of the TetR regulator family, was shown to constitutively produce kinamycins. Comparative transcriptional analyses showed that expression of alpV, the essential regulator gene required for activation of the biosynthetic genes, is strongly maintained during the stationary growth phase in the alpW mutant, a stage at which alpV transcripts and thereby transcripts of the biosynthetic genes normally drop off. Recombinant AlpW displayed DNA binding activity toward specific motifs in the promoter region of its own gene and that of alpV and alpZ. These recognition sequences are also targets for AlpZ, the γ-butyrolactone-like receptor involved in the regulation of the alp cluster. However, unlike that of AlpZ, the AlpW DNA-binding ability seemed to be insensitive to the signaling molecules controlling antibiotic biosynthesis. Together, the results presented in this study reveal S. ambofaciens to be a new producer of kinamycins and AlpW to be a key late repressor of the cellular control of kinamycin biosynthesis. PMID:21193612
Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047.
Huang, Pei; Xie, Feng; Ren, Biao; Wang, Qian; Wang, Jian; Wang, Qi; Abdel-Mageed, Wael M; Liu, Miaomiao; Han, Jianying; Oyeleye, Ayokunmi; Shen, Jinzhao; Song, Fuhang; Dai, Huanqin; Liu, Xueting; Zhang, Lixin
2016-09-01
Microbes belonging to the genus Verrucosispora possess significant chemical diversity and biological properties. They have attracted the interests of many researchers and are becoming promising resources in the marine natural product research field. A bioassay-guided isolation from the crude extract of Verrucosispora sp. strain MS100047, isolated from sediments collected from the South China Sea, has led to the identification of a new salicylic derivative, glycerol 1-hydroxy-2,5-dimethyl benzoate (1), along with three known compounds, brevianamide F (2), abyssomicin B (3), and proximicin B (4). Compound 1 showed selective activity against methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) value of 12.5 μg/mL. Brevianamide F (2), which was isolated from actinomycete for the first time, showed a good anti-BCG activity with a MIC value of 12.5 μg/mL that has not been reported previously in literatures. Proximicin B (4) showed significant anti-MRSA (MIC = 3.125 μg/mL), anti-BCG (MIC = 6.25 μg/mL), and anti-tuberculosis (TB) (MIC = 25 μg/mL) activities. This is the first report on the anti-tubercular activities of proximicins. In addition, Verrucosispora sp. strain MS100047 was found to harbor 18 putative secondary metabolite gene clusters based on genomic sequence analysis. These include the biosynthetic loci encoding polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) consistent with abyssomicins and proximicins, respectively. The biosynthetic pathways of these isolated compounds have been proposed. These results indicate that MS100047 possesses a great potential as a source of active secondary metabolites.
Zhang, Ji; An, Jing; Wang, Ji-Jia; Yan, Yi-Jun; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng
2013-12-01
Milbemycins A3/A4 are important 16-membered macrolides which have been commercialized and widely used as pesticide and veterinary medicine. However, similar to other milbemycin producers, the production of milbemycins A3/A4 in Streptomyces bingchenggensis is usually accompanied with undesired by-products such as C5-O - methylmilbemycins B2/B3 (α-class) and β1/β2 (β-class) together with nanchangmycin. In order to obtain high yield milbemycins A3/A4-producing strains that produce milbemycins A3/A4 as main components, milD, a putative C5-O-methyltransferase gene of S. bingchenggensis , was biofunctionally investigated by heterologous expression in Escherichia coli . Enzymatic analysis indicated that MilD can catalyze both α-class (A3/A4) and β-class milbemycins (β11) into C5-O-methylmilbemycins B2/B3 and β1, respectively, suggesting little effect of furan ring formed between C6 and C8a on the C5-O-methylation catalyzed by MilD. Deletion of milD gene resulted in the elimination of C5-Omethylmilbemycins B2/B3 and β1/β2 together with an increased yield of milbemycins A3/A4 in disruption strain BCJ13. Further disruption of the gene nanLD encoding loading module of polyketide synthase responsible for the biosynthesis of nanchangmycin led to strain BCJ36 that abolished the production of nanchangmycin. Importantly, mutant strain BCJ36 (ΔmilDΔnanLD) produced milbemycins A3/A4 as main secondary metabolites with a yield of 2312 ± 47 μg/ml, which was approximately 74 % higher than that of the initial strain S. bingchenggensis BC-109-6 (1326 ± 37 μg/ml).
Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu
2011-01-01
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties. PMID:21253567
Thapa, Hem R.; Naik, Mandar T.; Okada, Shigeru; Takada, Kentaro; Molnár, István; Xu, Yuquan; Devarenne, Timothy P.
2016-01-01
The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. B. braunii Race L produces the C40 tetraterpenoid hydrocarbon lycopadiene via an uncharacterized biosynthetic pathway. Structural similarities suggest this pathway follows a biosynthetic mechanism analogous to that of C30 squalene. Confirming this hypothesis, the current study identifies C20 geranylgeranyl diphosphate (GGPP) as a precursor for lycopaoctaene biosynthesis, the first committed intermediate in the production of lycopadiene. Two squalene synthase (SS)-like complementary DNAs are identified in race L with one encoding a true SS and the other encoding an enzyme with lycopaoctaene synthase (LOS) activity. Interestingly, LOS uses alternative C15 and C20 prenyl diphosphate substrates to produce combinatorial hybrid hydrocarbons, but almost exclusively uses GGPP in vivo. This discovery highlights how SS enzyme diversification results in the production of specialized tetraterpenoid oils in race L of B. braunii. PMID:27050299
Global biogeographic sampling of bacterial secondary metabolism
Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Guimarães, Denise O; de Frias, Ulysses A; Pupo, Monica T; Seepe, Prudy; Feng, Zhiyang; Brady, Sean F
2015-01-01
Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts. DOI: http://dx.doi.org/10.7554/eLife.05048.001 PMID:25599565
Srivastava, A; Singh, V K; Patnaik, S; Tripathi, J; Singh, P; Nath, G; Asthana, R K
2017-04-01
Explorations of freshwater Cyanobacteria as antimicrobial (bacteria, fungi and methicillin-resistant Staphylococcus aureus (MRSA) strains) drug resource using bioassay, NRPS (non-ribosomal polypeptide synthetase) and PKS (polyketide synthase) genes, as well as in silico approach. We have bioassayed the extracts of Phormidium CCC727, Geitlerinema CCC728, Arthrospira CCC729, Leptolyngbya CCC732, Phormidium CCC730, Phormidium CCC731 against six pathogenic bacteria comprising Gram (+ve): S. aureus including seven clinical MRSA and Enterococcus faecalis, Gram (-ve): Escherichia coli, Salmonella Typhimurium, Klebsiella pneumoniae and Shigella boydii along with non-pathogenic Enterobacter aerogenes as well as fungal strains (Cryptococcus neoformans and Candida albicans, C. krusei, C. tropicalis and Aspergillus niger) exhibiting antimicrobial potential. The NRPS and PKS genes of the target strains were also amplified and sequenced. The putative protein structures were predicted using bioinformatics approach. PKS gene expression indicated β keto-acyl synthase as one of the important active domains in the biomolecules related to antitumour and antifungal group. The simultaneous identification of the biomolecule (dihydro-2H-pyran-2-one derivative) was also inferred spectroscopically. Freshwater Cyanobacteria are prolific producers of secondary metabolite(s) that may act as the antimicrobial drug resource in addition to their much explored marine counterpart. © 2016 The Society for Applied Microbiology.
[Isolation of actinobacteria with antibiotic associated with soft coral Nephthea sp].
Ma, Liang; Zhang, Wenjun; Zhu, Yiguang; Wu, Zhengchao; Saurav, Kumar; Hang, Hui; Zhang, Changsheng
2013-10-04
The present study aims to isolate and identify actinobacteria associated with the soft coral Nephthea sp., and to isolate natural products from these actinobacteria under the guidance of PCR screening for polyketides synthase (PKS) genes. Eleven selective media were used to isolate actinobacteria associated with the soft coral Nephthea sp. collected from Yongxin Island. The isolated actinobacteria were classified on the basis of phylogenetic tree analysis of their 16S rRNA genes. Degenerated primers targeted on conserved KS (ketoacyl-synthase) domain of type I PKS genes were used to screen for potential isolates. The positive isolates were cultured in three different media to check their producing profiles. One bioactive strain that is rich in metabolites was subjected to larger scale fermentation for isolating bioactive natural products. A total of 20 strains were isolated from Nephthea sp., and were categorized into 3 genera including Streptomyces, Dietzia and Salinospora, among which 18 strains were positive in screening with type I PKS genes. Two bioactive compounds rifamycin S and rifamycin W were isolated and identified from Salinospora arenicola SH04. This is the first report of isolating indigenous marine actinobacteria Salinospora from the soft coral Nephthea sp. It provides an example of isolating bioactive secondary metabolites from cultivable actinobacteria associated with Nephthea sp. by PCR screening.
Hurd, Matthew C; Kwon, Moonhyuk; Ro, Dae-Kyun
2017-08-26
Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX 8 W) motifs, and enzyme assays showed that the presence of both RRX 8 W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX 8 W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor. Copyright © 2017 Elsevier Inc. All rights reserved.
Athenstaedt, Karin
2011-10-01
The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.
Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T
1999-11-05
The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.
Ogo, Yuko; Ozawa, Kenjiro; Ishimaru, Tsutomu; Murayama, Tsugiya; Takaiwa, Fumio
2013-08-01
Flavonoids possess diverse health-promoting benefits but are nearly absent from rice, because most of the genes encoding enzymes for flavonoid biosynthesis are not expressed in rice seeds. In the present study, a transgenic rice plant producing several classes of flavonoids in seeds was developed by introducing multiple genes encoding enzymes involved in flavonoid synthesis, from phenylalanine to the target flavonoids, into rice. Rice accumulating naringenin was developed by introducing phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. Rice producing other classes of flavonoids, kaempferol, genistein, and apigenin, was developed by introducing, together with PAL and CHS, genes encoding flavonol synthase/flavanone-3-hydroxylase, isoflavone synthase, and flavone synthases, respectively. The endosperm-specific GluB-1 promoter or embryo- and aleurone-specific 18-kDa oleosin promoters were used to express these biosynthetic genes in seed. The target flavonoids of naringenin, kaempferol, genistein, and apigenin were highly accumulated in each transgenic rice, respectively. Furthermore, tricin was accumulated by introducing hydroxylase and methyltransferase, demonstrating that modification to flavonoid backbones can be also well manipulated in rice seeds. The flavonoids accumulated as both aglycones and several types of glycosides, and flavonoids in the endosperm were deposited into PB-II-type protein bodies. Therefore, these rice seeds provide an ideal platform for the production of particular flavonoids due to efficient glycosylation, the presence of appropriate organelles for flavonoid accumulation, and the small effect of endogenous enzymes on the production of flavonoids by exogenous enzymes. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.
2013-01-01
The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112
Henstrand, John M.; McCue, Kent F.; Brink, Kent; Handa, Avtar K.; Herrmann, Klaus M.; Conn, Eric E.
1992-01-01
Light and fungal elicitor induce mRNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase in suspension cultured cells of parsley (Petroselinum crispum L.). The kinetics and dose response of mRNA accumulation were similar for DAHP synthase and phenylalanine ammonia-lyase (PAL). Six micrograms of elicitor from Phytophthora megasperma f. glycinia gave a detectable induction within 1 hour. Induction of DAHP synthase and PAL mRNAs by light was transient, reaching maximal levels at 4 hours and returning to pretreatment levels after 24 hours. Our data suggest that either light or fungal elicitor transcriptionally activate DAHP synthase. A coordinate regulation for key enzymes in the synthesis of primary and secondary metabolites is indicated. ImagesFigure 1 PMID:16668708
Xie, Xi; Meesapyodsuk, Dauenpen; Qiu, Xiao
2017-05-01
Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs. Copyright © 2017 American Society for Microbiology.
Xie, Xi; Meesapyodsuk, Dauenpen
2017-01-01
ABSTRACT Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli. The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium. IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli. This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs. PMID:28213537
Mofid, Mohammad Reza; Finking, Robert; Essen, Lars Oliver; Marahiel, Mohamed A
2004-04-13
The activation of apo-peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases (NRPSs), apo-acyl carrier proteins (ACPs) of polyketide synthases (PKSs), and fatty acid synthases (FASs) to their active holo form is accomplished with dedicated 4'-phosphopantetheinyl transferases (PPTases). They catalyze the transfer of the essential prosthetic group 4'-phosphopantetheine (4'-Ppant) from coenzyme A (CoA) to a highly conserved serine residue in all PCPs and ACPs. PPTases, based on sequence and substrate specifity, have been classified into three types: bacterial holo-acyl carrier protein synthase (AcpS), fatty acid synthase of eukaryotes (FAS2) and Sfp, a PPTase of secondary metabolism. The recently solved crystal structures of AcpS and Sfp-type PPTases with CoA revealed a common alpha + beta-fold with a beta(1)alpha(3)beta(2) motif and similarities in CoA binding and polymerization mode. However, it was not possible to discern neither the PCP binding region of Sfp nor the priming reaction mechanism from the Sfp-CoA cocrystal. In this work, we provide a model for the reaction mechanism based on mutational analysis of Sfp that suggests a reaction mechanism in which the highly conserved E151 deprotonates the hydroxyl group of the invariant serine of PCP. That, in turn, acts as a nucleophile to attack the beta-phosphate of CoA. The Sfp mutants K112, E117, and K120 further revealed that the loop region between beta4 and alpha5 (residues T111-S124) in Sfp is the PCP binding region. Also, residues T44, K75, S89, H90, D107, E109, E151, and K155 that have been shown in the Sfp-CoA cocrystal structure to coordinate CoA are now all confirmed by mutational and biochemical analysis.
Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun
2015-05-15
Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.
Alkynyl-Containing Peptides of Marine Origin: A Review
Chai, Qiu-Ye; Yang, Zhen; Lin, Hou-Wen; Han, Bing-Nan
2016-01-01
Since the 1990s, a number of terminal alkynyl residue-containing cyclic/acyclic peptides have been identified from marine organisms, especially cyanobacteria and marine mollusks. This review has presented 66 peptides, which covers over 90% marine peptides with terminal alkynyl fatty acyl units. In fact, more than 90% of these peptides described in the literature are of cyanobacterial origin. Interestingly, all the linear peptides featured with terminal alkyne were solely discovered from marine cyanobacteria. The objective of this article is to provide an overview on the types, structural characterization of these unusual terminal alkynyl fatty acyl units, as well as the sources and biological functions of their composed peptides. Many of these peptides have a variety of biological activities, including antitumor, antibacterial, antimalarial, etc. Further, we have also discussed the evident biosynthetic origin responsible for formation of terminal alkynes of natural PKS (polyketide synthase)/NRPS (nonribosome peptide synthetase) hybrids. PMID:27886049
Use of linalool synthase in genetic engineering of scent production
Pichersky, E.
1998-12-15
A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.
Use of linalool synthase in genetic engineering of scent production
Pichersky, Eran
1998-01-01
A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.
Tuan, Pham Anh; Kim, Jae Kwang; Lee, Sanghyun; Chae, Soo Cheon; Park, Sang Un
2012-12-05
Riboflavin (vitamin B2) is the universal precursor of the coenzymes flavin mononucleotide and flavin adenine dinucleotide--cofactors that are essential for the activity of a wide variety of metabolic enzymes in animals, plants, and microbes. Using the RACE PCR approach, cDNAs encoding lumazine synthase (McLS) and riboflavin synthase (McRS), which catalyze the last two steps in the riboflavin biosynthetic pathway, were cloned from bitter melon (Momordica charantia), a popular vegetable crop in Asia. Amino acid sequence alignments indicated that McLS and McRS share high sequence identity with other orthologous genes and carry an N-terminal extension, which is reported to be a plastid-targeting sequence. Organ expression analysis using quantitative real-time RT PCR showed that McLS and McRS were constitutively expressed in M. charantia, with the strongest expression levels observed during the last stage of fruit ripening (stage 6). This correlated with the highest level of riboflavin content, which was detected during ripening stage 6 by HPLC analysis. McLS and McRS were highly expressed in the young leaves and flowers, whereas roots exhibited the highest accumulation of riboflavin. The cloning and characterization of McLS and McRS from M. charantia may aid the metabolic engineering of vitamin B2 in crops.
Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto
2014-01-01
The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134
Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko
2005-12-01
Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.
NASA Astrophysics Data System (ADS)
Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.
2017-02-01
One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 - 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.
Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna; Joy, Minju
2017-03-01
Heterotrophic Bacillus amyloliquefaciens associated with edible red seaweed, Laurenciae papillosa was used to isolate antibacterial polyketide compounds. Antibacterial activity studies integrated with the outcome obtained by polyketide synthetase (pks) coding genes established that seaweed-affiliated bacterial flora had a wide-ranging antibacterial activities and potential natural product diversity, which proved that the bacterium is valuable reservoir of novel bioactive metabolites. Bioactivity-guided isolation of 3-(octahydro-9-isopropyl-2H-benzo[h]chromen-4-yl)-2-methylpropyl benzoate and methyl 8-(2-(benzoyloxy)-ethyl)-hexahydro-4-((E)-pent-2-enyl)-2H-chromene-6-carboxylate of polyketide origin, with activity against human opportunistic food pathogenic microbes, have been isolated from the ethyl acetate extract of B. amyloliquefaciens. Structure-activity relationship analysis revealed that hydrophobic descriptor of the polyketide compounds significantly contribute towards its antibacterial activity. Seaweed-associated microorganisms were shown to represent a potential source of antimicrobial compounds for food and health benefits. The antibacterial polyketide compounds described in the present study may find potential applications in the food industry to reduce food-borne pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...
Davidson, S. K.; Allen, S. W.; Lim, G. E.; Anderson, C. M.; Haygood, M. G.
2001-01-01
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria. PMID:11571152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan
Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less
Annaval, Thibault; Rudolf, Jeffrey D.; Chang, Chin-Yuan; ...
2017-08-30
Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Though the divergence between 9- and 10-membered enediyne core biosynthesis remains unclear, it has been observed that nascent polyketide intermediates, tethered to the acyl carrier protein (ACP) domain of PKSE, could be released by TE in the absence of the PKSE-associated enzymes. Here, we determined the crystal structure of SgcE10, the TE that participates in the biosynthesismore » of the 9-membered enediyne C-1027. Structural comparison of SgcE10 with CalE7 and DynE7, two TEs that participate in the biosynthesis of the 10-membered enediynes calicheamicin and dynemicin, respectively, revealed that they share a common α/β hot-dog fold. The amino acids involved in both substrate binding and catalysis are conserved among SgcE10, CalE7, and DynE7. The volume and the shape of the substrate-binding channel and active site in SgcE10, CalE7, and DynE7 confirm that TEs from both 9- and 10-membered enediyne biosynthetic machineries bind the linear form of similar ACP-tethered polyene intermediates. Taken together, our findings further support the proposal that the divergence between 9- and 10-membered enediyne core biosynthesis occurs beyond PKSE and TE catalysis.« less
Bacterial genome mining of enzymatic tools for alkyne biosynthesis
Zhu, Xuejun; Su, Michael; Manickam, Kadhirvel; Zhang, Wenjun
2015-01-01
The alkyne is an important functionality widely used in material science, pharmaceutical science, and chemical biology, but the importance of this functionality is contrasted by the very limited number of enzymes known to be involved in alkyne biosynthesis. We recently reported the first known carrier protein-dependent pathway for terminal alkyne formation, and in silico analysis suggested that this mechanism could be widespread in bacteria. In this paper, we screened additional homologous gene cassettes presumed to be involved in alkyne biosynthesis using both in vitro biochemical study and an E. coli-polyketide synthase (PKS) reporting system for in vivo analysis. We discovered and characterized a new terminal alkyne biosynthetic pathway comprised of TtuA, B, and C from Teredinibacter turnerae T7901. While the acyl-CoA ligase homolog (TtuA) demonstrated promiscuity in the activation and loading of medium-chain fatty acids onto the carrier protein (TtuC), the desaturase homolog (TtuB) showed stringent substrate specificity towards C10 fatty acyl moieties. In addition, TtuB was demonstrated to be a bifunctional desaturase/acetylenase that efficiently catalyzed two sequential O2-dependent dehydrogenation reactions. A novel terminal-alkyne bearing polyketide was further produced upon co-expression of ttuABC and a PKS gene in E. coli. The discovery and characterization of TtuA, B, and C provides us with a new bifunctional desaturase/acetylenase for mechanistic and structural study and expands the scarce enzyme inventory for the biosynthesis of the alkyne functionality, which has important applications in synthetic and chemical biology. PMID:26441143
Davidovich-Rikanati, Rachel; Shalev, Lior; Baranes, Nadine; Meir, Ayala; Itkin, Maxim; Cohen, Shahar; Zimbler, Kobi; Portnoy, Vitaly; Ebizuka, Yutaka; Shibuya, Masaaki; Burger, Yosef; Katzir, Nurit; Schaffer, Arthur A; Lewinsohn, Efraim; Tadmor, Ya'akov
2015-01-01
Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon. Copyright © 2014 John Wiley & Sons, Ltd.
Sawyer, Eric M; Brunner, Elizabeth C; Hwang, Yihharn; Ivey, Lauren E; Brown, Olivia; Bannon, Megan; Akrobetu, Dennis; Sheaffer, Kelsey E; Morgan, Oshauna; Field, Conroy O; Suresh, Nishita; Gordon, M Grace; Gunnell, E Taylor; Regruto, Lindsay A; Wood, Cricket G; Fuller, Margaret T; Hales, Karen G
2017-03-23
In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
Köllner, Tobias G.; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg
2004-01-01
The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes. PMID:15075399
Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg
2004-05-01
The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.
Sellem, Carole H; di Rago, Jean-Paul; Lasserre, Jean-Paul; Ackerman, Sharon H; Sainsard-Chanet, Annie
2016-07-01
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.
Koike-Takeshita, A; Koyama, T; Obata, S; Ogura, K
1995-08-04
The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).
Mousa, Walaa Kamel; Raizada, Manish N
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.
Mattheus, Wesley; Gao, Ling-Jie; Herdewijn, Piet; Landuyt, Bart; Verhaegen, Jan; Masschelein, Joleen; Volckaert, Guido; Lavigne, Rob
2010-02-26
Kal/bat, a polyketide, isolated to high purity (>95%) is characterized by strong and selective antibacterial activity against Staphylococcus species (minimum inhibitory concentration, 0.05 microg/mL), and no resistance was observed in strains already resistant to commonly used antibiotics. The kal/bat biosynthesis gene cluster was determined to a 62 kb genomic region of Pseudomonas fluorescens BCCM_ID9359. The kal/bat gene cluster consists of 16 open reading frames (ORF), encoding a hybrid PKS-NRPS system, extended with trans-acting tailoring functions. A full model for kal/bat biosynthesis is postulated and experimentally tested by gene inactivation, structural confirmation (using NMR spectroscopy), and complementation. The structural and microbiological study of biosynthetic kal/bat analogs revealed the importance of the carbamoyl group and 17-keto group for antibacterial activity. The mechanism of self-resistance lies within the production of an inactive intermediate, which is activated in a one-step enzymatic oxidation upon export. The genetic basis and biochemical elucidation of the biosynthesis pathway of this antibiotic will facilitate rational engineering for the design of novel structures with improved activities. This makes it a promising new therapeutic option to cope with multidrug-resistant clinical infections. Copyright 2010 Elsevier Ltd. All rights reserved.
Mousa, Walaa Kamel; Raizada, Manish N.
2013-01-01
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048
Chen, Xiao-Hua; Koumoutsi, Alexandra; Scholz, Romy; Borriss, Rainer
2009-01-01
The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere. Copyright (c) 2008 S. Karger AG, Basel.
Discovery and Characterization of a Group of Fungal Polycyclic Polyketide Prenyltransferases
Chooi, Yit-Heng; Wang, Peng; Fang, Jinxu; Li, Yanran; Wu, Katherine; Wang, Pin; Tang, Yi
2014-01-01
The prenyltransferase (PTase) gene vrtC was proposed to be involved in viridicatumtoxin (1) biosynthesis in Penicillium aethiopicum. Targeted gene deletion and reconstitution of recombinant VrtC activity in vitro established that VrtC is a geranyl transferase that catalyzes a regiospecific Friedel-Crafts alkylation of the naphthacenedione carboxamide intermediate 2 at carbon 6 with geranyl diphosphate (GPP). VrtC can function in the absence of divalent ions and can utilize similar naphthacenedione substrates, such as the acetyl-primed TAN-1612 (4). Genome mining using the VrtC protein sequence leads to the identification of a homologous group of PTase genes in the genomes of human and animal-associated fungi. Three enzymes encoded by this new subgroup of PTase genes from Neosartorya fischeri, Microsporum canis and Trichophyton tonsurans were shown to be able to catalyze transfer of dimethylallyl to several tetracyclic naphthacenedione substrates in vitro. In total, seven C5- or C10-prenylated naphthacenedione compounds were generated. The regioselectivity of these new polycyclic PTases (pcPTases) was confirmed by characterization of product 9 obtained from biotransformation of 4 in Escherichia coli expressing the N. fischeri pcPTase gene. The discovery of this new subgroup of PTases extends our enzymatic tools for modifying polycyclic compounds and enables genome mining of new prenylated polyketides. PMID:22590971
Chakraborty, Kajal; Thilakan, Bini; Chakraborty, Rekha Devi; Raola, Vamshi Krishna; Joy, Minju
2017-01-01
The brown seaweed, Sargassum myriocystum associated with heterotrophic bacterium, Bacillus subtilis MTCC 10407 (JF834075) exhibited broad-spectra of potent antibacterial activities against pathogenic bacteria Aeromonas hydrophila, Vibrio vulnificus, and Vibrio parahaemolyticus. B. subtilis MTCC 10407 was found to be positive for polyketide synthetase (pks) gene, and therefore, was considered to characterize secondary metabolites bearing polyketide backbone. Using bioassay-guided fractionation, two new antibacterial O-heterocyclic compounds belonging to pyranyl benzoate analogs of polyketide origin, with activity against pathogenic bacteria, have been isolated from the ethyl acetate extract of B. subtilis MTCC 10407. In the present study, the secondary metabolites of B. subtilis MTCC 10407 with potent antibacterial action against bacterial pathogens was recognized to represent the platform of pks-1 gene-encoded products. Two homologous compounds 3 (3-(methoxycarbonyl)-4-(5-(2-ethylbutyl)-5,6-dihydro-3-methyl-2H-pyran-2-yl)-butyl benzoate) and 4 [2-(8-butyl-3-ethyl-3,4,4a,5,6,8a-hexahydro-2H-chromen-6-yl)-ethyl benzoate] also have been isolated from the ethyl acetate extract of host seaweed S. myriocystum. The two compounds isolated from ethyl acetate extract of S. myriocystum with lesser antibacterial properties shared similar structures with the compounds purified from B. subtilis that suggested the ecological and metabolic relationship between these compounds in seaweed-bacterial relationship. Tetrahydropyran-2-one moiety of the tetrahydropyrano-[3,2b]-pyran-2(3H)-one system of 1 might be cleaved by the metabolic pool of seaweeds to afford methyl 3-(dihydro-3-methyl-2H-pyranyl)-propanoate moiety of 3, which was found to have no significant antibacterial activity. It is therefore imperative that the presence of dihydro-methyl-2H-pyran-2-yl propanoate system is essentially required to impart the greater activity. The direct involvement of polarisability (Pl) with the target bioactivity in 2 implied that inductive (field/polar) rather than the steric effect (parachor) appears to be the key factor influencing the induction of antibacterial activity. The present work may have a footprint on the use of novel O-heterocyclic polyketide products from seaweed-associated bacterium for biotechnological, food, and pharmaceutical applications mainly as novel antimicrobial secondary metabolites.
Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J
2002-11-01
Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokulan, Kuppan; Aggarwal, Anup; Shipman, Lance
2011-07-01
Bacterial acyl carrier protein synthase plays an essential role in the synthesis of fatty acids, nonribosomal peptides and polyketides. In Mycobacterium tuberculosis, AcpS or group I phosphopentatheine transferase exhibits two different structural conformations depending upon the pH. The crystal structures of acyl carrier protein synthase (AcpS) from Mycobacterium tuberculosis (Mtb) and Corynebacterium ammoniagenes determined at pH 5.3 and pH 6.5, respectively, are reported. Comparison of the Mtb apo-AcpS structure with the recently reported structure of the Mtb AcpS–ADP complex revealed that AcpS adopts two different conformations: the orthorhombic and trigonal space-group structures show structural differences in the α2 helix andmore » in the conformation of the α3–α4 connecting loop, which is in a closed conformation. The apo-AcpS structure shows electron density for the entire model and was obtained at lower pH values (4.4–6.0). In contrast, at a higher pH value (6.5) AcpS undergoes significant conformational changes, resulting in disordered regions that show no electron density in the AcpS model. The solved structures also reveal that C. ammoniagenes AcpS undergoes structural rearrangement in two regions, similar to the recently reported Mtb AcpS–ADP complex structure. In vitro reconstitution experiments show that AcpS has a higher post-translational modification activity between pH 4.4 and 6.0 than at pH values above 6.5, where the activity drops owing to the change in conformation. The results show that apo-AcpS and AcpS–ADP adopt different conformations depending upon the pH conditions of the crystallization solution.« less
Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.
Gaisser, S; Trefzer, A; Stockert, S; Kirschning, A; Bechthold, A
1997-01-01
A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins. PMID:9335272
Kacprzak, Magdalena M; Lewandowska, Irmina; Matthews, Rowena G; Paszewski, Andrzej
2003-01-01
Roles played by homocysteine and choline in the regulation of MS (methionine synthase) have been examined in fungi. The Aspergillus nidulans metH gene encoding MS was cloned and characterized. Its transcription was not regulated by methionine, but was enhanced by homocysteine and repressed by choline and betaine. MS activity levels were regulated in a similar way. The repression by betaine was due to its metabolic conversion to choline, which was found to be very efficient in A. nidulans. Betaine and choline supplementation stimulated growth of leaky metH mutants apparently by decreasing the demand for methyl groups and thus saving methionine and S -adenosylmethionine. We have also found that homocysteine stimulates transcription of MS-encoding genes in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PMID:12954077
Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae.
Ozer Uyar, Ebru; Yücel, Meral; Hamamcı, Haluk
2016-05-01
Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cozens, A L; Walker, J E
1986-01-01
The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249
Wolkenstein, Klaus; Sun, Han; Falk, Heinz; Griesinger, Christian
2015-10-28
Complete structural elucidation of natural products is often challenging due to structural complexity and limited availability. This is true for present-day secondary metabolites, but even more for exceptionally preserved secondary metabolites of ancient organisms that potentially provide insights into the evolutionary history of natural products. Here, we report the full structure and absolute configuration of the borolithochromes, enigmatic boron-containing pigments from a Jurassic putative red alga, from samples of less than 50 μg using microcryoprobe NMR, circular dichroism spectroscopy, and density functional theory calculations and reveal their polyketide origin. The pigments are identified as spiroborates with two pentacyclic sec-butyl-trihydroxy-methyl-benzo[gh]tetraphen-one ligands and less-substituted derivatives. The configuration of the sec-butyl group is found to be (S). Because the exceptional benzo[gh]tetraphene scaffold is otherwise only observed in the recently discovered polyketide clostrubin from a present-day Clostridium bacterium, the Jurassic borolithochromes now can be unambiguously linked to the modern polyketide, providing evidence that the fossil pigments are almost originally preserved secondary metabolites and suggesting that the pigments in fact may have been produced by an ancient bacterium. The borolithochromes differ fundamentally from previously described boronated polyketides and represent the first boronated aromatic polyketides found so far. Our results demonstrate the potential of microcryoprobe NMR in the analysis of previously little-explored secondary metabolites from ancient organisms and reveal the evolutionary significance of clostrubin-type polyketides.
Kaplan, J B; Merkel, W K; Nichols, B P
1985-06-05
The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.
Kucharczyk, Roza; Ezkurdia, Nahia; Couplan, Elodie; Procaccio, Vincent; Ackerman, Sharon H.; Blondel, Marc; di Rago, Jean-Paul
2010-01-01
Summary Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). BN-PAGE analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of subcomplexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the mitochondrial inner membrane. PMID:20056103
Zothanpuia; Passari, Ajit Kumar; Leo, Vincent Vineeth; Chandra, Preeti; Kumar, Brijesh; Nayak, Chandra; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Singh, Bhim Pratap
2018-05-05
Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.
Cuadrat, Rafael R. C.; Cury, Juliano C.; Dávila, Alberto M. R.
2015-01-01
Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) genes. The samples were collected from the Praia dos Anjos (Angel’s Beach) surface water—Arraial do Cabo (Rio de Janeiro state, Brazil), an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase) and C (condensation) domains (from PKS and NRPS, respectively) to build Hidden Markov Models (HMM) models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample PMID:26633360
Gray, Dennis W.; Breneman, Steven R.; Topper, Lauren A.; Sharkey, Thomas D.
2011-01-01
2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ∼90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K+, whereas isoprene production is inhibited by K+ such that, at physiologically relevant [K+], little or no isoprene emission should be detected from MBO-emitting trees. The Km of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site. PMID:21504898
Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J
2015-09-01
The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.
Transgenic cells with increased plastoquinone levels and methods of use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar
Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, ormore » a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.« less
Xiang, Lin; Zhao, Kaige; Chen, Longqing
2010-01-01
Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
NASA Astrophysics Data System (ADS)
Asai, Teigo; Tsukada, Kento; Ise, Satomi; Shirata, Naoki; Hashimoto, Makoto; Fujii, Isao; Gomi, Katsuya; Nakagawara, Kosuke; Kodama, Eiichi N.; Oshima, Yoshiteru
2015-09-01
The structural complexity and diversity of natural products make them attractive sources for potential drug discovery, with their characteristics being derived from the multi-step combination of enzymatic and non-enzymatic conversions of intermediates in each biosynthetic pathway. Intermediates that exhibit multipotent behaviour have great potential for use as starting points in diversity-oriented synthesis. Inspired by the biosynthetic pathways that form complex metabolites from simple intermediates, we developed a semi-synthetic process that combines heterologous biosynthesis and artificial diversification. The heterologous biosynthesis of fungal polyketide intermediates led to the isolation of novel oligomers and provided evidence for ortho-quinonemethide equivalency in their isochromene form. The intrinsic reactivity of the isochromene polyketide enabled us to access various new chemical entities by modifying and remodelling the polyketide core and through coupling with indole molecules. We thus succeeded in generating exceptionally diverse pseudo-natural polyketides through this process and demonstrated an advanced method of using biosynthetic intermediates.
Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu
2010-07-01
An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.
Molecular Control of Polyene Macrolide Biosynthesis
Santos-Aberturas, Javier; Vicente, Cláudia M.; Guerra, Susana M.; Payero, Tamara D.; Martín, Juan F.; Aparicio, Jesús F.
2011-01-01
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimM. This regulator, which combines an N-terminal PAS domain with a C-terminal helix-turn-helix motif, is highly conserved among polyene biosynthetic gene clusters. PimM, truncated forms of the protein without the PAS domain (PimMΔPAS), and forms containing just the DNA-binding domain (DBD) (PimMDBD) were overexpressed in Escherichia coli as GST-fused proteins. GST-PimM binds directly to eight promoters of the pimaricin cluster, as demonstrated by electrophoretic mobility shift assays. Assays with truncated forms of the protein revealed that the PAS domain does not mediate specificity or the distinct recognition of target genes, which rely on the DBD domain, but significantly reduces binding affinity up to 500-fold. Transcription start points were identified by 5′-rapid amplification of cDNA ends, and the binding regions of PimMDBD were investigated by DNase I protection studies. In all cases, binding took place covering the −35 hexamer box of each promoter, suggesting an interaction of PimM and RNA polymerase to cause transcription activation. Information content analysis of the 16 sequences protected in target promoters was used to deduce the structure of the PimM-binding site. This site displays dyad symmetry, spans 14 nucleotides, and adjusts to the consensus TVGGGAWWTCCCBA. Experimental validation of this binding site was performed by using synthetic DNA duplexes. Binding of PimM to the promoter region of one of the polyketide synthase genes from the Streptomyces nodosus amphotericin cluster containing the consensus binding site was also observed, thus proving the applicability of the findings reported here to other antifungal polyketides. PMID:21187288
Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke
2014-10-01
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Differential gene expression in ripening banana fruit.
Clendennen, S K; May, G D
1997-01-01
During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866
Cellulose Biosynthesis: Current Views and Evolving Concepts
SAXENA, INDER M.; BROWN, R. MALCOLM
2005-01-01
• Aims To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. • Scope Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. • Conclusions With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back. PMID:15894551
Cellulose biosynthesis: current views and evolving concepts.
Saxena, Inder M; Brown, R Malcolm
2005-07-01
To outline the current state of knowledge and discuss the evolution of various viewpoints put forth to explain the mechanism of cellulose biosynthesis. * Understanding the mechanism of cellulose biosynthesis is one of the major challenges in plant biology. The simplicity in the chemical structure of cellulose belies the complexities that are associated with the synthesis and assembly of this polysaccharide. Assembly of cellulose microfibrils in most organisms is visualized as a multi-step process involving a number of proteins with the key protein being the cellulose synthase catalytic sub-unit. Although genes encoding this protein have been identified in almost all cellulose synthesizing organisms, it has been a challenge in general, and more specifically in vascular plants, to demonstrate cellulose synthase activity in vitro. The assembly of glucan chains into cellulose microfibrils of specific dimensions, viewed as a spontaneous process, necessitates the assembly of synthesizing sites unique to most groups of organisms. The steps of polymerization (requiring the specific arrangement and activity of the cellulose synthase catalytic sub-units) and crystallization (directed self-assembly of glucan chains) are certainly interlinked in the formation of cellulose microfibrils. Mutants affected in cellulose biosynthesis have been identified in vascular plants. Studies on these mutants and herbicide-treated plants suggest an interesting link between the steps of polymerization and crystallization during cellulose biosynthesis. * With the identification of a large number of genes encoding cellulose synthases and cellulose synthase-like proteins in vascular plants and the supposed role of a number of other proteins in cellulose biosynthesis, a complete understanding of this process will necessitate a wider variety of research tools and approaches than was thought to be required a few years back.
Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation
López-Gallardo, Ester; Llobet, Laura; Emperador, Sonia; Montoya, Julio; Ruiz-Pesini, Eduardo
2016-01-01
Background: The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)– and mitochondrial DNA (mtDNA)–encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. Objectives: We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. Methods: We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. Results: TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. Conclusions: In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. Citation: López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399–1405; http://dx.doi.org/10.1289/EHP182 PMID:27129022
Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation.
López-Gallardo, Ester; Llobet, Laura; Emperador, Sonia; Montoya, Julio; Ruiz-Pesini, Eduardo
2016-09-01
The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399-1405; http://dx.doi.org/10.1289/EHP182.
Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko
2016-04-01
A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.
2013-01-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O
2013-05-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.
Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants
Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE
2007-07-10
Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.
Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M.; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A.; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria
2014-01-01
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. PMID:24360804
Antibacterial polyketides from the jellyfish-derived fungus Paecilomyces variotii.
Liu, Juan; Li, Famei; Kim, Eun La; Li, Jian Lin; Hong, Jongki; Bae, Kyung Sook; Chung, Hae Young; Kim, Hyung Sik; Jung, Jee H
2011-08-26
Four new polyketides (1-4) were isolated from the fungus Paecilomyces variotii, which was derived from the jellyfish Nemopilema nomurai. The planar structures and relative configurations of these polyketides were elucidated on the basis of spectroscopic analyses, including 2D NMR experiments. The compounds showed inhibitory activity against pathogenic bacteria including methicillin-resistant Staphylococcus aureus 3089 and multi-drug-resistant Vibrio parahemolyticus 7001 with MIC values in the range 5-40 μg/mL.
NASA Astrophysics Data System (ADS)
Artanti, A. N.; Astirin, O. P.; Prayito, A.; Fisma, R.; Prihapsara, F.
2018-03-01
Nasopharynx cancer is one of the most deadly cancer. The main priority of nasopharynx cancer treatment is the use of chemotherapeutic agents, especially doxorubicin. However, doxorubicin might also lead to diverse side effect. An approach recently develop to overcome side effect of doxorubicin is to used of combined chemotherapeutic agent. One of the compounds found effication as an anticancer agent on nasopharynx cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on raji cell line. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). Data analysis showed that combination of polyketide derivative from Annona muricata L. (14,4 µg/ml) and doxorubicin with all of concentration performed synergistic effect on raji cell line with CI value from 0.13 – 0.65.
Stevens, David Cole; Conway, Kyle R.; Pearce, Nelson; Villegas-Peñaranda, Luis Roberto; Garza, Anthony G.; Boddy, Christopher N.
2013-01-01
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products. PMID:23724102
Smith, Maria W.; Yamaguchi, Shinjiro; Ait-Ali, Tahar; Kamiya, Yuji
1998-01-01
The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression. PMID:9847116
Frandsen, Rasmus J. N.; Rasmussen, Silas A.; Knudsen, Peter B.; Uhlig, Silvio; Petersen, Dirk; Lysøe, Erik; Gotfredsen, Charlotte H.; Giese, Henriette; Larsen, Thomas O.
2016-01-01
Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/− 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies. PMID:27193384
CD1c presentation of synthetic glycolipid antigens with foreign alkyl branching motifs
de Jong, Annemieke; Arce, Eva Casas; Cheng, Tan-Yun; van Summeren, Ruben P.; Feringa, Ben L.; Dudkin, Vadim; Crich, David; Matsunaga, Isamu; Minnaard, Adriaan J.; Moody, D. Branch
2009-01-01
Summary Human CD1c is a protein that activates αβ T cells by presenting self antigens, synthetic mannosyl phosphodolichols and mycobacterial mannosyl phosphopolyketides. To determine which molecular structures of antigens mediate a T cell response, we measured activation by structurally divergent M. tuberculosis mannosyl-β1-phosphomycoketides as well as by synthetic analogs produced by two methods that yield either stereorandom or stereospecific methyl branching patterns. T cell responses required both a phosphate and a β-linked mannose unit, and showed preference for C30–34 lipid units with methyl branches in the S-configuration. Thus, in all cases T cell responses were strongest for synthetic compounds that mimicked the natural branched lipids produced by mycobacterial polyketide synthase 12. Incorporation of methylmalonate to form branched lipids is a common bacterial lipid synthesis pathway that is absent in vertebrates, so the preferential recognition of branched lipids may represent a new type of lipid-based pathogen associated molecular pattern (PAMP). PMID:18022562
Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme
Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki
2015-01-01
Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170
Discovery and characterization of a marine bacterial SAM-dependent chlorinase
Eustáquio, Alessandra S; Pojer, Florence; Noel, Joseph P; Moore, Bradley S
2009-01-01
Halogen atom incorporation into a scaffold of bioactive compounds often amplifies biological activity, as is the case for the anticancer agent salinosporamide A (1), a chlorinated natural product from the marine bacterium Salinispora tropica. Significant effort in understanding enzymatic chlorination shows that oxidative routes predominate to form reactive electrophilic or radical chlorine species. Here we report the genetic, biochemical and structural characterization of the chlorinase SalL, which halogenates S-adenosyl-l-methionine (2) with chloride to generate 5′-chloro-5′-deoxyadenosine (3) and l-methionine (4) in a rarely observed nucleophilic substitution strategy analogous to that of Streptomyces cattleya fluorinase. Further metabolic tailoring produces a halogenated polyketide synthase substrate specific for salinosporamide A biosynthesis. SalL also accepts bromide and iodide as substrates, but not fluoride. High-resolution crystal structures of SalL and active site mutants complexed with substrates and products support the SN2 nucleophilic substitution mechanism and further illuminate halide specificity in this newly discovered halogenase family. PMID:18059261
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tingting; Chang, Chin -Yuan; Lohman, Jeremy R.
Comparative analysis of the enediyne biosynthetic gene clusters revealed sets of conserved genes serving as outstanding candidates for the enediyne core. Here we report the crystal structures of SgcJ and its homologue NCS-Orf16, together with gene inactivation and site-directed mutagenesis studies, to gain insight into enediyne core biosynthesis. Gene inactivation in vivo establishes that SgcJ is required for C-1027 production in Streptomyces globisporus. SgcJ and NCS-Orf16 share a common structure with the nuclear transport factor 2-like superfamily of proteins, featuring a putative substrate binding or catalytic active site. Site-directed mutagenesis of the conserved residues lining this site allowed us tomore » propose that SgcJ and its homologues may play a catalytic role in transforming the linear polyene intermediate, along with other enediyne polyketide synthase-associated enzymes, into an enzyme-sequestered enediyne core intermediate. In conclusion, these findings will help formulate hypotheses and design experiments to ascertain the function of SgcJ and its homologues in nine-membered enediyne core biosynthesis.« less
Li, Fang; Kang, Qianjin; Yao, Xiaoling; Li, Yanyan; Wei, Maolong; Cao, Yong; Lin, Shuangjun; Bai, Linquan; Ma, Wei; Deng, Zixin
2012-04-04
The seeds of Trewia nudiflora containing maytansine (an anticancer agent), was investigated to explore the endophytic actinomycetes diversity and screen for naphthoquinones producing strain. The seeds of Trewia nudiflora were sliced and plated on different selective media after surface sterilization. Clones that looked like actinomycetes were selected, and classified according to the 16S rRNA sequences. Isolated strains were screened for furanonaphthoquinone biosynthesis gene by PCR, and tested for antibacterial and antifungal activity using Staphyloccocusaureus, Pseudomon-asaeruginosa, Bacillus subtilis, Rhizoctoniasolani and Gibberellasaubinetii. LC-MS and NMR were used to determine the structure of candidate compounds. More than 100 endophytic bacteria were isolated. Among them 66 were streptomycetes. FNQ6 (polyketide synthase Type III) and FNQ21 (carboxymuconate cycloisomerase) were only detected in Streptomyces sp. HTZ 27. We got 5 mg pure furanonaphthoquinone (FNQI) from 1 liter Streptomyces sp. HTZ 27 agar fermentation medium. The use of chemical-genetics method increased the efficiency of screening for target compound producing bacteria.
Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album
Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.
2015-01-01
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282
Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.
Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V
2015-05-15
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.
Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C
2011-08-01
We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Souza, Catiane S; Oliveira, Bruno M; Costa, Gustavo G L; Schriefer, Albert; Selbach-Schnadelbach, Alessandra; Uetanabaro, Ana Paula T; Pirovani, Carlos P; Pereira, Gonçalo A G; Taranto, Alex G; Cascardo, Júlio Cézar de M; Góes-Neto, Aristóteles
2009-08-01
Chitin synthase (CHS) is a glucosyltransferase that converts UDP-N-acetylglucosamine into chitin, one of the main components of fungal cell wall. Class III chitin synthases act directly in the formation of the cell wall. They catalyze the conversion of the immediate precursor of chitin and are responsible for the majority of chitin synthesis in fungi. As such, they are highly specific molecular targets for drugs that can inhibit the growth and development of fungal pathogens. In this work, we have identified and characterized a chitin synthase gene of Moniliophthora perniciosa (Mopchs) by primer walking. The complete gene sequence is 3,443 bp, interrupted by 13 small introns, and comprises a cDNA with an ORF with 2,739 bp, whose terminal region was experimentally determined, encoding a protein with 913 aa that harbors all the motifs and domains typically found in class III chitin synthases. This is the first report on the characterization of a chitin synthase gene, its mature transcription product, and its putative protein in basidioma and secondary mycelium stages of M. perniciosa, a basidiomycotan fungus that causes witches' broom disease of cacao.
Kalaitzis, John A
2013-01-01
The marine actinomycete Streptomyces maritimus produces a structurally diverse set of unusual polyketide natural products including the major metabolite enterocin. Investigations of enterocin biosynthesis revealed that the unique carbon skeleton is derived from an aromatic polyketide pathway which is genetically coded by the 21.3 kb enc gene cluster in S. maritimus. Characterization of the enc biosynthesis gene cluster and subsequent manipulation of it via heterologous expression and/or mutagenesis enabled the discovery of other enc-based metabolites that were produced in only very minor amounts in the wild type. Also described are techniques used to harness the enterocin biosynthetic machinery in order to generate unnatural enc-derived polyketide analogues. This review focuses upon the molecular methods used in combination with classical natural products detection and isolation techniques to access minor metabolites of the S. maritimus secondary metabolome.
Buedenbender, Larissa; Robertson, Luke P; Lucantoni, Leonardo; Avery, Vicky M; Kurtböke, D İpek; Carroll, Anthony R
2018-05-30
Chemical investigations on the fermentation extract obtained from an ascidian-derived Streptomyces sp. (USC-16018) yielded a new ansamycin polyketide, herbimycin G ( 1 ), as well as a known macrocyclic polyketide, elaiophylin ( 2 ), and four known diketopiperazines ( 3 ⁻ 6 ). The structures of the compounds were elucidated based on 1D/2D NMR and MS data. The absolute configuration of 1 was established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Antiplasmodial activities were tested for the natural products against chloroquine sensitive (3D7) and chloroquine resistant (Dd2) Plasmodium falciparum strains; the two polyketides ( 1 ⁻ 2 ) demonstrated an inhibition of >75% against both parasite strains and while 2 was highly cytotoxic, herbimycin G ( 1 ) showed no cytotoxicity and good predicted water solubility.