Carlin Fagundes, Patrícia; Nascimento de Sousa Santos, Ilana; Silva Francisco, Márcia; Mattos Albano, Rodolpho; de Freire Bastos, Maria do Carmo
2017-05-01
Hyicin 3682, the first bacteriocin reported for Staphylococcus hyicus, is a Bsa COL variant produced by S. hyicus 3682, a strain isolated from bovine milk. Hyicin 3682 is found in the culture supernatant, is bactericidal and its producing strain exhibits a much broader spectrum of antimicrobial activity than the producing strain of Bsa COL against several Gram-positive bacteria, which include foodborne pathogens, food-spoilage microorganisms and bacterial species of medical and veterinary importance. Sequencing of the genome of S. hyicus 3682 provided the nucleotide sequence of the entire gene cluster involved in hyicin 3682 production, which seems to be located on pRJ109, the single plasmid carried by this strain. This gene cluster is expressed and consists of 8525bp and of eight genes (hyiA, hyiB, hyiC, hyiD, hyiP, hyiF, hyiE and hyiG) encoded on the same DNA strand. The mature lantibiotic exhibits 91% identity to Bsa COL and its molecular mass was found to be ∼26Da higher due to two amino acid substitutions. S. hyicus 3682 proved to be only partially immune to its cognate bacteriocin up to 1024 AU/ml. Therefore, hyicin 3682, the first Bsa variant reported in coagulase-negative staphylococci, does exhibit antimicrobial and siblicidal activities. Copyright © 2017 Elsevier GmbH. All rights reserved.
Park, Jeonghwa; Friendship, Robert M.; Poljak, Zvonimir; Weese, J. Scott; Dewey, Cate E.
2013-01-01
Exudative epidermitis (EE) is a common skin disease of young pigs, caused mainly by Staphylococcus hyicus. Increased prevalence of EE and poor response to treatment are reported. Common strategies used by Ontario pork producers to treat pigs with EE were determined using a survey. Injection of penicillin G was reported as the most common parenteral antibiotic choice. Antimicrobial resistance patterns of S. hyicus and Staphylococcus aureus isolated from clinical cases (30 herds with samples from approximately 6 pigs per farm) showed that 97% of S. hyicus isolates were resistant to penicillin G and ampicillin; 71% of these isolates were resistant to ceftiofur. Similar resistance was noted among S. aureus isolates. Antimicrobial resistance has become a problem in the treatment of EE in Ontario. PMID:23904636
Adkins, P R F; Middleton, J R; Calcutt, M J; Stewart, G C; Fox, L K
2017-06-01
Staphylococcus hyicus and Staphylococcus agnetis are two coagulase-variable staphylococcal species that can be isolated from bovine milk and are difficult to differentiate. The objectives of this study were to characterize isolates of bovine milk origin from a collection that had previously been characterized as coagulase-positive S. hyicus based on phenotypic species identification methods and to develop a PCR-based method for differentiating S. hyicus , S. agnetis , and Staphylococcus aureus Isolates ( n = 62) were selected from a previous study in which milk samples were collected from cows on 15 dairy herds. Isolates were coagulase tested and identified to the species level using housekeeping gene sequencing. A multiplex PCR to differentiate S. hyicus , S. agnetis , and S. aureus was developed. Pulsed-field gel electrophoresis was conducted to strain type the isolates. Based on gene sequencing, 44/62 of the isolates were determined to be either S. agnetis ( n = 43) or S. hyicus ( n = 1). Overall, 88% (37/42) of coagulase-positive S. agnetis isolates were found to be coagulase positive at 4 h. The herd-level prevalence of coagulase-positive S. agnetis ranged from 0 to 2.17%. Strain typing identified 23 different strains. Six strains were identified more than once and from multiple cows within the herd. Three strains were isolated from cows at more than one time point, with 41 to 264 days between samplings. These data suggest that S. agnetis is likely more prevalent on dairy farms than S. hyicus Also, some S. agnetis isolates in this study appeared to be contagious and associated with persistent infections. Copyright © 2017 American Society for Microbiology.
Roberson, J R; Fox, L K; Hancock, D D; Gay, J M; Besser, T E
1996-01-01
To determine prevalence and relevance of coagulase-positive Staphylococcus hyicus and S intermedius intramammary infections (IMI) in dairy cows and determine the ability of the 4-hour tube coagulase (TC) test to differentiate the coagulase-positive staphylococci (CPS). Prevalence of CPS was determined for primiparous cows (point prevalence and prevalence at first parturition) and multiparous cows (point prevalence) of 2 herd groups: < 6% CPS IMI prevalence = low prevalence (LP); > 10% CPS IMI prevalence = high prevalence (HP). For prevalence, cows of 22 dairy herds. For TC, 1,038 CPS strains isolated from cow milk. Speciation of CPS from aseptically collected composite milk samples was performed. Coagulase-positive isolates from 4 cow groups were tested for their ability to coagulate rabbit plasma by 4 hours: LP and HP primiparous cows at parturition, and LP and HP cows any time after first parturition. Of 487 CPS in the prevalence study, 82.1% were S aureus, 17.7% were coagulase-positive S hyicus, and 0.2% were S intermedius. Of all CPS IMI in LP herds, 34% were coagulase-positive S hyicus; of all CPS IMI in HP herds, 9% were coagulase-positive S hyicus. Coagulase-positive S hyicus appeared to persist to the end of lactation in 4 cows (mean linear somatic cell count = 3.7). The TC test was > or = 97% sensitive, < or = 33% specific, and had a predictive value positive range of 60 to 97% for S aureus isolates. Coagulase-positive S hyicus appears capable of inducing chronic, low-grade IMI. Staphylococcus intermedius does not appear to be an important mastitis pathogen. The TC test is not valid to use as the sole method to differentiate CPS species.
Purification and substrate specificity of Staphylococcus hyicus lipase.
van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F
1989-11-28
The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.
El-Razik, K A Abd; Arafa, A A; Hedia, R H; Ibrahim, E S
2017-06-01
This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes' milk in Egypt. A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline ( tet ) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis. Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes' milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri , Staphylococcus hyicus , Staphylococcus lugdunensis , and Staphylococcus simulans . Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease ( nuc ) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes ( tet K, tet L, tet M, and tet O) was detected by multiplex PCR. All isolates were negative for tet L, M, and O genes while 14 (50%) CNS isolates were positive for tet K gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tet K gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp. CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore.
El-Razik, K. A. Abd; Arafa, A. A.; Hedia, R. H.; Ibrahim, E. S.
2017-01-01
Aim:: This study was devoted to elucidate the tetracycline resistance of coagulase-negative staphylococci (CNS) derived from normal and subclinical mastitic (SCM) buffaloes’ milk in Egypt. Materials and Methods: :: A total of 81 milk samples from 46 normal buffalo milk samples and 35 SCM buffalo milk samples at private dairy farms of Egypt were used in this study. CNS were identified using phenotypic and molecular methods (polymerase chain reaction [PCR]). CNS isolates were tested for tetracycline resistance using routine methods and multiplex PCR targeting tetracycline (tet) resistance genes followed by sequencing of positive PCR products and phylogenetic analysis. Results:: Isolation and identification of 28 (34.5%) CNS from normal and SCM buffaloes’ milk, namely, Staphylococcus intermedius (39.2%), Staphylococcus xylosus (25.0%), Staphylococcus epidermidis (10.7%), Staphylococcus hominis (10.7%), and 3.5% to each of Staphylococcus sciuri, Staphylococcus hyicus, Staphylococcus lugdunensis, and Staphylococcus simulans. Using nested PCR, all the 28 CNS isolates revealed positive for 16srRNA gene specific for genus staphylococci and negative for thermonuclease (nuc) gene specific for Staphylococcus aureus species. The presence of tetracycline resistance-encoding genes (tetK, tetL, tetM, and tetO) was detected by multiplex PCR. All isolates were negative for tetL, M, and O genes while 14 (50%) CNS isolates were positive for tetK gene, namely, S. lugdunensis (100%), S. hominis (100%), S. epidermidis (66.6%), S. intermedius (45.4%), and S. xylosus (42.8%). Nucleotide sequencing of tetK gene followed by phylogenetic analysis showed the high homology between our CNS isolates genes of tetracycline resistance with S. aureus isolates including Egyptian ones. This proves the transfer of the tetracycline resistance encoding genes between coagulase-negative and coagulase positive Staphylococcus spp. Conclusion:: CNS isolates have distinguishingly high resistance to tetracycline. Abundant tetracycline usage for mastitis treatment leads to the spread of genetic resistance mechanisms inside CNS strains and among all Staphylococcus spp. Consequently, tetracycline is not effective anymore. PMID:28717325
Osman, Kamelia M.; Amer, Aziza M.; Badr, Jihan M.; Helmy, Nashwa M.; Elhelw, Rehab A.; Orabi, Ahmed; Bakry, Magdy; Saad, Aalaa S. A.
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which could be a source of perilous S. aureus for the human community. PMID:26973606
Sayari, Adel; Mosbah, Habib; Gargouri, Youssef
2007-05-01
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.
Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Łaniewska-Trokenheim, Łucja
2015-04-01
The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beyene, Takele; Hayishe, Halefom; Gizaw, Fikru; Beyi, Ashenafi Feyisa; Abunna, Fufa; Mammo, Bedaso; Ayana, Dinka; Waktole, Hika; Abdi, Reta Duguma
2017-04-28
Staphylococcus species cause mastitis and wound infection in livestock and food poisoning in humans through ingestion of contaminated foods, including meat and dairy products. They are evolving pathogens in that they readily acquire drug resistance, and multiple drug-resistant (MDR) isolates are increasing in human and veterinary healthcare. Therefore, this study was conducted to evaluate the prevalence of Staphylococci and their drug resistance in dairy farms and abattoir settings of Addis Ababa. In this cross-sectional study, 193 samples of milk, meat, equipment and humans working in the dairy farms and abattoir were collected (dairy farms = 72 and abattoir sources = 121). Staphylococcus isolation and identification at the species level was done according to ISO-6888-3 using biochemical characteristics. An antimicrobial susceptibility test was conducted for 43 of the isolates using 15 antimicrobial agents commonly used for humans and livestock by the Kirby Bauer disk diffusion method following CLSI guidelines. Staphylococcus organism were isolated from 92 (47.7%) of the total 193 samples, 50% in the dairy farms and 46.3% in the abattoir. The isolated species were S. aureus (n = 31; 16.1%), S. intermedius (n = 21; 10.9%), S. hyicus (n = 16; 8.3%), and coagulase negative Staphylococcus (CNS) (n = 24; 12.4%). Gentamycin was effective drug as all isolates (n = 43; 100%) were susceptible to it and followed by kanamycin (n = 39; 90.7%). However, the majority of the isolates showed resistance to penicillin-G (95.3%), nalidixic acid (88.4%), cloxacillin (79.1%), vancomycin (65.1%) and cefoxitin (55.8%). Of the 15 S. aureus tested for drug susceptibility, 73.3% of them were phenotypically resistant to vancomycin (VRSA) and all of the 15 isolates showed multi-drug resistance (MDR) to >3 drugs. Also, all of the tested CNS (100%), S. hyicus (100%) and the majority of S. intermedius isolates (88.9%) developed MDR. Alarmingly, the Staphylococcus isolates circulating in the dairy farms and abattoir in the study area harbor MDR. High level of Staphylococcus species isolation from personnel and equipment besides food (meat and milk) samples in dairy farms and abattoir settings reveals that the hygiene practice in the dairy farm and abattoir is substandard. Prudent drug use and improved hygienic practice is recommended in the dairy farms and abattoir to safeguard the public from the risk of acquiring infections and MDR pathogenic Staphylococcus.
Ozenc, E; Seker, E; Baki Acar, D; Birdane, M K; Darbaz, I; Dogan, N
2011-12-01
This study investigated the bacterial agents causing sub-clinical mastitis and the mean somatic cell counts (SCC) of milk in Pirlak sheep at mid-lactation. The percentage of infected udder halves was 11.4% (53/464). The most frequently isolated species were coagulase-negative staphylococci (CNS) (64.2%), followed by Staphylococcus aureus (24.5%) and Escherichia coli (11.3%). Among the CNS, the most common species was Staphylococcus epidermidis (38.2%). The other species isolated from milk samples were Staphylococcus xylosus (17.7%), Staphylococcus chromogenes (14.7%), Staphylococcus simulans (8.8%) and Staphylococcus hyicus (8.8%). The mean SCC for culture positive and negative samples was 1742×10(3) and 161×10(3) cells/ml, respectively. A significant difference (p<0.05) was determined between with and without microbial growth groups in terms of the SCC values. Threshold limit for SCC was 374×10(3) cells/ml for Pirlak sheep. In conclusion, it was considered that SCC is an important predictor of sub-clinical mastitis in Pirlak sheep. This is the first study to describe the bacterial agents causing sub-clinical mastitis and threshold limit for SCC in Pirlak sheep in Turkey. © 2011 Blackwell Verlag GmbH.
Andresen, L O
1999-04-01
The exfoliative toxins ExhA and ExhB produced by Staphylococcus hyicus strains NCTC10350 and 1289D-88, respectively, were investigated with regard to the effect of divalent metal ions on toxin production as measured in indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. Data were obtained as endpoint titer values and used as semiquantitative measures for the amount of exfoliative toxin detected in culture supernatants. It was shown that the endpoint titers of ExhA in supernatants from cultures of strain NCTC10350 grown in the presence of 0.5 mM CaCl2, Cu(NO3)2 or ZnSO4 were higher compared to titers obtained by growth in medium supplemented with a number of other divalent metal salts. The titer of ExhB as determined in the indirect ELISA was increased by addition of 0.5 mM CoCl2, Cu(NO3)2 or CuSO4 to the growth medium. When ExhA or ExhB, prepared without addition of metal salt to the liquid growth medium, was subsequently incubated with 25 mM of Co2+, Cu2+ or Zn2+, the endpoint titers of the toxins were increased. Dialysis of ExhA and ExhB prepared with Zn2+ and Co2+, respectively, against certain metal chelators, resulted in a reduction of the titer determined in ELISA. Other metal chelators had varied effect in the detection of the toxins in ELISA. It was, however, not possible to restore the recognition of toxins by the monoclonal antibodies by incubation of EDDHA-dialyzed toxin preparations with Co2+, Cu2+ or Zn2+. The results of this study suggest that ExhA and ExhB are metalloproteins.
Rodrigues, Marjory Xavier; Silva, Nathália Cristina Cirone; Trevilin, Júlia Hellmeister; Cruzado, Melina Mary Bravo; Mui, Tsai Siu; Duarte, Fábio Rodrigo Sanches; Castillo, Carmen J Contreras; Canniatti-Brazaca, Solange Guidolin; Porto, Ernani
2017-07-01
The aim of this research paper was to characterize coagulase-positive and coagulase-negative staphylococci from raw milk, Minas cheese, and production lines of Minas cheese processing. One hundred isolates from 3 different cheese producers were characterized using molecular approaches, such as PCR, molecular typing, and DNA sequencing. Staphylococcus aureus (88% of the isolates) was the most abundant followed by Staphylococcus epidermidis, Staphylococcus hyicus, and Staphylococcus warneri. Among the 22 enterotoxin genes tested, the most frequent was seh (62% of the isolates), followed by selx and ser. Hemolysin genes were widely distributed across isolates, and Panton-Valentine leukocidin and toxic shock syndrome toxin genes were also identified. Methicillin-resistant S. aureus were staphylococcal cassette chromosome mec III, IVa, IVd, and others nontypeable. In the phenotypic antibiotic resistance, multiresistant isolates were detected and resistance to penicillin was the most observed. Using spa typing, we identified several types and described a new one, t14969, isolated from cheese. These findings suggest that antibiotic resistance and potentially virulent strains from different sources can be found in the Brazilian dairy processing environment. Further research should be conducted with collaboration from regulatory agencies to develop programs of prevention of virulent and resistant strain dissemination in dairy products and the processing environment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
An investigation of ear necrosis in pigs.
Park, Jeonghwa; Friendship, Robert M; Poljak, Zvonimir; DeLay, Josepha; Slavic, Durda; Dewey, Catherine E
2013-05-01
Porcine ear necrosis was investigated in 23 conveniently chosen farms, consisting of 14 case farms and 9 control farms. Biopsies of lesions and oral swabs from pigs on 11 case farms were examined by histology and bacterial culture. All farms were visited for observations and a survey on management, housing, and the presence of other clinical signs or behavioral vices. Histological examination revealed that the lesions began on the surface and progressed to deeper layers, and that vascular damage did not appear to be the initiating cause. Spirochetes were only rarely observed in histological examination and were not cultured from biopsies and oral swabs. Staphylococcus aureus and Staphylococcus hyicus were cultured from 91% and 66% of samples, respectively. Ear biting and a humid environment were associated with ear necrosis. On some farms large numbers of pigs were affected and lesions were sometimes extensive. The condition appears to be an infectious disease beginning on the surface of the skin; contributing environmental and management factors are likely.
An investigation of ear necrosis in pigs
Park, Jeonghwa; Friendship, Robert M.; Poljak, Zvonimir; DeLay, Josepha; Slavic, Durda; Dewey, Catherine E.
2013-01-01
Porcine ear necrosis was investigated in 23 conveniently chosen farms, consisting of 14 case farms and 9 control farms. Biopsies of lesions and oral swabs from pigs on 11 case farms were examined by histology and bacterial culture. All farms were visited for observations and a survey on management, housing, and the presence of other clinical signs or behavioral vices. Histological examination revealed that the lesions began on the surface and progressed to deeper layers, and that vascular damage did not appear to be the initiating cause. Spirochetes were only rarely observed in histological examination and were not cultured from biopsies and oral swabs. Staphylococcus aureus and Staphylococcus hyicus were cultured from 91% and 66% of samples, respectively. Ear biting and a humid environment were associated with ear necrosis. On some farms large numbers of pigs were affected and lesions were sometimes extensive. The condition appears to be an infectious disease beginning on the surface of the skin; contributing environmental and management factors are likely. PMID:24155434
Bendahou, Abdrezzak; Lebbadi, Mariam; Ennanei, Latifa; Essadqui, Fatima Z; Abid, Mohammed
2008-06-01
To investigate the incidence and antibiotic resistance of staphylococcal strains isolated from milk and milk products and to trace the ecological origin of the Staphylococcus aureus isolated. Eighty-one samples of raw milk, lben (whey) and jben (cheese) were analyzed for the presence of staphylococcal strains. Isolates were identified by Gram stains, tests for coagulase, the API staph system and the WalkAway 40/96, which also determines the antimicrobial susceptibility profiles. The S. aureus strains were biotyped, and variable regions of the coagulase gene were amplified using the polymerase chain reaction. The identification results showed a predominance of coagulase-negative staphylococci (54 %). Coagulase-positive staphylococci that were identified were divided into 3 groups comprising S. aureus (40%), Staphylococcus intermedius (2 %) and Staphylococcus hyicus (4%). Among the S. aureus that was isolated, biotype C was the predominant biotype. Among 40 coagulase gene PCR-amplification products, 37 produced a single band, while 3 isolates produced two bands. The antimicrobial susceptibility-profile of the staphylococcal strains revealed a high incidence of S. aureus to penicillin G. In addition, Staphylococcus lentus presented considerable resistance to the oxacillin, erythromycin and lincomycin. The presence of staphylococci in raw milk, lben and jben in areas of northern Morocco poses a health hazard, so it is necessary for the public health inspectors to properly examine the conditions during production, storage and commercialization of all products made with unpasteurized milk.
Gianneechini, R; Concha, C; Rivero, R; Delucci, I; López, J Moreno
2002-01-01
Twenty-nine dairy farms were selected to determine the incidence of clinical mastitis, prevalence of sub-clinical mastitis and bacterial aetiology in the West Littoral Region of Uruguay. In samples taken by the owner and frozen at -20°C during a week the incidence rate of clinical mastitis was determined as 1.2 cases per 100 cow-months at risk. Staphylococcus aureus was the most common isolated pathogen in 37.5% of 40 milk samples from clinical cases obtained in 1 month. No bacteria grew in the 32.5% of the total samples. A sub-sample including 1077 dairy cows from randomly selected farms was used to determine the prevalence of sub-clinical mastitis. These samples were taken on one visit to each farm. The prevalence was 52.4% on a cow basis and 26.7% on an udder quarter basis. In 55.1% of the quarters of the selected animals with more than 300 000 cells/ml there was no growth. The isolated pathogens from sub-clinical cases and their relative frequencies were: Staphylococcus aureus 62.8%, Streptococcus agalactiae 11.3%, Enterococcus sp. 8%, coagulase-negative staphylococci 7.4%, Streptococus uberis 6.4%, Streptococcus dysgalactiae 1.8%, Escherichia coli 1.5% and Staphylococcus hyicus coagulase-positive 0.6%. PMID:12831175
Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I
2017-05-01
Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.
Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y
2017-05-01
Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Pate, Mateja; Zdovc, Irena; Avberšek, Jana; Ocepek, Matjaž; Pengov, Andrej; Podpečan, Ožbalt
2012-05-01
During routine microbiological examination of milk samples from dairy cows without clinical signs of mastitis, quarter milk samples of 231 dairy cows from 12 herds were investigated for the presence of coagulase-negative staphylococci (CNS). The isolates were identified on the basis of colony morphology, Gram staining, catalase and coagulase test and the commercial kit, API Staph. CNS was detected in 29% (67/231) of the cows. A total of seven CNS species were identified with the most prevalent being Staphylococcus (Staph.) chromogenes (30%) and Staph. haemolyticus (28·8%), followed by Staph. simulans (11·2%), Staph. xylosus (11·2%), Staph. epidermidis (7·5%), Staph. hyicus (6·3%) and Staph. sciuri (5%). The predominant species, Staph. chromogenes and Staph. haemolyticus, were further characterized by antibiotic susceptibility testing using the agar disc diffusion method (Kirby-Bauer) and by pulsed-field gel electrophoresis (PFGE). Considerable resistance to ampicillin and penicillin was observed in both species. Isolates with identical or highly similar PFGE profiles were detected at the herd level despite a marked heterogeneity seen for both species. On the basis of somatic cell count, absence of clinical signs of inflammation and heterogeneity of genotypes, we assume that CNS isolated in this study could not be considered as important causative agents of the bovine mammary gland inflammation.
Monecke, Stefan; Gavier-Widen, Dolores; Mattsson, Roland; Rangstrup-Christensen, Lena; Lazaris, Alexandros; Coleman, David C.; Shore, Anna C.; Ehricht, Ralf
2013-01-01
Recently, a novel mec gene conferring beta-lactam resistance in Staphylococcus aureus has been discovered. This gene, mecC, is situated on a SCCmec XI element that has to date been identified in clonal complexes 49, 130, 425, 599 and 1943. Some of the currently known isolates have been identified from animals. This, and observations of mecA alleles that do not confer beta-lactam resistance, indicate that mec genes might have a reservoir in Staphylococcus species from animals. Thus it is important also to screen wildlife isolates for mec genes. Here, we describe mecC-positive Staphylococcus aureus (ST130-MRSA-XI) and the lesions related to the infection in two diseased free-ranging European hedgehogs (Erinaceus europaeus). One was found dead in 2003 in central Sweden, and suffered from S. aureus septicaemia. The other one, found on the island of Gotland in the Baltic Sea in 2011, showed a severe dermatitis and was euthanised. ST130-MRSA-XI isolates were isolated from lesions from both hedgehogs and were essentially identical to previously described isolates from humans. Both isolates carried the complete SCCmec XI element. They lacked the lukF-PV/lukS-PV and lukM/lukF-P83 genes, but harboured a gene for an exfoliative toxin homologue previously described from Staphylococcus hyicus, Staphylococcus pseudintermedius and other S. aureus of the CC130 lineage. To the best of our knowledge, these are the first reported cases of CC130-MRSA-XI in hedgehogs. Given that one of the samples was taken as early as 2003, this was the earliest detection of this strain and of mecC in Sweden. This and several other recent observations suggest that CC130 might be a zoonotic lineage of S. aureus and that SCCmec XI/mecC may have originated from animal pathogens. PMID:23776626
Monecke, Stefan; Gavier-Widen, Dolores; Mattsson, Roland; Rangstrup-Christensen, Lena; Lazaris, Alexandros; Coleman, David C; Shore, Anna C; Ehricht, Ralf
2013-01-01
Recently, a novel mec gene conferring beta-lactam resistance in Staphylococcus aureus has been discovered. This gene, mecC, is situated on a SCCmec XI element that has to date been identified in clonal complexes 49, 130, 425, 599 and 1943. Some of the currently known isolates have been identified from animals. This, and observations of mecA alleles that do not confer beta-lactam resistance, indicate that mec genes might have a reservoir in Staphylococcus species from animals. Thus it is important also to screen wildlife isolates for mec genes. Here, we describe mecC-positive Staphylococcus aureus (ST130-MRSA-XI) and the lesions related to the infection in two diseased free-ranging European hedgehogs (Erinaceus europaeus). One was found dead in 2003 in central Sweden, and suffered from S. aureus septicaemia. The other one, found on the island of Gotland in the Baltic Sea in 2011, showed a severe dermatitis and was euthanised. ST130-MRSA-XI isolates were isolated from lesions from both hedgehogs and were essentially identical to previously described isolates from humans. Both isolates carried the complete SCCmec XI element. They lacked the lukF-PV/lukS-PV and lukM/lukF-P83 genes, but harboured a gene for an exfoliative toxin homologue previously described from Staphylococcus hyicus, Staphylococcus pseudintermedius and other S. aureus of the CC130 lineage. To the best of our knowledge, these are the first reported cases of CC130-MRSA-XI in hedgehogs. Given that one of the samples was taken as early as 2003, this was the earliest detection of this strain and of mecC in Sweden. This and several other recent observations suggest that CC130 might be a zoonotic lineage of S. aureus and that SCCmec XI/mecC may have originated from animal pathogens.
von Godin, I; Schaeg, W; Blobel, H
1980-01-01
Serologically different teichoic acids could be demonstrated as polysaccharide antigens in staphylococcal species by immunodiffusion (Fig. 1) and counterimmunoelectrophoresis (GSE, Fig. 2). Staphylococcus aureus contained polysaccharide A, S. epidermidis polysaccharide B, S. saprophyticus polysaccharide A beta C, and S. hyicus polysaccharide C (Table 2). These polysaccharides were specific for staphylococcal species and could not be found in micrococci. The antigen preparations for the GSE were autoclaved suspensions of the staphylococcal and micrococcal cultures. The specific antisera (Table 1) were obtained after absorption with pronase-treated staphylococcal reference strains. Treatment with pronase removed protein A from the absorbing staphylococci. In this manner the "nonspecific" loss of specific antibodies was prevented. This would have occurred by the attachment of the Fc-component of immunoglobulin G to protein A of S. aureus. The precipitin-lines contained the polysaccharide-antigens and not protein A.
Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim
2013-01-01
Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts. PMID:23297195
Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim
2013-01-22
Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts.
Osman, Kamelia M; Amer, Aziza M; Badr, Jihan M; Saad, Aalaa S A
2015-05-01
Coagulase-positive (CPS) and coagulase-negative (CNS) staphylococci cause staphylococcal food poisoning. Recently, CPS and CNS have received increasing attention due to their potential role in the dissemination of antibiotic resistance markers. The present study aimed to evaluate CPS and CNS species distribution and their antibiotic resistance profile isolated from chicken and beef meat. Fifty fresh, uncooked chicken parts and 50 beef meat cuts (local n=27; imported n=23) were used. One hundred staphylococcal isolates belonging to 11 species were isolated and identified from chicken (n=50) and beef (n=50) raw meat samples. Staphylococcus hyicus (26/100), lugdunensis (18/100), aureus (15/100) and epidermidis (14/100) were dominant. S. aureus was 100% resistant to penicillin and sulfamethoxazole/trimethoprim. Vancomycin-resistant S. aureus showed intermediate resistance (51%), which might indicate the dissemination of vancomycin resistance in the community and imply food safety hazards. The percentage of resistance to β-lactams was variable, with the highest resistance being to penicillin (94%) and lowest to ampicillin-sulbactam (22%). Antimicrobial resistance was mainly against penicillin (94%), clindamycin (90%) and sulfamethoxazole/trimethoprim (82%). The results indicate that chicken and beef raw meat are an important source of antibiotic-resistant CPS and CNS.
Condas, Larissa A Z; De Buck, Jeroen; Nobrega, Diego B; Carson, Domonique A; Roy, Jean-Philippe; Keefe, Greg P; DeVries, Trevor J; Middleton, John R; Dufour, Simon; Barkema, Herman W
2017-07-01
The effect of non-aureus staphylococci (NAS) in bovine mammary health is controversial. Overall, NAS intramammary infections (IMI) increase somatic cell count (SCC), with an effect categorized as mild, mostly causing subclinical or mild to moderate clinical mastitis. However, based on recent studies, specific NAS may affect the udder more severely. Some of these apparent discrepancies could be attributed to the large number of species that compose the NAS group. The objectives of this study were to determine (1) the SCC of quarters infected by individual NAS species compared with NAS as a group, culture-negative, and major pathogen-infected quarters; (2) the distribution of NAS species isolated from quarters with low SCC (<200,000 cells/mL) and high SCC (≥200,000 cells/mL), and clinical mastitis; and (3) the prevalence of NAS species across quarters with low and high SCC. A total of 5,507 NAS isolates, 3,561 from low SCC quarters, 1,873 from high SCC quarters, and 73 from clinical mastitis cases, were obtained from the National Cohort of Dairy Farms of the Canadian Bovine Mastitis Research Network. Of quarters with low SCC, high SCC, or clinical mastitis, 7.6, 18.5, and 4.3% were NAS positive, respectively. The effect of NAS IMI on SCC was estimated using mixed-effect linear regression; prevalence of NAS IMI was estimated using Bayesian analyses. Mean SCC of NAS-positive quarters was 70,000 cells/mL, which was higher than culture-negative quarters (32,000 cells/mL) and lower than major pathogen-positive quarters (129,000 to 183,000 cells/mL). Compared with other NAS species, SCC was highest in quarters positive for Staphylococcus capitis, Staphylococcus gallinarum, Staphylococcus hyicus, Staphylococcus agnetis, or Staphylococcus simulans. In NAS-positive quarters, Staphylococcus xylosus (12.6%), Staphylococcus cohnii (3.1%), and Staphylococcus equorum (0.6%) were more frequently isolated from quarters with low SCC than other NAS species, whereas Staphylococcus sciuri (14%) was most frequently isolated from clinical mastitis cases. Finally, in NAS-positive quarters, Staphylococcus chromogenes, S. simulans, Staphylococcus epidermidis, and Staphylococcus haemolyticus were isolated with similar frequency from among low SCC and high SCC quarters and clinical mastitis cases. Staphylococcus chromogenes, S. simulans, S. xylosus, S. haemolyticus, S. epidermidis, S. agnetis, Staphylococcus arlettae, S. capitis, S. gallinarum, S. sciuri, and Staphylococcus warneri were more prevalent in high than in low SCC quarters. Because the NAS are a large, heterogeneous group, considering them as a single group rather than at the species, or even subspecies level, has undoubtedly contributed to apparent discrepancies among studies as to their distribution and importance in IMI and mastitis. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N
2011-03-01
In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. Copyright © 2010 Elsevier Ltd. All rights reserved.
Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors.
Vidal, Anna; Baldomà, Laia; Molina-López, Rafael A; Martin, Marga; Darwich, Laila
2017-08-01
Free-living raptors (birds of prey) can act as reservoirs of potentially zoonotic agents, but they also can be affected by microorganisms as target hosts. In this retrospective study, microbiological results (n = 663) and antibiotic sensitivity profiles (n = 108) of bacterial isolates were analysed from diseased free-living raptors. Sixty-nine percent of cases (n = 457) yielded bacteria: 58% were in pure culture and 42% were of different species. Remarkably, samples from necropsies (47%) had higher percentage of pure isolations than those obtained from clinical (31%) samples (P < 0.001). Among bacterial isolates, Escherichia coli was the most common agent (35%), principally recovered from necropsied birds with clinical signs of septicaemia or respiratory disorders. Pseudomonas aeruginosa (7%) was isolated from birds with systemic infection and from oral lesions, especially in nocturnal raptors (P < 0.001). Staphylococcus spp. (5%), mainly Staphylococcus aureus, was found to be the most prevalent cause of pododermatitis (35%) and Staphylococcus hyicus was isolated from conjunctivitis (18.2%). Interestingly, 8% of samples with lesions compatible with avian tuberculosis were positive to the Mycobacterium avium complex. The most frequent fungi associated with pneumonic lesions and ingluvitis were Aspergillus spp. and Candida spp., respectively. More than 50% of the 108 isolates (34 different bacterial spp.) demonstrated resistance to clindamycin, ampicillin, tetracycline, cefuroxime, enrofloxacin and trimethoprim/sulphamethoxazole. Among the E. coli strains, 71% (27/38) presented a multidrug-resistance pattern to >3 antimicrobials. Detection in wildlife of antimicrobial-resistant pathogens that might be significant at the animal-human-ecosystem interface is of great relevance under the 'One Health' approach.
USDA-ARS?s Scientific Manuscript database
Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encode...
Ma, Shutao; Ma, Ruixin; Liu, Zhaopeng; Ma, Chenchen; Shen, Xuecui
2009-10-01
4''-Carbamate, 11,12-cyclic carbonate-4''-carbamate and 11,4''-di-O-arylcarbamoyl analogs of azithromycin were designed, synthesized and evaluated. The 4''-carbamate analogs retained excellent activity against erythromycin-susceptible Staphylococcus pneumoniae and showed improved activity against erythromycin-resistant Staphylococcus pneumoniae. Compared with 4''-carbamate analogs, 11,12-cyclic carbonate-4''-carbamate analogs exhibited improved activity against erythromycin-resistant Staphylococcus pneumoniae encoded by the mef gene or the erm and mef genes, and 11,4''-di-O-arylalkylcarbamoyl analogs showed greatly improved activity (0.25-0.5 microg/mL) against erythromycin-resistant Staphylococcus pneumoniae encoded by the erm gene. Among them, the novel series of 11,4''-di-O-arylalkylcarbamoyl analogs 7a-k exhibited potent and balanced activity against susceptible and resistant bacteria. In particular, compounds 7f and 7k were the most effective against susceptible bacteria and resistant bacteria encoded by the erm gene or the mef gene.
Dakić, Ivana; Vuković, Dragana; Stepanović, Srdjan; Hauschild, Tomasz; Ježek, Petr; Petráš, Petr; Morrison, Donald
2005-01-01
Genes encoding staphylococcal enterotoxins (sea to see, seg, and seh), toxic shock syndrome toxin 1 (tst), and exfoliative toxins (eta and etb) were not detected in a large panel of 48 Staphylococcus sciuri group isolates tested. This strongly suggests that production of the staphylococcal exotoxins by these bacteria is highly unlikely. PMID:16145164
Osman, Kamelia; Badr, Jihan; Al-Maary, Khalid S.; Moussa, Ihab M. I.; Hessain, Ashgan M.; Girah, Zeinab M. S. Amin; Abo-shama, Usama H.; Orabi, Ahmed; Saad, Aalaa
2016-01-01
The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS(B)] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards. PMID:27920760
Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.
Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B
2013-02-01
Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (p<0.05), reinforcing the importance of S. aureus as a potential foodborne agent. However, the potential risk posed by CoNS in goat milk should not be ignored because it has a higher occurrence in goat milk and enterotoxin-encoding genes were detected in some isolates.
Enterotoxin-Encoding Genes in Staphylococcus spp. from Food Handlers in a University Restaurant.
da Silva, Sabina Dos Santos Paulino; Cidral, Thiago André; Soares, Maria José dos Santos; de Melo, Maria Celeste Nunes
2015-11-01
Food handlers carrying enterotoxin-producing Staphylococcus are a potential source of food poisoning. The aim of this study was to analyze genes encoding enterotoxins in coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS) isolated from the anterior nostrils and hands of food handlers at a university restaurant in the city of Natal, Northeast Brazil. Thirty food handlers were screened for the study. The isolates were subjected to Gram staining, a bacitracin sensitivity test, mannitol fermentation, and catalase and coagulase tests. CoNS and CoPS strains were subsequently identified by a Vitek 2 System (BioMerieux, France) and various biochemical tests. Polymerase chain reaction was used to detect genes for enterotoxins A, B, C, D, E, G, H, and I (sea, seb, sec, sed, see, seg, seh, and sei) and a disc-diffusion method was used to determine susceptibility to several classes of antimicrobials. All food handlers presented staphylococci on their hands and/or noses. The study found 58 Staphylococcus spp., of which 20.7% were CoPS and 79.3% were CoNS. S. epidermidis was the most prevalent species. Twenty-nine staphylococci (50%) were positive for one or more enterotoxin genes, and the most prevalent genes were seg and sei, each with a frequency of 29.3%. Indeed, CoNS encoded a high percentage of enterotoxin genes (43.5%). However, S. aureus encoded even more enterotoxin genes (75%). Most isolates showed sensitivity to the antibiotics used for testing, except for penicillin (only 35% sensitive). The results from this study reinforce that coagulase-negative as well as coagulase-positive staphylococci isolated from food handlers are capable of genotypic enterotoxigenicity.
Microbiological identification and analysis of swine tonsils collected from carcasses at slaughter
O’Sullivan, Terri; Friendship, Robert; Blackwell, Tim; Pearl, David; McEwen, Beverly; Carman, Susy; Slavić, Đurđa; Dewey, Catherine
2011-01-01
The primary objective of this 7-month study was to determine the prevalence of porcine pathogens of the tonsil of the soft palate of swine at slaughter. Additional objectives were to determine if sampling the carcasses of normal or abnormal hogs provided different microbiological profiles and if the slaughter plant provides a feasible sampling frame and environment for detecting and monitoring important pathogens in tonsils that have health implications for both swine and humans. A total of 395 samples were collected from 264 farms. Of these, 180 tonsils were collected from normal carcasses and 215 tonsils were collected from carcasses that were diverted to the hold rail. Laboratory testing included bacteriological culture and identification as well as real time-polymerase chain reaction (PCR) testing for porcine reproductive and respiratory syndrome virus (PPRSV) and immunohistochemistry (IHC) for porcine circovirus-2 (PCV-2). The most commonly isolated bacteria included: Streptococcus suis (53.7%), Arcanobacterium pyogenes (29.9%), Pasteurella multocida (27.3%), and Streptococcus porcinus (19.5%). Virus screening revealed evidence of PRRSV and PCV-2 in 22.0% and 11.9% of the samples, respectively. Salmonella Typhimurium and Yersinia enterocolitica were isolated in 0.5% and 1.8% of the samples, respectively. Tonsils collected from the hold rail were more likely to be positive for Staphylococcus hyicus [odds ratio (OR) = 7.51, confidence interval (CI) = 2.89 to 19.54], Streptococcus porcinus (OR = 9.93, CI = 4.27 to 23.10), and Streptococcus suis (OR = 2.16, CI = 1.45 to 3.24). Tonsils collected from abnormal carcasses were less likely to be positive for Staphylococcus aureus (OR = 0.05, CI = 0.005 to 0.482). PMID:21731180
Complete Genome Sequence of Staphylococcus epidermidis 1457
Galac, Madeline R.; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L.
2017-01-01
ABSTRACT Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. PMID:28572323
Staphylococcus pseudintermedius necrotizing fasciitis in a dog
Weese, J. Scott; Poma, Roberta; James, Fiona; Buenviaje, Gilbert; Foster, Robert; Slavic, Durda
2009-01-01
Staphylococcus pseudintermedius was implicated as the cause of rapidly progressive and fatal necrotizing fasciitis in a dog. The isolate was methicillin-susceptible and did not contain genes encoding the Panton-Valentine leukocidin. While Streptococcus canis is typically considered to be the main cause of necrotizing fasciitis in dogs, staphylococci should also be considered. PMID:19721787
Staphylococcus pseudintermedius necrotizing fasciitis in a dog.
Weese, J Scott; Poma, Roberta; James, Fiona; Buenviaje, Gilbert; Foster, Robert; Slavic, Durda
2009-06-01
Staphylococcus pseudintermedius was implicated as the cause of rapidly progressive and fatal necrotizing fasciitis in a dog. The isolate was methicillin-susceptible and did not contain genes encoding the Panton-Valentine leukocidin. While Streptococcus canis is typically considered to be the main cause of necrotizing fasciitis in dogs, staphylococci should also be considered.
Complete genome sequences of two Staphylococcus aureus ST5 isolates from California, USA
USDA-ARS?s Scientific Manuscript database
Staphylococcus aureus is a bacteria that can cause disease in humans and animals. S. aureus bacteria can transfer or exchange segments of genetic material with other bacteria. These segments are known as mobile genetic elements and in some instances they can encode for factors that increase the abil...
Draft genome sequences of 14 Staphylococcus aureus ST5 isolates from California, USA
USDA-ARS?s Scientific Manuscript database
Staphylococcus aureus is a bacteria that can cause disease in humans and animals. S. aureus bacteria can transfer or exchange segments of genetic material with other bacteria. These segments are known as mobile genetic elements and in some instances they can encode for factors that increase the abil...
Complete Genome Sequence of Staphylococcus epidermidis 1457.
Galac, Madeline R; Stam, Jason; Maybank, Rosslyn; Hinkle, Mary; Mack, Dietrich; Rohde, Holger; Roth, Amanda L; Fey, Paul D
2017-06-01
Staphylococcus epidermidis 1457 is a frequently utilized strain that is amenable to genetic manipulation and has been widely used for biofilm-related research. We report here the whole-genome sequence of this strain, which encodes 2,277 protein-coding genes and 81 RNAs within its 2.4-Mb genome and plasmid. Copyright © 2017 Galac et al.
Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen.
Hsieh, Sue-Er; Tseng, Yi-Hsiung; Lo, Hsueh-Hsia; Chen, Shui-Tu; Wu, Cheng-Nan
2016-02-01
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo
2014-01-01
Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will evaluate the ability of suicin 90-1330 or the producing strain to prevent experimental S. suis infections in pigs. PMID:24973067
Lee, Mi-Hwa; Oh, Ki-Hoon; Kang, Chul-Hyung; Kim, Ji-Hoon; Oh, Tae-Kwang; Ryu, Choong-Min
2012-01-01
A novel lipolytic enzyme was isolated from a metagenomic library obtained from tidal flat sediments on the Korean west coast. Its putative functional domain, designated MPlaG, showed the highest similarity to phospholipase A from Grimontia hollisae CIP 101886, though it was screened from an emulsified tricaprylin plate. Phylogenetic analysis showed that MPlaG is far from family I.6 lipases, including Staphylococcus hyicus lipase, a unique lipase which can hydrolyze phospholipids, and is more evolutionarily related to the bacterial phospholipase A1 family. The specific activities of MPlaG against olive oil and phosphatidylcholine were determined to be 2,957 ± 144 and 1,735 ± 147 U mg−1, respectively, which means that MPlaG is a lipid-preferred phospholipase. Among different synthetic esters, triglycerides, and phosphatidylcholine, purified MPlaG exhibited the highest activity toward p-nitrophenyl palmitate (C16), tributyrin (C4), and 1,2-dihexanoyl-phosphatidylcholine (C8). Finally, MPlaG was identified as a phospholipase A1 with lipase activity by cleavage of the sn-1 position of OPPC, interfacial activity, and triolein hydrolysis. These findings suggest that MPlaG is the first experimentally characterized phospholipase A1 with lipase activity obtained from a metagenomic library. Our study provides an opportunity to improve our insight into the evolution of lipases and phospholipases. PMID:22544255
USDA-ARS?s Scientific Manuscript database
Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) is mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, on the type V SCCmec element. Since the czrC gene and the mecA gene are co-located on the SCCmec element, it has ...
Microarray analysis of toxicogenomic effects of Ortho-phenylphenol in Staphylococcus aureus
Jang, Hyeung-Jin; Nde, Chantal; Toghrol, Freshteh; Bentley, William E
2008-01-01
Background Staphylococcus aureus (S. aureus), is responsible for many infectious diseases, ranging from benign skin infections to life-threatening endocarditis and toxic shock syndrome. Ortho-phenylphenol (OPP) is an antimicrobial agent and an active ingredient of EPA-registered disinfectants with wide human exposure in various agricultural, hospital and veterinary disinfectant products. Despite many uses, an understanding of a cellular response to OPP and it's mechanism of action, targeted genes, and the connectivity between targeted genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses of S. aureus when exposed to 0.82 mM of OPP for 20 and 60 min. Our data indicated that OPP downregulated the biosynthesis of many amino acids, which are required for protein synthesis. In particular, the genes encoding the enzymes of the diaminopimelate (DAP) pathway which results in lysine biosynthesis were significantly downregualted. Intriguingly, we revealed that the transcription of genes encoding ribosomal proteins was upregulated by OPP and at the same time, the genes encoding iron acquisition and transport were downregulated. The genes encoding virulence factors were upregulated and genes encoding phospholipids were downregulated upon 20 min exposure to OPP. Conclusion By using microarray analysis that enables us to simultaneously and globally examine the complete transcriptome during cellular responses, we have revealed novel information regarding the mode of action of OPP on Staphylococcus: OPP inhibits anabolism of many amino acids and highly downregulates the genes that encode the enzymes involved in the DAP pathway. Lysine and DAP are essential for building up the peptidoglycan cell wall. It was concluded that the mode of action of OPP is similar to the mechanism of action of some antibiotics. The discovery of this phenomenon provides useful information that will benefit further antimicrobial research on S. aureus. PMID:18793396
Iwase, Tadayuki; Seki, Keiko; Shinji, Hitomi; Mizunoe, Yoshimitsu; Masuda, Shogo
2007-10-01
Staphylococcus capitis, Staphylococcus haemolyticus and Staphylococcus warneri are coagulase-negative staphylococci. Each species has different characteristics, and a difference in pathology is also seen in compromised hosts. Therefore, the development of a species-specific simple detection method for the identification of these staphylococci is important. Here, a species-specific real-time PCR assay is reported that targets the superoxide dismutase A-encoding gene of these bacteria. Primers were designed with a base that was non-complementary with regard to the other bacteria. This base was at the 3' end of the primer (3' mismatch primer) and conferred high specificity. These primers were then evaluated using real-time PCR. They reacted only with the target bacterium. In addition, stable quantitative reactions were observed when experiments were performed using genomic DNA extracted from varying numbers of staphylococci cells (10(1)-10(7) cells). These results indicate that this method is useful for the identification and quantitative analysis of S. capitis, S. haemolyticus and S. warneri.
Cavicchioli, V Q; Scatamburlo, T M; Yamazi, A K; Pieri, F A; Nero, L A
2015-12-01
Consumption of goat milk has been increasing due to its nutritional characteristics and health benefits. Therefore, assessment of the presence of foodborne pathogens in this product is critical to ensure its safety to consumers. The present study aimed to identify common foodborne pathogens in raw goat milk. Fifty-three samples of raw goat milk from 11 farms were collected and cultured for the presence of Salmonella spp. and Listeria monocytogenes, as well as for enumeration and isolation of coagulase-positive and coagulase-negative Staphylococcus (CPS and CNS, respectively). All samples tested negative for Salmonella spp. and L. monocytogenes. The CPS counts in raw goat milk samples were predominantly less than 2 log cfu/mL (n=39), and CNS counts were predominantly higher than 3 log cfu/mL (n=42). Based on Staphylococcus counts, 51 isolates were selected (CPS=26; CNS=25) and tested by PCR for the presence of classic enterotoxin-encoding genes (sea, seb, sec, sed, and see). Only 3 isolates (CPS=2, CNS=1) were negative for all enterotoxin-encoding genes tested, and the genotype sec and see was the most frequent (n=16), followed by sea, sec, and see (n=13) and sec (n=13); sed was not detected in any isolate. The frequencies of enterotoxin-encoding genes for CPS and CNS were similar, demonstrating the equivalence of both groups in harboring these virulent markers. These results suggest that Salmonella and L. monocytogenes are not frequent contaminants of raw goat milk, but that Staphylococcus spp. that are capable of producing enterotoxins are prevalent; therefore, consumers of raw goat milk and products made from raw milk are at risk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wakabayashi, Yuki; Umeda, Kaoru; Yonogi, Shinya; Nakamura, Hiromi; Yamamoto, Kaori; Kumeda, Yuko; Kawatsu, Kentaro
2018-01-16
Staphylococcal food poisoning (SFP) is caused by staphylococcal enterotoxins (SEs) preformed in food materials. SE genes are encoded on mobile genetic elements and are widely found across Staphylococcus species including S. argenteus, although most SFP cases are caused by S. aureus. S. argenteus, recently discriminated from S. aureus as a novel species, are non-pigmented staphylococci phenotypically related to S. aureus. In 2014 and 2015, two independent food poisoning cases occurred in Osaka, Japan, in which non-pigmented staphylococci were predominantly isolated. Several enterotoxin genes (seb, seg, sei, sem, sen, seo, and selu2) were found in their genome and the production of SEB was confirmed by reverse passive agglutination tests. The non-pigmented isolates from patients, food handlers, food, and cooking utensils all produced the same pulsed-field gel electrophoresis pattern. These non-pigmented isolates were coagulase-positive and biochemically identical to S. aureus. We performed further genetic analysis using nucA sequencing and multi-locus sequence typing, and identified these isolates as S. argenteus. We also found that seb was encoded on the Staphylococcus aureus pathogenicity island, while seg, sei, sem, sen, seo, and selu2 were encoded on the enterotoxin gene cluster. From these results, we concluded that the two food poisoning outbreaks were SFP cases caused by S. argenteus harboring SE genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Marty, Esther; Bodenmann, Chantal; Buchs, Jasmin; Hadorn, Ruedi; Eugster-Meier, Elisabeth; Lacroix, Christophe; Meile, Leo
2012-10-01
To provide new meat starter strains lacking antibiotic (AB) resistances, we explored the AB susceptibility in 116 coagulase-negative Staphylococcus (CNS) isolates from traditionally fermented sausages (n=40) manufactured with meat from conventional animal breeding, and from meat products (n=76) made from meat of animals raised in natural habitats under low- or no-antibiotic pressure. Less than 50% of these CNS isolates showed phenotypic resistances to at least one antibiotic (AB) by using microdilution assay. Resistances to penicillins and tetracycline were most often observed and could be traced back to blaZ and tet(K) genes. Prevalence of AB resistances was species-dependent and mainly found in isolates of Staphylococcus warneri (78%), Staphylococcus capitis (75%) and Staphylococcus epidermidis (67%), but only sporadically detected in Staphylococcus carnosus (27%) and Staphylococcus equorum (18%). AB resistances were more often observed in S. xylosus isolates originating from natural habitats compared to traditionally fermented sausages made from conventional meat. A selection of 101 isolates belonging to S. xylosus (n=63), S. carnosus (n=21) and S. equorum (n=17) were subsequently grouped by pulsed-field gel electrophoresis (PFGE) into strain clusters. No S. carnosus and only five S. xylosus strains were lacking AB resistances and exhibited a PFGE genotype different from commercial starters. These strains, together with 17 S. equorum strains, were further studied for safety and technological characteristics. The ability to produce biogenic amines was not detected in any strain. PCR amplifications for enterotoxin encoding genes seg-sej were detected in one, and for δ-hemolysin encoding gene hld in four S. equorum strains, but phenotypic hemolytic activity was visible for three S. xylosus and 15 S. equorum strains. Catalase and nitrate reductase activity was observed in all isolates tested; particularly S. equorum showed high nitrate reduction. In conclusion, we were able to select four new meat starter strains (two S. xylosus and two S. equorum strains) out of 116 investigated CNS, fulfilling all safety criteria including the absence of AB resistances, production of biogenic amines and genes encoding virulence factors but exhibiting high nitrate reductase and catalase activity as suitable technological characteristics. Thus, S. equorum isolates, often the dominant species in spontaneously fermented meat products, provided a prospective meat starter species exhibiting high nitrate reduction and low prevalence of AB resistances. Copyright © 2012 Elsevier B.V. All rights reserved.
Ba, Xiaoliang; Lovering, Andrew L.; Gleadall, Nicholas; Zadoks, Ruth; Peacock, Sharon J.; Holden, Matthew T. G.; Paterson, Gavin K.; Holmes, Mark A.
2015-01-01
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections. PMID:26392513
Hodel-Christian, S L; Murray, B E
1992-01-01
The genetic determinant encoding gentamicin resistance (Gmr) on the beta-lactamase encoding plasmid pBEM10 of Enterococcus faecalis HH22 is carried on a transposon, termed Tn5281, that is highly related to the staphylococcal Gmr transposons Tn4001 found in Australian isolates of Staphylococcus aureus and Tn4031 found in United States isolates of Staphylococcus epidermidis. We have now studied plasmid DNA from Gmr strains of E. faecalis isolated from diverse geographical locations (Houston, Pennsylvania, Thailand, and Chile) by using restriction endonuclease analysis and DNA-DNA hybridization to determine whether other Gmr E. faecalis carry Tn5281 or a similar type of element. We also compared these enterococci to several United States isolates of Staphylococcus aureus with nonmobile Gmr determinants. Three E. faecalis isolates (from Houston and Chile) carried Tn5281-like elements, whereas two isolates (from Houston and Pennsylvania) had restriction endonuclease and DNA-DNA hybridization patterns more similar to those of the Tn4001-IS257 hybrid found in the nonmobile Gmr determinants in United States isolates of S. aureus. A strain from Thailand had a third pattern unrelated to either Tn5281 or the nonmobile Gmr determinants present in United States isolates of S. aureus. Our results demonstrate that there is both similarity and diversity between the Gmr determinant of strains of E. faecalis isolated in diverse geographic locations. Images PMID:1332593
Mansson, Maria; Nielsen, Anita; Kjærulff, Louise; Gotfredsen, Charlotte H.; Wietz, Matthias; Ingmer, Hanne; Gram, Lone; Larsen, Thomas O.
2011-01-01
During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium. PMID:22363239
Yeung, Yik Andy; Foletti, Davide; Deng, Xiaodi; Abdiche, Yasmina; Strop, Pavel; Glanville, Jacob; Pitts, Steven; Lindquist, Kevin; Sundar, Purnima D; Sirota, Marina; Hasa-Moreno, Adela; Pham, Amber; Melton Witt, Jody; Ni, Irene; Pons, Jaume; Shelton, David; Rajpal, Arvind; Chaparro-Riggers, Javier
2016-11-18
Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.
Bakthavatchalam, Yamuna Devi; Sudarsanam, Thambu David; Babu, Priyanka; Munuswamy, Elakkiya; Muthuirulandi Sethuvel, Dhiviya Prabaa; Devanga Ragupathi, Naveen Kumar; Veeraraghavan, Balaji
2017-07-24
Staphylococcus haemolyticus is a coagulase-negative staphylococcus that is frequently isolated from blood cultures. Here, we report a case of methicillin-susceptible S. haemolyticus that is resistant to teicoplanin (TEC) and heteroresistant to vancomycin (VAN). The isolate was susceptible to cefoxitin and resistant to TEC by Etest. Population analysis profile-area under the curve analysis confirmed the presence of a VAN heteroresistant subpopulation. Next-generation sequencing analysis of the genome revealed the presence of blaZ and msr(A), which encode cross-resistance to macrolide, lincosamide, and streptogramin B, and the quinolone resistance-conferring gene norA. In addition, several amino acid substitutions were observed in the TEC resistance operon tcaRAB, including I3N, I390N, and L450I in tcaA and L44V, G52V, and S87P in tcaR, as well as in the transpeptidase encoding gene walK (D336Y, R375L, and V404A) and L315 and P316 in graS. We hypothesized that this combination of mutations could confer TEC resistance and reduced VAN susceptibility.
LeBel, Geneviève; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel
2014-09-01
Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will evaluate the ability of suicin 90-1330 or the producing strain to prevent experimental S. suis infections in pigs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus.
Schuenck, Ricardo P; Pereira, Eliezer M; Iorio, Natalia L P; Dos Santos, Kátia R N
2008-04-01
Staphylococcus haemolyticus is the most frequently coagulase-negative Staphylococcus species associated with antimicrobial resistance isolated from nosocomial infections. We developed an accurate and simple multiplex PCR assay to identify methicillin-resistant S. haemolyticus (MRSH) isolates. We designed species-specific primers of the mvaA gene that encodes a 3-hydroxy-3-methylglutaryl coenzyme A involved in the mevalonate pathway of the microorganism. Simultaneously, mecA gene primers of methicillin resistance were also used. The PCR assay was established using 16 strains of different reference Staphylococcus species and validated with a collection of 147 clinical staphylococcal isolates that were also phenotypically characterized. Reliable results for the detection of MRSH isolates were obtained for 100% of the strains evaluated, showing that this PCR assay can be used for the routine microbiology laboratories. This is the first report using species-specific multiplex PCR to detect a single segment of S. haemolyticus associated with a segment of mecA gene.
2010-01-01
Background The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. Findings We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Conclusions Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features. PMID:21047438
Sheraba, Norhan S; Yassin, Aymen S; Amin, Magdy A
2010-11-04
The staphylococci are one of the most common environmental isolates found in clean room facility. Consequently, isolation followed by comprehensive and accurate identification is an essential step in any environmental monitoring program. We have used the API Staph identification kit (bioMérieux, France) which depends on the expression of metabolic activities and or morphological features to identify the Staphylococcus isolates. The API staphylococci showed low sensitivity in the identification of some species, so we performed molecular methods based on PCR based fingerprinting of glyceraldehyde-3-phosphate dehydrogenase encoding gene as useful taxonomic tool for examining Staphylococcus isolates. Our results showed that PCR protocol used in this study which depends on genotypic features was relatively accurate, rapid, sensitive and superior in the identification of at least 7 species of Staphylococcus than API Staph which depends on phenotypic features.
Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter; Coenye, Tom
2017-01-01
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
Vandecandelaere, Ilse; Van Nieuwerburgh, Filip; Deforce, Dieter
2017-01-01
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other’s behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved. PMID:28263995
Sauer, P; Síla, J; Stosová, T; Vecerová, R; Hejnar, P; Vágnerová, I; Kolár, M; Raclavsky, V; Petrzelová, J; Lovecková, Y; Koukalová, D
2008-04-01
A rather fast and complicated progression of an infection caused by some strains of Staphylococcus aureus could be associated with the expression and co-action of virulence factor complexes in these strains. This study screened the antibiotic susceptibility and prevalence of virulence markers in isolates of meticillin-resistant S. aureus (MRSA) obtained from patients hospitalized at the University Hospital in Olomouc, Czech Republic. A total of 100 isolates was screened for 13 genes encoding extracellular virulence determinants (tst, pvl, eta, etb, sea, seb, sec, sed, see, seg, seh, sei and sej) and for their distribution in sample types. Eighty-nine isolates were positive for at least one of the genes. Genes for etb, pvl, see and seh were not detected in any of the MRSA isolates. No statistically significant differences in the occurrence of the determinants studied among sample types were found.
Ji, Guangyong; Pei, Wuhong; Zhang, Linsheng; Qiu, Rongde; Lin, Jianqun; Benito, Yvonne; Lina, Gerard; Novick, Richard P
2005-05-01
The agr system is a global regulator of accessory functions in staphylococci, including genes encoding exoproteins involved in virulence. The agr locus contains a two-component signal transduction module that is activated by an autoinducing peptide (AIP) encoded within the agr locus and is conserved throughout the genus. The AIP has an unusual partially cyclic structure that is essential for function and that, in all but one case, involves an internal thiolactone bond between a conserved cysteine and the C-terminal carboxyl group. The exceptional case is a strain of Staphylococcus intermedius that has a serine in place of the conserved cysteine. We demonstrate here that the S. intermedius AIP is processed by the S. intermedius AgrB protein to generate a cyclic lactone, that it is an autoinducer as well as a cross-inhibitor, and that all of five other S. intermedius strains examined also produce serine-containing AIPs.
Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus
van Alen, Sarah; Idelevich, Evgeny A.; Schleimer, Nina; Seggewiß, Jochen; Mellmann, Alexander; Kaspar, Ursula; Peters, Georg
2018-01-01
During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections. PMID:29350135
Mobile genetic elements of Staphylococcus aureus.
Malachowa, Natalia; DeLeo, Frank R
2010-09-01
Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence.
Balachandran, Manasi; Giannone, Richard J; Bemis, David A; Kania, Stephen A
2017-01-01
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.
Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46
Balachandran, Manasi; Giannone, Richard J.; Bemis, David A.
2017-01-01
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins with an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models. PMID:28859130
Ba, Xiaoliang; Harrison, Ewan M; Lovering, Andrew L; Gleadall, Nicholas; Zadoks, Ruth; Parkhill, Julian; Peacock, Sharon J; Holden, Matthew T G; Paterson, Gavin K; Holmes, Mark A
2015-12-01
β-Lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by the expression of an alternative penicillin-binding protein 2a (PBP2a) (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA, known as mecC, was identified in MRSA isolates from both humans and animals. In this study, we demonstrate that mecC-encoded PBP2c does not mediate resistance to penicillin. Rather, broad-spectrum β-lactam resistance in MRSA strains carrying mecC (mecC-MRSA strains) is mediated by a combination of both PBP2c and the distinct β-lactamase encoded by the blaZ gene of strain LGA251 (blaZLGA251), which is part of mecC-encoding staphylococcal cassette chromosome mec (SCCmec) type XI. We further demonstrate that mecC-MRSA strains are susceptible to the combination of penicillin and the β-lactam inhibitor clavulanic acid in vitro and that the same combination is effective in vivo for the treatment of experimental mecC-MRSA infection in wax moth larvae. Thus, we demonstrate how the distinct biological differences between mecA- and mecC-encoded PBP2a and PBP2c have the potential to be exploited as a novel approach for the treatment of mecC-MRSA infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Boksha, I S; Lavrova, N V; Grishin, A V; Demidenko, A V; Lyashchuk, A M; Galushkina, Z M; Ovchinnikov, R S; Umyarov, A M; Avetisian, L R; Chernukha, M Iu; Shaginian, I A; Lunin, V G; Karyagina, A S
2016-05-01
Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity.
Chu, Chishih; Wei, Yajiun; Chuang, Shih-Te; Yu, Changyou; Changchien, Chih-Hsuan; Su, Yaochi
2013-03-01
A total of 117 mastitis-associated Staphylococcus aureus isolates from cow, goat, and human patients were analyzed for differences in antibiotic susceptibility, virulence genes, and genotypes using accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Multidrug-resistant (MDR) S. aureus were commonly found in all sources, though they were predominantly found in human and goat isolates. Almost 70% of the isolates were resistant to ampicillin and penicillin. Host-associated virulence genes were identified as follows: tst, a gene encoding toxic shock syndrome toxin, was found in goat isolates; lukED and lukM, genes encoding leukocidin, found in cow isolates; lukPV, a gene encoding leukocidin, found in human isolates; and eta, a gene encoding for exfoliative toxin, found in both human and cow isolates. All four types of hemolysin, α, β, γ, and δ, were identified in human isolates, three types (α, γ, and δ), were identified in cow isolates, and two types (α and δ) were identified in goat isolates. Agr-typing determined agr1 to be the main subtype in human and cow isolates. PFGE and MLST analysis revealed the presence of diverse genotypes among the three sources. In conclusion, mastitis-associated, genetically diverse strains of MDR S. aureus differed in virulence genes among human, cow, and goat isolates.
Increased flexibility in the use of exogenous lipoic acid by Staphylococcus aureus.
Laczkovich, Irina; Teoh, Wei Ping; Flury, Sarah; Grayczyk, James P; Zorzoli, Azul; Alonzo, Francis
2018-04-16
Lipoic acid is a cofactor required for intermediary metabolism that is either synthesized de novo or acquired from environmental sources. The bacterial pathogen Staphylococcus aureus encodes enzymes required for de novo biosynthesis, but also encodes two ligases, LplA1 and LplA2, that are sufficient for lipoic acid salvage during infection. S. aureus also encodes two H proteins, GcvH of the glycine cleavage system and the homologous GcvH-L encoded in an operon with LplA2. GcvH is a recognized conduit for lipoyl transfer to α-ketoacid dehydrogenase E2 subunits, while the function of GcvH-L remains unclear. The potential to produce two ligases and two H proteins is an unusual characteristic of S. aureus that is unlike most other Gram positive Firmicutes and might allude to an expanded pathway of lipoic acid acquisition in this microorganism. Here, we demonstrate that LplA1 and LplA2 facilitate lipoic acid salvage by differentially targeting lipoyl domain-containing proteins; LplA1 targets H proteins and LplA2 targets α-ketoacid dehydrogenase E2 subunits. Furthermore, GcvH and GcvH-L both facilitate lipoyl relay to E2 subunits. Altogether, these studies identify an expanded mode of lipoic acid salvage used by S. aureus and more broadly underscore the importance of bacterial adaptations when faced with nutritional limitation. © 2018 John Wiley & Sons Ltd.
Mahmmod, Yasser S; Klaas, Ilka Christine; Svennesen, Line; Pedersen, Karl; Ingmer, Hanne
2018-05-16
The role of non-aureus staphylococci (NAS) in the risk of acquisition of intramammary infections with Staphylococcus aureus is vague and still under debate. The objectives of this study were to (1) investigate the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems, and (2) examine if the isolated NAS influences the expression of S. aureus virulence factors controlled by the accessory gene regulator (agr) quorum sensing system. In 8 herds, 14 to 20 cows with elevated somatic cell count were randomly selected for teat skin swabbing and aseptic quarter foremilk samples from right hind and left front quarters. Teat skin swabs were collected using the modified wet-dry method and milk samples were taken aseptically for bacterial culture. Colonies from quarters with suspicion of having NAS in milk or teat skin samples (or both) were subjected to MALDI-TOF assay for species identification. To investigate the interaction between S. aureus and NAS, 81 isolates NAS were subjected to a qualitative β-galactosidase reporter plate assay. In total, 373 NAS isolates were identified representing 105 from milk and 268 from teat skin of 284 quarters (= 142 cows). Sixteen different NAS species were identified, 15 species from teat skin and 10 species from milk. The most prevalent NAS species identified from milk were Staphylococcus epidermidis (50%), Staphylococcus haemolyticus (15%), and Staphylococcus chromogenes (11%), accounting for 76%. Meanwhile, the most prevalent NAS species from teat skin were Staphylococcus equorum (43%), S. haemolyticus (16%), and Staphylococcus cohnii (14%), accounting for 73%. Using reporter gene fusions monitoring transcriptional activity of key virulence factors and regulators, we found that out of 81 supernatants of NAS isolates, 77% reduced expression of hla, encoding a-hemolysin, 70% reduced expression of RNAIII, the key effector molecule of agr, and 61% reduced expression of spa encoding protein A of S. aureus, respectively. Our NAS isolates showed 3 main patterns: (1) downregulation effect such as S. chromogenes (milk) and Staphylococcus xylosus (milk and teat), (2) no effect such as Staphylococcus sciuri (teat) and S. vitulinus (teat), and the third pattern (c) variable effect such as S. epidermidis (milk and teat) and S. equorum (milk and teat). The pattern of cross-talk between NAS species and S. aureus virulence genes varied according to the involved NAS species, habitat type, and herd factors. The knowledge of how NAS influences S. aureus virulence factor expression could explain the varying protective effect of NAS on S. aureus intramammary infections. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Metabolism of azo dyes by human skin microbiota
Stingley, Robin L.; Zou, Wen; Heinze, Thomas M.; Chen, Huizhong; Cerniglia, Carl E.
2018-01-01
Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74–100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes. PMID:19729456
Metabolism of azo dyes by human skin microbiota.
Stingley, Robin L; Zou, Wen; Heinze, Thomas M; Chen, Huizhong; Cerniglia, Carl E
2010-01-01
Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74-100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes.
Schiwon, Katarzyna; Arends, Karsten; Rogowski, Katja Marie; Fürch, Svea; Prescha, Katrin; Sakinc, Türkan; Van Houdt, Rob; Werner, Guido; Grohmann, Elisabeth
2013-04-01
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.
Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M
2014-04-01
Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.
Damasco, Paulo V; Chamon, Raiane C; Barbosa, Angélica T L; da Cunha, Sérgio; Aquino, José H W; Cavalcante, Fernanda S; Dos Santos, Kátia R N
2012-01-01
Staphylococcus aureus encoding Panton-Valentine leukocidin (PVL) genes has become the cause of life-threatening infections. We describe a case of carotid cavernous fistula after bacteremia in a 12-year-old male, caused by a methicillin-susceptible S. aureus isolate carrying the pvl, fnbA, and ebpS genes and related to sequence type 25 (ST25). The patient's condition was complicated by pleural empyema and osteomyelitis in the right femur. The patient was discharged in good clinical condition after 160 days of hospitalization.
Cheung, Gordon Y C; Villaruz, Amer E; Joo, Hwang-Soo; Duong, Anthony C; Yeh, Anthony J; Nguyen, Thuan H; Sturdevant, Daniel E; Queck, S Y; Otto, M
2014-07-01
Several methicillin resistance (SCCmec) clusters characteristic of hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains harbor the psm-mec locus. In addition to encoding the cytolysin, phenol-soluble modulin (PSM)-mec, this locus has been attributed gene regulatory functions. Here we employed genome-wide transcriptional profiling to define the regulatory function of the psm-mec locus. The immune evasion factor protein A emerged as the primary conserved and strongly regulated target of psm-mec, an effect we show is mediated by the psm-mec RNA. Furthermore, the psm-mec locus exerted regulatory effects that were more moderate in extent. For example, expression of PSM-mec limited expression of mecA, thereby decreasing methicillin resistance. Our study shows that the psm-mec locus has a rare dual regulatory RNA and encoded cytolysin function. Furthermore, our findings reveal a specific mechanism underscoring the recently emerging concept that S. aureus strains balance pronounced virulence and high expression of antibiotic resistance. Published by Elsevier GmbH.
Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, Manasi; Giannone, Richard J.; Bemis, David A.
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins withmore » an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.« less
Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.
Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa
2007-09-01
Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.
Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46
Balachandran, Manasi; Giannone, Richard J.; Bemis, David A.; ...
2017-08-31
Protein A in Staphylococcus aureus is encoded by the spa (staphylococcal protein A) gene and binds to immunoglobulin (Ig). The S. aureus strain Wood 46 has been variously reported as protein A-deficient and/or spa negative and used as a control in animal models of staphylococcal infections. The results of this study indicate that Wood 46 has normal spa expression but transcribes very low levels of the srtA gene which encodes the sortase A (SrtA) enzyme. This is consistent with unique mutations in the srtA promoter. In this study, a low level of sortase A explains deficient anchoring of proteins withmore » an LPXTG motif, such as protein A, fibrinogen-binding protein and fibronectin-binding proteins A and B on to the peptidoglycan cell wall. The activity of secreted protein A is an important consideration for use of Wood 46 in functional experiments and animal models.« less
Chatterjee, Som S; Chen, Liang; Joo, Hwang-Soo; Cheung, Gordon Y C; Kreiswirth, Barry N; Otto, Michael
2011-01-01
The phenol-soluble modulin PSM-mec is the only known staphylococcal toxin that is encoded on a mobile antibiotic resistance determinant, namely the staphylococcal cassette chromosome (SCC) element mec encoding resistance to methicillin. Here we show that the psm-mec gene is found frequently among methicillin-resistant Staphylococcus aureus (MRSA) strains of SCCmec types II, III, and VIII, and is a conserved part of the class A mec gene complex. Controlled expression of AgrA versus RNAIII in agr mutants of all 3 psm-mec-positive SCCmec types demonstrated that expression of psm-mec, which is highly variable, is controlled by AgrA in an RNAIII-independent manner. Furthermore, psm-mec isogenic deletion mutants showed only minor changes in PSMα peptide production and unchanged (or, as previously described, diminished) virulence compared to the corresponding wild-type strains in a mouse model of skin infection. This indicates that the recently reported regulatory impact of the psm-mec locus on MRSA virulence, which is opposite to that of the PSM-mec peptide and likely mediated by a regulatory RNA, is minor when analyzed in the original strain background. Our study gives new insight in the distribution, regulation, and role in virulence of the PSM-mec peptide and the psm-mec gene locus.
Goerke, Christiane; Köller, Johanna; Wolz, Christiane
2006-01-01
In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683
de Paiva-Santos, Weslley; de Sousa, Viviane Santos; Giambiagi-deMarval, Marcia
2018-03-28
Staphylococcus saprophyticus is an important pathogen responsible for community urinary tract infections (UTI). Besides composing the human microbiota, this species is widely distributed in the environment and the origins of this organism for human infection is not fully characterized. Although some virulence determinants are known, such as d-serine deaminase (DsdA), urease and cell-wall associated proteins, few studies investigated the distribution of virulence-associated genes and analyzed the pathogenic potential of S. saprophyticus strains from different sources. The aim of the present study was to detect the presence of S. saprophyticus genes encoding surface proteins UafA, Aas, Ssp, SdrI, SssF as well as the DsdA and urease enzymes. A total of 142 S. saprophyticus strains were obtained from four sources: UTI, colonization, water and food. It was found, in every tested strain, the presence of genes encoding the surface proteins UafA, Aas, Ssp and SssF and the DsdA and urease enzymes. In contrast, the gene encoding SdrI surface protein was not detected in any of the strains of S. saprophyticus. These results provide a better understanding of the characteristics of S. saprophyticus strains and suggest that isolates from non-human sources have a potential to colonize the urinary tract. Copyright © 2018 Elsevier Ltd. All rights reserved.
Santosaningsih, Dewi; Santoso, Sanarto; Setijowati, Nanik; Rasyid, Harun A; Budayanti, Nyoman S; Suata, Ketut; Widhyatmoko, Dicky B; Purwono, Priyo B; Kuntaman, Kuntaman; Damayanti, Damayanti; Prakoeswa, Cita R S; Laurens, Mitchell; van Nierop, Josephine W I; Nanninga, Geraldine L; Oudenes, Neline; de Regt, Michelle; Snijders, Susan V; Verbrugh, Henri A; Severin, Juliëtte A
2018-01-01
To define the role of Staphylococcus aureus in community settings among patients with skin and soft tissue infections (SSTI) in Indonesia. Staphylococcus aureus were cultured from anterior nares, throat and wounds of 567 ambulatory patients presenting with SSTI. The mecA gene and genes encoding Panton-Valentine leukocidin (PVL; lukF-PV and lukS-PV) and exfoliative toxin (ET; eta and etb) were determined by PCR. Clonal relatedness among methicillin-resistant S. aureus (MRSA) and PVL-positive S. aureus was analysed using multilocus variable-number tandem-repeat analysis (MLVA) typing, and multilocus sequence typing (MLST) for a subset of isolates. Staphylococcal cassette chromosome mec (SCCmec) was determined for all MRSA isolates. Moreover, determinants for S. aureus SSTI, and PVL/ET-positive vs PVL/ET-negative S. aureus were assessed. Staphylococcus aureus were isolated from SSTI wounds of 257 (45.3%) patients, eight (3.1%) of these were MRSA. Genes encoding PVL and ETs were detected in 21.8% and 17.5% of methicillin-susceptible S. aureus (MSSA), respectively. PVL-positive MRSA was not detected. Nasopharyngeal S. aureus carriage was an independent determinant for S. aureus SSTI (odds ratio [OR] 1.8). Primary skin infection (OR 5.4) and previous antibiotic therapy (OR 3.5) were associated with PVL-positive MSSA. Primary skin infection (OR 2.2) was the only factor associated with ET-positive MSSA. MLVA typing revealed two more prevalent MSSA clusters. One ST1-MRSA-SCCmec type IV isolate and a cluster of ST239-MRSA-SCCmec type III were found. Community-acquired SSTI in Indonesia was frequently caused by PVL-positive MSSA, and the hospital-associated ST239-MRSA may have spread from the hospital into the community. © 2017 John Wiley & Sons Ltd.
Oguzkaya-Artan, M; Artan, C; Baykan, Z; Sakalar, C; Turan, A; Aksu, H
2015-01-01
This study was to determine the virulence encoding genes, and the antibiotic resistance patterns of the Staphylococcus aureus isolates, which were isolated from the nasal samples of chest clinic patients. The nasal samples of the in-patients (431) and out-patients (1857) in Kayseri Training and Research Hospital's Chest Clinic, Kayseri, Turkey, were cultured on CHROMagar (Biolife, Italiana) S. aureus, and subcultured on sheep blood agar for the isolation of S. aureus. Disc diffusion method was used for antimicrobial susceptibility testing. The occurrence of the staphylococcal virulence encoding genes (enterotoksins [sea, seb, sec, see, seg, seh, sei, sej], fibronectin-binding proteins A, B [fnbA, fnbB], toxic shock syndrome toxin-1 [tst]) were detected by polymerase chain reaction. Forty-five of the 55 (81.8%) S. aureus isolates from inpatients, and 319 (90.6%) isolates from tested 352 out-patient's isolates were suspected to all the antibiotics tested. methicillin-resistant S. aureus (MRSA) was detected in 1.2% of S. aureus isolates. Rifampin, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin resistance rates were 1.2%, 1.7%, 2.0%, 8.8%, and 1.2%, respectively. The isolates were susceptible to teicoplanin and vancomycin. The genes most frequently found were tst (92.7%), seg (85.8%), sea (83.6%), fnbA (70.9%). There was no statistical significance detected between MRSA and mecA-negative S. aureus isolates in encoding genes distribution (P > 0.05). Our results show that virulence factor encoding genes were prevalent in patients with S. aureus carriage, whereas antibiotic resistance was low. These virulence determinants may increase the risk for subsequent invasive infections in carriers.
Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.
McCarthy, Alex J; Lindsay, Jodi A
2013-10-01
Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.
Draft genome sequences of 50 MRSA ST5 isolates obtained from a U.S. hospital
USDA-ARS?s Scientific Manuscript database
Methicillin resistant Staphylococcus aureus (MRSA) can be a commensal or pathogen in humans. Pathogenicity and disease are related to the acquisition of mobile genetic elements encoding virulence and antimicrobial resistance genes. Here, we report draft genome sequences for 50 clinical MRSA isolates...
Dean, Melissa A.; Olsen, Randall J.; Long, S. Wesley; Rosato, Adriana E.
2014-01-01
Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice. PMID:24452687
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus
Rodriguez, Michelle D.; Paul, Zubin; Wood, Charles E.; Rice, Kelly C.; Triplett, Eric W.
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus. These three reporter plasmids are available through BEI Resources. PMID:29312199
Construction of Stable Fluorescent Reporter Plasmids for Use in Staphylococcus aureus.
Rodriguez, Michelle D; Paul, Zubin; Wood, Charles E; Rice, Kelly C; Triplett, Eric W
2017-01-01
Here, the genes encoding three different fluorescent proteins were cloned into the stably maintained Staphylococcus aureus shuttle vector pKK30. The resulting plasmids were transformed into two S. aureus strains; SH1000 and RN4220. Stability assays illustrated that the three recombinant plasmids retained near 100% maintenance in vitro for 160 generations. S. aureus strain SH1000 expressing green fluorescent protein was then inoculated in an ovine model and in vivo stability for 6 days was demonstrated. In essence, these reporter plasmids represent a useful set of tools for dynamic imaging studies in S. aureus . These three reporter plasmids are available through BEI Resources.
Damasco, Paulo V.; Chamon, Raiane C.; Barbosa, Angélica T. L.; da Cunha, Sérgio; Aquino, José H. W.; Cavalcante, Fernanda S.
2012-01-01
Staphylococcus aureus encoding Panton-Valentine leukocidin (PVL) genes has become the cause of life-threatening infections. We describe a case of carotid cavernous fistula after bacteremia in a 12-year-old male, caused by a methicillin-susceptible S. aureus isolate carrying the pvl, fnbA, and ebpS genes and related to sequence type 25 (ST25). The patient's condition was complicated by pleural empyema and osteomyelitis in the right femur. The patient was discharged in good clinical condition after 160 days of hospitalization. PMID:22090398
Tan, Honglue; Peng, Zhaoxiang; Li, Qingtian; Xu, Xiaofen; Guo, Shengrong; Tang, Tingting
2012-01-01
Biomaterial-associated infections remain a serious complication in orthopaedic surgery. Treatments, including the local use of antibiotic-loaded polymethylmethacrylate (PMMA) bone cement, are not always successful because of multiantibiotic-resistant organisms. In this study, we synthesised a new quaternised chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) that contains a series of substitutions of quaternary ammonium and demonstrated that HACC with a 26% degree of substitution (DS; referred to as 26%HACC) had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. We loaded 26%HACC at 20% by weight into PMMA bone cement to investigate whether HACC in PMMA prevents bacterial biofilm formation on the surface of bone cements. Chitosan-loaded PMMA (at the same weight ratio), gentamicin-loaded PMMA and PMMA with no antibiotic were also investigated and compared. Two clinical isolates, Staphylococcus epidermidis 389 and methicillin-resistant S. epidermidis (MRSE287), and two standard strains, S. epidermidis (ATCC35984) and methicillin-resistant Staphylococcus aureus (ATCC43300), were selected to evaluate the bacterial biofilm formation at 6, 12 and 24 h using the spread plate method, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that 26%HACC-loaded PMMA inhibited biofilm formation on its surface, while the PMMA control and chitosan-loaded PMMA were unable to inhibit biofilm formation. The gentamicin-loaded PMMA decreased the number of viable methicillin-resistant Staphylococcus strains, but its ability to inhibit biofilm formation was lower than 26%HACC-loaded PMMA. Real-time PCR demonstrated that 26%HACC-loaded PMMA markedly downregulated the expression of icaAD, which encodes essential enzymes for polysaccharide intercellular adhesion (PIA) biosynthesis, upregulated the expression level of icaR, which negatively mediates icaAD expression, and also downregulated the expression of MecA, which encodes membrane-bound enzymes known to be penicillin-binding proteins. Our study indicates that 26%HACC-loaded PMMA prevents biofilm formation of Staphylococcus, including antibiotic-resistant strains, on the surface of bone cement, and downregulates the virulence-associated gene expression of antibiotic-resistant staphylococcus, thus providing a promising new strategy for combating implant infections and osteomyelitis. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [(a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-ph...
Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno
2008-05-01
The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.
López, Yolanda; Samudio, Margarita; Fariña, Norma; Castillo, Verónica; Abente, Sonia; Nentwich, Martin M; González-Britez, Nilsa; Laspina, Florentina; Carron, Agustín; Cibils, Diógenes; de Kaspar, Herminia Miño
2017-08-01
In this prospective study, multiplex polymerase chain reaction (PCR) was used to identify genes encoding virulence factors (ica, atlE and mecA) in Coagulase-negative Staphylococcus (CNS) isolates from the ocular microbiota of patients undergoing cataract surgery and to investigate possible changes in the CNS profile due to antibiotic prophylaxis. Between 09/2011 and 08/2013, patients undergoing cataract surgery were recruited at the Department of Ophthalmology, National University of Asuncion, Paraguay. In the eye to be operated on, patients received moxifloxacin 0.5 % eye drops four times at the day before surgery and a last drop 1 hour before surgery (T1). The other eye remained as control (T0). Conjunctival swabs were taken from both eyes 1 hour after the last drop. The presence of genes encoding biofilm formation (ica and atlE) and methicillin resistance (mecA) was detected by a multiplex PCR. Of the 162 patients (162 study eyes, 162 fellow eye as control group), 87 (53.7 %) eyes were positive for CNS at T0 yielding 96 CNS isolates; 70 eyes (43.2 %) were positive at T1 yielding 77 CNS isolates. For this study, 43 CNS isolates (44.8 %) from T0 and 45 (64.3 %) from T1 were used. Of the total isolates, 81.8 % (72/88) had at least one virulence factor gene (37/43 from T0 and 35/45 from T1) (p = 0.314). Simultaneous detection of ica and atlE genes was higher in T0 (58.0 %) than T1 (46.7 %), but the difference was not significant (p = 0.28). A high frequency of genes encoding virulence factors was observed in the coagulase-negative Staphylococcus isolates. The use of moxifloxacin did not significantly modify the CNS virulence factor profiles.
Zhao, Qin; Wendlandt, Sarah; Li, Hui; Li, Jun; Wu, Congming; Shen, Jianzhong; Schwarz, Stefan; Wang, Yang
2014-01-01
The novel lincosamide resistance gene lnu(E), truncated by insertion of an ISEnfa5-cfr-ISEnfa5 segment, was identified in Streptococcus suis. The gene lnu(E) encodes a 173-amino-acid protein with ≤69.4% identity to other lincosamide nucleotidyltransferases. The lnu(E) gene and its promoter region were de novo synthesized, and Staphylococcus aureus RN4220 carrying a shuttle vector with the cloned lnu(E) gene showed a 16-fold increase in the lincomycin MIC. Mass spectrometry experiments demonstrated that Lnu(E) catalyzed the nucleotidylation of lincomycin.
Zhao, Qin; Wendlandt, Sarah; Li, Hui; Li, Jun; Wu, Congming; Shen, Jianzhong
2014-01-01
The novel lincosamide resistance gene lnu(E), truncated by insertion of an ISEnfa5-cfr-ISEnfa5 segment, was identified in Streptococcus suis. The gene lnu(E) encodes a 173-amino-acid protein with ≤69.4% identity to other lincosamide nucleotidyltransferases. The lnu(E) gene and its promoter region were de novo synthesized, and Staphylococcus aureus RN4220 carrying a shuttle vector with the cloned lnu(E) gene showed a 16-fold increase in the lincomycin MIC. Mass spectrometry experiments demonstrated that Lnu(E) catalyzed the nucleotidylation of lincomycin. PMID:24366733
Ussery, David; Nielsen, Lene N.; Ingmer, Hanne
2015-01-01
The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera. PMID:25883793
Wassenaar, Trudy M; Ussery, David; Nielsen, Lene N; Ingmer, Hanne
2015-03-01
The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera.
Hoorijani, Mohammad Neshvan; Rostami, Hosein; Pourhajibagher, Maryam; Chiniforush, Nasim; Heidari, Mansour; Pourakbari, Babak; Kazemian, Hossein; Davari, Kambiz; Amini, Vahid; Raoofian, Reza; Bahador, Abbas
2017-09-01
Widespread methicillin resistant Staphylococcus aureus (MRSA) and absence of effective antimicrobial agents has led to limited therapeutic options for treating MRSA infection. We aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) on the expression of novel identified methicillin resistance markers (NIMRMs) in S. aureus using complementary DNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) approaches to address the therapeutic alternatives for MRSA infections. We used cDNA-AFLP to compare MRSA and methicillin susceptible S. aureus (MSSA) for identification of target genes implicated in methicillin resistance. To determine the sub-lethal aPDT (sPDT), MRSA and MSSA clinical isolates photosensitized with toluidine blue O (TBO), and then were irradiated with diode laser. After sPDT, the colony forming units/mL was quantified. Antimicrobial susceptibility against methicillin was assessed for cell-surviving aPDT. Effects of sPDT on the expression of NIMRMs were evaluated by real-time quantitative reverse transcription PCR. According to our results, serine hydrolase family protein (Shfp) encoding gene and a gene encoding a conserved hypothetical protein (Chp) were implicated in methicillin resistance in MRSA. sPDT reduced the minimum inhibitory concentrations of methicillin by 3-fold in MRSA. sPDT could lead to about 10- and 6.2- fold suppression of expression of the Chp and Shfp encoding genes, respectively. sPDT would lead to reduction in resistance to methicillin of MRSA in surviving cells by suppressing the expression of the Shfp and Chp encoding genes associated with methicillin resistance. This may have potential implications of aPDT for the treatment of MRSA infections. Copyright © 2017 Elsevier B.V. All rights reserved.
Motallebi, Mitra; Jabalameli, Fereshteh; Asadollahi, Kheirollah; Taherikalani, Morovat; Emaneini, Mohammad
2016-08-01
The emergence of antibiotic-resistant Staphylococcus aureus in particular methicillin-resistant S. aureus (MRSA) is an important concern in burn medical centers either in Iran or worldwide. A total of 128 S. aureus isolates were collected from wound infection of burn patients during June 2013 to June 2014. Multiplex-polymerase chain reaction (MPCR) assay was performed for the characterization of the staphylococcal cassette chromosome mec (SCCmec). Genes encoding virulence factors and biofilm were targeted by PCR. Of 128 S. aureus isolates, 77 (60.1%) isolates were MRSA. Fifty four (70.1%) isolates were identified as SCCmec type IIIA. The most frequently detected toxin genes among MRSA isolates with SCCmec type IIIA were sea (64.1%) and hla (51.8%). The rate of coexistence of sea with hla and sea with hla and hlb was 37% and12.9%, respectively. The sec, eta, tst, pvl, hla and hlb genes were not detected in any of the MRSA isolates. The most prevalent genes encoding biofilm was eno, found in 61.1% of isolates, followed by fib and icaA found in 48.1% and 38.8% of the isolates, respectively. The rate of coexistence of fib + eno + icaA + icaD and fib + eno was 20.3% and 9.2%, respectively. The ebps gene was not detected in any of the isolates. In conclusion, our study indicated that the sea, hla, fib and icaA were most frequent genes encoding virulence factors among MRSA with SCCmec type IIIA isolated from burn wound infection. Moreover, the results of this study shows that the rate of coexistence of genes encoding different virulence factor were high. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis▿†
Madhusoodanan, Jyoti; Seo, Keun Seok; Remortel, Brian; Park, Joo Youn; Hwang, Sun Young; Fox, Lawrence K.; Park, Yong Ho; Deobald, Claudia F.; Wang, Dan; Liu, Song; Daugherty, Sean C.; Gill, Ann Lindley; Bohach, Gregory A.; Gill, Steven R.
2011-01-01
Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage. PMID:21317317
Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P
2011-04-15
All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.
Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.
2011-01-01
All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296
Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model
Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine
2016-01-01
Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967
Kraushaar, Britta; Fetsch, Alexandra
2014-09-01
Staphylococcus aureus is an important food-borne pathogen due to the ability of enterotoxigenic strains to produce staphylococcal enterotoxins (SEs) in food. Methicillin-resistant S. aureus (MRSA) is also an important pathogen for humans, causing severe and hard to treat diseases in hospitals and in the community due to its multiresistance against antimicrobials. In particular, strains harbouring genes encoding for the Panton-Valentine leukocidin (PVL) toxin are of concern from a public health perspective as they are usually capable of causing severe skin and soft tissue infections (sSSTIs) and occasionally necrotizing pneumonia which is associated with high mortality. This is the first report on the detection of MRSA with genes encoding for PVL in wild boar meat. Among the 28 MRSA isolated from wild boar meat in the course of a national monitoring programme in Germany, seven harboured PVL-encoding genes. Six of the isolates were identical according to the results of spa-, MLST-, microarray- and PFGE-typing. They could be assigned to the epidemic MRSA clone USA300. Epidemiological investigations revealed that people handling the food were the most likely common source of contamination with these MRSA. These findings call again for suitable hygienic measures at all processing steps of the food production chain. The results of the study underline that monitoring along the food chain is essential to closely characterise the total burden of MRSA for public health. Copyright © 2014. Published by Elsevier B.V.
Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong
2016-01-01
Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.
Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis.
Lowe, A M; Deresiewicz, R L
1999-01-01
Staphylococcus aureus is a major human pathogen that is increasingly resistant to clinically useful antimicrobial agents. While screening for S. aureus genes expressed during mammalian infection, we isolated murC. This gene encodes UDP-N-acetylmuramoyl-L-alanine synthetase, an enzyme essential for cell wall biosynthesis in a number of bacteria. S. aureus MurC has a predicted mass 49,182 Da and complements the temperature-sensitive murC mutation of E. coli ST222. Sequence data on the DNA flanking staphylococcal murC suggests that the local gene organization there parallels that found in B. subtilis, but differs from that found in gram-negative bacterial pathogens. MurC proteins represent promising targets for broad spectrum antimicrobial drug development.
Emerging Functions for the Staphylococcus aureus RNome
Felden, Brice
2013-01-01
Staphylococcus aureus is a leading pathogen for animals and humans, not only being one of the most frequently isolated bacteria in hospital-associated infections but also causing diseases in the community. To coordinate the expression of its numerous virulence genes for growth and survival, S. aureus uses various signalling pathways that include two-component regulatory systems, transcription factors, and also around 250 regulatory RNAs. Biological roles have only been determined for a handful of these sRNAs, including cis, trans, and cis-trans acting RNAs, some internally encoding small, functional peptides and others possessing dual or multiple functions. Here we put forward an inventory of these fascinating sRNAs; the proteins involved in their activities; and those involved in stress response, metabolisms, and virulence. PMID:24348246
Hartmann, Torsten; Baronian, Grégory; Nippe, Nadine; Voss, Meike; Schulthess, Bettina; Wolz, Christiane; Eisenbeis, Janina; Schmidt-Hohagen, Kerstin; Gaupp, Rosmarie; Sunderkötter, Cord; Beisswenger, Christoph; Bals, Robert; Somerville, Greg A.; Herrmann, Mathias; Molle, Virginie; Bischoff, Markus
2014-01-01
Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in Staphylococcus aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psmα, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus. PMID:25193664
Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus
Neamah, Maan M.; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F.
2017-01-01
Abstract DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. PMID:28475766
Szczuka, Ewa; Urbańska, Katarzyna; Pietryka, Marta; Kaznowski, Adam
2013-01-01
Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96 % strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23 % of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.
Cell Density Control of Staphylococcal Virulence Mediated by an Octapeptide Pheromone
NASA Astrophysics Data System (ADS)
Ji, Guangyong; Beavis, Ronald C.; Novick, Richard P.
1995-12-01
Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.
Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir-Sanchis, Ignacio; Roman, Christina A.; Misiura, Agnieszka
2016-08-29
Methicillin-resistant Staphylococcus aureus (MRSA) is a public-health threat worldwide. Although the mobile genomic island responsible for this phenotype, staphylococcal cassette chromosome (SCC), has been thought to be nonreplicative, we predicted DNA-replication-related functions for some of the conserved proteins encoded by SCC. We show that one of these, Cch, is homologous to the self-loading initiator helicases of an unrelated family of genomic islands, that it is an active 3'-to-5' helicase and that the adjacent ORF encodes a single-stranded DNA–binding protein. Our 2.9-Å crystal structure of intact Cch shows that it forms a hexameric ring. Cch, like the archaeal and eukaryotic MCM-familymore » replicative helicases, belongs to the pre–sensor II insert clade of AAA+ ATPases. Additionally, we found that SCC elements are part of a broader family of mobile elements, all of which encode a replication initiator upstream of their recombinases. Replication after excision would enhance the efficiency of horizontal gene transfer.« less
Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA.
Queck, Shu Y; Khan, Burhan A; Wang, Rong; Bach, Thanh-Huy L; Kretschmer, Dorothee; Chen, Liang; Kreiswirth, Barry N; Peschel, Andreas; Deleo, Frank R; Otto, Michael
2009-07-01
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.
Bleiziffer, Isabelle; Eikmeier, Julian; Pohlentz, Gottfried; McAulay, Kathryn; Xia, Guoqing; Hussain, Muzaffar; Peschel, Andreas; Foster, Simon; Peters, Georg; Heilmann, Christine
2017-01-01
Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections.
Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus.
Ghssein, Ghassan; Brutesco, Catherine; Ouerdane, Laurent; Fojcik, Clémentine; Izaute, Amélie; Wang, Shuanglong; Hajjar, Christine; Lobinski, Ryszard; Lemaire, David; Richaud, Pierre; Voulhoux, Romé; Espaillat, Akbar; Cava, Felipe; Pignol, David; Borezée-Durant, Elise; Arnoux, Pascal
2016-05-27
Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection. Copyright © 2016, American Association for the Advancement of Science.
Aedo, Sandra
2016-01-01
Resistance to beta-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) requires the presence of an acquired genetic determinant, mecA or mecC, which encode penicillin-binding protein PBP2A or PBP2A′, respectively. Although all MRSA strains share a mechanism of resistance, the phenotypic expression of beta-lactam resistance shows considerable strain-to-strain variation. The stringent stress response, a stress response that results from nutrient limitation, was shown to play a key role in determining the resistance level of an MRSA strain. In the present study, we validated the impact of the stringent stress response on transcription and translation of mecA in the MRSA clinical isolate strain N315, which also carries known regulatory genes (mecI/mecR1/mecR2 and blaI/blaR1) for mecA transcription. We showed that the impact of the stringent stress response on the resistance level may be restricted to beta-lactam resistance based on a “foreign” determinant such as mecA, as opposed to resistance based on mutations in the native S. aureus determinant pbpB (encoding PBP2). Our observations demonstrate that high-level resistance mediated by the stringent stress response follows the current model of beta-lactam resistance in which the native PBP2 protein is also essential for expression of the resistance phenotype. We also show that the Staphylococcus sciuri pbpD gene (also called mecAI), the putative evolutionary precursor of mecA, confers oxacillin resistance in an S. aureus strain, generating a heterogeneous phenotype that can be converted to high and homogenous resistance by induction of the stringent stress response in the bacteria. PMID:26833147
Ellington, Matthew J; Yearwood, Lianne; Ganner, Mark; East, Claire; Kearns, Angela M
2008-01-01
The ST8-SCCmecIVa (USA300) methicillin-resistant Staphylococcus aureus (MRSA) clone can harbour the arginine catabolic mobile element (ACME). The arc gene cluster within the ACME may function as a virulence or strain survival factor. We determined the distribution of the ACME-associated arcA gene among genetically diverse MRSA from around England and Wales. MRSA isolates (n = 203) of diverse genetic types, referred to the England and Wales Staphylococcus reference laboratory, were tested for the presence of the ACME-arcA gene. ACME-arcA-positive isolates were characterized by toxin gene profiling, PFGE and spa sequence typing. MICs of a range of antimicrobials were also determined. The ACME-arcA gene was detected in 17 isolates. Twelve were related to known ST8-MRSA-SCCmecIVa isolates of the USA300 lineage by pulsotype and were resistant to oxacillin, with variable ciprofloxacin and erythromycin resistance. Outside the USA300 lineage, four of the remaining five ACME-arcA isolates were closely related ST97-MRSA-SCCmecV, Panton-Valentine leucocidin (PVL)-negative, resistant to oxacillin and variously resistant to erythromycin, ciprofloxacin, clindamycin, gentamicin, tetracycline and fusidic acid. The remaining isolate was ST1, PVL-positive and resistant to fusidic acid as well as oxacillin. Thirteen out of the 17 isolates were associated with skin and soft tissue infections. The detection of ACME-arcA in diverse MRSA types highlights the mobility of the elements encoding ACME-arcA genes. The diversity of strain types and resistance profiles among ACME-arcA-encoding MRSA is a cause for public-health concern and demands continued surveillance and close monitoring.
Zoric, Mate; Nilsson, Ebba; Lundeheim, Nils; Wallgren, Per
2009-01-01
Background Lameness in piglets is a major animal welfare issue. Floor abrasiveness is a common cause of superficial injury in piglets in farrowing pens. The abrasion achieved may act as a gate for infections, which in turn may induce development of infectious arthritis. In this study, the influence of improvements of the floor quality and of increased ratios of straw in identical farrowing pens was measured. Methods The study was carried out at a herd with four identical farrowing units with solid concrete floor bedded with 1 kg chopped straw per sow and 1 hg per piglet and day. Nothing was changed in the management of the four identical farrowing units, but four experimental groups were created: Group I – control, Group II – the amount of bedding was doubled. The surface of the floor was repaired in two units, Group III – Piglet Floor®, Flowcrete Sweden AB, Perstorp, Sweden and Group IV – Thorocrete SL®, Växa Halland, Sweden. Three farrowing batches were studies in each unit. In total, 93 litters (1,073 piglets) were examined for foot and skin lesions until the age of 3 weeks. The occurrence of lameness was registered until weaning at an average age of 4.5 weeks. Twenty seven lame piglets were culled instead of medicinally treated and subjected to necropsy including histopathological and microbiological examinations. Isolates of streptococci, staphylococci and E. coli were tested with respect to antimicrobial resistance. Results Piglet born on the repaired floors had the lowest prevalences of abrasions at carpus. Also the doubled straw ration decreased the abrasions. Skin lesions at carpus decreased significantly in magnitude in all four systems from day 10. At day 3, the sole bruising scores of the control unit were greater than the other three units (p < 0.001). At day 10 and 17, sole bruising was less common in the units with repaired floors than in the control group and the group with doubled straw ration. In total 41 piglets were diagnosed as lame, corresponding to 3.8% of all live-born piglets (n = 1,073). Around 85% of these diagnoses took place during the first 3 weeks of life and the risk incidence of lameness decreased from 1.5% during the first week of life to 0.5% during the fourth week. The incidence of lameness was highest in the control unit and lowest in the units with repaired floors. Twenty lame piglets were confirmed to have bacterial growth in the joint. The causative agents were Streptococcus dysgalactiae subsp. equisimilis (60%), Staphylococcus hyicus subsp. hyicus (35%) and Escherichia coli (5%). These isolates were sensitive to all antibiotics included in the antimicrobial panels. Conclusion The results suggest that proper maintenance of the floor can prevent the degree of roughness and abrasiveness of the floors, which in turn can contribute significantly to prevention of abrasions, sole bruising and lameness in piglets. Maintaining the surface of concrete floors with two different commercially available solutions both decreased the incidence of abrasions and sole bruisings and thereby also of arthritis significantly. Also doubling the amount of chopped straw turned out to prevent development of skin lesions and sole bruisings to some extent, and subsequently also the incidence of arthritis. PMID:19463187
Staphylococcus aureus in Some Brazilian Dairy Industries: Changes of Contamination and Diversity
Dittmann, Karen K.; Chaul, Luíza T.; Lee, Sarah H. I.; Corassin, Carlos H.; Fernandes de Oliveira, Carlos A.; Pereira De Martinis, Elaine C.; Alves, Virgínia F.; Gram, Lone; Oxaran, Virginie
2017-01-01
Staphylococcus aureus, a major food-poisoning pathogen, is a common contaminant in dairy industries worldwide, including in Brazil. We determined the occurrence of S. aureus in five dairies in Brazil over 8 months. Of 421 samples, 31 (7.4%) were positive for S. aureus and prevalence varied from 0 to 63.3% between dairies. Sixty-six isolates from the 31 samples were typed by Multi-Locus Sequence Typing to determine if these isolates were persistent or continuously reintroduced. Seven known sequence types (STs), ST1, ST5, ST30, ST97, ST126, ST188 and ST398, and four new ST were identified, ST3531, ST3540, ST3562 and ST3534. Clonal complex (CC) 1 (including the four new ST), known as an epidemic clone, was the dominant CC. However, there were no indications of persistence of particular ST. The resistance toward 11 antibiotic compounds was assessed. Twelve profiles were generated with 75.8% of strains being sensitive to all antibiotic classes and no Methicillin-resistant S. aureus (MRSA) strains were found. The enterotoxin-encoding genes involved in food-poisoning, e.g., sea, sed, see, and seg were targeted by PCR. The two toxin-encoding genes, sed and see, were not detected. Only three strains (4.5%) harbored seg and two of these also harbored sea. Despite the isolates being Methicillin-sensitive S. aureus (MSSA), the presence of CC1 clones in the processing environment, including some harboring enterotoxin encoding genes, is of concern and hygiene must have high priority to reduce contamination. PMID:29123505
Sivasailam, Asok; Sasidharan, Suchithra; Kollannur, Justin Davis; Syam, Radhika
2017-01-01
Dairy cows affected with subclinical mastitis can be sources of virulent, antimicrobial-resistant Staphylococci to humans because of the excretion of the bacteria through their milk. This study focussed on the phenotypic and genotypic antibiotic resistance patterns of Staphylococci isolated from dairy cows in early dry period. Among 96 isolates of Gram positive cocci from 157 cows, 76 were identified as Coagulase Negative Staphylococci and the remaining 20 were Staphylococcus aureus. Typical amplicons of coagulase gene were obtained for all 20 samples of S. aureus with three major coagulase types being identified as giving 627 bp (40%), 910 bp (35%) and 710 bp (25%) long PCR products. The groEL gene was amplified in PCR of all 76 isolates of Coagulase Negative Staphylococci, and incubation of PCR products with restriction enzyme PvuII yielded three distinct PCR-RFLP fragment patterns bearing resemblance to S. chromogenes and S. hyicus. Highest sensitivity of Coagulase Negative Staphylococci was noted for Azithromycin (92.5%) and the least to Tetracyclines (76.3%), whereas for S. aureus, it was Cefoperazone (95%) and Azithromycin (72.2%) respectively. Phenotypic resistance to Oxacillin (25 isolates), and Cefoxitin (11 isolates) was detected by dilution method with a commercial strip (Ezy MICTM). Genotypic resistance to β-Lactam antibiotics was found in 65 (34 with mecA gene and 31 with blaZ gene) isolates. Eighteen isolates possessed both the genes, with the PVL gene for virulence being detected in five of them. Nine isolates which had mecA gene were phenotypically susceptible to oxacillin while phenotypic resistance to oxacillin was observed in seven isolates that did not have either mecA or blaZ gene. This is the first report of persistent Staphylococcal infections possessing PVL gene and high level of genotypic resistance to β-Lactam antibiotics in small- holder dairy cattle from India. PMID:29091956
Canovas, Jaime; Baldry, Mara; Bojer, Martin S.; Andersen, Paal S.; Gless, Bengt H.; Grzeskowiak, Piotr K.; Stegger, Marc; Damborg, Peter; Olsen, Christian A.; Ingmer, Hanne
2016-01-01
Staphylococci are associated with both humans and animals. While most are non-pathogenic colonizers, Staphylococcus aureus is an opportunistic pathogen capable of causing severe infections. S. aureus virulence is controlled by the agr quorum sensing system responding to secreted auto-inducing peptides (AIPs) sensed by AgrC, a two component histidine kinase. agr loci are found also in other staphylococcal species and for Staphylococcus epidermidis, the encoded AIP represses expression of agr regulated virulence genes in S. aureus. In this study we aimed to better understand the interaction between staphylococci and S. aureus, and show that this interaction may eventually lead to the identification of new anti-virulence candidates to target S. aureus infections. Here we show that culture supernatants of 37 out of 52 staphylococcal isolates representing 17 different species inhibit S. aureus agr. The dog pathogen, Staphylococcus schleiferi, expressed the most potent inhibitory activity and was active against all four agr classes found in S. aureus. By employing a S. aureus strain encoding a constitutively active AIP receptor we show that the activity is mediated via agr. Subsequent cloning and heterologous expression of the S. schleiferi AIP in S. aureus demonstrated that this molecule was likely responsible for the inhibitory activity, and further proof was provided when pure synthetic S. schleiferi AIP was able to completely abolish agr induction of an S. aureus reporter strain. To assess impact on S. aureus virulence, we co-inoculated S. aureus and S. schleiferi in vivo in the Galleria mellonella wax moth larva, and found that expression of key S. aureus virulence factors was abrogated. Our data show that the S. aureus agr locus is highly responsive to other staphylococcal species suggesting that agr is an inter-species communication system. Based on these results we speculate that interactions between S. aureus and other colonizing staphylococci will significantly influence the ability of S. aureus to cause infection, and we propose that other staphylococci are potential sources of compounds that can be applied as anti-virulence therapy for combating S. aureus infections. PMID:27877157
Jiménez, Judy Natalia; Ocampo, Ana María; Vanegas, Johanna Marcela; Rodríguez, Erika Andrea; Garcés, Carlos Guillermo; Patiño, Luz Adriana; Ospina, Sigifredo; Correa, Margarita María
2011-12-01
Virulence and antibiotic resistance are significant determinants of the types of infections caused by Staphylococcus aureus and paediatric groups remain among the most commonly affected populations. The goal of this study was to characterise virulence genes of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains isolated from a paediatric population of a Colombian University Hospital during 2009. Sixty MSSA and MRSA isolates were obtained from paediatric patients between zero-14 years. We identified the genes encoding virulence factors, which included Panton-Valentine leucocidine (PVL), staphylococcal enterotoxins A-E, exfoliative toxins A and B and toxic shock syndrome toxin 1. Typing of the staphylococcal chromosome cassette mec (SCCmec) was performed in MRSA strains. The virulence genes were more diverse and frequent in MSSA than in MRSA isolates (83% vs. 73%). MRSA strains harboured SCCmec types IVc (60%), I (30%), IVa (7%) and V (3%). SCCmec type IVc isolates frequently carried the PVL encoding genes and harboured virulence determinants resembling susceptible strains while SCCmec type I isolates were often negative. PVL was not exclusive to skin and soft tissue infections. As previously suggested, these differences in the distribution of virulence factor genes may be due to the fitness cost associated with methicillin resistance.
Sak and Sak4 recombinases are required for bacteriophage replication in Staphylococcus aureus.
Neamah, Maan M; Mir-Sanchis, Ignacio; López-Sanz, María; Acosta, Sonia; Baquedano, Ignacio; Haag, Andreas F; Marina, Alberto; Ayora, Silvia; Penadés, José R
2017-06-20
DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Staphylococcus aureus genomics and the impact of horizontal gene transfer.
Lindsay, Jodi A
2014-03-01
Whole genome sequencing and microarrays have revealed the population structure of Staphylococcus aureus, and identified epidemiological shifts, transmission routes, and adaptation of major clones. S. aureus genomes are highly diverse. This is partly due to a population structure of conserved lineages, each with unique combinations of genes encoding surface proteins, regulators, immune evasion and virulence pathways. Even more variable are the mobile genetic elements (MGE), which encode key proteins for antibiotic resistance, virulence and host-adaptation. MGEs can transfer at high frequency between isolates of the same lineage by horizontal gene transfer (HGT). There is increasing evidence that HGT is key to bacterial adaptation and success. Recent studies have shed light on new mechanisms of DNA transfer such as transformation, the identification of receptors for transduction, on integration of DNA pathways, mechanisms blocking transfer including CRISPR and new restriction systems, strategies for evasion of restriction barriers, as well as factors influencing MGE selection and stability. These studies have also lead to new tools enabling construction of genetically modified clinical S. aureus isolates. This review will focus on HGT mechanisms and their importance in shaping the evolution of new clones adapted to antibiotic resistance, healthcare, communities and livestock. Copyright © 2013 Elsevier GmbH. All rights reserved.
Farrand, Allison J.; Haley, Kathryn P.; Lareau, Nichole M.; Heilbronner, Simon; McLean, John A.; Foster, Timothy
2015-01-01
Bacteria alter their cell surface in response to changing environments, including those encountered upon invasion of a host during infection. One alteration that occurs in several Gram-positive pathogens is the presentation of cell wall-anchored components of the iron-regulated surface determinant (Isd) system, which extracts heme from host hemoglobin to fulfill the bacterial requirement for iron. Staphylococcus lugdunensis, an opportunistic pathogen that causes infective endocarditis, encodes an Isd system. Unique among the known Isd systems, S. lugdunensis contains a gene encoding a putative autolysin located adjacent to the Isd operon. To elucidate the function of this putative autolysin, here named IsdP, we investigated its contribution to Isd protein localization and hemoglobin-dependent iron acquisition. S. lugdunensis IsdP was found to be iron regulated and cotranscribed with the Isd operon. IsdP is a specialized peptidoglycan hydrolase that cleaves the stem peptide and pentaglycine crossbridge of the cell wall and alters processing and anchoring of a major Isd system component, IsdC. Perturbation of IsdC localization due to isdP inactivation results in a hemoglobin utilization growth defect. These studies establish IsdP as an autolysin that functions in heme acquisition and describe a role for IsdP in cell wall reorganization to accommodate nutrient uptake systems during infection. PMID:26123800
Sekine, Miwa; Hishinuma, Tomomi; Aiba, Yoshifumi; Hiramatsu, Keiichi
2016-01-01
Complete reconstitution of the vancomycin-intermediate Staphylococcus aureus (VISA) phenotype of strain Mu50 was achieved by sequentially introducing mutations into six genes of vancomycin-susceptible S. aureus (VSSA) strain N315ΔIP. The six mutated genes were detected in VISA strain Mu50 but not in N315ΔIP. Introduction of the mutation Ser329Leu into vraS, encoding the sensor histidine kinase of the vraSR two-component regulatory (TCR) system, and another mutation, Glu146Lys, into msrR, belonging to the LytR-CpsA-Psr (LCP) family, increased the level of vancomycin resistance to that detected in heterogeneous vancomycin-intermediate S. aureus (hVISA) strain Mu3. Introduction of two more mutations, Asn197Ser into graR of the graSR TCR system and His481Tyr into rpoB, encoding the β subunit of RNA polymerase, converted the hVISA strain into a VISA strain with the same level of vancomycin resistance as Mu50. Surprisingly, however, the constructed quadruple mutant strain ΔIP4 did not have a thickened cell wall, a cardinal feature of the VISA phenotype. Subsequent study showed that cell wall thickening was an inducible phenotype in the mutant strain, whereas it was a constitutive one in Mu50. Finally, introduction of the Ala297Val mutation into fdh2, which encodes a putative formate dehydrogenase, or a 67-amino-acid sequence deletion into sle1 [sle1(Δ67aa)], encoding the hydrolase of N-acetylmuramyl-l-alanine amidase in the peptidoglycan, converted inducible cell wall thickening into constitutive cell wall thickening. sle1(Δ67aa) was found to cause a drastic decrease in autolysis activity. Thus, all six mutated genes required for acquisition of the VISA phenotype were directly or indirectly involved in the regulation of cell physiology. The VISA phenotype seemed to be achieved through multiple genetic events accompanying drastic changes in cell physiology. PMID:27067329
Netsvyetayeva, Irina; Fraczek, Mariusz; Piskorska, Katarzyna; Golas, Marlena; Sikora, Magdalena; Mlynarczyk, Andrzej; Swoboda-Kopec, Ewa; Marusza, Wojciech; Palmieri, Beniamino; Iannitti, Tommaso
2014-03-05
The number of studies regarding the incidence of multidrug resistant strains and distribution of genes encoding virulence factors, which have colonized the post-Soviet states, is considerably limited. The aim of the study was (1) to assess the Staphylococcus (S.) aureus nasal carriage rate, including Methicillin Resistant S. aureus (MRSA) strains in adult Ukrainian population, (2) to determine antibiotic resistant pattern and (3) the occurrence of Panton Valentine Leukocidine (PVL)-, Fibronectin-Binding Protein A (FnBPA)- and Exfoliative Toxin (ET)-encoding genes. Nasal samples for S. aureus culture were obtained from 245 adults. The susceptibility pattern for several classes of antibiotics was determined by disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The virulence factor encoding genes, mecA, lukS-lukF, eta, etb, etd, fnbA, were detected by Polymerase Chain Reaction (PCR). The S. aureus nasal carriage rate was 40%. The prevalence of nasal MRSA carriage in adults was 3.7%. LukS-lukF genes were detected in over 58% of the strains. ET-encoding genes were detected in over 39% of the strains and the most prevalent was etd. The fnbA gene was detected in over 59% of the strains. All MRSA isolates tested were positive for the mecA gene. LukS-lukF genes and the etd gene were commonly co-present in MRSA, while lukS-lukF genes and the fnbA gene were commonly co-present in Methicillin Sensitive S. aureus (MSSA) isolates. No significant difference was detected between the occurrence of lukS-lukF genes (P > 0.05) and the etd gene (P > 0.05) when comparing MRSA and MSSA. The occurrence of the fnbA gene was significantly more frequent in MSSA strains (P < 0.05). In Ukraine, S. aureus is a common cause of infection. The prevalence of S. aureus nasal carriage in our cohort of patients from Ukraine was 40.4%. We found that 9.1% of the strains were classified as MRSA and all MRSA isolates tested positive for the mecA gene. We also observed a high prevalence of PVL- and ET- encoding genes among S. aureus nasal carriage strains. A systematic surveillance system can help prevent transmission and spread of drug resistant toxin producing S. aureus strains.
[Investigation of biofilm formation properties of staphylococcus isolates].
Öcal, Duygu Nilüfer; Dolapçı, İştar; Karahan, Zeynep Ceren; Tekeli, Alper
2017-01-01
Biofilm production is an important virulence factor which allows staphylococci to adhere to medical devices. The principal component of biofilm is a "polysaccharide intercellular adhesin (PIA)" which is composed of a beta-1,6-N-acetylglucosamine polymer synthesized by an enzyme (N-acetylglucosamine transferase) encoded by the ica operon found on the bacterial chromosome. This operon is composed of four genes (A, B, C, and D), and a transposable element IS256. In this study, we aimed to determine the biofilm production characteristics of invasive/non-invasive staphylococcus isolates and different staphylococcus species. Biofilm production of 166 staphylococci was phenotypically investigated on Congo Red Agar (CRA); the presence of icaA, icaD and IS256 genes were investigated by polymerase chain reaction (PCR). 74 of the isolates (44.6%) were identified as methicillin resistant Staphylococcus aureus (MRSA), 25 (15.1%) as methicillin sensitive S.aureus (MSSA), 25 (37.3%) as Staphylococcus hominis, 20 (12%) as S.epidermidis, ten (15%) as Staphylococcus haemolyticus, nine (13.4%) as Staphylococcus capitis, two (3%) Staphylococcus saprophyticus and one (1.5%) as Staphylococcus warnerii. Of the MRSA strains, 52 were isolated from blood and 22 from nose; all MSSA strains were isolated from nose cultures. Coagulase-negative staphylococci (CoNS) strains were composed of invasive and non-invasive strains isolated from nose, catheter tip and blood cultures from patients with catheter. Production with CRA method was found to be statistically significant in invasive isolates (p< 0.001). It is concluded that; as the biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm formation in staphylococci. 40.3% of the CoNS isolates, and 85.8% of S.aureus isolates produced biofilm on CRA (p< 0.001) and with PCR method the ratio of carrying three genes was found to be statistically important in S.aureus when compared with CoNS. Carriage of three genes and biofilm formation capacity of invasive isolates can cause refractory infections and the importance of carriage and hospital infections of these bacteria, it is important to prevent the spread of these isolates. A combination of phenotypic and genotypic tests is recommended for the investigation of biofilm formation in staphylococci.
Quorum Sensing Inhibitors for Staphylococcus aureus from Italian Medicinal Plants
Quave, Cassandra L.; Plano, Lisa R.W.; Bennett, Bradley C.
2010-01-01
Morbidity and mortality estimates due to methicillin-resistant Staphylococcus aureus (MRSA) infections continue to rise. Therapeutic options are limited by antibiotic resistance. Anti-pathogenic compounds, which inhibit quorum sensing (QS) pathways, may be a useful alternative to antibiotics. Staphylococcal QS is encoded by the agr locus and is responsible for the production of δ-hemolysin. Quantification of δ-hemolysin found in culture supernatants permits the analysis of agr activity at the translational, rather than transcriptional, level. We employed RP-HPLC techniques to investigate the anti-QS activity of 168 extracts from 104 Italian plants through quantification of δ-hemolysin. Extracts from three medicinal plants (Ballota nigra, Castanea sativa, and Sambucus ebulus) exhibited a dose-dependent response in the production of δ-hemolysin, indicating strong anti-QS activity in a pathogenic MRSA isolate. PMID:20645243
Environmental Staphylococcus aureus contamination in a Tunisian hospital.
Gharsa, Haythem; Dziri, Raoudha; Klibi, Naouel; Chairat, Sarra; Lozano, Carmen; Torres, Carmen; Bellaaj, Ridha; Slama, Karim Ben
2016-12-01
One hundred hospital environment samples were obtained in 2012 in a Tunisian hospital and tested for Staphylococcus aureus recovery. Antimicrobial resistance profile and virulence gene content were determined. Multilocus-sequence-typing (MLST), spa-typing, agr-typing and SmaI-pulsed-field gel electrophoresis (PFGE) were performed. Two methicillin-resistant S. aureus (MRSA) isolates typed as: ST247-t052-SCCmecI-agrI were recovered from the intensive care unit (ICU). Ten samples contained methicillin-susceptible S. aureus (MSSA) and these samples were collected in different services, highlighting the presence of the tst gene encoding the toxic shock syndrome toxin as well as the lukED, hla, hlb, hld and hlg v virulence genes in some of the isolates. In conclusion, we have shown that the hospital environment could be a reservoir contributing to dissemination of virulent S. aureus and MRSA.
Boakes, E.; Kearns, A. M.; Ganner, M.; Perry, C.; Hill, R. L.; Ellington, M. J.
2011-01-01
Genetically diverse community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) can harbor a bacteriophage encoding Panton-Valentine leukocidin (PVL) lysogenized into its chromosome (prophage). Six PVL phages (ΦPVL, Φ108PVL, ΦSLT, ΦSa2MW, ΦSa2USA, and ΦSa2958) are known, and single-nucleotide polymorphisms (SNPs) in the PVL genes have been reported. We sought to determine the distribution of lysogenized PVL phages among MRSA strains with PVL (PVL-MRSA strains), the PVL gene sequences, and the chromosomal phage insertion sites in 114 isolates comprising nine clones of PVL-MRSA that were selected for maximal underlying genetic diversity. The six PVL phages were identified by PCR; ΦSa2USA was present in the highest number of different lineages (multilocus sequence type clonal complex 1 [CC1], CC5, CC8, and sequence type 93 [ST93]) (n = 37 isolates). Analysis of 92 isolates confirmed that PVL phages inserted into the same chromosomal insertion locus in CC22, -30, and -80 but in a different locus in isolates of CC1, -5, -8, -59, and -88 and ST93 (and CC22 in two isolates). Within the two different loci, specific attachment motifs were found in all cases, although some limited inter- and intralineage sequence variation occurred. Overall, lineage-specific relationships between the PVL phage, the genes that encode the toxin, and the position at which the phage inserts into the host chromosome were identified. These analyses provide important insights into the microepidemiology of PVL-MRSA, will prove a valuable adjunct in outbreak investigation, and may help predict the emergence of new strains. PMID:21106787
Truong-Bolduc, Que Chi; Hooper, David C
2010-05-01
MgrA is a global regulator in Staphylococcus aureus that controls the expression of diverse genes encoding virulence factors and multidrug resistance (MDR) efflux transporters. We identified pknB, which encodes the (Ser/Thr) kinase PknB, in the S. aureus genome. PknB was able to autophosphorylate as well as phosphorylate purified MgrA. We demonstrated that rsbU, which encodes a Ser/Thr phosphatase and is involved in the activation of the SigB regulon, was able to dephosphorylate MgrA-P but not PknB-P. Serines 110 and 113 of MgrA were found to be phosphorylated, and Ala substitutions at these positions resulted in reductions in the level of phosphorylation of MgrA. DNA gel shift binding assays using norA and norB promoters showed that MgrA-P was able to bind the norB promoter but not the norA promoter, a pattern which was the reverse of that for unphosphorylated MgrA. The double mutant MgrA(S110A-S113A) bound to the norA promoter but not the norB promoter. The double mutant led to a 2-fold decrease in norA transcripts and a 2-fold decrease in the MICs of norfloxacin and ciprofloxacin in strain RN6390. Thus, phosphorylation of MgrA results in loss of binding to the norA promoter, but with a gain of the ability to bind the norB promoter. Loss of the ability to phosphorylate MgrA by Ala substitution resulted in increased repression of norA expression and in reductions in susceptibilities to NorA substrates.
Shariati, Laleh; Validi, Majid; Hasheminia, Ali Mohammad; Ghasemikhah, Reza; Kianpour, Fariborz; Karimi, Ali; Nafisi, Mohammad Reza; Tabatabaiefar, Mohammad Amin
2016-01-01
A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness.
Staphylococcus aureus toxin gene hitchhikes on a transferable antibiotic resistance element.
Otto, Michael
2010-01-01
Virulence and antibiotic resistance of the dangerous human pathogen Staphylococcus aureus are to large extent determined by the acquisition of mobile genetic elements (MGEs). Up to now, these elements were known to comprise either resistance or virulence determinants, but not a mixture of the two. Queck et al. now found a cytolysin gene of the phenol-soluble modulin (PSM) family within SCCmec elements, which contain methicillin resistance genes and are largely responsible for the spread of methicillin-resistant S. aureus (MRSA). The novel gene, called psm-mec, had a significant impact on virulence in MRSA strains that do not produce high levels of genome-encoded PSMs. This first example of a combination of toxin and resistance genes on one staphylococcal MGE shows that such bundling is possible and may lead to an even faster acquisition of toxin and resistance genes by S. aureus and other staphylococcal pathogens.
Hong, Seung Kon; Kim, Kook Han; Kim, Eunice EunKyeong
2010-01-01
Malonyl-CoA:acyl-carrier protein transacylase (MCAT), encoded by the fabd gene, is a key enzyme in type II fatty-acid biosynthesis. It is responsible for transferring the malonyl group from malonyl-CoA to the holo acyl-carrier protein (ACP). Since the type II system differs from the type I system that mammals use, it has received enormous attention as a possible antibiotic target. In particular, only a single isoform of MCAT has been reported and a continuous coupled enzyme assay has been developed. MCAT from Staphylococcus aureus was overexpressed in Escherichia coli and the protein was purified and crystallized. Diffraction data were collected to 1.2 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 41.608, b = 86.717, c = 43.163 A, alpha = gamma = 90, beta = 106.330 degrees . The asymmetric unit contains one SaMCAT molecule.
Sensory deprivation in Staphylococcus aureus.
Villanueva, Maite; García, Begoña; Valle, Jaione; Rapún, Beatriz; Ruiz de Los Mozos, Igor; Solano, Cristina; Martí, Miguel; Penadés, José R; Toledo-Arana, Alejandro; Lasa, Iñigo
2018-02-06
Bacteria use two-component systems (TCSs) to sense and respond to environmental changes. The core genome of the major human pathogen Staphylococcus aureus encodes 16 TCSs, one of which (WalRK) is essential. Here we show that S. aureus can be deprived of its complete sensorial TCS network and still survive under growth arrest conditions similarly to wild-type bacteria. Under replicating conditions, however, the WalRK system is necessary and sufficient to maintain bacterial growth, indicating that sensing through TCSs is mostly dispensable for living under constant environmental conditions. Characterization of S. aureus derivatives containing individual TCSs reveals that each TCS appears to be autonomous and self-sufficient to sense and respond to specific environmental cues, although some level of cross-regulation between non-cognate sensor-response regulator pairs occurs in vivo. This organization, if confirmed in other bacterial species, may provide a general evolutionarily mechanism for flexible bacterial adaptation to life in new niches.
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-06-15
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.
The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.
Luebke, Justin L; Shen, Jiangchuan; Bruce, Kevin E; Kehl-Fie, Thomas E; Peng, Hui; Skaar, Eric P; Giedroc, David P
2014-12-01
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. © 2014 John Wiley & Sons Ltd.
The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus
Luebke, Justin L.; Shen, Jiangchuan; Bruce, Kevin E.; Kehl-Fie, Thomas E.; Peng, Hui; Skaar, Eric P.; Giedroc, David P.
2014-01-01
How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR (Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor) represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60’ interprotomer crosslinks, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. PMID:25318663
Zuniga, Eveline; Melville, Priscilla A; Saidenberg, André B S; Laes, Marco A; Gonsales, Fernanda F; Salaberry, Sandra R S; Gregori, Fabio; Brandão, Paulo E; dos Santos, Franklin G B; Lincopan, Nilton E; Benites, Nilson R
2015-12-01
This study aimed to elucidate aspects of the epidemiology of bovine subclinical mastitis through the assessment of genes encoding MSCRAMM (microbial surface components recognizing adhesive matrix molecules - a group of adhesins) and protein Bap (implicated in biofilm formation), in coagulase-positive (CPS) and coagulase-negative (CNS) Staphylococcus isolated from subclinical mastitis. Milk samples were collected for microbiological exams, somatic cell count (SCC) and a survey of the genes coding for MSCRAMM (cna, eno, ebpS, fnbA, fnbB and fib) and biofilm-associated protein Bap (bap) in 106 Staphylococcus spp. isolates using PCR. The frequencies of occurrence of eno (82.1%), fnbA (72.6%), fib (71.7%) and bap (56.6%) were higher (P < 0.0001) compared with the other assessed genes (cna, ebpS and fnbB). The higher frequency of occurrence (P < 0.005) of the bap gene in CNS compared with CPS suggests that in these species biofilm formation is an important mechanism for the persistence of the infection. The medians of the SCCs in the samples where eno, fnbA, fib and bap genes were detected were higher compared with Staphylococcus without the assessed genes (P < 0.05) and negative samples (P < 0.01), which indicated that the presence of these MSCRAMM may be related to a higher intensity of the inflammatory process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lenart-Boroń, Anna; Wolny-Koładka, Katarzyna; Stec, Joanna; Kasprowic, Andrzej
2016-10-01
This study assessed the antimicrobial resistance of airborne Staphylococcus spp. strains isolated from healthcare facilities in southern Poland. A total of 55 isolates, belonging to 10 coagulase-negative staphylococci (CoNS) species, isolated from 10 healthcare facilities (including hospitals and outpatient units) were included in the analysis. The most frequently identified species were Staphylococcus saprophyticus and Staphylococcus warneri, which belong to normal human skin flora, but can also be the cause of common and even severe nosocomial infections. Disk diffusion tests showed that the bacterial strains were most frequently resistant to erythromycin and tetracycline and only 18% of strains were susceptible to all tested antimicrobials. Polymerase chain reaction amplification of specific gene regions was used to determine the presence of the Macrolide-Lincosamide-Streptogramin resistance mechanisms in CoNS. The molecular analysis, conducted using specific primer pairs, identified the msrA1 gene, encoding active efflux pumps in bacterial cells, as the most frequent resistance gene. As many as seven antibiotic resistance genes were found in one isolate, whereas the most common number of resistance genes per isolate was five (n = 17). It may be concluded that drug resistance was widely spread among the tested strains, but the resulting antimicrobial resistance profile indicates that in the case of infection, the use of antibiotics from the basic antibiogram group will be effective in therapy. However, before administering treatment, determination of the specific antimicrobial resistance should be conducted, particularly in the case of hospitalized patients.
Bowring, Janine; Neamah, Maan M; Donderis, Jorge; Mir-Sanchis, Ignacio; Alite, Christian; Ciges-Tomas, J Rafael; Maiques, Elisa; Medmedov, Iltyar; Marina, Alberto; Penadés, José R
2017-08-08
Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature's most fascinating subcellular parasites.
Podkowik, Magdalena; Seo, Keun Seok; Schubert, Justyna; Tolo, Isaiah; Robinson, D Ashley; Bania, Jacek; Bystroń, Jarosław
2016-07-16
We have previously shown that potentially pathogenic isolates of Staphylococcus epidermidis occur at high incidence in ready-to-eat food. Now, within 164 samples of ready-to-eat meat products we identified 32 S. epidermidis isolates. In 8 isolates we detected the genes encoding for staphylococcal enterotoxins, but in 7 S. epidermidis isolates these genes were not stable over passages. One isolate designated 4S was shown to stably harbour sec and sel genes. In the genome sequence of S. epidermidis 4S we identified 21,426-bp region flanked by direct-repeats, encompassing sec and sel genes, corresponding to the previously described composite staphylococcal pathogenicity island (SePI) in S. epidermidis FRI909. Alignment of S. epidermidis 4S and S. epidermidis FRI909 SePIs revealed 6 nucleotide mismatches located in 5 of the total of 29 ORFs. Genomic location of S. epidermidis 4S SePI was the same as in FRI909. S. epidermidis 4S is a single locus variant of ST561, being genetically different from FRI909. SECepi was secreted by S. epidermidis 4S to BHI broth ranging from 14 to almost 36μg/mL, to milk ranging from 6 to 9ng/mL, to beef meat juice from 2 to 3μg/mL and to pork meat juice from 1 to 2μg/mL after 24 and 48h of cultivation, respectively. We provide the first evidence that S. epidermidis occurring in food bears an element encoding an orthologue to Staphylococcus aureus SEC, and that SECepi can be produced in microbial broth, milk and meat juices. Regarding that only enterotoxins produced by S. aureus are officially tracked in food in EU, the ability to produce enterotoxin by S. epidermidis pose real risk for food safety. Copyright © 2016 Elsevier B.V. All rights reserved.
Okolie, Charles E; Wooldridge, Karl G; Turner, David P; Cockayne, Alan; James, Richard
2015-06-01
Staphylococcus aureus strains harbouring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbour mecA, the gene encoding staphylococcal methicillin-resistance. There have been previous attempts at distinguishing MRSA from MRCoNS, most of which were based on the detection of one of the pathognomonic markers of S. aureus, such as coa, nuc or spa. That approach might suffice for discrete colonies and mono-microbial samples; it is inadequate for identification of clinical specimens containing mixtures of S. aureus and CoNS. In the present study, a real-time pentaplex PCR assay has been developed which simultaneously detects markers for bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl) and methicillin resistance (mecA). Staphylococcal and non-staphylococcal bacterial strains (n = 283) were used to validate the new assay. The applicability of this test to clinical samples was evaluated using spiked blood cultures (n = 43) containing S. aureus and CoNS in mono-microbial and poly-microbial models, which showed that the 5 markers were all detected as expected. Cycling completes within 1 h, delivering 100% specificity, NPV and PPV with a detection limit of 1.0 × 10(1) to 3.0 × 10(1) colony forming units (CFU)/ml, suggesting direct applicability in routine diagnostic microbiology. This is the most multiplexed real-time PCR-based PVL-MRSA assay and the first detection of a unique marker for CoNS without recourse to the conventional elimination approach. There was no evidence that this new assay produced invalid/indeterminate test results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sidhu, M S; Heir, E; Sørum, H; Holck, A
2001-01-01
Little is known about the occurrence of antimicrobial resistance determinants in staphylococci isolated from food and food processing industries. Quaternary ammonium compound (QAC)-resistant coagulase-negative staphylococci (CNS) isolated from food and food-processing industries were investigated for the presence of genetic determinants (qacA/B and qacC/smr) encoding resistance to the QAC benzalkonium chloride (BC), several antibiotic resistance genes, and staphylococcal insertion sequences IS257 and IS256. Six qacA/B-harboring strains were resistant to penicillin and hybridized to a blaZ probe. The qacA/B and blaZ probes hybridized to plasmids of similar size in three isolates. Molecular and genetic characterization of the 23-kb plasmid (pST6) of Staphylococcus epidermidis St.6 revealed the presence of qacB adjacent to an incomplete beta-lactamase transposon Tn552 encoding the gene cluster blaZ, blaR, and blaI. Sequence analysis of flanking regions and the intergenic region between blaZ and qacB revealed the presence of IS257 downstream of blaZ as well as sin and binR between blaZ and qacB. In the three other BC and penicillin-resistant strains, the qacA/B and blaZ genes were located on separate plasmids. A qacC harboring S. epidermidis strain (St.17) also hybridized to tetK (tetracycline resistance) and ermB (erythromycin resistance) genes. The individual genes were located on separate plasmids, suggesting no linkage between QAC and antibiotic resistance determinants. Plasmid-free Staphylococcus aureus RN4220 allowed uptake of the pST6 plasmid DNA, indicating that the resistance genes could potentially be transferred to pathogens under selective stress. In conclusion, presence of both resistance determinants could lead to co-selection during antimicrobial therapy or disinfection in hospitals or in food industries.
Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.
Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by themore » full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids. IMPORTANCEUnderstanding the mechanism of antimicrobial resistance transfer in bacteria such asStaphylococcus aureusis an important step toward potentially slowing the spread of antimicrobial-resistant infections. This work establishes protein-DNA interactions essential for the transfer of theStaphylococcus aureusmultiresistance plasmid pSK41 by its relaxase, NES. This enzyme also processed variantoriT-like sequences found on numerous plasmids previously considered nontransmissible, suggesting that in conjunction with an uncharacterized accessory protein, these plasmids may be transferred horizontally via a relaxase intransmechanism. These findings have important implications for our understanding of staphylococcal resistance plasmid evolution.« less
Goudarzi, Mehdi; Bahramian, Mahnaz; Satarzadeh Tabrizi, Mahboobeh; Udo, Edet E; Figueiredo, Agnes Marie Sá; Fazeli, Maryam; Goudarzi, Hossein
2017-04-01
Methicillin-resistant Staphylococcus aureus (MRSA) as a major cause of infection in health care, hospital and community settings is a global health concern. The purpose of this study was to determine the antibiotic susceptibility pattern and distribution of circulating molecular types of MRSA in a burn hospital in Tehran, the capital of Iran. During a 10-month study period, 106 Staphylococcus aureus isolates were assessed. Isolates were subjected to susceptibility testing using the disk diffusion method and Polymerase Chain Reaction (PCR) for detection of mecA, fem and nuc genes. The presence of PVL and tst encoding genes were determined by PCR method. All the MRSA isolates were genotyped by multilocus sequence typing (MLST), spa typing, SCCmec typing and agr typing. The presence of mecA gene was confirmed in all the Staphylococcus aureus isolates. Antimicrobial susceptibility testing revealed a high resistance rate (90.6%) to ampicillin, tetracycline, and erythromycin. The rates of resistance to remaining antibiotics tested varied between 18.9% and 84.9%. The high- level of resistance to mupirocin was confirmed in 19.8% of MRSA strains isolated from burn patients. Multi-drug resistance was observed in 90.6% of isolates. Sixteen of the 106 MRSA isolates (15.1%) harbored PVL-encoding genes. The majority of our MRSA strains carried SCCmec III (71.7%). ST239-SCCmec III/t037 (34%) was the most common genotype followed by ST239-SCCmec III/t030 (24.5%), ST15-SCCmec IV/t084 (15.1%), ST22-SCCmec IV/t790 (13.2%), and ST239-SCCmec III/t631 (13.2%). Mupirocin resistant MRSA isolates belonged to ST15-SCCmec IV/t084 (40%), ST22-SCCmec IV/t790 (23.3%), ST239-SCCmec III/t631 (20%), and ST239-SCCmec III/t030 (16.7%) clones. The results showed that genetically diverse strains of MRSA are circulating in our burn hospitals with relatively high prevalence of ST239-SCCmec III/t037 clone. The findings support the need for regular surveillance of MRSA to determine the distribution of existing MRSA clones and to detect the emergence of new MRSA clones. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Benjin; Liu, Ling; Liu, Li; Li, Xinping; Li, Xiaofang; Wang, Xin
2012-11-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern, which had been detected in food and food production animals. Conventional testing for detection of MRSA takes 3 to 5 d to yield complete information of the organism and its antibiotic sensitivity pattern. So, a rapid method is needed to diagnose and treat the MRSA infections. The present study focused on the development of a multiplex PCR assay for the rapid and sensitive detection of MRSA. The assay simultaneously detected 4 genes, namely, 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, and one internal control. It was rapid and yielded results within 4 h. The analytical sensitivity and specificity of the multiplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the multiplex PCR assay at the DNA level was 10 ng DNA. The analytical specificity was evaluated with 10 reference staphylococci strains and was 100%. The diagnostic evaluation of MRSA was carried out using 360 foodborne staphylococci isolates, and showed 99.1% of specificity, 96.4% of sensitivity, 97.5% of positive predictive value, and 97.3% of negative predictive value compared to the conventional method. The inclusion of an internal control in the multiplex PCR assay is important to exclude false-negative cases. This test can be used as an effective diagnostic and surveillance tool to investigate the spread and emergence of MRSA. © 2012 Institute of Food Technologists®
Sudagidan, Mert; Aydin, Ali
2010-04-15
In this study, three Panton-Valentine Leukocidin gene carrying methicillin-susceptible Staphylococcus aureus (MSSA) strains (M1-AAG42B, PY30C-b and YF1B-b) were isolated from different food samples in Kesan-Edirne, Turkey. These strains were characterized on the basis of MLST type, spa type, virulence factor gene contents, antibiotic susceptibilities against 21 antibiotics and biofilm formation. The genetic relatedness of the strains was determined by PFGE. In addition, the complete gene sequences of lukS-PV and lukF-PV were also investigated. All strains were found to be susceptible to tested antibiotics and they were mecA negative. Three strains showed the same PFGE band pattern, ST152 clonal type and t355 spa type. In the detection of virulence factor genes, sea, seb, sec, sed, see, seg, seh, sei, sej, sek, sel, sem, sen, seo, sep, seq, seu, eta, etb, set1, geh and tst genes were not detected. All strains showed the positive results for alpha- and beta-haemolysin genes (hla and hlb), protease encoding genes (sspA, sspB and aur), lukE and lukD leukocidin genes (lukED). The strains were found to be non-biofilm formers. By this study, the virulence properties of the strains were described and this is one of the first reports regarding PVL-positive MSSA strains from food. (c) 2010 Elsevier B.V. All rights reserved.
Choi, Su Mi; Kim, Seung-Han; Kim, Hee-Jung; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong; Kang, Jin-Han; Shin, Wan-Shik; Kang, Moon-Won
2003-01-01
We developed multiplex polymerase chain reaction (PCR) to detect aac(6 ')/aph(2 "), aph(3 ')-IIIa, and ant(4 ')-Ia, the genes encoding the most clinically relevant amino-glycoside modifying enzymes (AME), and simultaneously, the methicillin resistant gene, mecA, in Staphylococcus species. Clinical isolates of 45 S. aureus and 47 coagulase negative staphylococci (CNS) from tertiary university hospitals were tested by conventional susceptibility testing, using the agar dilution method and by multiplex PCR. Of a total of 92 isolates, 61 isolates were found to be methicillin-resistant. Of these, 54 isolates (89%) were found to be harboring mecA. Seventy-five percent of the 92 isolates demonstrated resistance to at least one of the aminoglycosides tested. Moreover, resistance to aminoglycosides was closely associated with methicillin-resistance (p<0.05). The most prevalent AME gene was aac(6 ')/aph(2 ") which was found in 65% of the isolates, and ant(4 ')-Ia and aph(3 ')-IIIa were present in 41% and 9% of the isolates, respectively. The concordance between methicillin-resistance and the presence of mecA gene was 98% in S. aureus and 81% in CNS. The concordance between gentamicin resistance and the presence of aac(6 ')/aph(2 ") gene was 100% in S. aureus and 85% in CNS. The multiplex PCR method that we developed appears to be both a more rapid and reliable than conventional method. PMID:14555812
Tang, Yuanyue; Nielsen, Lene N; Hvitved, Annemette; Haaber, Jakob K; Wirtz, Christiane; Andersen, Paal S; Larsen, Jesper; Wolz, Christiane; Ingmer, Hanne
2017-01-01
Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains.
Tang, Yuanyue; Nielsen, Lene N.; Hvitved, Annemette; Haaber, Jakob K.; Wirtz, Christiane; Andersen, Paal S.; Larsen, Jesper; Wolz, Christiane; Ingmer, Hanne
2017-01-01
Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains. PMID:29270158
Truong-Bolduc, Que Chi; Hooper, David C.
2007-01-01
MgrA is a known regulator of the expression of several multidrug transporters in Staphylococcus aureus. We identified another regulator of multiple efflux pumps, NorG, by its ability, like that of MgrA, to bind specifically to the promoter of the gene encoding the NorA efflux pump. NorG is a member of the family of the GntR-like transcriptional regulators, and it binds specifically to the putative promoters of the genes encoding multidrug efflux pumps NorA, NorB, NorC, and AbcA. Overexpression of norG produces a threefold increase in norB transcripts associated with a fourfold increase in the level of resistance to quinolones. In contrast, disruption of norG produces no change in the level of transcripts of norA, norB, and norC but causes an increase of at least threefold in the transcript level of abcA, associated with a fourfold increase in resistance to methicillin, cefotaxime, penicillin G, and nafcillin. Overexpression of cloned abcA caused an 8- to 128-fold increase in the level of resistance to all four β-lactam antibiotics. Furthermore, MgrA and NorG have opposite effects on norB and abcA expression. MgrA acts as an indirect repressor for norB and a direct activator for abcA, whereas NorG acts as a direct activator for norB and a direct repressor for abcA. PMID:17277059
Ni, Lisheng; Jensen, Slade O; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M; Guan, Fiona H X; Brown, Melissa H; Skurray, Ronald A; Firth, Neville; Schumacher, Maria A
2009-11-01
Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon-helix-helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes.
Ni, Lisheng; Jensen, Slade O.; Ky Tonthat, Nam; Berg, Tracey; Kwong, Stephen M.; Guan, Fiona H. X.; Brown, Melissa H.; Skurray, Ronald A.; Firth, Neville; Schumacher, Maria A.
2009-01-01
Plasmids harbored by Staphylococcus aureus are a major contributor to the spread of bacterial multi-drug resistance. Plasmid conjugation and partition are critical to the dissemination and inheritance of such plasmids. Here, we demonstrate that the ArtA protein encoded by the S. aureus multi-resistance plasmid pSK41 is a global transcriptional regulator of pSK41 genes, including those involved in conjugation and segregation. ArtA shows no sequence homology to any structurally characterized DNA-binding protein. To elucidate the mechanism by which it specifically recognizes its DNA site, we obtained the structure of ArtA bound to its cognate operator, ACATGACATG. The structure reveals that ArtA is representative of a new family of ribbon–helix–helix (RHH) DNA-binding proteins that contain extended, N-terminal basic motifs. Strikingly, unlike most well-studied RHH proteins ArtA binds its cognate operators as a dimer. However, we demonstrate that it is also able to recognize an atypical operator site by binding as a dimer-of-dimers and the extended N-terminal regions of ArtA were shown to be essential for this dimer-of-dimer binding mode. Thus, these data indicate that ArtA is a master regulator of genes critical for both horizontal and vertical transmission of pSK41 and that it can recognize DNA utilizing alternate binding modes. PMID:19759211
Feng, Ye; Chen, Hsiu-Ling; Chen, Chih-Jung; Chen, Chyi-Liang; Chiu, Cheng-Hsun
2017-10-01
Sequence type (ST) 59 is an epidemic lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in Asia. Two ST59 clones are prevalent in Taiwan: the Taiwan clone (TW) causes severe infections, whereas the Asian-Pacific clone (AP) is usually commensal. In this study, we sequenced the genome and transcriptome of the representative strains of these two clones and found their differences to focus on three mobile genetic elements: TW carries SCCmec Type V T , Panton-Valentine leucocidin (PVL)-encoding prophage ΦSa2, whereas AP carries SCCmec Type IV and staphylokinase (SAK)-encoding prophage ΦSa3. The anti-virulent role of SAK was confirmed using murine skin and bloodstream infection models. ΦSa3 usually integrates into the hlb gene, but in AP was found to be integrated at the genomic island νSaβ. The mutation of the attB site "TGTATCCAAACTGG" to "TGTATCCGAATTGG" led to a failure in the integration of ΦSa3 in hlb, prompting atypical integration at other sites. The sak gene possessed remarkably different patterns of distribution among the different STs of S. aureus. We conclude that the atypical integration of ΦSa3 may help S. aureus adapt to the human host habitat and that the subsequent loss of ΦSa3 contributes toward the development of a virulent CA-MRSA lineage for wider horizontal transmission. Copyright © 2017 Elsevier B.V. All rights reserved.
Truong-Bolduc, Que Chi; Ding, Yanpeng; Hooper, David C
2008-11-01
MgrA is a global regulator in Staphylococcus aureus. Differences in the effects of MgrA on norA expression have been reported for different strains, which varied in rsbU, a gene that affects the expression of sigB, which encodes an alternative sigma factor involved in stress responses. We hypothesized that MgrA was modified by sigB-dependent factors that affected its ability to control the expression of the norA efflux pump. Heterologously expressed MgrA purified from Escherichia coli was incubated with crude extracts (CE) from strains RN6390 (rsbU) and SH1000 (rsbU(+)) and tested for binding to the norA promoter. Purified MgrA exhibited greater binding to norA promoter DNA after being incubated with SH1000 CE than MgrA incubated with the RN6390 CE. Phosphorylation of MgrA occurring in cell extracts caused it to lose the ability to bind norA promoter DNA. Overexpression of pknB, encoding a candidate serine/threonine kinase, produced increased phospho-MgrA and led to a fivefold increase in the transcript level of norA for both RN6390 and SH1000, as well as a fourfold increase in the MICs of norfloxacin and ciprofloxacin for these two strains. The levels of expression of pknB in RN6390 and SH1000, however, indicated that additional factors related to rsbU or sigB contribute to the differential regulatory effects of MgrA on norA expression.
Wu, S W; De Lencastre, H
1999-01-01
Screening of a library of Tn551 insertional mutants selected for reduction in the methicillin resistance level of the parental Staphylococcus aureus strain COL resulted in the isolation of mutant RUSA266 in which the minimal inhibitory concentration (MIC) of the parent was reduced from 1,600 to 1.5 micrograms/mL. Cloning and sequencing of the vicinity of the insertion site omega 726 identified an open reading frame (orf1365) encoding a very large polypeptide of more than 1,365 amino acids. A unique feature of the deduced amino acid sequence was the presence of multiple tandem repeats of 75 amino acids in the polypeptide, reminiscent of the structure of high-molecular-weight cell-surface proteins EF* and Emb identified in some streptococcal strains. Mutant RUSA266 with the inactivated gene, which we shall provisionally refer to as mrp (for multiple repeat polypeptide), produced a peptidoglycan with altered muropeptide composition, and both the reduced antibiotic resistance and the altered cell wall composition were co-transduced in back-crosses into the parental strain COL. Additional sequencing upstream of mrp has revealed that this gene was part of a five-gene cluster occupying a 9.2-kb region of the staphylococcal chromosome and was composed of glmM (directly upstream of mrp), two open reading frames orf310 and orf269 coding for two hypothetical proteins, and the gene encoding the staphylococcal arginase (arg). Transcriptional analysis demonstrated that the five genes in the cluster were transcribed together.
Shariati, Laleh; Validi, Majid; Hasheminia, Ali Mohammad; Ghasemikhah, Reza; Kianpour, Fariborz; Karimi, Ali; Nafisi, Mohammad Reza; Tabatabaiefar, Mohammad Amin
2016-01-01
Background: A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Objectives: The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. Materials and Methods: In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. Results: In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Conclusions: Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness. PMID:27099685
Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes
Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.
2018-01-01
We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes. PMID:25720844
Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30
McGavin, Martin J.; Arsic, Benjamin; Nickerson, Nicholas N.
2012-01-01
Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and, therefore, provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common ancestor. Clade 1, comprised of historic pandemic phage type 80/81 methicillin susceptible S. aureus (MSSA), and Clade 2 comprised of contemporary community acquired methicillin resistant S. aureus (CA-MRSA) were hyper-virulent in murine infection models. Conversely, Clade 3 strains comprised of contemporary hospital associated MRSA (HA-MRSA) and clinical MSSA exhibited attenuated virulence, due to common single nucleotide polymorphisms (SNP's) that abrogate production of α-hemolysin Hla, and interfere with signaling of the accessory gene regulator agr. We have now completed additional in silico genome comparisons of 15 additional CC30 genomes in the public domain, to assess the hypothesis that Clade 3 has evolved to favor niche adaptation. In addition to SNP's that influence agr and hla, other common traits of Clade 3 include tryptophan auxotrophy due to a di-nucleotide deletion within trpD, a premature stop codon within isdH encoding an immunogenic cell surface protein involved in iron acquisition, loss of a genomic toxin–antitoxin (TA) addiction module, acquisition of S. aureus pathogenicity islands SaPI4, and SaPI2 encoding toxic shock syndrome toxin tst, and increased copy number of insertion sequence ISSau2, which appears to target transcription terminators. Compared to other Clade 3 MSSA, S. aureus MN8, which is associated with Staphylococcal toxic shock syndrome, exhibited a unique ISSau2 insertion, and enhanced production of toxic shock syndrome toxin encoded by SaPI2. Cumulatively, our data support the notion that Clade 3 strains are following an evolutionary blueprint toward niche-adaptation. PMID:22919639
eap Gene as novel target for specific identification of Staphylococcus aureus.
Hussain, Muzaffar; von Eiff, Christof; Sinha, Bhanu; Joost, Insa; Herrmann, Mathias; Peters, Georg; Becker, Karsten
2008-02-01
The cell surface-associated extracellular adherence protein (Eap) mediates adherence of Staphylococcus aureus to host extracellular matrix components and inhibits inflammation, wound healing, and angiogenesis. A well-characterized collection of S. aureus and non-S. aureus staphylococcal isolates (n = 813) was tested for the presence of the Eap-encoding gene (eap) by PCR to investigate the use of the eap gene as a specific diagnostic tool for identification of S. aureus. Whereas all 597 S. aureus isolates were eap positive, this gene was not detectable in 216 non-S. aureus staphylococcal isolates comprising 47 different species and subspecies of coagulase-negative staphylococci and non-S. aureus coagulase-positive or coagulase-variable staphylococci. Furthermore, non-S. aureus isolates did not express Eap homologs, as verified on the transcriptional and protein levels. Based on these data, the sensitivity and specificity of the newly developed PCR targeting the eap gene were both 100%. Thus, the unique occurrence of Eap in S. aureus offers a promising tool particularly suitable for molecular diagnostics of this pathogen.
Human Staphylococcus aureus lineages among Zoological Park residents in Greece
Drougka, E.; Foka, A.; Posantzis, D.; Giormezis, N.; Anastassiou, E.D.; Petinaki, E.; Spiliopoulou, I.
2015-01-01
Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381
Dunyach-Remy, Catherine; Ngba Essebe, Christelle; Sotto, Albert; Lavigne, Jean-Philippe
2016-01-01
Infection of foot ulcers is a common, often severe and costly complication in diabetes. Diabetic foot infections (DFI) are mainly polymicrobial, and Staphylococcus aureus is the most frequent pathogen isolated. The numerous virulence factors and toxins produced by S. aureus during an infection are well characterized. However, some particular features could be observed in DFI. The aim of this review is to describe the role of S. aureus in DFI and the implication of its toxins in the establishment of the infection. Studies on this issue have helped to distinguish two S. aureus populations in DFI: toxinogenic S. aureus strains (harboring exfoliatin-, EDIN-, PVL- or TSST-encoding genes) and non-toxinogenic strains. Toxinogenic strains are often present in infections with a more severe grade and systemic impact, whereas non-toxinogenic strains seem to remain localized in deep structures and bone involving diabetic foot osteomyelitis. Testing the virulence profile of bacteria seems to be a promising way to predict the behavior of S. aureus in the chronic wounds. PMID:27399775
Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra
2016-01-01
The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12.5% exhibiting the presence of egc-like variants. In two animals, we also noted the gene encoding the TSST-1 toxin. The results of the study showed that free-living animals may be a significant reservoir of bacteria that are potentially pathogenic for humans. The results of the statistical analysis revealed that, among the animals species studied, the red fox constitutes the most important source of infections.
Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening
NASA Astrophysics Data System (ADS)
Machutta, Carl A.; Kollmann, Christopher S.; Lind, Kenneth E.; Bai, Xiaopeng; Chan, Pan F.; Huang, Jianzhong; Ballell, Lluis; Belyanskaya, Svetlana; Besra, Gurdyal S.; Barros-Aguirre, David; Bates, Robert H.; Centrella, Paolo A.; Chang, Sandy S.; Chai, Jing; Choudhry, Anthony E.; Coffin, Aaron; Davie, Christopher P.; Deng, Hongfeng; Deng, Jianghe; Ding, Yun; Dodson, Jason W.; Fosbenner, David T.; Gao, Enoch N.; Graham, Taylor L.; Graybill, Todd L.; Ingraham, Karen; Johnson, Walter P.; King, Bryan W.; Kwiatkowski, Christopher R.; Lelièvre, Joël; Li, Yue; Liu, Xiaorong; Lu, Quinn; Lehr, Ruth; Mendoza-Losana, Alfonso; Martin, John; McCloskey, Lynn; McCormick, Patti; O'Keefe, Heather P.; O'Keeffe, Thomas; Pao, Christina; Phelps, Christopher B.; Qi, Hongwei; Rafferty, Keith; Scavello, Genaro S.; Steiginga, Matt S.; Sundersingh, Flora S.; Sweitzer, Sharon M.; Szewczuk, Lawrence M.; Taylor, Amy; Toh, May Fern; Wang, Juan; Wang, Minghui; Wilkins, Devan J.; Xia, Bing; Yao, Gang; Zhang, Jean; Zhou, Jingye; Donahue, Christine P.; Messer, Jeffrey A.; Holmes, David; Arico-Muendel, Christopher C.; Pope, Andrew J.; Gross, Jeffrey W.; Evindar, Ghotas
2017-07-01
The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.
Rampogu, Shailima; Baek, Ayoung; Gajula, Rajesh Goud; Zeb, Amir; Bavi, Rohit S; Kumar, Raj; Kim, Yongseong; Kwon, Yong Jung; Lee, Keun Woo
2018-04-02
Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.
A novel hybrid SCCmec-mecC region in Staphylococcus sciuri
Harrison, Ewan M.; Paterson, Gavin K.; Holden, Matthew T. G.; Ba, Xiaoliang; Rolo, Joana; Morgan, Fiona J. E.; Pichon, Bruno; Kearns, Angela; Zadoks, Ruth N.; Peacock, Sharon J.; Parkhill, Julian; Holmes, Mark A.
2014-01-01
Objectives Methicillin resistance in Staphylococcus spp. results from the expression of an alternative penicillin-binding protein 2a (encoded by mecA) with a low affinity for β-lactam antibiotics. Recently, a novel variant of mecA known as mecC (formerly mecALGA251) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified two Staphylococcus sciuri subsp. carnaticus isolates from bovine infections that harbour three different mecA homologues: mecA, mecA1 and mecC. Methods We subjected the two isolates to whole-genome sequencing to further understand the genetic context of the mec-containing region. We also used PCR and RT–PCR to investigate the excision and expression of the SCCmec element and mec genes, respectively. Results Whole-genome sequencing revealed a novel hybrid SCCmec region at the orfX locus consisting of a class E mec complex (mecI-mecR1-mecC1-blaZ) located immediately downstream of a staphylococcal cassette chromosome mec (SCCmec) type VII element. A second SCCmec attL site (attL2), which was imperfect, was present downstream of the mecC region. PCR analysis of stationary-phase cultures showed that both the SCCmec type VII element and a hybrid SCCmec-mecC element were capable of excision from the genome and forming a circular intermediate. Transcriptional analysis showed that mecC and mecA, but not mecA1, were both expressed in liquid culture supplemented with oxacillin. Conclusions Overall, this study further highlights that a range of staphylococcal species harbour the mecC gene and furthers the view that coagulase-negative staphylococci associated with animals may act as reservoirs of antibiotic resistance genes for more pathogenic staphylococcal species. PMID:24302651
Beerlage, Christiane; Greb, Jessica; Kretschmer, Dorothee; Assaggaf, Mohammad; Trackman, Philip C.; Hansmann, Martin-Leo; Bonin, Michael; Eble, Johannes A.; Peschel, Andreas; Brüne, Bernhard
2013-01-01
Hypoxia-inducible factor 1 (HIF-1) is the key transcription factor involved in the adaptation of mammals to hypoxia and plays a crucial role in cancer angiogenesis. Recent evidence suggests a leading role for HIF-1 in various inflammatory and infectious diseases. Here we describe the role of HIF-1 in Staphylococcus aureus infections by investigating the HIF-1-dependent host cell response. For this purpose, transcriptional profiling of HIF-1α-deficient HepG2 and control cells, both infected with Staphylococcus aureus, was performed. Four hours after infection, the expression of 190 genes, 24 of which were regulated via HIF-1, was influenced. LOX (encoding lysyl oxidase) was one of the upregulated genes with a potential impact on the course of S. aureus infection. LOX is an amine oxidase required for biosynthetic cross-linking of extracellular matrix components. LOX was upregulated in vitro in different cell cultures infected with S. aureus and also in vivo, in kidney abscesses of mice intravenously infected with S. aureus and in clinical skin samples from patients with S. aureus infections. Inhibition of LOX by β-aminopropionitrile (BAPN) did not affect the bacterial load in kidneys or blood but significantly influenced abscess morphology and collagenization. Our data provide evidence for a crucial role of HIF-1-regulated LOX in abscess formation. PMID:23649089
Capparelli, Rosanna; De Chiara, Francesco; Nocerino, Nunzia; Montella, Rosa Chiara; Iannaccone, Marco; Fulgione, Andrea; Romanelli, Alessandra; Avitabile, Concetta; Blaiotta, Giuseppe; Capuano, Federico
2012-11-17
Antimicrobial peptides (AMPs) are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms). They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I) against Staphylococcus epidermidis. The temporin B (TB-KK) and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C), were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX) displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2) and CD64, two important parameters of inflammation. The study shows that the MIX - a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities.
Andreotti, Renato; Pérez de León, Adalberto A; Dowd, Scot E; Guerrero, Felix D; Bendele, Kylie G; Scoles, Glen A
2011-01-06
Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas. Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum, and Finegoldia magna. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include Wolbachia, Coxiella, and Borrelia. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with R. microplus. This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with R. microplus. Additional reports on the identification of new bacterial species maintained in nature by R. microplus that may be pathogenic to its vertebrate hosts are expected as our understanding of its microbiota expands. Increased awareness of the role R. microplus can play in the transmission of pathogenic bacteria will enhance our ability to mitigate its economic impact on animal agriculture globally. This recognition should be included as part of analyses to assess the risk for re-invasion of areas like the United States of America where R. microplus was eradicated.
Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-04-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.
Gottschalk, Sanne; Gottlieb, Caroline T; Vestergaard, Martin; Hansen, Paul R; Gram, Lone; Ingmer, Hanne; Thomsen, Line E
2015-12-01
The rapid rise in antibiotic-resistant pathogens is causing increased health concerns, and consequently there is an urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs), which have been isolated from a wide range of organisms, represent a very promising class of novel antimicrobials. In the present study, the analogue FL9, based on the amphibian AMP fallaxin, was studied to elucidate its mode of action and antibacterial activity against the human pathogen Staphylococcus aureus. Our data showed that FL9 may have a dual mode of action against S. aureus. At concentrations around the MIC, FL9 bound DNA, inhibited DNA synthesis and induced the SOS DNA damage response, whereas at concentrations above the MIC the interaction between S. aureus and FL9 led to membrane disruption. The antibacterial activity of the peptide was maintained over a wide range of NaCl and MgCl(2) concentrations and at alkaline pH, while it was compromised by acidic pH and exposure to serum. Furthermore, at subinhibitory concentrations of FL9, S. aureus responded by increasing the expression of two major virulence factor genes, namely the regulatory rnaIII and hla, encoding α-haemolysin. In addition, the S. aureus-encoded natural tolerance mechanisms included peptide cleavage and the addition of positive charge to the cell surface, both of which minimized the antimicrobial activity of FL9. Our results add new information about FL9 and its effect on S. aureus, which may aid in the future development of analogues with improved therapeutic potential.
O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.
2015-01-01
Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776
Burnside, Kellie; Lembo, Annalisa; de los Reyes, Melissa; Iliuk, Anton; BinhTran, Nguyen-Thao; Connelly, James E.; Lin, Wan-Jung; Schmidt, Byron Z.; Richardson, Anthony R.; Fang, Ferric C.; Tao, Weiguo Andy; Rajagopal, Lakshmi
2010-01-01
Exotoxins, including the hemolysins known as the alpha (α) and beta (β) toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1) were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1) increased expression. Transcription of the hla gene encoding α toxin was decreased in a Δstp1 mutant strain and increased in a Δstk1 strain. Microarray analysis of a Δstk1 mutant revealed increased transcription of additional exotoxins. A Δstp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Δstk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU), serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE) and a hypothetical protein (NWMN_1123) were present in the wild type and not in the Δstk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence. PMID:20552019
A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦
Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.
2016-01-01
Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960
Goudarzi, Mehdi; Seyedjavadi, Sima Sadat; Nasiri, Mohammad Javad; Goudarzi, Hossein; Sajadi Nia, Raheleh; Dabiri, Hossein
2017-03-01
The widespread emergence of methicillin resistant Staphylococcus aureus, as a common cause of nosocomial infections, is becoming a serious concern in global public health. The objective of the present study was to investigate antimicrobial susceptibility pattern, frequency of virulence genes and molecular characteristics of methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. A total of 128 methicillin-resistant Staphylococcus aureus isolates were collected during February 2015 to January 2016. In vitro antimicrobial susceptibility of the isolates was assessed using the disk diffusion method. Conventional PCR was performed for the detection of adhesion (can, bbp, ebp, fnbB, fnbA, clfB, clfA) and toxin (etb, eta, pvl, tst) encoding genes, determining the agr type, SCCmec, MLST and spa typing of the isolates. All the methicillin-resistant Staphylococcus aureus isolates were found to be sensitive to linezolid, teicoplanin, and vancomycin. Resistance to the tested antibiotics varied from 97.7% for penicillin to 24.2% for mupirocin. The rate of multi drug resistance (MDR) in the present study was 97.7%. The most commonly detected toxin and adhesion genes were tst (58.6%), and clfB (100%), respectively. The majority of SCCmec III isolates were found in agr group I while SCCmec IV and II isolates were distributed among agr group III. Multilocus Sequence Typing (MLST) of the MRSA isolates showed five different sequence types: ST239 (43%), ST22 (39.8%), ST585 (10.9%), ST45 (3.9%) and ST240 (2.3%). All of the pvl positive strains belonged to ST22-SCCmec IV/t790 clone and were MDR. Among different 7 spa types, the most common were t790 (27.3%), t037 (21.9%), and t030 (14.1%). spa types t016, t924 and spa type t383 were reported for the first time from Asia and Iran, respectively. It was shown that spa types circulating in the studied hospitals varied which support the need to perform future surveillance studies in order to understand methicillin-resistant Staphylococcus aureus distribution and thus more effective infection control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iwamoto, Kazuaki; Tsuruta, Hiroki; Nishitaini, Yosuke; Osawa, Ro
2008-09-01
The gene tanLpl, encoding a novel tannase enzyme (TanLpl), has been cloned from Lactobacillus plantarum ATCC 14917(T). This is the first report of a tannase gene cloned from a bacterial source other than from Staphylococcus lugdunensis, which has been reported elsewhere. The open reading frame of tanLpl, spanning 1410 bp, encoded a 469-amino-acid protein that showed 28.8% identity to the tannase of S. lugdunensis with several commonly conserved sequences. These sequences could not be found in putative tannases reported for other bacteria and fungi. TanLpl was expressed in Escherichia coli DH5alpha from a pGEM-T expression system and purified. SDS-PAGE analysis indicated that purified TanLpl was a monomer polypeptide of approximately 50 kDa in size. Subsequent enzymatic characterization revealed that TanLpl was most active in an alkaline pH range at 40 degrees C, which was quite different from that observed for a fungal tannase of Aspergillus oryzae. In addition, the Michaelis-Menten constant of TanLpl was markedly lower than that of A. oryzae tannase. The evidence suggests that TanLpl should be classified into a novel family of tannases.
Morandi, S; Brasca, M; Lodi, R; Cremonesi, P; Castiglioni, B
2007-09-20
Milk and dairy products are frequently contaminated with enterotoxigenic Staphylococcus aureus, which is often involved in staphylococcal food poisoning. The distribution of genes encoding staphylococcal enterotoxins (SE) in S. aureus isolated from bovine, goat, sheep and buffalo milk and dairy products was verified by the presence of the corresponding SE production. A total of 112 strains of S. aureus were tested for SE production by immuno-enzymatic (SEA-SEE) and reversed passive latex agglutination (SEA-SED) methods, while multiplex-PCR was applied for SE genes (sea, sec, sed, seg, seh, sei, sej and sel). Of the total strains studied, 67% were detected to have some SE genes (se), but only 52% produced a detectable amount of the classic antigenic SE types. The bovine isolates frequently had enterotoxin SEA, SED and sej, while SEC and sel predominated in the goat and sheep strains. The results demonstrated (i) marked enterotoxigenic S. aureus strain variations, in accordance with strain origin and (ii) the two methods resulted in different information but concurred on the risk of foodstuff infection by S. aureus.
Ciupescu, Laurentiu-Mihai; Auvray, Frederic; Nicorescu, Isabela Madalina; Meheut, Thomas; Ciupescu, Veronica; Lardeux, Anne-Laure; Tanasuica, Rodica; Hennekinne, Jacques-Antoine
2018-06-05
To an increasing extent, molecular and genetic characterization is now used to investigate foodborne outbreaks. The aim of this study was to seek molecular links among coagulase-positive staphylococci (CPS) isolated from three recent food poisoning outbreaks in Romania using polymerase chain reaction and pulsed-field gel electrophoresis (PFGE) techniques. Nineteen CPS isolates were identified as Staphylococcus aureus by detection of the 23S rDNA gene. Among them, 15 carried at least one staphylococcal enterotoxin-encoding gene (se). The Calarași outbreak strains grouped in pulsotype 2 and were sed/sej/ser-positive, whereas the Arad outbreak strains clustered in pulsotype 17 and were either sed/seg/sei/sej/ser- or seg/sei-positive. The Pitești outbreak strains clustered in pulsotype 1 and, surprisingly, possessed only one enterotoxin gene, i.e. seh. Similar to other European countries, the seh gene has been identified with increasing frequency in Romanian outbreaks; this highlights the importance of considering the application of methods recommended for staphylococcal enterotoxin regulation in Europe.
Deresiewicz, R L; Flaxenburg, J; Leng, K; Kasper, D L
1996-01-01
To explore whether a novel staphylococcal clone or structural variant of toxic shock syndrome toxin 1 is associated with Kawasaki syndrome, six toxigenic strains of Staphylococcus aureus from Kawasaki syndrome patients were studied. The strains were divisible into two groups based on phenotypic and genotypic characteristics and are therefore unequivocally not clonal. Portions of the tstH genes of each strain were sequenced. Three were sequenced in their entirety, while the remainder were sequenced from codon 66 to codon 137 of the mature protein only. Two of the former group differed slightly in the sequences of their signal peptides relative to the sequence published for the tstH signal peptide. Those differences did not affect toxin processing or secretion. The sequenced portions of the regions encoding mature toxic shock syndrome toxin 1 were identical in all six strains and corresponded exactly to the published sequence of tstH. No evidence was found for the existence of a structural variant of tstH uniquely associated with Kawasaki syndrome. PMID:8757881
Staphylococcus lugdunensis IsdG Liberates Iron from Host Heme▿
Haley, Kathryn P.; Janson, Eric M.; Heilbronner, Simon; Foster, Timothy J.; Skaar, Eric P.
2011-01-01
Staphylococcus lugdunensis is often found as part of the normal flora of human skin but has the potential to cause serious infections even in healthy individuals. It remains unclear what factors enable S. lugdunensis to transition from a skin commensal to an invasive pathogen. Analysis of the complete genome reveals a putative iron-regulated surface determinant (Isd) system encoded within S. lugdunensis. In other bacteria, the Isd system permits the utilization of host heme as a source of nutrient iron to facilitate bacterial growth during infection. In this study, we establish that S. lugdunensis expresses an iron-regulated IsdG-family heme oxygenase that binds and degrades heme. Heme degradation by IsdG results in the release of free iron and the production of the chromophore staphylobilin. IsdG-mediated heme catabolism enables the use of heme as a sole source of iron, establishing IsdG as a pathophysiologically relevant heme oxygenase in S. lugdunensis. Together these findings offer insight into how S. lugdunensis fulfills its nutritional requirements while invading host tissues and establish the S. lugdunensis Isd system as being involved in heme-iron utilization. PMID:21764939
Pereira, Jussyêgles Niedja da Paz; Rabelo, Marcelle Aquino; Lima, Jailton Lobo da Costa; Neto, Armando Monteiro Bezerra; Lopes, Ana Catarina de Souza; Maciel, Maria Amélia Vieira
2016-01-01
There is a mechanism of macrolide resistance in Staphylococcus spp. which also affects the lincosamides and type B streptogramins characterizing the so-called MLSB resistance, whose expression can be constitutive (cMLSB) or inducible (iMLSB) and is encoded mainly by ermA and ermC genes. The cMLSB resistance is easily detected by susceptibility testing used in the laboratory routine, but iMLSB resistance is not. Therapy with clindamycin in cases of infection with isolated iMLSB resistance may fail. To characterize the phenotypic (occurrence of cMLSB and iMLSB phenotypes) and molecular (occurrence of ermA and ermC genes) profiles of MLSB resistance of clinical isolates of susceptible and methicillin-resistant Staphylococcus aureus and CNS (coagulase-negative Staphylococcus) from patients of a university hospital, in Pernambuco. The antimicrobial susceptibility of 103 isolates was determined by the disk diffusion technique in Mueller-Hinton agar followed by oxacillin screening. The iMLSB phenotype was detected by D test. Isolates with cMLSB and iMLSB phenotypes were subjected to polymerase chain reaction (PCR) for the detection of ermA and ermC genes. The cMLSB and iMLSB phenotypes were respectively identified in 39 (37.9%) and five (4.9%) isolates. The iMLSB phenotype was found only in four (10.8%) methicillin-susceptible S. aureus and one (4.5%) methicillin-resistant S. aureus. In the 44 isolates subjected to PCR, four (9.1%) only ermA gene was detected, a lower frequency when compared to only ermC 17 (38.6%) gene and to one (2.3%) isolate presenting both genes. In the Staphylococcus spp. analyzed, the ermC gene was found more often than the ermA, although the iMLSB phenotype had been less frequent than the cMLSB. It was important to perform the D test for its detection to guide therapeutic approaches. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A.; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C.
2008-01-01
The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFGSh) showed ≥57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLMSh genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: −3-α-l-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-β-d-Glc)-4-α-d-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent. PMID:18165309
Flahaut, Sigrid; Vinogradov, Evgeny; Kelley, Kathryn A; Brennan, Shannon; Hiramatsu, Keiichi; Lee, Jean C
2008-03-01
The DNA sequence of the genome of Staphylococcus haemolyticus JCSC1435 revealed a putative capsule operon composed of 13 genes in tandem. The first seven genes (capABCDEFG(Sh)) showed > or = 57% similarity with the Staphylococcus aureus cap5 or cap8 locus. However, the capHIJKLM(Sh) genes are unique to S. haemolyticus and include genes encoding a putative flippase, an aminotransferase, two glycosyltransferases, and a transcriptional regulator. Capsule-like material was readily apparent by immunoelectron microscopy on bacteria harvested in the postexponential phase of growth. Electron micrographs of a JCSC1435 mutant with a deleted cap region lacked the capsule-like material. Both strains produced small amounts of surface-associated material that reacted with antibodies to polyglutamic acid. S. haemolyticus cap genes were amplified from four of seven clinical isolates of S. haemolyticus from humans, and three of these strains produced a serologically cross-reactive capsular polysaccharide. In vitro assays demonstrated that the acapsular mutant strain showed greater biofilm formation but was more susceptible to complement-mediated opsonophagocytic killing than the parent strain. Structural characterization of capsule purified from S. haemolyticus strain JCSC1435 showed a trisaccharide repeating unit: -3-alpha-L-FucNAc-3-(2-NAc-4-N-Asp-2,4,6-trideoxy-beta-D-Glc)-4-alpha-D-GlcNAc-. This structure is unique among staphylococcal polysaccharides in that its composition includes a trideoxy sugar residue with aspartic acid as an N-acyl substituent.
Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo
McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.
2014-01-01
Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585
Brizzio, Aníbal A; Tedeschi, Fabián A; Zalazar, Fabián E
2013-01-01
Staphylococcal food poisoning is the most frequent type of food poisoning around the world. Staphylococcus aureus enterotoxins cause significant loss of water in the intestinal lumen, followed by vomiting and diarrhea. To report a fast, reliable and inexpensive strategy based on multiplex PCR for the simultaneous identification of S. aureus and detection of five classical S. aureus enterotoxin genes ( sea, seb, sec, sed, see ) in Staphylococcus spp. strains isolated from food poisoning outbreaks. We analyzed isolates from 12 food poisoning outbreaks occurred in Santa Fe province (Argentina). Isolation and phenotypic characterization were carried out by standard procedures. Genotypic analysis was performed by multiplex PCR, using primers for nuc , sea-see and 16S rRNA genes simultaneously. Of all the strains tested, 58% were found to carry toxigenic genes. Sea and seb toxins were found at the same percentage (29%) while sec, sed and see genes were found in a lower and identical proportion (14%). We did not find more than one different type of S. aureus enterotoxin in the isolates analyzed. The multiplex PCR strategy designed in this work has enabled us to identify strains of S. aureus and detect -at the same time- their enterotoxigenic ability. At present, our efforts are devoted to the detection of genes encoding enterotoxins other than the classical ones, in order to know their impact on staphylococcal food poisoning, as well as to investigate their relevance to our country's public health.
Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress.
Kulkarni, Ritwij; Antala, Swati; Wang, Alice; Amaral, Fábio E; Rampersaud, Ryan; Larussa, Samuel J; Planet, Paul J; Ratner, Adam J
2012-11-01
The strong epidemiological association between cigarette smoke (CS) exposure and respiratory tract infections is conventionally attributed to immunosuppressive and irritant effects of CS on human cells. Since pathogenic bacteria such as Staphylococcus aureus are members of the normal microbiota and reside in close proximity to human nasopharyngeal cells, we hypothesized that bioactive components of CS might affect these organisms and potentiate their virulence. Using Staphylococcus aureus as a model organism, we observed that the presence of CS increased both biofilm formation and host cell adherence. Analysis of putative molecular pathways revealed that CS exposure decreased expression of the quorum-sensing agr system, which is involved in biofilm dispersal, and increased transcription of biofilm inducers such as sarA and rbf. CS contains bioactive compounds, including free radicals and reactive oxygen species, and we observed transcriptional induction of bacterial oxidoreductases, including superoxide dismutase, following exposure. Moreover, pretreatment of CS with an antioxidant abrogated CS-mediated enhancement of biofilms. Exposure of bacteria to hydrogen peroxide alone increased biofilm formation. These observations are consistent with the hypothesis that CS induces staphylococcal biofilm formation in an oxidant-dependent manner. CS treatment induced transcription of fnbA (encoding fibronectin binding protein A), leading to increased binding of CS-treated staphylococci to immobilized fibronectin and increased adherence to human cells. These observations indicate that the bioactive effects of CS may extend to the resident microbiota of the nasopharynx, with implications for the pathogenesis of respiratory infection in CS-exposed humans.
Krzymińska, Sylwia; Szczuka, Ewa; Dudzińska, Kinga; Kaznowski, Adam
2015-04-01
We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3'-phosphotransferase (aph(3')-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6'-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6')/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4'-adenylyltransferase (ant(4')-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6')/aph(2″)) and (aph(3')-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the development of S. haemolyticus-associated infections. The bacteria adhered and invaded to non-professional phagocytes. The invasion of epithelial cells by S. haemolyticus could be similar to phagocytosis that requires polymerization of the actin cytoskeleton. The process is inhibited by cytochalasin D. Moreover, they survived within the cells by residing in membrane bound compartments and induced apoptotic cell death.
Sanchini, A; Del Grosso, M; Villa, L; Ammendolia, M G; Superti, F; Monaco, M; Pantosti, A
2014-11-01
Panton-Valentine leukocidin (PVL) is the hallmark of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) but can also be found in methicillin-susceptible S. aureus (MSSA) sharing pathogenic and epidemiological characteristics of CA-MRSA. PVL is encoded by two co-transcribed genes that are carried by different staphylococcal bacteriophages. We applied an extended PCR-based typing scheme for the identification of two morphological groups (elongated-head group and icosahedral-head group I phages) and specific PVL phage types in S. aureus isolates recovered in Italy. We examined 48 PVL-positive isolates (25 MSSA and 23 MRSA) collected from different hospital laboratories from April 2005 to May 2011. spa typing, multilocus sequence typing and staphylococcal cassette chromosome mec typing were applied to categorize the isolates. Phage typeability was 48.0% in MSSA and 91.3% in MRSA, highlighting the limitation of the PCR typing scheme when applied to PVL-positive MSSA. Five different PVL phages and two variants of a known phage were detected, the most prevalent being ΦSa2usa, recovered in 15 out of 48 (31.2%) isolates, and carried by both MSSA and MRSA belonging to CC8 and CC5. The recently described ΦTCH60 was recovered in four isolates. A PVL phage (ΦSa119) from an ST772 MRSA, that was not detected using the previous typing scheme, was sequenced, and new primers were designed for the identification of the icosahedral-head group II PVL phages present in ST772 and ST59 MRSA. A comprehensive PVL-phage typing can contribute to the understanding of the epidemiology and evolution of PVL-positive MSSA and MRSA. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Zeden, Merve S; Schuster, Christopher F; Bowman, Lisa; Zhong, Qiyun; Williams, Huw D; Gründling, Angelika
2018-03-02
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA , the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
de Oliveira, Caio Ferreira; Morey, Alexandre Tadachi; Santos, Jussevania Pereira; Gomes, Ludmila Vilela Pereira; Cardoso, Juscélio Donizete; Pinge-Filho, Phileno; Perugini, Márcia Regina Eches; Yamauchi, Lucy Megumi; Yamada-Ogatta, Sueli Fumie
2015-07-30
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of infections acquired in both community and hospital settings. In this study, MRSA isolated from different sources of hospitalized patients was characterized by molecular and phenotypic methods. A total of 123 S. aureus isolates were characterized according to their genetic relatedness by repetitive element sequence based-PCR (REP-PCR), in vitro antimicrobial susceptibility profile, SCCmec typing and presence of seven virulence factor-encoding genes. REP-PCR fingerprinting showed low relatedness between the isolates, and the predominance of one specific lineage or clonal group was not observed. All isolates were susceptible to teicoplanin and linezolide. All isolates were resistant to cefoxitin and penicillin, and the majority were also resistant to one or more other antimicrobials. Fifty isolates (41.7%) were intermediately resistant to vancomycin. Most isolates harbored SCCmec type II (53.7%), followed by type I (22.8%), type IV (8.1%) and type III (1.6%). All isolates harbored at least two virulence factor-encoding genes, and the prevalence was as follows: coa, 100%; icaA, 100%; hla, 13.0%; hlb, 91.1%, hld, 91.1%; lukS-PV and lukF-PV, 2.4%; and tst, 34.1%. A positive association with the presence of hla and SCCmec type II, and tst and SCCmec type I was observed. This study showed the high virulence potential of multidrug-resistant MRSA circulating in a teaching hospital. A high prevalence of MRSA showing intermediate vancomycin resistance was also observed, indicating the urgent need to improve strategies for controlling the use of antimicrobials for appropriate management of S. aureus infections.
Rozemeijer, Wouter; Fink, Pamela; Rojas, Eduardo; Jones, C Hal; Pavliakova, Danka; Giardina, Peter; Murphy, Ellen; Liberator, Paul; Jiang, Qin; Girgenti, Douglas; Peters, Remco P H; Savelkoul, Paul H M; Jansen, Kathrin U; Anderson, Annaliesa S; Kluytmans, Jan
2015-01-01
Staphylococcus aureus is a versatile pathogen of medical significance, using multiple virulence factors to cause disease. A prophylactic S. aureus 4-antigen (SA4Ag) vaccine comprising capsular polysaccharide (types 5 and 8) conjugates, clumping factor A (ClfA) and manganese transporter C (MntC) is under development. This study was designed to characterize S. aureus isolates recovered from infected patients and also to investigate approaches for examining expression of S. aureus vaccine candidates and the host response during human infection. Confirmation of antigen expression in different disease states is important to support the inclusion of these antigens in a prophylactic vaccine. Hospitalized patients with diagnosed S. aureus wound (27) or bloodstream (24) infections were enrolled. Invasive and nasal carriage S. aureus isolates were recovered and characterized for genotypic diversity. S. aureus antigen expression was evaluated directly by real-time, quantitative, reverse-transcriptase PCR (qRT-PCR) analysis and indirectly by serology using a competitive Luminex immunoassay. Study isolates were genotypically diverse and all had the genes encoding the antigens present in the SA4Ag vaccine. S. aureus nasal carriage was detected in 55% of patients, and in those subjects 64% of the carriage isolates matched the invasive strain. In swab samples with detectable S. aureus triosephosphate isomerase housekeeping gene expression, RNA transcripts encoding the S. aureus virulence factors ClfA, MntC, and capsule polysaccharide were detected by qRT-PCR. Antigen expression was indirectly confirmed by increases in antibody titer during the course of infection from acute to convalescent phase. Demonstration of bacterial transcript expression together with immunological response to the SA4Ag antigens in a clinically relevant patient population provides support for inclusion of these antigens in a prophylactic vaccine.
Induction of Virulence Gene Expression in Staphylococcus aureus by Pulmonary Surfactant
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi
2014-01-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal. PMID:24452679
Loi, Vu Van; Harms, Manuela; Müller, Marret; Huyen, Nguyen Thi Thu; Hamilton, Chris J; Hochgräfe, Falko; Pané-Farré, Jan; Antelmann, Haike
2017-05-20
Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we have constructed a genetically encoded bacilliredoxin-fused redox biosensor (Brx-roGFP2) to monitor dynamic changes in the BSH redox potential in S. aureus. The Brx-roGFP2 biosensor showed a specific and rapid response to low levels of bacillithiol disulfide (BSSB) in vitro that required the active-site Cys of Brx. Dynamic live imaging in two methicillin-resistant S. aureus (MRSA) USA300 and COL strains revealed fast and dynamic responses of the Brx-roGFP2 biosensor under hypochlorite and hydrogen peroxide (H 2 O 2 ) stress and constitutive oxidation of the probe in different BSH-deficient mutants. Furthermore, we found that the Brx-roGFP2 expression level and the dynamic range are higher in S. aureus COL compared with the USA300 strain. In phagocytosis assays with THP-1 macrophages, the biosensor was 87% oxidized in S. aureus COL. However, no changes in the BSH redox potential were measured after treatment with different antibiotics classes, indicating that antibiotics do not cause oxidative stress in S. aureus. Conclusion and Innovation: This Brx-roGFP2 biosensor catalyzes specific equilibration between the BSH and roGFP2 redox couples and can be applied for dynamic live imaging of redox changes in S. aureus and other BSH-producing Firmicutes. Antioxid. Redox Signal. 26, 835-848.
Yu, Li; Mok, Hoyin; Tkaczyk, Christine; Sellman, Bret R.; Wu, Yuling; Oganesyan, Vaheh; Slidel, Tim; Jafri, Hasan; McCarthy, Michael; Bradford, Patricia; Esser, Mark T.
2016-01-01
Staphylococcus aureus infections lead to an array of illnesses ranging from mild skin infections to serious diseases, such endocarditis, osteomyelitis, and pneumonia. Alpha-toxin (Hla) is a pore-forming toxin, encoded by the hla gene, that is thought to play a key role in S. aureus pathogenesis. A monoclonal antibody targeting Hla, MEDI4893, is in clinical development for the prevention of S. aureus ventilator-associated pneumonia (VAP). The presence of the hla gene and Hla protein in 994 respiratory isolates collected from patients in 34 countries in Asia, Europe, the United States, Latin America, the Middle East, Africa, and Australia was determined. Hla levels were correlated with the geographic location, age of the subject, and length of stay in the hospital. hla gene sequence analysis was performed, and mutations were mapped to the Hla crystal structure. S. aureus supernatants containing Hla variants were tested for susceptibility or resistance to MEDI4893. The hla gene was present and Hla was expressed in 99.0% and 83.2% of the isolates, respectively, regardless of geographic region, hospital locale, or age of the subject. More methicillin-susceptible than methicillin-resistant isolates expressed Hla (86.9% versus 78.8%; P = 0.0007), and S. aureus isolates from pediatric patients expressed the largest amounts of Hla. Fifty-seven different Hla subtypes were identified, and 91% of the isolates encoded an Hla subtype that was neutralized by MED4893. This study demonstrates that Hla is conserved in diverse S. aureus isolates from around the world and is an attractive target for prophylactic monoclonal antibody (MAb) or vaccine development. PMID:27324766
Basanisi, M G; La Bella, G; Nobili, G; Franconieri, I; La Salandra, G
2017-04-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen emerging in hospitals as well as community and livestock. MRSA is a significant and costly public health concern because it may enter the human food chain and contaminate milk and dairy products causing foodborne illness. This study aimed to determine the occurrence and the characteristics of MRSA isolated from 3760 samples of milk and dairy products in a previous survey conducted in southern Italy during 2008-2014. Overall out of 484 S. aureus strains isolated, 40 (8.3%) were MRSA and were characterized by spa-typing, Multi-Locus Sequence Typing, SCCmec typing, Staphylococcal enterotoxins (SEs) genes, Panton-Valentine Leukocidin (PVL) genes and ability to form biofilm. The most frequently recovered STs were ST152 (t355-67.5%), followed by ST398 (t899, t108-25%), ST1 (t127-5%) and ST5 (t688-2.5%). All isolates harboured the SCCmec type V (92.5%) or IVa (25%). In one isolate (2.5%), ST398/t899, the SCCmec resulted not detected. Three isolates (7.5%) carried one or more enterotoxin encoding genes (one strain had seg, sei, sem, sen and seo genes; two strains had seh gene). The 50% of isolated strains harboured PVL-encoding genes. Molecular analysis for icaA and icaD genes showed: 72.5% icaA and icaD positive, 25% only icaD gene and one icaA and icaD negative. The detection of MRSA in food of animal origin is a potential health hazard, thus it is necessary monitoring of food-producing animals and improving hygiene standards in food practices in order to reduce the microbiological risk to minimum. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi
2013-12-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.
Khosravi, Azar Dokht; Jenabi, Atefeh; Montazeri, Effat Abbasi
2017-12-01
Today Methicillin-Resistant Staphylococcus aureus (MRSA) have acquired multiple resistance to a wide range of antibiotics including aminoglycosides. So, this study was aimed to investigate the rate of aminoglycoside resistance and the frequency of aminoglycoside resistance mediated genes of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia among MRSA strains. A total of 467 staphylococci isolates were collected from various clinical samples. S. aureus strains were identified by standard culture and identification criteria and investigating of presence of 16S rRNA and nuc genes. Cefoxitin disk diffusion, and oxacillin-salt agar screening methods were used to detect the MRSA strains with subsequent molecular identification for the presence of mecA gene. Antibiotic susceptibility of MRSA strains against aminoglycoside antibiotics was evaluated by using agar disk diffusion method. Multiplex PCR for the presence of aac(Ia)-2, aph(3)-IIIa and ant(4')-Ia encoding genes for aminoglycosides were performed for MRSA strains. From total staphylococci tested isolates, 262 (56.1%) were identified as S. aureus, of which 161 (61.45%) were detected as MRSA and all comprised mecA gene. The resistance pattern of MRSA strains to aminoglycoside antibiotics were: gentamicin 136 (84.5%); amikacin 125 (77.6%); kanamycin 139 (86.3%); tobramycin 132 (82%); and neomycin 155 (96.3%). The frequency of aac(Ia)-2, aph(3)-IIIa, and ant(4')-Ia genes among MRSA strains, were 64%, 42% and 11.8% respectively. In conclusion, as MRSA strains are of great concern in human infections, the results of present study could provide a useful resource for health sectors for choosing appropriate antibiotics for the effective treatment of infections due to MRSA strains. Copyright © 2017. Published by Elsevier Taiwan.
Suzuki, Y; Matsushita, S; Kubota, H; Kobayashi, M; Murauchi, K; Higuchi, Y; Kato, R; Hirai, A; Sadamasu, K
2016-09-01
Staphylocoagulase, an extracellular protein secreted by Staphylococcus aureus, has been used as an epidemiological marker. At least 12 serotypes and 24 genotypes subdivided on the basis of nucleotide sequence have been reported to date. In this study, we identified a novel staphylocoagulase nucleotide sequence, coa310, from staphylococcal food poisoning isolates that had the ability to coagulate plasma, but could not be typed using the conventional method. The protein encoded by coa310 contained the six fundamental conserved domains of staphylocoagulase. The full-length nucleotide sequence of coa310 shared the highest similarity (77·5%) with that of staphylocoagulase-type (SCT) XIa. The sequence of the D1 region, which would be responsible for the determination of SCT, shared the highest similarity (91·8%) with that of SCT XIa. These results suggest that coa310 is a novel variant of SCT XI. Moreover, we demonstrated that coa310 encodes a functioning coagulase, by confirming the coagulating activity of the recombinant protein expressed from coa310. This is the first study to directly demonstrate that Coa310, a putative SCT XI, has coagulating activity. These findings may be useful for the improvement of the staphylocoagulase-typing method, including serotyping and genotyping. This is the first study to identify a novel variant of staphylocoagulase type XI based on its nucleotide sequence and to demonstrate coagulating activity in the variant using a recombinant protein. Elucidation of the variety of staphylocoagulases will provide suggestions for further improvement of the staphylocoagulase-typing method and contribute to our understanding of the epidemiologic characterization of Staphylococcus aureus. © 2016 The Society for Applied Microbiology.
Low Sensitivity of Listeria monocytogenes to Quaternary Ammonium Compounds
Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A.
2000-01-01
Ninety-seven epidemiologically unrelated strains of Listeria monocytogenes were investigated for their sensitivities to quaternary ammonium compounds (benzalkonium chloride and cetrimide). The MICs for seven serogroup 1/2 strains were high. Three came from the environment and four came from food; none were isolated from human or animal samples. All 97 strains carried the mdrL gene, which encodes a multidrug efflux pump, and the orfA gene, a putative transcriptional repressor of mdrL. The absence of plasmids in four of the seven resistant strains and the conservation of resistance after plasmid curing suggested that the resistance genes are not plasmid borne. Moreover, PCR amplification and Southern blot hybridization experiments failed to find genes phylogenetically related to the qacA and smr genes, encoding multidrug efflux systems previously described for the genus Staphylococcus. The high association between nontypeability by phages and the loss of sensitivity to quaternary ammonium compounds are suggestive of an intrinsic resistance due to modifications in the cell wall. PMID:11055967
2011-01-01
Background Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas. Results Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum, and Finegoldia magna. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include Wolbachia, Coxiella, and Borrelia. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with R. microplus. Conclusions This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with R. microplus. Additional reports on the identification of new bacterial species maintained in nature by R. microplus that may be pathogenic to its vertebrate hosts are expected as our understanding of its microbiota expands. Increased awareness of the role R. microplus can play in the transmission of pathogenic bacteria will enhance our ability to mitigate its economic impact on animal agriculture globally. This recognition should be included as part of analyses to assess the risk for re-invasion of areas like the United States of America where R. microplus was eradicated. PMID:21211038
Sansevere, Emily A; Luo, Xiao; Park, Joo Youn; Yoon, Sunghyun; Seo, Keun Seok; Robinson, D Ashley
2017-04-15
ICE 6013 represents one of two families of integrative conjugative elements (ICEs) identified in the pan-genome of the human and animal pathogen Staphylococcus aureus Here we investigated the excision and conjugation functions of ICE 6013 and further characterized the diversity of this element. ICE 6013 excision was not significantly affected by growth, temperature, pH, or UV exposure and did not depend on recA The IS 30 -like DDE transposase (Tpase; encoded by orf1 and orf2 ) of ICE 6013 must be uninterrupted for excision to occur, whereas disrupting three of the other open reading frames (ORFs) on the element significantly affects the level of excision. We demonstrate that ICE 6013 conjugatively transfers to different S. aureus backgrounds at frequencies approaching that of the conjugative plasmid pGO1. We found that excision is required for conjugation, that not all S. aureus backgrounds are successful recipients, and that transconjugants acquire the ability to transfer ICE 6013 Sequencing of chromosomal integration sites in serially passaged transconjugants revealed a significant integration site preference for a 15-bp AT-rich palindromic consensus sequence, which surrounds the 3-bp target site that is duplicated upon integration. A sequence analysis of ICE 6013 from different host strains of S. aureus and from eight other species of staphylococci identified seven divergent subfamilies of ICE 6013 that include sequences previously classified as a transposon, a plasmid, and various ICEs. In summary, these results indicate that the IS 30 -like Tpase functions as the ICE 6013 recombinase and that ICE 6013 represents a diverse family of mobile genetic elements that mediate conjugation in staphylococci. IMPORTANCE Integrative conjugative elements (ICEs) encode the abilities to integrate into and excise from bacterial chromosomes and plasmids and mediate conjugation between bacteria. As agents of horizontal gene transfer, ICEs may affect bacterial evolution. ICE 6013 represents one of two known families of ICEs in the pathogen Staphylococcus aureus , but its core functions of excision and conjugation are not well studied. Here, we show that ICE 6013 depends on its IS 30 -like DDE transposase for excision, which is unique among ICEs, and we demonstrate the conjugative transfer and integration site preference of ICE 6013 A sequence analysis revealed that ICE 6013 has diverged into seven subfamilies that are dispersed among staphylococci. Copyright © 2017 American Society for Microbiology.
Maira-Litran, Tomas; Kropec, Andrea; Goldmann, Donald; Pier, Gerald B
2004-02-17
Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) and Staphylococcus aureus carry the ica locus which encodes proteins that synthesize a polymer of beta-1-6 linked N-acetyl glucosamine residues (PNAG). Animal studies have shown purified PNAG can elicit protective immunity against both CoNS and S. aureus, suggesting its potential as a broadly protective vaccine for many clinically important strains of staphylococci.
Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion
Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich
2004-01-01
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570
Ito, Teruyo; Ma, Xiao Xue; Takeuchi, Fumihiko; Okuma, Keiko; Yuzawa, Harumi; Hiramatsu, Keiichi
2004-01-01
Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-ΔmecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome. PMID:15215121
2013-01-01
Background Methicillin resistance determinant mecA is generally transferred by SCCmec elements. However, the mecA gene might not be carried by a SCCmec in a Staphylococcus haemolyticus clinical isolate, WCH1, as no cassette chromosome recombinase genes were detected. Therefore, the genetic context of mecA in WCH1 was investigated. Results A 40-kb region containing mecA was obtained from WCH1, bounded by orfX at one end and several orfs of S. haemolyticus core chromosome at the other. This 40-kb region was very complex in structure with multiple genetic components that appeared to have different origins. For instance, the 3.7-kb structure adjacent to orfX was almost identical to that on the chromosome of Staphylococcus epidermidis RP62a but was absent from S. haemolyticus JCSC1435. Terminal inverted repeats of SCC were found but no ccr genes could be detected. mecA was bracketed by two copies of IS431, which was flanked by 8-bp direct target repeat sequence (DR). Conclusions The presence of 8-bp DR suggests that the two copies of IS431 might have formed a composite transposon for mobilizing mecA. This finding is of significance as multiple copies of IS431 are commonly present in the contexts of mecA, which might have the potential to form various composite transposons that could mediate the mobilization of mecA. This study also provides an explanation for the absence of ccr in some staphylococci isolates carrying mecA. PMID:23521926
Zong, Zhiyong
2013-03-22
Methicillin resistance determinant mecA is generally transferred by SCCmec elements. However, the mecA gene might not be carried by a SCCmec in a Staphylococcus haemolyticus clinical isolate, WCH1, as no cassette chromosome recombinase genes were detected. Therefore, the genetic context of mecA in WCH1 was investigated. A 40-kb region containing mecA was obtained from WCH1, bounded by orfX at one end and several orfs of S. haemolyticus core chromosome at the other. This 40-kb region was very complex in structure with multiple genetic components that appeared to have different origins. For instance, the 3.7-kb structure adjacent to orfX was almost identical to that on the chromosome of Staphylococcus epidermidis RP62a but was absent from S. haemolyticus JCSC1435. Terminal inverted repeats of SCC were found but no ccr genes could be detected. mecA was bracketed by two copies of IS431, which was flanked by 8-bp direct target repeat sequence (DR). The presence of 8-bp DR suggests that the two copies of IS431 might have formed a composite transposon for mobilizing mecA. This finding is of significance as multiple copies of IS431 are commonly present in the contexts of mecA, which might have the potential to form various composite transposons that could mediate the mobilization of mecA. This study also provides an explanation for the absence of ccr in some staphylococci isolates carrying mecA.
Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.
Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun
2015-01-01
Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.
Klimiene, I; Virgailis, M; Pavilonis, A; Siugzdiniene, R; Mockeliunas, R; Ruzauskas, M
2016-09-01
The objectives of this study were to determine the prevalence and antimicrobial resistance of coagulase-negative staphylococci (CNS) isolated from dairy cows with subclinical mastitis. Antimicrobial resistance in staphylococci were evaluated by breakpoint values specific to the species (EU-CAST). The presence of resistance-encoding genes was detected by multiplex PCR. A total of 191 CNS isolates were obtained. The CNS isolates were typically resistant to penicillin (67.4%), tetracyc-line (18.9%), and erythromycin (13.7%). CNS isolates (78.0%) were resistant to at least one antimicrobial compound, and 22.0% were multiresistant. The multiresistant isolates were predominantly Staphylococcus chromogenes (28.6%), Staphylococcus warneri (19%) and Staphylococcus haemolyticus (14.3%). According to MIC pattern data, multiresistant isolates showed the highest resistance (p<0.05) rates to penicillin (85.7%), tetracycline (66.7%), and erythromycin (48.2%), but all of them were sensitive to daptomycin, oxacillin, qiunupristin/dalfopristin, and vancomycin. S. chromogenes (9.5%), S. haemolyticus (4.8%), and S. capitis ss capitis (2.4%) strains were resistant to methicillin; their resistance to oxacillin and penicillin was more than 8 mg/l. A high rate of resistance to penicillin was linked to a blaZ gene found in 66.6% of the isolated multiresistant CNS strains. Resistance to tetracycline via the tetK (38.1%) gene and penicillin via the mecA (23.8%) gene were detected less frequently. Gene msrAB was responsible for macrolides and lincosamides resistance and detected in 28.6% of the CNS isolates. Antimicrobial resistance genes were identified more frequently in S. epidermidis, S. chromogenes, and S. warneri.
Clonal profile, virulence and resistance of Staphylococcus aureus isolated from sheep milk.
Martins, Katheryne Benini; Faccioli-Martins, Patricia Yoshida; Riboli, Danilo Flávio Moraes; Pereira, Valéria Cataneli; Fernandes, Simone; Oliveira, Aline A; Dantas, Ariane; Zafalon, Luiz Francisco; da Cunha, Maria de Lourdes Ribeiro de Souza
2015-06-01
The objective of this study was to characterize the clonal profile, virulence factors and antimicrobial resistance, particularly oxacillin resistance, of Staphylococcus aureus isolated from sheep milk. Milk samples were collected from all teats for the California Mastitis Test (CMT), somatic cell count, identification of S. aureus, investigation in these strains of genes encoding toxins (sea, seb, sec, sed, tst), biofilm (icaA, icaC, icaD, bap), leukocidin (luk-PV) oxacillin resistance by mecA gene detection and susceptibility testing (12 antibiotics). Messenger RNA expression was evaluated by RT-PCR in isolates carrying toxin and biofilm genes. Biofilm formation was also evaluated phenotypically by adherence to polystyrene plates. The clonal profile of S. aureus was investigated by pulsed-field gel electrophoresis. A total of 473 milk samples were collected from 242 animals on three farms and 20 S. aureus strains were isolated and none carried the mecA gene. The two sec gene-positive isolates and the isolates carrying the tst and luk-PV genes were positive by RT-PCR. Staphylococcus aureus isolated from the three flocks studied showed high susceptibility to the drugs tested and none was biofilm producer, indicating that biofilm formation was not a virulence factor causing infection by these strains. The typing of 17 S. aureus isolates revealed the presence of a common clone on the three farms studied, and the presence and expression of the sec and tst genes in one strain of this clone suggest the possible acquisition of virulence genes by this clone, a fact that is important for animal health and food hygiene.
Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.
McCarthy, Alex J; Loeffler, Anette; Witney, Adam A; Gould, Katherine A; Lloyd, David H; Lindsay, Jodi A
2014-09-25
Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model
Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun
2015-01-01
Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10. PMID:26230498
Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.
Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng
2017-09-01
α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T.; Shafer, William M.
2003-01-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system. PMID:12874306
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T; Shafer, William M
2003-08-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system.
Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus
Koop, Gerrit; Vrieling, Manouk; Storisteanu, Daniel M. L.; Lok, Laurence S. C.; Monie, Tom; van Wigcheren, Glenn; Raisen, Claire; Ba, Xiaoliang; Gleadall, Nicholas; Hadjirin, Nazreen; Timmerman, Arjen J.; Wagenaar, Jaap A.; Klunder, Heleen M.; Fitzgerald, J. Ross; Zadoks, Ruth; Paterson, Gavin K.; Torres, Carmen; Waller, Andrew S.; Loeffler, Anette; Loncaric, Igor; Hoet, Armando E.; Bergström, Karin; De Martino, Luisa; Pomba, Constança; de Lencastre, Hermínia; Ben Slama, Karim; Gharsa, Haythem; Richardson, Emily J.; Chilvers, Edwin R.; de Haas, Carla; van Kessel, Kok; van Strijp, Jos A. G.; Harrison, Ewan M.; Holmes, Mark A.
2017-01-01
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component. PMID:28106142
Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens.
Szczuka, Ewa; Telega, Kinga; Kaznowski, Adam
2015-01-01
Staphylococcus hominis is the third species of coagulase-negative staphylococci (CoNS) most frequently isolated from specimens of patients with hospital-acquired infections. Many infections caused by CoNS appeared to be associated with biofilms. Nevertheless, the knowledge of the ability of S. hominis to form a biofilm is limited. The aim of this study was to analyze the formation of the biofilm by 56 S. hominis strains isolated from clinical cases. The biofilm three-dimensional structure was reconstructed by confocal laser scanning microscopy. We found that most of S. hominis strains carried icaADBC genes encoding polysaccharide intercellular adhesin (PIA), which plays a crucial role in the formation of biofilms in staphylococci strains. However, only a half of the ica-positive strains had an ability to form a biofilm in vitro. In this study, we also accessed the sensitivity of biofilms of S. hominis strains to sodium metaperiodate, proteinase K and DNase. We found that polysaccharides and proteins are the major components of the extracellular matrix of the biofilm formed by S. hominis. DNase did not have a significant effect on biofilms, which suggested that nucleic acid plays a minor role in the mature biofilm.
Nielsen, Anita; Månsson, Maria; Bojer, Martin S.; Gram, Lone; Larsen, Thomas O.; Novick, Richard P.; Frees, Dorte; Frøkiær, Hanne; Ingmer, Hanne
2014-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus. PMID:24416329
Carroll, Ronan K.; Veillard, Florian; Gagne, Danielle T.; Lindenmuth, Jarrod M.; Poreba, Marcin; Drag, Marcin; Potempa, Jan; Shaw, Lindsey N.
2013-01-01
Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part, due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase - LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria, however, in systemic and localized infection models the pepZ mutant was significantly attenuated in virulence. Recently, a contradictory report has been published, suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition we conduct a biochemical investigation of purified recombinant LAP identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine and that leucine is not the primary target of LAP. PMID:23241672
Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients.
Amissah, Nana Ama; Chlebowicz, Monika A; Ablordey, Anthony; Tetteh, Caitlin S; Prah, Isaac; van der Werf, Tjip S; Friedrich, Alex W; van Dijl, Jan Maarten; Stienstra, Ymkje; Rossen, John W
2017-06-01
Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like α-hemolysin, and the α- and β-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (SCC) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply that the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Sayed, Nour; Jousselin, Ambre; Felden, Brice
2011-12-25
Antisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes.
NASA Astrophysics Data System (ADS)
Lindsay, Jodi A.
The staphylococci are Gram-positive cocci that divide to form clusters that look like grapes. By 16S ribosomal sequencing, they are most closely related to the Gram-positive, low G+C content Bacillus-Lactobacillus-Staphylococcus genera (Woese, 1987). There are over 30 species of staphylococci identified, and they are typically found on the skin and mucous membranes of mammals. About a dozen species are frequently carried on humans, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus capitis, Staphylococcus hominis, Staphylococcus cohnii, Staphylococcus lugdunensis, Staphylococcus schleiferi, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri and Staphylococcus xylosus.
The hmuQ and hmuD Genes from Bradyrhizobium japonicum Encode Heme-Degrading Enzymes
Puri, Sumant; O'Brian, Mark R.
2006-01-01
Utilization of heme by bacteria as a nutritional iron source involves the transport of exogenous heme, followed by cleavage of the heme macrocycle to release iron. Bradyrhizobium japonicum can use heme as an iron source, but no heme-degrading oxygenase has been described. Here, bioinformatics analyses of the B. japonicum genome identified two paralogous genes renamed hmuQ (bll7075) and hmuD (bll7423) that encode proteins with weak similarity to the heme-degrading monooxygenase IsdG from Staphylococcus aureus. The hmuQ gene is clustered with known heme transport genes in the genome. Recombinant HmuQ bound heme with a Kd value of 0.8 μM and showed spectral properties consistent with a heme oxygenase. In the presence of a reductant, HmuQ catalyzed the degradation of heme and the formation of biliverdin. The hmuQ and hmuD genes complemented a Corynebacterium ulcerans heme oxygenase mutant in trans for utilization of heme as the sole iron source for growth. Furthermore, homologs of hmuQ and hmuD were identified in many bacterial genera, and the recombinant homolog from Brucella melitensis bound heme and catalyzed its degradation. The findings show that hmuQ and hmuD encode heme oxygenases and indicate that the IsdG family of heme-degrading monooxygenases is not restricted to gram-positive pathogenic bacteria. PMID:16952937
Artursson, Karin; Söderlund, Robert; Liu, Lihong; Monecke, Stefan; Schelin, Jenny
2016-09-25
Reducing the prevalence of mastitis caused by Staphylococcus aureus (S. aureus) is essential to improve animal health and reduce economic losses for farmers. The clinical outcome of acute mastitis and risk of progression to persistent mastitis can, at least to some extent, be related to genetic variants of the strain causing the infection. In the present study we have used microarrays to investigate the presence of virulence genes in S. aureus isolates from dairy cows with acute clinical mastitis (n=70) and correlated the findings to other genotypic and phenotypic characteristics. Among the most commonly found virulence factors were genes encoding several hemolysin types, leukocidins D and lukM/lukF-P83, clumping factors A and B, fibrinogen binding protein and fibronectin-binding protein A. Some virulence factors e.g. fibronectin-binding protein B and Staphylococcus aureus surface protein G were less common. Genes coding for several staphylococcal enterotoxins and toxic shock syndrome toxin-1 (TSST-1) were commonly found, especially in one major pulsotype. No beta-lactamase genes were found in any common pulsotype, while present in some rare pulsotypes, indicated to be of human origin. Production of TSST-1, enterotoxins, hemolysins and beta-lactamase could all be positively correlated to presence of the corresponding genes. This study reveals a number of genotypic differences and similarities among common and rare pulsotypes of S. aureus from cases of mastitis in Sweden. The results could help the design of diagnostic tools to guide on-farm interventions according to the expected impact on udder health from a specific S. aureus genotype. Copyright © 2016 Elsevier B.V. All rights reserved.
Sandiford, Stephanie
2012-01-01
We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide. PMID:22155816
Liu, Zhen-jia; Yang, Yan-juan; Jiang, Lei; Xu, Ying-chun; Wang, Ai-xia; Du, Guan-hua; Gao, Jin-ming
2011-01-01
Aim: Staphylococcus aureus evades host defense through releasing several virulence proteins, such as chemotaxis inhibitory protein of staphylococcus aureus (CHIPS). It has been shown that extracellular N terminus of C5a receptor (C5aR) forms the binding domain for CHIPS, and tyrosine sulfation is emerging as a key factor in determining protein-protein interaction. The aim of this study was to evaluate the role of tyrosine sulfation of N-terminal of C5aR in its binding with CHIPS. Methods: Expression plasmids encoding C5aR and its mutants were prepared using PCR and site-directed mutagenesis and were used to transfect HEK 293T cells using calcium phosphate. Recombinant CHIPS protein was purified. Western blotting was used to examine the binding efficiency of CHIPS to C5aR or its mutants. Results: CHIPS exclusively binds to C5aR, but not to C5L2 or C3aR. A nonspecific sulfation inhibitor, sodium chlorate (50 nmol/L), diminishes the binding ability of C5aR with CHIPS. Blocking sulfation by mutation of tyrosine to phenylalanine at positions 11 and 14 of C5aR N terminus, which blocked sulfation, completely abrogates CHIPS binding. When tyrosine 14 alone was mutated to phenylalanine, the binding efficiency of recombinant CHIPS was substantially decreased. Conclusion: The results demonstrate a structural basis of C5aR-CHIPS association, in which tyrosine sulfation of N-terminal C5aR plays an important role. Our data may have potential significance in development of novel drugs for therapeutic intervention. PMID:21706042
Podkowik, Magdalena; Seo, Keun Seok; Schubert, Justyna; Tolo, Isaiah; Robinson, D. Ashley; Bania, Jacek; Bystroń, Jarosław
2016-01-01
We have previously shown that potentially pathogenic isolates of Staphylococcus epidermidis occur at high incidence in ready-to-eat food. Now, within 164 samples of ready-to-eat meat products we identified 32 S. epidermidis isolates. In 8 isolates we detected the genes encoding for staphylococcal enterotoxins, but in 7 S. epidermidis isolates these genes were not stable over passages. One isolate designated 4S was shown to stably harbour sec and sel genes.In the genome sequence of S. epidermidis 4S we identified 21,426-bp region flanked by direct-repeats, encompassing sec and sel genes, corresponding to the previously described composite staphylococcal pathogenicity island (SePI) in S. epidermidis FRI909. Alignment of S. epidermidis 4S and S. epidermidis FRI909 SePIs revealed 6 nucleotide mismatches located in 5 of the total of 29 ORFs. Genomic location of S. epidermidis 4S SePI was the same as in FRI909. S. epidermidis 4S is a single locus variant of ST561, being genetically different from FRI909. SECepi was secreted by S. epidermidis 4S to BHI broth ranging from 14 to almost 36 μg/mL, to milk ranging from 6-9 ng/mL, to beef meat juice from 2-3 μg/mL and to pork meat juice from 1-2 μg/mL after 24 and 48 hours of cultivation, respectively. We provide the first evidence that S. epidermidis occurring in food bears an element encoding an orthologue to S. aureus SEC, and that SECepi can be produced in microbial broth, milk and meat juices. Regarding that only enterotoxins produced by S. aureus are officially tracked in food in EU, the ability to produce enterotoxin by S. epidermidis pose real risk for food safety. PMID:27105039
Víquez-Molina, Gerardo; Aragón-Sánchez, Javier; Pérez-Corrales, Cristian; Murillo-Vargas, Christian; López-Valverde, María Eugenia; Lipsky, Benjamin A
2018-03-01
The aim of this study is to describe the presence of genes encoding for 4 virulence factors (pvl, eta, etb, and tsst), as well as the mecA gene conferring resistance to beta-lactam antibiotics, in patients with diabetes and a staphylococcal foot infection. We have also analyzed whether isolates of Staphylococcus aureus from bone infections have a different profile for these genes compared with those from exclusively soft tissue infections. In this cross-sectional study of a prospectively recruited series of patients admitted to the Diabetic Foot Unit, San Juan de Dios Hospital, San José, Costa Rica with a moderate or severe diabetic foot infection (DFI), we collected samples from infected soft tissue and from bone during debridement. During the study period (June 1, 2014 to May 31, 2016), we treated 379 patients for a DFI. S aureus was isolated from 101 wound samples, of which 43 were polymicrobial infections; we only included the 58 infections that were monomicrobial S aureus for this study. Infections were exclusively soft tissue in 17 patients (29.3%) while 41 (70.7%) had bone involvement (osteomyelitis). The mecA gene was detected in 35 cases (60.3%), pvl gene in 4 cases (6.9%), and tsst gene in 3 (5.2%). We did not detect etA and etB in any of the cases. There were no differences in the profile of S aureus genes encoding for virulence factors (pvl, etA, etB, and tsst) recovered from DFIs between those with just soft tissue compared to those with osteomyelitis. However, we found a significantly higher prevalence of pvl+ strains of S aureus associated with soft tissue compared with bone infections. Furthermore, we observed a significantly longer time to healing among patients infected with mecA+ (methicillin-resistant) S aureus (MRSA).
Changes in the Staphylococcus aureus Transcriptome during Early Adaptation to the Lung
Chaffin, Donald O.; Taylor, Destry; Skerrett, Shawn J.; Rubens, Craig E.
2012-01-01
Staphylococcus aureus is a common inhabitant of the human nasopharynx. It is also a cause of life-threatening illness, producing a potent array of virulence factors that enable survival in normally sterile sites. The transformation of S. aureus from commensal to pathogen is poorly understood. We analyzed S. aureus gene expression during adaptation to the lung using a mouse model of S. aureus pneumonia. Bacteria were isolated by bronchoalveolar lavage after residence in vivo for up to 6 hours. S. aureus in vivo RNA transcription was compared by microarray to that of shake flask grown stationary phase and early exponential phase cells. Compared to in vitro conditions, the in vivo transcriptome was dramatically altered within 30 minutes. Expression of central metabolic pathways changed significantly in response to the lung environment. Gluconeogenesis (fbs, pckA) was down regulated, as was TCA cycle and fermentation pathway gene expression. Genes associated with amino acid synthesis, RNA translation and nitrate respiration were upregulated, indicative of a highly active metabolic state during the first 6 hours in the lung. Virulence factors regulated by agr were down regulated in vivo and in early exponential phase compared to stationary phase cells. Over time in vivo, expression of ahpCF, involved in H2O2 scavenging, and uspA, which encodes a universal stress regulator, increased. Transcription of leukotoxic α and β-type phenol-soluble modulins psmα1-4 and psmβ1-2 increased 13 and 8-fold respectively; hld mRNA, encoding δ-hemolysin, was increased 9-fold. These were the only toxins to be significantly upregulated in vivo. These data provide the first complete survey of the S. aureus transcriptome response to the mammalian airway. The results present intriguing contrasts with previous work in other in vitro and in vivo models and provide novel insights into the adaptive and temporal response of S. aureus early in the pathogenesis of pneumonia. PMID:22876285
Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung
2013-01-01
Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261
Yao, Jiangwei; Maxwell, John B.; Rock, Charles O.
2013-01-01
AFN-1252 is a potent antibiotic against Staphylococcus aureus that targets the enoyl-acyl carrier protein reductase (FabI). A thorough screen for AFN-1252-resistant strains was undertaken to identify the spectrum of mechanisms for acquired resistance. A missense mutation in fabI predicted to encode FabI(M99T) was isolated 49 times, and a single isolate was predicted to encode FabI(Y147H). AFN-1252 only bound to the NADPH form of FabI, and the close interactions between the drug and Met-99 and Tyr-147 explained how the mutations would result in resistant enzymes. The clone expressing FabI(Y147H) had a pronounced growth defect that was rescued by exogenous fatty acid supplementation, and the purified protein had less than 5% of the enzymatic activity of FabI. FabI(Y147F) was also catalytically defective but retained its sensitivity to AFN-1252, illustrating the importance of the conserved Tyr-147 hydroxyl group in FabI function. The strains expressing FabI(M99T) exhibited normal growth, and the biochemical properties of the purified protein were indistinguishable from those of FabI. The AFN-1252 Kiapp increased from 4 nm in FabI to 69 nm in FabI(M99T), accounting for the increased resistance of the corresponding mutant strain. The low activity of FabI(Y147H) precluded an accurate Ki measurement. The strain expressing FabI(Y147H) was also resistant to triclosan; however, the strain expressing FabI(M99T) was more susceptible. Strains with higher levels of AFN-1252 resistance were not obtained. The AFN-1252-resistant strains remained sensitive to submicromolar concentrations of AFN-1252, which blocked growth through inhibition of fatty acid biosynthesis at the FabI step. PMID:24189061
Gharsa, Haythem; Ben Slama, Karim; Lozano, Carmen; Gómez-Sanz, Elena; Klibi, Naouel; Ben Sallem, Rym; Gómez, Paula; Zarazaga, Myriam; Boudabous, Abdellatif; Torres, Carmen
2012-05-04
Nasal swabs of 163 healthy sheep were obtained from two farms and one abattoir in Tunisia during 2010. Samples were inoculated in Baird Parker agar and ORSAB medium for Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) recovery, respectively. MRSA was detected in 5 of these 163 samples (3%) in ORSAB medium, and one isolate per sample was further studied. MRSA isolates were mecA-positive, typed as ST153-CC80-t044-agrIII, and contained blaZ, ant(6)-Ia, aph(3')-IIIa, erm(C), tet(K), and fusB genes encoding penicillin, streptomycin, kanamycin, erythromycin, tetracycline and fusidic acid resistance, respectively. These MRSA isolates showed indistinguishable or closely related PFGE-patterns and harboured the lukF/lukS gene encoding the Panton-Valentine leukocidin and the luk-ED, hla, hld, and hlg(v) genes. Methicillin-susceptible S. aureus (MSSA) were recovered in 68 of the 163 samples (41.7%) and one isolate per sample was characterized. Most of MSSA (82.4%) showed susceptibility to the tested antibiotics with exceptions: penicillin (6%, carrying blaZ gene), tetracycline (19%, carrying tet(K) gene) and fusidic acid (9%). The following toxin-genes were identified among MSSA: tst (53 isolates), luk-M (52), luk-ED, hla, hlb, hld and hlg(v) (67), hlg (1), sec (49), sel (52), and the egc-cluster-like sen-sem-sei-seo-seg (1). Ten spa-types (two of them new ones) and nine sequence types (six new ones) were detected among the 73 S. aureus isolates, and they were ascribed to agr types I and III. All MRSA and MSSA isolates were able to coagulate bovine plasma and MRSA harboured the immune-evasion-gene-cluster type E. Conclusions. Nares of healthy sheep could be a reservoir of PVL-positive community-associated-MRSA and also of TSST-positive S. aureus isolates, with potential implications in public health. Copyright © 2011 Elsevier B.V. All rights reserved.
Azara, E; Longheu, C; Sanna, G; Tola, S
2017-08-01
To perform a phenotypic and genotypic characterization of 258 Staphylococcus aureus isolates from clinical ovine mastitis and used for the preparation of inactivated autogenous vaccines. The potential for biofilm production was determined by phenotypic test of Congo Red Agar (CRA) and by PCR for the detection of icaA/D genes. Isolates were also screened by PCR for the presence of enterotoxins (sea, seb, sec, sed and see), toxic shock syndrome toxin (tsst), leukotoxins (lukD-E, lukM and lukPV83), haemolysins (hly-β and hly-γ), autolysin (atlA) genes and encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs: clfA, clfB, fnbA, fnbB, bbp, cna, eno, fib, epbs, sdrC, sdrD and SdrE). None of the 258 isolates showed biofilm-forming ability on CRA and harboured icaA/D genes. The most frequent pyrogenic toxin superantigen genes amplified were sec plus tsst-1, which were found strictly in combination with 71·3% of the Staph. aureus isolates tested. None of the isolates harboured the genes encoding sea and see. Of the 258 isolates tested, 159 (61·6%) possessed all lukD-E/lukM/lukPV83 genes, 123 (47·7%) harboured both hly-β/hly-γ genes, whereas almost all (97·3%) were PCR positive for atlA gene. With respect to adhesion determinants, 179 (69·4%) isolates presented simultaneously four genes (fnbA, fib, clfA and clfB) for fibronectin- and fibrinogen-binding proteins. In this search, several putative virulence determinants have been identified in ovine Staph. aureus isolates collected in Sardinia. Some of the putative virulence determinants could be considered as components of a vaccine because of their role in ovine mastitis pathogenesis. © 2017 The Society for Applied Microbiology.
Role of the Twin-Arginine Translocation Pathway in Staphylococcus▿ †
Biswas, Lalitha; Biswas, Raja; Nerz, Christiane; Ohlsen, Knut; Schlag, Martin; Schäfer, Tina; Lamkemeyer, Tobias; Ziebandt, Anne-Kathrin; Hantke, Klaus; Rosenstein, Ralf; Götz, Friedrich
2009-01-01
In Staphylococcus, the twin-arginine translocation (Tat) pathway is present only in some species and is composed of TatA and TatC. The tatAC operon is associated with the fepABC operon, which encodes homologs to an iron-binding lipoprotein, an iron-dependent peroxidase (FepB), and a high-affinity iron permease. The FepB protein has a typical twin-arginine (RR) signal peptide. The tat and fep operons constitute an entity that is not present in all staphylococcal species. Our analysis was focused on Staphylococcus aureus and S. carnosus strains. Tat deletion mutants (ΔtatAC) were unable to export active FepB, indicating that this enzyme is a Tat substrate. When the RR signal sequence from FepB was fused to prolipase and protein A, their export became Tat dependent. Since no other protein with a Tat signal could be detected, the fepABC-tatAC genes comprise not only a genetic but also a functional unit. We demonstrated that FepABC drives iron import, and in a mouse kidney abscess model, the bacterial loads of ΔtatAC and Δtat-fep mutants were decreased. For the first time, we show that the Tat pathway in S. aureus is functional and serves to translocate the iron-dependent peroxidase FepB. PMID:19633084
Rivera, Frances E; Miller, Halie K; Kolar, Stacey L; Stevens, Stanley M; Shaw, Lindsey N
2012-01-01
Staphylococcus aureus is a leading human pathogen of both hospital and community-associated diseases worldwide. This organism causes a wealth of infections within the human host as a result of the vast arsenal of toxins encoded within its genome. Previous transcriptomic studies have shown that toxin production in S. aureus can be strongly impacted by the negative regulator CodY. CodY acts by directly, and indirectly (via Agr), repressing toxin production during times of plentiful nutrition. In this study, we use iTRAQ-based proteomics for the first time to study virulence determinant production in S. aureus, so as to correlate transcriptional observations with actual changes in protein synthesis. Using a codY mutant in the epidemic CA-MRSA clone USA300 we demonstrate that deletion of this transcription factor results in a major upregulation of toxin synthesis in both post-exponential and stationary growth. Specifically, we observe hyper-production of secreted proteases, leukocidins and hemolysins in both growth phases in the USA300 codY mutant. Our findings demonstrate the power of mass spectrometry-based quantitative proteomics for studying toxin production in S. aureus, and the importance of CodY to this central process in disease causation and infection. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization▿
Torres, Victor J.; Pishchany, Gleb; Humayun, Munir; Schneewind, Olaf; Skaar, Eric P.
2006-01-01
The pathogenesis of human infections caused by the gram-positive microbe Staphylococcus aureus has been previously shown to be reliant on the acquisition of iron from host hemoproteins. The iron-regulated surface determinant system (Isd) encodes a heme transport apparatus containing three cell wall-anchored proteins (IsdA, IsdB, and IsdH) that are exposed on the staphylococcal surface and hence have the potential to interact with human hemoproteins. Here we report that S. aureus can utilize the host hemoproteins hemoglobin and myoglobin, but not hemopexin, as iron sources for bacterial growth. We demonstrate that staphylococci capture hemoglobin on the bacterial surface via IsdB and that inactivation of isdB, but not isdA or isdH, significantly decreases hemoglobin binding to the staphylococcal cell wall and impairs the ability of S. aureus to utilize hemoglobin as an iron source. Stable-isotope-tracking experiments revealed removal of heme iron from hemoglobin and transport of this compound into staphylococci. Importantly, mutants lacking isdB, but not isdH, display a reduction in virulence in a murine model of abscess formation. Thus, IsdB-mediated scavenging of iron from hemoglobin represents an important virulence strategy for S. aureus replication in host tissues and for the establishment of persistent staphylococcal infections. PMID:17041042
Probing the active site tryptophan of Staphylococcus aureus thioredoxin with an analog
Englert, Markus; Nakamura, Akiyoshi; Wang, Yane-Shih; Eiler, Daniel; Söll, Dieter; Guo, Li-Tao
2015-01-01
Genetically encoded non-canonical amino acids are powerful tools of protein research and engineering; in particular they allow substitution of individual chemical groups or atoms in a protein of interest. One such amino acid is the tryptophan (Trp) analog 3-benzothienyl-l-alanine (Bta) with an imino-to-sulfur substitution in the five-membered ring. Unlike Trp, Bta is not capable of forming a hydrogen bond, but preserves other properties of a Trp residue. Here we present a pyrrolysyl-tRNA synthetase-derived, engineered enzyme BtaRS that enables efficient and site-specific Bta incorporation into proteins of interest in vivo. Furthermore, we report a 2.1 Å-resolution crystal structure of a BtaRS•Bta complex to show how BtaRS discriminates Bta from canonical amino acids, including Trp. To show utility in protein mutagenesis, we used BtaRS to introduce Bta to replace the Trp28 residue in the active site of Staphylococcus aureus thioredoxin. This experiment showed that not the hydrogen bond between residues Trp28 and Asp58, but the bulky aromatic side chain of Trp28 is important for active site maintenance. Collectively, our study provides a new and robust tool for checking the function of Trp in proteins. PMID:26582921
Vandersteegen, Katrien; Kropinski, Andrew M; Nash, John H E; Noben, Jean-Paul; Hermans, Katleen; Lavigne, Rob
2013-03-01
The renewed interest in controlling Staphylococcus aureus infections using their natural enemies, bacteriophages, has led to the isolation of a limited number of virulent phages so far. These phages are all members of the Twortlikevirus, displaying little variance. We present two novel closely related (95.9% DNA homology) lytic myoviruses, Romulus and Remus, with double-stranded DNA (dsDNA) genomes of 131,333 bp and 134,643 bp, respectively. Despite their relatedness to Staphylococcus phages K, G1, ISP, and Twort and Listeria phages A511 and P100, Romulus and Remus can be proposed as isolates of a new species within the Twortlikevirus genus. A distinguishing feature for these phage genomes is the unique distribution of group I introns compared to that in other staphylococcal myoviruses. In addition, a hedgehog/intein domain was found within their DNA polymerase genes, and an insertion sequence-encoded transposase exhibits splicing behavior and produces a functional portal protein. From a phage therapy application perspective, Romulus and Remus infected approximately 70% of the tested S. aureus isolates and displayed promising lytic activity against these isolates. Furthermore, both phages showed a rapid initial adsorption and demonstrated biofilm-degrading capacity in a proof-of-concept experiment.
The Frequency of Staphylococcus aureus Isolated from Endocervix of Infertile Women in Northwest Iran
Akhi, Mohammad Taghi; Esmailkhani, Aylin; Sadeghi, Javid; Niknafs, Behrooz; Farzadi, Laya; Akhi, Aydin; Nasab, Elmira Najafi
2017-01-01
Background Infertility is one of the major social issues. Due to the asymptomatic cervical infection associated with Staphylococcus aureus (S. aureus), the majority of patients remain undiagnosed. The present study intended to assess the frequency of S. aureus isolated from infertile women’s endocervix in northwest Iran. Materials and Methods In a descriptive cross sectional study, specimens were randomly collected during vagina examination using a sterile speculum and swabbing. After performance of antibiotic susceptibility testing, polymerase chain reaction (PCR) was used to identify methicillin-resistance S. aureus (MRSA) and toxic shock syndrome toxin-1 (TSST-1). Results About 26 (26%) and 9 (9%) women’s urogenital tracts were colonized by S. aureus and Candida spp., respectively, of which three (11.5%) patients were infected with fungi and S. aureus, simultaneously. Antibiotic susceptibility results showed high activity of vancomycin and co-trimoxazole on isolates. Regarding PCR results, mecA sequences were detected in 7 (26.9%) strains, whilst the tst gene encoding TSST-1 was not detected in any of clinical strains. Conclusion The prevalence of S. aureus was very high in infertile women. Therefore, it demands all patients undergoing infertility treatment to be investigated thoroughly for this type of infection. PMID:28367302
Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus.
Koprivnjak, Tomaz; Mlakar, Vid; Swanson, Lindsey; Fournier, Benedicte; Peschel, Andreas; Weiss, Jerrold P
2006-05-01
Lipoteichoic and wall teichoic acids (TA) are highly anionic cell envelope-associated polymers containing repeating polyglycerol/ribitol phosphate moieties. Substitution of TA with D-alanine is important for modulation of many cell envelope-dependent processes, such as activity of autolytic enzymes, binding of divalent cations, and susceptibility to innate host defenses. D-Alanylation of TA is diminished when bacteria are grown in medium containing increased NaCl concentrations, but the effects of increased salt concentration on expression of the dlt operon encoding proteins mediating D-alanylation of TA are unknown. We demonstrate that Staphylococcus aureus transcriptionally represses dlt expression in response to high concentrations of Na(+) and moderate concentrations of Mg(2+) and Ca(2+) but not sucrose. Changes in dlt mRNA are induced within 15 min and sustained for several generations of growth. Mg(2+)-induced dlt repression depends on the ArlSR two-component system. Northern blotting, reverse transcription-PCR, and SMART-RACE analyses suggest that the dlt transcript begins 250 bp upstream of the dltA start codon and includes an open reading frame immediately upstream of dltA. Chloramphenicol transacetylase transcriptional fusions indicate that a region encompassing the 171 to 325 bp upstream of dltA is required for expression and Mg(2+)-induced repression of the dlt operon in S. aureus.
Cation-Induced Transcriptional Regulation of the dlt Operon of Staphylococcus aureus
Koprivnjak, Tomaz; Mlakar, Vid; Swanson, Lindsey; Fournier, Benedicte; Peschel, Andreas; Weiss, Jerrold P.
2006-01-01
Lipoteichoic and wall teichoic acids (TA) are highly anionic cell envelope-associated polymers containing repeating polyglycerol/ribitol phosphate moieties. Substitution of TA with d-alanine is important for modulation of many cell envelope-dependent processes, such as activity of autolytic enzymes, binding of divalent cations, and susceptibility to innate host defenses. d-Alanylation of TA is diminished when bacteria are grown in medium containing increased NaCl concentrations, but the effects of increased salt concentration on expression of the dlt operon encoding proteins mediating d-alanylation of TA are unknown. We demonstrate that Staphylococcus aureus transcriptionally represses dlt expression in response to high concentrations of Na+ and moderate concentrations of Mg2+ and Ca2+ but not sucrose. Changes in dlt mRNA are induced within 15 min and sustained for several generations of growth. Mg2+-induced dlt repression depends on the ArlSR two-component system. Northern blotting, reverse transcription-PCR, and SMART-RACE analyses suggest that the dlt transcript begins 250 bp upstream of the dltA start codon and includes an open reading frame immediately upstream of dltA. Chloramphenicol transacetylase transcriptional fusions indicate that a region encompassing the 171 to 325 bp upstream of dltA is required for expression and Mg2+-induced repression of the dlt operon in S. aureus. PMID:16672616
Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J; Friedrich, Alexander W; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł
2015-09-28
Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups.
Expression, purification and immobilization of tannase from Staphylococcus lugdunensis MTCC 3614.
Chaitanyakumar, Amballa; Anbalagan, M
2016-12-01
Enzymes find their applications in various industries, due to their error free conversion of substrate into product. Tannase is an enzyme used by various industries for degradation of tannin. Biochemical characterization of a specific enzyme from one organism to other is one of the ways to search for enzymes with better traits for industrial applications. Here, tannase encoding gene from Staphylococcus lugdunensis was cloned and suitability of the enzyme in various conditions was analysed to find its application in various industry. The recombinant protein was expressed with 6× His tag and purified using nickel affinity beads. The enzyme was purified up to homogeneity, with approximate molecular weight of 66 kDa. Purified tannase exhibited specific activity of about 716 U/mg. Optimum enzyme activity was found to be 40 °C at pH 7.0. Biochemical characterization revealed; metal ions such as Zn 2+ , Fe 2+ , Fe 3+ and Mn 2+ inhibited tannase activity, and SDS at lower concentration, increased tannase activity. Non polar organic solvents increased the tannase activity and polar solvents inhibited the tannase activity. Tannase immobilization studies show protection of the enzyme under wide range of pH and temperature. Also in this study we report a method for recovery and repeated use of the tannase.
Yeswanth, Sthanikam; Chaudhury, Abhijit; Sarma, Potukuchi Venkata Gurunadha Krishna
2017-12-01
In Staphylococcus aureus, adherence and secretory proteins play chief role in the formation of biofilms. This mode of growth exhibits resistance to a variety of antibiotics and spreads its infections. In the present study, secretary and adherence proteins, Protein-A, Fibronectin-binding protein-A (FnbA) and Rsp (a transcription regulator encoding proteolytic property) expression levels were evaluated at different stages of growth in S. aureus ATCC12600 a drug-sensitive strain and multidrug-resistant strains of S. aureus. Initially, the SpA, FnbA and Rsp genes of S. aureus ATCC12600 were cloned, sequenced, expressed and characterized. The proteolytic property of recombinant Rsp was conspicuously shown when this pathogen was grown in aerobic conditions correlating with reduced biofilm units. In anaerobic mode of growth, S. aureus exhibited a higher expression of SpA and FnbA in early and mid adherence phases and finally stabilized at 48 h of incubation. This expression was more pronounced in methicillin-resistant strains (LMV1-8 and D1-4) of S. aureus. In all these stages, Rsp gene expression was at the lowest level and these results concur with the increased biofilm units. The results of the present study explain proteins chiefly contribute in the formation of biofilms.
Martin, Francis J.; Gomez, Marisa I.; Wetzel, Dawn M.; Memmi, Guido; O’Seaghdha, Maghnus; Soong, Grace; Schindler, Christian; Prince, Alice
2009-01-01
The activation of type I IFN signaling is a major component of host defense against viral infection, but it is not typically associated with immune responses to extracellular bacterial pathogens. Using mouse and human airway epithelial cells, we have demonstrated that Staphylococcus aureus activates type I IFN signaling, which contributes to its virulence as a respiratory pathogen. This response was dependent on the expression of protein A and, more specifically, the Xr domain, a short sequence–repeat region encoded by DNA that consists of repeated 24-bp sequences that are the basis of an internationally used epidemiological typing scheme. Protein A was endocytosed by airway epithelial cells and subsequently induced IFN-β expression, JAK-STAT signaling, and IL-6 production. Mice lacking IFN-α/β receptor 1 (IFNAR-deficient mice), which are incapable of responding to type I IFNs, were substantially protected against lethal S. aureus pneumonia compared with wild-type control mice. The profound immunological consequences of IFN-β signaling, particularly in the lung, may help to explain the conservation of multiple copies of the Xr domain of protein A in S. aureus strains and the importance of protein A as a virulence factor in the pathogenesis of staphylococcal pneumonia. PMID:19603548
Chan, Yvonne Gar-Yun; Kim, Hwan Keun; Schneewind, Olaf; Missiakas, Dominique
2014-01-01
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan. PMID:24753256
Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha
2018-02-01
Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.
Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J.; Friedrich, Alexander W.; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł
2015-01-01
Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups. PMID:26411997
Cooper, Bret; Islam, Nazrul; Xu, Yunfeng; Beard, Hunter S; Garrett, Wesley M; Gu, Ganyu; Nou, Xiangwu
2018-05-01
Staphylococcus aureus, a bacterial, food-borne pathogen of humans, can contaminate raw fruits and vegetables. While physical and chemical methods are available to control S. aureus, scientists are searching for inhibitory phytochemicals from plants. One promising compound from pomegranate is punicalagin, a natural antibiotic. To get a broader understanding of the inhibitory effect of punicalagin on S. aureus growth, high-throughput mass spectrometry and quantitative isobaric labeling was used to investigate the proteome of S. aureus after exposure to a sublethal dose of punicalagin. Nearly half of the proteins encoded by the small genome were interrogated, and nearly half of those exhibited significant changes in accumulation. Punicalagin treatment altered the accumulation of proteins and enzymes needed for iron acquisition, and it altered amounts of enzymes for glycolysis, citric acid cycling, protein biosynthesis, and purine and pyrimidine biosynthesis. Punicalagin treatment also induced an SOS cellular response to damaged DNA. Transcriptional comparison of marker genes shows that the punicalagin-induced iron starvation and SOS responses resembles those produced by EDTA and ciprofloxacin. These results show that punicalagin adversely alters bacterial growth by disrupting iron homeostasis and that it induces SOS, possibly through DNA biosynthesis inhibition. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo,M.; Ko, T.; Musayev, F.
The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
Staphylococcus agnetis, a potential pathogen in broiler breeders.
Poulsen, Louise Ladefoged; Thøfner, Ida; Bisgaard, Magne; Olsen, Rikke Heidemann; Christensen, Jens Peter; Christensen, Henrik
2017-12-01
In this study, four broiler parent flocks have been followed from the onset of the production period (week 20) until slaughter (week 60). Every week, approximately ten dead broiler breeders, randomly selected among birds dead on their own, were collected and subjected to a full post mortem analysis including bacteriological examination. In total 997 breeders were investigated and for the first time Staphylococcus agnetis was isolated in pure culture from cases of endocarditis and septicemia from 16 broiler breeders. In addition, the cloacal flora from newly hatched chickens originating from the same four flocks were characterized and S. agnetis was found in pure culture of several newly hatched chickens (n=12) and only in one case in combination with another species. Clonality of the isolates was examined by pulsed-field-gel-electrophoresis which showed indistinguishable patterns in isolates from both broiler breeders and broilers. Three isolates were whole genome sequenced to obtain knowledge on virulence genes. The isolates harbored a number of genes encoding different fibrinogen binding proteins and toxins which might be important for virulence. The present findings demonstrate that S. agnetis may be associated with mortality in broiler breeders. No disease was associated with the broilers which were found positive for S. agnetis in the cloaca. Copyright © 2017 Elsevier B.V. All rights reserved.
de Almeida, Lara M; de Almeida, Mayra Zilta P R B; de Mendonça, Carla L; Mamizuka, Elsa M
2013-01-01
Staphylococcus aureus is one of the most frequent mastitis causative agents in small ruminants. The expression of most virulence genes of S. aureus is controlled by an accessory gene regulator (agr) locus. This study aimed to ascertain the prevalence of the different agr groups and to evaluate the occurrence of encoding genes for cytotoxin, adhesins and toxins with superantigen activity in S. aureus isolates from milk of ewes with clinical and subclinical mastitis in sheep flocks raised for meat production The agr groups I and II were identified in both cases of clinical and subclinical mastitis. Neither the arg groups III and IV nor negative agr were found. The presence of cflA gene was identified in 100% of the isolates. The frequency of hla and lukE-D genes was high - 77.3 and 82.8%, respectively and all isolates from clinical mastitis presented these genes. The sec gene, either associated to tst gene or not, was identified only in isolates from subclinical mastitis. None of the following genes were identified: bbp, ebpS, cna, fnbB, icaA, icaD, bap, hlg, lukM-lukF-PV and se-a-b-d-e.
Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.
Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto
2016-06-28
In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.
Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97
Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol
2015-01-01
A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428
Kobayashi, Scott D; Malachowa, Natalia; Whitney, Adeline R; Braughton, Kevin R; Gardner, Donald J; Long, Dan; Bubeck Wardenburg, Juliane; Schneewind, Olaf; Otto, Michael; Deleo, Frank R
2011-09-15
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are frequently associated with strains harboring genes encoding Panton-Valentine leukocidin (PVL). The role of PVL in the success of the epidemic CA-MRSA strain USA300 remains unknown. Here we developed a skin and soft tissue infection model in rabbits to test the hypothesis that PVL contributes to USA300 pathogenesis and compare it with well-established virulence determinants: alpha-hemolysin (Hla), phenol-soluble modulin-alpha peptides (PSMα), and accessory gene regulator (Agr). The data indicate that Hla, PSMα, and Agr contribute to the pathogenesis of USA300 skin infections in rabbits, whereas a role for PVL could not be detected.
Horie, Hitoshi; Chiba, Asuka; Wada, Shigeo
2018-05-01
β-Lactamase-producing bacteria encode enzymes that inactivate β-lactam antibiotics by catalyzing the hydrolysis of the β-lactam ring. Crude soy saponins were observed to have synergistic effects on the antimicrobial activity of β-lactam antibiotics against β-lactamase-producing Staphylococcus aureus strains. Furthermore, the activities of β-lactamases derived from Enterobacter cloacae , Escherichia coli , and S. aureus were decreased significantly in the presence of crude soy saponins. This inhibitory effect was also observed against the New Delhi metallo-β-lactamase 1 (NDM-1), an enzyme whose activity is not inhibited by the current β-lactamase inhibitors. The synergistic effect on the antimicrobial activity of β-lactam antibiotics by crude soy saponins was thought to result from the inhibition the β-lactamase activity. The components of crude soy saponins include several kinds of soyasaponins and soyasapogenols. It was revealed that soyasaponin V has the highest inhibitory activity against NDM-1. The combined use of soy saponins with β-lactam antibiotics is expected to serve as a new therapeutic modality, potentially enhancing the effectiveness of β-lactam antibiotics against infectious diseases caused by β-lactamase-producing bacteria, including those encoding NDM-1.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... Methicillin-Resistant Staphylococcus aureus and Staphylococcus aureus; Availability AGENCY: Food and Drug...-Resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (SA).'' The draft guidance document... and differentiation of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus...
Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis.
Song, Jae-Hoon; Ko, Kwan Soo; Lee, Ji-Young; Baek, Jin Yang; Oh, Won Sup; Yoon, Ha Sik; Jeong, Jin-Yong; Chun, Jongsik
2005-06-30
To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.
Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Suárez-Rodríguez, Luis M; Salgado-Garciglia, Rafael; Rodríguez-Zapata, Luis C; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E
2013-01-01
Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 μg/mL total protein (27-38%) but was more evident at 100 μg/mL (52-65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.
Kim, Jae Seok; Kim, Han Sung; Song, Wonkeun; Cho, Hyoun Chan; Lee, Kyu Man; Kim, Eui Chong
2007-04-01
Many methicillin-resistant Staphylococcus aureus (MRSA) isolates in Korea possess a specific profile of staphylococcal enterotoxins in that the toxic shock syndrome toxin gene (tst) coexists with the staphylococcal enterotoxin C gene (sec). Because the analysis of staphylococcal cassette chromosome mec (SCCmec), a mobile genetic element mecA gene encoding methicillin resistance, showed that majority of these are SCCmec type II, these MRSA isolates with tst and sec may be genetically related with each other. This study was performed to investigate the genetic relatedness of tstand sec-harboring MRSA strains isolated in Korea by using pulsed-field gel electrophoresis (PFGE). A total of 59 strains of MRSA isolates of SCCmec type II possessing tst and sec were selected for PFGE and phylogenetic analyses. These isolates were collected from 13 health care facilities during nationwide surveillance of antimicrobial resistance in 2002. The 59 MRSA isolates were clustered into 11 PFGE types, including one major group of 26 strains (44.1%) isolated from 7 healthcare facilities. Seven PFGE types contained 2 or more isolates each, comprising 55 isolates in total. Most of SCCmec type II MRSA isolates containing tst and sec showed closely related PFGE patterns. Moreover, MRSA isolates collected from different healthcare facilities showed identical PFGE patterns. These findings suggested a clonal spread of MRSA strains possessing tst and sec in Korean hospitals.
Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference
Sato’o, Yusuke; Hisatsune, Junzo; Yu, Liansheng; Sakuma, Tetsushi; Yamamoto, Takashi
2018-01-01
Preparing the genetically modified organisms have required much time and labor, making it the rate-limiting step but CRISPR/Cas9 technology appearance has changed this difficulty. Although reports on CRISPR/Cas9 technology such as genome editing and CRISPR interference (CRISPRi) in eukaryotes increased, those in prokaryotes especially in Staphylococci were limited. Thus, its potential in the bacteriology remains unexplored. This is attributed to ecological difference between eukaryotes and prokaryotes. Here, we constructed a novel CRISPRi plasmid vector, pBACi for Staphylococcus aureus. The transformation efficiency of S. aureus was ~104 CFU/μg DNA using a vector extracted from dcm negative, which encoded one of DNA modification genes, E. coli. Further, pBACi was introduced into various clinical isolates including that not accepting the conventional temperature-sensitive vector. dcas9 in the vector was expressed throughout the growth phases of S. aureus and this vector decreased various gene mRNA expressions based on the crRNA targeting sequences and altered the knockdown strains’ phenotypes. The targeted genes included various virulence and antibiotic resistant genes. Bioinformatics suggest this vector can be introduced into wide range of low-GC Gram-positive bacteria. Because this new CRISPR/Cas9-based vector can easily prepare knockdown strains, we believe the novel vector will facilitate the characterization of the function of genes from S. aureus and other Gram-positive bacteria. PMID:29377933
Roetzer, Andreas; Gruener, Corina S; Haller, Guenter; Beyerly, John; Model, Nina; Eibl, Martha M
2016-10-28
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SE l N, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SE l N led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSE l N led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens.
Ohlsen, Knut; Ziebuhr, Wilma; Koller, Klaus-Peter; Hell, Wolfgang; Wichelhaus, Thomas A.; Hacker, Jörg
1998-01-01
Concentrations of antibiotics below the MIC are able to modulate the expression of virulence-associated genes. In this study, the influence of subinhibitory doses of 31 antibiotics on the expression of the gene encoding the staphylococcal alpha-toxin (hla), a major virulence factor of Staphylococcus aureus, was investigated with a novel gene fusion protocol. The most striking observation was a strong induction of hla expression by subinhibitory concentrations of β-lactams and an almost complete inhibition of alpha-toxin expression by clindamycin. Whereas glycopeptide antibiotics had no effect, the macrolide erythromycin and several aminoglycosides reduced and fluoroquinolones slightly stimulated hla expression. Furthermore, Northern blot analysis of hla mRNA and Western blot (immunoblot) analysis of culture supernatants of both methicillin-sensitive and methicillin-resistant S. aureus strains revealed that methicillin-induced alpha-toxin expression is a common phenomenon of alpha-toxin-producing strains. Some methicillin-resistant S. aureus isolates produced up to 30-fold more alpha-toxin in the presence of 10 μg of methicillin per ml than in its absence. The results indicate that the novel gene fusion technique is a useful tool for studying the modulation of virulence gene expression by antibiotics. Moreover, the results suggest that the effects of certain antibiotics on virulence properties may be relevant for the management of S. aureus infections. PMID:9797209
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
Agabou, Amir; Ouchenane, Zouleikha; Ngba Essebe, Christelle; Khemissi, Salim; Chehboub, Mohamed Tedj Eddine; Chehboub, Ilyes Bey; Dunyach-Remy, Catherine
2017-01-01
The spread of toxinogenic Staphylococcus aureus is a public health problem in Africa. The objectives of the study were to investigate the rate of S. aureus nasal carriage and molecular characteristics of these strains in livestock and humans in three Algerian provinces. Nasal samples were collected from camels, horses, cattle, sheep and monkeys, as well as humans in contact with them. S. aureus isolates were genotyped using DNA microarray. The rate of S. aureus nasal carriage varied between species: camels (53%), humans and monkeys (50%), sheep (44.2%), horses (15.2%) and cattle (15%). Nine methicillin-resistant S. aureus (MRSA) isolates (7.6%) were identified, isolated from camels and sheep. The S. aureus isolates belonged to 15 different clonal complexes. Among them, PVL+ (Panton–Valentine Leukocidin) isolates belonging to ST80-MRSA-IV and ST152-MSSA were identified in camels (n = 3, 13%) and sheep (n = 4, 21.1%). A high prevalence of toxinogenic animal strains was noted containing TSST-1- (22.2%), EDINB- (29.6%) and EtD- (11.1%) encoding genes. This study showed the dispersal of the highly human pathogenic clones ST152-MSSA and ST-80-MRSA in animals. It suggests the ability of some clones to cross the species barrier and jump between humans and several animal species. PMID:28946704
Roetzer, Andreas; Gruener, Corina S.; Haller, Guenter; Beyerly, John; Model, Nina; Eibl, Martha M.
2016-01-01
Among the toxin family of bacterial superantigens, the six members of the enterotoxin gene cluster (egc) seem to have unusual characteristics. They are present in the majority of Staphylococcus aureus strains, but their role in disease remains uncertain. We assessed secretion levels, immunogenicity, and toxicity of native and recombinant egc proteins. After having developed enzyme-linked immunosorbent assays, we found different quantities of egc proteins secreted by bacterial isolates. Supernatants induced proliferation of human peripheral blood mononuclear cells. However, purified recombinant egc proteins were shown to have differing superantigenicity potentials. Immunization with identical amounts of all members of egc, and the prominent toxic agent SEB, resulted in neutralizing antisera. Two egc proteins, SEI and SElN, were found to play a predominant role within the cluster. Both displayed the highest potential to activate blood cells, and were essential to be neutralized in supernatants. The application of a supernatant of a strain bearing only egc was sufficient for a lethal outcome in a rabbit model. Again, neutralization of SEI and SElN led to the survival of all tested animals. Finally, nanogram amounts of purified rSEI and rSElN led to lethality in vivo, pointing out the importance of both as virulence determinants among egc superantigens. PMID:27801832
Denayer, Sarah; Nia, Yacine; Botteldoorn, Nadine
2017-01-01
Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning outbreaks due to enterotoxin-producing S. aureus strains which occurred in 2013 in Belgium are described. The outbreaks occurred in an elderly home, at a barbecue event and in a kindergarten and involved 28, 18, and six cases, respectively. Various food leftovers contained coagulase positive staphylococci (CPS). Low levels of staphylococcal enterotoxins ranging between 0.015 ng/g and 0.019 ng/g for enterotoxin A (SEA), and corresponding to 0.132 ng/g for SEC were quantified in the food leftovers for two of the reported outbreaks. Molecular typing of human and food isolates using pulsed-field gel electrophoresis (PFGE) and enterotoxin gene typing, confirmed the link between patients and the suspected foodstuffs. This also demonstrated the high diversity of CPS isolates both in the cases and in healthy persons carrying enterotoxin genes encoding emetic SEs for which no detection methods currently exist. For one outbreak, the investigation pointed out to the food handler who transmitted the outbreak strain to the food. Tools to improve staphylococcal food poisoning (SFP) investigations are presented. PMID:29261162
Rosey, E L; Oskouian, B; Stewart, G C
1991-01-01
The nucleotide and deduced amino acid sequences of the lacA and lacB genes of the Staphylococcus aureus lactose operon (lacABCDFEG) are presented. The primary translation products are polypeptides of 142 (Mr = 15,425) and 171 (Mr = 18,953) amino acids, respectively. The lacABCD loci were shown to encode enzymes of the tagatose 6-phosphate pathway through both in vitro studies and complementation analysis in Escherichia coli. A serum aldolase assay, modified to allow detection of the tagatose 6-phosphate pathway enzymes utilizing galactose 6-phosphate or fructose phosphate analogs as substrate, is described. Expression of both lacA and lacB was required for galactose 6-phosphate isomerase activity. LacC (34 kDa) demonstrated tagatose 6-phosphate kinase activity and was found to share significant homology with LacC from Lactococcus lactis and with both the minor 6-phosphofructokinase (PfkB) and 1-phosphofructokinase (FruK) from E. coli. Detection of tagatose 1,6-bisphosphate aldolase activity was dependent on expression of the 36-kDa protein specified by lacD. The LacD protein is highly homologous with LacD of L. lactis. Thus, the lacABCD genes comprise the tagatose 6-phosphate pathway and are cotranscribed with genes lacFEG, which specify proteins for transport and cleavage of lactose in S. aureus. PMID:1655695
Zhou, Xuan; Liu, Shui; Li, Wenhua; Zhang, Bing; Liu, Bowen; Liu, Yan; Deng, Xuming; Peng, Liping
2015-08-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become increasingly important because it is the most common cause of hospital-acquired infections, which have become globally epidemic. Our study specifically focused on the MRSA strain USA300, which was shown in 2014 to be responsible for the most current pandemic of highly virulent MRSA in the United States. We aimed to evaluate the in vitro effect of phloretin on USA300. Susceptibility testing, western blotting assays, hemolysis assays and real-time RT-PCR were employed to examine the in vitro effects of phloretin on alpha-hemolysin (Hla) production when the bacterium was co-cultured with phloretin. The protective effect of phloretin against the USA300-mediated injury of human alveolar epithelial cells (A549) was tested using the live/dead analysis and cytotoxicity assays. We showed that sub-inhibitory concentrations of phloretin have no effect on bacterial viability; however, they can markedly inhibit the production of Hla in culture supernatants and the transcriptional levels of hla (the gene encoding Hla) and agrA (the accessory gene regulator). Phloretin, at a final concentration of 16 µg/ml, could protect A549 cells from injury caused by USA300 in the co-culture system. Our study suggests that phloretin might have a potential application in the development of treatment for MRSA infections.
Wladyka, Benedykt; Wielebska, Katarzyna; Wloka, Marcin; Bochenska, Oliwia; Dubin, Grzegorz; Dubin, Adam; Mak, Pawel
2013-08-01
Staphylococcus aureus strain CH-91, isolated from a broiler chicken with atopic dermatitis, has a highly proteolytic phenotype that is correlated with the disease. We describe the isolation and biochemical and molecular characterization of the AI-type lantibiotic BacCH91 from S. aureus CH-91 culture medium. The bacteriocin was purified using a three-stage procedure comprising precipitation with ammonium sulfate, extraction with organic solvents, and reversed-phase HPLC. The BacCH91 peptide is thermostable and highly resistant to cleavage by both prokaryotic and eukaryotic peptidases. The MIC for the Gram-positive bacteria ranged from 2.5 nM for Microococcus luteus through 1.3-6.0 μM for staphylococcal strains up to more than 100 μM for Lactococcus lactis. BacCH91 was ineffective against the Gram-negative strains tested at the maximal concentration (100 μM). The amino acid sequence of BacCH91 is similar to that of epidermin and gallidermin. The encoding gene (bacCH91) occurred in two allelic variants distinguishable in the restriction fragment length polymorphism assay. Variant I, identified in S. aureus CH-91, dominated in S. aureus strains of poultry origin, although strains with variant II were also identified in this group. S. aureus strains of human origin were characterized exclusively by variant II.
Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.
2014-01-01
Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.
The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less
Memmi, Guido; Filipe, Sergio R.; Pinho, Mariana G.; Fu, Zhibiao; Cheung, Ambrose
2008-01-01
Recent cases of infections caused by community-acquired methicillin-resistant Staphylococcus aureus (MRSA) (CA-MRSA) strains in healthy individuals have raised concerns worldwide. CA-MRSA strains differ from hospital-acquired MRSAs by virtue of their genomic background and increased virulence in animal models. Here, we show that in two common CA-MRSA isolates, USA300 and MW2 (USA400), a loss of penicillin binding protein 4 (PBP4) is sufficient to cause a 16-fold reduction in oxacillin and nafcillin resistance, thus demonstrating that mecA, encoding PBP2A, is not the sole determinant of methicillin resistance in CA-MRSA. The loss of PBP4 was also found to severely affect the transcription of PBP2 in cells after challenge with oxacillin, thus leading to a significant decrease in peptidoglycan cross-linking. Autolysis, which is commonly associated with the killing mechanism of penicillin and β-lactams, does not play a role in the reduced resistance phenotype associated with the loss of PBP4. We also showed that cefoxitin, a semisynthetic β-lactam that binds irreversibly to PBP4, is synergistic with oxacillin in killing CA-MRSA strains, including clinical CA-MRSA isolates. Thus, PBP4 represents a major target for drug rediscovery against CA-MRSA, and a combination of cefoxitin and synthetic penicillins may be an effective therapy for CA-MRSA infections. PMID:18725435
Multidrug Efflux Pumps in Staphylococcus aureus: an Update.
Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel
2013-01-01
The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.
Sharma-Kuinkel, Batu K.; Ahn, Sun H.; Rude, Thomas H.; Zhang, Yurong; Tong, Steven Y. C.; Ruffin, Felicia; Genter, Fredric C.; Braughton, Kevin R.; DeLeo, Frank R.; Barriere, Steven L.
2012-01-01
The impact of Panton-Valentine leukocidin (PVL) on the outcome in Staphylococcus aureus pneumonia is controversial. We genotyped S. aureus isolates from patients with hospital-acquired pneumonia (HAP) enrolled in two registrational multinational clinical trials for the genetic elements carrying pvl and 30 other virulence genes. A total of 287 isolates (173 methicillin-resistant S. aureus [MRSA] and 114 methicillin-susceptible S. aureus [MSSA] isolates) from patients from 127 centers in 34 countries for whom clinical outcomes of cure or failure were available underwent genotyping. Of these, pvl was detected by PCR and its product confirmed in 23 isolates (8.0%) (MRSA, 18/173 isolates [10.4%]; MSSA, 5/114 isolates [4.4%]). The presence of pvl was not associated with a higher risk for clinical failure (4/23 [17.4%] versus 48/264 [18.2%]; P = 1.00) or mortality. These findings persisted after adjustment for multiple potential confounding variables. No significant associations between clinical outcome and (i) presence of any of the 30 other virulence genes tested, (ii) presence of specific bacterial clone, (iii) levels of alpha-hemolysin, or (iv) delta-hemolysin production were identified. This study suggests that neither pvl presence nor in vitro level of alpha-hemolysin production is the primary determinant of outcome among patients with HAP caused by S. aureus. PMID:22205797
Ben Said, Meriam; Abbassi, Mohamed Salah; Gómez, Paula; Ruiz-Ripa, Laura; Sghaier, Senda; Ibrahim, Chourouk; Torres, Carmen; Hassen, Abdennaceur
2017-08-01
The objective was to characterize Staphylococcus aureus isolated from two wastewater treatment plants (WWTPs) located in Tunis City (Tunisia), during the period 2014-2015. Genetic lineages, antibiotic resistance mechanisms and virulence factors were determined for the recovered isolates. S. aureus isolates were recovered from 12 of the 62 wastewater samples tested (19.35%), and one isolate/sample was characterized, all of them being methicillin-susceptible (MSSA). Six spa types (t587, t674, t224, t127, t701 and t1534) were found among the 12 isolates, and the spa-t587, associated with the new sequence type ST3245, was the most predominant one (7 isolates). The remaining isolates were assigned to five clonal complexes (CC5, CC97, CC1, CC6 and CC522) according to the sequence-type determined and/or the spa-type detected. S. aureus isolates were ascribed to agrI (n = 3), agrII (n = 7) and agrIII (n = 1); however, one isolate was non-typeable. S. aureus showed resistance to (number of isolates): penicillin (12), erythromycin (7), tetracycline (one) and clindamycin (one). Among the virulence factors investigated, only one isolate harboured the tst gene, encoding the TSST-1 (toxic shock syndrome toxin 1). Despite the low number of studied isolates, the present study reports the occurrence of both human- and animal-associated S. aureus clonal complexes in WWTPs in Tunisia.
Staphylococcus aureus from the German general population is highly diverse.
Becker, Karsten; Schaumburg, Frieder; Fegeler, Christian; Friedrich, Alexander W; Köck, Robin
2017-01-01
This prospective cohort study evaluates colonization dynamics and molecular characteristics of methicillin-susceptible and - resistant Staphylococcus aureus (MSSA/MRSA) in a German general population. Nasal swabs of 1878 non-hospitalized adults were screened for S. aureus. Participants were screened thrice in intervals of 6-8 months. Isolates were characterized by spa and agr typing, mecA and mecC possession, respectively, and PCRs targeting virulence factors. 40.9% of all participants carried S. aureus at least once while 0.7% of the participants carried MRSA (mainly spa t011). MSSA isolates (n=1359) were associated with 331 different spa types; t084 (7.7%), t091 (6.1%) and t012 (71, 5.2%) were predominant. Of 206 participants carrying S. aureus at all three sampling time points, 14.1% carried the same spa type continuously; 5.3% carried different spa types with similar repeat patterns, but 80.6% carried S. aureus with unrelated spa types. MSSA isolates frequently harboured genes encoding enterotoxins (sec: 16.6%, seg: 63.1%, sei: 64.5%) and toxic shock syndrome toxin (tst: 17.5%), but rarely Panton-Valentine leukocidin (lukS-PV/lukF-PV: 0.2%). MSSA colonizing human nares in the community are clonally highly diverse. Among those constantly carrying S. aureus, clonal lineages changed over time. The proportion of persistent S. aureus carriers was lower than reported elsewhere. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bergström, A; Gustafsson, C; Leander, M; Fredriksson, M; Grönlund, U; Trowald-Wigh, G
2012-07-01
To investigate whether hospitalised dogs treated surgically may become culture positive for methicillin-resistant Staphylococcus pseudintermedius or methicillin-resistant Staphylococcus aureus. Surgically treated dogs (n=45) were sampled for methicillin-resistant Staphylococcus pseudintermedius or methicillin-resistant Staphylococcus aureus on admission, before and after surgery and at the time of removal of surgical stitches. The hospital environment (n=57), including healthy dogs in the veterinary hospital environment (n=34), were sampled for methicillin-resistant Staphylococcus pseudintermedius or methicillin-resistant Staphylococcus aureus. Genetic variations among methicillin-resistant Staphylococcus pseudintermedius or methicillin-resistant Staphylococcus aureus isolates were identified through detection of restriction fragment polymorphisms. No dogs developed a wound infection due to methicillin-resistant Staphylococcus pseudintermedius or methicillin-resistant Staphylococcus aureus. However, there was a significant increase in the number of dogs carrying methicillin-resistant Staphylococcus pseudintermedius after hospitalisation compared to admission (P<0·001). No methicillin-resistant Staphylococcus aureus was isolated from dogs, but was present in the environment. Methicillin-resistant Staphylococcus pseudintermedius isolates were recovered from environmental surfaces and hospitalised animals, but not from healthy dogs. Methicillin-resistant Staphylococcus pseudintermedius isolates representing nine different restriction endonuclease digestion patterns were found, with two of these occurring in both the environment and on dogs. Dogs may contract methicillin-resistant Staphylococcus pseudintermedius in association with surgery and hospitalisation. Resistant bacteria may be transmitted between dogs, staff and the environment. Dogs colonised with methicillin-resistant Staphylococcus pseudintermedius may be a source for hospital- and community-acquired infections. © 2012 British Small Animal Veterinary Association.
Mckenney, D; Pouliot, K; Wang, Y; Murthy, V; Ulrich, M; Döring, G; Lee, J C; Goldmann, D A; Pier, G B
2000-09-29
Staphylococcus aureus and S. epidermidis are among the most common causes of nosocomial infection, and S. aureus is also of major concern to human health due to its occurrence in community-acquired infections. These staphylococcal species are also major pathogens for domesticated animals. We have previously identified poly-N-succinyl beta-1-6 glucosamine (PNSG) as the chemical form of the S. epidermidis capsular polysaccharide/adhesin (PS/A) which mediates adherence of coagulase-negative staphylococci (CoNS) to biomaterials, serves as the capsule for strains of CoNS that express PS/A, and is a target for protective antibodies. We have recently found that PNSG is made by S. aureus as well, where it is an environmentally regulated, in vivo-expressed surface polysaccharide and similarly serves as a target for protective immunity. Only a minority of fresh human clinical isolates of S. aureus elaborate PNSG in vitro but most could be induced to do so under specific in vitro growth conditions. However, by immunofluorescence microscopy, S. aureus cells in infected human sputa and lung elaborated PNSG. The ica genes, previously shown to encode proteins in CoNS that synthesize PNSG, were found by PCR in all S. aureus strains examined, and immunogenic and protective PNSG could be isolated from S. aureus. Active and passive immunization of mice with PNSG protected them against metastatic kidney infections after intravenous inoculation with eight phenotypically PNSG-negative S. aureus. Isolates recovered from kidneys expressed PNSG, but expression was lost with in vitro culture. Strong antibody responses to PNSG were elicited in S. aureus infected mice, and a PNSG-capsule was observed by electron microscopy on isolates directly plated from infected kidneys. PNSG represents a previously unidentified surface polysaccharide of S. aureus that is elaborated during human and animal infection and is a prominent target for protective antibodies.
Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.
2016-01-01
ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. PMID:27747296
Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.
2016-01-01
Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047
Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis.
Christensen, Gitte J M; Scholz, Christian F P; Enghild, Jan; Rohde, Holger; Kilian, Mogens; Thürmer, Andrea; Brzuszkiewicz, Elzbieta; Lomholt, Hans B; Brüggemann, Holger
2016-02-29
Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes. First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12 S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20 S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins. Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes.
Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F
2011-08-02
A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.
Alsulami, Tawfiq S; Zhu, Xingyue; Abdelhaseib, Maha Usama; Singh, Atul K; Bhunia, Arun K
2018-05-24
Staphylococcus species are a major pathogen responsible for nosocomial infections and foodborne illnesses. We applied a laser-based BARDOT (bacterial rapid detection using optical scattering technology) for rapid colony screening and detection of Staphylococcus on an agar plate and differentiate these from non-Staphylococcus spp. Among the six growth media tested, phenol red mannitol agar (PRMA) was found most suitable for building the Staphylococcus species scatter image libraries. Scatter image library for Staphylococcus species gave a high positive predictive value (PPV 87.5-100%) when tested against known laboratory strains of Staphylococcus spp., while the PPV against non-Staphylococcus spp. was 0-38%. A total of nine naturally contaminated bovine raw milk and ready-to-eat chicken salad samples were tested, and BARDOT detected Staphylococcus including Staphylococcus aureus with 80-100% PPV. Forty-five BARDOT-identified bacterial isolates from naturally contaminated foods were further confirmed by tuf and nuc gene-specific PCR and 16S rRNA gene sequence. This label-free, non-invasive on-plate colony screening technology can be adopted by the food industries, biotechnology companies, and public health laboratories for Staphylococcus species detection including S. aureus from various samples for food safety and public health management. Graphical abstract.
Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization.
Donderis, Jorge; Bowring, Janine; Maiques, Elisa; Ciges-Tomas, J Rafael; Alite, Christian; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R; Marina, Alberto
2017-09-01
The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules.
Convergent evolution involving dimeric and trimeric dUTPases in pathogenicity island mobilization
Ciges-Tomas, J. Rafael; Mehmedov, Iltyar; Tormo-Mas, María Angeles; Penadés, José R.
2017-01-01
The dUTPase (Dut) enzymes, encoded by almost all free-living organisms and some viruses, prevent the misincorporation of uracil into DNA. We previously proposed that trimeric Duts are regulatory proteins involved in different cellular processes; including the phage-mediated transfer of the Staphylococcus aureus pathogenicity island SaPIbov1. Recently, it has been shown that the structurally unrelated dimeric Dut encoded by phage ϕNM1 is similarly able to mobilize SaPIbov1, suggesting dimeric Duts could also be regulatory proteins. How this is accomplished remains unsolved. Here, using in vivo, biochemical and structural approaches, we provide insights into the signaling mechanism used by the dimeric Duts to induce the SaPIbov1 cycle. As reported for the trimeric Duts, dimeric Duts contain an extremely variable region, here named domain VI, which is involved in the regulatory capacity of these enzymes. Remarkably, our results also show that the dimeric Dut signaling mechanism is modulated by dUTP, as with the trimeric Duts. Overall, our results demonstrate that although unrelated both in sequence and structure, dimeric and trimeric Duts control SaPI transfer by analogous mechanisms, representing a fascinating example of convergent evolution. This conserved mode of action highlights the biological significance of Duts as regulatory molecules. PMID:28892519
Paranthaman, K; Bentley, A; Milne, L M; Kearns, A; Loader, S; Thomas, A; Thompson, F; Logan, M; Newitt, S; Puleston, R
2014-08-21
Staphylococcal scalded skin syndrome (SSSS) is a blistering skin condition caused by exfoliative toxin-producing strains of Staphylococcus aureus. Outbreaks of SSSS in maternity settings are rarely reported. We describe an outbreak of SSSS that occurred among neonates born at a maternity unit in England during December 2012 to March 2013. Detailed epidemiological and microbiological investigations were undertaken. Eight neonates were found to be infected with the outbreak strain of S. aureus, of spa type t346, representing a single pulsotype. All eight isolates contained genes encoding exfoliative toxin A (eta) and six of them contained genes encoding toxin B (etb). Nasal swabs taken during targeted staff screening yielded a staphylococcal carriage rate of 21% (17/80), but none contained the outbreak strain. Mass screening involving multi-site swabbing and pooled, enrichment culture identified a healthcare worker (HCW) with the outbreak strain. This HCW was known to have a chronic skin condition and their initial nasal screen was negative. The outbreak ended when they were excluded from work. This outbreak highlights the need for implementing robust swabbing and culture methodswhen conventional techniques are unsuccessful in identifying staff carrier(s). This study adds to the growing body of evidence on the role of HCWs in nosocomial transmission of S. aureus.
Purification and characterization of an antifungal protein, C-FKBP, from Chinese cabbage.
Park, Seong-Cheol; Lee, Jung Ro; Shin, Sun-Oh; Jung, Ji Hyun; Lee, Young Mee; Son, Hyosuk; Park, Yoonkyung; Lee, Sang Yeol; Hahm, Kyung-Soo
2007-06-27
An antifungal protein was isolated from Chinese cabbage (Brassica campestris L. ssp. pekinensis) by buffer-soluble extraction and two chromatographic procedures. The results of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the isolated Chinese cabbage protein was identical to human FK506-binding protein (FKBP). A cDNA encoding FKBP was isolated from a Chinese cabbage leaf cDNA library and named C-FKBP. The open reading frame of the gene encoded a 154-amino acid polypeptide. The amino acid sequence of C-FKBP exhibits striking degrees of identity with the corresponding mouse (61%), human (60%), and yeast (56%) proteins. Genomic Southern blot analyses using the full-length C-FKBP cDNA probe revealed a multigene family in the Chinese cabbage genome. The C-FKBP mRNA was highly expressed in vegetative tissues. We also analyzed the antifungal and peptidyl-prolyl cis-trans isomerase activity of recombinant C-FKBP protein expressed in Escherichia coli. This protein inhibited pathogenic fungal strains, including Candida albicans, Botrytis cinerea, Rhizoctonia solani, and Trichoderma viride, whereas it exhibited no activity against E. coli and Staphylococcus aureus. These results suggest that recombinant C-FKBP is an excellent candidate as a lead compound for the development of antifungal agents.
Son, S J; Park, M R; Ryu, S D; Maburutse, B E; Oh, N S; Park, J; Oh, S; Kim, Y
2016-11-01
This study aimed to develop an in vivo screening platform using Caenorhabditis elegans to identify a novel bacteriocin for controlling the mastitis-causing pathogen Staphylococcus aureus strain RF122 in dairy cows. Using Bacillus spp. isolated from traditional Korean foods, we developed a direct in vivo screening platform that uses 96-well plates and fluorescence image analysis. We identified a novel bacteriocin produced by Bacillus licheniformis strain 146 (lichenicin 146) with a high in vivo antimicrobial activity using our liquid C. elegans-Staph. aureus assay. We also determined the characteristics of lichenicin 146 using liquid chromatography-mass spectrometry and confirmed that it shared homologous sequences with bacteriocin family proteins. In addition, RNA-sequencing analysis revealed genes encoding cell surface or membrane proteins (SAB0993c, SAB0150, SAB0994c, and SAB2375c) that are involved in the bactericidal activity of lichenicin 146 against Staph. aureus strain RF122 infection as well as those encoding transcriptional regulators (SAB0844c and SAB0133). Thus, our direct in vivo screening platform facilitates simple, convenient, cost-effective, and reliable screening of potential antimicrobial compounds with applications in the dairy field. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu
2015-01-01
Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773
Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu
2015-09-15
Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.
Community-associated MRSA: what makes them special?
Otto, Michael
2013-01-01
Summary While infections with methicillin-resistant Staphylococcus aureus (MRSA) were traditionally restricted to the hospital setting, novel MRSA strains emerged over the last two decades that have the capacity to infect otherwise healthy people outside of the hospital setting. These communityassociated (CA-) MRSA strains combine methicillin resistance with enhanced virulence and fitness. Interestingly, CA-MRSA strains emerged globally and from different backgrounds, indicating that the “trade-off” between maintaining sufficient levels of methicillin resistance and obtaining enhanced virulence at a low fitness cost was achieved on several occasions in convergent evolution. However, frequently this process comprised similar changes. First and foremost, all CA-MRSA strains typically carry a novel type of methicillin resistance locus that appears to cause less of a fitness burden. Additionally, acquisition of specific toxin genes, most notably that encoding Panton-Valentine leukocidin (PVL), and adaptation of gene expression of genome-encoded toxins, such as alpha-toxin and phenol-soluble modulins (PSMs), further contributed to the evolution of CA-MRSA. Finally, the exceptional epidemiological success of the USA300 CA-MRSA clone in particular may have been due to yet another gene acquisition, namely that of the speG gene, which is located on the arginine catabolic mobile element (ACME) and involved in detoxifying harmful host-derived polyamines. PMID:23517691
Novel Genes Encoding Hexadecanoic Acid Δ6-Desaturase Activity in a Rhodococcus sp.
Araki, Hiroyuki; Hagihara, Hiroshi; Takigawa, Hirofumi; Tsujino, Yukiharu; Ozaki, Katsuya
2016-11-01
cis-6-Hexadecenoic acid, a major component of human sebaceous lipids, is involved in the defense mechanism against Staphylococcus aureus infection in healthy skin and closely related to atopic dermatitis. Previously, Koike et al. (Biosci Biotechnol Biochem 64:1064-1066, 2000) reported that a mutant strain of Rhodococcus sp. produced cis-6-hexadecenoate derivatives from palmitate alkyl esters. From the mutant Rhodococcus strain, we identified and sequenced two open reading frames present in an amplified 5.7-kb region; these open reading frames encoded tandemly repeated Δ6-desaturase-like genes, Rdes1 and Rdes2. A phylogenetic tree indicated that Rdes1 and Rdes2 were different from previously known Δ6-desaturase genes, and that they formed a new cluster. Rdes1 and Rdes2 were each introduced into vectors and then expressed separately in Escherichia coli, and the fatty acid composition of the transformed cells was analyzed by gas chromatography and mass spectrometry. The amount of cis-6-hexadecenoic acid was significantly higher in Rdes1- or Rdes2-transformed E. coli cells (twofold and threefold, respectively) than in vector-only control cells. These results showed that cis-6-hexadecenoic acid was produced in E. coli cells by the rhodococcal Δ6-desaturase-like proteins.
Antibiotic resistance in Staphylococcus aureus. Current status and future prospects.
Foster, Timothy J
2017-05-01
The major targets for antibiotics in staphylococci are (i) the cell envelope, (ii) the ribosome and (iii) nucleic acids. Several novel targets emerged from recent targeted drug discovery programmes including the ClpP protease and FtsZ from the cell division machinery. Resistance can either develop by horizontal transfer of resistance determinants encoded by mobile genetic elements viz plasmids, transposons and the staphylococcal cassette chromosome or by mutations in chromosomal genes. Horizontally acquired resistance can occur by one of the following mechanisms: (i) enzymatic drug modification and inactivation, (ii) enzymatic modification of the drug binding site, (iii) drug efflux, (iv) bypass mechanisms involving acquisition of a novel drug-resistant target, (v) displacement of the drug to protect the target. Acquisition of resistance by mutation can result from (i) alteration of the drug target that prevents the inhibitor from binding, (ii) derepression of chromosomally encoded multidrug resistance efflux pumps and (iii) multiple stepwise mutations that alter the structure and composition of the cell wall and/or membrane to reduce drug access to its target. This review focuses on development of resistance to currently used antibiotics and examines future prospects for new antibiotics and informed use of drug combinations. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gómez, Paula; Lozano, Carmen; Benito, Daniel; Estepa, Vanesa; Tenorio, Carmen; Zarazaga, Myriam; Torres, Carmen
2016-05-01
The objective of this study was to determine the prevalence of Staphylococcus in urban wastewater treatment plants (UWTP) of La Rioja (Spain), and to characterize de obtained isolates. 16 wastewater samples (8 influent, 8 effluent) of six UWTPs were seeded on mannitol-salt-agar and oxacillin-resistance-screening-agar-base for staphylococci and methicillin-resistant Staphylococcus aureus recovery. Antimicrobial susceptibility profile was determined for 16 antibiotics and the presence of 35 antimicrobial resistance genes and 14 virulence genes by PCR. S. aureus was typed by spa, agr, and multilocus-sequence-typing, and the presence of immune-evasion-genes cluster was analyzed. Staphylococcus spp. were detected in 13 of 16 tested wastewater samples (81%), although the number of CFU/mL decreased after treatment. 40 staphylococci were recovered (1-5/sample), and 8 of them were identified as S. aureus being typed as (number of strains): spa-t011/agr-II/ST398 (1), spa-t002/agr-II/ST5 (2), spa-t3262/agr-II/ST5 (1), spa-t605/agr-II/ST126 (3), and spa-t878/agr-III/ST2849 (1). S. aureus ST398 strain was methicillin-resistant and showed a multidrug resistance phenotype. Virulence genes tst, etd, sea, sec, seg, sei, sem, sen, seo, and seu, were detected among S. aureus and only ST5 strains showed genes of immune evasion cluster. Thirty-two coagulase-negative Staphylococcus of 12 different species were recovered (number of strains): Staphylococcus equorum (7), Staphylococcus vitulinus (4), Staphylococcus lentus (4), Staphylococcus sciuri (4), Staphylococcus fleurettii (2), Staphylococcus haemolyticus (2), Staphylococcus hominis (2), Staphylococcus saprophyticus (2), Staphylococcus succinus (2), Staphylococcus capitis (1), Staphylococcus cohnii (1), and Staphylococcus epidermidis (1). Five presented a multidrug resistance phenotype. The following resistance and virulence genes were found: mecA, lnu(A), vga(A), tet(K), erm(C), msr(A)/(B), mph(C), tst, and sem. We found that Staphylococcus spp. are normal contaminants of urban wastewater, including different lineages of S. aureus and a high diversity of coagulase-negative species. The presence of multiple resistance and virulence genes, including mecA, in staphylococci of wastewater can be a concern for the public health. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049
Isolation of methicillin-resistant Staphylococcus spp. from ready-to-eat fish products.
Sergelidis, D; Abrahim, A; Papadopoulos, T; Soultos, N; Martziou, E; Koulourida, V; Govaris, A; Pexara, A; Zdragas, A; Papa, A
2014-11-01
A hundred samples from ready-to-eat (RTE) fish products were examined for the presence and antimicrobial susceptibility of Staphylococcus spp. Staphylococci were isolated from 43% of these samples (n = 100). The identified species in the samples were Staphylococcus aureus (7%), Staphylococcus epidermidis (13%), Staphylococcus xylosus (12%), Staphylococcus sciuri (4%), Staphylococcus warneri (3%), Staphylococcus saprophyticus (2%), Staphylococcus schleiferi (1%) and Staphylococcus auricularis (1%). Two Staph. aureus (MRSA) isolates, three Staph. epidermidis (MRSE), five Staph. xylosus, four Staph. sciuri, one Staph. schleiferi and one Staph. saprophyticus isolates were resistant to oxacillin and all of them carried the mecA gene. The two MRSA isolates belonged to the spa types t316 (ST359) and t548 (ST5) and none of them was able to produce enterotoxins. Pulsed field gel electrophoresis for Staph. aureus and Staph. epidermidis isolates revealed 6 and 11 distinct PFGE types, respectively, reflecting diversity. The presence of methicillin-resistant staphylococci, especially MRSA and MRSE, in RTE fish products may constitute a potential health risk for consumers. This study provides the first data on the occurrence of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci in salted and smoked fish products in Greece. These results are important and useful for Staphylococcus spp. risk assessment and management programmes for ready-to-eat fish products. © 2014 The Society for Applied Microbiology.
Purification and characterization of human pancreatic polypeptide expressed in E. coli.
Griko, Y V; Kapanadze, M D
1995-08-04
The region of cDNA encoding human pancreatic polypeptide (hPP) was obtained by polymerase chain reaction (PCR) and subcloned into an expression vector. The pancreatic polypeptide gene was expressed in Escherichia coli in two versions: as a cleavable fusion protein with IgG-binding synthetic ZZ domains of protein A from Staphylococcus aureus or with the 1-48 fragment of lambda Cro repressor. Site-specific hydrolysis by hydroxylamine was used to cleave the fusion protein, releasing the human polypeptide. The structure of the obtained hPP has been studied by scanning microcalorimetry and circular dichroism spectrometry. It has been shown that hPP in solutions close to neutral has a compact and unique spatial structure with an extended hydrophobic core. This structure is stable at 20 degrees C and co-operatively breaks down upon heating from this temperature.
21 CFR 520.88h - Amoxicillin trihydrate and clavulanate potassium for oral suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (penicillinase) producing Staphylococcus aureus, nonbeta-lactamase Staphylococcus aureus, Staphylococcus spp.... aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., E. coli, Pasteurella...
21 CFR 520.88h - Amoxicillin trihydrate and clavulanate potassium for oral suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (penicillinase) producing Staphylococcus aureus, nonbeta-lactamase Staphylococcus aureus, Staphylococcus spp.... aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., E. coli, Pasteurella...
21 CFR 520.88h - Amoxicillin trihydrate and clavulanate potassium for oral suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (penicillinase) producing Staphylococcus aureus, nonbeta-lactamase Staphylococcus aureus, Staphylococcus spp.... aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., E. coli, Pasteurella...
Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting.
Svec, Pavel; Pantůček, Roman; Petráš, Petr; Sedláček, Ivo; Nováková, Dana
2010-12-01
A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)₅ primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)₅ primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)₅ primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp. Copyright © 2010 Elsevier GmbH. All rights reserved.
Staphylococcus muscae, a new species isolated from flies.
Hájek, V; Ludwig, W; Schleifer, K H; Springer, N; Zitzelsberger, W; Kroppenstedt, R M; Kocur, M
1992-01-01
A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).
Furukawa, Mutsumi; Yoneyama, Hiroshi; Hata, Eiji; Iwano, Hidetomo; Higuchi, Hidetoshi; Ando, Tasuke; Sato, Mika; Hayashi, Tomohito; Kiku, Yoshio; Nagasawa, Yuya; Niimi, Kanae; Usami, Katsuki; Ito, Kumiko; Watanabe, Kouichi; Nochi, Tomonori; Aso, Hisashi
2018-02-26
Staphylococcus aureus is a major pathogen that causes subclinical mastitis associated with huge economic losses to the dairy industry. A few vaccines for bovine mastitis are available, and they are expected to induce the production of S. aureus-specific antibodies that prevent bacterial adherence to host cells or promote opsonization by phagocytes. However, the efficacy of such vaccines are still under debate; therefore, further research focusing on improving the current vaccines by seeking additional mechanisms of action is required to reduce economic losses due to mastitis in the dairy industry. Here, we generated S. aureus-specific bovine IgG antibodies (anti-S. aureus) that directly inhibited bacterial growth in vitro. Inhibition depended on specificity for anti-S. aureus, not the interaction between Protein A and the fragment crystallizable region of the IgG antibodies or bacterial agglutination. An in vitro culture study using S. aureus strain JE2 and its deletion mutant JE2ΔSrtA, which lacks the gene encoding sortase A, revealed that the effect of anti-S. aureus was sortase-A-independent. Sortase A is involved in the synthesis of cell-wall-associated proteins. Thus, other surface molecules, such as membrane proteins, cell surface polysaccharides, or both, may trigger the inhibition of bacterial growth by anti-S. aureus. Together, our findings contribute insights into developing new strategies to further improve the available mastitis vaccine by designing a novel antigen on the surface of S. aureus to induce inhibitory signals that prevent bacterial growth.
Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Suárez-Rodríguez, Luis M.; Salgado-Garciglia, Rafael; Rodríguez-Zapata, Luis C.; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E.
2013-01-01
Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 μg/mL total protein (27–38%) but was more evident at 100 μg/mL (52–65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens. PMID:24319695
Chen, Huizhong; Hopper, Sherryll L.; Cerniglia, Carl E.
2018-01-01
Azo dyes are a predominant class of colourants used in tattooing, cosmetics, foods and consumer products. A gene encoding NADPH-flavin azoreductase (Azo1) from the skin bacterium Staphylococcus aureus ATCC 25923 was identified and overexpressed in Escherichia coli. RT-PCR results demonstrated that the azo1 gene was constitutively expressed at the mRNA level in S. aureus. Azo1 was found to be a tetramer with a native molecular mass of 85 kDa containing four non-covalently bound FMN. Azo1 requires NADPH, but not NADH, as an electron donor for its activity. The enzyme was resolved to dimeric apoprotein by removing the flavin prosthetic groups using hydrophobic-interaction chromatography. The dimeric apoprotein was reconstituted on-column and in free stage with FMN, resulting in the formation of a fully functional native-like tetrameric enzyme. The enzyme cleaved the model azo dye 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl Red) into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. The apparent Km values for NADPH and Methyl Red substrates were 0·;074 and 0·057 mM, respectively. The apparent Vmax was 0·4 µM min−1 (mg protein)−1. Azo1 was also able to metabolize Orange II, Amaranth, Ponceau BS and Ponceau S azo dyes. Azo1 represents the first azoreductase to be identified and characterized from human skin microflora. PMID:15870453
First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan.
Nakaminami, Hidemasa; Ito, Teruyo; Han, Xiao; Ito, Ayumu; Matsuo, Miki; Uehara, Yuki; Baba, Tadashi; Hiramatsu, Keiichi; Noguchi, Norihisa
2017-09-01
SasX is a known virulence factor of Staphylococcus aureus involved in colonisation and immune evasion of the bacterium. The sasX gene, which is located on the ϕSPβ prophage, is frequently found in the sequence type (ST) 239 S. aureus lineage, which is the predominant healthcare-associated clone in Asian countries. In Japan, ST239 clones have rarely been identified, and sasX-positive strains have not been reported to date. Here, we report the first identification of 18 sasX-positive methicillin-resistant S. aureus (MRSA) strains in Japanese hospitals between 2009 and 2011. All sasX-positive isolates belonged to an ST239-staphylococcal cassette chromosome mec type III (ST239-III) lineage. However, we were unable to identify additional sasX-positive MRSA strains from 2012 to 2016, indicating that the small epidemic of sasX-positive isolates observed in this study was temporary. The sequence surrounding sasX in the strain TOHH628 lacked 51 genes that encode phage packaging and structural proteins, and no bacteriophage was induced by mitomycin C. Additionally, in the TOHH628 strain, the region (64.6 kb) containing sasX showed high identity to the ϕSPβ-like element (71.3 kb) of the Taiwanese MRSA strain Z172. The data strongly suggest that the present sasX-positive isolates found in Japanese hospitals were transmitted incidentally from other countries. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling.
Askarian, Fatemeh; van Sorge, Nina M; Sangvik, Maria; Beasley, Federico C; Henriksen, Jørn R; Sollid, Johanna U E; van Strijp, Jos A G; Nizet, Victor; Johannessen, Mona
2014-01-01
Signaling through Toll-like receptors (TLRs), crucial molecules in the induction of host defense responses, requires adaptor proteins that contain a Toll/interleukin-1 receptor (TIR) domain. The pathogen Staphylococcus aureus produces several innate immune-evasion molecules that interfere with the host's innate immune response. A database search analysis suggested the presence of a gene encoding a homologue of the human TIR domain in S. aureus MSSA476 which was named staphylococcal TIR domain protein (TirS). Ectopic expression of TirS in human embryonic kidney, macrophage and keratinocyte cell lines interfered with signaling through TLR2, including MyD88 and TIRAP, NF-κB and/or mitogen-activated protein kinase pathways. Moreover, the presence of TirS reduced the levels of cytokines MCP-1 and G-CSF secreted in response to S. aureus. The effects on NF-κB pathway were confirmed using S. aureus MSSA476 wild type, an isogenic mutant MSSA476ΔtirS, and complemented MSSA476ΔtirS +pTirS in a Transwell system where bacteria and host cells were physically separated. Finally, in a systematic mouse infection model, TirS promoted bacterial accumulation in several organs 4 days postinfection. The results of this study reveal a new S. aureus virulence factor that can interfere with PAMP-induced innate immune signaling in vitro and bacterial survival in vivo. © 2014 S. Karger AG, Basel.
Li, Suixia; Wang, Panpan; Zhao, Jialin; Zhou, Luhong; Zhang, Pengfei; Fu, Chengyu; Meng, Jianghong; Wang, Xin
2018-04-01
The aim of this study was to investigate the toxin gene profile and antimicrobial resistance of Staphylococcus aureus isolates from raw chicken in the People's Republic of China. In total, 289 S. aureus isolates were characterized by antimicrobial susceptibility testing, and genes encoding enterotoxins, exfoliative toxins, Panton-Valentine leukocidin, and toxic shock syndrome toxin were revealed by PCR. Overall, 46.0% of the isolates were positive for one or more toxin genes. A high proportion of toxin genes were pvl (26.6%), followed by sej (12.5%), sea (9.0%), seh (8.3%), seb (6.9%), sec (6.9%), sed (4.8%), sei (3.1%), and see (2.4%). None of the isolates harbored seg, tsst-1, or exfoliative toxin genes. In total, 29 toxin gene profiles were obtained, and pvl (10.7%) was the most frequent genotype, followed by sea (5.9%), seb (4.8%), and sej (4.2%). Furthermore, 99.7% of the strains were resistant to at least one of the tested antimicrobial agents, and 87.2% of them displayed multidrug resistance. Resistance was most frequently observed to trimethoprim-sulfamethoxazole and erythromycin (86.2% for each), followed by tetracycline (69.9%), amoxicillin-clavulanic acid (45.0%), and ampicillin (42.6%). None of the strains were resistant to vancomycin. This study indicates that S. aureus isolates from raw chicken harbored multiple toxin genes and exhibited multiple antimicrobial resistance, which represents a potential health hazard for consumers.
de Lencastre, Hermínia; Tomasz, Alexander
2017-01-01
ABSTRACT Most methicillin-resistant Staphylococcus aureus (MRSA) strains are resistant to beta-lactam antibiotics due to the presence of the mecA gene, encoding an extra penicillin-binding protein (PBP2A) that has low affinity for virtually all beta-lactam antibiotics. Recently, a new resistance determinant—the mecC gene—was identified in S. aureus isolates recovered from humans and dairy cattle. Although having typically low MICs to beta-lactam antibiotics, MRSA strains with the mecC determinant are also capable of expressing high levels of oxacillin resistance when in an optimal genetic background. In order to test the impact of extensive beta-lactam selection on the emergence of mecC-carrying strains with high levels of antibiotic resistance, we exposed the prototype mecC-carrying MRSA strain, LGA251, to increasing concentrations of oxacillin. LGA251 was able to rapidly adapt to high concentrations of oxacillin in growth medium. In such laboratory mutants with increased levels of oxacillin resistance, we identified mutations in genes with no relationship to the mecC regulatory system, indicating that the genetic background plays an important role in the establishment of the levels of oxacillin resistance. Our data also indicate that the stringent stress response plays a critical role in the beta-lactam antibiotic resistance phenotype of MRSA strains carrying the mecC determinant. PMID:28069659
Detection of Staphylococcus aureus Delta-Toxin Production by Whole-Cell MALDI-TOF Mass Spectrometry
Gagnaire, Julie; Dauwalder, Olivier; Boisset, Sandrine; Khau, David; Freydière, Anne-Marie; Ader, Florence; Bes, Michèle; Lina, Gerard; Tristan, Anne; Reverdy, Marie-Elisabeth; Marchand, Adrienne; Geissmann, Thomas; Benito, Yvonne; Durand, Géraldine; Charrier, Jean-Philippe; Etienne, Jerome; Welker, Martin; Van Belkum, Alex; Vandenesch, François
2012-01-01
The aim of the present study was to detect the Staphylococcus aureus delta-toxin using Whole-Cell (WC) Matrix Assisted Laser Desorption Ionization - Time-of-Flight (MALDI-TOF) mass spectrometry (MS), correlate delta-toxin expression with accessory gene regulator (agr) status, and assess the prevalence of agr deficiency in clinical isolates with and without resistance to methicillin and glycopeptides. The position of the delta-toxin peak in the mass spectrum was identified using purified delta-toxin and isogenic wild type and mutant strains for agr-rnaIII, which encodes delta-toxin. Correlation between delta-toxin production and agr RNAIII expression was assessed by northern blotting. A series of 168 consecutive clinical isolates and 23 unrelated glycopeptide-intermediate S. aureus strains (GISA/heterogeneous GISA) were then tested by WC-MALDI-TOF MS. The delta-toxin peak was detected at 3005±5 Thomson, as expected for the naturally formylated delta toxin, or at 3035±5 Thomson for its G10S variant. Multivariate analysis showed that chronicity of S. aureus infection and glycopeptide resistance were significantly associated with delta-toxin deficiency (p = 0.048; CI 95%: 1.01–10.24; p = 0.023; CI 95%: 1.20–12.76, respectively). In conclusion, the S. aureus delta-toxin was identified in the WC-MALDI-TOF MS spectrum generated during routine identification procedures. Consequently, agr status can potentially predict infectious complications and rationalise application of novel virulence factor-based therapies. PMID:22792394
Spoor, Laura E.; McAdam, Paul R.; Weinert, Lucy A.; Rambaut, Andrew; Hasman, Henrik; Aarestrup, Frank M.; Kearns, Angela M.; Larsen, Anders R.; Skov, Robert L.; Fitzgerald, J. Ross
2013-01-01
ABSTRACT The importance of livestock as a source of bacterial pathogens with the potential for epidemic spread in human populations is unclear. In recent years, there has been a global increase in community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections of healthy humans, but an understanding of the different evolutionary origins of CA-MRSA clones and the basis for their recent expansion is lacking. Here, using a high-resolution phylogenetic approach, we report the discovery of two emergent clones of human epidemic CA-MRSA which resulted from independent livestock-to-human host jumps by the major bovine S. aureus complex, CC97. Of note, one of the new clones was isolated from human infections on four continents, demonstrating its global dissemination since the host jump occurred over 40 years ago. The emergence of both human S. aureus clones coincided with the independent acquisition of mobile genetic elements encoding antimicrobial resistance and human-specific mediators of immune evasion, consistent with an important role for these genetic events in the capacity to survive and transmit among human populations. In conclusion, we provide evidence that livestock represent a reservoir for the emergence of new human-pathogenic S. aureus clones with the capacity for pandemic spread. These findings have major public health implications highlighting the importance of surveillance for early identification of emergent clones and improved transmission control measures at the human-livestock interface. PMID:23943757
Yepes, Ana; Koch, Gudrun; Waldvogel, Andrea; Garcia-Betancur, Juan-Carlos
2014-01-01
Protein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial models Escherichia coli and Bacillus subtilis have been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacterium Staphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of the S. aureus chromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression of mreB in S. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that in S. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the use S. aureus as a model system in exploring diverse aspects of cellular microbiology. PMID:24747904
Kurokawa, Kenji; Nishida, Satoshi; Ishibashi, Mihoko; Mizumura, Hikaru; Ueno, Kohji; Yutsudo, Takashi; Maki, Hideki; Murakami, Kazuhisa; Sekimizu, Kazuhisa
2008-03-01
UDP-N-acetylmuramic acid:L-alanine ligase that is encoded by the murC gene, is indispensable for bacterial peptidoglycan biosynthesis and an important target for the development of antibacterial agents. Structure of MurC ligase with substrates has been described, however, little validation via studying the effects of mutations on the structure of MurC has been performed. In this study, we carried out a functional in vitro and in vivo characterization of Staphylococcus aureus MurCH343Y protein that has a temperature-sensitive mutation of a conserved residue in the predicted shallow hydrophobic pocket that holds a short L-alanine side chain. Purified H343Y and wild-type MurC had K(m) values for L-alanine of 3.2 and 0.44 mM, respectively, whereas there was no significant difference in their K(m) values for ATP and UDP-N-acetylmuramic acid, suggesting the specific alteration of L-alanine recognition in MurCH343Y protein. In a synthetic medium that excluded L-alanine, S. aureus murCH343Y mutant cells showed an allele-specific slow growth phenotype that was suppressed by addition of L-alanine. These results suggest that His343 of S. aureus MurC is essential for high-affinity binding to L-alanine both in vitro and in vivo and provide experimental evidence supporting the structural information of MurC ligase.
Kim, Hye Jung; Uhm, Tae Guk; Kim, Seong Bo; Kim, Pil
2010-06-01
Metallic and non-metallic isomerases can be used to produce commercially important monosaccharides. To determine which category of isomerase is more suitable as a template for directed evolution to improve enzymes for galactose isomerization, L-arabinose isomerase from Escherichia coli (ECAI; E.C. 5.3.1.4) and tagatose-6-phosphate isomerase from Staphylococcus aureus (SATI; E.C. 5.3.1.26) were chosen as models of a metallic and non-metallic isomerase, respectively. Random mutations were introduced into the genes encoding ECAI and SATI at the same rate, resulting in the generation of 515 mutants of each isomerase. The isomerization activity of each of the mutants toward a non-natural substrate (galactose) was then measured. With an average mutation rate of 0.2 mutations/kb, 47.5% of the mutated ECAIs showed an increase in activity compared with wild-type ECAI, and the remaining 52.5% showed a decrease in activity. Among the mutated SATIs, 58.6% showed an increase in activity, whereas 41.4% showed a decrease in activity. Mutant clones showing a significant change in relative activity were sequenced and specific increases in activity were measured. The maximum increase in activity achieved by mutation of ECAI was 130%, and that for SATI was 190%. Based on these results, the characteristics of the different isomerases are discussed in terms of their usefulness for directed evolution of non-natural substrate isomerization.
Polley, Soumitra; Seal, Soham; Mahapa, Avisek; Jana, Biswanath; Biswas, Anindya; Mandal, Sukhendu; Sinha, Debabrata; Sau, Keya; Sau, Subrata
2017-01-01
Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future. PMID:28584448
Staphylococci on ICE: Overlooked agents of horizontal gene transfer.
Sansevere, Emily A; Robinson, D Ashley
2017-01-01
Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus , which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (ICEs) has been mostly overlooked. Experimental work demonstrating the activity of ICEs in staphylococci remained frozen for years after initial work in the 1980s that showed Tn 916 was capable of transfer from Enterococcus to Staphylococcus . However, recent work has begun to thaw this field. To date, 2 families of ICEs have been identified among staphylococci - Tn 916 that includes the Tn 5801 subfamily, and ICE 6013 that includes at least 7 subfamilies. Both Tn 5801 and ICE 6013 commonly occur in clinical strains of S. aureus . Tn 5801 is the most studied of the Tn 916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli , inhibits restriction barriers to incoming DNA. ICE 6013 is among the shortest known ICEs, but it still includes many uncharacterized open reading frames. This element uses an IS 30 -like transposase as its recombinase, providing some versatility in integration sites. ICE 6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn 5801 . Continued study of these mobile genetic elements may reveal the full extent to which ICEs impact horizontal gene transfer and the evolution of staphylococci.
Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu; He, Chuan
2012-04-01
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.
Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus
Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu
2012-01-01
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus. PMID:22267518
Vancomycin Resistance in Staphylococcus aureus
McGuinness, Will A.; Malachowa, Natalia; DeLeo, Frank R.
2017-01-01
The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)—they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus, with an emphasis on the molecular mechanisms underlying vancomycin resistance. PMID:28656013
Vancomycin Resistance in Staphylococcus aureus .
McGuinness, Will A; Malachowa, Natalia; DeLeo, Frank R
2017-06-01
The evolution of Staphylococcus aureus during the modern antibiotic era has been delineated by distinct strain emergence events, many of which include acquisition of antibiotic resistance. The relative high burden of methicillin-resistant S. aureus (MRSA) in healthcare and community settings is a major concern worldwide. Vancomycin, a glycopeptide antibiotic that inhibits cell wall biosynthesis, remains a drug of choice for treatment of severe MRSA infections. S. aureus strains exhibiting increased resistance to vancomycin, known as vancomycin intermediate-resistant S. aureus (VISA) (MIC = 4-8 µg/mL), were discovered in the 1990s. The molecular basis of resistance in VISA is polygenic and involves stepwise mutations in genes encoding molecules predominantly involved in cell envelope biosynthesis. S. aureus isolates with complete resistance to vancomycin (MIC ≥ 16 µg/mL) are termed vancomycin-resistant S. aureus (VRSA)-they were first reported in the U.S. in 2002. Resistance in VRSA is conferred by the vanA gene and operon, which is present on a plasmid. Although treatment of VRSA infections is challenging, the total number of human VRSA infections to date is limited (14 in the U.S.). By comparison, the burden of VISA is relatively high and the molecular mechanisms of resistance are less well-defined. VISA are associated with persistent infections, vancomycin treatment failure, and poor clinical outcomes. Here, we review in brief progress made toward understanding the acquisition of antibiotic resistance in S. aureus , with an emphasis on the molecular mechanisms underlying vancomycin resistance.
Jans, Christoph; Merz, Axel; Johler, Sophia; Younan, Mario; Tanner, Sabine A; Kaindi, Dasel Wambua Mulwa; Wangoh, John; Bonfoh, Bassirou; Meile, Leo; Tasara, Taurai
2017-08-01
Staphylococcus aureus frequently isolated from milk products in sub-Saharan Africa (SSA) is a major pathogen responsible for food intoxication, human and animal diseases. SSA hospital-derived strains are well studied but data on the population structure of foodborne S. aureus required to identify possible staphylococcal food poisoning sources is lacking. Therefore, the aim was to assess the population genetic structure, virulence and antibiotic resistance genes associated with milk-derived S. aureus isolates from Côte d'Ivoire, Kenya and Somalia through spa-typing, MLST, and DNA microarray analysis. Seventy milk S. aureus isolates from the three countries were assigned to 27 spa (7 new) and 23 (12 new) MLST sequence types. Milk-associated S. aureus of the three countries is genetically diverse comprising human and livestock-associated clonal complexes (CCs) predominated by the CC5 (n = 10) and CC30 (n = 9) isolates. Panton-Valentine leukocidin, toxic shock syndrome toxin and enterotoxin encoding genes were predominantly observed among human-associated CCs. Penicillin, fosfomycin and tetracycline, but not methicillin resistance genes were frequently detected. Our findings indicate that milk-associated S. aureus in SSA originates from human and animal sources alike highlighting the need for an overarching One Health approach to reduce S. aureus disease burdens through improving production processes, animal care and hygienic measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gleeson, Aoife; Larkin, Philip; O'Sullivan, Niamh
2016-04-01
Little is known about the impact of meticillin-resistant Staphylococcus aureus on patients with advanced cancer, such as its impact on the quality of life of this vulnerable group. To date, research on meticillin-resistant Staphylococcus aureus in the palliative care setting has had a quantitative focus. The purpose of this study was to explore the impact of a meticillin-resistant Staphylococcus aureus diagnosis on patients and their carers. This article reports upon a qualitative interview study of nine patients with advanced cancer and meticillin-resistant Staphylococcus aureus and nine family members (n = 18). Framework analysis was used to analyse the data. Patients and family members of patients with advanced cancer either admitted to the specialist palliative care unit or receiving palliative care in the hospital setting, who had a laboratory confirmed diagnosis of meticillin-resistant Staphylococcus aureus colonisation, were considered for inclusion in the study. Four themes were identified using framework analysis: reactions to receiving a meticillin-resistant Staphylococcus aureus diagnosis, the need for effective communication of the meticillin-resistant Staphylococcus aureus diagnosis, the enigmatic nature of meticillin-resistant Staphylococcus aureus, and lessons to guide the future care of meticillin-resistant Staphylococcus aureus patients. This article indicates that meticillin-resistant Staphylococcus aureus can have a significant impact on advanced cancer patients and their families. This impact may be underestimated, but early and careful face-to-face explanation about meticillin-resistant Staphylococcus aureus and its implications can help patients and their families to cope better with it. These findings should be considered when developing policy relating to meticillin-resistant Staphylococcus aureus management and infection control in specialist palliative care settings. © The Author(s) 2015.
Arnold, A R; Burnham, C-A D; Ford, B A; Lawhon, S D; McAllister, S K; Lonsway, D; Albrecht, V; Jerris, R C; Rasheed, J K; Limbago, B; Burd, E M; Westblade, L F
2016-03-01
The performance of a rapid penicillin-binding protein 2a (PBP2a) detection assay, the Alere PBP2a culture colony test, was evaluated for identification of PBP2a-mediated beta-lactam resistance in human and animal clinical isolates of Staphylococcus intermedius group, Staphylococcus lugdunensis, and Staphylococcus schleiferi. The assay was sensitive and specific, with all PBP2a-negative and PBP2a-positive strains testing negative and positive, respectively. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Morita, Jennifer E; Fujioka, Roger S; Tice, Alan D; Berestecky, John; Sato, Dayna; Seifried, Steven E; Katz, Alan R
2007-08-01
Currently, the carriage rate for Community-Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) is unknown in Hawai'i. This survey focuses on a healthy population of 95 college students and 5 faculty who completed a survey related to possible risk factors for colonization of Staphylococcus aureus and were sampled for S. aureus from their anterior nares. Thirty-three (33%) subjects were carrying Staphylococcus aureus and of those, 3 (3%) carried MRSA. There was no significant association between Staphylococcus aureus carriage and ethnicity, gender exposure to seawater, prior Staphylococcus aureus infections, recent antibiotic use, or pets. Additional testing of a larger group of healthy individuals would be beneficial in assessing factors associated with CA-MRSA and Methicillin-susceptible Staphylococcus aureus (MSSA) carriage in Hawai'i.
Khatri, S; Pant, N D; Bhandari, R; Shrestha, K L; Shrestha, C D; Adhikari, N; Poudel, A
2017-01-01
Methicillin-resistant Staphylococcus aureus is one of the most common causes of nosocomial infections. Due to its multidrug resistant nature; infections due to Methicillin-resistant Staphylococcus aureus are often very difficult to treat. Colonized health care workers are the important sources of Methicillin-resistant Staphylococcus aureus. The objectives of this study were to determine the nasal carriage rate of Methicillin-resistant Staphylococcus aureus among health care workers at Kathmandu Medical College and Teaching Hospital, Nepal and to assess their antimicrobial susceptibility patterns. A cross sectional study was conducted among 252 health care workers from July to November 2013. Mannitol salt agar was used to culture the nasal swabs. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique following Clinical and Laboratory Standards Institute guidelines. Methicillin-resistant Staphylococcus aureus strains were confirmed by using cefoxitin disc and by determining the minimum inhibitory concentration of oxacillin by agar dilution method. Of 252 healthcare workers, 46(18.3%) were positive for Staphylococcus aureus among which 19(41.3%) were Methicillin-resistant Staphylococcus aureus carriers. Overall rate of nasal carriage of Methicillin-resistant Staphylococcus aureus was 7.5% (19/252).The higher percentages of lab personnel were nasal carriers of S. aureus (31.6%) and Methicillin-resistant Staphylococcus aureus (10.5%).The percentages of nasal carriage of S. aureus (35.7%) and Methicillin-resistant Staphylococcus aureus (14.3%) were highest in the health care workers from post operative department. Higher percentage of Methicillin-resistant Staphylococcus aureus were susceptible toward amikacin (100%) and vancomycin (100%) followed by cotrimoxazole (84.2%). High rates of nasal carriage of S. aureus and Methicillin-resistant Staphylococcus aureus were observed among the healthcare workers, which indicate the need of strict infection control measures to be followed to control the nosocomial infections.
Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland.
Marek, Agnieszka; Stepień-Pyśniak, Dagmara; Pyzik, Ewelina; Adaszek, Łukasz; Wilczyński, Jarosław; Winiarczyk, Stanisław
2016-01-01
In the pathology of poultry, infections caused by Staphylococcus spp. are taking on increasing significance. Although the Staphylococcus species most frequently isolated from these animals is Staphylococcus aureus, the literature data indicate that other species, both coagulase-positive and coagulase-negative, can also cause infections in birds. The aim of the study was to assess the frequency of occurrence of Staphylococcus infections in various poultry species in Western Poland and to test the susceptibility of isolated strains to selected antibiotics. The results obtained showed a relatively high rate of Staphylococcus infection in the poultry. From 2805 samples tested 302 strains (10.8%) of Staphylococcus were isolated. As many as 25 Staphylococcus species were distinguished among the strains isolated. S. cohnii (23.50%), S. aureus (15.89%) and S. lentus (13.90%) accounted for the highest percentages. Over half of the isolated staphylococci exhibited resistance to five of the antibiotics applied, with the highest percentage of resistant strains, 65%, noted for enrofloxacin.
Rozo, Zayda Lorena Corredor; Márquez-Ortiz, Ricaurte Alejandro; Castro, Betsy Esperanza; Gómez, Natasha Vanegas; Escobar-Pérez, Javier
2017-07-01
Staphylococcus aureus pandemic clone USA300 has, in addition to its constitutive arginine catabolism (arc) gene cluster, an arginine catabolism mobile element (ACME) carrying another such cluster, which gives this clone advantages in colonisation and infection. Gene arcR, which encodes an oxygen-sensitive transcriptional regulator, is inside ACME and downstream of the constitutive arc gene cluster, and this situation may have an impact on its activation. Different relative expression behaviours are proven here for arcRACME and the arcACME operon compared to the constitutive ones. We also show that the artificially expressed recombinant ArcRACME protein binds to the promoter region of the arcACME operon; this mechanism can be related to a positive feedback model, which may be responsible for increased anaerobic survival of the USA300 clone during infection-related processes.
Site-Specific Protein Labeling via Sortase-Mediated Transpeptidation
Antos, John M.; Ingram, Jessica; Fang, Tao; Pishesha, Novalia; Truttmann, Matthias C.; Ploegh, Hidde L.
2017-01-01
Strategies for site-specific protein modification are highly desirable for the construction of conjugates containing non-genetically encoded functional groups. Ideally, these strategies should proceed under mild conditions, and be compatible with a wide range of protein targets and non-natural moieties. The transpeptidation reaction catalyzed by bacterial sortases is a prominent strategy for protein derivatization that possesses these features. Naturally occurring or engineered variants of sortase A from Staphylococcus aureus catalyze a ligation reaction between a five amino acid substrate motif (LPXTG) and oligoglycine nucleophiles. By pairing proteins and synthetic peptides that possess these ligation handles, it is possible to install modifications onto the protein N- or C-terminus in site-specific fashion. As described in this unit, the successful implementation of sortase-mediated labeling involves straightforward solid-phase synthesis and molecular biology techniques, and this method is compatible with proteins in solution or on the surface of live cells. PMID:19365788
Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster.
Jagusztyn-Krynicka, E K; Hansen, J B; Crow, V L; Thomas, T D; Honeyman, A L; Curtiss, R
1992-01-01
DNA cloned into Escherichia coli K-12 from a serotype c strain of Streptococcus mutans encodes three enzyme activities for galactose utilization via the tagatose 6-phosphate pathway: galactose 6-phosphate isomerase, tagatose 6-phosphate kinase, and tagatose-1,6-bisphosphate aldolase. The genes coding for the tagatose 6-phosphate pathway were located on a 3.28-kb HindIII DNA fragment. Analysis of the tagatose proteins expressed by recombinant plasmids in minicells was used to determine the sizes of the various gene products. Mutagenesis of these plasmids with transposon Tn5 was used to determine the order of the tagatose genes. Tagatose 6-phosphate isomerase appears to be composed of 14- and 19-kDa subunits. The sizes of the kinase and aldolase were found to be 34 and 36 kDa, respectively. These values correspond to those reported previously for the tagatose pathway enzymes in Staphylococcus aureus and Lactococcus lactis. Images PMID:1328153
Pan, Yuanyuan; Liu, Ling; Guan, Feifei; Li, Erwei; Jin, Jin; Li, Jinyang; Che, Yongsheng; Liu, Gang
2018-03-16
Chloropupukeananin and chloropestolides are novel metabolites of the plant endophyte Pestalotiopsis fici, showing antimicrobial, antitumor, and anti-HIV activities. Their highly complex and unique skeletons were generated from the coisolated pestheic acid (1) and iso-A82775C (10) based on our previous studies. Here, we identified the biosynthetic gene cluster iac of 10 and characterized an iacE encoded prenyltransferase. Deletion of iacE abolished iso-A82775C production, accumulated the prenyl group-lacking siccayne (2), and generated four new chloropestolides (3-6). Compounds 5 and 6 showed antibacterial effects against Staphylococcus aureus and Bacillus subtilis, and 5 was also cytotoxic to human tumor cell lines HeLa, MCF-7, and SW480. These results provided the first genetic and biochemical insights into the biosynthesis of natural prenylepoxycyclohexanes and demonstrated the feasibility for generation of diversified congeners by manipulating the biosynthetic genes of 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Iris V.; Berger, James M.
Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of theStaphylococcus aureusreplicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled tomore » a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association.« less
[Carriage of Staphylococcus aureus among food service workers].
Alarcón-Lavín, María Paula; Oyarzo, Carolina; Escudero, Carlos; Cerda-Leal, Fabiola; Valenzuela, Francisco J
2017-12-01
Background Staphylococcus aureus produces 11 serotypes of endotoxins that may cause food poisoning. Aim To determine the prevalence of type A enterotoxigenic Staphylococcus aureus carriage among food service workers in Chillan, Chile. Material and Methods Pharyngeal swabs were obtained from 100 food service workers and were cultured in Agar plates. After identifying the presence of Staphylococcus aureus, DNA was extracted to identify type A toxin by conventional PCR. Results Thirty eight percent of samples were colonized with Staphylococcus aureus. Among these, 26% were toxin A producers. Conclusions Half of the sampled workers carried Staphylococcus aureus and a quarter of these produced type A enterotoxin.
Ao, Wanyuan; Clifford, Adrianne; Corpuz, Maylene; Jenison, Robert
2017-01-01
We describe here a strategy that can distinguish between Staphylococcus species truly present in a clinical sample from contaminating Staphylococcus species introduced during the testing process. Contaminating Staphylococcus species are present at low levels in PCR reagents and colonize lab personnel. To eliminate detection of contaminants, we describe an approach that utilizes addition of sufficient quantities of either non-target Staphylococcal cells (Staphylococcus succinus or Staphylococcus muscae) or synthetic oligonucleotide templates to helicase dependent isothermal amplification reactions to consume Staphylococcus-specific tuf and mecA gene primers such that contaminating Staphylococcus amplification is suppressed to below assay limits of detection. The suppressor template DNA is designed with perfect homology to the primers used in the assay but an internal sequence that is unrelated to the Staphylococcal species targeted for detection. Input amount of the suppressor is determined by a mathematical model described herein and is demonstrated to completely suppress contaminating levels of Staphylococcus while not negatively impacting the appropriate clinical assay limit of detection. We have applied this approach to improve the specificity of detection of Staphylococcus species present in positive blood cultures using a chip-based array that produces results visible to the unaided eye. PMID:28225823
Giret, P; Roblot, F; Poupet, J Y; Thomas, P; Lussier-Bonneau, M D; Pradère, C; Becq-Giraudon, B; Fauchère, J L; Castel, O
2001-08-01
Prevalence of methicillin-resistant Staphylococcus aureus is high in the Poitiers teaching hospital, particularly in the intermediate care facilities. We performed a survey of methicillin-resistant Staphylococcus aureus colonization in the intermediate care facilities and 265 patients were included. Nasal, cutaneous and wound swab cultures were done at the time of admission and at the time of the patients' departure. A decolonization procedure of methicillin-resistant Staphylococcus aureus carriers was performed using nasal application of fusidic acid and different soaps for the skin. At entry, 17.7% of patients were methicillin-resistant Staphylococcus aureus carriers (of at least one location). At departure, 30.4% were methicillin-resistant Staphylococcus aureus carriers. Among methicillin-resistant Staphylococcus aureus non-carriers at entry, 24.3% became methicillin-resistant Staphylococcus aureus carriers. The principal risk factor of carriage was the initial presence of a wound (RR = 3.6). The incidence rate of methicillin-resistant Staphylococcus aureus infection among the 265 patients included was 3%. The systematic screening of patients at the time of admission is expensive and isolation technically hard to manage in the intermediate care facilities. The risk factor we found in this study allow us to propose a 'light' screening limited to patients with wounds.
Sader, Helio S; Farrell, David J; Flamm, Robert K; Streit, Jennifer M; Mendes, Rodrigo E; Jones, Ronald N
2016-05-01
A total of 1593 coagulase-negative staphylococci (CoNS) considered clinically significant were collected from 71 US medical centers in 2013-2014 and tested for susceptibility by CLSI broth microdilution methods. Species identification was performed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Overall, 59.7% of isolates were oxacillin resistant (MRCoNS). Ceftaroline (MIC50/90, 0.25/0.5μg/mL) inhibited 99.2% of CoNS at ≤1μg/mL (susceptible breakpoint for Staphylococcus aureus), including 98.7% of MRCoNS, and the highest ceftaroline MIC value was 2μg/mL (13 isolates). Staphylococcus epidermidis represented 60.3% of the CoNS collection and was highly susceptible to ceftaroline (MIC50/90, 0.25/0.5μg/mL, 99.9% inhibited at ≤1μg/mL). All isolates of Staphylococcus capitis, Staphylococcus caprae, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus simulans, and Staphylococcus warneri (MIC50/90, 0.06-0.25/0.25-0.5μg/mL) were inhibited at ceftaroline MIC of ≤1μg/mL. Staphylococcus haemolyticus represented only 4.8%, was atypically less susceptible to ceftaroline (MIC50/90, 0.5/2μg/mL, 87.0% inhibited at ≤1μg/mL), and accounted for 76.9% (10/13) of isolates with ceftaroline MIC >1μg/mL. Copyright © 2016 Elsevier Inc. All rights reserved.
Supplementary biochemical tests useful for the differentiation of oxidase positive staphylococci.
Stepanović, Srdjan; Dakić, Ivana; Hauschild, Tomasz; Vuković, Dragana; Morrison, Donald; Jezek, Petr; Cirković, Ivana; Petrás, Petr
2007-06-01
Differentiation of the oxidase positive staphylococci, Staphylococcus sciuri, Staphylococcus lentus, Staphylococcus vitulinus and Staphylococcus fleurettii, based on tributyrin, urease, caseinase, gelatinase and DNase activity is described. These tests may be used for preliminary identification of oxidase positive isolates of staphylococci resulting in more accurate identification of these species.
Ruzauskas, Modestas; Siugzdiniene, Rita; Klimiene, Irena; Virgailis, Marius; Mockeliunas, Raimundas; Vaskeviciute, Lina; Zienius, Dainius
2014-11-28
Among coagulase-negative staphylococci, Staphylococcus haemolyticus is the second most frequently isolated species from human blood cultures and has the highest level of antimicrobial resistance. This species has zoonotic character and is prevalent both in humans and animals. Recent studies have indicated that methicillin-resistant S. haemolyticus (MRSH) is one of the most frequent isolated Staphylococcus species among neonates in intensive care units. The aim of this study was to determine the presence of MRSH in different groups of companion animals and to characterize isolates according their antimicrobial resistance. Samples (n = 754) were collected from healthy and diseased dogs and cats, female dogs in pure-breed kennels, healthy horses, and kennel owners. Classical microbiological tests along with molecular testing including PCR and 16S rRNA sequencing were performed to identify MRSH. Clonality of the isolates was assessed by Pulsed Field Gel Electrophoresis using the SmaI restriction enzyme. Antimicrobial susceptibility testing was performed using the broth micro-dilution method. Detection of genes encoding antimicrobial resistance was performed by PCR. Statistical analysis was performed using the R Project of Statistical Computing, "R 1.8.1" package. From a total of 754 samples tested, 12 MRSH isolates were obtained. No MRSH were found in horses and cats. Eleven isolates were obtained from dogs and one from a kennel owner. Ten of the dog isolates were detected in pure-breed kennels. The isolates demonstrated the same clonality only within separate kennels.The most frequent resistances of MRSH isolates was demonstrated to benzylpenicillin (91.7%), erythromycin (91.7%), gentamicin (75.0%), tetracycline (66.7%), fluoroquinolones (41.7%) and co-trimoxazole (41.7%). One isolate was resistant to streptogramins. All isolates were susceptible to daptomycin, rifampin, linezolid and vancomycin. The clone isolated from the kennel owner and one of the dogs was resistant to beta-lactams, macrolides, gentamicin and tetracycline. Pure-breed kennels keeping 6 or more females were determined to be a risk factor for the presence of MRSH strains. MRSH isolated from companion animals were frequently resistant to some classes of critically important antimicrobials, although they remain susceptible to antibiotics used exclusively in human medicine.
Katayama, Yuki; Ito, Teruyo; Hiramatsu, Keiichi
2001-01-01
We report on the structural diversity of mecA gene complexes carried by 38 methicillin-resistant Staphylococcus aureus and 91 methicillin-resistant coagulase-negative Staphylococcus strains of seven different species with a special reference to its correlation with phenotypic expression of methicillin resistance. The most prevalent and widely disseminated mec complex had the structure mecI-mecR1-mecA-IS431R (or IS431mec), designated the class A mecA gene complex. In contrast, in S. haemolyticus, mecA was bracketed by two copies of IS431, forming the structure IS431L-mecA-IS431R. Of the 38 S. haemolyticus strains, 5 had low-level methicillin resistance (MIC, 1 to 4 mg/liter) and characteristic heterogeneous methicillin resistance as judged by population analysis. In these five strains, IS431L was located to the left of an intact mecI gene, forming the structure IS431L-class A mecA-gene complex. In other S. haemolyticus strains, IS431L was associated with the deletion of mecI and mecR1, forming the structure IS431L-ΔmecR1-mecA-IS431mec, designated the class C mecA gene complex. Mutants with the class C mecA gene complex were obtained in vitro by selecting strain SH621, containing the IS431L-class A mecA gene complex with low concentrations of methicillin (1 and 3 mg/liter). The mutants had intermediate level of methicillin resistance (MIC, 16 to 64 mg/liter). The mecA gene transcription was shown to be derepressed in a representative mutant strain, SH621-37. Our study indicated that the mecI-encoded repressor function is responsible for the low-level methicillin resistance of some S. haemolyticus clinical strains and that the IS431-mediated mecI gene deletion causes the expression of methicillin resistance through the derepression of mecA gene transcription. PMID:11408208
Wang, Wei; Guo, Yunchang; Pei, Xiaoyan; Hu, Yujie; Bai, Li; Sun, Aiping; Liu, Jikai; Fu, Ping; Li, Fengqin
2013-11-01
To study the mecA gene distribution in 877 strains of Staphylococcus aureus isolated from the environment of pig farm and slaughter house, pig carcass and its iliac lymph nodes, and ready-to-eat foods in China as to screen the methicillin-resistant Staphylococcus aureus (MRSA), and to evaluate the antimicrobial susceptibility of MRSA. A total of 877 strains of S. aureus that had been phenotypically identified by Gram staining, catalase test, ability to coagulate rabbit plasma, API STAPH as well as analysis of nuc gene, encoding for a S. aureus specific thermonu-clease were screened for MRSA by characterizing the mecA gene. The antimicrobial susceptibility of MRSA was tested in accordance with the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. Of 877 S. aureus strains tested, 71 (8.1%, 71/887) were mecA positive and identified as MRSA, among which, 48 isolates were pig-associated and 23 isolates were ready-to-eat food-associated. The frequency of pig-associated MRSA was significantly higher than that of food-associated one (chi2 = 53.040, P < 0.01). All MRSA were susceptible to linezolid, vancomycin, tigecycline, and nitrofurantoin but resistant to cefoxitin, oxacillin and benzylpenicillin. Meanwhile, 98.6% (70 strains), 95.8% (68 strains), 88.7% (63 strains), 80.3% (57 strains), 80.3% (57 strains) and 32.4% (23 strains) MRSA exhibited the resistance to clindamycin, erythromycin, tetracycline, ciprofloxacin, trimethoprim/sulfamethoxazole, and gentamicin, respectively. Besides, one strain was resistant to each of antibiotics including levofloxacin, moxifloxacin, rifampicin, and quinupristin/dalfopristin. It was worth noting that the frequency of resistance to ciprofloxacin, tetracycline, and trimethoprim/sulfamethoxazole of pig-associated MRSA was significantly higher than that of food-associated MRSA (CIP: chi2 = 29.110, P < 0.01, TET: chi2 = 18.816, P < 0.01, TMP/ SMZ: chi2 = 36.394, P < 0.01). It should be pointed out that 70 (98.6%) strains of MRSA were multi-drug resistant and eight spectrums of antimicrobial susceptibility were observed. The multi-drug resistant MRSA isolated from pig- and food-associated matrixin China is very serious.
Jones, Marcus B; Montgomery, Christopher P; Boyle-Vavra, Susan; Shatzkes, Kenneth; Maybank, Rosslyn; Frank, Bryan C; Peterson, Scott N; Daum, Robert S
2014-12-19
Staphylococcus aureus is a human pathogen responsible for substantial morbidity and mortality through its ability to cause a number of human infections including bacteremia, pneumonia and soft tissue infections. Of great concern is the emergence and dissemination of methicillin-resistant Staphylococcus aureus strains (MRSA) that are resistant to nearly all β-lactams. The emergence of the USA300 MRSA genetic background among community associated S. aureus infections (CA-MRSA) in the USA was followed by the disappearance of USA400 CA-MRSA isolates. To gain a greater understanding of the potential fitness advantages and virulence capacity of S. aureus USA300 clones, we performed whole genome sequencing of 15 USA300 and 4 USA400 clinical isolates. A comparison of representative genomes of the USA300 and USA400 pulsotypes indicates a number of differences in mobile genome elements. We examined the in vitro gene expression profiles by microarray hybridization and the in vivo transcriptomes during lung infection in mice of a USA300 and a USA400 MRSA strain by performing complete genome qRT-PCR analysis. The unique presence and increased expression of 6 exotoxins in USA300 (12- to 600-fold) compared to USA400 may contribute to the increased virulence of USA300 clones. Importantly, we also observed the up-regulation of prophage genes in USA300 (compared with USA400) during mouse lung infection (including genes encoded by both prophages ΦSa2usa and ΦSa3usa), suggesting that these prophages may play an important role in vivo by contributing to the elevated virulence characteristic of the USA300 clone. We observed differences in the genetic content of USA300 and USA400 strains, as well as significant differences of in vitro and in vivo gene expression of mobile elements in a lung pneumonia model. This is the first study to document the global transcription differences between USA300 and USA400 strains during both in vitro and in vivo growth.
Swe, Pearl M; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.
Swe, Pearl M.; Zakrzewski, Martha; Kelly, Andrew; Krause, Lutz; Fischer, Katja
2014-01-01
Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections. PMID:24875186
[Tracing to the source of staphylococcus aureus isolates from ice cream].
Zhang, Yan-Jun; Xu, Dan-Ge; Fang, Ye-Zhen; Gong, Pu; Zhu, Min; Bao, Fang-Zhen
2008-07-01
To investigate the contamination of Staphylococcus aureus isolates in ice cream by phenotypic typing and molecular typing. The Staphylococcus aureus isolates were separated from ice cream, filler, cutter, salves and material. The separated isolates were characterized by drug-resistance, staphylococcal enterotoxin (SEA-E), SE (A-E, G-J) genes and pulsed-field gel electrophoresis (PFGE) types. Two Staphylococcus aureus isolates were separated, one from ice cream, another from cutter. Their characteristics of drug-resistance, staphylococcal enterotoxin (SEA-E), SE (A-E,G-J) genes and PFGE type were the same. The two Staphylococcus aureus isolates were the same clone. The contaminated Staphylococcus aureus isolates could be traced to the contaminated cutters.
Guzmán-Rodríguez, Jaquelina J; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Ochoa-Zarzosa, Alejandra; Suárez-Rodríguez, Luis María; Rodríguez-Zapata, Luis C; Salgado-Garciglia, Rafael; Jimenez-Moraila, Beatriz; López-Meza, Joel E; López-Gómez, Rodolfo
2013-09-01
Avocado is one of the most important fruits in the world. Avocado "native mexicano" (Persea americana var. drymifolia) seeds are widely used in the propagation of this plant and are the primary source of rootstocks globally for a variety of avocado cultivars, such as the Hass avocado. Here, we report the isolation of 5005 ESTs from the 5' ends of P. americana var. drymifolia seed cDNA clones representing 1584 possible unigenes. These avocado seed ESTs were compared with the avocado flower EST library, and we detected several genes that are expressed either in both tissues or only in the seed. The snakin gene, which encodes an element of the innate immune response in plants, was one of those most frequently found among the seed ESTs, and this suggests that it is abundantly expressed in the avocado seed. We expressed the snakin gene in a heterologous system, namely the bovine endothelial cell line BVE-E6E7. Conditioned media from transfected BVE-E6E7 cells showed antimicrobial activity against strains of Escherichia coli and Staphylococcus aureus. This is the first study of the function of the snakin gene in plant seed tissue, and our observations suggest that this gene might play a protective role in the avocado seed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Saito, Yuki; Mao, Han; Sekimizu, Kazuhisa; Kaito, Chikara
2014-01-01
Staphylococcal species acquire antibiotic resistance by incorporating the mobile-genetic element SCCmec. We previously found that SCCmec-encoded psm-mec RNA suppresses exotoxin production as a regulatory RNA, and the psm-mec translation product increases biofilm formation in Staphylococcus aureus. Here, we examined whether the regulatory role of psm-mec on host bacterial virulence properties is conserved among other staphylococcal species, S. epidermidis and S. haemolyticus, both of which are important causes of nosocomial infections. In S. epidermidis, introduction of psm-mec decreased the production of cytolytic toxins called phenol-soluble modulins (PSMs) and increased biofilm formation. Introduction of psm-mec with a stop-codon mutation that did not express PSM-mec protein but did express psm-mec RNA also decreased PSM production, but did not increase biofilm formation. Thus, the psm-mec RNA inhibits PSM production, whereas the PSM-mec protein increases biofilm formation in S. epidermidis. In S. haemolyticus, introduction of psm-mec decreased PSM production, but did not affect biofilm formation. The mutated psm-mec with a stop-codon also caused the same effect. Thus, the psm-mec RNA also inhibits PSM production in S. haemolyticus. These findings suggest that the inhibitory role of psm-mec RNA on exotoxin production is conserved among staphylococcal species, although the stimulating effect of the psm-mec gene on biofilm formation is not conserved. PMID:24926994
Campoccia, Davide; Speziale, Pietro; Ravaioli, Stefano; Cangini, Ilaria; Rindi, Simonetta; Pirini, Valter; Montanaro, Lucio; Arciola, Carla Renata
2009-12-01
Staphylococcus aureus is a major, highly clonal, pathogen causing implant infections. This study aimed at investigating the diverse distribution of bacterial adhesins in most prevalent S. aureus strain types causing orthopaedic implant infections. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes. Within the collection of isolates, automated ribotyping detected 98 distinct ribogroups. For many ribogroups, characteristic tandem genes arrangements could be identified. In the predominant S. aureus cluster, enlisting 27 isolates, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. This study suggests that specific adhesins may synergistically act in the onset of implant infections and that anti-adhesin strategies should be targeted to adhesins conjointly present.
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-01-01
The PKS-NRPS-derived tetramic acid equisetin and its N-desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus. The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum, a species distantly related to the notorious rice pathogen Fusarium fujikuroi. Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi. Bioinformatic analysis revealed that this cluster does not contain the equisetin N-methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi. Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22, led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23, encoding a second Zn(II)2Cys6 TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T. TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus. PMID:28379186
Janevska, Slavica; Arndt, Birgit; Baumann, Leonie; Apken, Lisa Helene; Mauriz Marques, Lucas Maciel; Humpf, Hans-Ulrich; Tudzynski, Bettina
2017-04-05
The PKS-NRPS-derived tetramic acid equisetin and its N -desmethyl derivative trichosetin exhibit remarkable biological activities against a variety of organisms, including plants and bacteria, e.g., Staphylococcus aureus . The equisetin biosynthetic gene cluster was first described in Fusarium heterosporum , a species distantly related to the notorious rice pathogen Fusarium fujikuroi . Here we present the activation and characterization of a homologous, but silent, gene cluster in F. fujikuroi . Bioinformatic analysis revealed that this cluster does not contain the equisetin N -methyltransferase gene eqxD and consequently, trichosetin was isolated as final product. The adaption of the inducible, tetracycline-dependent Tet-on promoter system from Aspergillus niger achieved a controlled overproduction of this toxic metabolite and a functional characterization of each cluster gene in F. fujikuroi . Overexpression of one of the two cluster-specific transcription factor (TF) genes, TF22 , led to an activation of the three biosynthetic cluster genes, including the PKS-NRPS key gene. In contrast, overexpression of TF23 , encoding a second Zn(II)₂Cys₆ TF, did not activate adjacent cluster genes. Instead, TF23 was induced by the final product trichosetin and was required for expression of the transporter-encoding gene MFS-T . TF23 and MFS-T likely act in consort and contribute to detoxification of trichosetin and therefore, self-protection of the producing fungus.
Wladyka, Benedykt; Puzia, Katarzyna; Dubin, Adam
2005-01-01
Staphopain A is a staphylococcal cysteine protease. Genes encoding staphopain A and its specific inhibitor, staphostatin A, are localized in an operon. Staphopain A is an important staphylococcal virulence factor. It is difficult to perform studies on its interaction with other proteins due to problems in obtaining a sufficient amount of the enzyme from natural sources. Therefore efforts were made to produce a recombinant staphopain A. Sequences encoding the mature form of staphopain A and staphostatin A were PCR-amplified from Staphylococcus aureus genomic DNA and cloned into different compatible expression vectors. Production of staphopain A was observed only when the enzyme was co-expressed together with its specific inhibitor, staphostatin A. Loss of the function mutations introduced within the active site of staphopain A causes the expression of the inactive enzyme. Mutations within the reactive centre of staphostatin A result in abrogation of production of both the co-expressed proteins. These results support the thesis that the toxicity of recombinant staphopain A to the host is due to its proteolytic activity. The coexpressed proteins are located in the insoluble fraction. Ni2+-nitrilotriacetate immobilized metal-affinity chromatography allows for an efficient and easy purification of staphopain A. Our optimized refolding parameters allow restoration of the native conformation of the enzyme, with yields over 10-fold higher when compared with isolation from natural sources.
In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis.
Hon, Kam Lun; Ip, Margaret; Wong, Chun Kwok; Chan, Ben Chung Lap; Leung, Ping Chung; Leung, Ting Fan
2018-05-01
In a series of bench and clinical trials, our group has determined the immunologic effects and clinical efficacy of a concoction of five herbal ingredients (PentaHerbs Formula, PHF) in treating children with atopic eczema (AE). This study investigates the antimicrobial effects that may be induced with PHF treatment. We investigated the effects of PHF on the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Staphylococcus aureus and various bacteria that are commonly present on the skin of patients with AE. Staphylococcus aureus ATCC 25923, Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Enterobacter cloacae ATCC 13047, Proteus vulgaris ATCC 6380, and Acinetobacter baumannii ATCC 19606 were tested. PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43. MIC and MBC were 1 and 25 mg/mL, respectively. PHF was more effective against Staphylococcus aureus ATCC 25923 and Methicllin resistant Staphylococcus aureus (MRSA) ATCC BAA-43t. PHF may be developed into a Staphylococcus aureus targeting topical application.
2012-01-01
Background Staphylococcus belongs to the Gram-positive low G + C content group of the Firmicutes division of bacteria. Staphylococcus aureus is an important human and veterinary pathogen that causes a broad spectrum of diseases, and has developed important multidrug resistant forms such as methicillin-resistant S. aureus (MRSA). Staphylococcus simiae was isolated from South American squirrel monkeys in 2000, and is a coagulase-negative bacterium, closely related, and possibly the sister group, to S. aureus. Comparative genomic analyses of closely related bacteria with different phenotypes can provide information relevant to understanding adaptation to host environment and mechanisms of pathogenicity. Results We determined a Roche/454 draft genome sequence for S. simiae and included it in comparative genomic analyses with 11 other Staphylococcus species including S. aureus. A genome based phylogeny of the genus confirms that S. simiae is the sister group to S. aureus and indicates that the most basal Staphylococcus lineage is Staphylococcus pseudintermedius, followed by Staphylococcus carnosus. Given the primary niche of these two latter taxa, compared to the other species in the genus, this phylogeny suggests that human adaptation evolved after the split of S. carnosus. The two coagulase-positive species (S. aureus and S. pseudintermedius) are not phylogenetically closest but share many virulence factors exclusively, suggesting that these genes were acquired by horizontal transfer. Enrichment in genes related to mobile elements such as prophage in S. aureus relative to S. simiae suggests that pathogenesis in the S. aureus group has developed by gene gain through horizontal transfer, after the split of S. aureus and S. simiae from their common ancestor. Conclusions Comparative genomic analyses across 12 Staphylococcus species provide hypotheses about lineages in which human adaptation has taken place and contributions of horizontal transfer in pathogenesis. PMID:22272658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozbial, Piotr; Xu, Qingping; Chiu, Hsiu-Ju
2009-08-28
To extend the structural coverage of proteins with unknown functions, we targeted a novel protein family (Pfam accession number PF08807, DUF1798) for which we proposed and determined the structures of two representative members. The MW1337R gene of Staphylococcus aureus subsp. aureus Rosenbach (Wood 46) encodes a protein with a molecular weight of 13.8 kDa (residues 1-116) and a calculated isoelectric point of 5.15. The lin2004 gene of the nonspore-forming bacterium Listeria innocua Clip11262 encodes a protein with a molecular weight of 14.6 kDa (residues 1-121) and a calculated isoelectric point of 5.45. MW1337R and lin2004, as well as their homologs,more » which, so far, have been found only in Bacillus, Staphylococcus, Listeria, and related genera (Geobacillus, Exiguobacterium, and Oceanobacillus), have unknown functions and are annotated as hypothetical proteins. The genomic contexts of MW1337R and lin2004 are similar and conserved in related species. In prokaryotic genomes, most often, functionally interacting proteins are coded by genes, which are colocated in conserved operons. Proteins from the same operon as MW1337R and lin2004 either have unknown functions (i.e., belong to DUF1273, Pfam accession number PF06908) or are similar to ypsB from Bacillus subtilis. The function of ypsB is unclear, although it has a strong similarity to the N-terminal region of DivIVA, which was characterized as a bifunctional protein with distinct roles during vegetative growth and sporulation. In addition, members of the DUF1273 family display distant sequence similarity with the DprA/Smf protein, which acts downstream of the DNA uptake machinery, possibly in conjunction with RecA. The RecA activities in Bacillus subtilis are modulated by RecU Holliday-junction resolvase. In all analyzed cases, the gene coding for RecU is in the vicinity of MW1337R, lin2004, or their orthologs, but on a different operon located in the complementary DNA strand. Here, we report the crystal structures of MW1337R and lin2004, which were determined using the semiautomated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), part of the National Institute of General Medical Sciences Protein Structure Initiative.« less
Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C. S.; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah
2016-01-01
The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene cluster, walRKJ. PMID:26999783
Assessment of high and low enterotoxin A producing Staphylococcus aureus strains on pork sausage.
Zeaki, Nikoleta; Cao, Rong; Skandamis, Panagiotis N; Rådström, Peter; Schelin, Jenny
2014-07-16
Three Staphylococcus aureus strains representing different alleles of the Siphoviridae prophage-encoded enterotoxin A (SEA) gene, including two high-SEA-producing strains and one low-SEA-producing strain were studied to investigate sea expression and SEA formation on a frankfurter type of sausage. The effect of lactic acid, an antimicrobial compound used as a preservative in food, was also investigated on the same product. All three strains were grown on pork sausages at 15°C for 14days in the presence or absence of lactic acid (1 or 2% v/v). Growth, sea mRNA expression and SEA formation were regularly monitored and compared between non-treated and treated sausages. For all experiments performed, the extracellular SEA formation significantly differed between the high- and low-SEA-producing strains, although growth and viability were overall the same. For the low producer (Sa51), the accumulated amount of extracellular SEA formed after 14days was close to the detection limit (less than 1ng/g) in all conditions; while Sa21 and Sa17, the two high-producing strains, formed 250±25.37ng/g and 750±82.65ng/g in non-treated sausage and 150±75.75ng/g and 300±83.89ng/g when treated with 1% lactic acid, respectively, after 14days. Sausages treated with 2% lactic acid followed the same pattern as above, but with an extended lag phase to 4days and reduced levels of enterotoxin formed for all strains. The difference in the level of SEA between the two high-producing strains is most likely due to the different clonal lineages of the sea-encoded Siphoviridae phages where induction of the prophage potentially could be the reason for higher production of SEA in one of the lines. Furthermore, a prolonged expression of sea gene in the two high-producing strains was observed during the entire incubation period, while the sea expression was under the detection limit in the low-producing strain. This study indicates that the high-SEA-producing strains, especially the strains with the putative capacity of prophage induction, could be more relevant in food safety aspects than low-producing type of strains on pork sausage. Copyright © 2014 Elsevier B.V. All rights reserved.
Poupel, Olivier; Moyat, Mati; Groizeleau, Julie; Antunes, Luísa C S; Gribaldo, Simonetta; Msadek, Tarek; Dubrac, Sarah
2016-01-01
The WalKR two-component system, controlling cell wall metabolism, is highly conserved among Bacilli and essential for cell viability. In Staphylococcus aureus, walR and walK are followed by three genes of unknown function: walH, walI and walJ. Sequence analysis and transcript mapping revealed a unique genetic structure for this locus in S. aureus: the last gene of the locus, walJ, is transcribed independently, whereas transcription of the tetra-cistronic walRKHI operon occurred from two independent promoters located upstream from walR. Protein topology analysis and protein-protein interactions in E. coli as well as subcellular localization in S. aureus allowed us to show that WalH and WalI are membrane-bound proteins, which associate with WalK to form a complex at the cell division septum. While these interactions suggest that WalH and WalI play a role in activity of the WalKR regulatory pathway, deletion of walH and/or walI did not have a major effect on genes whose expression is strongly dependent on WalKR or on associated phenotypes. No effect of WalH or WalI was seen on tightly controlled WalKR regulon genes such as sle1 or saouhsc_00773, which encodes a CHAP-domain amidase. Of the genes encoding the two major S. aureus autolysins, AtlA and Sle1, only transcription of atlA was increased in the ΔwalH or ΔwalI mutants. Likewise, bacterial autolysis was not increased in the absence of WalH and/or WalI and biofilm formation was lowered rather than increased. Our results suggest that contrary to their major role as WalK inhibitors in B. subtilis, the WalH and WalI proteins have evolved a different function in S. aureus, where they are more accessory. A phylogenomic analysis shows a striking conservation of the 5 gene wal cluster along the evolutionary history of Bacilli, supporting the key importance of this signal transduction system, and indicating that the walH and walI genes were lost in the ancestor of Streptococcaceae, leading to their atypical 3 wal gene cluster, walRKJ.
Neonatal Staphylococcus lugdunensis urinary tract infection.
Hayakawa, Itaru; Hataya, Hiroshi; Yamanouchi, Hanako; Sakakibara, Hiroshi; Terakawa, Toshiro
2015-08-01
Staphylococcus lugdunensis is a known pathogen of infective endocarditis, but not of urinary tract infection. We report a previously healthy neonate without congenital anomalies of the kidney and urinary tract who developed urinary tract infection due to Staphylococcus lugdunensis, illustrating that Staphylococcus lugdunensis can cause urinary tract infection even in those with no urinary tract complications. © 2015 Japan Pediatric Society.
Bacteriology of War Wounds at the Time of Injury
2006-09-01
Micrococcus (1)a,b 0 0 Chest, back, and abdomen IED (1) 1 0 0 0 0 0 Total 20 6 0 8 5 6 1 IED, improvised explosive device; CNS, coagulase-negative...hominis 6 Staphylococcus warneri 2 Staphylococcus cohnii cohnii 1 Staphylococcus saprophyticus 1 Staphylococcus aureus 4a Micrococcus sp. 1 a Two isolates
Tång Hallbäck, Erika; Karami, Nahid; Adlerberth, Ingegerd; Cardew, Sofia; Ohlén, Maria; Engström Jakobsson, Hedvig; Svensson Stadler, Liselott
2018-05-17
Two strains included in a whole-genome sequencing project for methicillin-resistant Staphylococcus aureus (MRSA) were identified as non-Staphylococcus aureus when the sequences were analysed using the bioinformatics software ALEX (www.1928diagnostics.com, Gothenburg, Sweden). Sequencing of the sodA gene of these strains identified them as Staphylococcus argenteus. The collection of MRSA in western Sweden was checked for additional strains of this species. A total of 18 strains of S. argenteus isolated between 2011 and December 2017 were identified.
First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates.
Correa, J E; De Paulis, A; Predari, S; Sordelli, D O; Jeric, P E
2008-11-01
To investigate phenotypically and genotypically the presence of MDR efflux pumps in 21 clinical isolates of Staphylococcus haemolyticus collected over a period of 10 years. MICs of different antibiotics and biocides were determined by the broth dilution method in the presence/absence of carbonyl cyanide-m-chlorophenylhydrazone (CCCP), an efflux pump inhibitor. PCR followed by sequencing was performed to detect the qac genes that encode for antiseptic resistance. Clonal relationships were determined by PFGE SmaI patterns using a standard protocol. All the isolates were resistant to gentamicin, 15 to erythromycin, 18 to ciprofloxacin, 7 to chloramphenicol and 1 to tetracycline. They showed higher susceptibility to antibiotics when they were exposed to CCCP. The MICs of ethidium bromide, SDS and benzalkonium chloride were also decreased, whereas the MIC of triclosan was decreased in only four isolates in the presence CCCP. Of the 21 isolates, qacA/B was detected in 5 isolates, smr in all of the isolates, qacG in 11 isolates, qacH in 10 isolates and qacJ in 4 isolates. PFGE analysis of the 21 isolates clustered them into 14 clones at 90% similarity corresponding to differences of between 7 and 16 bands among the clones. The efflux mechanism seems to be an important mechanism to confer resistance to antibiotics and biocides through MDR pumps. It was observed that several qac genes coexist in some of the isolates and seem to act simultaneously in the removal of different compounds out of the bacterial cell. The qac genes are horizontally spread among different clones.
Fitzgerald, J R; Sturdevant, D E; Mackie, S M; Gill, S R; Musser, J M
2001-07-17
An emerging theme in medical microbiology is that extensive variation exists in gene content among strains of many pathogenic bacterial species. However, this topic has not been investigated on a genome scale with strains recovered from patients with well-defined clinical conditions. Staphylococcus aureus is a major human pathogen and also causes economically important infections in cows and sheep. A DNA microarray representing >90% of the S. aureus genome was used to characterize genomic diversity, evolutionary relationships, and virulence gene distribution among 36 strains of divergent clonal lineages, including methicillin-resistant strains and organisms causing toxic shock syndrome. Genetic variation in S. aureus is very extensive, with approximately 22% of the genome comprised of dispensable genetic material. Eighteen large regions of difference were identified, and 10 of these regions have genes that encode putative virulence factors or proteins mediating antibiotic resistance. We find that lateral gene transfer has played a fundamental role in the evolution of S. aureus. The mec gene has been horizontally transferred into distinct S. aureus chromosomal backgrounds at least five times, demonstrating that methicillin-resistant strains have evolved multiple independent times, rather than from a single ancestral strain. This finding resolves a long-standing controversy in S. aureus research. The epidemic of toxic shock syndrome that occurred in the 1970s was caused by a change in the host environment, rather than rapid geographic dissemination of a new hypervirulent strain. DNA microarray analysis of large samples of clinically characterized strains provides broad insights into evolution, pathogenesis, and disease emergence.
Das, Sudip; Lindemann, Claudia; Young, Bernadette C.; Muller, Julius; Österreich, Babett; Ternette, Nicola; Winkler, Ann-Cathrin; Paprotka, Kerstin; Reinhardt, Richard; Allen, Elizabeth; Flaxman, Amy; Yamaguchi, Yuko; Rollier, Christine S.; van Diemen, Pauline; Blättner, Sebastian; Remmele, Christian W.; Selle, Martina; Dittrich, Marcus; Müller, Tobias; Vogel, Jörg; Ohlsen, Knut; Crook, Derrick W.; Massey, Ruth; Wilson, Daniel J.; Rudel, Thomas; Wyllie, David H.; Fraunholz, Martin J.
2016-01-01
Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection. PMID:27185949
Wang, Yi; Yan, Weiqiang; Fu, Shanshan; Hu, Shoukui; Wang, Yan; Xu, Jianguo; Ye, Changyun
2018-01-01
Staphylococcus aureus ( S. aureus ), including methicillin-resistant S. aureus (MRSA), is one of the most important human pathogens, which is responsible for bacteremia, soft-tissue infections, and food poisoning. Hence, multiple cross displacement amplification (MCDA) is employed to detect all S. aureus strains, and differentiates MRSA from methicillin-sensitive S. aureus . Multiplex MCDA (m-MCDA), which targets the nuc gene ( S. aureus -specific gene) and mecA gene (encoding penicillin-binding protein-2'), could detect S. aureus strains and identify MRSA within 85 min. Detection of the m-MCDA products is achieved using disposable lateral flow biosensors. A total of 58 strains, including various species of Gram-positive and Gram-negative strains, are used for evaluating and optimizing m-MCDA assays. The optimal amplification condition is found to be 63°C for 40 min, with detection limits at 100 fg DNA/reaction for nuc and mecA genes in the pure cultures, and 10 CFU/tube for nuc and mecA genes in the blood samples. The analytical specificity of m-MCDA assay is of 100%, and no cross-reactions to non- S. aureus strains are produced according to the specificity testing. Particularly, two additional components, including AUDG enzyme and dUTP, are added into the m-MCDA amplification mixtures, which are used for eliminating the unwanted results arising from carryover contamination. Thus, the m-MCDA technique appears to be a simple, rapid, sensitive, and reliable assay to detect all S. aureus strains, and identify MRSA infection for appropriate antibiotic therapy.
Walker, Jennifer N.; Crosby, Heidi A.; Spaulding, Adam R.; Salgado-Pabón, Wilmara; Malone, Cheryl L.; Rosenthal, Carolyn B.; Schlievert, Patrick M.; Boyd, Jeffrey M.; Horswill, Alexander R.
2013-01-01
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. PMID:24367264
Tong, Steven Y.C.; Holden, Matthew T.G.; Nickerson, Emma K.; Cooper, Ben S.; Köser, Claudio U.; Cori, Anne; Jombart, Thibaut; Cauchemez, Simon; Fraser, Christophe; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Hongsuwan, Maliwan; Day, Nicholas P.; Limmathurotsakul, Direk; Parkhill, Julian; Peacock, Sharon J.
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infection. Whole-genome sequencing of MRSA has been used to define phylogeny and transmission in well-resourced healthcare settings, yet the greatest burden of nosocomial infection occurs in resource-restricted settings where barriers to transmission are lower. Here, we study the flux and genetic diversity of MRSA on ward and individual patient levels in a hospital where transmission was common. We repeatedly screened all patients on two intensive care units for MRSA carriage over a 3-mo period. All MRSA belonged to multilocus sequence type 239 (ST 239). We defined the population structure and charted the spread of MRSA by sequencing 79 isolates from 46 patients and five members of staff, including the first MRSA-positive screen isolates and up to two repeat isolates where available. Phylogenetic analysis identified a flux of distinct ST 239 clades over time in each intensive care unit. In total, five main clades were identified, which varied in the carriage of plasmids encoding antiseptic and antimicrobial resistance determinants. Sequence data confirmed intra- and interwards transmission events and identified individual patients who were colonized by more than one clade. One patient on each unit was the source of numerous transmission events, and deep sampling of one of these cases demonstrated colonization with a “cloud” of related MRSA variants. The application of whole-genome sequencing and analysis provides novel insights into the transmission of MRSA in under-resourced healthcare settings and has relevance to wider global health. PMID:25491771
Gillman, Aaron N; Breshears, Laura M; Kistler, Charles K; Finnegan, Patrick M; Torres, Victor J; Schlievert, Patrick M; Peterson, Marnie L
2017-06-28
Staphylococcus aureus ( S. aureus ) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.
Villegas-Estrada, Adriel; Lee, Mijoon; Hesek, Dusan; Vakulenko, Sergei B; Mobashery, Shahriar
2008-07-23
Methicillin-resistant Staphylococcus aureus (MRSA) is a global bacterial scourge that has become resistant to many classes of antibiotics, and treatment options for MRSA infections are limited. The cause of MRSA resistance to all commercially available beta-lactam antibiotics is the acquisition of the gene mecA, which encodes penicillin-binding protein 2a (PBP 2a). PBP 2a is a transpeptidase, which in contrast to the other transpeptidases of S. aureus does not experience inhibition by beta-lactam antibiotics. The lack of inhibition is due to a closed conformation for the active site for PBP 2a, which opens up only in the course of the catalytic function of the protein. Here we show that two new anti-MRSA antibiotics now undergoing clinical trials, ceftaroline and ME1036, are able to inhibit PBP 2a effectively, a process that is enhanced in the presence of a cell wall structural surrogate. It is likely that in the course of bacterial growth the occupancy of the allosteric site for the cell wall is co-opted by these antibiotics, and under these conditions the second-order rate constant for the encounter of the antibiotic and PBP 2a approaches the clinically useful value of 10(4)-10(5) M-1 s-1. These compounds are potent inhibitors of PBP 2a as well as PBPs from other species, and have potential as therapeutic agents for treatment of serious infections by MRSA and other resistant bacterial pathogens.
Kroning, Isabela S; Iglesias, Mariana A; Mendonça, Karla S; Lopes, Graciela V; Silva, Wladimir P
2018-05-01
Staphylococcus aureus is a common causative agent of bovine mastitis in dairy cows and commonly associated with foodborne disease outbreaks. The aim of this study was to evaluate the presence of enterotoxin genes, agr typing, antimicrobial resistance, and genetic diversity of S. aureus isolated from milk of cows with mastitis in dairy farms from southern Brazil. Results showed that 7 (22.6%) of 31 S. aureus isolates were positive for enterotoxin genes. Specifically, the genes encoding for enterotoxins A ( n = 4), C ( n = 2), and B ( n = 1) were detected. Isolates belonging to the agr group III (10 of 31, 32.2%) and agr group I (7 of 31, 22.5%) were the most common. To our knowledge, this is the first report of both agr I and III in the same S. aureus isolate from milk of cows with bovine mastitis. The antimicrobial resistance test showed that 54% of the isolates were multiresistant to antimicrobial agents. The macrorestriction analysis produced 16 different major SmaI pulsed-field gel electrophoresis patterns, with up to two subpatterns. Moreover, the presence of some S. aureus clones in a distinct area was observed. Although this study characterized a limited number of S. aureus isolates, the presence of classical enterotoxin genes and resistance to multiple antimicrobial agents reinforces the importance of this microorganism to animal and human health. In addition, similar genetic profiles have been identified in distinct geographic areas, suggesting clonal dissemination of S. aureus in dairy herds from southern Brazil.
Molecular characterization of endocarditis-associated Staphylococcus aureus.
Nethercott, Cara; Mabbett, Amanda N; Totsika, Makrina; Peters, Paul; Ortiz, Juan C; Nimmo, Graeme R; Coombs, Geoffrey W; Walker, Mark J; Schembri, Mark A
2013-07-01
Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.
Molecular Characterization of Endocarditis-Associated Staphylococcus aureus
Nethercott, Cara; Mabbett, Amanda N.; Totsika, Makrina; Peters, Paul; Ortiz, Juan C.; Nimmo, Graeme R.; Coombs, Geoffrey W.
2013-01-01
Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted. PMID:23616460
Yepes, Ana; Koch, Gudrun; Waldvogel, Andrea; Garcia-Betancur, Juan-Carlos; Lopez, Daniel
2014-07-01
Protein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial models Escherichia coli and Bacillus subtilis have been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacterium Staphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of the S. aureus chromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression of mreB in S. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that in S. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the use S. aureus as a model system in exploring diverse aspects of cellular microbiology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
Bari, S M Nayeemul; Walker, Forrest C; Cater, Katie; Aslan, Barbaros; Hatoum-Aslan, Asma
2017-12-15
Staphylococci are prevalent skin-dwelling bacteria that are also leading causes of antibiotic-resistant infections. Viruses that infect and lyse these organisms (virulent staphylococcal phages) can be used as alternatives to conventional antibiotics and represent promising tools to eliminate or manipulate specific species in the microbiome. However, since over half their genes have unknown functions, virulent staphylococcal phages carry inherent risk to cause unknown downstream side effects. Further, their swift and destructive reproductive cycle make them intractable by current genetic engineering techniques. CRISPR-Cas10 is an elaborate prokaryotic immune system that employs small RNAs and a multisubunit protein complex to detect and destroy phages and other foreign nucleic acids. Some staphylococci naturally possess CRISPR-Cas10 systems, thus providing an attractive tool already installed in the host chromosome to harness for phage genome engineering. However, the efficiency of CRISPR-Cas10 immunity against virulent staphylococcal phages and corresponding utility as a tool to facilitate their genome editing has not been explored. Here, we show that the CRISPR-Cas10 system native to Staphylococcus epidermidis exhibits robust immunity against diverse virulent staphylococcal phages. On the basis of this activity, a general two-step approach was developed to edit these phages that relies upon homologous recombination machinery encoded in the host. Variations of this approach to edit toxic phage genes and access phages that infect CRISPR-less staphylococci are also presented. This versatile set of genetic tools enables the systematic study of phage genes of unknown functions and the design of genetically defined phage-based antimicrobials that can eliminate or manipulate specific Staphylococcus species.
Virulence Factors of Staphylococcus aureus Isolates in an Iranian Referral Children's Hospital.
Sabouni, Farah; Mahmoudi, Shima; Bahador, Abbas; Pourakbari, Babak; Sadeghi, Reihaneh Hosseinpour; Ashtiani, Mohammad Taghi Haghi; Nikmanesh, Bahram; Mamishi, Setareh
2014-04-01
The clinical importance of Staphylococcus aureus (S. aureus) is attributed to notable virulence factors, surface proteins, toxins, and enzymes as well as the rapid development of drug resistance. The aim of this study was to compare the occurrence of virulence factors produced by S. aureus strains isolated from children in an Iranian referral children's hospital. The presence of genes encoding for the enterotoxins A (sea), B (seb), C (sec), D (sed), TSST-1 (tsst), exfoliative toxin A (eta), and exfoliative toxin B (etb) were detected by Multiplex polymerase chain reaction (PCR) using specific primers. In addition, the standardized Kirby-Bauer disc-diffusion method was performed on Mueller-Hinton agar. In total, 133 S. aureus isolates were obtained from different patients. Of these S. aureus isolates, 64 (48%) were methicillin-resistant S. aureus (MRSA), and all of these tested positive for the mecA gene. Regarding the classical enterotoxin genes, sea gene (40.6%) was the most prevalent followed by seb (19.6%), tsst (12.8%), eta (11.3%), etb (9%), sed (4.5%), and sec (3%). Among methicillin-susceptible S. aureus (MSSA) isolates, seb and tsst were the more prevalent toxins in comparison with MRSA isolates (p < 0.05), while the frequency of sea, sed, eta, and etb genes were higher among MRSA isolates (p > 0.05). In our study enterotoxin A was produced by 40.6% of the isolates (48% from MRSA and 33% from MSSA isolates) which was higher than in previous reports. According to our results, strict hygiene and preventative measures during food processing are highly recommended.
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains
Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812
Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.
Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel F; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R
2017-01-01
Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.
Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus
Wirth, Thierry; Andersen, Paal S.; Skov, Robert L.; De Grassi, Anna; Simões, Patricia Martins; Tristan, Anne; Petersen, Andreas; Aziz, Maliha; Kiil, Kristoffer; Cirković, Ivana; Udo, Edet E.; del Campo, Rosa; Vuopio-Varkila, Jaana; Ahmad, Norazah; Tokajian, Sima; Peters, Georg; Schaumburg, Frieder; Olsson-Liljequist, Barbro; Givskov, Michael; Driebe, Elizabeth E.; Vigh, Henrik E.; Shittu, Adebayo; Ramdani-Bougessa, Nadjia; Rasigade, Jean-Philippe; Price, Lance B.; Vandenesch, Francois; Larsen, Anders R.; Laurent, Frederic
2014-01-01
ABSTRACT Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations. PMID:25161186
Staphopains Modulate Staphylococcus aureus Biofilm Integrity
Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.
2013-01-01
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534
Dai, Yingxin; Wang, Yanan; Liu, Qian; Gao, Qianqian; Lu, Huiying; Meng, Hongwei; Qin, Juanxiu; Hu, Mo; Li, Min
2017-01-01
The ESAT-6 secretion system (ESS) has been reported to contribute to the virulence and pathogenicity of several Staphylococcus aureus strains such as USA300 and Newman. However, the role of the ESS in community-associated S. aureus (CA-SA) lineage ST398 in China is not well understood. By comparing the ess locus of ST398 with the published S. aureus sequence in the NCBI database, we found one gene in the ess locus encoding a novel WXG superfamily protein that is highly conserved only in ST398. LC-MS/MS and Western blot analysis revealed that this protein is a novel secreted protein controlled by the ST398 ESS, and we named the protein EsxX. Although EsxX was not under the control of the accessory gene regulator like many other virulence factors and had no influence on several phenotypes of ST398, such as growth, hemolysis, and biofilm formation, it showed important impacts on immune evasion and virulence in ST398. An esxX deletion mutant led to significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models, indicating its essential contribution to the evasion of innate host defense and virulence to support the pathogenesis of ST398 infections. The function of this novel secreted protein EsxX might help us better understand the role of the ESS in the virulence and epidemic success of the CA-SA lineage ST398.
[Community-acquired methicillin-resistant Staphylococcus aureus infections in children].
Frick, Marie Antoinette; Moraga-Llop, Fernando A; Bartolomé, Rosa; Larrosa, Nieves; Campins, Magda; Roman, Yuani; Vindel, Ana; Figueras, Concepció
2010-12-01
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections were first reported in the 1990s. Young, healthy individuals are frequently affected. The incidence of CA-MRSA in Spain is increasing. All children seen between August 2006 and January 2009 with CA-MRSA infections were included. The S. aureus isolates were studied by conventional techniques, their antibiotic susceptibility by agar disk diffusion, the presence of mecA gene was detected by multiplex polymerase chain reaction (PCR) and the gene encoding the Panton-Valentine leukocidin (PVL) by conventional PCR. CA-MRSA colonization was studied both in patients and their family members. CA-MRSA was isolated in 15 samples from 12 patients, aged between 6 days and 14 years. Half of them were not native. Eight patients required hospital admission. The most common clinical presentation was skin and soft tissue infection (92%). Secondary CA-MRSA bacteraemia was present in two patients. All strains were PVL producers and two were resistant to macrolides associated to methicillin resistance and one of them was also resistant to lincosamides. An intra-familial transmission was identified. The clinical outcome was favourable in all patients. CA-MRSA infections are emerging in Spain. Empirical treatment of skin and soft tissue infections should not be changed, since their incidence is still low. The drainage of CA-MRSA suppurative infections plays an important role in their treatment. Clindamycin or trimethoprim-sulfamethoxazole should be used for mild or moderate skin and soft tissue infections. Controlling the spread of these strains presents a challenge in the community today. Copyright © 2009 Elsevier España, S.L. All rights reserved.
Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli.
Turlin, Evelyne; Débarbouillé, Michel; Augustyniak, Katarzyna; Gilles, Anne-Marie; Wandersman, Cécile
2013-01-01
EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.
NASA Astrophysics Data System (ADS)
Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.
2012-04-01
Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.
Masiuk, Helena; Kopron, Katarzyna; Grumann, Dorothee; Goerke, Christiane; Kolata, Julia; Jursa-Kulesza, Joanna; Giedrys-Kalemba, Stefania; Bröker, Barbara M.; Holtfreter, Silva
2010-01-01
Staphylococcus aureus is a major cause of skin and soft tissue infections, such as furuncles, carbuncles, and abscesses, but it also frequently colonizes the human skin and mucosa without causing clinical symptoms. Panton-Valentine leukocidin (PVL) is a pore-forming toxin that has been associated with soft tissue infections and necrotizing pneumonia. We have compared the genotypes, virulence gene repertoires, and phage patterns of 74 furunculosis isolates with those of 108 control strains from healthy nasal carriers. The large majority of furunculosis strains were methicillin sensitive. Clonal cluster (CC) 121 (CC121) and CC22 accounted for 70% of the furunculosis strains but for only 8% of the nasal isolates. The PVL-encoding genes luk-PV were detected in 85% of furunculosis strains, while their prevalence among colonizing S. aureus strains was below 1%. luk-PV genes were distributed over several lineages (CCs 5, 8, 22, 30, and 121 and sequence type 59). Even within the same lineages, luk-PV-positive phages characterized furunculosis strains, while their luk-PV-negative variants were frequent among nasal strains. The very tight epidemiological linkage between luk-PV and furunculosis, which could be separated from the genetic background of the S. aureus strain as well as from the gene makeup of the luk-PV-transducing phage, lends support to the notion of an important role for PVL in human furunculosis. These results make a case for the determination of luk-PV in recurrent soft tissue infections with methicillin-sensitive as well as methicillin-resistant S. aureus. PMID:20200289
ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation.
Daly, Seth M; Elmore, Bradley O; Kavanaugh, Jeffrey S; Triplett, Kathleen D; Figueroa, Mario; Raja, Huzefa A; El-Elimat, Tamam; Crosby, Heidi A; Femling, Jon K; Cech, Nadja B; Horswill, Alexander R; Oberlies, Nicholas H; Hall, Pamela R
2015-04-01
Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk.
Jørgensen, H J; Mørk, T; Caugant, D A; Kearns, A; Rørvik, L M
2005-12-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.
Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk
Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.
2005-01-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822
Staphylococcus chromogenes, a Coagulase-Negative Staphylococcus Species That Can Clot Plasma.
Dos Santos, Danielle Cabral; Lange, Carla Christine; Avellar-Costa, Pedro; Dos Santos, Katia Regina Netto; Brito, Maria Aparecida Vasconcelos Paiva; Giambiagi-deMarval, Marcia
2016-05-01
Staphylococcus chromogenes is one of the main coagulase-negative staphylococci isolated from mastitis of dairy cows. We describe S. chromogenes isolates that can clot plasma. Since the main pathogen causing mastitis is coagulase-positive Staphylococcus aureus, the coagulase-positive phenotype of S. chromogenes described here can easily lead to misidentification. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Evaluation of the Biotyper MALDI-TOF MS system for identification of Staphylococcus species.
Zhu, Wenming; Sieradzki, Krzysztof; Albrecht, Valerie; McAllister, Sigrid; Lin, Wen; Stuchlik, Olga; Limbago, Brandi; Pohl, Jan; Kamile Rasheed, J
2015-10-01
The Bruker Biotyper MALDI-TOF MS (Biotyper) system, with a modified 30 minute formic acid extraction method, was evaluated by its ability to identify 216 clinical Staphylococcus isolates from the CDC reference collection comprising 23 species previously identified by conventional biochemical tests. 16S rDNA sequence analysis was used to resolve discrepancies. Of these, 209 (96.8%) isolates were correctly identified: 177 (84.7%) isolates had scores ≥2.0, while 32 (15.3%) had scores between 1.70 and 1.99. The Biotyper identification was inconsistent with the biochemical identification for seven (3.2%) isolates, but the Biotyper identifications were confirmed by 16S rDNA analysis. The distribution of low scores was strongly species-dependent, e.g. only 5% of Staphylococcus epidermidis and 4.8% of Staphylococcus aureus isolates scored below 2.0, while 100% of Staphylococcus cohnii, 75% of Staphylococcus sciuri, and 60% of Staphylococcus caprae produced low but accurate Biotyper scores. Our results demonstrate that the Biotyper can reliably identify Staphylococcus species with greater accuracy than conventional biochemicals. Broadening of the reference database by inclusion of additional examples of under-represented species could further optimize Biotyper results. Published by Elsevier B.V.
Validation of the Accuracy and Reliability of Culturing Intravascular Catheter Segments
1992-11-24
Pseudomonas aeruginosa 2 2 - Staphylococcus haemolyticus 2 2 - Other:(Bacillus spp.(1), 7 4 - Enterobacter Cloacae(l), Beta-strep(2), Staph spp.(3) (not further identified)) 20 ...tabulation, each organism from multiply colonized catheters was designated separately. Coagulase negative staphylococcus was the most commonly isolated... staphylococcus (10 of 21 organisms). Bedside plated cultures identified infection with yeast (2), pseudomonas aeruginosa (2), staphylococcus aureus
Madsen, Anne Mette; Moslehi-Jenabian, Saloomeh; Islam, Md Zohorul; Frankel, Mika; Spilak, Michal; Frederiksen, Margit W
2018-01-01
The aim of this study was to obtain knowledge about concentrations of Staphylococcus aureus, MRSA (methicillin-resistant S. aureus), and other Staphylococcus species in indoor air in Greater Copenhagen and about factors affecting the concentrations. The effects of season, temperature, relative humidity, air change rate (ACR), other bacterial genera, area per occupant, and presence of S. aureus-positive occupants were studied. In samples from 67 living rooms, S. hominis, S. warneri, S. epidermidis, and S. capitis were found in 13-25%; S. saprophyticus, S. cohnii, and S. pasteuri in 5-10%; and S. lugdunensis, S. haemolyticus, S. caprae, S. equorum, S. kloosii, S. pettenkoferi, S. simulans, and S. xylosus in less than 3%. Staphylococcus aureus were found in two of 67 living rooms: spa type t034 (an MRSA) was recovered from a farmhouse, while spa type t509 was found in an urban home. Two species, S. equorum and S. kloosii, were found only in the farmhouse. Staphylococcus was significantly associated with season with lowest concentration and richness in winter. Genera composition was associated with ACR with smaller fractions of Staphylococcus at higher ACR, while richness was significantly and negatively associated with area per occupant. Concentration of Staphylococcus correlated positively with the total concentration of bacteria, but negatively with the total concentration of other bacteria. The concentration of Staphylococcus was not significantly associated with concentrations of the other abundant genera Bacillus, Kocuria, and Micrococcus. In offices with S. aureus-positive occupants, airborne S. aureus was not found. In conclusion, Staphylococcus species constitute a considerable proportion of the airborne bacteria in the studied homes and offices. However, both S. aureus and MRSA had very low prevalence during all seasons. Thus, transmission of S. aureus and MRSA through the air in living rooms in Copenhagen is expected to be limited. The negative associations between ACR and the fraction Staphylococcus constituted out of total bacteria, and between area per occupant and Staphylococcus richness indicate that it might be possible to affect the presence of airborne Staphylococcus in homes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hussain, Roslinah Mohamad; Razak, Zayan Nabilah Rasyidah Abd; Saad, Wan Mazlina Md; Mustakim, Maimunah
2017-07-01
To investigate the effects of Andrographis paniculata (Burm.f.) Wall. Ex Nees (A. paniculata) on expressions and activities of catalase, superoxide dismutase and alkylhydroperoxide reductase C in Staphylococcus aureus (S. aureus) with respect to its survival in vitro. Antioxidative property of methanolic leaves extract of A. paniculata (0.06 mg/mL). Minimum inhibitory concentration (MIC) was determined by its ability to reduce hydrogen peroxide (H 2 O 2 ) toxicity against S. aureus ATCC 25923 [(3.8 × 10 8 ) cfu/mL]. Effects of the extract on expressions of katA (encoding catalase), sodA and sodM [encoding superoxide dismutases (SODs)], and ahpC [encoding alkylhydroperoxide reductase C (AhpC)] in S. aureus were determined by RT-qPCR and corresponding enzyme activity assays were performed. Nitroblue tetrazolium reduction (NBT) assay was performed to determine effects of the extract on intracellular and extracellular levels of O 2- in S. aureus. Cells challenged with 7.5 mmol/L H 2 O 2 showed 0% survival in 30 min whereas 25% survived after treatment with the extract and H 2 O 2 . Cells that were treated with the extract alone had 43% survival in the same exposure period. Expressions of sodA and sodM genes in extract-treated cells were lowered 0.8-fold and 0.7-fold, respectively with decrease in total SOD activity of 26.8 U compared to untreated cells, 32.4 U (P < 0.05). In contrast, extract-treated S. aureus cells showed 3.3-fold increase in katA expression with corresponding increase in catalase activity of 1.828 U compared to untreated cells which was 1.248 U, (P < 0.05). More profoundly, ahpC expression was increased 61-fold in extract-treated cells, (P < 0.05) with corresponding increase in AhpC activity of 0.018 U compared to untreated cells, 0.012 U, (P < 0.05). Extract-treated cells had significantly lower intra- and extracellular O 2 - levels with absorbance readings (A 575 nm ) of 0.340 and 0.524 compared to untreated cells which were 0.516 and 0.928 (P < 0.05), respectively. Taken together these results suggest that the low MIC of A. paniculata methanolic leaves extract (0.06 mg/mL) reduce H 2 O 2 toxicity and more importantly, was in itself effectively inhibitory against S. aureus. Further, our observations suggest that a probable mode of its inhibitory mechanism against S. aureus is by reducing total SOD activity through downregulation of sodA and sodM expressions. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Kahanov, Leamor; Kim, Young Kyun; Eberman, Lindsey; Dannelly, Kathleen; Kaur, Haninder; Ramalinga, A
2015-04-01
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a leading cause of skin and soft tissue infection in the nonhospitalized community. Care of the athletes in athletic training rooms is specifically designed with equipment tailored to the health care needs of the athletes, yet recent studies indicate that CA-MRSA is still prevalent in athletic facilities and that cleaning methods may not be optimal. To investigate the prevalence of Staphylococcus aureus and CA-MRSA in and around whirlpools in the athletic training room. Cross-sectional study. National Collegiate Athletic Association Division I university. Student-athletes (n = 109) consisting of 46 men (42%) and 63 women (58%) representing 6 sports. Presence of MRSA and Staphylococcus aureus in and around the whirlpool structures relative to sport and number of athletes using the whirlpools. We identified Staphylococcus aureus in 22% (n = 52/240) of the samples and MRSA in 0.8% (n = 2/240). A statistically significant difference existed between the number of athletes using the whirlpool and the presence of Staphylococcus aureus in and around the whirlpools (F(2,238) = 2.445, P = .007). However, Staphylococcus aureus was identified regardless of whether multiple athletes used a whirlpool or no athletes used a whirlpool. We did not identify a relationship between the number of athletes who used a whirlpool and Staphylococcus aureus or MRSA density (P = .134). Staphylococcus aureus and MRSA were identified in and around the whirlpools. Transmission of the bacteria can be reduced by following the cleaning and disinfecting protocols recommended by the Centers for Disease Control and Prevention. Athletic trainers should use disinfectants registered by the Environmental Protection Agency to sanitize all whirlpools between uses.
Schmalz, Oliver; Strapatsas, Tobias; Alefelder, Christof; Grebe, Scott Oliver
2016-07-01
Methicillin-resistant Staphylococcus aureus is a common organism in hospitals worldwide and is associated with morbidity and mortality. However, little is known about the prevalence in palliative care patients. Furthermore, there is no standardized screening protocol or treatment for patients for whom therapy concentrates on symptom control. Examining the prevalence of methicillin-resistant Staphylococcus aureus in palliative care patients as well as the level of morbidity and mortality. We performed a prospective study where methicillin-resistant Staphylococcus aureus screening was undertaken in 296 consecutive patients within 48 h after admission to our palliative care unit. Medical history was taken, clinical examination was performed, and the Karnofsky Performance Scale and Palliative Prognostic Score were determined. Prevalence of Methicillin-resistant Staphylococcus aureus was compared to data of general hospital patients. In total, 281 patients were included in the study having a mean age of 69.7 years (standard deviation = 12.9 years) and an average Karnofsky Performance Scale between 30% and 40%. The mean length of stay was 9.7 days (standard deviation = 7.6 days). A total of 24 patients were methicillin-resistant Staphylococcus aureus positive on the first swab. Median number of swabs was 2. All patients with a negative methicillin-resistant Staphylococcus aureus swab upon admission remained Methicillin-resistant Staphylococcus aureus negative in all subsequent swabs. Our study suggests that the prevalence of Methicillin-resistant Staphylococcus aureus among patients in an in-hospital palliative care unit is much higher than in other patient populations. © The Author(s) 2016.
Staphylococcus aureus and Pregnancy
Staphylococcus aureus (Staph Infection) In every pregnancy, a woman starts out with a 3-5% chance of having ... risk. This sheet talks about whether exposure to staphylococcus aureus may increase the risk for birth defects over ...
21 CFR 520.1618 - Orbifloxacin suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... infections (wounds and abscesses) in dogs caused by susceptible strains of Staphylococcus pseudintermedius, Staphylococcus aureus, coagulase-positive staphylococci, Pasteurella multocida, Proteus mirabilis, Pseudomonas... urinary tract infections (cystitis) in dogs caused by susceptible strains of Staphylococcus...
21 CFR 520.1618 - Orbifloxacin suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... infections (wounds and abscesses) in dogs caused by susceptible strains of Staphylococcus pseudintermedius, Staphylococcus aureus, coagulase-positive staphylococci, Pasteurella multocida, Proteus mirabilis, Pseudomonas... urinary tract infections (cystitis) in dogs caused by susceptible strains of Staphylococcus...
21 CFR 520.1618 - Orbifloxacin suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... infections (wounds and abscesses) in dogs caused by susceptible strains of Staphylococcus pseudintermedius, Staphylococcus aureus, coagulase-positive staphylococci, Pasteurella multocida, Proteus mirabilis, Pseudomonas... urinary tract infections (cystitis) in dogs caused by susceptible strains of Staphylococcus...
Kilic, Abdullah; Basustaoglu, A Celal
2011-12-01
We developed and validated here a double triplex real-time PCR assay to simultaneously detect and identify Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and their methicillin resistance in a single reaction directly from Gram-positive cocci-in-clusters (GPCs)-positive blood culture bottles. From August 15, 2009 through February 15, 2010, 238 GPC-positive samples were collected and identified by conventional methods as 11 methicillin-resistant S. aureus (MRSA), 28 methicillin-susceptible S. aureus (MSSA), 176 MR coagulase-negative staphylococci (MRCoNS), 21 MSCoNS and two Enterococcus faecalis. The double triplex real-time PCR assay was targeted and detected tuf, nuc and mecA genes in the first tube and atlE, gap and mvaA genes in the second tube which could be run simultaneously. The detection limit of the assay was found at 10(3) CFU/ml for the atleE gene, 10(4) CFU/ml for the mva gene and 10(5) CFU/ml for gap, nuc, mecA and tuf genes based on seeding experiments. All Staphylococcus species except two S. epidermidis were correctly identified by the assay. The double triplex real-time PCR assay quickly and accurately detects S. aureus, S. epidermidis, S. hominis and S. haemolyticus and their methicillin resistance in a single reaction directly from positive blood culture bottles within 83 min. Copyright © 2011 Institut Pasteur. All rights reserved.
2015-10-01
NAVY AND MARINE CORPS PUBUC IEAI.TI CINTIR PREVENTION AND PROTECTION START HERE Methicillin-Resistant Staphylococcus aureus IMRSAJ Infections in...Methicit li~esistant Staphylococcus aureus (MRSA) Infections in the Department of Defense (000): Annual Summary Report 2014 Jessica Spencer. Uzo...Distribution is not limited. NUMBER NMCPHC-EOC-TR-499-2015 NUMBER($) NMCPHC-EDC-TR-499-201 5 Metticitrin-resistant Staphylococcus aureus (MRSA
Isolation and identification of Staphylococcus sp. in powdered infant milk
NASA Astrophysics Data System (ADS)
Palilu, Prayolga Toban; Budiarso, Tri Yahya
2017-05-01
Staphylococcus sp. is one of the most dangerous bacteria that could cause food poisoning. It is a pathogenic bacterium which is able to produce enterotoxin in foods. Milk is an ideal growth medium for Staphylococcus sp., that may cause problem if it is to be consumed, especially by infant. It is the objective of this research to detect the presence of Staphylococcus sp. in powdered infant milk. As many as 14 samples obtained from market were used as samples for bacterial isolation. The isolation were done by employing enrichment step on BHI-broth, continued with Baird-Parker Agar which will produce a typical colony. It is then picked and grown on Mannitol Salt Agar, and gram staining, coagulase assay, and fermentation tests. The confirmation step was done by using API-Staph which gives the identification of Staphylococcus hemoliticus, Staphylococcus aureus and Staphylococcus epidermidis, with a percentage of identity ranging from 65.9-97.7%. Two isolates with the highest identification similarity values were then picked for molecular detection. A PCR primer pair targeting gene coding for enterotoxin A was used, and it gives positive result for the two isolates being tested. It is then concluded that the two isolates belong to Staphylococcus sp., and further research need to be done to correctly identify these isolates.
Shen, Jing; Liang, Qingfeng; Su, Guanyu; Zhang, Yang; Wang, Zhiqun; Liang, Hong; Baudouin, Christophe; Labbé, Antoine
2017-01-01
In order to study Staphylococcus epidermis and Staphylococcus aureus in vitro viability after the exposure to ultraviolet (UV) light and riboflavin, twelve strains of Staphylococcus epidermis and twelve strains of Staphylococcus aureus were isolated from patients with bacterial keratitis. The growth situation of Staphylococcus epidermidis and Staphylococcus aureus under different experimental conditions was qualitatively observed. The number of colonies surviving bacteria was counted under different UV light power and different exposure time. The experiment showed that there was no inhibition effect on the growth of bacteria using riboflavin alone. In UV alone group and UV-riboflavin group, inhibition effect on the bacteria growth was found. The UV-riboflavin combination had better inhibition effect on bacteria than UV irradiation alone. The amount of bacteria in the UV-riboflavin group was decreased by 99.1%~99.5% and 54.8%~64.6% in the UV alone group, when the UV light power was 10.052 mW/cm 2 and the irradiation time was 30 min. Moreover, with the increase of the UV power or irradiation time, the survival rates of bacteria were rapidly reduced. Compared with Staphylococcus aureus , Staphylococcus epidermis was more easily to be killed under the action of UV light combined with riboflavin.
Talebi, Malihe; Shafiee, Mohammad; Sadeghi, Javad; Moghadam, Nasrin Asghari; Saifi, Mahnaz; Pourshafie, Mohammad R
2016-03-01
We investigated the prevalence of methicillin-resistant coagulase-negative staphylococci (MRCoNS) isolated from hospitalized patients and outpatients (OP). Out of 350 staphylococcal isolates collected from three hospitals, 190 were coagulase-negative staphylococci (CoNS). These isolates were subjected to antimicrobial susceptibility tests, detection of mecA, and pulsed-field gel electrophoresis (PFGE) typing. Among the 190 isolated CoNS, Staphylococcus epidermidis (47.3%) and Staphylococcus haemolyticus (44.2%) were the most prevalent species. Other CoNS species that were isolated were Staphylococcus saprophyticus (2.1%), Staphylococcus warneri (2.1%), Staphylococcus simulans (1.6%), Staphylococcus capitis (1.1%), Staphylococcus schleiferi (1.1%), and Staphylococcus hominis (0.5%). The rate of resistance to methicillin was 60% with 58 (50%) S. epidermidis and 55 (49%) S. haemolyticus. The rate of resistance to 13 antibiotics tested with the lowest and highest to chloramphenicol and penicillin, respectively. High clonal diversity with different PFGE patterns was obtained for methicillin-resistant S. epidermidis and S. haemolyticus by 32 and 31 types, respectively. Our results indicated that the dissemination of MRCoNS is widespread in Tehran. The majority of these isolates showed distinct genotyping patterns. At the same time, the common patterns were found among the MRCoNS obtained from outpatient and inpatient isolates, suggestive of an epidemiological link.
Identification of Staphylococcus and Micrococcus species with the STAPHYtest system.
Sedlácek, I; Kocur, M
1991-01-01
A collection of 216 well-characterized strains of Staphylococcus, Micrococcus and Stomatococcus was examined by a commercially available STAPHYtest system (Lachema, Brno, Czechoslovakia). The results of STAPHYtest agreed with those of conventional tests. The STAPHYtest permitted a clear-cut separation of Staphylococcus from Micrococcus and Stomatococcus strains and correctly identified 104 of 145 (72%) Staphylococcus strains after 24 h of incubation. However, it allowed the identification only of 19 of 29 validly published Staphylococcus species. The STAPHYtest proved to be a simple and rapid system for the separation of staphylococci from micrococci and for the identification of most frequent clinically significant staphylococci.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., tracheobronchitis) due to Staphylococcus aureus, Streptococcus spp., Escherichia coli, and Proteus mirabilis...: Upper respiratory infections due to S. aureus, Staphylococcus spp., Streptococcus spp., Haemophilus spp..., lacerations, and wounds) due to S. aureus, Staphylococcus spp., Streptococcus spp., E. coli, and Pasteurella...
NASA Astrophysics Data System (ADS)
Xu, Wei; Zhou, Qi; Yang, Chunguang; Yao, Hanxin; Xu, Jiancheng
This study was to investigate the antimicrobial resistance of Staphylococcus aureus isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1469 strains of Staphylococcus aureus were collected from sputum 705 (18.0%), secretions 206 (14.0%), pus 177 (12.0%) during the past 8 years. The rates of methicillin-resistant Staphylococcus aureus (MRSA) were between 50.8% and 83.3% during the past 8 years, respectively. In recent 8 years, the antimicrobial resistance of Staphylococcus aureus had increased. Monitoring the antimicrobial resistance to Staphylococcus aureus should be strengthened. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, Jessica M.; Cohen, Raphael M.; Berns, Jeffrey S.
Purpose: Over-the-wire exchange of tunneled dialysis catheters is the standard of care per K/DOQI guidelines for treating catheter-related bacteremia. However, Gram-positive bacteremia, specifically with staphylococcus species, may compromise over-the-wire exchange due to certain biological properties. This study addressed the effectiveness of over-the-wire exchange of staphylococcus-infected tunneled dialysis catheters compared with non-staphylococcus-infected tunneled dialysis catheters. Methods: Patients who received over-the-wire exchange of their tunneled dialysis catheter due to documented or suspected bacteremia were identified from a QA database. Study patients (n = 61) had positive cultures for Staphylococcus aureus, Staphylococcus epidermidis, or coagulase-negative staphylococcus not otherwise specified. Control patients (n =more » 35) received over-the-wire exchange of their tunneled dialysis catheter due to infection with any organism besides staphylococcus. Overall catheter survival and catheter survival among staphylococcal species were assessed. Results: There was no difference in tunneled dialysis catheter survival between study and control groups (P = 0.46). Median survival time was 96 days for study catheters and 51 days for controls; survival curves were closely superimposed. There also was no difference among the three staphylococcal groups in terms of catheter survival (P = 0.31). The median time until catheter removal was 143 days for SE, 67 days for CNS, and 88 days for SA-infected catheters. Conclusions: There is no significant difference in tunneled dialysis catheter survival between over-the-wire exchange of staphylococcus-infected tunneled dialysis catheters and those infected with other organisms.« less
Methicillin resistant Staphylococcus aureus in Ethiopia: a meta-analysis.
Eshetie, Setegn; Tarekegn, Fentahun; Moges, Feleke; Amsalu, Anteneh; Birhan, Wubet; Huruy, Kahsay
2016-11-21
The burden of methicillin resistant Staphylococcus aureus is a major public health concern worldwide; however the overall epidemiology of multidrug resistant strains is neither coordinated nor harmonized, particularly in developing countries including Ethiopia. Therefore, the aim of this meta-analysis was to assess the burden of methicillin resistant Staphylococcos aureus and its antibiotic resistance pattern in Ethiopia at large. PubMed, Google Scholar, and lancet databases were searched and a total of 20 studies have been selected for meta-analysis. Six authors have independently extracts data on the prevalence of methicillin resistant Staphylococcus aureus among clinical isolates of Staphylococcus aureus. Statistical analysis was achieved by using Open meta-analyst (version 3.13) and Comprehensive meta-analysis (version 3.3) softwares. The overall prevalence of methicillin resistant Staphylococcus aureus and its antibiotic resistance pattern were pooled by using the forest plot, table and figure with 95% CI. The pooled prevalence of methicillin resistant Staphylococcus aureus was 32.5% (95% CI, 24.1 to 40.9%). Moreover, methicillin resistant Staphylococcus aureus strains were found to be highly resistant to penicillin, ampicillin, erythromycin, and amoxicillin, with a pooled resistance ratio of 99.1, 98.1, 97.2 and 97.1%, respectively. On the other hand, comparably low levels of resistance ratio were noted to vancomycin, 5.3%. The overall burden of methicillin resistant Staphylococcus aureus is considerably high, besides these strains showed extreme resistance to penicillin, ampicillin, erythromycin and amoxicillin. In principle, appropriate use of antibiotics, applying safety precautions are the key to reduce the spread of multidrug resistant strains, methicillin resistant Staphylococcus aureus in particular.
21 CFR 520.90b - Ampicillin trihydrate tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
...., Staphylococcus spp., E., coli, P. mirabilis, and Enterococcus spp.; gastrointestinal infections due to Staphylococcus spp., Streptococcus spp., Enterococcus spp., and E. coli. ; infections associated with abscesses..., tonsillitis, and bronchitis due to Streptococcus spp., Staphylococcus spp., Escherichia coli, Proteus...
21 CFR 520.90b - Ampicillin trihydrate tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
...., Staphylococcus spp., E., coli, P. mirabilis, and Enterococcus spp.; gastrointestinal infections due to Staphylococcus spp., Streptococcus spp., Enterococcus spp., and E. coli. ; infections associated with abscesses..., tonsillitis, and bronchitis due to Streptococcus spp., Staphylococcus spp., Escherichia coli, Proteus...
MICROBIOLOGICAL ASSESSMENT OF LETTUCE SALADS AND ANTIMICROBIAL RESISTANCE OF STAPHYLOCOCCUS SPP.
Guimarães César, Josi; Madruga Peres, Andriele; Pereira das Neves, Caroline; Tupiniquim Freitas de Abreu, Érica; Fagundes de Mello, Jozi; Nunes Moreira, Ângela; Lameiro Rodrigues, Kelly
2015-11-01
self-service restaurants in which food is served ready to be consumed are liable to have some products contaminated by pathogenic microorganisms causing food-transmitted diseases. evaluates the microbiological quality of lettuce salads in restaurants in Pelotas RS Brazil by counts of thermo-tolerant coliforms, E. coli, Staphylococcus spp. and detection of Salmonella spp. Antimicrobial resistance of Staphylococcus spp. isolates are also assessed. thirty-six samples of lettuce salads were collected from nine restaurants and thermotolerant coliforms, Escherichia coli and Staphylococcus spp. were quantified, coupled to a research on Salmonella spp., following methodology by the Bacteriological Analytical Manual. Staphylococcus spp. isolates underwent antimicrobial resistance test by the disc-diffusion method. results showed that 61.1% of the salad samples contained more thermotolerant coliforms than allowed by Brazilian legislation and E. coli was confirmed in 5.6% of the samples. Positive and negative coagulase Staphylococcus occurred respectively in 5.6% and 77.8% of isolates, but no sample had Salmonella spp. Further, 56.7% of the thirty isolates of Staphylococcus spp. tested were resistant to penicillin; 46.7% to oxacillin; 26.7% to erythromycin and 23.3% were multi- resistant. inadequate quality of the salad was due to pathogenic microorganisms, while Staphylococcus spp. isolates had a high percentage of antimicrobial resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Metastatic Complications from Staphylococcus intermedius, a Zoonotic Pathogen
Sree, Aruna; Tirrell, Sandra; Torres, Brenda; Rothman, Alan L.
2012-01-01
Metastatic infection is an infrequent complication of non-Staphylococcus aureus staphylococcal infection. Here we report a case of bloodstream infection due to Staphylococcus intermedius. To our knowledge, ours is the only known case of metastatic infection with S. intermedius. PMID:22170938
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... infections (tracheobronchitis and tonsillitis) due to Escherichia coli, Pseudomonas spp., Proteus spp., Staphylococcus spp., and Streptococcus spp., urinary tract infections (cystitis) due to E. coli, Staphylococcus... infections (septicemia) associated with abscesses, lacerations, and wounds, due to Staphylococcus spp. and...
21 CFR 520.88f - Amoxicillin trihydrate tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... day. (ii) Indications for use. Treatment of bacterial dermatitis due to Staphylococcus aureus, Streptococcus spp., Staphylococcus spp., and Escherichia coli; and soft tissue infections (abscesses, wounds, lacerations) due to S. aureus, Streptococcus spp., E. coli, Proteus mirabilis, and Staphylococcus spp. (iii...
40 CFR 725.421 - Introduced genetic material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Neurotoxin Staphylococcus aureus Alpha toxin (alpha lysin) Yersinia pestis Murine toxin Snake toxins Bungarus... aeruginosa Proteases Staphylococcus aureus Gamma lysin (Gamma toxin); Enterotoxins (SEA, SEB, SEC, SED SEE); Pyrogenic exotoxins A B; Toxic shock syndrome toxins (TSST-1) Staphylococcus aureus & Pseudomonas aeruginosa...
40 CFR 725.421 - Introduced genetic material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Neurotoxin Staphylococcus aureus Alpha toxin (alpha lysin) Yersinia pestis Murine toxin Snake toxins Bungarus... aeruginosa Proteases Staphylococcus aureus Gamma lysin (Gamma toxin); Enterotoxins (SEA, SEB, SEC, SED SEE); Pyrogenic exotoxins A B; Toxic shock syndrome toxins (TSST-1) Staphylococcus aureus & Pseudomonas aeruginosa...
21 CFR 520.88f - Amoxicillin trihydrate tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... day. (ii) Indications for use. Treatment of bacterial dermatitis due to Staphylococcus aureus, Streptococcus spp., Staphylococcus spp., and Escherichia coli; and soft tissue infections (abscesses, wounds, lacerations) due to S. aureus, Streptococcus spp., E. coli, Proteus mirabilis, and Staphylococcus spp. (iii...
21 CFR 520.88f - Amoxicillin trihydrate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... day. (ii) Indications for use. Treatment of bacterial dermatitis due to Staphylococcus aureus, Streptococcus spp., Staphylococcus spp., and Escherichia coli; and soft tissue infections (abscesses, wounds, lacerations) due to S. aureus, Streptococcus spp., E. coli, Proteus mirabilis, and Staphylococcus spp. (iii...
40 CFR 725.421 - Introduced genetic material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Neurotoxin Staphylococcus aureus Alpha toxin (alpha lysin) Yersinia pestis Murine toxin Snake toxins Bungarus... aeruginosa Proteases Staphylococcus aureus Gamma lysin (Gamma toxin); Enterotoxins (SEA, SEB, SEC, SED SEE); Pyrogenic exotoxins A B; Toxic shock syndrome toxins (TSST-1) Staphylococcus aureus & Pseudomonas aeruginosa...
40 CFR 725.421 - Introduced genetic material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Neurotoxin Staphylococcus aureus Alpha toxin (alpha lysin) Yersinia pestis Murine toxin Snake toxins Bungarus... aeruginosa Proteases Staphylococcus aureus Gamma lysin (Gamma toxin); Enterotoxins (SEA, SEB, SEC, SED SEE); Pyrogenic exotoxins A B; Toxic shock syndrome toxins (TSST-1) Staphylococcus aureus & Pseudomonas aeruginosa...
Ge, Lilin; Lyu, Peng; Zhou, Mei; Zhang, Huiling; Wan, Yuantai; Li, Bin; Li, Renjie; Wang, Lei; Chen, Tianbao; Shaw, Chris
2014-01-01
Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure--GMRPPWF-NH2--was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μ M). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.
Kahanov, Leamor; Kim, Young Kyun; Eberman, Lindsey; Dannelly, Kathleen; Kaur, Haninder; Ramalinga, A.
2015-01-01
Context: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a leading cause of skin and soft tissue infection in the nonhospitalized community. Care of the athletes in athletic training rooms is specifically designed with equipment tailored to the health care needs of the athletes, yet recent studies indicate that CA-MRSA is still prevalent in athletic facilities and that cleaning methods may not be optimal. Objective: To investigate the prevalence of Staphylococcus aureus and CA-MRSA in and around whirlpools in the athletic training room. Design: Cross-sectional study. Setting: National Collegiate Athletic Association Division I university. Patients or Other Participants: Student-athletes (n = 109) consisting of 46 men (42%) and 63 women (58%) representing 6 sports. Main Outcome Measure(s): Presence of MRSA and Staphylococcus aureus in and around the whirlpool structures relative to sport and number of athletes using the whirlpools. Results: We identified Staphylococcus aureus in 22% (n = 52/240) of the samples and MRSA in 0.8% (n = 2/240). A statistically significant difference existed between the number of athletes using the whirlpool and the presence of Staphylococcus aureus in and around the whirlpools (F2,238 = 2.445, P = .007). However, Staphylococcus aureus was identified regardless of whether multiple athletes used a whirlpool or no athletes used a whirlpool. We did not identify a relationship between the number of athletes who used a whirlpool and Staphylococcus aureus or MRSA density (P = .134). Conclusions: Staphylococcus aureus and MRSA were identified in and around the whirlpools. Transmission of the bacteria can be reduced by following the cleaning and disinfecting protocols recommended by the Centers for Disease Control and Prevention. Athletic trainers should use disinfectants registered by the Environmental Protection Agency to sanitize all whirlpools between uses. PMID:25710853
Ruppé, Etienne; Barbier, François; Mesli, Yasmine; Maiga, Aminata; Cojocaru, Radu; Benkhalfat, Mokhtar; Benchouk, Samia; Hassaine, Hafida; Maiga, Ibrahim; Diallo, Amadou; Koumaré, Abdel Karim; Ouattara, Kalilou; Soumaré, Sambou; Dufourcq, Jean-Baptiste; Nareth, Chhor; Sarthou, Jean-Louis; Andremont, Antoine; Ruimy, Raymond
2009-02-01
In staphylococci, methicillin (meticillin) resistance (MR) is mediated by the acquisition of the mecA gene, which is carried on the size and composition variable staphylococcal cassette chromosome mec (SCCmec). MR has been extensively studied in Staphylococcus aureus, but little is known about MR coagulase-negative staphylococci (MR-CoNS). Here, we describe the diversity of SCCmec structures in MR-CoNS from outpatients living in countries with contrasting environments: Algeria, Mali, Moldova, and Cambodia. Their MR-CoNS nasal carriage rates were 29, 17, 11, and 31%, respectively. Ninety-six MR-CoNS strains, comprising 75 (78%) Staphylococcus epidermidis strains, 19 (20%) Staphylococcus haemolyticus strains, 1 (1%) Staphylococcus hominis strain, and 1 (1%) Staphylococcus cohnii strain, were analyzed. Eighteen different SCCmec types were observed, with 28 identified as type IV (29%), 25 as type V (26%), and 1 as type III (1%). Fifteen strains (44%) were untypeable for their SCCmec. Thirty-four percent of MR-CoNS strains contained multiple ccr copies. Type IV and V SCCmec were preferentially associated with S. epidermidis and S. haemolyticus, respectively. MR-CoNS constitute a widespread and highly diversified MR reservoir in the community.
Threat of drug resistant Staphylococcus aureus to health in Nepal
2014-01-01
Background Staphylococcus aureus is the most commonly isolated organism from the different clinical samples in hospital. The emergence and dissemination of methicillin resistant Staphylococcus aureus (MRSA) and growing resistance to non-beta-lactam antibiotics is making treatment of infections due to this organism increasingly difficult. Methods This study was conducted to determine the frequency of Staphylococcus aureus isolated from different clinical samples, rates of MRSA and full antibiotic susceptibility profiles. Clinical samples were cultured and Staphylococcus aureus was identified using standard microbiological methods recommended by the American Society for Microbiology (ASM). Methicillin resistance was confirmed using cefoxitin and oxacillin disks. Inducible clindamycin resistance was identified using D-zone test. Results From the processed samples, 306 isolates of Staphylococcus aureus were recovered. All the isolates were susceptible to vancomycin and teicoplanin. Methicillin resistance was observed in 43.1% of isolates while inducible clindamycin resistance in 12.4% of the isolates. Conclusions The results of our study reveals that rates of resistance to commonly prescribed antibiotics in Staphylococcus aureus clinical isolates is high. In particular, rate of methicillin resistance is alarming, prompting concern on the rational use of antibiotics and vigilant laboratory-based surveillance of resistance rates in Nepal. PMID:24655316
Coagulase-Positive Staphylococcus: Prevalence and Antimicrobial Resistance.
Beça, Nuno; Bessa, Lucinda Janete; Mendes, Ângelo; Santos, Joana; Leite-Martins, Liliana; Matos, Augusto J F; da Costa, Paulo Martins
2015-01-01
Staphylococcus pseudintermedius is the most prevalent coagulase-positive Staphylococcus inhabitant of the skin and mucosa of dogs and cats, causing skin and soft tissue infections in these animals. In this study, coagulase-positive Staphylococcus species were isolated from companion animals, veterinary professionals, and objects from a clinical veterinary environment by using two particular culture media, Baird-Parker RPF agar and CHROMagar Staph aureus. Different morphology features of colonies on the media allowed the identification of the species, which was confirmed by performing a multiplex polymerase chain reaction (PCR). Among 23 animals, 15 (65.2%) harbored coagulase-positive Staphylococcus, being 12 Staphylococcus pseudintermedius carriers. Four out of 12 were methicillin-resistant S. pseudintermedius (MRSP). All veterinary professionals had coagulase-positive Staphylococcus (CoPS) species on their hands and two out of nine objects sampled harbored MRSP. The antimicrobial-resistance pattern was achieved for all isolates, revealing the presence of many multidrug-resistant CoPS, particularly S. pseudintermedius . The combined analysis of the antimicrobial-resistance patterns shown by the isolates led to the hypothesis that there is a possible crosscontamination and dissemination of S. aureus and S. pseudintermedius species between the three types of carriers sampled in this study that could facilitate the spread of the methicillin-resistance phenotype.
Hoveida, Laleh; Ataei, Behrooz; Amirmozafari, Nour; Noormohammadi, Zahra
2018-06-01
Confectionery is one of the potential sources of contamination and transmission of gastrointestinal infections to humans. Staphylococcus species, and particularly the coagulase-positive ones, have the remarkable capability to produce high amounts of enterotoxin in food. In the present study, the frequency and diversity of Staphylococcus in confectioneries in Iran were assessed by using a combination of conventional and molecular methods. A total of 55 confection samples were collected from 30 confectioneries of Isfahan. They were analyzed for the presence of Staphylococcus using standard protocols for isolation and characterization of the isolates. The conventional tests were used for primary identification and the sequence analysis of 16S rRNA was used for the species identification. A total of 47 out of 55 samples were gram-positive cocci (85.45%). They belonged to 39 Staphylococcus spp., 7 Macrococcus spp., and one Micrococcus spp. The most prevalent 11 various Staphylococcus species were S. aureus 30.8 %, S. warneri 20.5% and S. succinus 17.9. Identification and characterization of Staphylococcus species can be important for epidemiological investigations and assessment of virulence factors such as enterotoxin production and development of specific management practices to prevent staphylococcal food poisoning.
Tong, Steven Y C; Schaumburg, Frieder; Ellington, Matthew J; Corander, Jukka; Pichon, Bruno; Leendertz, Fabian; Bentley, Stephen D; Parkhill, Julian; Holt, Deborah C; Peters, Georg; Giffard, Philip M
2015-01-01
We define two novel species of the genus Staphylococcus that are phenotypically similar to and have near identical 16S rRNA gene sequences to Staphylococcus aureus. However, compared to S. aureus and each other, the two species, Staphylococcus argenteus sp. nov. (type strain MSHR1132(T) = DSM 28299(T) = SSI 89.005(T)) and Staphylococcus schweitzeri sp. nov. (type strain FSA084(T) = DSM 28300(T) = SSI 89.004(T)), demonstrate: 1) at a whole-genome level considerable phylogenetic distance, lack of admixture, average nucleotide identity <95 %, and inferred DNA-DNA hybridization <70 %; 2) different profiles as determined by MALDI-TOF MS; 3) a non-pigmented phenotype for S. argenteus sp. nov.; 4) S. schweitzeri sp. nov. is not detected by standard nucA PCR; 5) distinct peptidoglycan types compared to S. aureus; 6) a separate ecological niche for S. schweitzeri sp. nov.; and 7) a distinct clinical disease profile for S. argenteus sp. nov. compared to S. aureus. © 2015 IUMS.
Beukes, Lorika S; Schmidt, Stefan
2018-04-16
The aim of this study was to assess pit latrine samples from a peri-urban community in KwaZulu-Natal (South Africa) for the presence of multidrug-resistant (MDR) Staphylococcus spp. Standard procedures were used to isolate Staphylococcus spp. from pit latrine fecal sludge samples, with confirmation at genus level by polymerase chain reaction (PCR). Sixty-eight randomly selected pit latrine Staphylococcus spp. isolates were further characterized by using established disk diffusion procedures. An average Staphylococcus spp. count of 2.1 × 10 5 CFU per g fecal material was established using two randomly selected pit latrine samples. Of the 68-selected Staphylococcus spp. pit latrine isolates, 49% were identified as coagulase positive, 51% as coagulase negative and 65% (12 coagulase positive, 32 coagulase negative isolates) were categorized as MDR. The majority (66/68) of Staphylococcus spp. isolates displayed resistance to fusidic acid while only 5/68 isolates displayed resistance to chloramphenicol. The pit latrine samples analyzed in this study are a source of MDR Staphylococcus spp., highlighting the need for proper hygiene and sanitation regimes in rural communities using these facilities.
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
...., Staphylococcus spp., and Streptococcus spp., urinary tract infections (cystitis) due to E. coli, Staphylococcus spp., Streptococcus spp., and Proteus spp.; bacterial gastroenteritis due to E. coli; generalized... (bacterial pneumonia) due to Staphylococcus spp., Streptococcus spp., E. coli, and Proteus spp.; urinary...
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
...., Staphylococcus spp., and Streptococcus spp., urinary tract infections (cystitis) due to E. coli, Staphylococcus spp., Streptococcus spp., and Proteus spp.; bacterial gastroenteritis due to E. coli; generalized... (bacterial pneumonia) due to Staphylococcus spp., Streptococcus spp., E. coli, and Proteus spp.; urinary...
21 CFR 520.88g - Amoxicillin trihydrate and clavulanate potassium film-coated tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... pyoderma due to susceptible strains of beta-lactamase (penicillinase) Staphylococcus aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., and Escherichia coli. Treatment of periodontal... (penicillinase) producing S. aureus, nonbeta-lactamase producing S. aureus, Staphylococcus spp., Streptococcus...
21 CFR 520.88g - Amoxicillin trihydrate and clavulanate potassium film-coated tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... pyoderma due to susceptible strains of beta-lactamase (penicillinase) Staphylococcus aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., and Escherichia coli. Treatment of periodontal... (penicillinase) producing S. aureus, nonbeta-lactamase producing S. aureus, Staphylococcus spp., Streptococcus...
21 CFR 520.88g - Amoxicillin trihydrate and clavulanate potassium film-coated tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... pyoderma due to susceptible strains of beta-lactamase (penicillinase) Staphylococcus aureus, nonbeta-lactamase S. aureus, Staphylococcus spp., Streptococcus spp., and Escherichia coli. Treatment of periodontal... (penicillinase) producing S. aureus, nonbeta-lactamase producing S. aureus, Staphylococcus spp., Streptococcus...
NASA Astrophysics Data System (ADS)
Do, Kevin; Masood, Samina
The effects of magnetic fields were investigated on two species of bacteria: Staphylococcus Aureus and Staphylococcus Epidermidis. Both cultures were grown independently in agar plates and nutrient broth with exposure to various conditions of static and oscillating magnetic fields. The effects were characterized by growth rate measurements via changes in optical density (OD) over incubation periods of 24-28 hours. Significant effects on the growth rates of both species were observed in the case of the time-varying magnetic field.
Issa, Abdoulkarim Ibrahim; Duprez, Jean-Noël; Bada-Alambedji, Rianatou; Djika, Mamane; Mainil, Jacques Georges; Bardiau, Marjorie
2016-02-01
Staphylococcus (S.) aureus is one of the most important pathogens causing bovine mastitis. The aim of the present work was to follow in three herds and during the 3 years the clonality of S. aureus isolated from California Mastitis Test (CMT)-positive cows at the experimental station of Toukounous (Niger) by (i) comparing their pulsed field gel electrophoresis (PFGE) fingerprints, (ii) identifying their virulotypes by PCR amplification and (iii) assessing the production of capsule and the formation of biofilm. The 88 S. aureus isolates belonged to 14 different pulsotypes, 3 of them being predominant: A (30 %), D (27 %), B (15 %). A and B pulsotypes had the highest profile similarity coefficient (94 %), while others had similarity coefficients under 60 %. Seventy-five S. aureus isolates were further studied for their virulotypes, capsular antigens and biofilm production. Most surface factor-, leukocidin- and haemolysin-, but not the enterotoxin-encoding genes were detected in the majority (>75 %) of the isolates and were evenly distributed between the A, B and D pulsotype isolates. The majority of the 72 S. aureus positive with the cap5H or cap8H PCR produced the CP5 (82 %) or the CP8 (88 %) capsular antigen, respectively. Biofilm production by the 57 icaA-positive isolates was strong for 8 isolates, moderate for 31 isolates but weak for 18 isolates, implying that the icaA gene may not be expressed in vitro by one third of the positive isolates. Similar to other studies, those results confirm that a restricted number of S. aureus clones circulate within the three herds at Toukounous and that their specific virulence-associated properties must still be further studied.
Staphylococcus aureus clonal dynamics and virulence factors in children with atopic dermatitis.
Lomholt, Hans; Andersen, Klaus Ejner; Kilian, Mogens
2005-11-01
A prospective cohort study was undertaken to determine the clonal dynamics of Staphylococcus aureus colonization and infection during 1 y in children with atopic dermatitis, and to correlate specific clones, accessory gene regulator (agr) groups, and production of virulence factors with eczema activity. Eleven children were examined every 6 wk with swaps taken from active eczema, anterior nose, axillae and perineum, and scoring of eczema activity by severity scoring of atopic dermatitis (SCORAD). Individual S. aureus clonal types were identified and examined for production of superantigens, toxins, and were assigned to agr groups. S. aureus colonization patterns ranged from rare colonization over transient colonization to persistent colonization by a single clone or a dynamic exchange of up to five clones. Production of no single virulence factor including superantigens and toxins was significantly associated with exacerbation of eczema. In four children there was a shift between visits in agr group of colonizing clones. These shifts were associated with an increased SCORAD value of 19 (SE = 7, p = 0.009). Change of clones belonging to the same agr group was not associated with a higher SCORAD value. In 11 of 12 cases with two different clones co-colonizing a child the clones belonged to the same agr group. In conclusion, this limited group of children with atopic dermatitis showed highly variable colonization patterns of S. aureus, and communication between strains by use of agr encoded octa peptides appeared to be active in vivo. Increased severity of eczema was related to a change in agr group and may have been because of inflammation triggered by the takeover of an antigenically different clone, as agr groups represent ancient phylogenetic lineages.
Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor.
Ibberson, Carolyn B; Jones, Crystal L; Singh, Shweta; Wise, Matthew C; Hart, Mark E; Zurawski, Daniel V; Horswill, Alexander R
2014-10-01
Staphylococcus aureus is a Gram-positive pathogen that causes a diverse range of bacterial infections. Invasive S. aureus strains secrete an extensive arsenal of hemolysins, immunomodulators, and exoenzymes to cause disease. Our studies have focused on the secreted enzyme hyaluronidase (HysA), which cleaves the hyaluronic acid polymer at the β-1,4 glycosidic bond. In the study described in this report, we have investigated the regulation and contribution of this enzyme to S. aureus pathogenesis. Using the Nebraska Transposon Mutant Library (NTML), we identified eight insertions that modulate extracellular levels of HysA activity. Insertions in the sigB operon, as well as in genes encoding the global regulators SarA and CodY, significantly increased HysA protein levels and activity. By altering the availability of branched-chain amino acids, we further demonstrated CodY-dependent repression of HysA activity. Additionally, through mutation of the CodY binding box upstream of hysA, the repression of HysA production was lost, suggesting that CodY is a direct repressor of hysA expression. To determine whether HysA is a virulence factor, a ΔhysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain was constructed and found to be attenuated in a neutropenic, murine model of pulmonary infection. Mice infected with this mutant strain exhibited a 4-log-unit reduction in bacterial burden in their lungs, as well as reduced lung pathology and increased levels of pulmonary hyaluronic acid, compared to mice infected with the wild-type, parent strain. Taken together, these results indicate that S. aureus hyaluronidase is a CodY-regulated virulence factor. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.
Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W
2014-05-01
During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis.
White, Mark J.; Boyd, Jeffrey M.
2014-01-01
Staphylococcus aureus is an important human pathogen that employs a large repertoire of secreted virulence factors to promote disease pathogenesis. Many strains of S. aureus possess a plc gene that encodes a phosphatidylinositol (PI)-specific phospholipase C (PI-PLC) capable of hydrolyzing PI and cleaving glycosyl-PI (GPI)-linked proteins from cell surfaces. Despite being secreted by virulent staphylococci, the contribution of PI-PLC to the capacity of S. aureus to cause disease remains undefined. Our goal in these studies was to understand PI-PLC in the context of S. aureus biology. Among a collection of genetically diverse clinical isolates of S. aureus, community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 secreted the most PI-PLC. Screening a collection of two-component system (TCS) mutants of S. aureus, we identified both the agr quorum-sensing system and the SrrAB TCS to be positive regulators of plc gene expression. Real-time PCR and PI-PLC enzyme assays of the TCS mutants, coupled with SrrA promoter binding studies, demonstrated that SrrAB was the predominant transcriptional activator of plc. Furthermore, plc regulation was linked to oxidative stress both in vitro and in vivo in a SrrAB-dependent manner. A Δplc mutant in a CA-MRSA USA300 background exhibited a survival defect in human whole blood and in isolated neutrophils. However, the same mutant strain displayed no survival defect in murine models of infection or murine whole blood. Overall, these data identify potential links between bacterial responses to the host innate immune system and to oxidative stress and suggest how PI-PLC could contribute to the pathogenesis of S. aureus infections. PMID:24452683
Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A.; McGavin, Martin J.
2014-01-01
Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid. PMID:25225262
Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression
Lioliou, Efthimia; Sharma, Cynthia M.; Caldelari, Isabelle; Helfer, Anne-Catherine; Fechter, Pierre; Vandenesch, François; Vogel, Jörg; Romby, Pascale
2012-01-01
RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. PMID:22761586
Yin, Shouhui; Jo, Dae Sun; Montgomery, Christopher P.; Daum, Robert S.
2013-01-01
Staphylococcus aureus infections caused by strains that are resistant to all forms of penicillin, so-called methicillin-resistant S. aureus (MRSA) strains, have become common. One strategy to counter MRSA infections is to use compounds that resensitize MRSA to methicillin. S. aureus responds to diverse classes of cell wall-inhibitory antibiotics, like methicillin, using the two-component regulatory system VraSR (vra) to up- or downregulate a set of genes (the cell wall stimulon) that presumably facilitates resistance to these antibiotics. Accordingly, VraS and VraR mutations decrease resistance to methicillin, vancomycin, and daptomycin cell wall antimicrobials. vraS and vraR are encoded together on a transcript downstream of two other genes, which we call vraU and vraT (previously called yvqF). By producing nonpolar deletions in vraU and vraT in a USA300 MRSA clinical isolate, we demonstrate that vraT is essential for optimal expression of methicillin resistance in vitro, whereas vraU is not required for this phenotype. The deletion of vraT also improved the outcomes of oxacillin therapy in mouse models of lung and skin infection. Since vraT expressed in trans did not complement a vra operon deletion, we conclude that VraT does not inactivate the antimicrobial. Genome-wide transcriptional microarray experiments reveal that VraT facilitates resistance by playing a necessary regulatory role in the VraSR-mediated cell wall stimulon. Our data prove that VraTSR comprise a novel three-component regulatory system required to facilitate resistance to cell wall agents in S. aureus. We also provide the first in vivo proof of principle for using VraT as a sole target to resensitize MRSA to β-lactams. PMID:23070169
Mechanistic Assessment of DNA Ligase as an Antibacterial Target in Staphylococcus aureus
Podos, Steven D.; Thanassi, Jane A.
2012-01-01
We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD+-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [Ki] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC50] = 28 nM) or its isolated adenylation domain (IC50 = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10−7) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate Km and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy. PMID:22585221
Zhang, Wei; Li, Yaoyao; Qian, Guoliang; Wang, Yan; Chen, Haotong; Li, Yue-Zhong; Liu, Fengquan; Shen, Yuemao; Du, Liangcheng
2011-01-01
Lysobactor enzymogenes strain OH11 is an emerging biological control agent of fungal and bacterial diseases. We recently completed its genome sequence and found it contains a large number of gene clusters putatively responsible for the biosynthesis of nonribosomal peptides and polyketides, including the previously identified antifungal dihydromaltophilin (HSAF). One of the gene clusters contains two huge open reading frames, together encoding 12 modules of nonribosomal peptide synthetases (NRPS). Gene disruption of one of the NRPS led to the disappearance of a metabolite produced in the wild type and the elimination of its antibacterial activity. The metabolite and antibacterial activity were also affected by the disruption of some of the flanking genes. We subsequently isolated this metabolite and subjected it to spectroscopic analysis. The mass spectrometry and nuclear magnetic resonance data showed that its chemical structure is identical to WAP-8294A2, a cyclic lipodepsipeptide with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and currently in phase I/II clinical trials. The WAP-8294A2 biosynthetic genes had not been described previously. So far, the Gram-positive Streptomyces have been the primary source of anti-infectives. Lysobacter are Gram-negative soil/water bacteria that are genetically amendable and have not been well exploited. The WAP-8294A2 synthetase represents one of the largest NRPS complexes, consisting of 45 functional domains. The identification of these genes sets the foundation for the study of the WAP-8294A2 biosynthetic mechanism and opens the door for producing new anti-MRSA antibiotics through biosynthetic engineering in this new source of Lysobacter. PMID:21930890
Dissecting the regulation of bile-induced biofilm formation in Staphylococcus aureus.
Ulluwishewa, Dulantha; Wang, Liang; Pereira, Callen; Flynn, Stephanie; Cain, Elizabeth; Stick, Stephen; Reen, F Jerry; Ramsay, Joshua P; O'Gara, Fergal
2016-08-01
Aspiration of bile into the cystic fibrosis (CF) lung has emerged as a prognostic factor for reduced microbial lung biodiversity and the establishment of often fatal, chronic pathogen infections. Staphylococcus aureus is one of the earliest pathogens detected in the lungs of children with CF, and once established as a chronic infection, strategies for its eradication become limited. Several lung pathogens are stimulated to produce biofilms in vitro in the presence of bile. In this study, we further investigated the effects of bile on S. aureus biofilm formation. Most clinical S. aureus strains and the laboratory strain RN4220 were stimulated to form biofilms with sub-inhibitory concentrations of bovine bile. Additionally, we observed bile-induced sensitivity to aminoglycosides, which we exploited in a bursa aurealis transposon screen to isolate mutants reduced in aminoglycoside sensitivity and augmented in bile-induced biofilm formation. We identified five mutants that exhibited hypersensitivity to bile with respect to bile-induced biofilm formation, three of which carried transposon insertions within gene clusters involved in wall teichoic acid (WTA) biosynthesis or transport. Strain TM4 carried an insertion between the divergently oriented tagH and tagG genes, which encode the putative WTA membrane translocation apparatus. Ectopic expression of tagG in TM4 restored a wild-type bile-induced biofilm response, suggesting that reduced translocation of WTA in TM4 induced sensitivity to bile and enhanced the bile-induced biofilm formation response. We propose that WTA may be important for protecting S. aureus against exposure to bile and that bile-induced biofilm formation may be an evolved response to protect cells from bile-induced cell lysis.
Ali Mirani, Zulfiqar; Khan, Muhammad Naseem; Siddiqui, Anila; Khan, Fouzia; Aziz, Mubashir; Naz, Shagufta; Ahmed, Ayaz; Khan, Seema Ismat
2018-02-01
Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance and versatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascorbic acid on biofilm formation and colony spreading processes of S. aureus and MRSA. The isolates of methicillin-resistant S. aureus (MRSA) used in present study, were recovered from different food samples. Various selective and differential media were used for identification and confirmation of S. aureus . Agar dilution method was used for determination of oxacillin and ascorbic acid resistance level. MRSA isolates were re-confirmed by E-test and by amplification of mecA gene. Tube methods and Congo-Red agar were used to study biofilm formation processes. Gene expression studies were carried on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results revealed the presence of mecA gene belonging to SCC mecA type IV along with agr type II in the isolates. In vitro studies showed the sub-inhibitory concentration of oxacillin induced biofilm production. However, addition of sub-inhibitory dose of ascorbic acid was found to inhibit EPS production, biofilm formation and augment colony spreading on soft agar plates. The inhibition of biofilm formation and augmentation of colony spreading observed with ascorbic acid alone or in combination with oxacillin. Moreover, gene expression studies showed that ascorbic acid increases agr expression and decreases icaA gene expression. The present study concluded that ascorbic acid inhibits biofilm formation, promotes colony spreading and increases agr gene expression in MRSA.
Gao, Wei; Chua, Kyra; Davies, John K.; Newton, Hayley J.; Seemann, Torsten; Harrison, Paul F.; Holmes, Natasha E.; Rhee, Hyun-Woo; Hong, Jong-In; Hartland, Elizabeth L.; Stinear, Timothy P.; Howden, Benjamin P.
2010-01-01
Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens. PMID:20548948
Genetic diversity and population structure of food-borne Staphylococcus carnosus strains.
Bückle Née Müller, Anne; Kranz, Markus; Schmidt, Herbert; Weiss, Agnes
2017-01-01
The species Staphylococcus carnosus is a non-pathogenic representative of the coagulase negative staphylococci. Specific strains are applied as meat starter cultures. The species consists of two subspecies, S. carnosus ssp. carnosus and S. carnosus ssp. utilis. In order to place S. carnosus strains, characterized in former studies, in a genetic background that allows a typing of candidates for starter cultures, a Multilocus Sequence Typing (MLST) scheme was developed. Internal fragments of the genes tpiA, xprT, dat, gmk, glpK, narG, cstA, encoding triosephosphate isomerase, xanthine phosphoribosyltransferase, d-amino acid aminotransferase, guanylate kinase, glycerol kinase, the α-chain of the respiratory nitrate reductase, and a carbon starvation protein where chosen. Genes were selected based on their equal distribution in the genome, taxonomic value in subspecies differentiation and metabolic function. This MLST was applied to 44 S. carnosus strains, most of them previously analyzed for their suitability as starter cultures. The number of alleles varied between zero (tpiA) and five (cstA) and allowed the definition of nine sequence types (ST). ST1 was most abundant (18 strains), followed by ST2 (8) and ST4 (6). The nine STs confirmed a close relationship of all strains despite their isolation source and year, but lacked correlation with physiological activities relevant for starter cultures. The low amount of STs in the strain set lets us suggest that recombination between strains is rare. Thus, it is hypothesized that evolutionary events seem to be due to single point mutations rather than intrachromosomal recombination, and that the species possesses a clonal population structure. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wild rodents and shrews are natural hosts of Staphylococcus aureus.
Mrochen, Daniel M; Schulz, Daniel; Fischer, Stefan; Jeske, Kathrin; El Gohary, Heba; Reil, Daniela; Imholt, Christian; Trübe, Patricia; Suchomel, Josef; Tricaud, Emilie; Jacob, Jens; Heroldová, Marta; Bröker, Barbara M; Strommenger, Birgit; Walther, Birgit; Ulrich, Rainer G; Holtfreter, Silva
2017-09-22
Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant S. aureus. In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Methicillin resistant S. aureus in human and bovine mastitis.
Holmes, Mark A; Zadoks, Ruth N
2011-12-01
Staphylococcus aureus is a ubiquitous organism that causes a variety of diseases including mastitis in cattle and humans. High-level resistance of S. aureus to β-lactams conferred by a mecA gene encoding a modified penicillin binding protein (PBP2a) was first observed in the early 1960's. These methicillin resistant S. aureus (MRSA) have been responsible for both hospital acquired infections (HA-MRSA) and, more recently, community acquired MRSA (CA-MRSA). A small number of human MRSA mastitis cases and outbreaks in maternity or neonatal units have been reported which are generally the result of CA-MRSA. The establishment of the sequence type 398 (ST398) in farm animals, primarily pigs, in the early 2000's has provided a reservoir of infection for humans and dairy cattle, particularly in continental Europe, described as livestock-associated MRSA (LA-MRSA). Prior to the emergence of ST398 there were sporadic reports of MRSA in bovine milk and cases of mastitis, often caused by strains from human associated lineages. Subsequently, there have been several reports describing bovine udder infections caused by ST-398 MRSA. Recently, another group of LA-MRSA strains was discovered in humans and dairy cattle in Europe. This group carries a divergent mecA gene and includes a number of S. aureus lineages (CC130, ST425, and CC1943) that were hitherto thought to be bovine-specific but are now also found as carriage or clinical isolates in humans. The emergence of MRSA in dairy cattle may be associated with contact with other host species, as in the case of ST398, or with the exchange of genetic material between S. aureus and coagulase negative Staphylococcus species, which are the most common species associated with bovine intramammary infections and commonly carry antimicrobial resistance determinants.
Cadieux, Brigitte; Vijayakumaran, Vithooshan; Bernards, Mark A; McGavin, Martin J; Heinrichs, David E
2014-12-01
Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rosignoli, Carine; Thibaut de Ménonville, Séverine; Orfila, Danielle; Béal, Méline; Bertino, Béatrice; Aubert, Jérôme; Mercenier, Annick; Piwnica, David
2018-04-01
Staphylococcus aureus colonization is thought to contribute to the pathophysiology of atopic dermatitis (AD). AD patients exhibit reduced levels of cutaneous antimicrobial peptides (AMPs), which may explain their increased susceptibility to infections. Using an in vitro reconstructed human epidermis (RHE) model, we sought to determine whether topical application of a non-replicating probiotic, heat-treated Lactobacillus johnsonii NCC 533 (HT La1), could inhibit S. aureus adhesion to skin and boost cutaneous innate immunity. We found that application of HT La1 suspension to RHE samples reduced the binding of radiolabelled S. aureus by up to 74%. To investigate a potential effect of HT La1 on innate immunity, we analysed the expression of nine AMP genes, including those encoding beta defensins and S100 proteins, following topical application of HT La1 in suspension or in a daily moisturizer lotion. Analysed genes were induced by up to fourfold in a dose-dependent manner by HT La1 in suspension and by up to 2.4-fold by HT La1 in the moisturizer lotion. Finally, using ELISA and immunohistochemical detection, we evaluated the expression and secretion of the AMPs hBD-2 and psoriasin and determined that both proteins were induced by topical HT La1, particularly in the stratum corneum of the RHE. These findings demonstrate that a topically applied, non-replicating probiotic can modulate endogenous AMP expression and inhibit binding of S. aureus to an RHE model in vitro. Moreover, they suggest that a topical formulation containing HT La1 could benefit atopic skin by enhancing cutaneous innate immunity and reducing S. aureus colonization. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Staphylococcus epidermidis Isolated in 1965 Are More Susceptible to Triclosan than Current Isolates
Skovgaard, Sissel; Nielsen, Lene Nørby; Larsen, Marianne Halberg; Skov, Robert Leo; Ingmer, Hanne; Westh, Henrik
2013-01-01
Since its introduction to the market in the 1970s, the synthetic biocide triclosan has had widespread use in household and medical products. Although decreased triclosan susceptibility has been observed for several bacterial species, when exposed under laboratory settings, no in vivo studies have associated triclosan use with decreased triclosan susceptibility or cross-resistance to antibiotics. One major challenge of such studies is the lack of strains that with certainty have not been exposed to triclosan. Here we have overcome this challenge by comparing current isolates of the human opportunistic pathogen Staphylococcus epidermidis with isolates collected in the 1960s prior to introduction of triclosan to the market. Of 64 current S. epidermidis isolates 12.5% were found to have tolerance towards triclosan defined as MIC≥0.25 mg/l compared to none of 34 isolates obtained in the 1960s. When passaged in the laboratory in the presence of triclosan, old and current susceptible isolates could be adapted to the same triclosan MIC level as found in current tolerant isolates. DNA sequence analysis revealed that laboratory-adapted strains carried mutations in fabI encoding the enoyl-acyl carrier protein reductase isoform, FabI, that is the target of triclosan, and the expression of fabI was also increased. However, the majority of the tolerant current isolates carried no mutations in fabI or the putative promoter region. Thus, this study indicates that the widespread use of triclosan has resulted in the occurrence of S. epidermidis with tolerance towards triclosan and that the adaptation involves FabI as well as other factors. We suggest increased caution in the general application of triclosan as triclosan has not shown efficacy in reducing infections and is toxic to aquatic organisms. PMID:23614034
Harrison, Ewan M.; Weinert, Lucy A.; Holden, Matthew T. G.; Welch, John J.; Wilson, Katherine; Morgan, Fiona J. E.; Harris, Simon R.; Loeffler, Anette; Boag, Amanda K.; Peacock, Sharon J.; Paterson, Gavin K.; Waller, Andrew S.; Parkhill, Julian
2014-01-01
ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a global human health problem causing infections in both hospitals and the community. Companion animals, such as cats, dogs, and horses, are also frequently colonized by MRSA and can become infected. We sequenced the genomes of 46 multilocus sequence type (ST) 22 MRSA isolates from cats and dogs in the United Kingdom and compared these to an extensive population framework of human isolates from the same lineage. Phylogenomic analyses showed that all companion animal isolates were interspersed throughout the epidemic MRSA-15 (EMRSA-15) pandemic clade and clustered with human isolates from the United Kingdom, with human isolates basal to those from companion animals, suggesting a human source for isolates infecting companion animals. A number of isolates from the same veterinary hospital clustered together, suggesting that as in human hospitals, EMRSA-15 isolates are readily transmitted in the veterinary hospital setting. Genome-wide association analysis did not identify any host-specific single nucleotide polymorphisms (SNPs) or virulence factors. However, isolates from companion animals were significantly less likely to harbor a plasmid encoding erythromycin resistance. When this plasmid was present in animal-associated isolates, it was more likely to contain mutations mediating resistance to clindamycin. This finding is consistent with the low levels of erythromycin and high levels of clindamycin used in veterinary medicine in the United Kingdom. This study furthers the “one health” view of infectious diseases that the pathogen pool of human and animal populations are intrinsically linked and provides evidence that antibiotic usage in animal medicine is shaping the population of a major human pathogen. PMID:24825010
Outbreak of Staphylococcal food poisoning due to SEA-producing Staphylococcus aureus.
Johler, Sophia; Tichaczek-Dischinger, Petra S; Rau, Jörg; Sihto, Henna-Maria; Lehner, Angelika; Adam, Maja; Stephan, Roger
2013-09-01
In 2008, 150 people gathered for a wedding celebration in Baden-Württemberg, Germany. Three hours after ingestion of a variety of foods including pancakes filled with minced chicken, several guests exhibited symptoms of acute gastroenteritis such as vomiting, diarrhea, fever, and ague. Twelve guests were reported to have fallen ill, with nine of these seeking medical care in hospitals. At least four patients were admitted to the hospital and received inpatient treatment, among them a 2-year-old child and a woman in the 4th month of pregnancy. Within 24 h of the event, an investigative team collected a variety of samples including refrigerated leftovers, food in the storage unit of the caterer, nasal swabs of the caterer, as well as 21 environmental swabs. Five stool samples from patients were provided by the hospitals. Staphylococcus aureus isolates were gathered from eight samples, among them nasal swabs of the caterer, food samples, and one stool sample. Fourier transform-infrared spectroscopy was used for species identification and for primary clustering of the isolates in a similarity tree. The isolates were further characterized by spa typing and pulsed-field gel electrophoresis, and a DNA microarray was used to determine the presence/absence of genes involved in virulence and antimicrobial resistance. We were able to match an enterotoxigenic strain from the stool sample of a patient to isolates of the same strain obtained from food and the nasal cavity of a food handler. The strain produced the enterotoxin SEA and the toxic shock syndrome toxin-1, and was also found to exhibit the genes encoding enterotoxins SEG and SEI, as well as the enterotoxin gene cluster egc. This is one of only a few studies that were able to link a staphylococcal food poisoning outbreak to its source.
Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8
Strauß, Lena; Alabi, Abraham; Breurec, Sebastien; Coombs, Geoffrey; Egyir, Beverly; Larsen, Anders Rhod; Laurent, Frederic; Monecke, Stefan; Peters, Georg; Skov, Robert; Strommenger, Birgit; Schaumburg, Frieder
2017-01-01
USA300 is a pandemic clonal lineage of hypervirulent, community-acquired, methicillin-resistant Staphylococcus aureus (CA-MRSA) with specific molecular characteristics. Despite its high clinical relevance, the evolutionary origin of USA300 remained unclear. We used comparative genomics of 224 temporal and spatial diverse S. aureus isolates of multilocus sequence type (ST) 8 to reconstruct the molecular evolution and global dissemination of ST8, including USA300. Analyses of core SNP diversity and accessory genome variations showed that the ancestor of all ST8 S. aureus most likely emerged in Central Europe in the mid-19th century. From here, ST8 was exported to North America in the early 20th century and progressively acquired the USA300 characteristics Panton–Valentine leukocidin (PVL), SCCmec IVa, the arginine catabolic mobile element (ACME), and a specific mutation in capsular polysaccharide gene cap5E. Although the PVL-encoding phage ϕSa2USA was introduced into the ST8 background only once, various SCCmec types were introduced to ST8 at different times and places. Starting from North America, USA300 spread globally, including Africa. African USA300 isolates have aberrant spa-types (t112, t121) and form a monophyletic group within the clade of North American USA300. Large parts of ST8 methicillin-susceptible S. aureus (MSSA) isolated in Africa represent a symplesiomorphic group of ST8 (i.e., a group representing the characteristics of the ancestor), which are rarely found in other world regions. Isolates previously discussed as USA300 ancestors, including USA500 and a “historic” CA-MRSA from Western Australia, were shown to be only distantly related to recent USA300 clones. PMID:29158405
Roisin, S; Gaudin, C; De Mendonça, R; Bellon, J; Van Vaerenbergh, K; De Bruyne, K; Byl, B; Pouseele, H; Denis, O; Supply, P
2016-06-01
We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7 months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Vickers, Anna A; Potter, Nicola J; Fishwick, Colin W G; Chopra, Ian; O'Neill, Alex J
2009-06-01
This study sought to expand knowledge on the molecular mechanisms of mutational resistance to trimethoprim in Staphylococcus aureus, and the fitness costs associated with resistance. Spontaneous trimethoprim-resistant mutants of S. aureus SH1000 were recovered in vitro, resistance genotypes characterized by DNA sequencing of the gene encoding the drug target (dfrA) and the fitness of mutants determined by pair-wise growth competition assays with SH1000. Novel resistance genotypes were confirmed by ectopic expression of dfrA alleles in a trimethoprim-sensitive S. aureus strain. Molecular models of S. aureus dihydrofolate reductase (DHFR) were constructed to explore the structural basis of trimethoprim resistance, and to rationalize the observed in vitro fitness of trimethoprim-resistant mutants. In addition to known amino acid substitutions in DHFR mediating trimethoprim resistance (F(99)Y and H(150)R), two novel resistance polymorphisms (L(41)F and F(99)S) were identified among the trimethoprim-resistant mutants selected in vitro. Molecular modelling of mutated DHFR enzymes provided insight into the structural basis of trimethoprim resistance. Calculated binding energies of the substrate (dihydrofolate) for the mutant and wild-type enzymes were similar, consistent with apparent lack of fitness costs for the resistance mutations in vitro. Reduced susceptibility to trimethoprim of DHFR enzymes carrying substitutions L(41)F, F(99)S, F(99)Y and H(150)R appears to result from structural changes that reduce trimethoprim binding to the enzyme. However, the mutations conferring trimethoprim resistance are not associated with fitness costs in vitro, suggesting that the survival of trimethoprim-resistant strains emerging in the clinic may not be subject to a fitness disadvantage.
Furi, Leonardo; Ciusa, Maria Laura; Knight, Daniel; Di Lorenzo, Valeria; Tocci, Nadia; Cirasola, Daniela; Aragones, Lluis; Coelho, Joana Rosado; Freitas, Ana Teresa; Marchi, Emmanuela; Moce, Laura; Visa, Pilar; Northwood, John Blackman; Viti, Carlo; Borghi, Elisa; Orefici, Graziella
2013-01-01
The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant. PMID:23669380
Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis
Choby, Jacob E.; Grunenwald, Caroline M.; Celis, Arianna I.; Gerdes, Svetlana Y.; DuBois, Jennifer L.
2018-01-01
ABSTRACT Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme homeostasis. In this work, we describe a posttranscriptional regulatory strategy in S. aureus heme biosynthesis. The first committed enzyme in the S. aureus heme biosynthetic pathway, glutamyl-tRNA reductase (GtrR), is regulated by heme abundance and the integral membrane protein HemX. GtrR abundance increases dramatically in response to heme deficiency, suggesting a mechanism by which S. aureus responds to the need to increase heme synthesis. Additionally, HemX is required to maintain low levels of GtrR in heme-proficient cells, and inactivation of hemX leads to increased heme synthesis. Excess heme synthesis in a ΔhemX mutant activates the staphylococcal heme stress response, suggesting that regulation of heme synthesis is critical to reduce self-imposed heme toxicity. Analysis of diverse organisms indicates that HemX is widely conserved among heme-synthesizing bacteria, suggesting that HemX is a common factor involved in the regulation of GtrR abundance. Together, this work demonstrates that S. aureus regulates heme synthesis by modulating GtrR abundance in response to heme deficiency and through the activity of the broadly conserved HemX. PMID:29437922
Ben Said, Meriam; Abbassi, Mohamed Salah; Gómez, Paula; Ruiz-Ripa, Laura; Sghaier, Senda; El Fekih, Oussama; Hassen, Abdennaceur; Torres, Carmen
2017-04-01
Staphylococcus aureus is a versatile bacterium, which can infect or colonize a variety of host species. The objective of this study was to characterize S. aureus isolates recovered from nasal swabs of 167 healthy ewes sampled from 12 farms in different areas of Tunisia during the period of 2014-2015. Genetic lineages, virulence factors and antibiotic resistance mechanisms were determined for recovered isolates. S. aureus was detected in 45 out of 167 tested samples (26.9%). All isolates were methicillin-susceptible (MSSA) and the majority of them were susceptible to tested antibiotics with few exceptions (% of resistance): penicillin (8.8), ciprofloxacin (4.4), and tobramycin or tetracycline (2.2, each). Twelve different spa types were detected (t15098, t15099, t1773, t3576, t1534, t5428, t3750, t5970 t254, t2883, t127 and t933), two of them were new (t15098 and t15099). S. aureus isolates were ascribed to agrI (n=23), agrII (n=1) and agrIII (n=20), and one was non-typeable. According to the sequence-type (ST) determined and/or the spa-type detected, the 45S. aureus isolates were assigned to six clonal complexes, with CC522 (44.4%) and CC130 (37.7%) being the most common lineages. Twenty-one (46.6%) and two (4.2%) isolates harbored the tst and eta genes encoding TSST-1 and ETA, respectively. In conclusion, nares of healthy ewes could be a reservoir of MSSA CC522 and CC130, lineages associated with TSST-1 and ETA that might represent a risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Minghui; Shi, Chunlei; Xu, Xuebing; Shi, Xianming
2016-11-01
The enterotoxin gene cluster (egc) has been proposed to contribute to the Staphylococcus aureus colonization, which highlights the need to evaluate genetic diversity and virulence gene profiles of the egc-positive population. Here, a total of 43 egc-positive isolates (16.2%) were identified from 266 S. aureus isolates that were obtained from various food and clinical specimens in Shanghai. Seven different egc profiles were found based on the polymerase chain reaction (PCR) result for egc genes. Then, these 43 egc-positive isolates were further typed by multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number tandem-repeat analysis (MLVA), and accessory gene regulatory (agr) typing. It showed that the 43 egc-positive isolates displayed 17 sequence types, 28 PFGE patterns, 29 MLVA types, and 4 agr types, respectively. Among them, the dominant clonal lineage was CC5-agr II (48.84%). Thirty toxin and 20 adhesion-associated genes were detected by PCR in egc-positive isolates. Notably, invasive toxin genes showed a high prevalence, such as 76.7% for Panton-Valentine leukocidin encoding genes, 27.9% for sec, and 23.3% for tsst-1. Most of the examined adhesion-associated genes were found to be conserved (76.7-100%), whereas the fnbB gene was only found in 8 (18.6%) isolates. In addition, 33 toxin gene profiles and 13 adhesion gene profiles were identified, respectively. Our results imply that isolates belonging to the same clonal lineage harbored similar adhesion gene profiles but diverse toxin gene profiles. Overall, the high prevalence of invasive virulence genes increases the potential risk of egc-positive isolates in S. aureus infection.
Dekker, Denise; Wolters, Manuel; Mertens, Eva; Boahen, Kennedy Gyau; Krumkamp, Ralf; Eibach, Daniel; Schwarz, Norbert G; Adu-Sarkodie, Yaw; Rohde, Holger; Christner, Martin; Marks, Florian; Sarpong, Nimako; May, Jürgen
2016-11-29
Staphylococcus aureus is among the most common pathogens isolated from blood cultures in Ghana; yet the epidemiology of blood infections in rural settings is poorly described. This study aims to investigate antimicrobial susceptibility and clonal diversity of S. aureus causing bloodstream infections in two hospitals in the Ashanti Region, Ghana. Blood cultures were performed for all febrile patients (≥37.5 °C) on hospital admission. Antibiotic susceptibility testing for S. aureus isolates was carried out by the VITEK 2 system. Multiplex polymerase chain reaction (PCR) was used to detect S. aureus-specific nuc gene, Panton-Valentine leukocidin (PVL), and methicillin-resistant S. aureus (MRSA)-specific mecA and mecC genes. The population structure of S. aureus was assessed by spa typing. In total, 9,834 blood samples were cultured, out of which 0.6% (n = 56) were positive for S. aureus. Multidrug resistance (MDR) was detected in 35.7% (n = 20) of the S. aureus strains, of which one was a MRSA. The highest rate of antibiotic resistance was seen for commonly available antibiotics, including penicillin (n = 55; 98.2%), tetracycline (n = 32; 57.1%) and trimethoprim/sulfamethoxazole (n = 26; 46.4%). Of all S. aureus strains, 75.0% (n = 42) carried the PVL-encoding genes. We found 25 different spa types with t355 (n = 11; 19.6%), t314 (n = 8; 14.3%), t084 (n = 8; 14.3%) and t311 (n = 5; 8.9%) being predominant. The study exhibited an alarmingly large level of antibiotic resistance to locally available antibiotics. The frequency of genetically diverse and PVL-positive methicillin-sensitive S. aureus (MSSA) was high and could represent a reservoir for the emergence of virulent PVL-positive MRSA clones.
Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong
2016-01-01
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC , and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC , and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus . We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye
2017-01-01
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated. PMID:28472126
Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye; Cheng, Lei
2017-01-01
Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.
Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade
Rouillon, Christophe; Zhou, Min; Zhang, Jing; Politis, Argyris; Beilsten-Edmands, Victoria; Cannone, Giuseppe; Graham, Shirley; Robinson, Carol V.; Spagnolo, Laura; White, Malcolm F.
2013-01-01
Summary The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I–III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family. PMID:24119402
Antibiotic resistance assessment in S. aureus strains isolated from raw sheep's milk cheese.
Spanu, V; Virdis, S; Scarano, C; Cossu, F; De Santis, E P L; Cosseddu, A M
2010-06-01
In vitro activities of 16 antibiotics were tested against 36 Staphylococcus aureus (SA) strains isolated from raw sheep's milk cheese from six dairies. The minimum inhibitory concentration (MIC) was determined using a broth microdilution method (CLSI). All 36 isolates were analyzed for the presence of the accessory gene regulator gene, agr (I-IV), and genes encoding resistance to methicillin (mecA), erythromycin (ermA), penicillin (blaZ), and vancomycin (vanA-B). The isolates were also analyzed for similarities in pulsed-field gel electrophoresis (PFGE) patterns. SA strains showed resistance to ampicillin (36.1%), penicillin (33.3%), tetracycline (11.1%), and cloxacillin (2.8%) but were susceptible (>or=94.4%) to 12 out of 16 tested antimicrobials. The overall susceptibility of the strains to oxacillin, vancomycin, and erythromycin was confirmed by the absence of the mecA, vanA-B, and ermA genes. The PFGE results showed that 32 strains belonged to 10 different clusters (P1-P10) while four strains were untypeable.
Gray, Brian; Hall, Pamela; Gresham, Hattie
2013-01-01
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501
Briers, Yves; Lavigne, Rob
2015-01-01
The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).
Tn552 transposase purification and in vitro activities.
Rowland, S J; Sherratt, D J; Stark, W M; Boocock, M R
1995-01-01
The Staphylococcus aureus transposon Tn552 encodes a protein (p480) containing the 'D,D(35)E' motif common to retroviral integrases and the transposases of a number of bacterial elements, including phage Mu, the integron-containing element Tn5090, Tn7 and IS3. p480 and a histidine-tagged derivative were overexpressed in Escherichia coli and purified by methods involving denaturation and renaturation. DNase I footprinting and gel binding assays demonstrated that p480 binds to two adjacent, directly repeated 23 bp motifs at each end of Tn552. Although donor strand cleavage by p480 was not detected, in vitro conditions were defined for strand transfer activity with transposon end fragments having pre-cleaved 3' termini. Strand transfer was Mn(2+)-dependent and appeared to join a single left or right end fragment to target DNA. The importance of the terminal dinucleotide CA-3' was demonstrated by mutation. The in vitro activities of p480 are consistent with its proposed function as the Tn552 transposase. Images PMID:7828593
Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T.; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga
2013-01-01
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs. PMID:23538871
Palomo, Sara; González, Ignacio; de la Cruz, Mercedes; Martín, Jesús; Tormo, José Rubén; Anderson, Matthew; Hill, Russell T; Vicente, Francisca; Reyes, Fernando; Genilloud, Olga
2013-03-28
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.
Drug-Encoded Biomarkers for Monitoring Biological Therapies
Bedenk, Kristina; Zhang, Qian; Frentzen, Alexa; Cappello, Joseph; Fischer, Utz; Szalay, Aladar A.
2015-01-01
Blood tests are necessary, easy-to-perform and low-cost alternatives for monitoring of oncolytic virotherapy and other biological therapies in translational research. Here we assessed three candidate proteins with the potential to be used as biomarkers in biological fluids: two glucuronidases from E. coli (GusA) and Staphylococcus sp. RLH1 (GusPlus), and the luciferase from Gaussia princeps (GLuc). The three genes encoding these proteins were inserted individually into vaccinia virus GLV-1h68 genome under the control of an identical promoter. The three resulting recombinant viruses were used to infect tumor cells in cultures and human tumor xenografts in nude mice. In contrast to the actively secreted GLuc, the cytoplasmic glucuronidases GusA and GusPlus were released into the supernatants only as a result of virus-mediated oncolysis. GusPlus resulted in the most sensitive detection of enzyme activity under controlled assay conditions in samples containing as little as 1 pg/ml of GusPlus, followed by GusA (25 pg/ml) and GLuc (≥375 pg/ml). Unexpectedly, even though GusA had a lower specific activity compared to GusPlus, the substrate conversion in the serum of tumor-bearing mice injected with the GusA-encoding virus strains was substantially higher than that of GusPlus. This was attributed to a 3.2 fold and 16.2 fold longer half-life of GusA in the blood stream compared to GusPlus and GLuc respectively, thus a more sensitive monitor of virus replication than the other two enzymes. Due to the good correlation between enzymatic activity of expressed marker gene and virus titer, we conclude that the amount of the biomarker protein in the body fluid semiquantitatively represents the amount of virus in the infected tumors which was confirmed by low light imaging. We found GusA to be the most reliable biomarker for monitoring oncolytic virotherapy among the three tested markers. PMID:26348361
Pieri, Fabio A; Vargas, Taise F; Galvão, Newton N; Nogueira, Paulo A; Orlandi, Patrícia P
2016-03-01
The aim of this study was to characterize and compare Staphylococcus spp. isolated from hospitalized patients and beef marketed in the city of Porto Velho-RO, Brazil. The isolates were subjected to antibiogram tests, adherence capacity tests, detection of the mecA gene, and epidemiological investigation by the random amplified polymorphic DNA (RAPD) technique, using the primers M13 and H12. Among the 123 Staphylococcus spp. isolates, 50 were identified as S. aureus and 73 as coagulase-negative Staphylococcus; among the latter, 7 species were identified. It was observed that the coagulase-negative Staphylococcus isolates showed greater adhesion ability than S. aureus. The profile of antimicrobial susceptibility was different among isolates, all of which were susceptible to vancomycin and linezolid, and had high penicillin resistance rates, varying according to the bacterial class and the source. In this study, all strains were negative for mecA gene detection; however, 36% of S. aureus and 17% of coagulase-negative Staphylococcus were resistant to oxacillin. The genetic relationship of these bacteria, analyzed by RAPD, was able to discriminate the species of coagulase-negative Staphylococcus strains of S. aureus along its origin. It was concluded that the isolates of Staphylococcus spp. derived from beef and human infections differ genetically. Thus, it is suggested that isolates from beef, which were grouped within hospital isolates, were probably carried via contact with beef in hospital professionals or patients.
Adegoke, Anthony A; Okoh, Anthony I
2014-03-01
The occurrence and antibiotic susceptibility profile of Staphylococcus isolates of healthy farm animal origin in Nkonkobe Municipality as well as the prevalence of putative antibiotic resistance genes were investigated using phenotypic and molecular methods. A total of 120 Staphylococcus isolates were isolated from 150 animal samples and consisted of Staphylococcus haemolyticus (30 %) and Staphylococcus aureus (23.3 %) from pig, Staphylococcus capitis (15 %) from goat, S. haemolyticus (5 %) and Staphylococcus xylosus (15 %) from cattle, and other staphylococci (11.7 %) from dead chicken and pigs. Besides this, the presence of these isolates was observed from the animal dung, showing that the organisms are shed to the environment. About 23.3 % of these isolates were coagulase-positive and 76.7 % were coagulase-negative Staphylococcus. Between 75 and 100 % of the isolates were resistant to penicillin G, tetracycline, sulfamethoxazole, and nalidixic acid; about 38 % were methicillin-resistant staphylococci, including 12.6 % methicillin-resistant S. aureus from pigs. In total, 12 % of all isolates were vancomycin resistant. Also, 12 % of the isolates were erythromycin resistant, while 40.2 % were resistant to ceftazidime. Only the genes mecA and mphC could be confirmed, whereas the genes vanA, vanB, ermA, ermB, and ermC could not be detected. The high phenotypic antibiotic resistance and the presence of some associated resistance genes is a potential threat to public health and suggest the animals to be important reservoirs of antibiotic resistance determinants in the environment.
Wang, Li Jun; Du, Xiao Qin; Nyirimigabo, Eric; Shou, Song Tao
2014-04-01
It is rare to see a concurrent infection with infectious mononucleosis and community-associated methicillin-resistant Staphylococcus aureus in Tianjin, China. Until now, there is still no any single recorded case of concurrent infectious mononucleosis and community-associated methicillin-resistant Staphylococcus aureus bacteremia.
USDA-ARS?s Scientific Manuscript database
Staphylococcus aureus is a frequent and major contagious mastitis bacterial pathogen. The antibiotic treatment cure rates vary considerably from 4% to 92%. Staphylococcus aureus readily becomes resistant to antibiotics, resulting in persistent noncurable intramammary infection that usually results i...
Hau, Samantha J.; Frana, Timothy; Sun, Jisun; Davies, Peter R.
2017-01-01
ABSTRACT Zinc resistance in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 398 (ST398) is primarily mediated by the czrC gene colocated with the mecA gene, encoding methicillin resistance, within the type V staphylococcal cassette chromosome mec (SCCmec) element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of zinc in feed as an antidiarrheal agent has the potential to contribute to the emergence and spread of methicillin-resistant S. aureus (MRSA) in swine, through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study, we report the prevalence of the czrC gene and phenotypic zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and U.S. swine-associated LA-MRSA ST398 isolates. We demonstrated that the prevalence of zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact and swine-associated LA-MRSA ST398 isolates, as well as prevalences from previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively, our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance determinants. IMPORTANCE Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is more associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance markers. This information is important for public health professionals, veterinarians, producers, and consumers. PMID:28526788
Hau, Samantha J; Frana, Timothy; Sun, Jisun; Davies, Peter R; Nicholson, Tracy L
2017-08-01
Zinc resistance in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 398 (ST398) is primarily mediated by the czrC gene colocated with the mecA gene, encoding methicillin resistance, within the type V staphylococcal cassette chromosome mec (SCC mec ) element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of zinc in feed as an antidiarrheal agent has the potential to contribute to the emergence and spread of methicillin-resistant S. aureus (MRSA) in swine, through increased selection pressure to maintain the SCC mec element in isolates obtained from pigs. In this study, we report the prevalence of the czrC gene and phenotypic zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and U.S. swine-associated LA-MRSA ST398 isolates. We demonstrated that the prevalence of zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact and swine-associated LA-MRSA ST398 isolates, as well as prevalences from previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively, our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance determinants. IMPORTANCE Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is more associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance markers. This information is important for public health professionals, veterinarians, producers, and consumers. Copyright © 2017 American Society for Microbiology.
Foodborne and Waterborne Disease Outbreaks. A Compilation and Subjective Profile
1985-07-01
of five common bacterial etiologies: Staphylococcus aureus, Salmonella, Shig’ella, Clostridiun perfringens, and Vibri, Parahaemolyticus. The paper...complex for the etiologic agent 1 Staphylococcus aureus . . . ................. 14 2 Salmonella ............ .................... 15 3 Shigella...Usable outbreaks with etiology of 2 Staphylococcus aureus ..................... 4 3 Salmonella ................ ..................... 5 4 Shigella
Community-Acquired Methicillin-Resistant "Staphylococcus aureus": Considerations for School Nurses
ERIC Educational Resources Information Center
Alex, Aniltta; Letizia, MariJo
2007-01-01
Methicillin-resistant "Staphylococcus aureus" (MRSA) is a disease-causing organism that has been present in hospital settings since the 1960s. However, a genetically distinct strain of MRSA, called community-acquired methicillin-resistant "Staphylococcus aureus" (CA-MRSA), has emerged in recent years in community settings among healthy…
Novel Strategy to Control the Warfighter’s Exposure to Polymicrobial Environments
2015-09-30
RELEASE 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bacteriocins active against clinically-relevant Pseudomonas aeruginosa, Staphylococcus aureus ...SUBJECT TERMS Bacteriocins, Antimicrobials, Pseudomonas aeruginosa, Staphylococcus aureus , Acinetobacter baumanii, Bacillus cereus 16. SECURITY...Pseudomonas aeruginosa, Staphylococcus aureus , Acinetobacter baumanni and Bacillus cereus (target pathogens for the proposed research). Summary
Karmakar, Amit; Dua, Parimal; Ghosh, Chandradipa
2016-01-01
Staphylococcus aureus is opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 100 Staphylococcus aureus isolates were obtained from clinical samples derived from hospitalized patients. The presumptive Staphylococcus aureus clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species specific 16S rRNA primer pairs and finally 100 isolates were found to be positive as Staphylococcus aureus. Screened isolates were further analyzed by several microbiological diagnostics tests including gelatin hydrolysis, protease, and lipase tests. It was found that 78%, 81%, and 51% isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance pattern ranging from 57 to 96%. Our study also shows 70% strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high level multidrug resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.
The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station
NASA Technical Reports Server (NTRS)
Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.
2005-01-01
The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.
Lourtet-Hascoët, J; Bicart-See, A; Félicé, M P; Giordano, G; Bonnet, E
2016-10-01
The aim of this study was to assess the characteristics of periprosthetic joint infection (PJI) due to Staphylococcus lugdunensis and to compare these to the characteristics of PJI due to Staphylococcus aureus and Staphylococcus epidermidis. A retrospective multicentre study including all consecutive cases of S. lugdunensis PJI (2000-2014) was performed. Eighty-eight cases of staphylococcal PJI were recorded: 28 due to S. lugdunensis, 30 to S. aureus, and 30 to S. epidermidis, as identified by Vitek 2 or API Staph (bioMérieux). Clinical symptoms were more often reported in the S. lugdunensis group, and the median delay between surgery and infection was shorter for the S. lugdunensis group than for the S. aureus and S. epidermidis groups. Regarding antibiotic susceptibility, the S. lugdunensis strains were susceptible to antibiotics and 61% of the patients could be treated with levofloxacin + rifampicin. The outcome of the PJI was favourable for 89% of patients with S. lugdunensis, 83% with S. aureus, and 97% with S. epidermidis. S. lugdunensis is an emerging pathogen with a pathogenicity quite similar to that of S. aureus. This coagulase-negative Staphylococcus must be identified precisely in PJI, in order to select the appropriate surgical treatment and antibiotics . Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Adkins, P R F; Dufour, S; Spain, J N; Calcutt, M J; Reilly, T J; Stewart, G C; Middleton, J R
2018-04-01
The purpose of this study was to describe the prevalence and distribution of staphylococcal species on the teat and inguinal skin of dairy heifers across the various stages of the heifer life cycle. The cross-sectional study included 106 Holstein heifers with an age range of 0 d to 27 mo that were selected from 11 different groups, based on housing type and age, on a single dairy operation. A composite swabbing sample including all 4 teats and a second composite sample including both inguinal regions of each heifer were collected using gas-sterilized electrostatic dusters (Swiffers; Procter and Gamble, Cincinnati, OH). Swabbing samples were mixed with 10 mL of sterile saline, agitated, and cultured on mannitol salt agar plates. At 24 h, plates were read and up to 10 staphylococcal colonies were saved for further analysis. Staphylococcal isolates were speciated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or PCR amplification and partial sequencing of rpoB or tuf. The prevalence of staphylococci was compared between the inguinal and teat regions using the chi-squared or Fisher's exact test, as applicable. Logistic regression models were used to investigate the relationship between a heifer's age (treated as a quantitative continuous variable) and the probability of isolating a given staphylococcal species from a given body site (inguinal region or teats). Overall, the most common species identified were Staphylococcus haemolyticus followed by Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus devriesei, and Staphylococcus sciuri. Staphylococcus aureus was more prevalent on the teat than in the inguinal region, whereas Staphylococcus arlettae was more prevalent in the inguinal region than on the teat. All other staphylococcal species were as likely to be found on the teat skin as the inguinal region skin. Isolation from the inguinal and teat skin was associated with age for Staphylococcus agnetis, S. chromogenes, S. devriesei, Staphylococcus equorum, S. haemolyticus, Staphylococcus lentus, S. sciuri, Staphylococcus vitulinus, and S. xylosus. The probability of finding S. chromogenes and S. agnetis on the teat and inguinal region increased with age, whereas the probability of S. devriesei and S. haemolyticus decreased with age. This study provides further insight into the ecology of staphylococcal species involved in heifer mastitis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Melchior, M B; van Osch, M H J; Lam, T J G M; Vernooij, J C M; Gaastra, W; Fink-Gremmels, J
2011-12-01
Staphylococcus aureus is one of the most prevalent causes of bovine mastitis. The antimicrobial treatment of this disease is currently based on antimicrobial susceptibility tests according to Clinical and Laboratory Standards Institute standards. However, various authors have shown a discrepancy between the results of this standard susceptibility test and the actual cure rate of the applied antimicrobial treatment. Increasing evidence suggests that in vivo biofilm formation by Staph. aureus, which is not assessed in the antimicrobial susceptibility tests, is associated with this problem, resulting in disappointing cure rates, especially for infections of longer duration. Previous data obtained with a limited number of strains showed that the extended biofilm antimicrobial susceptibility (EBS) assay reveals differences between strains, which cannot be derived from a standard susceptibility test or from a 24-h biofilm susceptibility test. The objective of this study was to test a collection of Staph. aureus bovine mastitis strains in the EBS assay and to model the effect of antimicrobial exposure, duration of antimicrobial exposure, and genotype profile of the strains on antimicrobial susceptibility. With the results from a previous study with the same collection of strains, the effect of genotype represented by accessory gene regulator gene (agr-type), the presence of insertional sequence 257 (IS257), intercellular adhesion (ica), and the β-lactamase (blaZ) gene were entered as explanatory factors in a logistic regression model. The agr locus of Staph. aureus controls the expression of most of the virulence factors, represses the transcription of several cell wall-associated proteins, and activates several exoproteins during the post-exponential phase. The IS257 gene has been related to biofilm formation in vitro and was found earlier in 50% of the agr-type 2 strains. The ica gene cluster encodes for the production of an extracellular polysaccharide adhesin, termed polysaccharide intercellular adhesin, which appears to have an important role in pathogenic Staph. aureus infections. The blaZ gene encodes the presence of the penicillin resistance in the strain. The EBS assay together with the logistic regression model revealed that the duration of therapy is the most important factor of therapy outcome in this in vitro model. Furthermore, the effect of genotypic differences seems to be more important for therapy outcome than the antimicrobial used in this model. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Weiss, Sonja; Kadlec, Kristina; Fessler, Andrea T; Schwarz, Stefan
2013-12-27
The aim of this study was to isolate and characterize methicillin-resistant staphylococci (MRS) in a small animal clinic and to investigate their distribution and possible transmission. Swabs (n=72) were taken from hospitalized pets, the environment and employees of a small animal clinic and screened for the presence of MRS. The staphylococcal species was confirmed biochemically or by 16S rDNA sequencing. Susceptibility to antimicrobial agents was tested by broth dilution. The presence of mecA and other resistance genes was confirmed by PCR. Molecular typing of the isolates followed standard procedures. In total, 34 MRS belonging to the four species Staphylococcus aureus (n=5), Staphylococcus epidermidis (n=21), Staphylococcus haemolyticus (n=6) or Staphylococcus pettenkoferi (n=2) were isolated. All isolates were multidrug-resistant with resistance to at least three classes of antimicrobial agents. Among the five methicillin-resistant S. aureus (MRSA) isolates, four belonged to the clonal complex CC398; two of them were isolated from cats, the remaining two from pet cages. Overall, the MRS isolates differed in their characteristics, except for one S. epidermidis clone (n=9) isolated from hospitalized cats without clinical staphylococcal infections, pet cages, the clinic environment as well as from a healthy employee. This MRSE clone was resistant to 10 classes of antimicrobial agents, including aminocyclitols, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols, pleuromutilins, sulfonamides, tetracyclines and trimethoprim. These findings suggest a possible transmission of specific MRS isolates between animal patients, employees and the clinic environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Yue; Liu, Zhi-Rong; Chen, Hui; Fan, Ying-Chuan; Duo, Ji; Zheng, Hong; Wang, Guang-Jin; Li, Yu-Chan; Jiachu, Dan-Ba; Zewang, Ge-Ma
2013-01-01
AIM To compare the bacterial flora in palpebral conjunctiva of xerophthalmia seniors of Tibetan, Yi and Han, and analyze the differences and similarities of the bacteria. METHODS The test subjects were selected from 2 Tibetan, 2 Yi and 3 Han populated places, respectively. Total 222 seniors (444 eyes) with dry eye were examined. Secretion was collected from the palpebral conjunctiva of the subjects and then inoculated onto a blood agar plate. After 48h of incubation, the bacteria were examined for the differences and similarities between different ethnics. RESULTS There was no significant difference (P>0.05) of Gram stain characterization, dominant bacteria and number of the bacterial species present in oxrophthalmia patients among Tibetan, Yi and Han nationalities. The bacteria presented in all groups include staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa. The bacteria detected from the two of three ethnic groups were staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae, and staphylococcus heads. The incidence rate of bacteria-associated dry eye in Tibetan population was significantly lower than that of Han and Yi population. CONCLUSION There is no significant difference in the bacteria flora of palpebral conjunctiva observed among dry eye elder populations of Tibetan, Yi and Han people. All of staphylococcus epidermidis, corynebacterium, micrococcus luteu, intracellular bacteria sphingomonas, pseudomonas aeruginosa, staphylococcus aureus, staphylococcus haemolyticus, escherichia coli, kytococcus sedentarius, streptococcus angina, micrococcus lylae and staphylococcus heads are common bacteria flora of the three nationalities inhibiting in this area. PMID:23991377
Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.
Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat
2015-09-01
Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was <30%, indicating that they were likely to be new species. DNA relatedness between these 2 strains was only 65%, suggesting that they also belonged to different species. The α-amino group content of 6-month-old fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 740.5 mM, which was higher than that inoculated by the strain CMS5-7-5 (662.14 mM, P < 0.05). Histamine was not produced during fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P < 0.05). The major volatile compound detected in fish sauce inoculated with Staphylococcus sp. CMC5-3-1 was 2-methypropanal, contributing to the desirable dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. © 2015 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
Background: Lysostaphin is a glycyl-glycine bacteriocin peptidoglycan hydrolase secreted by Staphylococcus simulans for degrading the peptidoglycan moieties in Staphylococcus aureus cell walls which result in cell lysis. There are known mechanisms of resistance to lysostaphin, e.g. serine in place...
Pereira, Eliezer M; Schuenck, Ricardo P; Malvar, Karoline L; Iorio, Natalia L P; Matos, Pricilla D M; Olendzki, André N; Oelemann, Walter M R; dos Santos, Kátia R N
2010-03-31
In this study, we standardized and evaluated a multiplex-PCR methodology using specific primers to identify Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus and their methicillin-resistance directly from blood cultures. Staphylococci clinical isolates (149) and control strains (16) previously identified by conventional methods were used to establish the multiplex PCR protocol. Subsequently, this methodology was evaluated using a fast and cheap DNA extraction protocol from 25 staphylococci positive blood cultures. A wash step of the pellet with 0.1% bovine serum albumin (BSA) solution was performed to reduce PCR inhibitors. Amplicons of 154bp (mecA gene), 271bp (S. haemolyticus mvaA gene) and 108 and 124bp (S. aureus and S. epidermidis species-specific fragments, respectively) were observed. Reliable results were obtained for 100% of the evaluated strains, suggesting that this new multiplex-PCR combined with an appropriate DNA-extraction method could be useful in the laboratory for fast and accurate identification of three staphylococci species and simultaneously their methicillin resistance directly in blood cultures.
Sada, Ryuichi; Fukuda, Saori; Ishimaru, Hiroyasu
2017-01-01
Community-acquired methicillin-resistant Staphylococcus aureus has been spreading worldwide, including in Japan. However, few cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus have been reported in Japan. We report 2 cases, in middle-aged women, of toxic shock syndrome due to Community-acquired methicillin-resistant Staphylococcus aureus via a vaginal portal of entry. The first patient had used a tampon and the second patient had vaginitis due to a cleft narrowing associated with vulvar lichen sclerosus. Both patients were admitted to our hospital with septic shock and severe acute kidney injury and subsequently recovered with appropriate antibiotic treatment. In our review of the literature, 8 cases of toxic shock syndrome caused by Community-acquired methicillin-resistant Staphylococcus aureus were reported in Japan. In these 8 cases, the main portals of entry were the skin and respiratory tract; however, the portal of entry of Community-acquired methicillin-resistant Staphylococcus aureus from a vaginal lesion has not been reported in Japan previously.
Rapid lysostaphin test to differentiate Staphylococcus and Micrococcus species.
Geary, C; Stevens, M
1986-01-01
A rapid, simple lysostaphin lysis susceptibility test to differentiate the genera Staphylococcus and Micrococcus was evaluated. Of 181 strains from culture collections, 95 of 95 Staphylococcus strains were lysed, and 79 of 79 Micrococcus strains were not lysed. The seven Planococcus strains were resistant. Clinical isolates (890) were tested with lysostaphin and for the ability to produce acid from glycerol in the presence of erythromycin. Overall agreement between the methods was 99.2%. All clinical Micrococcus strains (43) were resistant to lysostaphin, and all clinical Staphylococcus strains (847) were susceptible. Seven of the Staphylococcus strains did not produce acid from glycerol in the presence of erythromycin. This lysostaphin test provides results in 2 h. It is easier to perform than previously described lysostaphin lysis methods. It is also more rapid and accurate than the glycerol-erythromycin test. PMID:3519667
Wendlandt, Sarah; Kadlec, Kristina; Feßler, Andrea T; Schwarz, Stefan
2015-06-12
The aim of this study was to investigate the genetic basis of combined pleuromutilin-lincosamide-streptogramin A resistance in 26 unrelated methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) from dairy cows suffering from mastitis. The 26 pleuromutilin-resistant staphylococcal isolates were screened for the presence of the genes vga(A), vga(B), vga(C), vga(E), vga(E) variant, sal(A), vmlR, cfr, lsa(A), lsa(B), lsa(C), and lsa(E) by PCR. None of the 26 isolates carried the genes vga(B), vga(C), vga(E), vga(E) variant, vmlR, cfr, lsa(A), lsa(B), or lsa(C). Two Staphylococcus haemolyticus and single Staphylococcus xylosus, Staphylococcus lentus, and Staphylococcus hominis were vga(A)-positive. Twelve S. aureus, two Staphylococcus warneri, as well as single S. lentus and S. xylosus carried the lsa(E) gene. Moreover, single S. aureus, S. haemolyticus, S. xylosus, and Staphylococcus epidermidis were positive for both genes, vga(A) and lsa(E). The sal(A) gene was found in a single Staphylococcus sciuri. All ABC transporter genes were located in the chromosomal DNA, except for a plasmid-borne vga(A) gene in the S. epidermidis isolate. The genetic environment of the lsa(E)-positive isolates was analyzed using previously described PCR assays. Except for the S. warneri and S. xylosus, all lsa(E)-positive isolates harbored a part of the previously described enterococcal multiresistance gene cluster. This is the first report of the novel lsa(E) gene in the aforementioned bovine CoNS species. This is also the first identification of the sal(A) gene in a S. sciuri from a case of bovine mastitis. Moreover, the sal(A) gene was shown to also confer pleuromutilin resistance. Copyright © 2015 Elsevier B.V. All rights reserved.