Science.gov

Sample records for encoding ump kinase

  1. Mutational analysis of UMP kinase from Escherichia coli.

    PubMed

    Bucurenci, N; Serina, L; Zaharia, C; Landais, S; Danchin, A; Bârzu, O

    1998-02-01

    UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).

  2. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP.

    PubMed

    Serina, L; Blondin, C; Krin, E; Sismeiro, O; Danchin, A; Sakamoto, H; Gilles, A M; Bârzu, O

    1995-04-18

    The pyrH gene, encoding UMP-kinase from Escherichia coli, was cloned using as a genetic probe the property of the carAB operon to be controlled for its expression by the concentration of cytoplasmic UTP. The open reading frame of the pyrH gene of 723 bp was found to be identical to that of the smbA gene [Yamanaka, K., et al. (1992) J. Bacteriol. 174, 7517-7526], previously described as being involved in chromosome partitioning in E. coli. The bacterial UMP-kinase did not display significant sequence similarity to known nucleoside monophosphate kinases. On the contrary, it exhibited similarity with three families of enzymes including aspartokinases, glutamate kinases, and Pseudomonas aeruginosa carbamate kinase. UMP-kinase overproduced in E. coli was purified to homogeneity and analyzed for its structural and catalytic properties. The protein consists of six identical subunits, each of 240 amino acid residues (the N-terminal methionine residue is missing in the expressed protein). Upon excitation at 295 nm, the bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 332 nm which indicates that the single tryptophan residue of the protein (Trp119) is located in a hydrophobic environment. Like other enzymes involved in the de novo synthesis of pyrimidine nucleotides, UMP-kinase of E. coli is subject to regulation by nucleotides: GTP is an allosteric activator, whereas UTP serves as an allosteric inhibitor. UTP and UDP, but none of the other nucleotides tested such as GTP, ATP, and UMP, enhanced the fluorescence of the protein. The sigmoidal shape of the dose-response curve indicated cooperativity in binding of UTP and UDP.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Enantioselectivity of human AMP, dTMP and UMP-CMP kinases

    PubMed Central

    Alexandre, Julie A.C.; Roy, Béatrice; Topalis, Dimitri; Pochet, Sylvie; Périgaud, Christian; Deville-Bonne, Dominique

    2007-01-01

    l-Nucleoside analogues such as lamivudine are active for treating viral infections. Like d-nucleosides, the biological activity of the l-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases. We have therefore investigated the capacity of l-enantiomers of some natural (d)NMP to act as substrates for the recombinant forms of human uridylate-cytidylate kinase, thymidylate kinase and adenylate kinases 1 and 2. Both cytosolic and mitochondrial adenylate kinases were strictly enantioselective, as they phosphorylated only d-(d)AMP. l-dTMP was a substrate for thymidylate kinase, but with an efficiency 150-fold less than d-dTMP. Both l-dUMP and l-(d)CMP were phosphorylated by UMP-CMP kinase although much less efficiently than their natural counterparts. The stereopreference was conserved with the 2′-azido derivatives of dUMP and dUMP while, unexpectedly, the 2′-azido-d-dCMP was a 4-fold better substrate for UMP-CMP kinase than was CMP. Docking simulations showed that the small differences in the binding of d-(d)NMP to their respective kinases could account for the differences in interactions of the l-isomers with the enzymes. This in vitro information was then used to develop the in vivo activation pathway for l-dT. PMID:17626051

  4. Reaction of human UMP-CMP kinase with natural and analog substrates.

    PubMed

    Pasti, Claudia; Gallois-Montbrun, Sarah; Munier-Lehmann, Hélène; Veron, Michel; Gilles, Anne-Marie; Deville-Bonne, Dominique

    2003-04-01

    UMP-CMP kinase catalyses an important step in the phosphorylation of UTP, CTP and dCTP. It is also involved in the necessary phosphorylation by cellular kinases of nucleoside analogs used in antiviral therapies. The reactivity of human UMP-CMP kinase towards natural substrates and nucleotide analogs was reexamined. The expression of the recombinant enzyme and conditions for stability of the enzyme were improved. Substrate inhibition was observed for UMP and CMP at concentrations higher than 0.2 mm, but not for dCMP. The antiviral analog l-3TCMP was found to be an efficient substrate phosphorylated into l-3TCDP by human UMP-CMP kinase. However, in the reverse reaction, the enzyme did not catalyse the addition of the third phosphate to l-3TCDP, which was rather an inhibitor. By molecular modelling, l-3TCMP was built in the active site of the enzyme from Dictyostelium. Human UMP-CMP kinase has a relaxed enantiospecificity for the nucleoside monophosphate acceptor site, but it is restricted to d-nucleotides at the donor site.

  5. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    PubMed

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-09

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  6. Phosphoryl transfer by a concerted reaction mechanism in UMP/CMP-kinase.

    PubMed Central

    Hutter, M. C.; Helms, V.

    2000-01-01

    The reaction mechanism of phosphoryl transfer catalyzed by UMP/CMP-kinase from Dictyostelium discoideum was investigated by semiempirical AM1 molecular orbital computations of an active site model system derived from crystal structures that contain a transition state analog or a bisubstrate inhibitor. The computational results suggest that the nucleoside monophosphate must be protonated for the forward reaction while it is unprotonated in the presence of aluminium fluoride, a popular transition state analog for phosphoryl transfer reactions. Furthermore, a compactification of the active site model system during the reaction and for the corresponding complex containing AlF3 was observed. For the active site residues that are part of the LID domain, conformational flexibility during the reaction proved to be crucial. On the basis of the calculations, a concerted phosphoryl transfer mechanism is suggested that involves the synchronous shift of a proton from the monophosphate to the transferred PO3-group. The proposed mechanism is thus analogous to the phosphoryl transfer mechanism in cAMP-dependent protein kinase that phosphorylates the hydroxyl groups of serine residues. PMID:11152133

  7. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis.

    PubMed

    Hein, Paul; Stöckel, Jana; Bennewitz, Stefan; Oelmüller, Ralf

    2009-03-01

    Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.

  8. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  9. Structural properties of UMP-kinase from Escherichia coli: modulation of protein solubility by pH and UTP.

    PubMed

    Serina, L; Bucurenci, N; Gilles, A M; Surewicz, W K; Fabian, H; Mantsch, H H; Takahashi, M; Petrescu, I; Batelier, G; Bârzu, O

    1996-06-04

    UMP-kinase from Escherichia coli, unlike the analogous enzyme from eukaryotic organisms, is an oligomeric protein subjected to complex regulatory mechanisms in which UTP and GTP act as allosteric effectors. While the enzyme has an unusually low solubility at neutral pH (< or = 0.1 mg of protein/ mL), its solubility increases markedly above pH 8 and below pH 4. Furthermore, the solubility of the bacterial UMP-kinase at neutral pH is greatly enhanced in the presence of Mg-free UTP. Thermal denaturation experiments have demonstrated that UTP also increases the stability of the protein. Fourier-transform infrared spectroscopy and circular dichroism show that the secondary structure of the protein is the same at neutral and at alkaline pH. These data indicate that variations in enzyme solubility must be related to subtle changes in the tertiary and/or quaternary structure which modulate the exposure of hydrophobic surfaces in the protein molecule. A variant of UMP-kinase, obtained by site-directed mutagenesis (Asp159Asn), which is similar to the wild-type enzyme in its stability and kinetic properties, has a much increased water solubility (> 5 mg protein/mL) even at neutral pH. This suggests that salt bridges may be involved in the equilibrium between the soluble and aggregated forms of the wild-type enzyme, and that conformational changes induced upon binding of UTP increase the protein solubility by disrupting these salt bridges.

  10. The novel fluorescent CDP-analogue (Pbeta)MABA-CDP is a specific probe for the NMP binding site of UMP/CMP kinase.

    PubMed Central

    Rudolph, M. G.; Veit, T. J.; Reinstein, J.

    1999-01-01

    Direct thermodynamic and kinetic investigations of the binding of nucleotides to the nucleoside monophosphate (NMP) site of NMP kinases have not been possible so far because a spectroscopic probe was not available. By coupling a fluorescent N-methylanthraniloyl- (mant) group to the beta-phosphate of CDP via a butyl linker, a CDP analogue [(Pbeta)MABA-CDP] was obtained that still binds specifically to the NMP site of UmpKdicty, because the base and the ribose moieties, which are involved in specific interactions, are not modified. This allows the direct determination of binding constants for its substrates in competition experiments. PMID:10631985

  11. Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1

    PubMed Central

    Topalis, Dimitri; El Amri, Chahrazade; Krečmerová, Marcela; Naesens, Lieve; Balzarini, Jan; Andrei, Graciela; Snoeck, Robert

    2016-01-01

    Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(−) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process. PMID:26824416

  12. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides.

    PubMed

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva; Lehtinen, Emilia; Pind, Marie-Louise Lindberg; Harris, Pernille; Martinussen, Jan; Willemoës, Martin

    2015-05-15

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.

  13. Molecular cloning of plant transcripts encoding protein kinase homologs.

    PubMed Central

    Lawton, M A; Yamamoto, R T; Hanks, S K; Lamb, C J

    1989-01-01

    Oligonucleotides, corresponding to conserved regions of animal protein-serine/threonine kinases, were used to isolate cDNAs encoding plant homologs in the dicot bean (Phaseolus vulgaris L.) and the monocot rice (Oryzae sativa L.). The C-terminal regions of the deduced polypeptides encoded by the bean (PVPK-1) and rice (G11A) cDNAs, prepared from mRNAs of suspension cultures and leaves, respectively, contain features characteristic of the catalytic domains of eukaryotic protein-serine/threonine kinases, indicating that these cDNAs encode plant protein kinases. The putative catalytic domains are most closely related to cyclic nucleotide-dependent protein kinases and the protein kinase C family, suggesting the plant homologs may likewise transduce extracellular signals. However, outside these domains, PVPK-1 and G11A exhibit no homology either to each other or to regulatory domains of other protein kinases, indicating the plant homologs are modulated by other signals. PVPK-1 corresponds to a 2.4-kb transcript in suspension cultured bean cells. Southern blots of genomic DNA indicate that PVPK-1 and G11A correspond to single copy genes that form part of a family of related plant sequences. Images PMID:2541432

  14. The Leishmania donovani UMP Synthase Is Essential for Promastigote Viability and Has an Unusual Tetrameric Structure That Exhibits Substrate-controlled Oligomerization

    SciTech Connect

    French, Jarrod B.; Yates, Phillip A.; Soysa, D.Radika; Boitz, Jan M.; Carter, Nicola S.; Chang, Bailey; Ullman, Buddy; Ealick, Steven E.

    2011-08-09

    The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.

  15. The Leishmania donovani UMP Synthase Is Essential for Promastigote Viability and Has an Unusual Tetrameric Structure That Exhibits Substrate-controlled Oligomerization*

    PubMed Central

    French, Jarrod B.; Yates, Phillip A.; Soysa, D. Radika; Boitz, Jan M.; Carter, Nicola S.; Chang, Bailey; Ullman, Buddy; Ealick, Steven E.

    2011-01-01

    The final two steps of de novo uridine 5′-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5′-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS. PMID:21507942

  16. Message from Vice Chancellor, UMP

    NASA Astrophysics Data System (ADS)

    Nasir Ibrahim, Daing

    2012-09-01

    Assalamualaikumwarahmatullahiwabarakatuh and Salam i Malaysia First and foremost, I want to thank the International Conference Mechanical Engineering Research (ICMER) organisers for inviting me to address and officiate at this conference. It is a privilege and an honour for me on this momentous occasion to grace the ceremony. The ICMER provides a platform to bring together not only researchers but also postgraduate students in Mechanical Engineering, Automotive Engineering, Manufacturing Engineering, Biomechanical Engineering, Material Engineering and Industrial Engineering. With this platform, ICMER will embark on a whole process of making new discoveries and then translating them into products and services for the marketplace; this is only made possible by people like all of you. It might be only a starting point but with hard work and perseverance I am sure you will succeed with flying colours. As one of Malaysia's Public Universities, UMP's main challenge is to remain competitive and relevant by offering high quality technical academic programmes and research activities, focusing on its niche areas. New knowledge and findings cannot be generated without research and development (R&D) therefore, Malaysia has had substantial investment in research and development facilities. These efforts will undoubtedly generate lots of interesting results and new knowledge as either further investigation or commercial activities. Therefore, researchers like you must see this as the generator of new knowledge to extend your research outcomes from laboratory experiments to the marketplace and towards commercialisation. Naybe this doesn't appear significant in the short term but it may make a tremendous impact in the future. The Malaysian government has invested a huge sum of Ringgits in R&D over the years. Therefore, public universities such as UMP must produce more quality researchers and graduates to ensure Malaysia reaps the returns from these investments and consequently

  17. Isolation of Drosophila genes encoding G protein-coupled receptor kinases.

    PubMed Central

    Cassill, J A; Whitney, M; Joazeiro, C A; Becker, A; Zuker, C S

    1991-01-01

    G protein-coupled receptors are regulated via phosphorylation by a variety of protein kinases. Recently, termination of the active state of two such receptors, the beta-adrenergic receptor and rhodopsin, has been shown to be mediated by agonist- or light-dependent phosphorylation of the receptor by members of a family of protein-serine/threonine kinases (here referred to as G protein-coupled receptor kinases). We now report the isolation of a family of genes encoding a set of Drosophila protein kinases that appear to code for G protein-coupled receptor kinases. These proteins share a high degree of sequence homology with the bovine beta-adrenergic receptor kinase. The presence of a conserved family of G protein-coupled receptor kinases in vertebrates and invertebrates points to the central role of these kinases in signal transduction cascades. Images PMID:1662381

  18. Design of an encodable tyrosine kinase-inducible domain: detection of tyrosine kinase activity by terbium luminescence.

    PubMed

    Zondlo, Susan Carr; Gao, Feng; Zondlo, Neal J

    2010-04-28

    Tyrosine kinases are critical mediators of intracellular signaling and of intracellular responses to extracellular signaling. Changes in tyrosine kinase activity are implicated in numerous human diseases, including cancers, diabetes, and pathogen infectivity. To address questions in tyrosine phosphorylation, we have designed a protein tyrosine kinase-inducible domain, a small, genetically encodable protein motif whose structure is dependent on its tyrosine phosphorylation state. Tyrosine kinase-inducible domain peptides are based on EF-hand loops in which a structurally critical Glu12 residue is replaced by tyrosine at residue 11 or at residue 15 of the protein. Tyrosine kinase-inducible domain peptides bind terbium(III) in a phosphorylation-dependent manner, showing strong terbium luminescence when phosphorylated but weak terbium luminescence when not phosphorylated. Lanthanide binding was confirmed by NMR. A tyrosine kinase-inducible domain peptide, pKID-Abl, was designed to incorporate a recognition sequence of the Abl kinase. Incubation of pKID-Abl with Abl kinase resulted in a large increase in terbium luminescence. This increase in luminescence was abolished when pKID-Abl and Abl kinase were incubated with the Abl kinase inhibitor Gleevec. In addition, incubation of phosphorylated pKID-Abl with the tyrosine phosphatase YOP resulted in a large reduction in terbium luminescence. pKID-Abl was employed as a fluorescent sensor of Abl tyrosine kinase activity in HeLa cell extracts, exhibiting low luminescence with extracts from serum-starved cells and increased luminescence using extracts from EGF-treated cells. These results indicate that tyrosine kinase-inducible domains may be used as sensors of tyrosine kinase and tyrosine phosphatase activity and in the detection of tyrosine kinase inhibitors.

  19. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    DOEpatents

    Croteau, Rodney B.; Lange, Bernd M.

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  20. Separate nuclear genes encode cytosolic and mitochondrial nucleoside diphosphate kinase in Dictyostelium discoideum.

    PubMed

    Troll, H; Winckler, T; Lascu, I; Müller, N; Saurin, W; Véron, M; Mutzel, R

    1993-12-05

    We have previously isolated cDNA clones for the gip17 gene encoding the cytosolic nucleoside diphosphate (NDP) kinase from Dictyostelium discoideum, and partial cDNAs for guk, a second member of the NDP kinase gene family (Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Véron, M., and Lacombe, M. L. (1990) J. Natl. Cancer Inst. 80, 1199-1202). We now characterize genomic DNA clones for both NDP kinase genes, and we show that guk defines a nuclear-encoded mitochondrial NDP kinase. Isolated D. discoideum mitochondria contain 3% of the total cellular NDP kinase activity. Antibodies which specifically recognize and inhibit the activity of either cytosolic or mitochondrial NDP kinase unambiguously distinguish between these activities. The nascent mitochondrial NDP kinase contains a presequence of 57 amino acids that is removed during import into the organelle as shown by determination of the NH2 terminus of the mature protein from mitochondria. The genes for mitochondrial and cytosolic NDP kinases contain four and two introns, respectively. The positions of the of the introns in the gene for the cytosolic enzyme match exactly the positions of the second and fourth introns in the coding region of its mitochondrial homologue. From these results we conclude that the isozymes diverged from a common ancestor, and we discuss possible phylogenetic pathways for the evolution of cytosolic and organelle NDP kinases.

  1. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    PubMed Central

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the R7 photoreceptor cell. Components of the signal transduction pathway activated by Sev in the R7 precursor include proteins encoded by the gap1, drk, Sos, ras1 and raf loci. In this report we present evidence that a Drosophila MAP kinase, ERK-A, is encoded by the rolled locus and is required downstream of raf in the Sev signal transduction pathway. Images PMID:8157002

  2. Characterization of the Yeast DGK1-encoded CTP-dependent Diacylglycerol Kinase*♦

    PubMed Central

    Han, Gil-Soo; O'Hara, Laura; Siniossoglou, Symeon; Carman, George M.

    2008-01-01

    The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca2+ or Mg2+ ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 °C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent Km = 6.5 mol %) and saturation kinetics with respect to CTP (apparent Km = 0.3 mm). dCTP was both a substrate (apparent Km = 0.4 mm) and competitive inhibitor (apparent Ki = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases. PMID:18458076

  3. cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains.

    PubMed

    Mayeenuddin, L H; Mitchell, J

    2001-01-01

    Rhodopsin phosphorylation is one of the key mechanisms of inactivation in vertebrate and invertebrate visual signal transduction. Here we report the cDNA cloning and protein characterization of a 70-kDa squid rhodopsin kinase, SQRK. The cDNA encoding the 70-kDa protein demonstrates high sequence identity with octopus rhodopsin kinase (92%) and mammalian beta-adrenergic receptor kinases (63-65%), but only 33% similarity with bovine rhodopsin kinase, suggesting that invertebrate rhodopsin kinases may be structurally similar to beta-adrenergic receptor kinases. This cDNA encodes three distinct modular domains: RGS, S/TKc, and PH domains. The native SQRK is an eye-specific protein that is only expressed in photoreceptor cells and the optic ganglion as determined by immunoblotting. Purified SQRK is able to phosphorylate both squid and bovine rhodopsin. Squid rhodopsin phosphorylation by purified SQRK was sensitive to both Mg2+ and GTPgammaS but was insensitive to Ca2+/CaM regulation. The ability of SQRK to phosphorylate rhodopsin was totally lost in the presence of SQRK-specific antibodies. Our results suggest that SQRK plays an important role in squid visual signal termination.

  4. Effect of halogen substitutions on dUMP to stability of thymidylate synthase/dUMP/mTHF ternary complex using molecular dynamics simulation.

    PubMed

    Kaiyawet, Nopporn; Rungrotmongkol, Thanyada; Hannongbua, Supot

    2013-06-24

    The stability of the thymidylate synthase (TS)/2-deoxyuridine-5-monophosphate (dUMP)/5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) ternary complex formation and Michael addition are considered as important steps that are involved in the inhibition mechanism of the anticancer prodrug 5-fluorouracil (5-FU). Here, the effect of three different halogen substitutions on the C-5 position of the dUMP (XdUMPs = FdUMP, CldUMP, and BrdUMP), the normal substrate, on the stability of the TS/dUMP and TS/dUMP/mTHF binary and ternary complexes, respectively, was investigated via molecular dynamics simulation. The simulated results revealed that the stability of all the systems was substantially increased by mTHF binding to the catalytic pocket. In the ternary complex, a much greater stabilization of the dUMP and XdUMPs through electrostatic interactions, including charge-charge and hydrogen bond interactions, was found compared to mTHF. An additional unique hydrogen bond between the substituted fluorine of FdUMP and the hydroxyl group of the TS Y94 residue was observed in both the binary and ternary complexes. The distance between the S(-) atom of the TS C146 residue and the C6 atom of dUMP, at <4 Å in all systems, suggested that a Michael addition with the formation of a S-C6 covalent bond potentially occurred, although the hydrogen atom on C6 of dUMP is substituted by a halogen atom. The MM/PBSA binding free energy revealed the significant role of the bridging waters around the ligands in the increased binding affinity (∼10 kcal/mol) of dUMP/XdUMP, either alone or together with mTHF, toward TS. The order of the averaged binding affinity in the ternary systems was found to be CldUMP ≈ FdUMP > dUMP > BrdUMP, suggesting that CldUMP could be a potent candidate TS inhibitor, the same as FdUMP (the metabolite form of 5-FU).

  5. The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity.

    PubMed

    Han, Gil-Soo; Audhya, Anjon; Markley, Daniel J; Emr, Scott D; Carman, George M

    2002-12-06

    The LSB6 gene product was identified from the Saccharomyces Genome Data Base (locus YJL100W) as a putative member of a novel type II phosphatidylinositol (PI) 4-kinase family. Cell extracts lacking the LSB6 gene had a reduced level of PI 4-kinase activity. In addition, multicopy plasmids containing the LSB6 gene directed the overexpression of PI 4-kinase activity in cell extracts of wild-type cells, in an lsb6Delta mutant, in a pik1(ts) stt4(ts) double mutant, and in an pik1(ts) stt4(ts) lsb6Delta triple mutant. The heterologous expression of the S. cerevisiae LSB6 gene in Escherichia coli resulted in the expression of a protein that possessed PI 4-kinase activity. Although the lsb6Delta mutant did not exhibit a growth phenotype and failed to exhibit a defect in phosphoinositide synthesis in vivo, the overexpression of the LSB6 gene could partially suppress the lethal phenotype of an stt4Delta mutant defective in the type III STT4-encoded PI 4-kinase indicating that Lsb6p functions as a PI 4-kinase in vivo. Lsb6p was localized to the membrane fraction of the cell, and when overexpressed, GFP-tagged Lsb6p was observed on both the plasma membrane and the vacuole membrane. The enzymological properties (pH optimum, dependence on magnesium or manganese as a cofactor, the dependence of activity on Triton X-100, the dependence on the PI surface concentration, and temperature sensitivity) of the LSB6-encoded enzyme were very similar to the membrane-associated 55-kDa PI 4-kinase previously purified from S. cerevisiae.

  6. Differential accumulation of transcripts encoding protein kinase homologs in greening pea seedlings.

    PubMed Central

    Lin, X; Feng, X H; Watson, J C

    1991-01-01

    Degenerate oligonucleotides, corresponding to conserved regions within the catalytic domain of known protein-serine/threonine kinases, were used as primers for the polymerase chain reaction to amplify cDNA synthesized from poly(A)+ RNA purified from the apical buds of 7-day-old pea seedlings. Five partial cDNAs were obtained and designated PsPK1 through PsPK5 (for Pisum sativum protein kinase) in order of decreasing length. The deduced amino acid sequences show that each member of the PsPK series is different in length, and, although their sequences are quite similar overall, each has a unique sequence. Moreover, each member of the PsPK series has structural features typical of members of the protein-serine/threonine kinase family of protein kinases. All are equally similar to cyclic nucleotide-dependent protein kinase and protein kinase C, suggesting that the pea homologs may be involved in signal transduction. DNA gel blots show that each PsPK cDNA is likely to be encoded by a single gene within the pea genome. RNA blot analyses show that the PsPK transcripts accumulate differentially during greening of etiolated seedlings. PsPK3 and PsPK5 transcripts show a large and rapid decline during deetiolation. In contrast, the level of PsPK4 RNA increases steadily during deetiolation whereas PsPK1 and PsPK2 transcripts show little change during the greening period. Thus light regulates changes in the levels of transcripts encoding putative protein kinases in plants. Images PMID:1714582

  7. Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability

    NASA Astrophysics Data System (ADS)

    Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.

    2016-11-01

    How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.

  8. Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability

    PubMed Central

    Paul, Jodi R.; DeWoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.

    2016-01-01

    How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks. PMID:27841351

  9. Cloning and characterization of two genes encoding dihydroxyacetone kinase from Schizosaccharomyces pombe IFO 0354.

    PubMed

    Kimura, T; Takahashi, M; Yoshihara, K; Furuichi, T; Suzuki, K; Imai, K; Karita, S; Sakka, K; Ohmiya, K

    1998-11-08

    We report the cloning and characterization of two genes encoding dihydroxyacetone kinase (EC 2.7.1.29), SpDAK1 and SpDAK2, from Schizosaccharomyces pombe IFO 0354. The open reading frames of both genes encode 591 amino acids and have Mrs of 62158 and 62170, respectively. Both predicted amino acid sequences exhibited a high identity to each other (99.8%) and relatively high identities (30% to 76%) to other putative dihydroxyacetone kinase gene products. A Western blot analysis showed that these enzymes are induced by glycerol and repressed by glucose. A genomic Southern blot analysis indicated the presence of SpDAK1 and the absence of SpDAK2 in a standard laboratory strain, S. pombe 972h-.

  10. A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase.

    PubMed

    Torada, Atsushi; Koike, Michiya; Ogawa, Taiichi; Takenouchi, Yu; Tadamura, Kazuki; Wu, Jianzhong; Matsumoto, Takashi; Kawaura, Kanako; Ogihara, Yasunari

    2016-03-21

    Seed germination under the appropriate environmental conditions is important both for plant species survival and for successful agriculture. Seed dormancy, which controls germination time, is one of the adaptation mechanisms and domestication traits [1]. Seed dormancy is generally defined as the absence of germination of a viable seed under conditions that are favorable for germination [2]. The seed dormancy of cultivated plants has generally been reduced during domestication [3]. Bread wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Weak dormancy may be an advantage for the productivity due to uniform emergence and a disadvantage for the risks of pre-harvest sprouting (PHS), which decreases grain quality and yield [4]. A number of quantitative trait loci (QTLs) controlling natural variation of seed dormancy have been identified on various chromosomes [5]. A major QTL for seed dormancy has been consistently detected on chromosome 4A [6-13]. The QTL was designated as a major gene, Phs1, which could be precisely mapped within a 2.6 cM region [14]. Here, we identified a mitogen-activated protein kinase kinase 3 (MKK3) gene (designated TaMKK3-A) by a map-based approach as a candidate gene for the seed dormancy locus Phs1 on chromosome 4A in bread wheat. Complementation analysis showed that transformation of a dormant wheat cultivar with the TaMKK3-A allele from a nondormant cultivar clearly reduced seed dormancy. Cultivars differing in dormancy had a single nonsynonymous amino acid substitution in the kinase domain of the predicted MKK3 protein sequence, which may be associated with the length of seed dormancy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families.

    PubMed Central

    Suchi, M; Mizuno, H; Kawai, Y; Tsuboi, T; Sumi, S; Okajima, K; Hodgson, M E; Ogawa, H; Wada, Y

    1997-01-01

    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5'-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a lambdaEMBL-3 human genomic library and report a single-copy gene spanning approximately 15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AG rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5' flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A-to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A (v = .26) and 440Gpoly (v = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. Images Figure 1 Figure 4 Figure 5 PMID:9042911

  12. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  13. K-sam gene encodes secreted as well as transmembrane receptor tyrosine kinase.

    PubMed Central

    Katoh, M; Hattori, Y; Sasaki, H; Tanaka, M; Sugano, K; Yazaki, Y; Sugimura, T; Terada, M

    1992-01-01

    K-sam was first identified as a gene amplified in the stomach cancer cell line KATO-III. The size of the major transcript of the K-sam gene was 3.5 kilobases in KATO-III cells, and we have previously shown that K-sam encodes a receptor tyrosine kinase that belongs to the heparin-binding growth factor receptor, or fibroblast growth factor receptor, gene family. The K-sam gene expresses multiple sizes of mRNAs in brain tissue, the immature teratoma cell line NCC-IT, and KATO-III. RNA blot analyses with a variety of K-sam probes indicate that there are at least four classes of K-sam mRNAs. Three types of K-sam cDNAs in addition to the previously reported type of K-sam cDNA were isolated, and their nucleotide sequences encode a full-length transmembrane receptor, a secreted receptor with a tyrosine kinase domain, and a secreted receptor without a tyrosine kinase domain. Images PMID:1313574

  14. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length.

    PubMed

    Hilley, Josie L; Weers, Brock D; Truong, Sandra K; McCormick, Ryan F; Mattison, Ashley J; McKinley, Brian A; Morishige, Daryl T; Mullet, John E

    2017-07-04

    Sorghum is an important C4 grass crop grown for grain, forage, sugar, and bioenergy production. While tall, late flowering landraces are commonly grown in Africa, short early flowering varieties were selected in US grain sorghum breeding programs to reduce lodging and to facilitate machine harvesting. Four loci have been identified that affect stem length (Dw1-Dw4). Subsequent research showed that Dw3 encodes an ABCB1 auxin transporter and Dw1 encodes a highly conserved protein involved in the regulation of cell proliferation. In this study, Dw2 was identified by fine-mapping and further confirmed by sequencing the Dw2 alleles in Dwarf Yellow Milo and Double Dwarf Yellow Milo, the progenitor genotypes where the recessive allele of dw2 originated. The Dw2 locus was determined to correspond to Sobic.006G067700, a gene that encodes a protein kinase that is homologous to KIPK, a member of the AGCVIII subgroup of the AGC protein kinase family in Arabidopsis.

  15. Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila.

    PubMed Central

    Singh-Wissmann, K; Ferry, J G

    1995-01-01

    Phosphotransacetylase and acetate kinase catalyze the activation of acetate to acetyl coenzyme A in the first step of methanogenesis from acetate in Methanosarcina thermophila. The genes encoding these enzymes (pta and ack) have been cloned and sequenced. They are arranged on the chromosome with pta upstream of ack (M.T. Latimer, and J. G. Ferry, J. Bacteriol. 175:6822-6829, 1993). The activities of phosphotransacetylase and acetate kinase are at least 8- to 11-fold higher in acetate-grown cells than in cells grown on methanol, monomethylamine, dimethylamine, or trimethylamine. Northern blot (RNA) analyses demonstrated that pta and ack are transcribed as an approximately 2.4-kb polycistronic message and that the regulation of enzyme synthesis occurs at the mRNA level. Primer extension analyses revealed a transcriptional start site located 27 bp upstream from the translational start of the pta gene and 24 bp downstream from a consensus archaeal boxA promoter sequence. S1 nuclease protection assays detected transcripts with four different 3' ends, each of which mapped to the beginning of four consecutive direct repeats. Northern blot analysis using an ack-specific probe detected both the 2.4-kb polycistronic transcript and a smaller 1.4-kb transcript which is the estimated size of monocistronic ack mRNA. A primer extension product was detected with an ack-specific primer; the 5' end of the product was in the intergenic region between the pta and ack genes but did not follow a consensus archaeal boxA sequence. This result, as well as detection of an additional 1.4-kb mRNA species, suggests processing of the polycistronic 2.4-kb transcript. PMID:7896690

  16. Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium.

    PubMed

    Desai, Janak; Solanki, Ronak

    2013-11-01

    To describe our newly developed technique for the removal of renal stones, which we have called ultra-mini percutaneous nephrolithotomy (UMP). UMP was performed in 62 patients using a 3.5-F ultra-thin telescope and specially designed inner and outer sheaths. A standard puncture was made and the tract was dilated up to 13 F. The outer sheath was introduced into the pelvicalyceal system and the stone was disintegrated with a 365-μ holmium laser fibre, introduced through the inner sheath. Stone fragments were evacuated using the specially designed sheath by creating an eddy current of saline; the fragments then came out automatically. The mean calculus size was 16.8 mm. Four of the 62 patients were children, three had a solitary kidney and two were obese. UMP was feasible in all cases with a mean (SD) 1.4 (1.0) gm/dL haemoglobin decrease and a mean hospital stay of 1.2 (0.8) days. The stone-free rate at 1 month was 86.66%. In two patients intraoperative bleeding obscured vision, requiring conversion to mini-percutaneous nephrolithotomy. There was one postoperative complication of hydrothorax, but there were no other postoperative complications and no auxiliary procedures were required. UMP is a very safe and effective method of removing renal calculi up to 20 mm. The use of consumables and disposables is minimal and the patient recovery was fast. Further clinical studies and direct comparison with other available techniques are required to define the place of UMP in the treatment of low-bulk and medium-bulk renal urolithiasis. It may be particularly useful for lower calyx calculi and paediatric cases. © 2013 The Authors. BJU International © 2013 BJU International.

  17. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase.

    PubMed Central

    Goring, D R; Rothstein, S J

    1992-01-01

    An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase. PMID:1332796

  18. Regulation of the Saccharomyces cerevisiae EKI1-encoded Ethanolamine Kinase by Zinc Depletion*

    PubMed Central

    Kersting, Michael C.; Carman, George M.

    2006-01-01

    Ethanolamine kinase catalyzes the committed step in the synthesis of phosphatidylethanolamine via the CDP-ethanolamine branch of the Kennedy pathway. Regulation of the EKI1-encoded ethanolamine kinase by the essential nutrient zinc was examined in Saccharomyces cerevisiae. The level of ethanolamine kinase activity increased when zinc was depleted from the growth medium. This regulation correlated with increases in the CDP-ethanolamine pathway intermediates phosphoethanolamine and CDP-ethanolamine, and an increase in the methylated derivative of phosphatidylethanolamine, phosphatidylcholine. The β-galactosidase activity driven by the PEKI1-lacZ reporter gene was elevated in zinc-depleted cells, indicating that the increase in ethanolamine kinase activity was attributed to a transcriptional mechanism. The expression level of PEKI1-lacZ reporter gene activity in the zrt1Δzrt2Δ mutant (defective in plasma membrane zinc transport) cells grown with zinc was similar to the activity expressed in wild-type cells grown without zinc. This indicated that EKI1 expression was sensitive to intracellular zinc. The zinc-mediated regulation of EKI1 expression was attenuated in the zap1Δ mutant defective in the zinc-regulated transcription factor Zap1p. Direct interactions between Zap1p and putative zinc-responsive elements in the EKI1 promoter were demonstrated by electrophoretic mobility shift assays. Mutations of these elements to a nonconsensus sequence abolished Zap1p-DNA interactions. Taken together, this work demonstrated that the zinc-mediated regulation of ethanolamine kinase and the synthesis of phospholipids via the CDP-ethanolamine branch of the Kennedy pathway were controlled in part by Zap1p. PMID:16551612

  19. Regulation of the Saccharomyces cerevisiae EKI1-encoded ethanolamine kinase by zinc depletion.

    PubMed

    Kersting, Michael C; Carman, George M

    2006-05-12

    Ethanolamine kinase catalyzes the committed step in the synthesis of phosphatidylethanolamine via the CDP-ethanolamine branch of the Kennedy pathway. Regulation of the EKI1-encoded ethanolamine kinase by the essential nutrient zinc was examined in Saccharomyces cerevisiae. The level of ethanolamine kinase activity increased when zinc was depleted from the growth medium. This regulation correlated with increases in the CDP-ethanolamine pathway intermediates phosphoethanolamine and CDP-ethanolamine, and an increase in the methylated derivative of phosphatidylethanolamine, phosphatidylcholine. The beta-galactosidase activity driven by the P(EKI1)-lacZ reporter gene was elevated in zinc-depleted cells, indicating that the increase in ethanolamine kinase activity was attributed to a transcriptional mechanism. The expression level of P(EKI1)-lacZ reporter gene activity in the zrt1deltazrt2delta mutant (defective in plasma membrane zinc transport) cells grown with zinc was similar to the activity expressed in wild-type cells grown without zinc. This indicated that EKI1 expression was sensitive to intracellular zinc. The zinc-mediated regulation of EKI1 expression was attenuated in the zap1delta mutant defective in the zinc-regulated transcription factor Zap1p. Direct interactions between Zap1p and putative zinc-responsive elements in the EKI1 promoter were demonstrated by electrophoretic mobility shift assays. Mutations of these elements to a nonconsensus sequence abolished Zap1p-DNA interactions. Taken together, this work demonstrated that the zinc-mediated regulation of ethanolamine kinase and the synthesis of phospholipids via the CDP-ethanolamine branch of the Kennedy pathway were controlled in part by Zap1p.

  20. cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions.

    PubMed

    Seifert, Roland

    2017-01-01

    The cyclic purine nucleotides cAMP and cGMP are well-established second messenger molecules that are generated by distinct nucleotidyl cyclases (NCs) and regulate numerous cell functions via specific effector molecules. In contrast, the existence of the cyclic pyrimidine nucleotides cCMP and cUMP has been controversial for many years. The development of highly specific and sensitive mass spectrometry methods has enabled the unequivocal detection and quantitation of cCMP and cUMP in biological systems. These cNMPs occur broadly in numerous mammalian cell lines and primary cells. cCMP has also been detected in mouse organs, and both cCMP and cUMP occur in various developmental stages of the zebrafish Danio rerio. So far, the soluble guanylyl cyclase (sGC) and soluble adenylyl cyclase (sAC) have been identified as cCMP and cUMP generators. Dissociations in the expression patterns of sAC and sGC relative to cCMP and cUMP abundance may point to the existence of hitherto unidentified cCMP- and cUMP-generating NCs. The broad occurrence of cCMP and cUMP in vertebrates and the distinct cNMP patterns suggest specific roles of these cNMPs in the regulation of numerous cell functions.

  1. Cloning, sequencing and characterization of a gene encoding dihydroxyacetone kinase from Zygosaccharomyces rouxii NRRL2547.

    PubMed

    Wang, Zheng-Xiang; Kayingo, Gerald; Blomberg, Anders; Prior, Bernard A

    2002-12-01

    The dihydroxyacetone pathway, an alternative pathway for the dissimilation of glycerol via reduction by glycerol dehydrogenase and subsequent phosphorylation by dihydroxyacetone (DHA) kinase, is activated in the yeasts Saccharomyces cerevisiae and Zygosaccharomyces rouxii during osmotic stress. In experiments aimed at investigating the physiological function of the DHA pathway in Z. rouxii, a typical osmotolerant yeast, we cloned and characterized a DAK gene encoding dihydroxyacetone kinase from Z. rouxii NRRL 2547. Sequence analysis revealed a 1761 bp open reading frame, encoding a peptide composed of 587 deduced amino acids with the predicted molecular weight of 61 664 Da. As the amino acid sequence was most closely homologous (68% identity) to the S. cerevisiae Dak1p, we named the gene and protein ZrDAK1 and ZrDak1p, respectively. A putative ATP binding site was also found but no consensus element associated with osmoregulation was found in the upstream region of the ZrDAK1 gene. The ZrDAK1 gene complemented a S. cerevisiae W303-1A dak1delta dak2 delta strain by improving the growth of the mutant on 50 mmol/l dihydroxyacetone and by increasing the tolerance to dihydroxyacetone in a medium containing 5% sodium chloride, suggesting that it is a functional homologue of the S. cerevisiae DAK1. However, expression of the ZrDAK1 gene in the S. cerevisiae dak1delta dak2 delta strain had no significant effect on glycerol levels during osmotic stress. The ZrDAK1 sequence has been deposited in the public data bases under Accession No. AJ294719; regions upstream and downstream of ZrDAK1are deposited as Accession Nos AJ294739 and AJ294720, respectively.

  2. fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster.

    PubMed Central

    Afshar, K; Gönczy, P; DiNardo, S; Wasserman, S A

    2001-01-01

    A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells. PMID:11238410

  3. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression.

    PubMed Central

    Yang, C; Kaplan, H B

    1997-01-01

    Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression. PMID:9401035

  4. Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase.

    PubMed Central

    Lim, Y M; Nishizawa, K; Nishi, Y; Tsuda, L; Inoue, Y H; Nishida, Y

    1999-01-01

    Genetic and molecular characterization of the dominant suppressors of D-raf(C110) on the second chromosome identified two gain-of-function alleles of rolled (rl), which encodes a mitogen-activated protein (MAP) kinase in Drosophila. One of the alleles, rl(Su23), was found to bear the same molecular lesion as rl(Sem), which has been reported to be dominant female sterile. However, rl(Su23) and the current stock of rl(Sem) showed only a weak dominant female sterility. Detailed analyses of the rl mutations demonstrated moderate dominant activities of these alleles in the Torso (Tor) signaling pathway, which explains the weak dominant female sterility observed in this study. The dominant rl mutations failed to suppress the terminal class maternal-effect mutations, suggesting that activation of Rl is essential, but not sufficient, for Tor signaling. Involvement of rl in cell proliferation was also demonstrated by clonal analysis. Branching and integration of signals in the MAP kinase cascade is discussed. PMID:10511556

  5. Conserved serine/threonine kinase encoded by CBK1 regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans.

    PubMed

    McNemar, Mark D; Fonzi, William A

    2002-04-01

    The opportunistic fungal pathogen, Candida albicans, is reported to have several potential virulence factors. A potentially significant factor is the ability to undergo morphological transition from yeast to hypha. This alteration of form is accompanied by many changes within the cell, including alterations in gene expression and cell wall composition. We have isolated a gene that encodes a highly conserved serine/threonine kinase that appears to be involved in the regulation of proteins associated with the cell wall. We have assigned the designation CBK1 (cell wall biosynthesis kinase 1) to this gene. Mutants lacking CBK1 form large aggregates of round cells under all growth conditions and lack the ability to undergo morphological differentiation. Additionally, these mutants show an altered pattern of expression of several transcripts encoding proteins associated with the cell wall. The results suggest that the kinase encoded by CBK1 plays a general role in the maintenance and alteration of the cell wall of C. albicans in all morphologies.

  6. Structure and chromosomal localization of the genomic locus encoding the Kiz1 LIM-kinase gene

    SciTech Connect

    Bernard, O.; Burkitt, V.; Webb, G.C.

    1996-08-01

    We have cloned and characterized the mouse gene encoding Kiz1/Limk1, a new member of the zinc-finger LIM family that also has a kinase domain. The gene encompasses 25 kb of the mouse genome, and the organization of its 16 exons does not correlate with its functional domains. The promoter region of Kiz1/Limk1 was identified by cloning a 1.06-kb genomic fragment upstream from the first ATG in a promotorless CAT vector. This construct was demonstrated to drive CAT expression in Jurkat cells. The promoter sequence lacks conventional TATA and CAAT motifs but contains consensus binding sequences for several transcriptional regulators implicated in control of transcription in many different cell types, including Sp1, Ets, and E2A. Analysis of the chromosomal localization of KIZ1/LIMK1 indicates that it lies on human chromosome 17 in the region 17q25 and on mouse Chromosome 5, band G2. 15 refs., 3 figs., 1 tab.

  7. A cDNA clone encoding human cAMP-dependent protein kinase catalytic subunit C. alpha

    SciTech Connect

    Maldonado, F.; Hanks, S.K. )

    1988-08-25

    The authors have determined the nucleotide sequence from both complementary strands of a human cDNA coding for cAMP-dependent protein kinase catalytic subunit type {alpha} (cAPK-C{alpha}). This cDNA was one of many protein kinase cDNAs isolated from a HeLa cell library by screening with oligonucleotide probes designed to recognize target sequences encoding highly conserved segments within the catalytic domains. The deduced human cAPK-C{alpha} amino acid sequence of 350 residues differs from the bovine and murine sequences at 3 and 7 positions, respectively.

  8. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase.

    PubMed

    Donohue, P J; Alberts, G F; Guo, Y; Winkles, J A

    1995-04-28

    Fibroblast growth factor (FGF)-1 mitogenic signal transduction is mediated in part by gene products that are specifically expressed in response to cell surface receptor binding and activation. We have used a targeted differential display method to identify FGF-1-inducible genes in murine NIH 3T3 fibroblasts. Here we report that one of these genes is predicted to encode a novel serine/threonine-specific protein kinase. This putative kinase has been named Fnk, for FGF-inducible kinase. The deduced Fnk amino acid sequence has 49, 36, 33, 32, and 22% overall identity to mouse serum-inducible kinase (Snk), mouse polo-like kinase (Plk), Drosophila polo, Saccharomyces Cdc5, and mouse Snk/Plk-akin kinase (Sak), respectively. These proteins are all members of the polo subfamily of structurally related serine/threonine kinases. The Plk, polo, Cdc5, and Sak kinases are required for cell division. FGF-1 induction of Fnk mRNA expression is first detected at 30 min after mitogen addition, reflects transcriptional activation, and does not require de novo protein synthesis. FGF-2, platelet-derived growth factor-BB, calf serum, or phorbol myristate acetate treatment of quiescent cells also induces fnk gene expression. Fnk mRNA is expressed in vivo in a tissue-specific manner, with relatively high levels detected in newborn and adult mouse skin. These results indicate that Fnk may be a transiently expressed protein kinase involved in the early signaling events required for growth factor-stimulated cell cycle progression.

  9. 5' flanking sequence and structure of a gene encoding rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    PubMed Central

    Darville, M I; Crepin, K M; Hue, L; Rousseau, G G

    1989-01-01

    The synthesis and degradation of fructose 2,6-bisphosphate, a ubiquitous stimulator of glycolysis, are catalyzed by 6-phosphofructo-2-kinase (EC 2.7.1.105) and fructose-2,6-bisphosphatase (EC 3.1.3.46), respectively. In liver, these two activities belong to separate domains of the same 470-residue polypeptide. Various mRNAs have been described for this bifunctional enzyme, which is controlled by hormonal and metabolic signals. To understand the origin and regulation of these mRNAs, we have characterized rat genomic clones encoding the liver isozyme, which is regulated by cAMP-dependent protein kinase, and the muscle isozyme, which is not. We describe here a 55-kilobase gene that encodes these isozymes by alternative splicing from two promoters. Each of the putative promoters was sequenced over about 3 kilobases and found to include nucleotide motifs for binding regulatory factors. The two isozymes share the same 13 exons and differ only by the first exon that, in the liver but not in the muscle isozyme, contains the serine phosphorylated by cAMP-dependent protein kinase. The gene was assigned to the X chromosome. An analysis of the exon limits of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in relation to its functional domains and to its similarity with other proteins plus its G + C content at the third codon position suggests that this gene originates from several fusion events. Images PMID:2549541

  10. Steady-state concentrations of mRNA encoding two inhibitors of protein kinase C in ovine luteal tissue.

    PubMed

    Juengel, J L; Melner, M H; Clapper, J A; Turzillo, A M; Moss, G E; Nett, T M; Niswender, G D

    1998-07-01

    Prostaglandin F2 alpha (PGF2 alpha) decreases secretion of progesterone from the corpus luteum in domestic ruminants. However, it is less effective during the early part of the oestrous cycle (Louis et al., 1973) and at the time of maternal recognition of pregnancy (Silvia and Niswender, 1984; Lacroix and Kann, 1986). Decreased luteal responsiveness may be due to failure of PGF2 alpha to activate fully its normal second messenger system, protein kinase C (PKC). Alternatively, increased resistance of the corpus luteum to PGF2 alpha might be attributable to greater concentrations of recently identified biological inhibitors of PKC. These possibilities were addressed by measuring steady-state concentrations of mRNA encoding PGF2 alpha receptor and two inhibitors of PKC, protein kinase C inhibitor-1 (PKCI-1) and kinase C inhibitor protein-1 (KCIP-1, brain 14-3-3 protein), in corpora lutea collected from ewes on days 4, 10 and 15 of the oestrous cycle (n = 5 per day) and day 15 of pregnancy (n = 7). There were no differences in mean concentrations of mRNA encoding PGF2 alpha receptor among the groups. However, concentrations of mRNA encoding both inhibitors of PKC were higher (P < 0.01) on day 4 of the oestrous cycle compared with the other groups. Treatment of ewes with a luteolytic dose of PGF2 alpha, which activates PKC, did not change concentrations of mRNA encoding either PKCI-1 or KCIP-I up to 24 h later. Luteal expression of mRNA encoding the PKC inhibitors and PGF2 alpha receptor was also examined in ewes treated with oestradiol in vivo for 16 h in the midluteal phase. High concentrations of oestradiol in serum (20 and 70 pg ml-1) did not influence quantities of any of the mRNAs examined. Therefore, an increase in PKC inhibitors may be involved in resistance of the corpus luteum to PGF2 alpha during the early part of the oestrous cycle but does not appear to mediate the increased resistance of the corpus luteum to PGF2 alpha during maternal recognition of

  11. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  12. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  13. UDP-GlcNAc transport across the golgi membrane: Electroneutral exchange for dianionic UMP

    SciTech Connect

    Waldman, B.C.; Rudnick, G. )

    1990-01-09

    The authors have examined the coupling and charge stoichiometry for UDP-GlcNAc transport into Golgi-enriched vesicles from rat liver. In the absence of added energy sources, these Golgi vesicles concentrate UDP-GlcNAc at least 20-fold, presumably by exchange with endogenous nucleotides. Under the conditions used, extravesicular degradation of UDP-GlcNAc has been eliminated, and less than 15% of the internalized radioactivity becomes associated with endogenous macromolecules. Of the remaining intravesicular label, 85% remains unmetabolized UDP-({sup 3}H)GlcNAc, and approximately 15% is hydrolyzed to ({sup 3}H)GlcNAc-1-phosphate. Efflux of accumulated UDP-({sup 3}H)GlcNAc is induced by addition of nonradioactive UDP-GlcNAc, UMP, UDP, or UDP-galactose to the external medium. Permeabilization of Golgi vesicles causes a rapid and nearly complete loss of internal UDP-({sup 3}H)GlcNAc, indicating that the results reflect transport and binding. Moreover, transport of UDP-({sup 3}H)GlcNAc into these Golgi vesicles was stimulated up to 5-fold by mechanically preloading vesicles with either UDP-GlcNAc or UMP. The response of UMP/UMP exchange and UMP/UDP-GlcNAc exchange to alterations in intravesicular and extravesicular pH suggests that UDP-GlcNAc enters the Golgi apparatus in electroneutral exchange with the dianionic form of UMP.

  14. Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae.

    PubMed

    Qiu, Yixuan; Fakas, Stylianos; Han, Gil-Soo; Barbosa, Antonio Daniel; Siniossoglou, Symeon; Carman, George M

    2013-10-04

    In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.

  15. Toward Understanding the Functional Role of Ss-riok-1, a RIO Protein Kinase-Encoding Gene of Strongyloides stercoralis

    PubMed Central

    Yuan, Wang; Lok, James B.; Stoltzfus, Jonathan D.; Gasser, Robin B.; Fang, Fang; Lei, Wei-Qiang; Fang, Rui; Zhou, Yan-Qin; Zhao, Jun-Long; Hu, Min

    2014-01-01

    Background Some studies of Saccharomyces cerevisiae and mammals have shown that RIO protein kinases (RIOKs) are involved in ribosome biogenesis, cell cycle progression and development. However, there is a paucity of information on their functions in parasitic nematodes. We aimed to investigate the function of RIOK-1 encoding gene from Strongyloides stercoralis, a nematode parasitizing humans and dogs. Methodology/Principal Findings The RIOK-1 protein-encoding gene Ss-riok-1 was characterized from S. stercoralis. The full-length cDNA, gDNA and putative promoter region of Ss-riok-1 were isolated and sequenced. The cDNA comprises 1,828 bp, including a 377 bp 5′-UTR, a 17 bp 3′-UTR and a 1,434 bp ORF encoding a protein of 477 amino acids containing a RIOK-1 signature motif. The genomic sequence of the Ss-riok-1 coding region is 1,636 bp in length and has three exons and two introns. The putative promoter region comprises 4,280 bp and contains conserved promoter elements, including four CAAT boxes, 12 GATA boxes, eight E-boxes (CANNTG) and 38 TATA boxes. The Ss-riok-1 gene is transcribed throughout all developmental stages with the highest transcript abundance in the infective third-stage larva (iL3). Recombinant Ss-RIOK-1 is an active kinase, capable of both phosphorylation and auto-phosphorylation. Patterns of transcriptional reporter expression in transgenic S. stercoralis larvae indicated that Ss-RIOK-1 is expressed in neurons of the head, body and tail as well as in pharynx and hypodermis. Conclusions/Significance The characterization of the molecular and the temporal and spatial expression patterns of the encoding gene provide first clues as to functions of RIOKs in the biological processes of parasitic nematodes. PMID:25101874

  16. snf1lk encodes a protein kinase that may function in cell cycle regulation.

    PubMed

    Stephenson, Angela; Huang, Guo-Ying; Huang, Gui-Yi; Nguyen, Ngoc-Thinh; Reuter, Sean; McBride, Jennifer L; Ruiz, Joseph C

    2004-06-01

    msk, myocardial SNF1-like kinase, was originally isolated in a screen for kinases expressed during early cardiogenesis in the mouse. msk maps to the proximal end of mouse chromosome 17 in a region that is syntenic with human chromosome 21q22.3, where the gene for SNF1LK, a predicted protein that shares 80% identity at the amino acid level with Msk, is located. Accordingly, msk has been redesignated snf1lk. Interestingly, the region encompassing the SNF1LK locus has been implicated in congenital heart defects often observed in patients with Down syndrome. snf1lk is also expressed in skeletal muscle progenitor cells of the somite beginning at 9.5 dpc. These data suggest a more general role for snf1lk in the earliest stages of muscle growth and/or differentiation. Consistent with a role in cell cycling, we observe that Chinese hamster ovary cells that express a tetracycline-inducible SNF1LK kinase domain do not divide, but undergo additional rounds of replication to yield 8N and 16N cells. These data suggest a possible function for SNF1LK in G2/M regulation. We show data that indicate that SNF1LK does not share functional homology with other SNF1-related kinases, but represents a new subclass with novel molecular activities.

  17. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase.

    PubMed Central

    Dickinson, Robin J; Williams, David J; Slack, David N; Williamson, Jill; Seternes, Ole-Morten; Keyse, Stephen M

    2002-01-01

    Mitogen-activated protein kinases (MAPKs) play a vital role in cellular growth control, but far less is known about these signalling pathways in the context of embryonic development. Duration and magnitude of MAPK activation are crucial factors in cell fate decisions, and reflect a balance between the activities of upstream activators and specific MAPK phosphatases (MKPs). Here, we report the isolation and characterization of the murine Pyst3 gene, which encodes a cytosolic dual-specificity MKP. This enzyme selectively interacts with, and is catalytically activated by, the 'classical' extracellular signal-regulated kinases (ERKs) 1 and 2 and, to a lesser extent, the stress-activated MAPK p38alpha. These properties define the ability of this enzyme to dephosphorylate and inactivate ERK1/2 and p38alpha, but not JNK (c-Jun N-terminal kinase) in vivo. When expressed in mammalian cells, the Pyst3 protein is predominantly cytoplasmic. Furthermore, leptomycin B causes a complete redistribution of the protein to the nucleus, implicating a CRM (chromosomal region maintenance)1/exportin 1-dependent nuclear export signal in determining the subcellular localization of this enzyme. Finally, whole-mount in situ hybridization studies in mouse embryos reveal that the Pyst3 gene is expressed specifically in the placenta, developing liver and in migratory muscle cells. Our results suggest that this enzyme may have a critical role in regulating the activity of MAPK signalling during early development and organogenesis. PMID:11988087

  18. Welcoming speech from Dean Faculty of Mechanical Engineering, UMP

    NASA Astrophysics Data System (ADS)

    Taha, Zahari

    2012-09-01

    In the Name of Allah, the Most Beneficent, the Most Merciful. It is with great pleasure that I welcome the participants of the International Conference of Mechanical Engineering Research 2011. The Prophet Muhammad (peace be upon him) said 'Acquire knowledge and impart it to the people.' (Al Tirmidhi). The quest for knowledge has been from the beginning of time but knowledge only becomes valuable when it is disseminated and applied to benefit humankind. It is hoped that ICMER 2011 will be a platform to gather and disseminate the latest knowledge in mechanical engineering. Academicians, Scientist, Researchers and practitioners of mechanical engineering will be able to share and discuss new findings and applications of mechanical engineering. It is envisaged that the intellectual discourse will result in future collaborations between universities, research institutions and industry both locally and internationally. In particular it is expected that focus will be given to issues on environmental and energy sustainability. Researchers in the mechanical engineering faculty at UMP have a keen interest in technology to harness energy from the ocean. Lowering vehicle emissions has been a primary goal of researchers in the mechanical engineering faculty and the automotive engineering centre as well including developing vehicles using alternative fuels such as biodiesel and renewable sources such as solar driven electric vehicles. Finally I would like to congratulate the organizing committee for their tremendous efforts in organizing the conference. As I wrote this in the Holy Land of Makkah, I pray to Allah swt that the conference will be a success. Prof. Dr. Zahari Taha CEng, MIED, FASc Dean, Faculty of Mechanical Engineering Universiti Malaysia Pahang

  19. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    PubMed

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  20. KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity

    SciTech Connect

    Bajaj, Bharat G.; Verma, Subhash C.; Lan, Ke; Cotter, Murray A.; Woodman, Zenda L.; Robertson, Erle S. . E-mail: erle@mail.med.upenn.edu

    2006-07-20

    Pim kinases are proto-oncogenes that are upregulated in a number of B cell cancers, including Epstein-Barr Virus (EBV) associated Burkitt's lymphoma. They have also been shown to be upregulated in Kaposi sarcoma-associated herpes virus (KSHV) infected primary B cells. Most cells in KSHV-associated tumors are latently infected and express only a small subset of viral genes, with KSHV latency associated nuclear antigen (LANA) being constitutively expressed. LANA regulates the transcription of a large number of cellular and viral genes. Here, we show that LANA upregulates transcription from the Pim-1 promoter (pPim-1) and map this activation to a region in the promoter located within the sequence (-681 to +37). We show that LANA expressing cells can proliferate faster and are better protected from drug induced apoptosis. Since transition through cell cycle check points and anti-apoptosis are functions associated with Pim-1, it is likely that higher Pim-1 expression in cells expressing LANA is responsible, at least in part, for this effect. A Pim-1 phosphorylation site was also identified within the amino-terminal domain of LANA. Using in vitro kinase assays, we confirmed that LANA was indeed a Pim-1 substrate, and the failure of Pim-1 to phosphorylate LANA mutated at SS205/6RR identified this site as the specific serine residues phosphorylated by Pim-1. This report provides valuable insight into yet another cellular signaling pathway subverted by KSHV LANA and suggests a contribution to KSHV related oncogenesis.

  1. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain

    PubMed Central

    GUILLAUDEAU, ANGÉLIQUE; DURAND, KARINE; RABINOVITCH-CHABLE, HÉLÈNE; POMMEPUY, ISABELLE; MESTUROUX, LAURA; ROBERT, SANDRINE; CHAUNAVEL, ALAIN; MOREAU, JEAN-JACQUES; LABROUSSE, FRANÇOIS

    2012-01-01

    The epidermal growth factor receptor (EGFR) gene encodes four alternatively spliced mRNA, variants 1, 2, 3 and 4, respectively, encoding the whole isoform a (EGFR) and truncated isoforms b, c and d, all of which lack the receptor’s intracellular domain. In addition, a mutant EGFRvIII differs from isoform a in a truncated extracellular domain. The expression pattern of these isoforms is unknown in adult diffuse gliomas. Thus, we investigated in 47 cases: i) EGFR protein expression by immunohistochemistry using an extracellular domain-recognizing antibody (Ext-Ab) and an intracellular domain specific one (Int-Ab), ii) mRNA expression of EGFRv1, -v2, -v3, -v4 and -vIII by RT-PCR and iii) EGFR amplification by fluorescent in situ hybridization. The relation of these data with histological criteria and patient outcome was studied. The immunostaining was stronger with the Ext-Ab than with the Int-Ab. EGFRv1, -v2, -v3 and -v4 mRNA expression were highly correlated. They were expressed in all tumors, with highest levels in glioblastomas. EGFRv1 strong levels and the presence of vIII mRNAs were more closely associated with Int-Ab staining. EGFR gene amplification concerned only glioblastomas and was associated with the presence of EGFRvIII and high levels of EGFRv2, -v3 and -v4 transcripts. A pejorative outcome was associated with: histology (glioblastomas), EGFR amplification, strong Int-Ab labeling and high levels of variant mRNAs. Our results indicated that the full-length EGFR and mutant EGFRvIII are not the sole EGFR isoform expressed in diffuse gliomas. This could explain discordant immunohistochemical results reported in the literature and may have therapeutic implications. PMID:22159595

  2. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases

    NASA Technical Reports Server (NTRS)

    Biermann, B.; Johnson, E. M.; Feldman, L. J.

    1990-01-01

    Maize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.

  3. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinases

    NASA Technical Reports Server (NTRS)

    Biermann, B.; Johnson, E. M.; Feldman, L. J.

    1990-01-01

    Maize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.

  4. Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells

    PubMed Central

    Kissmehl, Roland; Krüger, Tim P.; Treptau, Tilman; Froissard, Marine; Plattner, Helmut

    2006-01-01

    In the ciliate Paramecium tetraurelia, 3′,5′-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation. PMID:16400170

  5. Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation

    SciTech Connect

    Ninomiya-Tsuji, Jun ); Nomoto, Satoshi; Matsumoto, Kunihiro ); Yasuda, Hideyo ); Reed, S.I. )

    1991-10-15

    The authors have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34{sup CDC2} kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34{sup CDC2} kinase and more significantly is homologous to Xenopus Eg1 kinase, suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34{sup CDC2} kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G{sub 1} or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.

  6. Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli.

    PubMed Central

    Wu, L F; Reizer, A; Reizer, J; Cai, B; Tomich, J M; Saier, M H

    1991-01-01

    The fruK gene encoding fructose-1-phosphate kinase (FruK), located within the fructose (fru)-catabolic operon of Rhodobacter capsulatus, was sequenced. FruK of R. capsulatus (316 amino acids; molecular weight = 31,232) is the same size as and is homologous to FruK of Escherichia coli, phosphofructokinase B (PfkB) of E. coli, phosphotagatokinase of Staphylococcus aureus, and ribokinase of E. coli. These proteins therefore make up a family of homologous proteins, termed the PfkB family. A phylogenetic tree for this new family was constructed. Sequence comparisons plus chemical inactivation studies suggested the lack of involvement of specific residues in catalysis. Although the Rhodobacter FruK differed markedly from the other enzymes within the PfkB family with respect to amino acid composition, these enzymes exhibited similar predicted secondary structural features. A large internal segment of the Rhodobacter FruK was found to be similar in sequence to the domain bearing the sugar bisphosphate-binding region of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase of plants and bacteria. Proteins of the PfkB family did not exhibit statistically significant sequence identity with PfkA of E. coli. PfkA, however, is homologous to other prokaryotic and eukaryotic ATP- and PPi-dependent Pfks (the PfkA family). These eukaryotic, ATP-dependent enzymes each consist of a homotetramer (mammalian) or a heterooctamer (yeasts), with each subunit containing an internal duplication of the size of the entire PfkA protein of E. coli. In some of these enzymes, additional domains are present. A phylogenetic tree was constructed for the PfkA family and revealed that the bacterial enzymes closely resemble the N-terminal domains of the eukaryotic enzyme subunits whereas the C-terminal domains have diverged more extensively. The PPi-dependent Pfk of potato is only distantly related to the ATP-dependent enzymes. On the basis of their similar functions, sizes, predicted

  7. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  8. The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus required for autotrophic CO2 fixation is not encoded by the cbb operon.

    PubMed Central

    Meijer, W G

    1994-01-01

    During autotrophic growth of Xanthobacter flavus, energy derived from the oxidation of hydrogen methanol or formate is used to drive the assimilation of CO2 via the Calvin cycle. The genes encoding the Calvin cycle enzymes are organized in the cbb operon, which is expressed only during autotrophic growth. Although it has been established that the transcriptional activator CbbR is required for the expression of the cbb operon, it is unclear whether CbbR is the only factor contributing to the regulation of the cbb operon. This paper describes the isolation of X. flavus mutants which were affected in the regulation of the cbb operon. One of the mutant strains was subject to an enhanced repression of the cbb operon promoter by the gluconeogenic substrate succinate and in addition failed to grow autotrophically. The rate of growth of the X. flavus mutant on succinate-containing medium was lower than that of the wild-type strain, but rates of growth on medium supplemented with gluconate were identical. A genomic library of X. flavus was constructed and was used to complement the mutant strain. The nucleotide sequence of the DNA fragment required to restore autotrophic growth of the X. flavus mutant was determined. One open reading frame that displayed extensive similarities to phosphoglycerate kinase-encoding genes (pgk) was identified. The X. flavus mutant lacked phosphoglycerate kinase activity following growth on gluconate or succinate. Introduction of the pgk gene into the X. flavus mutant partially restored the activity of phosphoglycerate kinase. Induction of the cbb operon of the X. flavus wild-type strain resulted in a simultaneous and parallel increase in the activities of ribulose-1,5-biphosphate carboxylase and phosphoglycerate kinase, whereas the latter activity remained absent in the X. flavus pgk mutant. It is concluded that X. flavus employees a single phosphoglycerate kinase enzyme and this is not encoded within the cbb operon. PMID:7928974

  9. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding

    SciTech Connect

    Gibson, Lydia M.; Celeste, Lesa R.; Lovelace, Leslie L.; Lebioda, Lukasz

    2012-02-21

    Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.

  10. Evidence that oxidative dephosphorylation by the nonheme Fe(II), α-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation.

    PubMed

    Goswami, Anwesha; Liu, Xiaodong; Cai, Wenlong; Wyche, Thomas P; Bugni, Tim S; Meurillon, Maïa; Peyrottes, Suzanne; Perigaud, Christian; Nonaka, Koichi; Rohr, Jürgen; Van Lanen, Steven G

    2017-02-01

    LipL and Cpr19 are nonheme, mononuclear Fe(II)-dependent, α-ketoglutarate (αKG):UMP oxygenases that catalyze the formation of CO2 , succinate, phosphate, and uridine-5'-aldehyde, the last of which is a biosynthetic precursor for several nucleoside antibiotics that inhibit bacterial translocase I (MraY). To better understand the chemistry underlying this unusual oxidative dephosphorylation and establish a mechanistic framework for LipL and Cpr19, we report herein the synthesis of two biochemical probes-[1',3',4',5',5'-(2) H]UMP and the phosphonate derivative of UMP-and their activity with both enzymes. The results are consistent with a reaction coordinate that proceeds through the loss of one (2) H atom of [1',3',4',5',5'-(2) H]UMP and stereospecific hydroxylation geminal to the phosphoester to form a cryptic intermediate, (5'R)-5'-hydroxy-UMP. Thus, these enzyme catalysts can additionally be assigned as UMP hydroxylase-phospholyases. © 2017 Federation of European Biochemical Societies.

  11. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases.

    PubMed

    Bucurenci, N; Sakamoto, H; Briozzo, P; Palibroda, N; Serina, L; Sarfati, R S; Labesse, G; Briand, G; Danchin, A; Bărzu, O; Gilles, A M

    1996-02-02

    CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.

  12. Characterization and expression of the gene encoding En-MAPK1, an intestinal cell kinase (ICK)-like kinase activated by the autocrine pheromone-signaling loop in the Polar Ciliate, Euplotes nobilii.

    PubMed

    Candelori, Annalisa; Luporini, Pierangelo; Alimenti, Claudio; Vallesi, Adriana

    2013-04-03

    In the protozoan ciliate Euplotes, a transduction pathway resulting in a mitogenic cell growth response is activated by autocrine receptor binding of cell type-specific, water-borne signaling protein pheromones. In Euplotes raikovi, a marine species of temperate waters, this transduction pathway was previously shown to involve the phosphorylation of a nuclear protein kinase structurally similar to the intestinal-cell and male germ cell-associated kinases described in mammals. In E. nobilii, which is phylogenetically closely related to E. raikovi but inhabits Antarctic and Arctic waters, we have now characterized a gene encoding a structurally homologous kinase. The expression of this gene requires +1 translational frameshifting and a process of intron splicing for the production of the active protein, designated En-MAPK1, which contains amino acid substitutions of potential significance for cold-adaptation.

  13. Replication-dependent irreversible topoisomerase 1 poisoning is responsible for FdUMP[10] anti-leukemic activity.

    PubMed

    Jennings-Gee, Jamie; Pardee, Timothy S; Gmeiner, William H

    2013-02-01

    Previous studies have indicated that 5-Fluoro-2'-deoxyuridine-5'-O-monophosphate 10mer (FdUMP[10]) displays strong antileukemic activity through the dual targeting of thymidylate synthase (TS) and DNA topoisomerase 1 (Top1). The present studies were undertaken to clarify the relationship between the induction of a thymineless state and the formation of Top1 cleavage complexes (Top1CC) for inducing cell death and to clarify the role of DNA replication for induction of lethal DNA double-strand breaks (DSBs) in FdUMP[10]-treated acute myeloid leukemia (AML) cells. Human promyelocytic (HL60) and AML (KG1a, Molm13, THP-1) cells were synchronized by serum starvation and treated with FdUMP[10] with thymidine (Thy) rescue. Cells were assayed for TS inhibition, DNA DSBs, Top1CC, and apoptosis to clarify the interrelationship of TS inhibition and Top1CC for cell death. FdUMP[10] induced a thymineless state in AML cells and exogenous Thy administered within the first 18 hours of treatment rescued FdUMP[10]-induced Top1CC formation, γH2AX phosphorylation, and apoptosis induction. Exogenous Thy was not effective after cells had committed to mitosis and undergone cell division in the presence of FdUMP[10]. FdUMP[10] treatment resulted in Chk1 activation, and Chk1 inhibition enhanced FdUMP[10]-induced DNA damage and apoptosis. Jnk-signaling was required for FdUMP[10]-induced apoptosis in promyelocytic HL60 cells and in THP1 cells, but was antiapoptotic in Molm13 and to a lesser extent KG1a AML cells. The results are consistent with FdUMP[10] inducing a thymineless state, leading to misincorporation of FdU into genomic DNA of proliferating cells. Top1CC form in cells upon re-entry into S-phase, resulting in DNA double-strand breaks, and initiating apoptotic signaling that can be either muted or enhanced by Jnk-signaling depending on cell type.

  14. Replication-dependent irreversible topoisomerase 1 poisoning is responsible for FdUMP[10] anti-leukemic activity

    PubMed Central

    Jennings-Gee, Jamie; Pardee, Timothy S.; Gmeiner, William H.

    2013-01-01

    Previous studies have indicated that 5-Fluoro-2′-deoxyuridine-5′-O-monophosphate 10mer (FdUMP[10]) displays strong antileukemic activity through the dual targeting of thymidylate synthase (TS) and DNA topoisomerase 1 (Top1). The present studies were undertaken to clarify the relationship between the induction of a thymineless state and the formation of Top1 cleavage complexes (Top1CC) for inducing cell death and to clarify the role of DNA replication for induction of lethal DNA double-strand breaks (DSBs) in FdUMP[10]-treated acute myeloid leukemia (AML) cells. Human promyelocytic (HL60) and AML (KG1a, Molm13, THP-1) cells were synchronized by serum starvation and treated with FdUMP[10] with thymidine (Thy) rescue. Cells were assayed for TS inhibition, DNA DSBs, Top1CC, and apoptosis to clarify the interrelationship of TS inhibition and Top1CC for cell death. FdUMP[10] induced a thymineless state in AML cells and exogenous Thy administered within the first 18 hours of treatment rescued FdUMP[10]-induced Top1CC formation, γH2AX phosphorylation, and apoptosis induction. Exogenous Thy was not effective after cells had committed to mitosis and undergone cell division in the presence of FdUMP[10]. FdUMP[10] treatment resulted in Chk1 activation, and Chk1 inhibition enhanced FdUMP[10]-induced DNA damage and apoptosis. Jnk-signaling was required for FdUMP[10]-induced apoptosis in promyelocytic HL60 cells and in THP1 cells, but was antiapoptotic in Molm13 and to a lesser extent KG1a AML cells. The results are consistent with FdUMP[10] inducing a thymineless state, leading to misincorporation of FdU into genomic DNA of proliferating cells. Top1CC form in cells upon re-entry into S-phase, resulting in DNA double-strand breaks, and initiating apoptotic signaling that can be either muted or enhanced by Jnk-signaling depending on cell type. PMID:23085462

  15. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility

    SciTech Connect

    Not Available

    1993-01-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK[sub 6] cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys[sup 524] codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with [sup 32]P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified [sup 32]p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  16. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity.

    PubMed

    Suzuki, A; Yao, M; Tanaka, I; Numata, T; Kikukawa, S; Yamasaki, N; Kimura, M

    2000-08-28

    Ribonuclease MC1 (RNase MC1) isolated from seeds of bitter gourd (Momordica charantia) consists of 190 amino acids and is characterized by a preferential cleavage at the 5'-side of uridine. This uridine specificity distinguishes RNase MC1 from other enzymes belonging to the RNase T2 family. The three-dimensional structures of RNase MC1, in a complex with either 2'-UMP or 3'-UMP, were determined at 1.48 and 1.77 A resolutions, respectively. The side chains of Gln9 and Asn71 interact with O4 and N3, respectively, of the uracil base by hydrogen bondings. In addition, the uracil base is sandwiched by the hydrophobic side chains of Leu73 and Phe80. Compared with these amino acid residues and corresponding residues in RNases in the RNase T2 family, Gln9 and Phe80 are highly conserved in the RNases in T2 family, while Asn71 and Leu73 in RNase MC1 are variant in sequences. It is thus likely that interactions of the side chains of Asn71 and Leu73 with the uracil base are responsible for the absolute uridine specificity of RNase MC1. Site-directed mutagenesis experiments showed that replacement of Asn by Thr decreased both the catalytic efficiency and the binding affinity by 2.3- and 7.0-fold, respectively, and substitution of Leu73 for Ala predominantly decreased the binding affinity by 14. 5-fold, compared with findings in case of wild-type RNase MC1. It is thus demonstrated that Asn71 and Leu73 play an essential role in uridine preference for RNase MC1.

  17. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae.

    PubMed Central

    Ramer, S W; Davis, R W

    1993-01-01

    This work reports the identification, characterization, and nucleotide sequence of STE20, a newly discovered gene involved in the Saccharomyces cerevisiae mating response pathway, to date one of the best understood signal transduction pathways. STE20 encodes a putative serine/threonine-specific protein kinase with a predicted molecular mass of 102 kDa. Its expression pattern is similar to that of several other protein kinases in the mating response pathway. Deletion of the kinase domain of STE20 causes sterility in both haploid mating types. This sterility can be partially suppressed by high-level production of STE12 but is not suppressible by high levels of STE4 or a dominant STE11 truncation allele. A truncation allele of STE20 was isolated that can activate the mating response pathway in the absence of exogenous mating pheromone. This allele causes dominant growth arrest that cannot be suppressed by deletions of STE4, STE5, STE7, STE11, or STE12. The allele is able to suppress the mating defect of a strain in which the STE20 kinase domain has been deleted, but not the mating defects of strains carrying mutations in STE4, STE5, STE7, STE11, or STE12. Images PMID:8421676

  18. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.

    PubMed Central

    Llanos, R M; Harris, C J; Hillier, A J; Davidson, B E

    1993-01-01

    The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon. Images PMID:8478320

  19. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  20. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors.

    PubMed

    Harris, Philip A; King, Bryan W; Bandyopadhyay, Deepak; Berger, Scott B; Campobasso, Nino; Capriotti, Carol A; Cox, Julie A; Dare, Lauren; Dong, Xiaoyang; Finger, Joshua N; Grady, LaShadric C; Hoffman, Sandra J; Jeong, Jae U; Kang, James; Kasparcova, Viera; Lakdawala, Ami S; Lehr, Ruth; McNulty, Dean E; Nagilla, Rakesh; Ouellette, Michael T; Pao, Christina S; Rendina, Alan R; Schaeffer, Michelle C; Summerfield, Jennifer D; Swift, Barbara A; Totoritis, Rachel D; Ward, Paris; Zhang, Aming; Zhang, Daohua; Marquis, Robert W; Bertin, John; Gough, Peter J

    2016-03-10

    The recent discovery of the role of receptor interacting protein 1 (RIP1) kinase in tumor necrosis factor (TNF)-mediated inflammation has led to its emergence as a highly promising target for the treatment of multiple inflammatory diseases. We screened RIP1 against GSK's DNA-encoded small-molecule libraries and identified a novel highly potent benzoxazepinone inhibitor series. We demonstrate that this template possesses complete monokinase selectivity for RIP1 plus unique species selectivity for primate versus nonprimate RIP1. We elucidate the conformation of RIP1 bound to this benzoxazepinone inhibitor driving its high kinase selectivity and design specific mutations in murine RIP1 to restore potency to levels similar to primate RIP1. This series differentiates itself from known RIP1 inhibitors in combining high potency and kinase selectivity with good pharmacokinetic profiles in rodents. The favorable developability profile of this benzoxazepinone template, as exemplified by compound 14 (GSK'481), makes it an excellent starting point for further optimization into a RIP1 clinical candidate.

  1. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase

    PubMed Central

    Hurni, Severine; Scheuermann, Daniela; Krattinger, Simon G.; Kessel, Bettina; Wicker, Thomas; Herren, Gerhard; Fitze, Mirjam N.; Breen, James; Presterl, Thomas; Ouzunova, Milena; Keller, Beat

    2015-01-01

    Northern corn leaf blight (NCLB) caused by the hemibiotrophic fungus Exserohilum turcicum is an important foliar disease of maize that is mainly controlled by growing resistant maize cultivars. The Htn1 locus confers quantitative and partial NCLB resistance by delaying the onset of lesion formation. Htn1 represents an important source of genetic resistance that was originally introduced from a Mexican landrace into modern maize breeding lines in the 1970s. Using a high-resolution map-based cloning approach, we delimited Htn1 to a 131.7-kb physical interval on chromosome 8 that contained three candidate genes encoding two wall-associated receptor-like kinases (ZmWAK-RLK1 and ZmWAK-RLK2) and one wall-associated receptor-like protein (ZmWAK-RLP1). TILLING (targeting induced local lesions in genomes) mutants in ZmWAK-RLK1 were more susceptible to NCLB than wild-type plants, both in greenhouse experiments and in the field. ZmWAK-RLK1 contains a nonarginine-aspartate (non-RD) kinase domain, typically found in plant innate immune receptors. Sequence comparison showed that the extracellular domain of ZmWAK-RLK1 is highly diverse between different maize genotypes. Furthermore, an alternative splice variant resulting in a truncated protein was present at higher frequency in the susceptible parents of the mapping populations compared with in the resistant parents. Hence, the quantitative Htn1 disease resistance in maize is encoded by an unusual innate immune receptor with an extracellular wall-associated kinase domain. These results further highlight the importance of this protein family in resistance to adapted pathogens. PMID:26124097

  2. Characterization of a putative S-locus encoded receptor protein kinase and its role in self-incompatibility. Progress report

    SciTech Connect

    Nasrallah, J.B.

    1994-05-01

    The major results of our research effort include the determination of the S-Receptor Kinase (SRK) gene structure, the demonstration of S-haplotype-associated SRK polymorphisms and possible co-evolution of SRK and SLG, the characterization of the temporal and spatial expression patterns of SRK, and the demonstration that SRK has intrinsic serine/threonine kinase activity. Our results have indicated that SLG originated from an SRK-like gene by a gene duplication event and suggested a possible molecular basis for leaky S haplotypes. The data have allowed us to develop a model of self-incompatibility based on the interaction of SRK and SLG and the activation of SRK in response to self-pollination. More generally, the information that we have obtained is potentially relevant to understanding mechanisms of signalling inplants. Thus, the interaction of membrane-based receptor protein kinases with secreted forms of their extracellular domains may represent a generalized mechanism by which receptors signal across the plant cell wall.

  3. Genomic organization and chromosomal localization of mouse Eplg2, a gene encoding a binding protein for the receptor tyrosine kinase elk.

    PubMed

    Fletcher, F A; Renshaw, B; Hollingsworth, T; Baum, P; Lyman, S D; Jenkins, N A; Gilbert, D J; Copeland, N G; Davison, B L

    1994-11-01

    The human gene EPLG2 (Eph ligand-2) encodes a potential ligand for the receptor tyrosine kinase elk. High sequence conservation between the human and the rat cDNAs and developmentally regulated expression of the rat gene suggest that the protein encoded by EPLG2 plays an important role in mammalian development. To facilitate analysis of the physiological role of the protein, we have cloned and characterized a 24-kb region of mouse genomic DNA containing the mouse homologue of EPLG2 (Eplg2), including 5'- and 3'-flanking sequences. Restriction mapping, coupled with Southern blot hybridization and sequencing, was used to determine the structural organization of the gene. The Eplg2 genomic locus spans a region of approximately 12 kb, encoding five exons and four introns. The first intron comprises approximately 8.5 kb of the entire 12-kb genomic sequence. Eplg2 was mapped to the mouse X chromosome by interspecific backcross analysis and is tightly linked to the androgen receptor (Ar) locus.

  4. An early embryonic product of the gene shaggy encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily.

    PubMed

    Bourouis, M; Moore, P; Ruel, L; Grau, Y; Heitzler, P; Simpson, P

    1990-09-01

    The product(s) of the gene shaggy (sgg) is required for seemingly unrelated events during the development of Drosophila melanogaster. In embryos, maternal and zygotically derived sgg products are required initially to construct a normal syncytial blastoderm and later for normal segmentation. Furthermore, in mutant animals a process of intercellular communication that is required for the segregation of the neural and epidermal lineage during the formation of the central nervous system and the adult peripheral nervous system is disrupted. Here we describe a transcription unit of approximately 40 kb lying within the cloned chromosomal interval 3B1, and provide evidence that it encodes the sgg+ function. Of seven developmentally regulated transcripts that are partially generated by alternative splicing, two seem to be responsible for early sgg activity. Sequence analysis of corresponding cDNA(s) predicts a protein of 514 amino acids with a canonical catalytic domain found in serine/threonine specific protein kinases, linked to an unusual region rich in Gly, Ala and Ser. A search for homologies as well as a comparative study of the kinase catalytic domain with that of other proteins, revealed that the protein kinase domain of sgg is distantly related to the members of the CDC28/cdc2+ subfamily of protein kinases, all of which play cardinal roles in the regulation of the yeast and mammalian cell cycles. Ubiquitous expression of sgg transcripts was found during embryonic stages. A possible role of the sgg protein in a signal transduction pathway necessary for intercellular communication at different stages of development is discussed.

  5. Structural and catalytic properties of CMP kinase from Bacillus subtilis: a comparative analysis with the homologous enzyme from Escherichia coli.

    PubMed

    Schultz, C P; Ylisastigui-Pons, L; Serina, L; Sakamoto, H; Mantsch, H H; Neuhard, J; Bârzu, O; Gilles, A M

    1997-04-01

    CMP kinases from Bacillus subtilis and from Escherichia coli are encoded by the cmk gene (formerly known as jofC in B. subtilis and as mssA in E. coli). Similar in their primary structure (43% identity and 67% similarity in amino acid sequence), the two proteins exhibit significant differences in nucleotide binding and catalysis. ATP, dATP, and GTP are equally effective as phosphate donors with E. coli CMP kinase whereas GTP is a poor substrate with B. subtilis CMP kinase. While CMP and dCMP are the best phosphate acceptors of both CMP kinases, the specific activity with these substrates and ATP as donor are 7- to 10-fold higher in the E. coli enzyme; the relative Vm values with UMP and CMP are 0.1 for the B. subtilis CMP kinase and 0.01 for the E. coli enzyme. CMP increased the affinity of E. coli CMP kinase for ATP or for the fluorescent analog 3'-anthraniloyl dATP by one order of magnitude but had no effect on the B. subtilis enzyme. The differences in the catalytic properties of B. subtilis and E. coli CMP kinases might be reflected in the structure of the two proteins as inferred from infrared spectroscopy. Whereas the spectrum of B. subtilis CMP kinase is dominated by a band at 1633 cm-1 (representing beta type structures), the spectrum of the E. coli enzyme is dominated by two bands at 1653 and 1642 cm-1 associated with alpha-helical and unordered structures, respectively. CMP induced similar spectral changes in both proteins with a rearrangement of some of the beta-structures. ATP increases the denaturation temperature of B. subtilis CMP kinase by 9.3 degrees C, whereas in the case of the E. coli enzyme, binding of ATP has only a minor effect.

  6. The Epstein-Barr virus (EBV)-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production.

    PubMed

    Meng, Qiao; Hagemeier, Stacy R; Fingeroth, Joyce D; Gershburg, Edward; Pagano, Joseph S; Kenney, Shannon C

    2010-05-01

    Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial. To examine this question, we constructed EBV mutants containing stop codons in either the EBV-PK or EBV-TK open reading frame and selected for stable 293T clones latently infected with wild-type EBV or each of the mutant viruses. Cells were induced to the lytic form of viral replication with a BZLF1 expression vector in the presence and absence of various doses of GCV and ACV, and infectious viral titers were determined by a green Raji cell assay. As expected, virus production in wild-type EBV-infected 293T cells was inhibited by both GCV (50% inhibitory concentration [IC(50)] = 1.5 microM) and ACV (IC(50) = 4.1 microM). However, the EBV-PK mutant (which replicates as well as the wild-type (WT) virus in 293T cells) was resistant to both GCV (IC(50) = 19.6 microM) and ACV (IC(50) = 36.4 microM). Expression of the EBV-PK protein in trans restored GCV and ACV sensitivity in cells infected with the PK mutant virus. In contrast, in 293T cells infected with the TK mutant virus, viral replication remained sensitive to both GCV (IC(50) = 1.2 microM) and ACV (IC(50) = 2.8 microM), although susceptibility to the thymine nucleoside analogue, bromodeoxyuridine, was reduced. Thus, EBV-PK but not EBV-TK mediates ACV and GCV susceptibilities.

  7. The Epstein-Barr Virus (EBV)-Encoded Protein Kinase, EBV-PK, but Not the Thymidine Kinase (EBV-TK), Is Required for Ganciclovir and Acyclovir Inhibition of Lytic Viral Production▿

    PubMed Central

    Meng, Qiao; Hagemeier, Stacy R.; Fingeroth, Joyce D.; Gershburg, Edward; Pagano, Joseph S.; Kenney, Shannon C.

    2010-01-01

    Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial. To examine this question, we constructed EBV mutants containing stop codons in either the EBV-PK or EBV-TK open reading frame and selected for stable 293T clones latently infected with wild-type EBV or each of the mutant viruses. Cells were induced to the lytic form of viral replication with a BZLF1 expression vector in the presence and absence of various doses of GCV and ACV, and infectious viral titers were determined by a green Raji cell assay. As expected, virus production in wild-type EBV-infected 293T cells was inhibited by both GCV (50% inhibitory concentration [IC50] = 1.5 μM) and ACV (IC50 = 4.1 μM). However, the EBV-PK mutant (which replicates as well as the wild-type (WT) virus in 293T cells) was resistant to both GCV (IC50 = 19.6 μM) and ACV (IC50 = 36.4 μM). Expression of the EBV-PK protein in trans restored GCV and ACV sensitivity in cells infected with the PK mutant virus. In contrast, in 293T cells infected with the TK mutant virus, viral replication remained sensitive to both GCV (IC50 = 1.2 μM) and ACV (IC50 = 2.8 μM), although susceptibility to the thymine nucleoside analogue, bromodeoxyuridine, was reduced. Thus, EBV-PK but not EBV-TK mediates ACV and GCV susceptibilities. PMID:20181711

  8. Unique dual targeting of thymidylate synthase and topoisomerase1 by FdUMP[10] results in high efficacy against AML and low toxicity.

    PubMed

    Pardee, Timothy S; Gomes, Evan; Jennings-Gee, Jamie; Caudell, David; Gmeiner, William H

    2012-04-12

    Acute myeloid leukemia (AML) is an aggressive malignancy that leads to marrow failure and death. There is a desperate need for new therapies. The novel fluoropyrimidine, FdUMP[10], was highly active against both human AML cell lines, (IC(50) values, 3.4nM-21.5nM) and murine lines (IC(50) values, 123.8pM-131.4pM). In all cases, the IC(50) of FdUMP[10] was lower than for cytarabine and ∼ 1000 times lower than 5-fluorouracil (5-FU). FdUMP[10] remained effective against cells expressing the Flt3 internal tandem duplication, BCR-ABL, MN1, and an shRNA against p53. It had activity against patient samples at concentrations that did not affect normal hematopoietic cells. FdUMP[10] inhibited thymidylate synthase (TS) and trapped topoisomerase I cleavage complexes (Top1CCs), leading to DNA damage and apoptosis. All cell lines and nearly all primary AML samples examined expressed both TS and Top1. In vivo, FdUMP[10] was active against a syngeneic AML model with a survival advantage equivalent to doxorubicin plus cytarabine. 5-FU treatment was toxic and did not improve survival. FdUMP[10] was better tolerated than 5-FU or cytarabine plus doxorubicin and did not affect normal HSCs, while 5-FU dramatically impaired their ability to engraft. In summary, FdUMP[10] was highly efficacious and better tolerated than standard therapies.

  9. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana.

    PubMed

    Urao, T; Katagiri, T; Mizoguchi, T; Yamaguchi-Shinozaki, K; Hayashida, N; Shinozaki, K

    1994-08-15

    Two cDNA clones, cATCDPK1 and cATCDPK2, encoding Ca(2+)-dependent, calmodulin-independent protein kinases (CDPK) were cloned from Arabidopsis thaliana and their nucleotide sequences were determined. Northern blot analysis indicated that the mRNAs corresponding to the ATCDPK1 and ATCDPK2 genes are rapidly induced by drought and high-salt stress but not by low-temperature stress or heat stress. Treatment of Arabidopsis plants with exogenous abscisic acid (ABA) had no effect on the induction of ATCDPK1 or ATCDPK2. These findings suggest that a change in the osmotic potential of the environment can serve as a trigger for the induction of ATCDPK1 and ATCDPK2. Putative proteins encoded by ATCDPK1 and ATCDPK2 which contain open reading frames of 1479 and 1488 bp, respectively, are designated ATCDPK1 and ATCDPK2 and show 52% identity at the amino acid sequence level. ATCDPK1 and ATCDPK2 exhibit significant similarity to a soybean CDPK (51% and 73%, respectively). Both proteins contain a catalytic domain that is typical of serine/threonine protein kinases and a regulatory domain that is homologous to the Ca(2+)-binding sites of calmodulin. Genomic Southern blot analysis suggests the existence of a few additional genes that are related to ATCDPK1 and ATCDPK2 in the Arabidopsis genome. The ATCDPK2 protein expressed in Escherichia coli was found to phosphorylate casein and myelin basic protein preferentially, relative to a histone substrate, and required Ca2+ for activation.

  10. Inactivation of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803.

    PubMed

    Laurent, Sophie; Jang, Jichan; Janicki, Annick; Zhang, Cheng-Cai; Bédu, Sylvie

    2008-07-01

    The inactivation of sll0776 (spkD), a gene encoding a protein Ser/Thr kinase in Synechocystis PCC 6803, led to a pleiotropic phenotype of the SpkD null mutant. This mutant is impaired in its growth ability under low concentration of inorganic carbon (C(i)), though its C(i)-uptake system is not affected. Addition of glucose, phosphoglyceraldehyde or pyruvate does not allow the mutant to grow under low-C(i) conditions. In contrast, this growth defect can be restored when the low-C(i) culture medium is supplemented with metabolites of the TCA cycle. Growth of the mutant is also inhibited when ammonium is provided as nitrogen source, whatever the carbon regime of the cells, due to the high demand for 2-oxoglutarate, which is the carbon skeleton for ammonium assimilation. When mutant cells are cultured under standard growth conditions, the intracellular concentration of 2-oxoglutarate is 20 % lower than is observed in the wild-type strain. However, this decrease of 2-oxoglutarate level only slightly affects the phosphorylation state of PII, a protein that regulates nitrogen and carbon metabolism according to the intracellular levels of 2-oxoglutarate. Properties of the SpkD mutant suggest that the Ser/Thr kinase SpkD could be involved in adjusting the pool of the TCA cycle metabolites according to C(i) supply in the culture medium.

  11. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase.

    PubMed

    Lu, Shunwen; Faris, Justin D; Edwards, Michael C

    2017-04-01

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here, we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 family. The two TaPr-1-rk genes are located on homoeologous chromosomes 3D and 3A, respectively, and each contains a large open reading frame (7385 or 6060 bp) that is interrupted by seven introns and subjected to alternative splicing (AS) with five or six isoforms of mRNA transcripts. The deduced full-length TaPR-1-RK1 and TaPR-1-RK2 proteins (95% identity) contain two repeat PR-1 domains, the second of which is fused via a transmembrane helix to a serine/threonine kinase catalytic (STKc) domain characteristic of receptor-like protein kinases. Phylogenetic analysis indicated that the two PR-1 domains of the TaPR-1-RK proteins form sister clades with their homologues identified in other monocot plants and are well separated from stand-alone PR-1 proteins, whereas the STKc domains may have originated from cysteine-rich receptor-like kinases (CRKs). Reverse-transcriptase-PCR analysis revealed that the TaPr-1-rk genes are predominantly expressed in wheat leaves and their expression levels are elevated in response to pathogen attack, such as infection by barley stripe mosaic virus (BSMV), and also to stress conditions, most obviously, to soil salinity. This is the first report of PR-1-CRK hybrid proteins in wheat. The data may shed new insights into the function/evolutionary origin of the PR-1 family and the STKc-mediated defense/stress response pathways in plants.

  12. Functional identification of the promoter for the gene encoding the alpha subunit of calcium/calmodulin-dependent protein kinase II.

    PubMed Central

    Olson, N J; Massé, T; Suzuki, T; Chen, J; Alam, D; Kelly, P T

    1995-01-01

    To examine the expression of the alpha subunit of calcium/calmodulin-dependent protein kinase II, various 5' flanking genomic sequences were inserted into a chloramphenicol acetyltransferase (CAT) reporter plasmid and CAT enzyme activities were analyzed in transfected NB2a neuroblastoma cells and mRNA transcription was analyzed by nuclease protection assays. A core promoter was identified which contained an essential TATA element located 162 nt 5' to the transcription start site. Sequences 3' to the transcription start site, as well as 5' to the TATA element, increased levels of CAT activity in transfected cells. The alpha-subunit gene promoter displayed higher CAT activities, relative to a simian virus 40 promoter, in transfected neuronal cell lines than in nonneuronal cell lines. Results also suggested that sequence surrounding the natural alpha-gene transcription initiation site may be important for targeting transcription initiation 162 nt downstream of its TATA element. Images Fig. 1 Fig. 3 PMID:7878035

  13. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  14. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the

  15. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

    PubMed Central

    Bhoj, Elizabeth J.; Li, Dong; Harr, Margaret; Edvardson, Shimon; Elpeleg, Orly; Chisholm, Elizabeth; Juusola, Jane; Douglas, Ganka; Guillen Sacoto, Maria J.; Siquier-Pernet, Karine; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Narravula, Alekhya; Walke, Maria; Horner, Michele B.; Day-Salvatore, Debra-Lynn; Jayakar, Parul; Vergano, Samantha A. Schrier; Tarnopolsky, Mark A.; Hegde, Madhuri; Colleaux, Laurence; Crino, Peter; Hakonarson, Hakon

    2016-01-01

    Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition. PMID:27040691

  16. The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Leem, S H; Ogawa, H

    1992-01-01

    The MRE4 gene was cloned by complementation of the defects of meiotic recombination and haploidization in an mre4-1 mutant. Disruption of MRE4 resulted in reduced meiotic recombination and spore inviability. The mre4 spore lethality can be suppressed by spo13, a mutation that causes cells to bypass the reductional division. Analysis of meiotic DNA extracted from the mre4 mutant cells revealed that double-strand breaks occurred at the two sites of the HIS4-LEU2 recombination hot spot, but at a frequency of about 10-20% of the wild type. Northern blot analysis indicated that the MRE4 gene produces four transcripts of 1.63, 3.2, 4.0 and 6.2 kb. All of these transcripts are absent from mitotic cells and are meiotically induced. The DNA sequence of the MRE4 open reading frame predicts a 497-amino acids protein with a molecular mass of 56.8 kDa. The Mre4 protein contains highly conserved amino acid sequences found specifically in serine-threonine protein kinases. These results suggest that protein phosphorylation is required directly or indirectly for meiotic recombination. Images PMID:1741279

  17. A novel adenoviral gutless vector encoding sphingosine kinase promotes arteriogenesis and improves perfusion in a rabbit hindlimb ischemia model.

    PubMed

    Lee, Jae Ung; Shin, Jinho; Song, Woohyuk; Kim, Hyunjoong; Lee, Seunghwan; Jang, Se Jin; Wong, S Chiu; Edelberg, Jay E; Liau, Gene; Hong, Mun K

    2005-11-01

    We previously demonstrated that sphingosine kinase (SPK) increases the level of extracellular sphingosine-1-phosphate and promotes neovascularization in a mouse matrigel model. In this study, we tested the hypothesis that SPK gene transfer using a novel adenoviral 'gutless' vector (AGV) can enhance arteriogenesis in a rabbit hindlimb ischemia model. Thirty-five male New Zealand white rabbits were randomized to the AGV-SPK group (n=13), AGV-null group (n=13), and control group (n=9). On day 10, after the induction of unilateral hindlimb ischemia, gene vectors or buffer were introduced and the effect examined on day 30, using calf blood pressure, quantitative angiographic analysis, and histology. Calf systolic blood pressure ratios of the ischemic limb to the normal limb on day 30 were 0.77+/-0.13 in control groups, including the AGV-null group, and 0.91+/-0.14 in the AGV-SPK group (P<0.05). Angiographic vessel counts were significantly increased (8.0+/-2.1 at baseline and 11.8+/-3.2 on day 30, P<0.001) in the AGV-SPK group. Histologic analysis showed that microscopic total vessel counts on day 30 were 3.5+/-1.8/field in the control and AGV-null group and 5.4+/-1.0/field in the AGV-SPK group. Arterioles (AGV-SPK; 3.0+/-0.8 versus control and AGV-null; 2.1+/-1.1, P<0.05) were significantly increased in the AGV-SPK group. This study shows that SPK promotes arteriogenesis, as evidenced by the maximal improvement in the blood pressure restoration and collateral vessel counts. SPK may be an important angiogenic target to improve perfusion in ischemic tissues.

  18. Identification and Function of the pdxY Gene, Which Encodes a Novel Pyridoxal Kinase Involved in the Salvage Pathway of Pyridoxal 5′-Phosphate Biosynthesis in Escherichia coli K-12

    PubMed Central

    Yang, Yong; Tsui, Ho-Ching Tiffany; Man, Tsz-Kwong; Winkler, Malcolm E.

    1998-01-01

    pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY+ overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette into pdxY and crossed the resulting pdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts of pdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6 vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show that pdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon. pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in the tyrS-pdxY intercistronic region. PMID:9537380

  19. Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars.

    PubMed

    Azad, Ida; Alemzadeh, Abbas

    2017-06-01

    Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. Its cDNA length is 1900 bp with a 5'-untranslated region of 311 bp and 3'-untranslated region of 341 bp, of which 1248 bp from open reading frame encoding 415 amino acid residues with a molecular weight of 46 kDa and an isoelectric point 7.2. Also, an upstream open reading frame contains 100 aa was found at -12 position from ATG initiation codon. ZmSTPK1 with a long half-life, 10 hours in Escherichia coli, and instability index of 32.25 is classified as a stable protein. A calmodulin binding domain was found in ZmSTPK1 at position from 395 to 405 in C-terminal end. The helical wheel analysis showed that the stretch of residues Ile-395 to Asp-415 has the potential to form a charged amphiphilic -helix characteristic of a calmodulin-binding region. Two P1BS-like motifs, which are present in the promoter regions of Pi starvation-induced genes, were located at positions -48 and -867 from ATG initiation codon. The expression of ZmSTPK1 responded to available phosphate, and its expression up-regulated under phosphate starvation.

  20. Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds.

    PubMed

    Yu, Jaeju; Saiardi, Adolfo; Greenwood, John S; Bewley, J Derek

    2014-05-01

    During seed development, phytic acid (PA) associated with mineral cations is stored as phytin and mobilized following germination in support of seedling growth. Two parallel biosynthetic pathways for PA have been proposed; yet the pathway is still poorly understood in terms of its regulation and the enzymes involved. Here, the castor bean (Ricinus communis L.) gene for inositol 1,3,4,5,6-pentakisphosphate 2-kinase (RcIPK1) has been identified. This encodes the enzyme implicated in catalyzing the final reaction in PA biosynthesis, and its expression is enhanced in isolated germinated embryos by application of phosphate and myo-inositol (Ins). Even though only one copy of the RcIPK1 gene is present in the genome, numerous RNA variants are present, most likely due to alternative splicing. These are translated into six closely related protein isoforms according to in silico analysis. Functional analyses using yeast ipk1Δ revealed that only three of the mRNA variants can rescue a temperature-sensitive growth phenotype of this strain. High-performance liquid chromatography (HPLC) analysis of the synthesized inositol phosphates demonstrated that the ability to complement the missing yeast IPK1 enzyme is associated with the production of enzyme activity. The three active isoforms possess unique conserved motifs important for IPK1 catalytic activity.

  1. The Role of the Equine Herpesvirus Type 1 (EHV-1) US3-Encoded Protein Kinase in Actin Reorganization and Nuclear Egress

    PubMed Central

    Proft, Alexandra; Spiesschaert, Bart; Izume, Satoko; Taferner, Selina; Lehmann, Maik J.; Azab, Walid

    2016-01-01

    The serine-threonine protein kinase encoded by US3 gene (pUS3) of alphaherpesviruses was shown to modulate actin reorganization, cell-to-cell spread, and virus egress in a number of virus species. However, the role of the US3 orthologues of equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) has not yet been studied. Here, we show that US3 is not essential for virus replication in vitro. However, growth rates and plaque diameters of a US3-deleted EHV-1 and a mutant in which the catalytic active site was destroyed were significantly reduced when compared with parental and revertant viruses or a virus in which EHV-1 US3 was replaced with the corresponding EHV-4 gene. The reduced plaque sizes were consistent with accumulation of primarily enveloped virions in the perinuclear space of the US3-negative EHV-1, a phenotype that was also rescued by the EHV-4 orthologue. Furthermore, actin stress fiber disassembly was significantly more pronounced in cells infected with parental EHV-1, revertant, or the recombinant EHV-1 expressing EHV-4 US3. Finally, we observed that deletion of US3 in EHV-1 did not affect the expression of adhesion molecules on the surface of infected cells. PMID:27754319

  2. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria.

    PubMed

    Sugimoto, Hiroki; Kusumi, Kensuke; Noguchi, Ko; Yano, Masahiro; Yoshimura, Atsushi; Iba, Koh

    2007-11-01

    Guanylate kinase (GK) is a critical enzyme in guanine nucleotide metabolism pathways, catalyzing the phosphorylation of (d)GMP to (d)GDP. Here we show that a novel gene, VIRESCENT 2 (V2), encodes a new type of GK (designated pt/mtGK) that is localized in plastids and mitochondria. We initially identified the V2 gene by positional cloning of the rice v2 mutant. The v2 mutant is temperature-sensitive and develops chlorotic leaves at restrictive temperatures. The v2 mutation causes inhibition of chloroplast differentiation; in particular, it disrupts the chloroplast translation machinery during early leaf development [Sugimoto et al. (2004)Plant Cell Physiol. 45, 985]. In the bacterial and animal species studied to date, GK is localized in the cytoplasm and participates in maintenance of the guanine nucleotide pools required for many fundamental cellular processes. Phenotypic analysis of rice seedlings with RNAi knockdown of cytosolic GK (designated cGK) showed that cGK is indispensable for the growth and development of plants, but not for chloroplast development. Thus, rice has two types of GK, as does Arabidopsis, suggesting that higher plants have two types of GK. Our results suggest that, of the two types of GK, only pt/mtGK is essential for chloroplast differentiation.

  3. Fission yeast pak1+ encodes a protein kinase that interacts with Cdc42p and is involved in the control of cell polarity and mating.

    PubMed Central

    Ottilie, S; Miller, P J; Johnson, D I; Creasy, C L; Sells, M A; Bagrodia, S; Forsburg, S L; Chernoff, J

    1995-01-01

    A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating. Images PMID:8846783

  4. Unique dual targeting of thymidylate synthase and topoisomerase1 by FdUMP[10] results in high efficacy against AML and low toxicity

    PubMed Central

    Gomes, Evan; Jennings-Gee, Jamie; Caudell, David; Gmeiner, William H.

    2012-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy that leads to marrow failure and death. There is a desperate need for new therapies. The novel fluoropyrimidine, FdUMP[10], was highly active against both human AML cell lines, (IC50 values, 3.4nM-21.5nM) and murine lines (IC50 values, 123.8pM-131.4pM). In all cases, the IC50 of FdUMP[10] was lower than for cytarabine and ∼ 1000 times lower than 5-fluorouracil (5-FU). FdUMP[10] remained effective against cells expressing the Flt3 internal tandem duplication, BCR-ABL, MN1, and an shRNA against p53. It had activity against patient samples at concentrations that did not affect normal hematopoietic cells. FdUMP[10] inhibited thymidylate synthase (TS) and trapped topoisomerase I cleavage complexes (Top1CCs), leading to DNA damage and apoptosis. All cell lines and nearly all primary AML samples examined expressed both TS and Top1. In vivo, FdUMP[10] was active against a syngeneic AML model with a survival advantage equivalent to doxorubicin plus cytarabine. 5-FU treatment was toxic and did not improve survival. FdUMP[10] was better tolerated than 5-FU or cytarabine plus doxorubicin and did not affect normal HSCs, while 5-FU dramatically impaired their ability to engraft. In summary, FdUMP[10] was highly efficacious and better tolerated than standard therapies. PMID:22362039

  5. Mutations and Polymorphisms in the Gene Encoding Regulatory Subunit Type 1-alpha of Protein Kinase A (PRKAR1A): An Update

    PubMed Central

    Horvath, Anélia; Bertherat, Jérôme; Groussin, Lionel; Guillaud-Bataille, Marine; Tsang, Kitman; Cazabat, Laure; Libe, Rosella; Remmers, Elaine; René-Corail, Fernande; Faucz, Fabio Rueda; Clauser, Eric; Calender, Alain; Bertagna, Xavier; Carney, J Aidan; Stratakis, Constantine A.

    2010-01-01

    PRKAR1A encodes the regulatory subunit type 1-alpha (RIα), of the main mediator of the cAMP effects in the eukaryotic cells – cAMP dependant Protein Kinase A (PKA). Inactivating PRKAR1A mutations are known to be responsible for the multiple neoplasia and lentiginosis syndrome Carney complex (CNC). To date, at least 117 pathogenic variants in PRKAR1A have been identified. The majority of them are subject to non-sense mediated mRNA decay (NMD), leading to PRKAR1A haploinsufficiency and, as a result, activated cAMP signaling in the affected tissues. In recent years it became apparent that CNC may be caused not only by RIα haploinsufficiency, but also by the expression of altered PRKAR1A protein, as proven by analysis of the relatively small proportion of expressed mutations in the gene, consisting of aminoacid substitutions and in-frame genetic alterations. In addition, a new subgroup of mutations that potentially escape NMD and result in CNC through altered rather than missing protein has been analyzed – frame-shifts in the 3′end of the coding sequence that shift the stop codon downstream of the regular one and result in the expression of longer than the wild type protein. The PRKAR1A mutation detection rate in CNC patients is recently estimated at above 60%; PRKAR1A mutation negative CNC patients are characterized by significant phenotypic heterogeneity. In this paper, we present a comprehensive analysis of all 117 known to date pathogenic PRKAR1A sequence variations, and discuss their molecular context and clinical relevance. PMID:20358582

  6. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo.

    PubMed

    Yabe, Taijiro; Ge, Xiaoyan; Lindeman, Robin; Nair, Sreelaja; Runke, Greg; Mullins, Mary C; Pelegri, Francisco

    2009-06-01

    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.

  7. The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    PubMed Central

    Yabe, Taijiro; Nair, Sreelaja; Runke, Greg; Mullins, Mary C.; Pelegri, Francisco

    2009-01-01

    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function. PMID:19543364

  8. Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production.

    PubMed

    López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús

    2012-05-01

    In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.

  9. Chemical Synthesis of a 5'-Terminal TMG-Capped Triribonucleotide m(3)(2,2,7)G(5)(')pppAmpUmpA of U1 RNA.

    PubMed

    Sekine, Mitsuo; Kadokura, Michinori; Satoh, Takahiko; Seio, Kohji; Wada, Takeshi; Fischer, Utz; Sumpter, Vicki; Lührmann, Reinhard

    1996-06-26

    The 5'-terminal TMG-capped triribonucleotide, m(3)(2,2,7)G(5)(')pppAmpUmpA, has been synthesized by condensation of an appropriately protected triribonucleotide derivative of ppAmpUmpA with a new TMG-capping reagent. During this total synthesis, it was found that the regioselective 2'-O-methylation of 3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-N-(4-monomethoxytrityl)adenosine was achieved by use of MeI/Ag(2)O without affecting the base moiety. A new route to 2-N,2-N-dimethylguanosine from guanosine via a three-step reaction has also been developed by reductive methylation using paraformaldehyde and sodium cyanoborohydride. These key intermediates were used as starting materials for the construction of a fully protected derivative of pAmpUmpA and a TMG-capping reagent of Im-pm(3)(2,2,7)G. The target TMG-capped tetramer, m(3)(2,2,7)G(5)(')pppAmpUmpA, was synthesized by condensation of a partially protected triribonucleotide 5'-terminal diphosphate species, ppA(MMTr)mpUmpA, with Im-pm(3)(2,2,7)G followed by treatment with 80% acetic acid. The structure of m(3)(2,2,7)G(5)(')pppAmpUmpA was characterized by (1)H and (31)P NMR spectroscopy as well as enzymatic assay using snake venom phosphodiesterase, calf intestinal phosphatase, and nuclease P1.

  10. The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine*

    PubMed Central

    Hemsworth, Glyn R.; Moroz, Olga V.; Fogg, Mark J.; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S.

    2011-01-01

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds. PMID:21454646

  11. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility]. Progress report, January 1993

    SciTech Connect

    Not Available

    1993-06-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK{sub 6} cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys{sup 524} codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with {sup 32}P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified {sup 32}p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  12. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean.

    PubMed

    Dufresne, M; Bailey, J A; Dron, M; Langin, T

    1998-02-01

    A random insertional mutagenesis in Colletotrichum lindemuthianum, the causal agent of common bean anthracnose, generated four mutants that showed altered pathogenicity when tested on intact seedlings, excised leaves, and/or excised hypocotyls. One of these mutants, H290, produced very few lesions on bean leaves and appeared affected in its ability to penetrate the leaf cuticle. Molecular analyses showed that the border sequences of the unique integration site of the disrupting pAN7-1 plasmid in the mutant exhibited homology with conserved domains of serine/threonine protein kinases. The corresponding wild-type sequences were cloned and a gene replacement vector with a mutated copy harboring a selection marker constructed. Transformation of the wild-type pathogen produced a strain with a phenotype identical to the original mutant. Genomic and cDNA sequences indicated that the disrupted gene is a member of the serine/threonine protein kinase family. The gene, called clk1 (Colletotrichum lindemuthianum kinase 1), was weakly expressed in the mycelium of the wild-type strain grown on rich and minimal synthetic media but was undetectable during the infection even when a sensitive reverse transcriptase-polymerase chain reaction methodology was used. This study represents the first characterization of altered pathogenicity mutants in C. lindemuthianum produced by random mutagenesis and demonstrates the involvement of a member of the serine/threonine kinase gene family in the early steps of the infection process.

  13. The genes encoding the Eph-related receptor tyrosine kinase ligands LERK-1 (EPLG1, Epl1), LERK-3 (EPLG3, Epl3), and LERK-4 (EPLG4, Epl4) are clustered on human chromosome 1 and mouse chromosome 3

    SciTech Connect

    Cerretti, D.P.; Lyman, S.D.; Kozlosky, C.J.

    1996-04-15

    Hek and elk are members of the eph-related family of receptor tyrosine kinases. Recently, we isolated five cDNAs encoding membrane-bound ligands to hek and elk. Because of the promiscuous nature of their binding, we have termed these proteins ligands of the eph-related kinases or LERKs. The LERKs can be divided into two subgroups by virtue of their sequence identity, binding properties, and mode of cell membrane attachment. For example, LERK-2 (EPLG2, Epl2) and LERK-5 (EPLG5, Epl5) are type 1 transmembrane proteins, while LERK-1 (EPLG4, Epl4) are anchored to the membrane by glycosyl-phosphatidylinositol (GPI) linkage. Using Southern hybridization analysis of human x rodent somatic cell hybrid DNAs, we have assigned the genes that encode the GPI-anchored LERKs (EPLG1, EPLG3, and EPLG4) to human chromosome 1. Fluorescence in situ hybridization to metaphase chromosome preparations using genomic clones from each locus refined this localization to chromosome 1, bands q21-q22. In addition, Southern blot analysis of DNA from interspecific backcross mice indicated that the mouse homologues Epl1, Epl3, and Epl4 map to a homologous region on mouse chromosome 3. 36 refs., 2 figs.

  14. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    PubMed

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  15. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    USDA-ARS?s Scientific Manuscript database

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  16. Forward Genetic Screening Identifies a Small Molecule That Blocks Toxoplasma gondii Growth by Inhibiting Both Host- and Parasite-Encoded Kinases

    PubMed Central

    Brown, Kevin M.; Suvorova, Elena; Farrell, Andrew; McLain, Aaron; Dittmar, Ashley; Wiley, Graham B.; Marth, Gabor; Gaffney, Patrick M.; Gubbels, Marc Jan; White, Michael; Blader, Ira J.

    2014-01-01

    The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1. PMID:24945800

  17. Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin, a fungal encoded toxin which is a carcinogen.

    PubMed

    Huang, C; Dickman, M; Henderson, G; Jones, C

    1995-04-15

    Fusarium moniliforme (FM) is a major fungal pathogen of corn and is involved with stalk rot disease. FM is widely spread throughout the world, including the United States. Most strains of FM produce several mycotoxins, the most prominent of which is called fumonisin. Recent epidemiological studies indicated that ingestion of fumonisin correlates with a higher incidence of esophageal cancer in Southern and Northern Africa and China. Furthermore, fumonisin causes a neurodegenerative disease in horses, induces hepatic cancer in rats, and induces pulmonary edema in swine. Considering that high levels of fumonisin have been detected in healthy and diseased corn grown in the United States, fumonisin may pose a health threat to humans and livestock animals. Structurally, fumonisin resembles sphingolipids which are present in the membranes of animal and plant cells. At the present time, very little is known concerning the mechanism by which fumonisin elicits its carcinogenic effect. Our studies indicate that fumonisin represses expression of protein kinase C and AP-1-dependent transcription. In contrast, fumonisin stimulated a simple promoter containing a single cyclic AMP response element. Since fumonisin did not alter protein kinase A activity, it appears that cyclic AMP response element activation was independent of protein kinase A. It is hypothesized that the ability of fumonisin to alter signal transduction pathways plays a role in carcinogenesis.

  18. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  19. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    PubMed Central

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-01-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme. Images PMID:2869483

  20. The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway

    PubMed Central

    Flores, Carmen-Lisset; Gancedo, Carlos

    2015-01-01

    The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway—identified by a BLAST search—was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose. PMID:25816199

  1. Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells.

    PubMed

    Hasan, Alan; Danker, Kerstin Y; Wolter, Sabine; Bähre, Heike; Kaever, Volkhard; Seifert, Roland

    2014-05-30

    Intact HEK293 cells and B103 neuroblastoma cells possess high basal concentrations of the established second messengers cAMP and cGMP and of the emerging second messengers cCMP and cUMP. We asked the question which nucleotidyl cyclase accounts for the high basal cNMP concentrations. Activators and inhibitors of soluble guanylyl cyclase had no major effects on cNMPs, and the activator of membranous adenylyl cyclase forskolin increased only cAMP. Addition of bicarbonate to medium increased, whereas removal of bicarbonate decreased levels of all four cNMPs. The inhibitor of soluble adenylyl cyclase, 2-(1H-benzo[d]imidazol-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide (KH7), reduced bicarbonate-stimulated cNMPs. In conclusion, bicarbonate-stimulated soluble adenylyl cyclase plays an important role in the regulation of basal cellular cNMP levels, most notably cCMP and cUMP.

  2. Disruption of Glycerol Metabolism by RNAi Targeting of Genes Encoding Glycerol Kinase Results in a Range of Phenotype Severity in Drosophila

    PubMed Central

    Wightman, Patrick J.; Jackson, George R.; Dipple, Katrina M.

    2013-01-01

    In Drosophila, RNAi targeting of either dGyk or dGK can result in two alternative phenotypes: adult glycerol hypersensitivity or larval lethality. Here we compare these two phenotypes at the level of glycerol kinase (GK) phosphorylation activity, dGyk and dGK-RNA expression, and glycerol levels. We found both phenotypes exhibit reduced but similar levels of GK phosphorylation activity. Reduced RNA expression levels of dGyk and dGK corresponded with RNAi progeny that developed into glycerol hypersensitive adult flies. However, quantification of dGyk/dGK expression levels for the larval lethality phenotype revealed unexpected levels possibly due to a compensatory mechanism between dGyk and dGK or RNAi inhibition. The enzymatic role of glycerol kinase converts glycerol to glycerol 3-phosphate. As expected, elevated glycerol levels were observed in larvae that went on to develop into glycerol hypersensitive adults. Interestingly, larvae that died before eclosion revealed extremely low glycerol levels. Further characterization identified a wing phenotype that is enhanced by a dGpdh null mutation, indicating disrupted glycerol metabolism underlies the wing phenotype. In humans, glycerol kinase deficiency (GKD) exhibits a wide range of phenotypic variation with no obvious genotype-phenotype correlations. Additionally, disease severity often does not correlate with GK phosphorylation activity. It is intriguing that both human GKD patients and our GKD Drosophila model show a range of phenotype severity. Additionally, the lack of correlation between GK phosphorylation and dGyk/dGK-RNA expression with phenotypic severity suggests further study including understanding the alternative functions of the GK protein, could provide insights into the complex pathogenic mechanism observed in human GKD patients. PMID:24039719

  3. Mutation in the Scyl1 gene encoding amino-terminal kinase-like protein causes a recessive form of spinocerebellar neurodegeneration

    PubMed Central

    Schmidt, Wolfgang M; Kraus, Cornelia; Höger, Harald; Hochmeister, Sonja; Oberndorfer, Felicitas; Branka, Manuela; Bingemann, Sonja; Lassmann, Hans; Müller, Markus; Macedo-Souza, Lúcia Inês; Vainzof, Mariz; Zatz, Mayana; Reis, André; Bittner, Reginald E

    2007-01-01

    Here, we show that the murine neurodegenerative disease mdf (autosomal recessive mouse mutant ‘muscle deficient') is caused by a loss-of-function mutation in Scyl1, disrupting the expression of N-terminal kinase-like protein, an evolutionarily conserved putative component of the nucleocytoplasmic transport machinery. Scyl1 is prominently expressed in neurons, and enriched at central nervous system synapses and neuromuscular junctions. We show that the pathology of mdf comprises cerebellar atrophy, Purkinje cell loss and optic nerve atrophy, and therefore defines a new animal model for neurodegenerative diseases with cerebellar involvement in humans. PMID:17571074

  4. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens.

    PubMed

    Cho, Song Mi; Shin, Seo Ho; Kim, Kwang Sang; Kim, Young Cheol; Eun, Moo Young; Cho, Baik Ho

    2004-12-31

    A cDNA library was constructed using mRNA extracted from rice leaves infected with Xanthomonas oryzae pv. oryzae (Xoo), a bacterial leaf blight pathogen, to isolate rice genes induced by Xoo infection. Subtractive hybridization and differential screening of the cDNA library led to the isolation of many induced genes including a nucleotide diphosphate kinase 1 (OsNDPK1) and a pathogenesis-related protein 1 (OsPR1) cDNA. Nucleoside diphosphate kinases (NDPKs) are key metabolic enzymes that maintain the balance between cellular ATP and other nucleoside triphosphates (NTPs). Three other OsNDPK genes (NP922751, OsNDPK2 and OsNDPK3) found in databases were obtained by RT-PCR. Three different programs for predicting subcellular targeting indicated that OsNDPK1 and NP922751 were non-organellar, OsNDPK2 plastidic, and OsNDPK3 mitochondrial. Only transcripts of OsNDPK1 accumulated strongly after infection with Xoo. When rice plants were infected with Burkholderia glumae, a bacterial grain/seedling rot pathogen, the pattern of expression of the rice NDPK genes was similar to that following infection with Xoo. OsNDPK1 gene expression was also strongly induced in response to exposure to salicylic acid, jasmonic acid, and abscisic acid, although the level of transcripts and their pattern of expression depended on the inducer.

  5. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth.

    PubMed Central

    Frederick, D L; Tatchell, K

    1996-01-01

    The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase. PMID:8649403

  6. Whole Exome Sequencing, Familial Genomic Triangulation, and Systems Biology Converge to Identify a Novel Nonsense Mutation in TAB2-encoded TGF-beta Activated Kinase 1 in a Child with Polyvalvular Syndrome.

    PubMed

    Ackerman, Jaeger P; Smestad, John A; Tester, David J; Qureshi, Muhammad Y; Crabb, Beau A; Mendelsohn, Nancy J; Ackerman, Michael J

    2016-09-01

    To use whole exome sequencing (WES) of a family trio to identify a genetic cause for polyvalvular syndrome. A male child was born with mild pulmonary valve stenosis and mild aortic root dilatation, and an atrial septal defect, ventricular septal defect, and patent ductus arteriosus that were closed surgically. Subsequently, the phenotype of polyvalvular syndrome with involvement of both semilunar and both atrioventricular valves emerged. His family history was negative for congenital heart disease. Because of hypotonia, myopia, soft pale skin, joint hypermobility, and mild facial dysmorphism, either Noonan syndrome- or William syndrome-spectrum disorders were suspected clinically. However, chromosomal analysis was normal and commercially available Noonan syndrome and William syndrome genetic tests were negative. Whole exome sequencing of the patient and both parents was performed. Variants were analyzed by sporadic and autosomal recessive inheritance models. A sporadic mutation, annotated as c.1491 T > A, in TAB2, resulting in a nonsense mutation, p.Y497X, in the TAB2-encoded TGF-beta activated kinase 1 (TAK1) was identified as the most likely disease-susceptibility gene. This mutation results in elimination of the terminal 197 amino acids, including the C-terminal binding motif critical for interactions with TRAF6 and TAK1. The combination of WES, genomic triangulation, and systems biology has uncovered perturbations in TGF-beta activated kinase 1 signaling as a novel pathogenic substrate for polyvalvular syndrome. © 2016 Wiley Periodicals, Inc.

  7. Mutation analysis of the gene encoding Bruton`s tyrosine kinase in a family with a sporadic case of X-linked agammaglobulinemia reveals three female carriers

    SciTech Connect

    Hagemann, T.L.; Kwan, Sau-Ping; Assa`ad, A.H.

    1995-11-06

    Bruton`s tyrosine kinase (Btk) has been identified as the protein responsible for the primary immunodeficiency X-linked agammaglobulinemia (XLA). We and others have cloned the gene for Btk and recently reported the genomic organization. Nineteen exons were positioned within the 37 kb gene. With the sequence data derived from our genomic map, we have designed a PCR based assay to directly identify mutations of the Btk gene in germline DNA of patients with XLA. In this report, the assay was used to analyze a family with a sporadic case of XLA to determine if other female relatives carry the disease. A four base-pair deletion was found in the DNA of the affected boy and was further traced through three generations. With the direct identification of the mutations responsible for XLA, we can now diagnose conclusively the disease and identify the immunologically normal female carriers. This same technique can easily be applied to prenatal diagnosis in families where the mutation can be identified. 34 refs., 3 figs.

  8. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge.

    PubMed

    Tsai, Tsung-Mu; Chen, Ying-Ru; Kao, Tien-Wen; Tsay, Wen-Su; Wu, Chiou-Ping; Huang, Ding-Ding; Chen, Wen-Huei; Chang, Ching-Chun; Huang, Hao-Jen

    2007-10-01

    Signaling pathways, specifically calcium and calcium-dependent protein kinase (CDPK), have been implicated in the regulation of stress and developmental signals in plants. Here, we reported the isolation and characterization of an orchid, Phalaenopsis amabilis, CDPK gene, PaCDPK1, by using the rapid amplification of cDNA ends (RACE)-PCR technique. The full length cDNA of 2,310 bp contained an open reading frame for PaCDPK1 consisting of 593 amino acid residues. Sequence alignment indicated that PaCDPK1 shared similarities with other plant CDPKs. PaCDPK1 transcripts were expressed strongly in labellum but not in leaves and roots. In addition, the PaCDPK1 gene was transcriptionally activated in response to low temperature, wounding, and pathogen infection. To identify the regulatory role of the PaCDPK1 promoter, a construct containing the PaCDPK1 promoter fused to a beta-glucuronidase (GUS) gene was transferred into Arabidopsis by Agrobacterium-mediated transformation. GUS staining revealed that PaCDPK1/GUS expression was induced by cold, wounding, and pathogen challenge in leaves and stems of transgenic Arabidopsis. These results suggested that this PaCDPK1 gene promoter could be used as an endogenous promoter for biotechnological purposes in orchids.

  9. The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response.

    PubMed Central

    Hofmann, A F; Harris, S D

    2000-01-01

    In Aspergillus nidulans, uvsB and uvsD belong to the same epistasis group of DNA repair mutants. Recent observations suggest that these genes are likely to control cell cycle checkpoint responses to DNA damage and incomplete replication. Consistent with this notion, we show here that UVSB is a member of the conserved family of ATM-related kinases. Phenotypic characterization of uvsB mutants shows that they possess defects in additional aspects of the DNA damage response besides checkpoint control, including inhibition of septum formation, regulation of gene expression, and induced mutagenesis. The musN227 mutation partially suppresses the poor growth and DNA damage sensitivity of uvsB mutants. Although musN227 partially suppresses several uvsB defects, it does not restore checkpoint function to uvsB mutants. Notably, the failure of uvsB mutants to restrain septum formation in the presence of DNA damage is suppressed by the musN227 mutation. We propose that UVSB functions as the central regulator of the A. nidulans DNA damage response, whereas MUSN promotes recovery by modulating a subset of the response. PMID:10747054

  10. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.

    PubMed

    Sun, Wei; Chen, Hao; Wang, Juan; Sun, Hong Wei; Yang, Shu Ke; Sang, Ya Lin; Lu, Xing Bo; Xu, Xiao Hui

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) play important roles in stress responses and development in plants. Maize (Zea mays), an important cereal crop, is a model plant species for molecular studies. In the last decade, several MAPKs have been identified in maize; however, their functions have not been studied extensively. Genome-wide identification and expression analysis of maize MAPK genes could provide valuable information for understanding their functions. In this study, 20 non-redundant maize MAPK genes (ZmMPKs) were identified via a genome-wide survey. Phylogenetic analysis of MAPKs from maize, rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), and tomato (Solanum lycopersicum) classified them into four major classes. ZmMPKs in the same class had similar domains, motifs, and genomic structures. Gene duplication investigations suggested that segmental duplications made a large contribution to the expansion of ZmMPKs. A number of cis-acting elements related to plant development and response to stress and hormones were identified in the promoter regions of ZmMPKs. Furthermore, transcript profile analysis in eight tissues and organs at various developmental stages demonstrated that most ZmMPKs were preferentially expressed in reproductive tissues and organs. The transcript abundance of most ZmMPKs changed significantly under salt, drought, cold, or abscisic acid (ABA) treatments, implying that they might participate in abiotic stress and ABA signaling. These expression analyses indicated that ZmMPKs might serve as linkers between abiotic stress signaling and plant reproduction. Our data will deepen our understanding of the complexity of the maize MAPK gene family and provide new clues to investigate their functions.

  11. c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27(Kip1) cyclin dependent kinase inhibitor.

    PubMed

    Chandramohan, Vidyalakshmi; Mineva, Nora D; Burke, Brian; Jeay, Sébastien; Wu, Min; Shen, Jian; Yang, William; Hann, Stephen R; Sonenshein, Gail E

    2008-08-15

    The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.

  12. Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase.

    PubMed Central

    Eikmanns, B J

    1992-01-01

    To investigate a possible chromosomal clustering of glycolytic enzyme genes in Corynebacterium glutamicum, a 6.4-kb DNA fragment located 5' adjacent to the structural phosphoenolpyruvate carboxylase (PEPCx) gene ppc was isolated. Sequence analysis of the ppc-proximal part of this fragment identified a cluster of three glycolytic genes, namely, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene gap, the 3-phosphoglycerate kinase (PGK) gene pgk, and the triosephosphate isomerase (TPI) gene tpi. The four genes are organized in the order gap-pgk-tpi-ppc and are separated by 215 bp (gap and pgk), 78 bp (pgk and tpi), and 185 bp (tpi and ppc). The predicted gene product of gap consists of 336 amino acids (M(r) of 36,204), that of pgk consists of 403 amino acids (M(r) of 42,654), and that of tpi consists of 259 amino acids (M(r) of 27,198). The amino acid sequences of the three enzymes show up to 62% (GAPDH), 48% (PGK), and 44% (TPI) identity in comparison with respective enzymes from other organisms. The gap, pgk, tpi, and ppc genes were cloned into the C. glutamicum-Escherichia coli shuttle vector pEK0 and introduced into C. glutamicum. Relative to the wild type, the recombinant strains showed up to 20-fold-higher specific activities of the respective enzymes. On the basis of codon usage analysis of gap, pgk, tpi, and previously sequenced genes from C. glutamicum, a codon preference profile for this organism which differs significantly from those of E. coli and Bacillus subtilis is presented. Images PMID:1400158

  13. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat

    PubMed Central

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-01-01

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5–4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  14. The maize (Zea mays L.) nucleoside diphosphate kinase1 (ZmNDPK1) gene encodes a human NM23-H2 homologue that binds and stabilizes G-quadruplex DNA.

    PubMed

    Kopylov, Mykhailo; Bass, Hank W; Stroupe, M Elizabeth

    2015-03-10

    Noncanonical forms of DNA like the guanine quadruplex (G4) play important roles in regulating transcription and translation through interactions with their protein partners. Although potential G4 elements have been identified in or near genes from species diverse as bacteria, mammals, and plants, little is known about how they might function as cis-regulatory elements or as binding sites for trans-acting protein partners. In fact, until now no G4 binding partners have been identified in the plant kingdom. Here, we report on the cloning and characterization of the first plant-kingdom gene known to encode a G4-binding protein, maize (Zea mays L.) nucleoside diphosphate kinase1 (ZmNDPK1). Structural characterization by X-ray crystallography reveals that it is a homohexamer, akin to other known NDPKs like the human homologue NM23-H2. Further probing into the G4-binding properties of both NDPK homologues suggests that ZmNDPK1 possesses properties distinct from that of NM23-H2, which is known to interact with a G-rich sequence element upstream of the c-myc gene and, in doing so, modulate its expression. Indeed, ZmNDPK1 binds the folded G4 with low nanomolar affinity but corresponding unfolded G-rich DNA more weakly, whereas NM23-H2 binds both folded and unfolded G4 with low nanomolar affinities; nonetheless, both homologues appear to stabilize folded DNAs whether they were prefolded or not. We also demonstrate that the G4-binding activity of ZmNDPK1 is independent of nucleotide binding and kinase activity, suggesting that the G4-binding region and the enzyme active sites are separate. Together, these findings establish a broad evolutionary conservation of some NDPKs as G4-DNA binding enzymes, but with potentially distinct biochemical properties that may reflect divergent evolution or species-specific deployment of these elements in gene regulatory processes.

  15. Assignment of the gene (EPLG2) encoding a high-affinity binding protein for the receptor tyrosine kinase elk to a 200-kilobasepair region in human chromosome Xq12

    SciTech Connect

    Fletcher, F.A.; Beckmann, M.P.; Lyman, S.D.

    1995-01-01

    Elk is a member of the eph family of receptor tyrosine kinases. Elk is expressed only in the brain and testes of the developing and adult rat, and the interaction of elk with its ligand(s) has been suggested to play a role in the development or maintenance of the nervous system. The mouse gene Eplg2 encodes a potential elk ligand that is highly conserved among rat, mouse, and human. Eplg2 has been mapped to the central portion of the mouse X chromosome, tightly linked to the androgen receptor (Ar) locus. Linkage conservation between the mouse and the human X chromosomes suggested that the human homologue (EPLG2) would map near human AR, in the interval Xq11-q12. In the present study, we have confirmed this prediction and have localized EPLG2 to a 200-kb interval in Xq12 by somatic cell hybrid analysis, two-color fluorescence in situ hybridization (FISH), and yeast artificial chromosome (YAC) hybridization. 12 refs., 1 fig.

  16. Efficient heterologous expression and one-step purification of fully active c-terminal histidine-tagged uridine monophosphate kinase from Mycobacterium tuberculosis.

    PubMed

    Penpassakarn, Praweenuch; Chaiyen, Pimchai; Palittapongarnpim, Prasit

    2011-11-01

    Tuberculosis has long been recognized as one of the most significant public health problems. Finding novel antituberculous drugs is always a necessary approach for controlling the disease. Mycobacterium tuberculosis pyrH gene (Rv2883c) encodes for uridine monophosphate kinase (UMK), which is a key enzyme in the uridine nucleotide interconversion pathway. The enzyme is essential for M. tuberculosis to sustain growth and hence is a potential drug target. In this study, we have developed a rapid protocol for production and purification of M. tuberculosis UMK by cloning pyrH (Rv2883c) of M. tuberculosis H37Rv with the addition of 6-histidine residues to the C-terminus of the protein, and expressing in E. coli BL21-CodonPlus (DE3)-RIPL using an auto-induction medium. The enzyme was efficiently purified by a single-step TALON cobalt affinity chromatography with about 8 fold increase in specific activity, which was determined by a coupled assay with the pyruvate kinase and lactate dehydrogenase. The molecular mass of monomeric UMK was 28.2 kDa and that of the native enzyme was 217 kDa. The enzyme uses UMP as a substrate but not CMP and TMP and activity was enhanced by GTP. Measurements of enzyme kinetics revealed the kcat value of 7.6 +/- 0.4 U mg(-1) or 0.127 +/- 0.006 sec(-1).The protocol reported here can be used for expression of M. tuberculosis UMK in large quantity for formulating a high throughput target-based assay for screening anti-tuberculosis UMK compounds.

  17. Naturally occurring R225W mutation of the gene encoding AMP-activated protein kinase (AMPK)gamma(3) results in increased oxidative capacity and glucose uptake in human primary myotubes.

    PubMed

    Crawford, S A; Costford, S R; Aguer, C; Thomas, S C; deKemp, R A; DaSilva, J N; Lafontaine, D; Kendall, M; Dent, R; Beanlands, R S B; McPherson, R; Harper, M-E

    2010-09-01

    AMP-activated protein kinase (AMPK) has a broad role in the regulation of glucose and lipid metabolism making it a promising target in the treatment of type 2 diabetes mellitus. We therefore sought to characterise for the first time the effects of chronic AMPK activation on skeletal muscle carbohydrate metabolism in carriers of the rare gain-of-function mutation of the gene encoding AMPKgamma(3) subunit, PRKAG3 R225W. Aspects of fuel metabolism were studied in vitro in myocytes isolated from vastus lateralis of PRKAG3 R225W carriers and matched control participants. In vivo, muscular strength and fatigue were evaluated by isokinetic dynamometer and surface electromyography, respectively. Glucose uptake in exercising quadriceps was determined using [(18)F]fluorodeoxyglucose and positron emission tomography. Myotubes from PRKAG3 R225W carriers had threefold higher mitochondrial content (p < 0.01) and oxidative capacity, higher leak-dependent respiration (1.6-fold, p < 0.05), higher basal glucose uptake (twofold, p < 0.01) and higher glycogen synthesis rates (twofold, p < 0.05) than control myotubes. They also had higher levels of intracellular glycogen (p < 0.01) and a trend for lower intramuscular triacylglycerol stores. R225W carriers showed remarkable resistance to muscular fatigue and a trend for increased glucose uptake in exercising muscle in vivo. Through the enhancement of skeletal muscle glucose uptake and increased mitochondrial content, the R225W mutation may significantly enhance exercise performance. These findings are also consistent with the hypothesis that the gamma(3) subunit of AMPK is a promising tissue-specific target for the treatment of type 2 diabetes mellitus, a condition in which glucose uptake and mitochondrial function are impaired.

  18. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype.

    PubMed

    Malanga, Donatella; De Gisi, Silvia; Riccardi, Miriam; Scrima, Marianna; De Marco, Carmela; Robledo, Mercedes; Viglietto, Giuseppe

    2012-03-01

    The aim of this study was to investigate the presence of germline mutations in the CDKN1B gene that encodes the cyclin-dependent kinase (Cdk) inhibitor p27 in multiple endocrine neoplasia 1 (MEN1)-like Spanish index patients. The CDKN1B gene has recently been identified as a tumor susceptibility gene for MEN4, with six germline mutations reported so far in patients with a MEN-like phenotype but negative for MEN1 mutations. Fifteen Spanish index cases with MEN-like symptoms were screened for mutations in the CDKN1B gene and the mutant variant was studied functionally by transcription/translation assays in vitro and in transiently transfected HeLa cells. We report the identification of a heterozygous GAGA deletion in the 5'-UTR of CDKN1B, NM_004064.3:c.-32_-29del, in a patient affected by gastric carcinoid tumor and hyperparathyroidism. This deletion falls inside the region that is responsible for CDKN1B transcription and is predicted to destroy a secondary stem and loop structure that includes the GAGAGA element responsible for ribosome recruitment. Accordingly, in vitro studies of coupled transcription/translation assays and transient transfection in HeLa cells showed that the GAGA deletion in the CDKN1B 5'-UTR significantly impairs the transcription of downstream reporter luciferase (of ∼40-60%) and, possibly, the translation of the corresponding mRNA. This mutation was associated with a significant reduction in the amount of CDKN1B mRNA in peripheral blood leukocytes from the patient, as demonstrated by quantitative real-time PCR. Our results confirm that germline CDKN1B mutations may predispose to a human MEN4 condition and add novel evidence that alteration in the transcription/translation rate of CDKN1B mRNA might be the mechanism implicated in tumor susceptibility.

  19. NFE2L2/NRF2 Activity Is Linked to Mitochondria and AMP-Activated Protein Kinase Signaling in Cancers Through miR-181c/Mitochondria-Encoded Cytochrome c Oxidase Regulation.

    PubMed

    Jung, Kyeong-Ah; Lee, Sujin; Kwak, Mi-Kyoung

    2017-11-01

    The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2; NFE2L2/NRF2) pathway contributes to the environmental resistance of cancers by enhancing the antioxidant capacity. Here, we explored the potential connection between NFE2L2/NRF2 and mitochondrial function in cancers. Global miRNA expression analysis of HT29 and HCT116 human colon cancer cells identified that NFE2L2/NRF2 silencing upregulated miR-181c through nuclear factor-κB signaling, and this increase was associated with the reduction in mitochondria-encoded cytochrome c oxidase subunit-1 (MT-CO1), a catalytic core subunit of the complex IV of the electron transport chain (ETC). As a result of ETC dysfunction, NFE2L2/NRF2-silenced cancer cells exhibited the decreases in the mitochondrial membrane potential, oxygen consumption rate, and cellular adenosine triphosphate (ATP) contents. Notably, these changes induced adenosine monophosphate (AMP)-activated protein kinase-α (AMPKα) activation and subsequent metabolic adaptation signaling, including the inhibition of fatty acid and sterol biosynthesis enzymes. As supportive evidence of AMPKα-driven adaption, NFE2L2/NRF2-silenced cells were more vulnerable to AMPKα inhibition-induced growth suppression. Similarly, mouse tumor xenografts derived from NFE2L2/NRF2-silenced HT29 exhibited MT-CO1 reduction and AMPKα activation, thereby increasing responsiveness to the AMPK inhibitor treatment. The association of NFE2L2/NRF2 with MT-CO1 and AMPKα was confirmed in breast cancer cells. We demonstrated the significance of NFE2L2/NRF2 in cancer mitochondria by elucidating the involvement of miR-181c/MT-CO1 as underlying molecular events. We also provide evidence of the crosstalk between NFE2L2/NRF2 and AMPKα as an adaptive link in cancers. Therefore, it may be an effective strategy to inhibit both NFE2L2/NRF2 and AMPKα signaling to overcome adaptive behaviors of cancer. Antioxid. Redox Signal. 27, 945-961.

  20. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  1. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  2. Use of isotopically chiral [4'-13C]penciclovir and 13C NMR to determine the specificity and absolute configuration of penciclovir phosphate esters formed in HSV-1 and HSV-2 infected cells and by HSV-1-encoded thymidine kinase.

    PubMed

    Vere Hodge, R A; Darlison, S J; Earnshaw, D L; Readshaw, S A

    1993-01-01

    Penciclovir is a potent antiherpesvirus agent which is highly selective due to its phosphorylation only in virus infected cells. Phosphorylation of one of the hydroxymethyl groups of penciclovir (PCV) creates a chiral centre leading to the possible formation of (R)- and (S)-enantiomers. The absolute configuration and stereospecificity of the PCV-phosphates produced in cells infected with herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2), as well as by HSV-1-encoded thymidine kinase, were determined using isotopically chiral [4'-13C]PCV precursors and 13C NMR spectroscopy of the isolated metabolites. The absolute configuration of penciclovir-triphosphate (PCV-TP) produced in HSV-1 infected cells was shown to be S with an enantiomeric purity of greater than 95%. However, in contrast fo HSV-1-infected cells in which none of the (R) enantiomer was detected, about 10% of (R)-PCV-TP was produced in HSV-2-infected cells. Phosphorylation of PCV by HSV-1-encoded thymidine kinase was found to give 75% (S)- and 25% (R)-PCV-monophosphate. The proportion of the (S)-isomer appears to be amplified in the subsequent phosphorylations leading to the triphosphate.

  3. rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase.

    PubMed

    Fritz, G; Kaina, B

    1997-12-05

    The small GTPase RhoB is immediate-early inducible by DNA damaging treatments and thus part of the early response of eukaryotic cells to genotoxic stress. To investigate the regulation of this cellular response, we isolated the gene for rhoB from a mouse genomic library. Sequence analysis of the rhoB gene showed that its coding region does not contain introns. The promoter region of rhoB harbors regulatory elements such as TATA, CAAT, and Sp1 boxes but not consensus sequences for AP-1, Elk-1, or c-Jun/ATF-2. The rhoB promoter was activated by UV irradiation, but not by 12-O-tetradecanoylphorbol-13-acetate treatment. rhoB promoter deletion constructs revealed a fragment of 0.17 kilobases in size which was sufficient in eliciting the UV response. This minimal promoter fragment contains TATA and CAAT boxes but no other known regulatory elements. Neither MEK inhibitor PD98059 nor p38 kinase inhibitor SB203580 blocked stimulation of rhoB by UVC (UV light, 254 nm) which indicates that ERK or p38 mitogen-activated protein (MAP) kinase are not involved in the UV induction of rhoB. Also, phosphatidylinositol 3-kinase inhibitor wortmannin, which blocks UV stimulation of both JNK and p38 MAP kinase, did not inhibit rhoB activation. Furthermore, activation of JNK by interleukin-1beta did not affect rhoB expression. These data indicate that JNK is not involved in the regulation of rhoB. Overexpression of wild-type Rac as well as the Rho guanine-dissociation inhibitor caused activation of rhoB. Wild-type RhoB inhibited both basal and UV-stimulated rhoB promoter activity, indicating a negative regulatory feedback by RhoB itself. The data provide evidence both for a signal transduction pathway independent of JNK, ERK, and p38 MAP kinase to be involved in the induction of rhoB by genotoxic stress, and furthermore, indicate autoregulation of rhoB.

  4. Cdkn2a, the cyclin-dependent kinase inhibitor encoding p16INK4a and p19ARF, is a candidate for the plasmacytoma susceptibility locus, Pctr1

    PubMed Central

    Zhang, Shuling; Ramsay, Edward S.; Mock, Beverly A.

    1998-01-01

    Plasma cell tumor induction in mice by pristane is under multigenic control. BALB/c mice are susceptible to tumor development; whereas DBA/2 mice are resistant. Restriction fragment length polymorphisms between BALB/c and DBA/2 for Cdkn2a(p16) and Cdkn2b(p15), and between BALB/c and Mus spretus for Cdkn2c(p18INK4c) were used to position these loci with respect to the Pctr1 locus. These cyclin-dependent kinase (CDK) inhibitors mapped to a 6 cM interval of chromosome 4 between Ifna and Tal1. C.D2-Chr 4 congenic strains harboring DBA/2 alleles associated with the Pctr1 locus contained DBA/2 “resistant” alleles of the CDK4/CDK6 inhibitors p16 and p15. On sequencing p16 and p18 cDNAs, two different allelic variants within ankyrin repeat regions of p16 were found between BALB/c and DBA/2 mice. By using an assay involving PCR amplification and restriction enzyme digestion, allelic variants were typed among several inbred strains of mice. One of the variants, G232A, was specific to two inbred strains, BALB/cAn and ABP/Le, of mice and occurred in a highly conserved amino acid in both human and rat p16. When tested with wild-type (DBA/2) p16, both A134C and G232A BALB/c-specific variants of p16 were inefficient in their ability to inhibit the activity of cyclin D2/CDK4 in kinase assays with retinoblastoma protein, suggesting this defective, inherited allele plays an important role in the genetic susceptibility of BALB/c mice for plasmacytoma induction and that p16INK4a is a strong candidate for the Pctr1 locus. PMID:9482902

  5. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  6. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  7. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    SciTech Connect

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin; Roach, Peter J.

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  8. Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters.

    PubMed

    Cazabat, Laure; Ragazzon, Bruno; Varin, Audrey; Potier-Cartereau, Marie; Vandier, Christophe; Vezzosi, Delphine; Risk-Rabin, Marthe; Guellich, Aziz; Schittl, Julia; Lechêne, Patrick; Richter, Wito; Nikolaev, Viacheslav O; Zhang, Jin; Bertherat, Jérôme; Vandecasteele, Grégoire

    2014-03-01

    Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.

  9. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. ENCODE data at the ENCODE portal

    PubMed Central

    Sloan, Cricket A.; Chan, Esther T.; Davidson, Jean M.; Malladi, Venkat S.; Strattan, J. Seth; Hitz, Benjamin C.; Gabdank, Idan; Narayanan, Aditi K.; Ho, Marcus; Lee, Brian T.; Rowe, Laurence D.; Dreszer, Timothy R.; Roe, Greg; Podduturi, Nikhil R.; Tanaka, Forrest; Hong, Eurie L.; Cherry, J. Michael

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) Project is in its third phase of creating a comprehensive catalog of functional elements in the human genome. This phase of the project includes an expansion of assays that measure diverse RNA populations, identify proteins that interact with RNA and DNA, probe regions of DNA hypersensitivity, and measure levels of DNA methylation in a wide range of cell and tissue types to identify putative regulatory elements. To date, results for almost 5000 experiments have been released for use by the scientific community. These data are available for searching, visualization and download at the new ENCODE Portal (www.encodeproject.org). The revamped ENCODE Portal provides new ways to browse and search the ENCODE data based on the metadata that describe the assays as well as summaries of the assays that focus on data provenance. In addition, it is a flexible platform that allows integration of genomic data from multiple projects. The portal experience was designed to improve access to ENCODE data by relying on metadata that allow reusability and reproducibility of the experiments. PMID:26527727

  11. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  12. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  13. Discovering the first tyrosine kinase.

    PubMed

    Hunter, Tony

    2015-06-30

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson's group that the Rous sarcoma virus (RSV) v-Src-transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src-associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month.

  14. Leishmania MAP kinases--familiar proteins in an unusual context.

    PubMed

    Wiese, Martin

    2007-08-01

    Mitogen-activated protein kinases are well-known mediators of signal transduction of higher eukaryotes regulating important processes like proliferation, differentiation, stress response and apoptosis. In Leishmania, the typical three-tiered module of MAP kinase signal transduction pathways is present. However, typical activators like cell surface receptors and substrates such as RNA polymerase II transcription factors are missing. Here, I describe the set of 15 putative mitogen-activated protein kinases encoded in the Leishmania genome and discuss their potential function.

  15. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    USDA-ARS?s Scientific Manuscript database

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  16. Updated rice kinase database RKD 2.0: enabling transcriptome and functional analysis of rice kinase genes

    USDA-ARS?s Scientific Manuscript database

    Protein kinases catalyze the transfer of a phosphate moiety from a phosphate donor to the substrate molecule, thus, playing critical roles in cell signaling and metabolism. Although plant genomes contain more than 1,000 genes that encode kinases, knowledge is limited about the precise roles for the...

  17. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.

    PubMed

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-09-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.

  18. Dominant Mutations of Drosophila Map Kinase Kinase and Their Activities in Drosophila and Yeast Map Kinase Cascades

    PubMed Central

    Lim, Y. M.; Tsuda, L.; Inoue, Y. H.; Irie, K.; Adachi-Yamada, T.; Hata, M.; Nishi, Y.; Matsumoto, K.; Nishida, Y.

    1997-01-01

    Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors. PMID:9136016

  19. Optimized thymidylate kinase assay, based on enzymatically synthesized 5-(/sup 125/I)iododeoxyuridine monophosphate and its application to an immunological study of herpes simplex virus thymidine-thymidylate kinases

    SciTech Connect

    Karlstroem, A.R.G.; Gronowitz, J.S.

    1987-05-01

    The biological synthesis and purification of 5-(/sup 125/I)iododeoxyuridine monophosphate (IdUMP) are described. The specificity of IdUMP as substrate in the thymidylate monophosphate kinase (TMPK) assay is demonstrated, and a 100-fold gain in sensitivity as compared to the conventional TMPK assay is shown. TMPK measurements of isozymes derived from herpes simplex virus (HSV)-infected cells, uninfected cells, and tumor biopsies were performed. The results showed a significant difference in dependence of phosphate donor concentration present for TMPK activity from HSV-infected cells compared to the corresponding activity from uninfected cells, while only a minor difference in pH optima was observed for these enzyme activities. The increased sensitivity made it possible to detect and quantify HSV TMPK-blocking antibodies (ab) present in human sera. Sera from HSV ab-positive individuals were found to block the two HSV TMPKs to varying degrees and with different specificities. The immunological relationship between the TMPK and thymidine kinase (TK) induced by HSV-1 and HSV-2, respectively, was studied by comparing the capacities of different sera to block the two enzymatic activities. The results showed that the capacity to block HSV-1 TK and TMPK was proportional for all of the sera studied, while sera that preferentially blocked only the HSV-2 TMPK or HSV-2 TK were found. It was concluded that the HSV-2 TMPK and TK activities are less related than the corresponding activities for HSV-1 and that the HSV-2 enzyme activities are mediated by different catalytic sites.

  20. Novel library of selenocompounds as kinase modulators.

    PubMed

    Plano, Daniel; Ibáñez, Elena; Calvo, Alfonso; Palop, Juan Antonio; Sanmartín, Carmen

    2011-07-27

    Although the causes of cancer lie in mutations or epigenic changes at the genetic level, their molecular manifestation is the dysfunction of biochemical pathways at the protein level. The 518 protein kinases encoded by the human genome play a central role in various diseases, a fact that has encouraged extensive investigations on their biological function and three dimensional structures. Selenium (Se) is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties. The mechanisms of action for selenocompounds as anticancer agents are not fully understood, but kinase modulation seems to be a possible pathway. Various organosulfur compounds have shown antitumoral and kinase inhibition effects but, in many cases, the replacement of sulfur by selenium improves the antitumoral effect of compounds. Although Se atom possesses a larger atomic volume and nucleophilic character than sulfur, Se can also formed interactions with aminoacids of the catalytic centers of proteins. So, we propose a novel chemical library that includes organoselenium compounds as kinase modulators. In this study thirteen selenocompounds have been evaluated at a concentration of 3 or 10 µM in a 24 kinase panel using a Caliper LabChip 3000 Drug Discover Platform. Several receptor (EGFR, IGFR1, FGFR1…) and non-receptor (Abl) kinases have been selected, as well as serine/threonine/lipid kinases (AurA, Akt, CDKs, MAPKs…) implicated in main cancer pathways: cell cycle regulation, signal transduction, angiogenesis regulation among them. The obtained results showed that two compounds presented inhibition values higher than 50% in at least four kinases and seven derivatives selectively inhibited one or two kinases. Furthermore, three compounds selectively activated IGF-1R kinase with values ranging from -98% to -211%. In conclusion, we propose that the replacement of sulfur by selenium seems to be a potential and

  1. Targeting cancer with small-molecular-weight kinase inhibitors.

    PubMed

    Fabbro, Doriano; Cowan-Jacob, Sandra W; Möbitz, Henrik; Martiny-Baron, Georg

    2012-01-01

    Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.

  2. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    PubMed Central

    Vlasova-St. Louis, Irina; Bohjanen, Paul R.

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  3. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs.

    PubMed

    Vlasova-St Louis, Irina; Bohjanen, Paul R

    2016-01-25

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.

  4. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases.

    PubMed

    Suga, Hiroshi; Dacre, Michael; de Mendoza, Alex; Shalchian-Tabrizi, Kamran; Manning, Gerard; Ruiz-Trillo, Iñaki

    2012-05-01

    The evolution of multicellular metazoans from a unicellular ancestor is one of the most important advances in the history of life. Protein tyrosine kinases play important roles in cell-to-cell communication, cell adhesion, and differentiation in metazoans; thus, elucidating their origins and early evolution is crucial for understanding the origin of metazoans. Although tyrosine kinases exist in choanoflagellates, few data are available about their existence in other premetazoan lineages. To unravel the origin of tyrosine kinases, we performed a genomic and polymerase chain reaction (PCR)-based survey of the genes that encode tyrosine kinases in the two described filasterean species, Capsaspora owczarzaki and Ministeria vibrans, the closest relatives to the Metazoa and Choanoflagellata clades. We present 103 tyrosine kinase-encoding genes identified in the whole genome sequence of C. owczarzaki and 15 tyrosine kinase-encoding genes cloned by PCR from M. vibrans. Through detailed phylogenetic analysis, comparison of the organizations of the protein domains, and resequencing and revision of tyrosine kinase sequences previously found in some whole genome sequences, we demonstrate that the basic repertoire of metazoan cytoplasmic tyrosine kinases was established before the divergence of filastereans from the Metazoa and Choanoflagellata clades. In contrast, the receptor tyrosine kinases diversified extensively in each of the filasterean, choanoflagellate, and metazoan clades. This difference in the divergence patterns between cytoplasmic tyrosine kinases and receptor tyrosine kinases suggests that receptor tyrosine kinases that had been used for receiving environmental cues were subsequently recruited as a communication tool between cells at the onset of metazoan multicellularity.

  5. Archaeal Shikimate Kinase, a New Member of the GHMP-Kinase Family

    PubMed Central

    Daugherty, Matthew; Vonstein, Veronika; Overbeek, Ross; Osterman, Andrei

    2001-01-01

    Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi|1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi|1591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: Km,shikimate = 414 ± 33 μM, Km,ATP = 48 ± 4 μM, and kcat = 57 ± 2 s−1 for the predicted shikimate kinase and Km,homoserine = 188 ± 37 μM, Km,ATP = 101 ± 7 μM, and kcat = 28 ± 1 s−1 for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes. PMID:11114929

  6. Miniaturised optical encoder

    NASA Astrophysics Data System (ADS)

    Carr, John; Desmulliez, Marc P. Y.; Weston, Nick; McKendrick, David; Cunningham, Graeme; McFarland, Geoff; Meredith, Wyn; McKee, Andrew; Langton, Conrad; Eddie, Iain

    2008-08-01

    Optical encoders are pervasive in many sectors of industry including metrology, motion systems, electronics, medical, scanning/ printing, scientific instruments, space research and specialist machine tools. The precision of automated manufacture and assembly has been revolutionised by the adoption of optical diffractive measurement methods. Today's optical encoders comprise discrete components: light source(s), reference and analyser gratings, and a photodiode array that utilise diffractive optic methods to achieve high resolution. However the critical alignment requirements between the optical gratings and to the photodiode array, the bulky nature of the encoder devices and subsequent packaging mean that optical encoders can be prohibitively expensive for many applications and unsuitable for others. We report here on the design, manufacture and test of a miniaturised optical encoder to be used in precision measurement systems. Microsystems manufacturing techniques facilitate the monolithic integration of the traditional encoder components onto a single compound semiconductor chip, radically reducing the size, cost and set-up time. Fabrication of the gratings at the wafer level, by standard photo-lithography, allows for the simultaneous alignment of many devices in a single process step. This development coupled with a unique photodiode configuration not only provides increased performance but also significantly improves the alignment tolerances in both manufacture and set-up. A National Research and Development Corporation type optical encoder chip has been successfully demonstrated under test conditions on both amplitude and phase scales with pitches of 20 micron, 8 micron and 4 micron, showing significantly relaxed alignment tolerances with signal-to-noise ratios greater than 60:1. Various reference mark schemes have also been investigated. Results are presented here.

  7. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.

    PubMed

    Klein, Christian L; Rovelli, Giorgio; Springer, Wolfdieter; Schall, Christoph; Gasser, Thomas; Kahle, Philipp J

    2009-11-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant familial and late-onset sporadic Parkinson's disease (PD). LRRK2 is a large multi-domain protein featuring a GTP-binding C-terminal of Ras of complex proteins (ROC) (ROCO) domain combination unique for the ROCO protein family, directly followed by a kinase domain. Dimerization is a well-established phenomenon among protein kinases. Here, we confirm LRRK2 self-interaction, and provide evidence for general homo- and heterodimerization potential among the ROCO kinase family (LRRK2, LRRK1, and death-associated protein kinase 1). The ROCO domain was critically, though not exclusively involved in dimerization, as a LRRK2 deletion mutant lacking the ROCO domain retained dimeric properties. GTP binding did not appear to influence ROCO(LRRK2) self-interaction. Interestingly, ROCO(LRRK2) fragments exerted an inhibitory effect on both wild-type and the elevated G2019S LRRK2 autophosphorylation activity. Insertion of PD mutations into ROCO(LRRK2) reduced self-interaction and led to a reduction of LRRK2 kinase inhibition. Collectively, these results suggest a functional link between ROCO interactions and kinase activity of wild-type and mutant LRRK2. Importantly, our finding of ROCO(LRRK2) fragment-mediated LRRK2 kinase inhibition offers a novel lead for drug design and thus might have important implications for new therapeutic avenues in PD.

  8. Kinetic mechanism and energetics of binding of phosphoryl group acceptors to Mycobacterium tuberculosis cytidine monophosphate kinase.

    PubMed

    Jaskulski, Léia; Rosado, Leonardo A; Rostirolla, Diana C; Timmers, Luis F S M; de Souza, Osmar N; Santos, Diogenes S; Basso, Luiz A

    2013-08-01

    Cytidine monophosphate kinase from Mycobacterium tuberculosis (MtCMK) likely plays a role in supplying precursors for nucleic acid synthesis. MtCMK catalyzes the ATP-dependent phosphoryl group transfer preferentially to CMP and dCMP. Initial velocity studies and Isothermal titration calorimetry (ITC) measurements showed that MtCMK follows a random-order mechanism of substrate (CMP and ATP) binding, and an ordered mechanism for product release, in which ADP is released first followed by CDP. The thermodynamic signatures of CMP and CDP binding to MtCMK showed favorable enthalpy and unfavorable entropy, and ATP binding was characterized by favorable changes in enthalpy and entropy. The contribution of linked protonation events to the energetics of MtCMK:phosphoryl group acceptor binary complex formation suggested a net gain of protons. Values for the pKa of a likely chemical group involved in proton exchange and for the intrinsic binding enthalpy were calculated. The Asp187 side chain of MtCMK is suggested as the likely candidate for the protonation event. Data on thermodynamics of binary complex formation were collected to evaluate the contribution of 2'-OH group to intermolecular interactions. The data are discussed in light of functional and structural comparisons between CMP/dCMP kinases and UMP/CMP ones.

  9. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared.

  10. Characterization of two kinases involved in thiamine pyrophosphate and pyridoxal phosphate biosynthesis in Bacillus subtilis: 4-amino-5-hydroxymethyl-2methylpyrimidine kinase and pyridoxal kinase.

    PubMed

    Park, Joo-Heon; Burns, Kristin; Kinsland, Cynthia; Begley, Tadhg P

    2004-03-01

    Two Bacillus subtilis genes encoding two proteins (currently annotated ThiD and YjbV) were overexpressed and characterized. YjbV has 4-amino-5-hydroxymethyl-2-methylpyrimidine and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate kinase activity and should be reannotated ThiD, and B. subtilis ThiD has pyridoxine, pyridoxal, and pyridoxamine kinase activity and should be reannotated PdxK.

  11. Conservation and Early Expression of Zebrafish Tyrosine Kinases Support the Utility of Zebrafish as a Model for Tyrosine Kinase Biology

    PubMed Central

    Challa, Anil Kumar

    2013-01-01

    Abstract Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome. PMID:23234507

  12. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology.

    PubMed

    Challa, Anil Kumar; Chatti, Kiranam

    2013-09-01

    Tyrosine kinases have significant roles in cell growth, apoptosis, development, and disease. To explore the use of zebrafish as a vertebrate model for tyrosine kinase signaling and to better understand their roles, we have identified all of the tyrosine kinases encoded in the zebrafish genome and quantified RNA expression of selected tyrosine kinases during early development. Using profile hidden Markov model analysis, we identified 122 zebrafish tyrosine kinase genes and proposed unambiguous gene names where needed. We found them to be organized into 39 nonreceptor and 83 receptor type, and 30 families consistent with human tyrosine kinase family assignments. We found five human tyrosine kinase genes (epha1, bmx, fgr, srm, and insrr) with no identifiable zebrafish ortholog, and one zebrafish gene (yrk) with no identifiable human ortholog. We also found that receptor tyrosine kinase genes were duplicated more often than nonreceptor tyrosine kinase genes in zebrafish. We profiled expression levels of 30 tyrosine kinases representing all families using direct digital detection at different stages during the first 24 hours of development. The profiling experiments clearly indicate regulated expression of tyrosine kinases in the zebrafish, suggesting their role during early embryonic development. In summary, our study has resulted in the first comprehensive description of the zebrafish tyrosine kinome.

  13. Mevalonate kinase deficiency: current perspectives

    PubMed Central

    Favier, Leslie A; Schulert, Grant S

    2016-01-01

    Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder. PMID:27499643

  14. Video time encoding machines.

    PubMed

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  15. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  16. Genetically-encoded Reporters

    NASA Astrophysics Data System (ADS)

    Isacoff, Ehud

    2002-03-01

    One of the principle goals of neuroscience has been to understand the cellular basis of information processing and the plasticity that underlies learning and memory. Efforts in this area have mainly relied on electrical recording and optical imaging with chemical dyes. Over the last few years we and others have begun to develop genetically-encoded optical reporter "dyes" which should provide several important advantages over the classical methods for monitoring signal transmission in the nervous system. The advantages are that genetically-encoded reporters can be molecularly targeted a) to specific cell types via cell-specific promoters, and b) to specific subcellular compartments by peptides that are recognized by the protein sorting machinery of the cell. This makes it possible, in principle, to exclude signals from non-neuronal cells and to visualize selectively, in a brain region that contains many cell types with numerous kinds of synaptic connections, the activity of specific types of neurons (e.g. GABAergic interneurons) and specific synaptic elements (e.g. nerve terminals or dendrites), something that has hitherto not been possible. An additional advantage is that protein reporters may be rationally and irrationally "tuned" with mutations in functional domains known to control their dynamic range of operation. The general idea behind genetically-encoded reporters of cell signaling is to encode a protein that is either intrinsically fluorescent, or that can be labeled orthogonally with a fluorescent probe, and where the physiological signal changes fluorescence emission. I will describe recent progress employing both kinds of approaches.

  17. Time-Encoded Imagers.

    SciTech Connect

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  18. WNK Kinases, Renal Ion Transport and Hypertension

    PubMed Central

    San-Cristobal, Pedro; de los Heros, Paola; Ponce-Coria, José; Moreno, Erika; Gamba, Gerardo

    2008-01-01

    Two members of a recently discovered family of protein kinases are the cause of an inherited disease known as pseudohypoaldosteronism type II (PHAII). These patients exhibit arterial hypertension together with hyperkalemia and metabolic acidosis. This is a mirror image of Gitelman disease that is due to inactivating mutations of the SLC12A3 gene that encodes the thiazide-sensitive Na+: Cl− cotransporter. The uncovered genes causing PHAII encode for serine/threonine kinases known as WNK1 and WNK4. Physiological and biochemical studies have revealed that WNK1 and WNK4 modulate the activity of several transport pathways of the aldosterone-sensitive distal nephron, thus increasing our understanding of how diverse renal ion transport proteins are coordinated to regulate normal blood pressure levels. Observations discussed in the present work place WNK1 and WNK4 as genes involved in the genesis of essential hypertension and as potential targets for the development of antihypertensive drugs. PMID:18547946

  19. The Dictyostelium Kinome—Analysis of the Protein Kinases from a Simple Model Organism

    PubMed Central

    Liu, Allen; Fey, Petra; Pilcher, Karen E; Xu, Yanji; Smith, Janet L

    2006-01-01

    Dictyostelium discoideum is a widely studied model organism with both unicellular and multicellular forms in its developmental cycle. The Dictyostelium genome encodes 285 predicted protein kinases, similar to the count of the much more advanced Drosophila. It contains members of most kinase classes shared by fungi and metazoans, as well as many previously thought to be metazoan specific, indicating that they have been secondarily lost from the fungal lineage. This includes the entire tyrosine kinase–like (TKL) group, which is expanded in Dictyostelium and includes several novel receptor kinases. Dictyostelium lacks tyrosine kinase group kinases, and most tyrosine phosphorylation appears to be mediated by TKL kinases. About half of Dictyostelium kinases occur in subfamilies not present in yeast or metazoa, suggesting that protein kinases have played key roles in the adaptation of Dictyostelium to its habitat. This study offers insights into kinase evolution and provides a focus for signaling analysis in this system. PMID:16596165

  20. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  1. Prediction of 492 human protein kinase substrate specificities.

    PubMed

    Safaei, Javad; Maňuch, Ján; Gupta, Arvind; Stacho, Ladislav; Pelech, Steven

    2011-10-14

    Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase. The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates. Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the

  2. Two Kinase Family Dramas

    PubMed Central

    Leonard, Thomas A.; Hurley, James H.

    2007-01-01

    In this issue, Lietha and colleagues (2007) report the structure of focal adhesion kinase (FAK) and reveal how FAK maintains an autoinhibited state. Together with the structure of another tyrosine kinase, ZAP-70 (Deindl et al., 2007), this work highlights the diversity of mechanisms that nature has evolved within the kinase superfamily to regulate their activity through autoinhibition. PMID:17574014

  3. Time-Encoded Imagers

    SciTech Connect

    Marleau, Peter; Brubaker, Erik; Brennan, James S.; Nowack, Aaron

    2014-09-01

    We have developed two neutron detector systems based on time-encoded imaging and demonstrated their applicability toward non-proliferation missions. The 1D-TEI system was designed for and evaluated against the ability to detect Special Nuclear Material (SNM) in very low signal to noise environments; in particular, very large stand-off and/or weak sources that may be shielded. We have demonstrated significant detection (>5 sigma) of a 2.8e5 n/s neutron fission source at 100 meters stand-off in 30 min. If scaled to an IAEA significant quantity of Pu, we estimate that this could be reduced to as few as ~5 minutes. In contrast to simple counting detectors, this was accomplished without the need of previous background measurements. The 2D-TEI system was designed for high resolution spatial mapping of distributions of SNM and proved feasibility of twodimensional fast neutron imaging using the time encoded modulation of rates on a single pixel detector. Because of the simplicity of the TEI design, there is much lower systematic uncertainty in the detector response typical coded apertures. Other imaging methods require either multiple interactions (e.g. neutron scatter camera or Compton imagers), leading to intrinsically low efficiencies, or spatial modulation of the signal (e.g., Neutron Coded Aperture Imager (Hausladen, 2012)), which requires a complicated, high channel count, and expensive position sensitive detector. In contrast, a single detector using a time-modulated collimator can encode directional information in the time distribution of detected events. This is the first investigation of time-encoded imaging for nuclear nonproliferation applications.

  4. Evaluation of the enzyme activity of protozoan protein kinases by using an in vitro kinase assay.

    PubMed

    Kato, Kentaro

    2016-10-01

    The life cycles of parasites are more complicated than those of other biological species. Protein kinases (PKs) encoded by parasites are the main triggers of life stage conversions. Phosphorylation by cellular PKs regulates important cellular processes, and the protozoan genome contains many PKs. Some PK inhibitors inhibit specific parasite life cycle event. In this report, I present a practical approach to expressing and purifying protozoan PKs by using a wheat germ cell-free protein synthesis system and I assess the phosphorylation activities of protozoan PKs by using an in vitro kinase assay. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Spectrally encoded confocal microscopy

    SciTech Connect

    Tearney, G.J.; Webb, R.H.; Bouma, B.E.

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  6. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    PubMed

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.

  7. Characteristic and intermingled neocortical circuits encode different visual object discriminations.

    PubMed

    Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I

    2017-07-28

    Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  9. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    PubMed

    Aleem, Saadat U; Craddock, Barbara P; Miller, W Todd

    2015-01-01

    The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  10. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase

    PubMed Central

    Miller, W. Todd

    2015-01-01

    The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution. PMID:26090675

  11. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells.

    PubMed

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-09-14

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation.

  12. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells

    PubMed Central

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-01-01

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. PMID:27624869

  13. Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases

    PubMed Central

    Matsuo, Tomohiko; Kubo, Yoshiya; Watanabe, Yoshinori; Yamamoto, Masayuki

    2003-01-01

    The TOR protein is a phosphoinositide kinase-related kinase widely conserved among eukaryotes. Fission yeast tor1 encodes an ortholog of TOR, which is required for sexual development and growth under stressed conditions. We isolated gad8, which encodes a Ser/Thr kinase of the AGC family, as a high-copy suppressor of the sterility of a tor1 mutant. Disruption of gad8 caused phenotypes similar to those of tor1 disruption. Gad8p was less phosphorylated and its kinase activity was undetectable in tor1Δ cells. Three amino acid residues corresponding to conserved phosphorylation sites in the AGC family kinases, namely Thr387 in the activation loop, Ser527 in the turn motif and Ser546 in the hydrophobic motif, were important for the kinase activity of Gad8p. Tor1p was responsible for the phosphorylation of Ser527 and Ser546, whereas Ksg1p, a PDK1-like kinase, appeared to phosphorylate Thr387 directly. Altogether, Tor1p, Ksg1p and Gad8p appear to constitute a signaling module for sexual development and growth under stressed conditions in fission yeast, which resembles the mTOR–PDK1–S6K1 system in mammals and may represent a basic signaling module ubiquitous in eukaryotes. PMID:12805221

  14. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

    PubMed Central

    Matsui, T; Amano, M; Yamamoto, T; Chihara, K; Nakafuku, M; Ito, M; Nakano, T; Okawa, K; Iwamatsu, A; Kaibuchi, K

    1996-01-01

    The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway. Images PMID:8641286

  15. Time Encoded Radiation Imaging

    SciTech Connect

    Marleau, Peter; Brubaker, Erik; Gerling, Mark D.; Schuster, Patricia Frances; Steele, John T.

    2011-09-01

    Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.

  16. Time encoded radiation imaging

    SciTech Connect

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  17. Rotary encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  18. Linear encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A Linear Motion Encoding device for measuring the linear motion of a moving object is disclosed in which a light source is mounted on the moving object and a position sensitive detector such as an array photodetector is mounted on a nearby stationary object. The light source emits a light beam directed towards the array photodetector such that a light spot is created on the array. An analog-to-digital converter, connected to the array photodetector is used for reading the position of the spot on the array photodetector. A microprocessor and memory is connected to the analog-to-digital converter to hold and manipulate data provided by the analog-to-digital converter on the position of the spot and to compute the linear displacement of the moving object based upon the data from the analog-to-digital converter.

  19. Pantothenate kinase-associated neurodegeneration.

    PubMed

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN.

  20. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    PubMed

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  1. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  2. Regulation of tomato Prf by Pto-like protein kinases.

    PubMed

    Mucyn, Tatiana S; Wu, Ai-Jiuan; Balmuth, Alexi L; Arasteh, Julia Maryam; Rathjen, John P

    2009-04-01

    Tomato Prf encodes a nucleotide-binding domain shared by Apaf-1, certain R proteins, and CED-4 fused to C-terminal leucine-rich repeats (NBARC-LRR) protein that is required for bacterial immunity to Pseudomonas syringae and sensitivity to the organophosphate fenthion. The signaling pathways involve two highly related protein kinases. Pto kinase mediates direct recognition of the bacterial effector proteins AvrPto or AvrPtoB. Fen kinase is required for fenthion sensitivity and recognition of bacterial effectors related to AvrPtoB. The role of Pto and its association with Prf has been characterized but Fen is poorly described. We show that, similar to Pto, Fen requires N-myristoylation and kinase activity for signaling and interacts with the N-terminal domain of Prf. Thus, the mechanisms of activation of Prf by the respective protein kinases are similar. Prf-Fen interaction is underlined by coregulatory mechanisms in which Prf negatively regulates Fen, most likely by controlling kinase activity. We further characterized negative regulation of Prf by Pto, and show that regulation is mediated by the previously described negative regulatory patch. Remarkably, the effectors released negative regulation of Prf in a manner dependent on Pto kinase activity. The data suggest a model in which Prf associates generally with Pto-like kinases in tightly regulated complexes, which are activated by effector-mediated disruption of negative regulation. Release of negative regulation may be a general feature of activation of NBARC-LRR proteins by cognate effectors.

  3. N-Consecutive-Phase Encoder

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Lee, Ho-Kyoung; Weber, Charles

    1995-01-01

    N-consecutive-phase encoder (NCPE) is conceptual encoder for generating alphabet of N consecutive full-response continuous-phase-modulation (CPM) signals. Enables use of binary preencoder of higher rate than used with simple continuous-phase encoder (CPE). NCPE makes possible to achieve power efficiencies and bandwidth efficiencies greater than conventional trellis coders with continuous-phase frequency-shift keying (CPFSK).

  4. Genetically encoding new bioreactivity.

    PubMed

    Wang, Lei

    2017-09-25

    The genetic code can be expanded to include unnatural amino acids (Uaas) by engineering orthogonal components involved in protein translation. To be compatible with live cells, side chains of Uaas have been limited to either chemically inert or bio-orthogonal (i.e., nonreactive toward biomolecules) functionalities. To introduce bioreactivity into live systems, the genetic code has recently been engineered to encode a new class of Uaas, the bioreactive Uaas. These Uaas, after being incorporated into proteins, specifically react with target natural amino acid residues via proximity-enabled bioreactivity, enabling the selective formation of new covalent linkages within and between proteins both in vitro and in live systems. The new covalent bonding ability has been harnessed within proteins to enhance photostability, increase thermostability, staple proteins recombinantly, and build optical nano-switches, and between proteins to pinpoint ligand-receptor interaction, target native receptors irreversibly, and generate covalent macromolecular inhibitors. These diverse bioreactivities, inaccessible to natural proteins, thus open doors to novel protein engineering and provide new avenues for biological studies, biotherapeutics and synthetic biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    PubMed

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  6. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  7. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  8. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  9. [Tyrosine kinase inhibitors].

    PubMed

    Robert, Jacques

    2011-11-01

    Membrane receptors with tyrosine kinase activity and cytoplasmic tyrosine kinases have emerged as important potential targets in oncology. Starting from basic structures such as anilino-quinazoline, numerous compounds have been synthesised, with the help of tyrosine kinase crystallography, which has allowed to optimise protein-ligand interactions. The catalytic domains of all kinases present similar three-dimensional structures, which explains that it may be difficult to identify molecules having a high specificity for a given tyrosine kinase. Some tyrosine kinase inhibitors are relatively specific for epidermal growth factor receptor (EGFR) such as géfitinib and erlotinib; other are mainly active against platelet-derived growth factor receptor (PDGFR) and the receptor KIT, such as imatinib or nilotinib, and other against vascular endothelial growth factor (VEGF) receptors involved in angiogenesis, such as sunitinib and sorafenib. The oral formulation of tyrosine kinase inhibitors is well accepted by the patients but may generate sometimes compliance problems requiring pharmacokinetic monitoring. This chemical family is in full expansion and several dozens of compounds have entered clinical trials.

  10. beta-subunits of Snf1 kinase are required for kinase function and substrate definition.

    PubMed

    Schmidt, M C; McCartney, R R

    2000-09-15

    The Snf1 kinase and its mammalian homolog, the AMP-activated protein kinase, are heterotrimeric enzymes composed of a catalytic alpha-subunit, a regulatory gamma-subunit and a beta-subunit that mediates heterotrimer formation. Saccharomyces cerevisiae encodes three beta-subunit genes, SIP1, SIP2 and GAL83. Earlier studies suggested that these subunits may not be required for Snf1 kinase function. We show here that complete and precise deletion of all three beta-subunit genes inactivates the Snf1 kinase. The sip1Delta sip2Delta gal83Delta strain is unable to derepress invertase, grows poorly on alternative carbon sources and fails to direct the phosphorylation of the Mig1 and Sip4 proteins in vivo. The SIP1 sip2Delta gal83Delta strain manifests a subset of Snf phenotypes (Raf(+), Gly(-)) observed in the snf1Delta 10 strain (Raf(-), Gly(-)), suggesting that individual beta-subunits direct the Snf1 kinase to a subset of its targets in vivo. Indeed, deletion of individual beta-subunit genes causes distinct differences in the induction and phosphorylation of Sip4, strongly suggesting that the beta-subunits play an important role in substrate definition.

  11. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  12. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  13. Peri-encoding predictors of memory encoding and consolidation.

    PubMed

    Cohen, Noga; Pell, Liat; Edelson, Micah G; Ben-Yakov, Aya; Pine, Alex; Dudai, Yadin

    2015-03-01

    We review reports of brain activations that occur immediately prior to the onset or following the offset of to-be-remembered information and can predict subsequent mnemonic success. Memory-predictive pre-encoding processes, occurring from fractions of a second to minutes prior to event onset, are mainly associated with activations in the medial temporal lobe (MTL), amygdala and midbrain, and with enhanced theta oscillations. These activations may be considered as the neural correlates of one or more cognitive operations, including contextual processing, attention, and the engagement of distinct computational modes associated with prior encoding or retrieval. Post-encoding activations that correlate with subsequent memory performance are mainly observed in the MTL, sensory cortices and frontal regions. These activations may reflect binding of elements of the encoded information and initiation of memory consolidation. In all, the findings reviewed here illustrate the importance of brain states in the immediate peri-encoding time windows in determining encoding success. Understanding these brain states and their specific effects on memory may lead to optimization of the encoding of desired memories and mitigation of undesired ones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5'-phosphatase.

    PubMed

    Preumont, Alice; Rzem, Rim; Vertommen, Didier; Van Schaftingen, Emile

    2010-10-15

    Pseudouridine, the fifth-most abundant nucleoside in RNA, is not metabolized in mammals, but is excreted intact in urine. The purpose of the present work was to search for an enzyme that would dephosphorylate pseudouridine 5'-phosphate, a potential intermediate in RNA degradation. We show that human erythrocytes contain a pseudouridine-5'-phosphatase displaying a Km ≤ 1 μM for its substrate. The activity of the partially purified enzyme was dependent on Mg2+, and was inhibited by Ca2+ and vanadate, suggesting that it belonged to the 'haloacid dehalogenase' family of phosphatases. Its low molecular mass (26 kDa) suggested that this phosphatase could correspond to the protein encoded by the HDHD1 (haloacid dehalogenase-like hydrolase domain-containing 1) gene, present next to the STS (steroid sulfatase) gene on human chromosome Xp22. Purified human recombinant HDHD1 dephosphorylated pseudouridine 5'-phosphate with a kcat of 1.6 s-1, a Km of 0.3 μM and a catalytic efficiency at least 1000-fold higher than that on which it acted on other phosphate esters, including 5'-UMP. The molecular identity of pseudouridine-5'-phosphatase was confirmed by the finding that its activity was negligible (<10% of controls) in extracts of B-cell lymphoblasts or erythrocytes from X-linked ichthyosis patients harbouring a combined deletion of the STS gene (the X-linked ichthyosis gene) and the HDHD1 gene. Furthermore, pseudouridine-5'-phosphatase activity was 1.5-fold higher in erythrocytes from women compared with men, in agreement with the HDHD1 gene undergoing only partial inactivation in females. In conclusion, HDHD1 is a phosphatase specifically involved in dephosphorylation of a modified nucleotide present in RNA.

  15. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine.

    PubMed

    Stern, D F; Zheng, P; Beidler, D R; Zerillo, C

    1991-02-01

    A Saccharomyces cerevisiae lambda gt11 library was screened with antiphosphotyrosine antibodies in an attempt to identify a gene encoding a tyrosine kinase. A subclone derived from one positive phage was sequenced and found to contain an 821-amino-acid open reading frame that encodes a protein with homology to protein kinases. We tested the activity of the putative kinase by constructing a vector encoding a glutathione-S-transferase fusion protein containing most of the predicted polypeptide. The fusion protein phosphorylated endogenous substrates and enolase primarily on serine and threonine. The gene was designated SPK1 for serine-protein kinase. Expression of the Spk1 fusion protein in bacteria stimulated serine, threonine, and tyrosine phosphorylation of bacterial proteins. These results, combined with the antiphosphotyrosine immunoreactivity induced by the kinase, indicate that Spk1 is capable of phosphorylating tyrosine as well as phosphorylating serine and threonine. In in vitro assays, the fusion protein kinase phosphorylated the synthetic substrate poly(Glu/Tyr) on tyrosine, but the activity was weak compared with serine and threonine phosphorylation of other substrates. To determine if other serine/threonine kinases would phosphorylate poly(Glu/Tyr), we tested calcium/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The two kinases had similar tyrosine-phosphorylating activities. These results establish that the functional difference between serine/threonine- and tyrosine-protein kinases is not absolute and suggest that there may be physiological circumstances in which tyrosine phosphorylation is mediated by serine/threonine kinases.

  16. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis

    PubMed Central

    Chevalier, David; Batoux, Martine; Fulton, Lynette; Pfister, Karen; Yadav, Ram Kishor; Schellenberg, Maja; Schneitz, Kay

    2005-01-01

    An open question remains as to what coordinates cell behavior during organogenesis, permitting organs to reach their appropriate size and shape. The Arabidopsis gene STRUBBELIG (SUB) defines a receptor-mediated signaling pathway in plants. SUB encodes a putative leucine-rich repeat transmembrane receptor-like kinase. The mutant sub phenotype suggests that SUB affects the formation and shape of several organs by influencing cell morphogenesis, the orientation of the division plane, and cell proliferation. Mutational analysis suggests that the kinase domain is important for SUB function. Biochemical assays using bacterially expressed fusion proteins indicate that the SUB kinase domain lacks enzymatic phosphotransfer activity. Furthermore, transgenes encoding WT and different mutant variants of SUB were tested for their ability to rescue the mutant sub phenotype. These genetic data also indicate that SUB carries a catalytically inactive kinase domain. The SUB receptor-like kinase may therefore signal in an atypical fashion. PMID:15951420

  17. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?

    PubMed Central

    Craddock, Travis J. A.; Tuszynski, Jack A.; Hameroff, Stuart

    2012-01-01

    Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells. PMID:22412364

  18. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  19. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  20. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  1. PNA-encoded chemical libraries.

    PubMed

    Zambaldo, Claudio; Barluenga, Sofia; Winssinger, Nicolas

    2015-06-01

    Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70.

  2. Genome-wide analysis and experimentation of plant serine/ threonine/tyrosine-specific protein kinases.

    PubMed

    Rudrabhatla, Parvathi; Reddy, Mamatha M; Rajasekharan, Ram

    2006-01-01

    Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.

  3. Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK.

    PubMed Central

    Lefebvre, D L; Bai, Y; Shahmolky, N; Sharma, M; Poon, R; Drucker, D J; Rosen, C F

    2001-01-01

    Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and reverse-transcriptase-mediated PCR demonstrated that mRNA transcripts for the SNF1/AMPK-related kinase (SNARK) were widely expressed in rodent tissues. The SNARK gene was localized to human chromosome 1q32 by fluorescent in situ hybridization. SNARK was translated in vitro to yield a single protein band of approx. 76 kDa; Western analysis of transfected baby hamster kidney (BHK) cells detected two SNARK-immunoreactive bands of approx. 76-80 kDa. SNARK was capable of autophosphorylation in vitro; immunoprecipitated SNARK exhibited phosphotransferase activity with the synthetic peptide substrate HMRSAMSGLHLVKRR (SAMS) as a kinase substrate. SNARK activity was significantly increased by AMP and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) in rat keratinocyte cells, implying that SNARK might be activated by an AMPK kinase-dependent pathway. Furthermore, glucose deprivation increased SNARK activity 3-fold in BHK fibroblasts. These findings identify SNARK as a glucose- and AICAriboside-regulated member of the AMPK-related gene family that represents a new candidate mediator of the cellular response to metabolic stress. PMID:11284715

  4. DNA sequences encoding osteoinductive products

    SciTech Connect

    Wang, E.A.; Wozney, J.M.; Rosen, V.

    1991-05-07

    This patent describes an isolated DNA sequence encoding an osteoinductive protein the DNA sequence comprising a coding sequence. It comprises: nucleotide No.1 through nucleotide No.387, nucleotide No.356 through nucleotide No.1543, nucleotide $402 through nucleotide No.1626, naturally occurring allelic sequences and equivalent degenerative codon sequences and sequences which hybridize to any of sequences under stringent hybridization conditions; and encode a protein characterized by the ability to induce the formation of bone and/or cartilage.

  5. Orphan kinases turn eccentric

    PubMed Central

    Mikolcevic, Petra; Rainer, Johannes; Geley, Stephan

    2012-01-01

    PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed “PCTAIRE” sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions. PMID:22895054

  6. Fear conditioning and extinction: emotional states encoded by distinct signaling pathways

    PubMed Central

    Tronson, Natalie C.; Corcoran, Kevin A.; Jovasevic, Vladimir; Radulovic, Jelena

    2011-01-01

    Conditioning and extinction of fear have traditionally been viewed as two independent learning processes for encoding representations of contexts or cues (conditioned stimuli, CS), aversive events (unconditioned stimuli, US), and their relationship. Based on the analysis of protein kinase signaling patterns in neurons of the fear circuit, we propose that fear and extinction are best conceptualized as emotional states triggered by a single CS representation with two opposing values: aversive and non-aversive. These values are conferred by the presence or absence of the US and encoded by distinct sets of kinase signaling pathways and their downstream targets. Modulating specific protein kinases thus has the potential to modify emotional states, and hence, may emerge as a promising treatment for anxiety disorders. PMID:22118930

  7. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase

    NASA Astrophysics Data System (ADS)

    Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav

    2011-01-01

    Thymidine monophosphate kinase (TMPKmt) is an essential enzyme for nucleotide metabolism in Mycobacterium tuberculosis, and thus an attractive target for novel antituberculosis agents. In this work, we have explored the chemical space around the 2',3'-bicyclic thymidine nucleus by designing and in silico screening of a virtual focused library selected via structure based methods to identify more potent analogs endowed with favorable ADME-related properties. In all the library members we have exchanged the ribose ring of the template with a cyclopentane moiety that is less prone to enzymatic degradation. In addition, we have replaced the six-membered 2',3'-ring by a number of five-membered and six-membered heterocyclic rings containing alternative proton donor and acceptor groups, to exploit the interaction with the carboxylate groups of Asp9 and Asp163 as well as with several cationic residues present in the vicinity of the TMPKmt binding site. The three-dimensional structure of the TMPKmt complexed with 5-hydroxymethyl-dUMP, an analog of dTMP, was employed to develop a QSAR model, to parameterize a scoring function specific for the TMPKmt target and to select analogues which display the highest predicted binding to the target. As a result, we identified a small highly focused combinatorial subset of bicyclic thymidine analogues as virtual hits that are predicted to inhibit the mycobacterial TMPK in the submicromolar concentration range and to display favorable ADME-related properties.

  8. PAK family kinases

    PubMed Central

    Zhao, Zhuo-shen; Manser, Ed

    2012-01-01

    The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1–6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4–6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies. PMID:23162738

  9. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  10. PhenCode: connecting ENCODE data with mutations and phenotype.

    PubMed

    Giardine, Belinda; Riemer, Cathy; Hefferon, Tim; Thomas, Daryl; Hsu, Fan; Zielenski, Julian; Sang, Yunhua; Elnitski, Laura; Cutting, Garry; Trumbower, Heather; Kern, Andrew; Kuhn, Robert; Patrinos, George P; Hughes, Jim; Higgs, Doug; Chui, David; Scriver, Charles; Phommarinh, Manyphong; Patnaik, Santosh K; Blumenfeld, Olga; Gottlieb, Bruce; Vihinen, Mauno; Väliaho, Jouni; Kent, Jim; Miller, Webb; Hardison, Ross C

    2007-06-01

    PhenCode (Phenotypes for ENCODE; http://www.bx.psu.edu/phencode) is a collaborative, exploratory project to help understand phenotypes of human mutations in the context of sequence and functional data from genome projects. Currently, it connects human phenotype and clinical data in various locus-specific databases (LSDBs) with data on genome sequences, evolutionary history, and function from the ENCODE project and other resources in the UCSC Genome Browser. Initially, we focused on a few selected LSDBs covering genes encoding alpha- and beta-globins (HBA, HBB), phenylalanine hydroxylase (PAH), blood group antigens (various genes), androgen receptor (AR), cystic fibrosis transmembrane conductance regulator (CFTR), and Bruton's tyrosine kinase (BTK), but we plan to include additional loci of clinical importance, ultimately genomewide. We have also imported variant data and associated OMIM links from Swiss-Prot. Users can find interesting mutations in the UCSC Genome Browser (in a new Locus Variants track) and follow links back to the LSDBs for more detailed information. Alternatively, they can start with queries on mutations or phenotypes at an LSDB and then display the results at the Genome Browser to view complementary information such as functional data (e.g., chromatin modifications and protein binding from the ENCODE consortium), evolutionary constraint, regulatory potential, and/or any other tracks they choose. We present several examples illustrating the power of these connections for exploring phenotypes associated with functional elements, and for identifying genomic data that could help to explain clinical phenotypes.

  11. The FIKK kinase of Toxoplasma gondii is not essential for the parasite's lytic cycle.

    PubMed

    Skariah, S; Walwyn, O; Engelberg, K; Gubbels, M-J; Gaylets, C; Kim, N; Lynch, B; Sultan, A; Mordue, D G

    2016-05-01

    FIKK kinases are a novel family of kinases unique to the Apicomplexa. While most apicomplexans encode a single FIKK kinase, Plasmodium falciparum expresses 21 and piroplasms do not encode a FIKK kinase. FIKK kinases share a conserved C-terminal catalytic domain, but the N-terminal region is highly variable and contains no known functional domains. To date, FIKK kinases have been primarily studied in P. falciparum and Plasmodium berghei. Those that have been studied are exported from the parasite and associate with diverse locations in the infected erythrocyte cytosol or membrane. Deletion of individual P. falciparum FIKK kinases indicates that they may play a role in modification of the infected erythrocyte. The current study characterises the single FIKK gene in Toxoplasma gondii to evaluate the importance of the FIKK kinase in an apicomplexan that has a single FIKK kinase. The TgFIKK gene encoded a protein of approximately 280kDa. Endogenous tagging of the FIKK protein with Yellow Fluorescent Protein showed that the FIKK protein exclusively localised to the posterior end of tachyzoites. A Yellow Fluorescent Protein-tagged FIKK and a Ty-tagged FIKK both co-localised with T. gondii membrane occupation and recognition nexus protein to the basal complex and were localised apical to inner membrane complex protein-5 and Centrin2. Deletion of TgFIKK, surprisingly, had no detectable effect on the parasite's lytic cycle in vitro in human fibroblast cells or in acute virulence in vivo. Thus, our results clearly show that while the FIKK kinase is expressed in tachyzoites, it is not essential for the lytic cycle of T. gondii. Copyright © 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Fluorescent sensors of protein kinases: from basics to biomedical applications.

    PubMed

    Nhu Ngoc Van, Thi; Morris, May C

    2013-01-01

    Protein kinases constitute a major class of enzymes underlying essentially all biological processes. These enzymes present similar structural folds, yet their mechanism of action and of regulation vary largely, as well as their substrate specificity and their subcellular localization. Classical approaches to study the function/activity of protein kinases rely on radioactive endpoint assays, which do not allow for characterization of their dynamic activity in their native environment. The development of fluorescent biosensors has provided a whole new avenue for studying protein kinase behavior and regulation in living cells in real time with high spatial and temporal resolution. Two major classes of biosensors have been developed: genetically encoded single-chain fluorescence resonance energy transfer biosensors and peptide/protein biosensors coupled to small synthetic fluorophores which are sensitive to changes in their environment. In this review, we discuss the developments in fluorescent biosensor technology related to protein kinase sensing and the different strategies employed to monitor protein kinase activity, conformation, or relative abundance, as well as kinase regulation and subcellular dynamics in living cells. Moreover, we discuss their application in biomedical settings, for diagnostics and therapeutics, to image disease progression and monitor response to therapeutics, in drug discovery programs, for high-throughput screening assays, for postscreen characterization of drug candidates, and for clinical evaluation of novel drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  14. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  15. Synaptic encoding of temporal contiguity

    PubMed Central

    Ostojic, Srdjan; Fusi, Stefano

    2013-01-01

    Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity). Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain. PMID:23641210

  16. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  17. Pantothenate - kinase associated neurodegeneration.

    PubMed

    Parmar, Alpana; Khare, Shruti; Srivastav, Vipul

    2012-04-01

    Neurodegeneration with brain iron accumulation is a group of disorders, the commonest of which is PKAN (Pantothenate kinase associated neurodegeneration). We present here, a case of 18 year old boy with progressive dementia, pyramidal and extrapyramidal involvement, dysarthria, seizures and myoclonus. The patient was diagnosed as PKAN (formerly Hallervorden Spatz disease) after "eye of tiger" appearance on neuro-imaging.

  18. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  19. Holographically Encoded Volume Phase Masks

    DTIC Science & Technology

    2015-07-13

    yÞAg; (6) where à and B̃ are the Fourier transforms of A and B, respec- tively, and fx and fy are the spatial frequencies along the x and y axes...collimated and directed onto a reflecting spatial light modulator (SLM). Applying the SLM encoding technique by Arrizón et al.,42 the incident beam was...converted into the LP11 and LP21 HOMs. These modes were selected because their spatial phase pattern match the HPM with the encoded four-sector binary

  20. Protein kinase C is essential for viability of the rice blast fungus M agnaporthe oryzae

    PubMed Central

    Penn, Tina J.; Wood, Mark E.; Soanes, Darren M.; Csukai, Michael; Corran, Andrew John

    2015-01-01

    Summary Protein kinase C constitutes a family of serine–threonine kinases found in all eukaryotes and implicated in a wide range of cellular functions, including regulation of cell growth, cellular differentiation and immunity. Here, we present three independent lines of evidence which indicate that protein kinase C is essential for viability of M agnaporthe oryzae. First, all attempts to generate a target deletion of PKC 1, the single copy protein kinase C‐encoding gene, proved unsuccessful. Secondly, conditional gene silencing of PKC 1 by RNA interference led to severely reduced growth of the fungus, which was reversed by targeted deletion of the Dicer2‐encoding gene, MDL 2. Finally, selective kinase inhibition of protein kinase C by targeted allelic replacement with an analogue‐sensitive PKC 1AS allele led to specific loss of fungal viability in the presence of the PP1 inhibitor. Global transcriptional profiling following selective PKC inhibition identified significant changes in gene expression associated with cell wall re‐modelling, autophagy, signal transduction and secondary metabolism. When considered together, these results suggest protein kinase C is essential for growth and development of M . oryzae with extensive downstream targets in addition to the cell integrity pathway. Targeting protein kinase C signalling may therefore prove an effective means of controlling rice blast disease. PMID:26192090

  1. Escherichia coli O157:H7 lacking qseBC encoded quorum sensing system outcompetes the parent strain in colonization of cattle intestine

    USDA-ARS?s Scientific Manuscript database

    The qseBC encoded quorum-sensing system (QS) regulates motility of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in response to bacterial autoinducer-3 (AI-3) and mammalian stress hormones epinephrine (E) and norepinephrine (NE). The qseC gene encodes a sensory kinase that post-autophosphorylati...

  2. Kinase Inhibitors from Marine Sponges

    PubMed Central

    Skropeta, Danielle; Pastro, Natalie; Zivanovic, Ana

    2011-01-01

    Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included. PMID:22073013

  3. Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide.

    PubMed

    Nowitzki, Ulrich; Gelius-Dietrich, Gabriel; Schwieger, Maike; Henze, Katrin; Martin, William

    2004-10-01

    Two chloroplast phosphoglycerate kinase isoforms from the photosynthetic flagellate Euglena gracilis were purified to homogeneity, partially sequenced, and subsequently cDNAs encoding phosphoglycerate kinase isoenzymes from both the chloroplast and cytosol of E. gracilis were cloned and sequenced. Chloroplast phosphoglycerate kinase, a monomeric enzyme, was encoded as a polyprotein precursor of at least four mature subunits that were separated by conserved tetrapeptides. In a Neighbor-Net analysis of sequence similarity with homologues from numerous prokaryotes and eukaryotes, cytosolic phosphoglycerate kinase of E. gracilis showed the highest similarity to cytosolic and glycosomal homologues from the Kinetoplastida. The chloroplast isoenzyme of E. gracilis did not show a close relationship to sequences from other photosynthetic organisms but was most closely related to cytosolic homologues from animals and fungi.

  4. How Infants Encode Spatial Extent

    ERIC Educational Resources Information Center

    Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee

    2005-01-01

    This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…

  5. Encoding Standards for Linguistic Corpora.

    ERIC Educational Resources Information Center

    Ide, Nancy

    The demand for extensive reusability of large language text collections for natural languages processing research requires development of standardized encoding formats. Such formats must be capable of representing different kinds of information across the spectrum of text types and languages, capable of representing different levels of…

  6. Encoding Ownership Types in Java

    NASA Astrophysics Data System (ADS)

    Cameron, Nicholas; Noble, James

    Ownership types systems organise the heap into a hierarchy which can be used to support encapsulation properties, effects, and invariants. Ownership types have many applications including parallelisation, concurrency, memory management, and security. In this paper, we show that several flavours and extensions of ownership types can be entirely encoded using the standard Java type system.

  7. Spectrally-encoded color imaging

    PubMed Central

    Kang, DongKyun; Yelin, Dvir; Bouma, Brett E.; Tearney, Guillermo J.

    2010-01-01

    Spectrally-encoded endoscopy (SEE) is a technique for ultraminiature endoscopy that encodes each spatial location on the sample with a different wavelength. One limitation of previous incarnations of SEE is that it inherently creates monochromatic images, since the spectral bandwidth is expended in the spatial encoding process. Here we present a spectrally-encoded imaging system that has color imaging capability. The new imaging system utilizes three distinct red, green, and blue spectral bands that are configured to illuminate the grating at different incident angles. By careful selection of the incident angles, the three spectral bands can be made to overlap on the sample. To demonstrate the method, a bench-top system was built, comprising a 2400-lpmm grating illuminated by three 525-μm-diameter beams with three different spectral bands. Each spectral band had a bandwidth of 75 nm, producing 189 resolvable points. A resolution target, color phantoms, and excised swine small intestine were imaged to validate the system's performance. The color SEE system showed qualitatively and quantitatively similar color imaging performance to that of a conventional digital camera. PMID:19688002

  8. Secondary kinase reactions catalyzed by yeast pyruvate kinase.

    PubMed

    Leblond, D J; Robinson, J L

    1976-06-07

    1. Yeast pyruvate kinase (EC 2.7.1.40) catalyzes, in addition to the primary, physiologically important reaction, three secondary kinase reactions, the ATP-dependent phosphorylations of fluoride (fluorokinase), hydroxylamine (hydroxylamine kinase) and glycolate (glycolate kinase). 2. These reactions are accelerated by fructose-1,6-bisphosphate, the allosteric activator of the primary reaction. Wth Mg2+ as the required divalent cation, none of these reactions are observed in the absence of fructose-biphosphate. With Mn2+, fructose-bisphosphate is required for the glycolate kinase reaction, but merely stimulates the other reactions. 3. The effect of other divalent cations and pH on three secondary kinase reactions was also examined. 4. Results are compared with those obtained from muscle pyruvate kinase and the implications of the results for the mechanism of the yeast enzyme are discussed.

  9. Pantothenate kinase-associated neurodegeneration: insights from a Drosophila model.

    PubMed

    Wu, Zhihao; Li, Chenghua; Lv, Shan; Zhou, Bing

    2009-10-01

    Pantothenate-Kinase-Associated-Neurodegeneration (PKAN) is a devastating disease, resulting from mutations in pantothenate kinase 2 (PANK2), one of the four human pantothenate kinase genes (PANK1-4). Interestingly, PanK2 appears to be the only mitochondria-targeted human PanK. It is unknown whether the mitochondria-targeted PanK is associated with any unique function, nor whether PKAN is due solely to the loss of pantothenate kinase activity. Drosophila PANK [fumble (fbl)] encodes several isoforms of pantothenate kinase products, one of which localizes to mitochondria and the others cytosol. fbl flies exhibit many characteristic features reminiscent of PKAN patients. Various forms of Drosophila fbl and human PANK2 were introduced into fbl flies to study their in vivo functions. Only mitochondria-targeted Fbl or human PanK2 was able to rescue fbl mutation, with the rescuing ability sensitive to the expression level of the transgene. Transgenic lines with low expression of normal Fbl or PanK2 displayed similar phenotypes as PANK2 mutant transgenic flies. These PanK2 mutants all showed reduced and phenotype severity-correlated in vitro pantothenate kinase activities. Amazingly, cytosolic PanK3 and PanK4 could mostly, but not fully, rescue fbl defects except the male sterility. Therefore, fbl appears to be the orthologue of human PANK2, and PanK2 is functionally more potent than PanK3 and PanK4 in vivo. We suggest that mitochondria-located pantothenate kinase is required to achieve the maximal enzymatic activity to fulfill the most challenging task such as maintaining male fertility and optimal neuronal functions, and PKAN features are mainly due to the reduction of the total cellular pantothenate kinase activity in the most susceptible regions.

  10. Wall-associated kinase-like polypeptide mediates nutritional status perception and response

    DOEpatents

    Yang, Zhenbiao; Karr, Stephen

    2014-02-11

    The disclosure relates to methods for modulating plant growth and organogenesis using dominant-negative receptor-like kinases. The disclosure further provides a method for increasing plant yield relative to corresponding wild type plants comprising modulating the expression in a plant of a nucleic acid encoding a Wall-Associated Kinase-like 14 polypeptide or a homolog thereof, and selecting for plants having increased yield or growth on a nutrient deficient substrate.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2002-01-29

    The present invention provides an isolated polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set fort in SEQ ID NO: 10 or conservative variations thereof. The invention also provides a method for producing a peptide of SEQ ID NO:1 comprising (a) culturing a host cell containing a polynucleotide encoding a c-Jun peptide consisting of about amino acid residues 33 to 79 as set forth in SEQ ID NO: 10 under conditions which allow expression of the polynucleotide; and (b) obtaining the peptide of SEQ ID NO:1.

  12. Protein kinase A contributes to the negative control of Snf1 protein kinase in Saccharomyces cerevisiae.

    PubMed

    Barrett, LaKisha; Orlova, Marianna; Maziarz, Marcin; Kuchin, Sergei

    2012-02-01

    Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.

  13. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    SciTech Connect

    Holzer, Georg W. . E-mail: falknef@baxter.com

    2005-07-05

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.

  14. AOP-1 interacts with cardiac-specific protein kinase TNNI3K and down-regulates its kinase activity.

    PubMed

    Feng, Yan; Liu, Dong-Qing; Wang, Zhen; Liu, Zhao; Cao, Hui-Qing; Wang, Lai-Yuan; Shi, Na; Meng, Xian-Min

    2007-11-01

    In the present study, a yeast two-hybrid screening system was used to identify the interaction partners of cardiac troponin I-interacting kinase (TNNI3K) that might serve as regulators or targets, and thus in turn to gain some insights on the roles of TNNI3K. After screening the adult heart cDNA library with a bait construct encoding the ANK motif of TNNI3K, antioxidant protein 1 (AOP-1) was isolated. The interaction between TNNI3K and AOP-1 was confirmed by the in vitro binding assay and coexpression experiments in vivo. The colocalization of TNNI3K and AOP-1 was clarified by confocal immunofluorescence. Moreover, coexpression of AOP-1 inhibited TNNI3K kinase activity in the in vitro kinase assay.

  15. LIM-kinase1.

    PubMed

    Stanyon, C A; Bernard, O

    1999-01-01

    LIM-kinase1 (LIMK1) is a serine-only protein kinase that contains LIM and PDZ protein-protein interaction domains which is highly expressed in neurons. Overexpression of LIMK1 in cultured cells results in accumulation of filamentous (F-) actin. LIMK1 phosphorylates cofilin, an actin depolymerisation factor, which is then unable to bind and depolymerise F-actin. Rac-GTP enhances phosphorylation of LIMK1 and cofilin, which leads to accumulation of F-actin, while Rac-GDP and PMA reduce these effects. LIMK1 is therefore a key component of a signal transduction network that connects extracellular stimuli to changes in cytoskeletal structure. Control of cell morphology and mobility via LIMK1 activity may provide novel approaches to cancer therapy.

  16. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.

    PubMed

    Deak, M; Casamayor, A; Currie, R A; Downes, C P; Alessi, D R

    1999-05-28

    A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Cyclin-dependent kinases

    PubMed Central

    2014-01-01

    Summary Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  8. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  10. Encoding information into precipitation structures

    NASA Astrophysics Data System (ADS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  11. [Research advance of retinal pathological angiogenesis related to ATM protein kinase].

    PubMed

    Lu, Li; Zheng, Zhi; Li, Chunxia

    2015-05-01

    Ataxia-telangiectasia mutated (ATM) gene could cause ataxia telangiectasia which is an autosomal recessive disease. The ATM protein kinase encoded by the ATM gene mainly distributed in nucleus as a master regulator of the DNA damage response and apoptosis via cell signaling pathways. The ATM kinase plays a key role in the pathogenesis of cellular senescence and tumor genesis. Recently, some studies have indicated that ATM protein kinase is involved in pathological neovascularization, suggesting that it could be a novel potential therapeutic target in diseases associated with pathological angiogenesis.

  12. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  13. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  14. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice.

    PubMed

    Rohila, Jai S; Chen, Mei; Chen, Shuo; Chen, Johann; Cerny, Ronald; Dardick, Chris; Canlas, Patrick; Xu, Xia; Gribskov, Michael; Kanrar, Siddhartha; Zhu, Jian-Kang; Ronald, Pamela; Fromm, Michael E

    2006-04-01

    Forty-one rice cDNAs encoding protein kinases were fused to the tandem affinity purification (TAP) tag and expressed in transgenic rice plants. The TAP-tagged kinases and interacting proteins were purified from the T1 progeny of the transgenic rice plants and identified by mass spectrometry. Ninety-five percent of the TAP-tagged kinases were recovered. Fifty-six percent of the TAP-tagged kinases were found to interact with other rice proteins. A number of these interactions were consistent with known protein complexes found in other species, validating the TAP-tag method in rice plants. Phosphorylation sites were identified on four of the kinases that interacted with either 14-3-3 proteins or cyclins.

  15. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  16. Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.

    PubMed

    Wei, Dong; Wang, Min; Jiang, Biao; Shi, Jiping; Hao, Jian

    2014-05-10

    Dha regulon is responsible for anaerobic glycerol metabolism and 1,3-propanediol production in Klebsiella pneumoniae. DhaK encodes an ATP-dependent dihydroxyacetone kinase I, whereas dhaK123 encodes a dihydroxyacetone kinase II that uses phosphoenolpyruvate as a phosphate donor. The functions of dihydroxyacetone kinases I and II in K. pneumoniae have not been discriminated. In this study, four individual genes of the two kinases were knocked out, and the metabolic characteristics of these mutants were investigated. DhaK1 or dhaK2 mutation inhibited dha regulon expression. DhaK3 mutation reduced glycerol utilization, and the growth was slower than the wild stain. However, dhaK mutation exerted no significant effects on glycerol metabolism. The metabolic characteristics of these mutants showed that the subunits of dihydroxyacetone kinase II were involved in the regulation of dha regulon expression, similar to the dha regulon of E. coli. Dihydroxyacetone kinase II catalyzed dihydroxyacetone conversion to dihydroxyacetone phosphate, whereas dihydroxyacetone kinase I showed no significant contribution to this reaction.

  17. Functions of Aurora kinase C in meiosis and cancer.

    PubMed

    Quartuccio, Suzanne M; Schindler, Karen

    2015-01-01

    The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA) and B (AURKB) are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC) are limited to cells that undergo meiosis (sperm and oocyte). Despite its discovery nearly 20 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI)-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.

  18. A high-throughput radiometric kinase assay

    PubMed Central

    Duong-Ly, Krisna C.; Peterson, Jeffrey R.

    2016-01-01

    Aberrant kinase signaling has been implicated in a number of diseases. While kinases have become attractive drug targets, only a small fraction of human protein kinases have validated inhibitors. Screening libraries of compounds against a kinase or kinases of interest is routinely performed during kinase inhibitor development to identify promising scaffolds for a particular target and to identify kinase targets for compounds of interest. Screening of more focused compound libraries may also be conducted in the later stages of inhibitor development to improve potency and optimize selectivity. The dot blot kinase assay is a robust, high-throughput kinase assay that can be used to screen a number of small molecule compounds against one kinase of interest or several kinases. Here, a protocol for a dot blot kinase assay used for measuring insulin receptor kinase activity is presented. This protocol can be readily adapted for use with other protein kinases. PMID:26501904

  19. Structure of human uridine-cytidine kinase 2 determined by SIRAS using a rotating-anode X-ray generator and a single samarium derivative.

    PubMed

    Appleby, Todd C; Larson, Gary; Cheney, I Wayne; Walker, Heli; Wu, Jim Z; Zhong, Weidong; Hong, Zhi; Yao, Nanhua

    2005-03-01

    Uridine-cytidine nucleoside kinase 2 (UCK2) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. UCK2 catalyzes the phosphorylation of the natural ribonucleosides cytidine and uridine to cytidine 5'-monophosphate (CMP) and uridine 5'-monophosphate (UMP), respectively, and activates several important frontline antimetabolite drugs. The present contribution reports the rapid crystal structure determination of human UCK2 complexed with a magnesium ion and the reaction products adenosine 5'-diphosphate (ADP) and CMP. Diffraction data were collected on a copper rotating-anode X-ray generator from one native UCK2 crystal and a single samarium-derivative crystal. Utilizing the relatively high anomalous signal from the samarium derivative at the Cu Kalpha wavelength, the structure was determined by single isomorphous replacement and single anomalous signal (SIRAS) phasing techniques. Two of the four major samarium sites are located in the active sites of the two UCK2 molecules that form the asymmetric unit and appear to displace the magnesium ions present in the native crystals. The crystal structures of UCK2 alone and in complex with various ligands have recently been determined using traditional multiple isomorphous replacement (MIR) phasing techniques and data from three heavy-atom derivatives. The reported structures validate our independently determined structure. Of more than 1000 kinase crystal structure entries in the Protein Data Bank, less than 1% of them have been determined by SIRAS. For the published kinase crystal structures determined by SIRAS, all data were reportedly collected at various synchrotron-radiation facilities. This study demonstrates that diffraction data collected from a single samarium derivative using Cu Kalpha radiation provides sufficient phasing power to determine a novel macromolecular crystal structure.

  20. Kinase regulation by sulfur and selenium containing compounds.

    PubMed

    Sanmartín, Carmen; Plano, Daniel; Font, María; Palop, Juan Antonio

    2011-05-01

    Kinases are enzymes that are involved in a wide-range of cellular targets such as cell proliferation, metabolism, survival and apoptosis. Aberrations in the activity of the kinases have been linked to many human diseases such as diabetes, inflammation and cancer. The discovery of more than 518 kinases encoded by the human genome has spurred the development of rapid screening techniques for potential drugs against these enzymes and these have been identified as interesting targets for medicinal chemistry programs, especially in cancer therapy. On the other hand, sulfur and selenium have been increasingly recognized as essential elements in biology and medicine. Converging data from epidemiological and clinical studies have highlighted these elements as effective chemopreventive agents, particularly against various types of cancer (prostate, lung, breast, leukemia, colon, skin, lymphome, thyroid, pancreas, liver). These elements act through a wide range of potential mechanisms where one identified signal pathway event is kinase modulation, which is common for the two elements and emerges as a valid target. The kinases modulated by sulfur and selenium derivatives include MAP, ERK, JNK, Akt, Cdc2, Cyclin B1 and Cdc25c amongst others. Although both of the elements in question are in the same group in the periodic table and have similar biochemistries, there are relevant differences related to redox potentials, stabilities, oxidation states and anticancer activity. Literature data suggest that the replacement of sulfur by selenium in established cancer chemopreventive agents results in more effective chemopreventive analogs. In view of the multi-target kinase mechanisms in preventing cellular transformation, as well as the differences and similarities between them, in this review we focus on the development of new structures that contain selenium and/or sulfur and discuss our understanding of the regulation of antitumoral effects with emphasis on kinase modulation

  1. Aurora Kinases Throughout Plant Development.

    PubMed

    Weimer, Annika K; Demidov, Dmitri; Lermontova, Inna; Beeckman, Tom; Van Damme, Daniël

    2016-01-01

    Aurora kinases are evolutionarily conserved key mitotic determinants in all eukaryotes. Yeasts contain a single Aurora kinase, whereas multicellular eukaryotes have at least two functionally diverged members. The involvement of Aurora kinases in human cancers has provided an in-depth mechanistic understanding of their roles throughout cell division in animal and yeast models. By contrast, understanding Aurora kinase function in plants is only starting to emerge. Nevertheless, genetic, cell biological, and biochemical approaches have revealed functional diversification between the plant Aurora kinases and suggest a role in formative (asymmetric) divisions, chromatin modification, and genome stability. This review provides an overview of the accumulated knowledge on the function of plant Aurora kinases as well as some major challenges for the future.

  2. MAP kinase and pain

    PubMed Central

    Ji, Ru-Rong; Gereau, Robert W.; Malcangio, Marzia; Strichartz, Gary R.

    2008-01-01

    Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK. PMID:19150373

  3. Ras, Raf, and MAP kinase in melanoma.

    PubMed

    Solus, Jason F; Kraft, Stefan

    2013-07-01

    A growing understanding of the biology and molecular mechanisms of melanoma has led to the identification of a number of driver mutations for this aggressive tumor. The most common mutations affect signaling of the Ras/Raf/MAPK (mitogen-activated protein kinase) pathway. This review will focus on mutations in genes encoding proteins that play a role in the MAPK pathway and that have been implicated in melanoma biology, such as BRAF, NRAS, and MEK (MAPK kinase), and detail the current understanding of their role in melanoma progression from a molecular biology perspective. Furthermore, this review will also consider some additional mutations in genes such as KIT, GNAQ, and GNA11, which can be seen in certain subtypes of melanoma and whose gene products interact with the MAPK pathway. In addition, the association of these molecular changes with clinical and classical histopathologic characteristics of melanoma will be outlined and their role in diagnosis of melanocytic lesions discussed. Finally, a basic overview of the current targeted therapy landscape, as far as relevant to the pathologist, will be provided.

  4. A specific combination of substrates is involved in signal transduction by the kit-encoded receptor.

    PubMed Central

    Lev, S; Givol, D; Yarden, Y

    1991-01-01

    The kit protooncogene encodes a transmembrane tyrosine kinase related to the receptors for the platelet derived growth factor (PDGF-R) and the macrophage growth factor (CSF1-R), and was very recently shown to bind a stem cell factor. To compare signal transduction by the kit kinase with signaling by homologous receptors we constructed a chimeric protein composed of the extracellular domain of the epidermal growth factor receptor (EGF-R) and the transmembrane and cytoplasmic domains of kit. We have previously shown that the chimeric receptor transmits potent mitogenic and transforming signals in response to the heterologous ligand. Here we demonstrate that upon ligand binding, the ligand-receptor complex undergoes endocytosis and degradation and induces short- and long-term cellular effects. Examination of the signal transduction pathway revealed that the activated kit kinase strongly associates with phosphatidylinositol 3'-kinase activity and a phosphoprotein of 85 kd. In addition, the ligand-stimulated kit kinase is coupled to modifications of phospholipase C gamma and the Raf1 protein kinase. However, it does not lead to a significant change in the production of inositol phosphate. Comparison of our results with the known signaling pathways of PDGF-R and CSF1-R suggests that each receptor is coupled to a specific combination of signal transducers. Images PMID:1705885

  5. Hall effect encoding of brushless dc motors

    NASA Technical Reports Server (NTRS)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  6. NRZ Data Asymmetry Corrector and Convolutional Encoder

    NASA Technical Reports Server (NTRS)

    Pfiffner, H. J.

    1983-01-01

    Circuit compensates for timing, amplitude and symmetry perturbations. Data asymmetry corrector and convolutional encoder regenerate data and clock signals in spite of signal variations such as data or clock asymmetry, phase errors, and amplitude variations, then encode data for transmission.

  7. Novel optical encoder for harsh environments

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Mueller, Ulrich; Brac-de-la-Perriere, Vincent

    2014-09-01

    We are presenting a new optical encoder architecture for shaft encoding, both in incremental and absolute modes. This encoder is based on a diffractive optics technology platform. We have developed various disk based rotary diffractive encoders previously. This encoder is different in the way it is not a disk composed of successive gratings or computer generated holograms, but rather composed of a single element placed on the shaft. It is thus best suited for hollow shaft or end of shaft applications such as in encoder controlled electrical motors. This new architecture aims at solving some of the problems encountered with previous implementations of diffractive encoders such as disk wobble, disk to shaft centering and also encoding in harsh environments.

  8. Terahertz wavelength encoding compressive imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Wang, Xinke; Zhang, Yan

    2016-11-01

    Terahertz (THz) compressive imaging can obtain two dimensional image with a single or linear detector, which can overcome the bottleneck problem of lacking of THz two dimensional detectors. In this presentation, we propose a method to obtain two dimensional images using a linear detector. A plano-convex cylindrical lens is employed to perform Fourier transform and to encode one dimensional information of an object into wavelengths. After recording, both amplitude and phase information for different frequency at each pixel of the line detector are extracted, two dimensional image of the object can be reconstructed. Numerical simulation demonstrates the validity of the proposed method.

  9. Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning.

    PubMed

    Cho, Christine E; Brueggemann, Chantal; L'Etoile, Noelle D; Bargmann, Cornelia I

    2016-07-06

    Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from AIA interneurons. Here we show that the activity of neurons including AIA is acutely required during aversive, but not appetitive, learning. The AIA circuit and AGE-1, an insulin-regulated PI3 kinase, signal to AWC to drive nuclear enrichment of EGL-4 during conditioning. Odor exposure shifts the AWC dynamic range to higher odor concentrations regardless of food pairing or the AIA circuit, whereas AWC coupling to motor circuits is oppositely regulated by aversive and appetitive learning. These results suggest that non-associative sensory adaptation in AWC encodes odor history, while associative behavioral preference is encoded by altered AWC synaptic activity.

  10. Acetate kinase and phosphotransacetylase.

    PubMed

    Ferry, James G

    2011-01-01

    Most of the methane produced in nature derives from the methyl group of acetate, the major end product of anaerobes decomposing complex plant material. The acetate is derived from the metabolic intermediate acetyl-CoA via the combined activities of phosphotransacetylase and acetate kinase. In Methanosarcina species, the enzymes function in the reverse direction to activate acetate to acetyl-CoA prior to cleavage into a methyl and carbonyl group of which the latter is oxidized providing electrons for reduction of the former to methane. Thus, phosphotransacetylase and acetate kinase have a central role in the conversion of complex organic matter to methane by anaerobic microbial food chains. Both enzymes have been purified from Methanosarcina thermophila and characterized. Both enzymes from M. thermophila have also been produced in Escherichia coli permitting crystal structures and amino acid variants, the kinetic and biochemical studies of which have lead to proposals for catalytic mechanisms. The high identity of both enzymes to paralogs in the domain Bacteria suggests ancient origins and common mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. The Raine Syndrome Protein FAM20C Is a Golgi Kinase That Phosphorylates Bio-Mineralization Proteins

    PubMed Central

    Ishikawa, Hiroyuki O.; Xu, Aiguo; Ogura, Eri; Manning, Gerard; Irvine, Kenneth D.

    2012-01-01

    Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C’s kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome. PMID:22900076

  12. Schematic driven layout of Reed Solomon encoders

    NASA Technical Reports Server (NTRS)

    Arave, Kari; Canaris, John; Miles, Lowell; Whitaker, Sterling

    1992-01-01

    Two Reed Solomon error correcting encoders are presented. Schematic driven layout tools were used to create the encoder layouts. Special consideration had to be given to the architecture and logic to provide scalability of the encoder designs. Knowledge gained from these projects was used to create a more flexible schematic driven layout system.

  13. Time Course of Grammatical Encoding in Agrammatism

    ERIC Educational Resources Information Center

    Lee, Jiyeon

    2011-01-01

    Producing a sentence involves encoding a preverbal message into a grammatical structure by retrieving lexical items and integrating them into a functional (semantic-to-grammatical) structure. Individuals with agrammatism are impaired in this grammatical encoding process. However, it is unclear what aspect of grammatical encoding is impaired and…

  14. Identification and characterization of two wheat Glycogen Synthase Kinase 3/ SHAGGY-like kinases

    PubMed Central

    2013-01-01

    Background Plant Glycogen Synthase Kinase 3/ SHAGGY-like kinases (GSKs) have been implicated in numerous biological processes ranging from embryonic, flower, stomata development to stress and wound responses. They are key regulators of brassinosteroid signaling and are also involved in the cross-talk between auxin and brassinosteroid pathways. In contrast to the human genome that contains two genes, plant GSKs are encoded by a multigene family. Little is known about Liliopsida resp. Poaceae in comparison to Brassicaceae GSKs. Here, we report the identification and structural characterization of two GSK homologs named TaSK1 and TaSK2 in the hexaploid wheat genome as well as a widespread phylogenetic analysis of land plant GSKs. Results Genomic and cDNA sequence alignments as well as chromosome localization using nullisomic-tetrasomic lines provided strong evidence for three expressed gene copies located on homoeolog chromosomes for TaSK1 as well as for TaSK2. Predicted proteins displayed a clear GSK signature. In vitro kinase assays showed that TaSK1 and TaSK2 possessed kinase activity. A phylogenetic analysis of land plant GSKs indicated that TaSK1 and TaSK2 belong to clade II of plant GSKs, the Arabidopsis members of which are all involved in Brassinosteroid signaling. Based on a single ancestral gene in the last common ancestor of all land plants, paralogs were acquired and retained through paleopolyploidization events, resulting in six to eight genes in angiosperms. More recent duplication events have increased the number up to ten in some lineages. Conclusions To account for plant diversity in terms of functionality, morphology and development, attention has to be devoted to Liliopsida resp Poaceae GSKs in addition to Arabidopsis GSKs. In this study, molecular characterization, chromosome localization, kinase activity test and phylogenetic analysis (1) clarified the homologous/paralogous versus homoeologous status of TaSK sequences, (2) pointed out their

  15. [Neurons that encode sound direction].

    PubMed

    Peña, J L

    In the auditory system, the inner ear breaks down complex signals into their spectral components, and encodes the amplitude and phase of each. In order to infer sound direction in space, a computation on each frequency component of the sound must be performed. Space specific neurons in the owl s inferior colliculus respond only to sounds coming from a particular direction and represent the results of this computation. The interaural time difference (ITD) and interaural level difference (ILD define the auditory space for the owl and are processed in separate neural pathways. The parallel pathways that process these cues merge in the external nucleus of the inferior colliculus where the space specific neurons are selective to combinations of ITD and ILD. How do inputs from the two sources interact to produce combination selectivity to ITD ILD pairs? A multiplication of postsynaptic potentials tuned to ITD and ILD can account for the subthreshold responses of these neurons to ITD ILD pairs. Examples of multiplication by neurons or neural circuits are scarce, but many computational models assume the existence of this basic operation. The owl s auditory system uses such operation to create a 2 dimensional map of auditory space. The map of space in the owl s auditory system shows important similarities with representations of space in the cerebral cortex and other sensory systems. In encoding space or other stimulus features, individual neurons appear to possess analogous functional properties related to the synthesis of high order receptive fields.

  16. MsERK1: a mitogen-activated protein kinase from a flowering plant.

    PubMed Central

    Duerr, B; Gawienowski, M; Ropp, T; Jacobs, T

    1993-01-01

    The induction of proliferation and differentiation in cultured mammalian cells is mediated by a cascade of protein phosphorylations. A key enzyme in this signaling pathway is mitogen-activated protein (MAP) kinase (or ERK, extracellular signal-regulated kinase). We report the recovery of a full-length cDNA clone encoding a MAP kinase from alfalfa. We have named the 44-kD protein encoded by this clone MsERK1. Recombinant MsERK1 (rMsERK1), when overexpressed in Escherichia coli, is recognized by antibodies raised against MAP kinases from rat, Xenopus, and sea star and by anti-phosphotyrosine antibodies. Site-directed mutagenesis of MsERK1 demonstrated that Tyr-215 is either directly or indirectly responsible for recognition of the protein by anti-phosphotyrosine antibodies. Semipurified rMsERK1 phosphorylated itself and a model substrate, myelin basic protein, in vitro, but the Tyr-215 mutant did neither. Genomic DNA gel blot analysis suggested that the gene that encodes MsERK1 is either a member of a small multigene family or a member of a polymorphic allelic series in alfalfa. Because MAP kinase activation has been associated with mitotic stimulation in animal systems, such an enzyme may play a role in the mitogenic induction of symbiotic root nodules on alfalfa by Rhizobium signal molecules. PMID:8439746

  17. Identification and characterization of a protein kinase gene in the Lymantria dispar nultinucleocapsid nuclear polyhedrosis virus

    Treesearch

    David S. Bischoff; James M. Slavicek

    1994-01-01

    The Lymantria dispar multinucleocapsid nuclear polyhedrosis virus (LdMNPV) gene encoding vPK has been cloned and sequenced. LdMNPV vPK shows a 24% amino acid identity to the catalytic domains of the eucaryotic protein kinases nPKC from rabbits, HSPKCE from humans, APLPKCB from Aplysia californica, and dPKC98F from ...

  18. Thymidine kinase mutants obtained by random sequence selection.

    PubMed

    Munir, K M; French, D C; Loeb, L A

    1993-05-01

    Knowledge of the catalytic properties and structural information regarding the amino acid residues that comprise the active site of an enzyme allows one, in principle, to use site-specific mutagenesis to construct genes that encode enzymes with altered functions. However, such information about most enzymes is not known and the effects of specific amino acid substitutions are not generally predictable. An alternative approach is to substitute random nucleotides for key codons in a gene and to use genetic selection to identify new and interesting enzyme variants. We describe here the construction, selection, and characterization of herpes simplex virus type 1 thymidine kinase mutants either with different catalytic properties or with enhanced thermostability. From a library containing 2 x 10(6) plasmid-encoded herpes thymidine kinase genes, each with a different nucleotide sequence at the putative nucleoside binding site, we obtained 1540 active mutants. Using this library and one previously constructed, we identified by secondary selection Escherichia coli harboring thymidine kinase mutant clones that were unable to grow in the presence of concentrations of 3'-azido-3'-deoxythymidine (AZT) that permits colony formation by E. coli harboring the wild-type plasmid. Two of the mutant enzymes exhibited a reduced Km for AZT, one of which displayed a higher catalytic efficiency for AZT over thymidine relative to that of the wild type. We also identified one mutant with enhanced thermostability. These mutants may have clinical potential as the promise of gene therapy is increasingly becoming a reality.

  19. Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes

    PubMed Central

    Xu, Zhi; Su, Wen-Min; Carman, George M.

    2012-01-01

    Phosphatidate (PA) phosphatase, the enzyme that catalyzes the penultimate step in triacylglycerol synthesis, is a cytosolic enzyme that must associate with the membrane where its substrate PA resides. Fluorescence spectroscopy was used to measure the interaction of yeast PAH1-encoded PA phosphatase with model liposome membranes. PA phosphatase contains five tryptophan residues and exhibited inherit fluorescence that increased upon interaction with phosphatidylcholine liposomes. The interaction was enhanced by inclusion of other phospholipids and especially the substrate PA. Interaction was dependent on both the concentration of phosphatidylcholine-PA liposomes as well as the surface concentration of PA in liposomes. Mg2+ ions, which were required for catalysis, did not affect PA phosphatase interaction with phosphatidylcholine-PA liposomes. PA phosphatase was a substrate for protein kinase A, protein kinase C, and casein kinase II, and these phosphorylations decreased PA phosphatase interaction with phosphatidylcholine-PA liposome membranes. PMID:22180632

  20. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.

    PubMed Central

    Cengel, K A; Kason, R E; Freund, G G

    1998-01-01

    Serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been proposed as a counter-regulatory mechanism in insulin and cytokine signalling. Here we report that IRS-1 is phosphorylated by a wortmannin insensitive phosphatidylinositol 3'-kinase (PI 3-kinase)-associated serine kinase (PAS kinase) distinct from PI 3-kinase serine kinase. We found that PI 3-kinase immune complexes contain 5-fold more wortmannin-insensitive serine kinase activity than SH2-containing protein tyrosine phosphatase-2 (SHP2) and IRS-1 immune complexes. Affinity chromatography of cell lysates with a glutathione S-transferase fusion protein for the p85 subunit of PI 3-kinase showed that PAS kinase associated with the p85 subunit of PI 3-kinase. This interaction required unoccupied SH2 domain(s) but did not require the PI 3-kinase p110 subunit binding domain. In terms of function, PAS kinase phosphorylated IRS-1 and, after insulin stimulation, PAS kinase phosphorylated IRS-1 in PI 3-kinase-IRS-1 complexes. Phosphopeptide mapping showed that insulin-dependent in vivo sites of IRS-1 serine phosphorylation were comparable to those of PAS kinase phosphorylated IRS-1. More importantly, PAS kinase-dependent phosphorylation of IRS-1 reduced by 4-fold the ability of IRS-1 to act as an insulin receptor substrate. Taken together, these findings indicate that: (a) PAS kinase is distinct from the intrinsic serine kinase activity of PI 3-kinase, (b) PAS kinase associates with the p85 subunit of PI 3-kinase through SH2 domain interactions, and (c) PAS kinase is an IRS-1 serine kinase that can reduce the ability of IRS-1 to serve as an insulin receptor substrate. PMID:9761740

  1. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    PubMed

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Understanding the Polo Kinase machine.

    PubMed

    Archambault, V; Lépine, G; Kachaner, D

    2015-09-10

    The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.

  3. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  4. Saccharomyces cerevisiae Env7 Is a Novel Serine/Threonine Kinase 16-Related Protein Kinase and Negatively Regulates Organelle Fusion at the Lysosomal Vacuole

    PubMed Central

    Manandhar, Surya P.; Ricarte, Florante; Cocca, Stephanie M.

    2013-01-01

    Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system. PMID:23166297

  5. Saccharomyces cerevisiae Env7 is a novel serine/threonine kinase 16-related protein kinase and negatively regulates organelle fusion at the lysosomal vacuole.

    PubMed

    Manandhar, Surya P; Ricarte, Florante; Cocca, Stephanie M; Gharakhanian, Editte

    2013-02-01

    Membrane fusion depends on conserved components and is responsible for organelle biogenesis and vesicular trafficking. Yeast vacuoles are dynamic structures analogous to mammalian lysosomes. We report here that yeast Env7 is a novel palmitoylated protein kinase ortholog that negatively regulates vacuolar membrane fusion. Microscopic and biochemical studies confirmed the localization of tagged Env7 at the vacuolar membrane and implicated membrane association via the palmitoylation of its N-terminal Cys13 to -15. In vitro kinase assays established Env7 as a protein kinase. Site-directed mutagenesis of the Env7 alanine-proline-glutamic acid (APE) motif Glu269 to alanine results in an unstable kinase-dead allele that is stabilized and redistributed to the detergent-resistant fraction by interruption of the proteasome system in vivo. Palmitoylation-deficient Env7C13-15S is also kinase dead and mislocalizes to the cytoplasm. Microscopy studies established that env7Δ is defective in maintaining fragmented vacuoles during hyperosmotic response and in buds. ENV7 function is not redundant with a similar role of vacuolar membrane kinase Yck3, as the two do not share a substrate, and ENV7 is not a suppressor of yck3Δ. Bayesian phylogenetic analyses strongly support ENV7 as an ortholog of the gene encoding human STK16, a Golgi apparatus protein kinase with undefined function. We propose that Env7 function in fusion/fission dynamics may be conserved within the endomembrane system.

  6. Evolution of phosphagen kinase V. cDNA-derived amino acid sequences of two molluscan arginine kinases from the chiton Liolophura japonica and the turbanshell Battilus cornutus.

    PubMed

    Suzuki, T; Ban, T; Furukohri, T

    1997-06-20

    The cDNAs of arginine kinases from the chiton Liolophura japonica (Polyplacophora) and the turbanshell Battilus cornutus (Gastropoda) were amplified by polymerase chain reaction (PCR), and the complete nucleotide sequences of 1669 and 1624 bp, respectively, were determined. The open reading frame for Liolophura arginine kinase is 1050 nucleotides in length and encodes a protein with 349 amino acid residues, and that for Battilus is 1077 nucleotides and 358 residues. The validity of the cDNA-derived amino acid sequence was supported by chemical sequencing of internal tryptic peptides. The molecular masses were calculated to be 39,057 and 39,795 Da, respectively. The amino acid sequence of Liolophura arginine kinase showed 65-68% identity with those of Battilus and Nordotis (abalone) arginine kinases, and the homology between Battilus and Nordotis was 79%. Molluscan arginine kinases also show lower, but significant homology (38-43%) with rabbit creatine kinase. The sequences of arginine kinases could be used as a molecular clock to elucidate the phylogeny of Mollusca, one of the most diverse animal phyla.

  7. Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities.

    PubMed

    Cock, J Mark; Vanoosthuyse, Vincent; Gaude, Thierry

    2002-04-01

    Plant genomes encode large numbers of receptor kinases that are structurally related to the tyrosine and serine/threonine families of receptor kinase found in animals. Here, we describe recent advances in the characterisation of several of these plant receptor kinases at the molecular level, including the identification of receptor complexes, small polypeptide ligands and cytosolic proteins involved in signal transduction and receptor downregulation. Phylogenetic analysis indicates that plant receptor kinases have evolved independently of the receptor kinase families found in animals. This hypothesis is supported by functional studies that have revealed differences between receptor kinase signalling in plants and animals, particularly concerning their interactions with cytosolic proteins. Despite these dissimilarities, however, plant and animal receptor kinases share many common features, such as their single membrane-pass structure, their inclusion in membrane-associated complexes, the involvement of dimerisation and trans autophosphorylation in receptor activation, and the existence of inhibitors and phosphatases that downregulate receptor activity. These points of convergence may represent features that are essential for a functional receptor-kinase signalling system.

  8. Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa ▿ †

    PubMed Central

    Park, Gyungsoon; Servin, Jacqueline A.; Turner, Gloria E.; Altamirano, Lorena; Colot, Hildur V.; Collopy, Patrick; Litvinkova, Liubov; Li, Liande; Jones, Carol A.; Diala, Fitz-Gerald; Dunlap, Jay C.; Borkovich, Katherine A.

    2011-01-01

    Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with 25 mutants exhibiting sensitivity or resistance to at least one chemical. This brought the total percentage of S/T mutants with phenotypes in our study to 71%. Mutants lacking apg-1, an S/T kinase required for autophagy in other organisms, possessed the greatest number of phenotypes, with defects in asexual and sexual growth and development and in altered sensitivity to five chemical treatments. We showed that NCU02245/stk-19 is required for chemotropic interactions between female and male cells during mating. Finally, we demonstrated allelism between the S/T kinase gene NCU00406 and velvet (vel), encoding a p21-activated protein kinase (PAK) gene important for asexual and sexual growth and development in Neurospora. PMID:21965514

  9. P21 activated kinases

    PubMed Central

    Rane, Chetan K; Minden, Audrey

    2014-01-01

    The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer. PMID:24658305

  10. Molecular mechanisms for protein-encoded inheritance.

    PubMed

    Wiltzius, Jed J W; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R; Apostol, Marcin I; Goldschmidt, Lukasz; Soriaga, Angela B; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-09-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  11. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  12. Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis.

    PubMed

    Finetti, Pascal; Cervera, Nathalie; Charafe-Jauffret, Emmanuelle; Chabannon, Christian; Charpin, Colette; Chaffanet, Max; Jacquemier, Jocelyne; Viens, Patrice; Birnbaum, Daniel; Bertucci, François

    2008-02-01

    Breast cancer is a heterogeneous disease made of various molecular subtypes with different prognosis. However, evolution remains difficult to predict within some subtypes, such as luminal A, and treatment is not as adapted as it should be. Refinement of prognostic classification and identification of new therapeutic targets are needed. Using oligonucleotide microarrays, we profiled 227 breast cancers. We focused our analysis on two major breast cancer subtypes with opposite prognosis, luminal A (n = 80) and basal (n = 58), and on genes encoding protein kinases. Whole-kinome expression separated luminal A and basal tumors. The expression (measured by a kinase score) of 16 genes encoding serine/threonine kinases involved in mitosis distinguished two subgroups of luminal A tumors: Aa, of good prognosis and Ab, of poor prognosis. This classification and its prognostic effect were validated in 276 luminal A cases from three independent series profiled across different microarray platforms. The classification outperformed the current prognostic factors in univariate and multivariate analyses in both training and validation sets. The luminal Ab subgroup, characterized by high mitotic activity compared with luminal Aa tumors, displayed clinical characteristics and a kinase score intermediate between the luminal Aa subgroup and the luminal B subtype, suggesting a continuum in luminal tumors. Some of the mitotic kinases of the signature represent therapeutic targets under investigation. The identification of luminal A cases of poor prognosis should help select appropriate treatment, whereas the identification of a relevant kinase set provides potential targets.

  13. Squid visual arrestin: cDNA cloning and calcium-dependent phosphorylation by rhodopsin kinase (SQRK).

    PubMed

    Mayeenuddin, Linnia H; Mitchell, Jane

    2003-05-01

    Arrestin binding to rhodopsin is one of the major mechanisms of termination of photoresponses in both vertebrates and invertebrates. Here we report the cDNA cloning and characterization of a 48-kDa visual arrestin from squid (Loligo pealei). The cDNA encoded a protein that had 56-64% amino acid sequence similarity to reported arrestin sequences. This protein does not encode any distinct modular domains but contains five fingerprint regions that have been identified within arrestins. Antibodies raised to the recombinant arrestin protein detected arrestin expression only in the eye and recognized a doublet in photoreceptor membranes, representing unphosphorylated and phosphorylated arrestin. In squid eye membranes, arrestin was phosphorylated in a Ca2+-dependent manner and this phosphorylation was inhibited by antibodies raised against squid rhodopsin kinase, but not by inhibitors of protein kinase C or calmodulin kinase. Addition of purified squid rhodopsin kinase to washed rhabdomeric membranes resulted in phosphorylation of rhodopsin, and arrestin was also phosphorylated when calcium was present. This is the first report of a rhodopsin kinase phosphorylating an arrestin substrate, and suggests a dual role for this kinase in the inactivation of the squid visual system.

  14. Mutational analysis of the kinase domain of MYLK2 gene in common human cancers.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Su Young; Nam, Suk Woo; Park, Won Sang; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2006-01-01

    Genetic alterations of the genes encoding protein kinases have been implicated in the development of human cancers. Myosin light chain kinase 2, skeletal muscle (MYLK2) encodes a calcium/calmodulin-dependent serine/threonine kinase. In a recent study, MYLK2 gene was somatically mutated in colorectal carcinomas. The aim of this study was to explore the possibility that other common human carcinomas besides colorectal carcinomas harbored MYLK2 mutations in the kinase domain. We analyzed exons 6 and 7 eccoding the kinase domain of MYLK2 for somatic mutations in 60 gastric, 104 colorectal, 79 non-small cell lung, and 54 breast cancers using a polymerase chain reaction (PCR)-based single-strand conformation polymorphism (SSCP). We found one MYLK2 mutation in lung adenocarcinomas, but not in other cancers. The MYLK2 mutation detected was a missense mutation that would substitute an amino acid (E374D) However, there was no somatic mutation of the MYLK2 gene. These data suggest that the kinase domain of MYLK2 is rarely mutated in common human carcinomas and that it does not play a dominant role in cancer pathogenesis.

  15. Photolithographic Encoding of Metal Complexes.

    PubMed

    Lang, Christiane; Bestgen, Sebastian; Welle, Alexander; Müller, Rouven; Roesky, Peter W; Barner-Kowollik, Christopher

    2015-10-12

    A platform technology for the creation of spatially resolved surfaces encoded with a monolayer consisting of different metal complexes was developed. The concept entails the light-triggered activation of a self- assembled monolayer (SAM) of UV-labile anchors, that is, phenacylsulfides, and the subsequent cycloaddition of selected diene-functionalized metal complexes at defined areas on the surface. The synthesis and characterization of the metal complexes for the UV-light assisted anchoring on the surface and a detailed study of a short-chain oligomer model system in solution confirm the high efficiency of the photoreaction. The hybrid materials obtained by this concept can potentially be utilized for the design of highly valuable catalytic or (opto-)electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineering Genetically Encoded FRET Sensors

    PubMed Central

    Lindenburg, Laurens; Merkx, Maarten

    2014-01-01

    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940

  17. Genetically Encoded Sensors for Metabolites

    PubMed Central

    Deuschle, Karen; Fehr, Marcus; Hilpert, Melanie; Lager, Ida; Lalonde, Sylvie; Looger, Loren L.; Okumoto, Sakiko; Persson, Jörgen; Schmidt, Anja; Frommer, Wolf B.

    2009-01-01

    Background Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes over the past few years. Advanced expression systems and analysis technologies made it possible to study the biochemical properties of the corresponding proteins in great detail. We begin to understand the biological functions of the gene products by systematic analysis of mutants using systematic PTGS/RNAi, knockout and TILLING approaches. However, one crucial set of data especially relevant in the case of multicellular organisms is lacking: the knowledge of the spatial and temporal profiles of metabolite levels at cellular and subcellular levels. Methods We therefore developed genetically encoded nanosensors for several metabolites to provide a basic set of tools for the determination of cytosolic and subcellular metabolite levels in real time by using fluorescence microscopy. Results Prototypes of these sensors were successfully used in vitro and also in vivo, i.e., to measure sugar levels in fungal and animal cells. Conclusions One of the future goals will be to expand the set of sensors to a wider spectrum of substrates by using the natural spectrum of periplasmic binding proteins from bacteria and by computational design of proteins with altered binding pockets in conjunction with mutagenesis. This toolbox can then be applied for four-dimensional imaging of cells and tissues to elucidate the spatial and temporal distribution of metabolites as a discovery tool in functional genomics, as a tool for high-throughput, high-content screening for drugs, to test metabolic models, and to analyze the interplay of cells in a tissue or organ. PMID:15688353

  18. Functional and structural characterization of EnvZ, an osmosensing histidine kinase of E. coli.

    PubMed

    Yoshida, Takeshi; Phadtare, Sangita; Inouye, Masayori

    2007-01-01

    EnvZ is an osmosensing histidine kinase located in the inner membrane, and one of the most extensively studied Escherichia coli histidine kinases. Because of its structural complexity, functional and structural studies have been quite challenging. It is a multidomain transmembrane protein consisting of 450 amino acid residues. In addition, it must form a dimer to function as a histidine kinase like all the other histidine kinases. EnvZ consists of the 115-residue periplasmic domain, two transmembrane domains (TM1 and TM2), and the cytoplasmic domain consisting of the 43-residue linker (HAMP) domain and the 228-residue kinase domain. It has been shown that the kinase domain of EnvZ, responsible for its enzymatic activities, contains all of the conserved regions of histidine kinases such as H, F, N, G1, G2, and G3 boxes. Therefore, the 271-residue cytoplasmic domain of EnvZ (termed EnvZc) has been used as a model system to establish fundamental characteristics of histidine kinases. The DNA fragment encoding EnvZc was cloned in pET vector and EnvZc was expressed and purified. It is highly soluble and retains all the enzymatic activities of EnvZ. We demonstrated that it consists of two functional domains, domain A and domain B. NMR spectroscopic studies of these two domains revealed, for the first time, the structure of a histidine kinase. Domain A is responsible for dimerization of EnvZc forming a four-helical bundle containing two alpha-helical hairpin structures, while domain B is a monomer and has an ATP-binding pocket formed by regions conserved among the histidine kinases. In this chapter, we describe functional and structural studies of EnvZc, which can be applied to characterize other histidine kinases.

  19. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    PubMed

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  20. Role of LRRK2 kinase dysfunction in Parkinson disease.

    PubMed

    Kumar, Azad; Cookson, Mark R

    2011-06-13

    Parkinson disease is a common and usually sporadic neurodegenerative disorder. However, a subset of cases are inherited and, of these, mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent genetic cause of disease. Here, we will discuss recent progress in understanding how LRRK2 mutations lead to disease and how this might have therapeutic implications. The effect of mutations on LRRK2 enzyme function provides clues as to which functions of the protein are important to disease. Recent work has focused on the kinase and GTP-binding domains of LRRK2, and it is assumed that these will be therapeutically important, although there is a substantial amount of work to be done to address this hypothesis.

  1. The protooncogene TCL1 is an Akt kinase coactivator.

    PubMed

    Laine, J; Künstle, G; Obata, T; Sha, M; Noguchi, M

    2000-08-01

    Human T cell prolymphocytic leukemia can result from chromosomal translocations involving 14q32.1 or Xq28 regions. The regions encode a family of protooncogenes (TCL1, MTCP1, and TCL1b) of unknown function. In yeast two-hybrid screening, we found that TCL1 interacts with Akt. All TCL1 isoforms bind to the Akt pleckstrin homology domain. Both in vitro and in vivo TCL1 increases Akt kinase activity and as a consequence enhances substrate phosphorylation. In vivo, TCL1 stabilizes the mitochondrial transmembrane potential and enhances cell proliferation and survival. In vivo, TCL1 forms trimers, which associate with Akt. TCL1 facilitates the oligomerization and activation of Akt. Our data show that TCL1 is a novel Akt kinase coactivator, which promotes Akt-induced cell survival and proliferation.

  2. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood.

  3. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata

    PubMed Central

    Podduturi, Nikhil R.; Glick, David I.; Baymuradov, Ulugbek K.; Malladi, Venkat S.; Chan, Esther T.; Davidson, Jean M.; Gabdank, Idan; Narayana, Aditi K.; Onate, Kathrina C.; Hilton, Jason; Ho, Marcus C.; Lee, Brian T.; Miyasato, Stuart R.; Dreszer, Timothy R.; Sloan, Cricket A.; Strattan, J. Seth; Tanaka, Forrest Y.; Hong, Eurie L.; Cherry, J. Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package. PMID:28403240

  4. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    PubMed

    Hitz, Benjamin C; Rowe, Laurence D; Podduturi, Nikhil R; Glick, David I; Baymuradov, Ulugbek K; Malladi, Venkat S; Chan, Esther T; Davidson, Jean M; Gabdank, Idan; Narayana, Aditi K; Onate, Kathrina C; Hilton, Jason; Ho, Marcus C; Lee, Brian T; Miyasato, Stuart R; Dreszer, Timothy R; Sloan, Cricket A; Strattan, J Seth; Tanaka, Forrest Y; Hong, Eurie L; Cherry, J Michael

    2017-01-01

    The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.

  5. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14.

    PubMed

    Huppi, K; Siwarski, D; Goodnight, J; Mischak, H

    1994-01-01

    The protein kinase C (pkc) enzymes are a family of serine-threonine protein kinases, each encoded by a distinct and separate gene. The chromosomal locations of human PRKCA, PRKCB, and PRKCG have previously been established. We now report that PRKCD, a novel member of the pkc gene family, maps to human chromosome 3. The chromosomal location of Pkcd has also been determined in the mouse by analysis of recombination frequency in an interspecific panel of backcross mice. We find that the locus encoding pkcd resides proximal to nucleoside phosphorylase (Np-2) and Tcra on mouse chromosome 14 in a region syntenic with human 3p.

  6. Characterization and chromosomal localization of the gene for human rhodopsin kinase

    SciTech Connect

    Khani, S.C.; Yamamoto, S.; Dryja, T.P.

    1996-08-01

    G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovine rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.

  7. Genetic and biochemical characterization of the thymidine kinase gene from herpesvirus of turkeys.

    PubMed Central

    Martin, S L; Aparisio, D I; Bandyopadhyay, P K

    1989-01-01

    The thymidine kinase gene encoded by herpesvirus of turkeys has been identified and characterized. A viral mutant (ATR0) resistant to 1-beta-D-arabinofuranosylthymine was isolated. This mutant was also resistant to 1-(2-fluoro-2-deoxy-beta-D-arabinofuronosyl)-5-methyluracil and was unable to incorporate [125I]deoxycytidine into DNA. The mutant phenotype was rescued by a cloned region of the turkey herpesvirus genome whose DNA sequence was found to contain an open reading frame similar to that for known thymidine kinases from other viruses. When expressed in Escherichia coli, this open reading frame complemented a thymidine kinase-deficient strain and resulted in thymidine kinase activity in extracts assayed in vitro. Images PMID:2724415

  8. A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis.

    PubMed

    Brill, J A; Hime, G R; Scharer-Schuksz, M; Fuller, M T

    2000-09-01

    The endgame of cytokinesis can follow one of two pathways depending on developmental context: resolution into separate cells or formation of a stable intercellular bridge. Here we show that the four wheel drive (fwd) gene of Drosophila melanogaster is required for intercellular bridge formation during cytokinesis in male meiosis. In fwd mutant males, contractile rings form and constrict in dividing spermatocytes, but cleavage furrows are unstable and daughter cells fuse together, producing multinucleate spermatids. fwd is shown to encode a phosphatidylinositol 4-kinase (PI 4-kinase), a member of a family of proteins that perform the first step in the synthesis of the key regulatory membrane phospholipid PIP2. Wild-type activity of the fwd PI 4-kinase is required for tyrosine phosphorylation in the cleavage furrow and for normal organization of actin filaments in the constricting contractile ring. Our results suggest a critical role for PI 4-kinases and phosphatidylinositol derivatives during the final stages of cytokinesis.

  9. Protein kinase A catalytic subunit isoform PRKACA; History, function and physiology.

    PubMed

    Turnham, Rigney E; Scott, John D

    2016-02-15

    Our appreciation of the scope and influence of second messenger signaling has its origins in pioneering work on the cAMP-dependent protein kinase. Also called protein kinase A (PKA), this holoenzyme exists as a tetramer comprised of a regulatory (R) subunit dimer and two catalytic (C) subunits. Upon binding of two molecules of the second messenger cAMP to each R subunit, a conformational change in the PKA holoenzyme occurs to release the C subunits. These active kinases phosphorylate downstream targets to propagate cAMP responsive cell signaling events. This article focuses on the discovery, structure, cellular location and physiological effects of the catalytic subunit alpha of protein kinase A (encoded by the gene PRKACA). We also explore the potential role of this essential gene as a molecular mediator of certain disease states. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK).

    PubMed

    Lawler, S; Cuenda, A; Goedert, M; Cohen, P

    1997-09-01

    A cDNA was cloned and expressed that encodes human stress-activated protein kinase kinase-4 (SKK4), a novel MAP kinase kinase family member whose mRNA is widely expressed in human tissues. SKK4 activated SAPK1/JNK in vitro, but not SAPK2a/p38, SAPK2b/p38beta, SAPK3/ERK6 or SAPK4. It appears to be the mammalian homologue of HEP, an activator of SAPK1/JNK in Drosophila. In human epithelial KB cells SKK4 and SKK1/MKK4 (another activator of SAPK1/JNK) were both activated by stressful stimuli, but only SKK4 was activated by proinflammatory cytokines. The identification of SKK4 explains why the major SAPK1/JNK activator detected in many mammalian cell extracts is chromatographically separable from SKK1/MKK4.

  11. Genetic and biochemical characterization of the thymidine kinase gene from herpesvirus of turkeys.

    PubMed

    Martin, S L; Aparisio, D I; Bandyopadhyay, P K

    1989-06-01

    The thymidine kinase gene encoded by herpesvirus of turkeys has been identified and characterized. A viral mutant (ATR0) resistant to 1-beta-D-arabinofuranosylthymine was isolated. This mutant was also resistant to 1-(2-fluoro-2-deoxy-beta-D-arabinofuronosyl)-5-methyluracil and was unable to incorporate [125I]deoxycytidine into DNA. The mutant phenotype was rescued by a cloned region of the turkey herpesvirus genome whose DNA sequence was found to contain an open reading frame similar to that for known thymidine kinases from other viruses. When expressed in Escherichia coli, this open reading frame complemented a thymidine kinase-deficient strain and resulted in thymidine kinase activity in extracts assayed in vitro.

  12. The histidine kinase CusS senses silver ions through direct binding by its sensor domain

    PubMed Central

    Gudipaty, Swapna A.; McEvoy, Megan M.

    2014-01-01

    The Cus system of Escherichia coli aids in protection of cells from high concentrations of Ag(I) and Cu(I). The histidine kinase CusS of the CusRS two-component system functions as a Ag(I)/Cu(I)-responsive sensor kinase and is essential for induction of the genes encoding the CusCFBA efflux pump. In this study, we have examined the molecular features of the sensor domain of CusS in order to understand how a metal-responsive histidine kinase senses specific metal ions. We find that the predicted periplasmic sensor domain of CusS directly interacts with Ag(I) ions and undergoes a conformational change upon metal binding. Metal binding also enhances the tendency of the domain to dimerize. These findings suggest a model for activation of the histidine kinase through metal binding events in the periplasmic sensor domain. PMID:24948475

  13. NAK is an IkappaB kinase-activating kinase.

    PubMed

    Tojima, Y; Fujimoto, A; Delhase, M; Chen, Y; Hatakeyama, S; Nakayama, K; Kaneko, Y; Nimura, Y; Motoyama, N; Ikeda, K; Karin, M; Nakanishi, M

    2000-04-13

    Phosphorylation of IkappaB by the IkappaB kinase (IKK) complex is a critical step leading to IkappaB degradation and activation of transcription factor NF-kappaB. The IKK complex contains two catalytic subunits, IKKalpha and IKKbeta, the latter being indispensable for NF-kappaB activation by pro-inflammatory cytokines. Although IKK is activated by phosphorylation of the IKKbeta activation loop, the physiological IKK kinases that mediate responses to extracellular stimuli remain obscure. Here we describe an IKK-related kinase, named NAK (NF-kappaB-activating kinase), that can activate IKK through direct phosphorylation. NAK induces IkappaB degradation and NF-kappaB activity through IKKbeta. Endogenous NAK is activated by phorbol ester tumour promoters and growth factors, whereas catalytically inactive NAK specifically inhibits activation of NF-kappaB by protein kinase C-epsilon (PKCepsilon). Thus, NAK is an IKK kinase that may mediate IKK and NF-kappaB activation in response to growth factors that stimulate PKCepsilon activity.

  14. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum

    PubMed Central

    Steiner, Elisabeth; Dago, Angel E.; Young, Danielle I.; Heap, John T.; Minton, Nigel P.; Hoch, James A.

    2011-01-01

    The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A~P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A~P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli. PMID:21401736

  15. Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression.

    PubMed

    Verbsky, John; Lavine, Kory; Majerus, Philip W

    2005-06-14

    Many functions have been suggested for inositol 1,2,3,4,5,6-hexakisphosphate (InsP6), including mRNA export, nonhomologous end-joining, endocytosis, and ion channel regulation. However, it remains to be demonstrated that InsP6 is necessary for in vivo survival. We previously isolated a cDNA encoding the mammalian inositol 1,3,4,5,6-pentakisphosphate (InsP5) 2-kinase (2-kinase), the enzyme that converts InsP5 to InsP6. We used the sequence to search the BayGenomics databases and identify an ES cell line (XA232) that has a gene trap construct embedded in the 2-kinase gene. We obtained a mouse from this line, produced heterozygotes, and confirmed that the heterozygotes contain the trapping construct and have diminished 2-kinase activity. Breeding the XA232 heterozygotes produced no homozygous offspring; thus, loss of 2-kinase is lethal in mice. Dissections of embryonic day-8.5 uteri yielded no homozygous embryos; thus, the mice die before day 8.5 postcoitum. The gene trap construct contains a beta-galactosidase/neomycin reporter gene, allowing us to stain heterozygotes for beta-galactosidase to determine tissue-specific expression of 2-kinase protein. 2-kinase is expressed in the hippocampus, the cortex, the Purkinje layer of the cerebellum in the brain, in cardiomyocytes, and in the testes of adult mice. At day 9.5 postcoitum, 2-kinase was expressed in the notochord, the ventricular layer of the neural tube, and the myotome of the somites. Intense staining was also seen in the yolk sac, suggesting that InsP6 is necessary for yolk sac development or function. Furthermore, failure of yolk sac development or function is consistent with the early lethality of 2-kinase embryos.

  16. Evaluation of GOES encoder lamps

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Helmold, N.

    1983-01-01

    Aging characteristics and life expectancies of flight quality, tungsten filament, encoder lamps are similar to those of 'commercial' grade gas filled lamps of similar construction, filament material and filament temperature. The aging and final failure by filament burnout are caused by single crystal growth over large portions of the filament with the concomitant development of facets and notches resulting in reduction of cross section and mechanical weakening of the filament. The life expectancy of presently produced lamps is about one year at their nominal operating voltage of five volts dc. At 4.5 volts, it is about two years. These life times are considerably shorter, and the degradation rates of lamp current and light flux are considerably higher, than were observed in the laboratory and in orbit on lamps of the same type manufactured more than a decade ago. It is speculated that the filaments of these earlier lamps contained a crystallization retarding dopant, possibly thorium oxide. To obtain the desired life expectancy of or = to four years in present lamps, operating voltages of or = to four volts dc would be required.

  17. Multidimensional encoding of brain connectomes.

    PubMed

    Caiafa, Cesar F; Pestilli, Franco

    2017-09-13

    The ability to map brain networks in living individuals is fundamental in efforts to chart the relation between human behavior, health and disease. Advances in network neuroscience may benefit from developing new frameworks for mapping brain connectomes. We present a framework to encode structural brain connectomes and diffusion-weighted magnetic resonance (dMRI) data using multidimensional arrays. The framework integrates the relation between connectome nodes, edges, white matter fascicles and diffusion data. We demonstrate the utility of the framework for in vivo white matter mapping and anatomical computing by evaluating 1,490 connectomes, thirteen tractography methods, and three data sets. The framework dramatically reduces storage requirements for connectome evaluation methods, with up to 40x compression factors. Evaluation of multiple, diverse datasets demonstrates the importance of spatial resolution in dMRI. We measured large increases in connectome resolution as function of data spatial resolution (up to 52%). Moreover, we demonstrate that the framework allows performing anatomical manipulations on white matter tracts for statistical inference and to study the white matter geometrical organization. Finally, we provide open-source software implementing the method and data to reproduce the results.

  18. Novelty's effect on memory encoding.

    PubMed

    Rangel-Gomez, Mauricio; Janenaite, Sigita; Meeter, Martijn

    2015-07-01

    It is often thought that novelty benefits memory formation. However, support for this idea mostly comes from paradigms that are open to alternative explanations. In the present study we manipulated novelty in a word-learning task through task-irrelevant background images. These background images were either standard (presented repeatedly), or novel (presented only once). Two types of background images were used: Landscape pictures and fractals. EEG was also recorded during encoding. Contrary to the idea that novelty aids memory formation, memory performance was not affected by the novelty of the background. In the evoked response potentials, we found evidence of distracting effects of novelty: both the N1 and P3b components were smaller to words studied with novel backgrounds, and the amplitude of the N2b component correlated negatively with subsequent retrieval. We conclude that although evidence from other studies does suggest benefits on a longer time scale, novelty has no instantaneous benefits for learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Image encoding with triangulation wavelets

    NASA Astrophysics Data System (ADS)

    Hebert, D. J.; Kim, HyungJun

    1995-09-01

    We demonstrate some wavelet-based image processing applications of a class of simplicial grids arising in finite element computations and computer graphics. The cells of a triangular grid form the set of leaves of a binary tree and the nodes of a directed graph consisting of a single cycle. The leaf cycle of a uniform grid forms a pattern for pixel image scanning and for coherent computation of coefficients of splines and wavelets. A simple form of image encoding is accomplished with a 1D quadrature mirror filter whose coefficients represent an expansion of the image in terms of 2D Haar wavelets with triangular support. A combination the leaf cycle and an inherent quadtree structure allow efficient neighbor finding, grid refinement, tree pruning and storage. Pruning of the simplex tree yields a partially compressed image which requires no decoding, but rather may be rendered as a shaded triangulation. This structure and its generalization to n-dimensions form a convenient setting for wavelet analysis and computations based on simplicial grids.

  20. Unconscious relational encoding depends on hippocampus.

    PubMed

    Duss, Simone B; Reber, Thomas P; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M; Brugger, Peter; Gutbrod, Klemens; Henke, Katharina

    2014-12-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age=45.55 years, standard deviation=8.74, range=23-60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Unconscious relational encoding depends on hippocampus

    PubMed Central

    Duss, Simone B.; Reber, Thomas P.; Hänggi, Jürgen; Schwab, Simon; Wiest, Roland; Müri, René M.; Brugger, Peter; Gutbrod, Klemens

    2014-01-01

    Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23–60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system. PMID:25273998

  2. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.

  3. Tv-RIO1 - an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus.

    PubMed

    Hu, Min; Laronde-Leblanc, Nicole; Sternberg, Paul W; Gasser, Robin B

    2008-09-22

    Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. A full-length cDNA (Tv-rio-1) encoding a RIO1 protein kinase (Tv-RIO1) was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3), and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1). This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  4. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  5. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  6. Vibrational spectroscopic encoding of polystyrene-based resin beads: converting the encoding peaks into barcodes.

    PubMed

    Liu, Lie-Xiong; Huang, Zhen-Li; Zhao, Yuan-Di

    2005-12-01

    A detailed approach is described for the vibrational spectroscopic encoding of polystyrene-based resin beads by converting the infrared absorption peaks suitable for encoding (encoding peaks) into barcodes. Based on combining the FT-IR measurements and the quantum-chemical computations, the vibrational characteristics of p-tert-butylstyrene monomer, polystyrene and poly(p-tert-butylstyrene) resin beads are analyzed, which are helpful for the selection of encoding peaks. The vibrational spectroscopic encoding of polystyrene-based resin beads could be obtained by converting the wavenumber, intensity and full width at half maximum (FWHM) of the encoding peaks into barcodes automatically through a computer program designed in our laboratory.

  7. Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe

    PubMed Central

    Li, John J.; Cao, Chune; Fixsen, Sarah M.; Young, Janet M.; Bando, Hisanori; Elde, Nels C.; Katsuma, Susumu; Dever, Thomas E.; Sicheri, Frank

    2015-01-01

    Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKRKD) but not eIF2α. The PKRKD–PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the “eIF2α kinase C-lobe mimic” (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKRKD. We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)–like eIF2α kinase. PMID:26216977

  8. Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction

    PubMed Central

    vanderWijst, Jenny; Blanchard, Maxime G.; Woodroof, Helen I.; Macartney, Thomas J.; Gourlay, Robert; Hoenderop, Joost G.; Bindels, René J.; Alessi, Dario R.

    2014-01-01

    Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major

  9. CUL3 and protein kinases

    PubMed Central

    Metzger, Thibaud; Kleiss, Charlotte; Sumara, Izabela

    2013-01-01

    Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases. PMID:24067371

  10. Benzimidazole derivatives as kinase inhibitors.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni

    2014-01-01

    Benzimidazole is a common kinase inhibitor scaffold and benzimidazole-based compounds interact with enzymes by multiple binding modes. In some cases, the benzimidazole acts as part of the hinge-binding motif, in others it has a scaffolding role without evidence for direct hinge binding. Several of these compounds are ATP-competitive inhibitors and show high selectivity by exploiting unique structural properties that distinguish one kinase from the majority of other kinases. However, the high specificity for a single target is not always sufficient. Thus another approach, called multi-target therapy, has been developed over the last few years. The simultaneous inhibition of various kinases may be useful because the disease is attacked at several relevant targets. Moreover, if a kinase becomes drug-resistant, a multitargeted drug can act on the other kinases. Some benzimidazole derivatives are multi-target inhibitors. In this article benzimidazole inhibitors are reported with their mechanisms of action, structure-activity relationship (SAR) and biological properties.

  11. Functional Tyrosine Kinase Inhibitor Profiling

    PubMed Central

    Arbiser, Jack L.; Govindarajan, Baskaran; Bai, Xianhe; Onda, Hiroaki; Kazlauskas, Andrius; Lim, So Dug; Amin, Mahul B.; Claesson-Welsh, Lena

    2002-01-01

    Tumors often exhibit activation of specific tyrosine kinases, which may allow targeting of therapy through inhibition of tyrosine kinase signaling. This strategy has been used successfully in the development of STI571 (gleevec), an inhibitor of bcr-abl tyrosine kinase that has been used successfully in the treatment of chronic myelogenous leukemia. STI571 also shows activity against c-kit and platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase signaling, thus potentially expanding the number of tumors that may respond to it. We describe a simple and rapid method to assess functional activity of tyrosine kinase signaling that is broadly applicable to tumor types. As proof of principle, we have applied it to cells that serve as models of the autosomal-dominant tumor syndrome tuberous sclerosis (TS). We found that TS model cells derived from tuberin heterozygous mice and from a human renal angiomyolipoma are highly sensitive to PDGFR antagonists and that these cells express PDGFRβ. Given that PDGFRβ signaling is inhibited by STI571, we found that SV7tert human angiomyolipoma cells are sensitive to STI571. Thus, we describe a novel but simple method of determining the functional tyrosine kinase profile of a neoplastic cell and our results suggest that STI571 might be useful in the treatment of neoplasms commonly seen in patients with TS. PMID:12213705

  12. The protein kinase C family.

    PubMed

    Azzi, A; Boscoboinik, D; Hensey, C

    1992-09-15

    Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.

  13. Encoding and decoding in fMRI

    PubMed Central

    Naselaris, Thomas; Kay, Kendrick N.; Nishimoto, Shinji; Gallant, Jack L.

    2010-01-01

    Over the past decade fMRI researchers have developed increasingly sensitive techniques for analyzing the information represented in BOLD activity. The most popular of these techniques is linear classification, a simple technique for decoding information about experimental stimuli or tasks from patterns of activity across an array of voxels. A more recent development is the voxel-based encoding model, which describes the information about the stimulus or task that is represented in the activity of single voxels. Encoding and decoding are complementary operations: encoding uses stimuli to predict activity while decoding uses activity to predict information about stimuli. However, in practice these two operations are often confused, and their respective strengths and weaknesses have not been made clear. Here we use the concept of a linearizing feature space to clarify the relationship between encoding and decoding. We show that encoding and decoding operations can both be used to investigate some of the most common questions about how information is represented in the brain. However, focusing on encoding models offers two important advantages over decoding. First, an encoding model can in principle provide a complete functional description of a region of interest, while a decoding model can provide only a partial description. Second, while it is straightforward to derive an optimal decoding model from an encoding model it is much more difficult to derive an encoding model from a decoding model. We propose a systematic modeling approach that begins by estimating an encoding model for every voxel in a scan and ends by using the estimated encoding models to perform decoding. PMID:20691790

  14. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  15. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana

    PubMed Central

    Xie, Yuan; Li, Mei; Chang, Wenrui

    2016-01-01

    The genome of the Synechococcus elongatus strain PCC 7942 encodes a putative sugar kinase (SePSK), which shares 44.9% sequence identity with the xylulose kinase-1 (AtXK-1) from Arabidopsis thaliana. Sequence alignment suggests that both kinases belong to the ribulokinase-like carbohydrate kinases, a sub-family of FGGY family carbohydrate kinases. However, their exact physiological function and real substrates remain unknown. Here we solved the structures of SePSK and AtXK-1 in both their apo forms and in complex with nucleotide substrates. The two kinases exhibit nearly identical overall architecture, with both kinases possessing ATP hydrolysis activity in the absence of substrates. In addition, our enzymatic assays suggested that SePSK has the capability to phosphorylate D-ribulose. In order to understand the catalytic mechanism of SePSK, we solved the structure of SePSK in complex with D-ribulose and found two potential substrate binding pockets in SePSK. Using mutation and activity analysis, we further verified the key residues important for its catalytic activity. Moreover, our structural comparison with other family members suggests that there are major conformational changes in SePSK upon substrate binding, facilitating the catalytic process. Together, these results provide important information for a more detailed understanding of the cofactor and substrate binding mode as well as the catalytic mechanism of SePSK, and possible similarities with its plant homologue AtXK-1. PMID:27223615

  16. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana.

    PubMed

    Xie, Yuan; Li, Mei; Chang, Wenrui

    2016-01-01

    The genome of the Synechococcus elongatus strain PCC 7942 encodes a putative sugar kinase (SePSK), which shares 44.9% sequence identity with the xylulose kinase-1 (AtXK-1) from Arabidopsis thaliana. Sequence alignment suggests that both kinases belong to the ribulokinase-like carbohydrate kinases, a sub-family of FGGY family carbohydrate kinases. However, their exact physiological function and real substrates remain unknown. Here we solved the structures of SePSK and AtXK-1 in both their apo forms and in complex with nucleotide substrates. The two kinases exhibit nearly identical overall architecture, with both kinases possessing ATP hydrolysis activity in the absence of substrates. In addition, our enzymatic assays suggested that SePSK has the capability to phosphorylate D-ribulose. In order to understand the catalytic mechanism of SePSK, we solved the structure of SePSK in complex with D-ribulose and found two potential substrate binding pockets in SePSK. Using mutation and activity analysis, we further verified the key residues important for its catalytic activity. Moreover, our structural comparison with other family members suggests that there are major conformational changes in SePSK upon substrate binding, facilitating the catalytic process. Together, these results provide important information for a more detailed understanding of the cofactor and substrate binding mode as well as the catalytic mechanism of SePSK, and possible similarities with its plant homologue AtXK-1.

  17. Proteolytic susceptibility of creatine kinase isozymes and arginine kinase.

    PubMed

    Ercan, Altan; Grossman, Steven H

    2003-07-11

    The time course and dose-response to proteolysis of three dimeric isozymes of creatine kinase, CK-MM (muscle), CK-BB (brain), and CK-MB (heart) and the homologous monomer, arginine kinase were compared. Chymotrypsin and trypsin cause a rapid and significant loss of intact CK-BB, but limited hydrolysis of CK-MM. After 1h of hydrolysis by chymotrypsin, 80% of CK-MM is intact as judged by quantification of monomers after electrophoresis in sodium dodecyl sulfate. While 50% of the intact monomers of CK-MB remain under these conditions, no CK-BB monomers are detected. These results indicate that treatment with chymotrypsin leads to a CK-MB devoid of the B-subunit. When treated with trypsin for 1h, CK-MM is totally resistant to hydrolysis and all CK-BB is highly degraded. However, CK-MB exhibits approximately 90% intact monomers, indicating survival of intact B-subunit in CK-MB. This suggests that heterodimerization of a B-subunit with an M-subunit may have a protective effect against hydrolysis by trypsin. In view of the considerably larger number of potentially tryptic sensitive sites on the muscle isozyme, the resistance of CK-MM and susceptibility of CK-BB dimers to trypsin implies that differences in subunit tertiary structure are a factor in proteolysis of the homodimeric isozymes. Arginine kinase is rapidly degraded by trypsin, but is minimally affected by chymotrypsin. The finding that both a monomeric (arginine kinase) and dimeric (CK-BB) phosphagen kinase are highly susceptible to proteolysis by trypsin indicates that quaternary structure is not, in and of itself, an advantage in resistance to proteolysis. Since both arginine kinase and muscle creatine kinase are resistant to chymotryptic hydrolysis, it seems unlikely that in general, the increased packing density, which may result from dimerization can account for the stability of CK-MM towards trypsin.

  18. Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome

    PubMed Central

    Pérez, J.; Castañeda-García, A.; Jenke-Kodama, H.; Müller, R.; Muñoz-Dorado, J.

    2008-01-01

    Ser/Thr/Tyr kinases, which together comprise a major class of regulatory proteins in eukaryotes, were not believed to play an important role in prokaryotes until recently. However, our analysis of 626 prokaryotic genomes reveals that eukaryotic-like protein kinases (ELKs) are found in nearly two-thirds of the sequenced strains. We have identified 2697 ELKs, most of which are encoded by multicellular strains of the phyla Proteobacteria (Myxococcales), Actinobacteria, Cyanobacteria, and Chloroflexi, and 2 Acidobacteria and 1 Planctomycetes. Astonishingly, 7 myxobacterial strains together encode 892 ELKs, with 4 of the strains exhibiting a genomic ELK density similar to that observed in eukaryotes. Most myxobacterial ELKs show a modular organization in which the kinase domain is located at the N terminus. The C-terminal portion of the ELKs is highly diverse and often contains sequences with similarity to characterized domains, most of them involved in signaling mechanisms or in protein–protein interactions. However, many of these architectures are unique to the myxobacteria, an observation that suggests that this group exploits sophisticated and novel signal transduction systems. Phylogenetic reconstruction using the kinase domains revealed many orthologous sequence pairs and a huge number of gene duplications that probably occurred after speciation. Furthermore, studies of the microsynteny in the ELK-encoding regions reveal only low levels of synteny among Myxococcus xanthus, Plesiocystis pacifica, and Sorangium cellulosum. However, extensive similarities between M. xanthus, Stigmatella aurantiaca, and 3 Anaeromyxobacter strains were observed, indicating that they share regulatory pathways involving various ELKs. PMID:18836084

  19. Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT-1/Warts Serine/Threonine Kinase Family

    PubMed Central

    Zallen, Jennifer A.; Peckol, Erin L.; Tobin, David M.; Bargmann, Cornelia I.

    2000-01-01

    The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading. PMID:10982409

  20. Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae.

    PubMed Central

    Huang, D; Farkas, I; Roach, P J

    1996-01-01

    In Saccharomyces cerevisiae, nutrient levels control multiple cellular processes. Cells lacking the SNF1 gene cannot express glucose-repressible genes and do not accumulate the storage polysaccharide glycogen. The impaired glycogen synthesis is due to maintenance of glycogen synthase in a hyperphosphorylated, inactive state. In a screen for second site suppressors of the glycogen storage defect of snf1 cells, we identified a mutant gene that restored glycogen accumulation and which was allelic with PHO85, which encodes a member of the cyclin-dependent kinase family. In cells with disrupted PHO85 genes, we observed hyperaccumulation of glycogen, activation of glycogen synthase, and impaired glycogen synthase kinase activity. In snf1 cells, glycogen synthase kinase activity was elevated. Partial purification of glycogen synthase kinase activity from yeast extracts resulted in the separation of two fractions by phenyl-Sepharose chromatography, both of which phosphorylated and inactivated glycogen synthase. The activity of one of these, GPK2, was inhibited by olomoucine, which potently inhibits cyclin-dependent protein kinases, and contained an approximately 36-kDa species that reacted with antibodies to Pho85p. Analysis of Ser-to-Ala mutations at the three potential Gsy2p phosphorylation sites in pho85 cells implicated Ser-654 and/or Thr-667 in PHO85 control of glycogen synthase. We propose that Pho85p is a physiological glycogen synthase kinase, possibly acting downstream of Snf1p. PMID:8754836

  1. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  2. Role of the Yes and Csk tyrosine kinases in the development of a pathological state in the human retina.

    PubMed

    Baranova, Lyudmila; Emelyanova, Valentina; Volotovski, Igor

    2010-07-01

    Amplification and a cloning of fragments of genes of human retina tyrosine kinases, the nucleotide sequences of which feature a high homology to the gene families of the Yes and Csk tyrosine kinases, and a cloning of the complete coding sequence of the cDNA of the Csk tyrosine kinase gene of the human lymphocytes have been carried out. It has been established that this sequence contains 1,624 bp and encodes a protein that, with a 99% homology, corresponds to the human tyrosine kinase. A comparative analysis of the nucleotide sequences of the full-size cDNA of the Csk tyrosine kinase of the lymphocytes of healthy donors and of patients with an eye choroidal melanoma has shown that a risk of development of an eye choroidal melanoma can be estimated by the frequency of occurrence of a mutant allele in the 10th exon.

  3. Evidence for two NAD kinases in Salmonella typhimurium.

    PubMed Central

    Cheng, W.; Roth, J. R.

    1994-01-01

    The electron-carrying cofactor NADP is formed by phosphorylation of NAD. A strategy for the isolation of NAD kinase mutants revealed two classes of temperature-sensitive mutations, nadF and nadG, mapping at min 13 and 72 of the Salmonella chromosome. Both mutant types grew on nutrient broth at both 30 and 42 degrees C but on minimal medium showed a temperature-sensitive growth defect which was not corrected by any of the single nutritional supplements tested. A nadF deletion mutant grew on nutrient broth but not on minimal medium. A double mutant with the nadF deletion and a nadG(Ts) mutation showed temperature-sensitive growth on all media. We propose that Salmonella typhimurium has two NAD kinases, one encoded by the nadF and one by the nadG gene. This is supported by the fact that temperature-sensitive mutants of both genes produce kinase activity with altered heat stability. Results suggest that either one of two NAD kinases is sufficient for growth on rich medium, but that both are needed for growth on minimal media. Enzyme assays show that the nadF gene is responsible for about 70% of total NAD kinase activity, and that the nadG gene dictates the remaining 30%. While testing nutritional phenotypes of nadF and nadG mutants, we found that the biosynthetic intermediate, quinolinic acid (QA) inhibited growth of nadF mutants on nutrient broth. This suggested that the NadG enzyme might be inhibited by QA. Enzyme assays demonstrated that QA inhibits the NadG but not the NadF enzyme. This suggests the existence of a regulatory mechanism which controls NADP levels. PMID:8021211

  4. Phosphorylation of Yeast Phosphatidylserine Synthase by Protein Kinase A

    PubMed Central

    Choi, Hyeon-Son; Han, Gil-Soo; Carman, George M.

    2010-01-01

    The CHO1-encoded phosphatidylserine synthase from Saccharomyces cerevisiae is phosphorylated and inhibited by protein kinase A in vitro. CHO1 alleles bearing Ser46 → Ala and/or Ser47 → Ala mutations were constructed and expressed in a cho1Δ mutant lacking phosphatidylserine synthase. In vitro, the S46A/S47A mutation reduced the total amount of phosphorylation by 90% and abolished the inhibitory effect protein kinase A had on phosphatidylserine synthase activity. The enzyme phosphorylation by protein kinase A, which was time- and dose-dependent and dependent on the concentration of ATP, caused a electrophoretic mobility shift from a 27-kDa form to a 30-kDa form. The two electrophoretic forms of phosphatidylserine synthase were present in exponential phase cells, whereas only the 27-kDa form was present in stationary phase cells. In vivo labeling with 32Pi and immune complex analysis showed that the 30-kDa form was predominantly phosphorylated when compared with the 27-kDa form. However, the S46A/S47A mutations abolished the protein kinase A-mediated electrophoretic mobility shift. The S46A/S47A mutations also caused a 55% reduction in the total amount of phosphatidylserine synthase in exponential phase cells and a 66% reduction in the amount of enzyme in stationary phase cells. In phospholipid composition analysis, cells expressing the S46A/S47A mutant enzyme exhibited a 57% decrease in phosphatidylserine and a 40% increase in phosphatidylinositol. These results indicate that phosphatidylserine synthase is phosphorylated on Ser46 and Ser47 by protein kinase A, which results in a higher amount of enzyme for the net effect of stimulating the synthesis of phosphatidylserine. PMID:20145252

  5. Optoelectronic Shaft-Angle Encoder Tolerates Misalignments

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    Optoelectronic shaft-angle encoder measures angle of rotation of shaft with high precision while minimizing effects of eccentricity and other misalignments. Grooves on disk serve as reference marks to locate reading heads and measure increments of rotation of disk. Shaft-angle encoder, resembling optical compact-disk drive, includes two tracking heads illuminating grooves on disk and measures reflections from them.

  6. The Acquisition of Syntactically Encoded Evidentiality

    ERIC Educational Resources Information Center

    Rett, Jessica; Hyams, Nina

    2014-01-01

    This article presents several empirical studies of syntactically encoded evidentiality in English. The first part of our study consists of an adult online experiment that confirms claims in Asudeh & Toivonen (2012) that raised Perception Verb Similatives (PVSs; e.g. "John looks like he is sick") encode direct evidentiality. We then…

  7. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  8. Precision Digital Position Encoding For Resonant Scanners

    NASA Astrophysics Data System (ADS)

    Reich, Stanley; Tuchman, Israel

    1984-11-01

    Presented is a versatile precision digital encoding technique for mechanical resonant scanners. Described is it's application to electronic correction of the sinusoidal scan pattern traced. To contrast the flexibility of the electronic encoding technique a number of direct correction methods are described.

  9. The Acquisition of Syntactically Encoded Evidentiality

    ERIC Educational Resources Information Center

    Rett, Jessica; Hyams, Nina

    2014-01-01

    This article presents several empirical studies of syntactically encoded evidentiality in English. The first part of our study consists of an adult online experiment that confirms claims in Asudeh & Toivonen (2012) that raised Perception Verb Similatives (PVSs; e.g. "John looks like he is sick") encode direct evidentiality. We then…

  10. Experiments in encoding multilevel images as quadtrees

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1987-01-01

    Image storage requirements for several encoding methods are investigated and the use of quadtrees with multigray level or multicolor images are explored. The results of encoding a variety of images having up to 256 gray levels using three schemes (full raster, runlength and quadtree) are presented. Although there is considerable literature on the use of quadtrees to store and manipulate binary images, their application to multilevel images is relatively undeveloped. The potential advantage of quadtree encoding is that an entire area with a uniform gray level may be encoded as a unit. A pointerless quadtree encoding scheme is described. Data are presented on the size of the quadtree required to encode selected images and on the relative storage requirements of the three encoding schemes. A segmentation scheme based on the statistical variation of gray levels within a quadtree quadrant is described. This parametric scheme may be used to control the storage required by an encoded image and to preprocess a scene for feature identification. Several sets of black and white and pseudocolor images obtained by varying the segmentation parameter are shown.

  11. Recent advances on the encoding and selection methods of DNA-encoded chemical library.

    PubMed

    Shi, Bingbing; Zhou, Yu; Huang, Yiran; Zhang, Jianfu; Li, Xiaoyu

    2017-02-01

    DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research.

  12. Comparison of H.265/HEVC encoders

    NASA Astrophysics Data System (ADS)

    Trochimiuk, Maciej

    2016-09-01

    The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.

  13. Industrial Applications Of Optical Shaft Encoders

    NASA Astrophysics Data System (ADS)

    Edmister, Brian W.

    1980-11-01

    The development of the microprocessor and mini-computer for industrial process control has made the optical shaft angle encoder a natural choice for a position feedback transducer. Many of these applications, however, require the encoder to operate reliably in extremely hostile environments. In response to this, the encoder manufacturer has been faced with reliability problems which fall into the following general categories: 1. Exposure to weather 2. Wide operating and storage temperature range 3. Exposure to corrosive chemicals 4. Severe shock and vibration 5. High electrical noise levels 6. Severe blows to encoder housing 7. Operation in explosive atmospheres Three of these applications expose the encoder to most of these environmental conditions: 1. A jack-up control position feedback for an offshore oil well drilling rig 2. A depth measurement system for oil well logging instrumentation 3. Elevation and azimuth feedback for a solar power plant heliostat

  14. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast.

    PubMed

    Shiozaki, K; Russell, P

    1995-02-01

    With the goal of discovering the cellular functions of type 2C protein phosphatases, we have cloned and analyzed two ptc (phosphatase two C) genes, ptc2+ and ptc3+, from the fission yeast Schizosaccharomyces pombe. Together with the previously identified ptc1+ gene, the enzymes encoded by these genes account for approximately 90% of the measurable PP2C activity in fission yeast cells. No obvious growth defects result from individual disruptions of ptc genes, but a delta ptc1 delta ptc3 double mutant displays aberrant cell morphology and temperature-sensitive cell lysis that is further accentuated in a delta ptc1 delta ptc2 delta ptc3 triple mutant. These phenotypes are almost completely suppressed by the presence of osmotic stabilizers, strongly indicating that PP2C has an important role in osmoregulation. Genetic suppression of delta ptc1 delta ptc3 lethality identified two loci, mutations of which render cells hypersensitive to high-osmolarity media. One locus is identical to wis1+, encoding a MAP kinase kinase (MEK) homolog. The Wis1 sequence is most closely related to the Saccharomyces cerevisiae MEK encoded by PBS2, which is required for osmoregulation. These data indicate that divergent yeasts have functionally conserved MAP kinase pathways, which are required to increase intracellular osmotic concentrations in response to osmotic stress. Moreover, our observations implicate PP2C enzymes as also having an important role in signal transduction processes involved in osmoregulation, probably acting to negatively regulate the osmosensing signal that is transmitted through Wis1 MAP kinase kinase.

  15. Encoder: A Connectionist Model of How Learning to Visually Encode Fixated Text Images Improves Reading Fluency

    ERIC Educational Resources Information Center

    Martin, Gale L.

    2004-01-01

    This article proposes that visual encoding learning improves reading fluency by widening the span over which letters are recognized from a fixated text image so that fewer fixations are needed to cover a text line. Encoder is a connectionist model that learns to convert images like the fixated text images human readers encode into the…

  16. A model for visual memory encoding.

    PubMed

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  17. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

    SciTech Connect

    Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin; Howard, Andrew; Suzuki, Tomohiko; Moult, John; Herzberg, Osnat

    2010-03-12

    Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg{sup 2+}-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, {alpha} and {beta}, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GK{beta} encodes a peptide that is different in sequence and is 16 amino acids longer than that encoded by the N-terminal exon of GK{alpha}. The crystal structures of recombinant GK{alpha}{beta} and GK{beta}{beta} from Namalycastis sp. were determined at 2.6 and 2.4 {angstrom} resolution, respectively. In addition, the structure of the GK{beta}{beta} was determined at 2.3 {angstrom} resolution in complex with a transition state analogue, Mg{sup 2+}-ADP-NO{sub 3}{sup -}-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GK{alpha}{beta} are structurally defined, and the longer N-terminus of the {beta} subunit is anchored at the dimer interface. In GK{beta}{beta} the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GK{alpha}{beta} amino acids involved in the interface formation were optimized once

  18. Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium.

    PubMed Central

    Späth, C; Kraus, A; Hillen, W

    1997-01-01

    The glk gene from Bacillus megaterium, which encodes glucose kinase, was isolated and analyzed. Disruption by a transcriptional glk-luxAB fusion indicated that glk is the only glucose kinase gene in that strain but did not affect growth of that mutant on glucose. Determination of luciferase activity under various growth conditions revealed constitutive transcription of glk. Expression of a xylA-lacZ fusion was repressed by glucose in the strain with the glk disruption about twofold less efficiently than in the wild type. The potential contribution of glk expression to glucose repression is discussed. PMID:9393732

  19. WNK kinases and essential hypertension.

    PubMed

    Huang, Chou-Long; Kuo, Elizabeth; Toto, Robert D

    2008-03-01

    The present review summarizes recent literature and discusses the potential roles of WNKs in the pathogenesis of essential hypertension. WNKs (with-no-lysine [K]) are a recently discovered family of serine-threonine protein kinases with unusual protein kinase domains. The role of WNK kinases in the control of blood pressure was first revealed by the findings that mutations of two members, WNK1 and WNK4, cause Gordon's syndrome. Laboratory studies have revealed that WNK kinases play important roles in the regulation of sodium and potassium transport. Animal models have been created to unravel the pathophysiology of sodium transport disorders caused by mutations of the WNK4 gene. Potassium deficiency causes sodium retention and increases hypertension prevalence. The expression of WNK1 is upregulated by potassium deficiency, raising the possibility that WNK1 may contribute to salt-sensitive essential hypertension associated with potassium deficiency. Associations of polymorphisms of WNK genes with essential hypertension in the general population have been reported. Mutations of WNK1 and WNK4 cause hypertension at least partly by increasing renal sodium retention. The role of WNK kinases in salt-sensitive hypertension within general hypertension is suggested, but future work is required to firmly establish the connection.

  20. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  1. The WNKs: atypical protein kinases with pleiotropic actions

    PubMed Central

    McCormick, James A.; Ellison, David H.

    2011-01-01

    WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encoding WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK 1 and 4 were determined to cause the human disease, Familial Hyperkalemic Hypertension (also known as pseudohypoaldosteronism II, or Gordon’s Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II (HSANII), an early-onset autosomal disease of peripheral sensory nerves. Thus, the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs, and effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs. PMID:21248166

  2. Aurora kinase A in Barrett's carcinogenesis.

    PubMed

    Rugge, Massimo; Fassan, Matteo; Zaninotto, Giovanni; Pizzi, Marco; Giacomelli, Luciano; Battaglia, Giorgio; Rizzetto, Christian; Parente, Paola; Ancona, Ermanno

    2010-10-01

    In Barrett's mucosa, both aneuploidy and TP53 mutations are consistently recognized as markers of an increased risk of Barrett's adenocarcinoma. Overexpression of the mitotic kinase encoding gene (AURKA) results in chromosome instability (assessed from the micronuclei count) and ultimately in aneuploidy. Eighty-seven esophageal biopsy samples representative of all the phenotypic lesions occurring in the multistep process of Barrett's carcinogenesis (gastric metaplasia in 25, intestinal metaplasia in 25, low-grade intraepithelial neoplasia in 16, high-grade intraepithelial neoplasia in 11, and Barrett's adenocarcinoma in 10) were obtained from long segments of Barrett's mucosa. Twenty-five additional biopsy samples of native esophageal mucosa were used for control purposes. In all tissue samples, the immunohistochemical expression of both AURKA and TP53 gene products was scored; and the micronuclei index was calculated. AURKA immunostaining increased progressively and significantly along with dedifferentiation of the histologic phenotype (P < .001). Nine of 10 Barrett's adenocarcinomas showed AURKA immunostaining. AURKA expression correlated significantly with p53 expression and the micronuclei index (both Ps < .001). AURKA overexpression is significantly associated with Barrett's mucosa progressing to Barrett's adenocarcinoma and contributes to esophageal carcinogenesis via chromosome instability. The identification of AURKA as a novel molecular target of cancer progression in Barrett's mucosa provides a lead for the development of new therapeutic approaches in Barrett's mucosa patients.

  3. Weekly oral alendronate in mevalonate kinase deficiency

    PubMed Central

    2013-01-01

    Background Mevalonate kinase deficiency (MKD) is caused by mutations in the MVK gene, encoding the second enzyme of mevalonate pathway, which results in subsequent shortage of downstream compounds, and starts in childhood with febrile attacks, skin, joint, and gastrointestinal symptoms, sometimes induced by vaccinations. Methods For a history of early-onset corticosteroid-induced reduction of bone mineral density in a 14-year-old boy with MKD, who also had presented three bone fractures, we administered weekly oral alendronate, a drug widely used in the management of osteoporosis and other high bone turnover diseases, which blocks mevalonate and halts the prenylation process. Results All of the patient’s MKD clinical and laboratory abnormalities were resolved after starting alendronate treatment. Conclusions This observation appears enigmatic, since alendronate should reinforce the metabolic block characterizing MKD, but is crucial because of the ultimate improvement shown by this patient. The anti-inflammatory properties of bisphosphonates are a new question for debate among physicians across various specialties, and requires further biochemical and clinical investigation. PMID:24360083

  4. Tyrosine Kinase Inhibitors in Lung Cancer

    PubMed Central

    Thomas, Anish; Rajan, Arun; Giaccone, Giuseppe

    2012-01-01

    SYNOPSIS ‘Driver mutations’ are essential for carcinogenesis as well as tumor progression as they confer a selective growth advantage to cancer cells. Identification of driver mutations in growth related protein kinases, especially tyrosine kinases have led to clinical development of an array of tyrosine kinase inhibitors in various malignancies, including lung cancer. Inhibition of epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinases have proven to be of meaningful clinical benefit, while inhibition of several other tyrosine kinases have been of limited clinical benefit, thus far. An improved understanding of tyrosine kinase biology has also led to faster drug development, identification of resistance mechanisms and ways to overcome resistance. In this review, we discuss the clinical data supporting the use and practical aspects of management of patients on epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors. PMID:22520981

  5. Efficient reverse time migration with amplitude encoding

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are

    2015-08-01

    Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.

  6. reduced ocelli encodes the leucine rich repeat protein Pray For Elves in Drosophila melanogaster.

    PubMed

    Caldwell, Jason C; Fineberg, Sarah K; Eberl, Daniel F

    2007-01-01

    The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo(1) and rdo(2), were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3'UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system.

  7. reduced ocelli Encodes the Leucine Rich Repeat Protein Pray For Elves in Drosophila melanogaster

    PubMed Central

    Caldwell, Jason C.; Fineberg, Sarah K.; Eberl, Daniel F.

    2009-01-01

    The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo1 and rdo2, were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3′UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system. PMID:18820435

  8. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress.

    PubMed

    Kumar, Kundan; Rao, Kudupudi Prabhakara; Sharma, Pallavi; Sinha, Alok Krishna

    2008-10-01

    Mitogen activated protein kinase cascade plays a crucial role in various biotic and abiotic stresses, hormones, cell division and developmental processes. MAP kinase kinase being integral part of this cascade performs an important function of integrating upstream signals to mitogen activated protein kinase for further appropriate cellular responses. We here report cloning of five MAP kinase kinase members from Oryza sativa indica cultivar var. Pusa Basmati 1, namely MAP kinase kinases 1, 3, 4, 6 and 10-2. All these members, except MKK10-2 possess fully canonical motif structures of MAP kinase kinase. The deduced amino acid sequence showed changes at certain position within japonica and indica variety of rice. Analysis of transcript regulation by quantitative real time PCR revealed that these five members are differentially regulated by cold, heat, salinity and drought stresses. MAP kinase kinases 4 and 6 are strongly regulated by cold and salt stresses while MAP kinase kinase 1 is regulated by salt and drought stresses. MAP kinase kinase 10-2 is regulated only by cold stress. The study provides the indication of involvement of specific MAP kinase kinase in different abiotic stress signaling and also possible cross talks that exist during the signaling processes.

  9. A novel family of serine/threonine kinases participating in spermiogenesis.

    PubMed

    Kueng, P; Nikolova, Z; Djonov, V; Hemphill, A; Rohrbach, V; Boehlen, D; Zuercher, G; Andres, A C; Ziemiecki, A

    1997-12-29

    The molecular mechanisms regulating the spectacular cytodifferentiation observed during spermiogenesis are poorly understood. We have recently identified a murine testis-specific serine kinase (tssk) 1, constituting a novel subfamily of serine/threonine kinases. Using low stringency screening we have isolated and molecularly characterized a second closely related family member, tssk 2, which is probably the orthologue of the human DGS-G gene. Expression of tssk 1 and tssk 2 was limited to the testis of sexually mature males. Immunohistochemical staining localized both kinases to the cytoplasm of late spermatids and to structures resembling residual bodies. tssk 1 and tssk 2 were absent in released sperms in the lumen of the seminiferous tubules and the epididymis, demonstrating a tight window of expression restricted to the last stages of spermatid maturation. In vitro kinase assays of immunoprecipitates containing either tssk 1 or tssk 2 revealed no autophosphorylation of the kinases, however, they led to serine phosphorylation of a coprecipitating protein of approximately 65 kD. A search for interacting proteins using the yeast two-hybrid system with tssk 1 and tssk 2 cDNA as baits and a prey cDNA library from mouse testis, led to the isolation of a novel cDNA, interacting specifically with both tssk 1 and tssk 2, and encoding the coprecipitated 65-kD protein phosphorylated by both kinases. Interestingly, expression of the interacting clone was also testis specific and paralleled the developmental expression observed for the kinases themselves. These results represent the first demonstration of the involvement of a distinct kinase family, the tssk serine/threonine kinases, together with a substrate in the cytodifferentiation of late spermatids to sperms.

  10. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    SciTech Connect

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  11. Encoding entanglement-assisted quantum stabilizer codes

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Jiang; Bai, Bao-Ming; Li, Zhuo; Peng, Jin-Ye; Xiao, He-Ling

    2012-02-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.

  12. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  13. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  14. VLSI Reed-Solomon Encoder With Interleaver

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek; Deutsch, L. J.; Truong, Trieu-Kie; Reed, I. S.

    1990-01-01

    Size, weight, and susceptibility to burst errors reduced. Encoding system built on single very-large-scale integrated (VLSI) circuit chip produces (255,223) Reed-Solomon (RS) code with programmable interleaving up to depth of 5. (225,223) RS encoder includes new remainder-and-interleaver unit providing programmable interleaving of code words. Remainder-and-interleaver unit contains shift registers and modulo-2 adders. Signals on "turn" and "no-turn" lines control depth of interleaving. Based on E. R. Berlekamp's bit-serial multiplication algorithm for (225,223) RS encoder over Galois Field (2 to the 8th power).

  15. Pulse Vector-Excitation Speech Encoder

    NASA Technical Reports Server (NTRS)

    Davidson, Grant; Gersho, Allen

    1989-01-01

    Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.

  16. Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse

    PubMed Central

    Forrest, Alistair R.R.; Ravasi, Timothy; Taylor, Darrin; Huber, Thomas; Hume, David A.; Grimmond, Sean

    2003-01-01

    With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project. PMID:12819143

  17. Structural and functional characterization of human NAD kinase.

    PubMed

    Lerner, F; Niere, M; Ludwig, A; Ziegler, M

    2001-10-19

    NADP is essential for biosynthetic pathways, energy, and signal transduction. Its synthesis is catalyzed by NAD kinase. Very little is known about the structure, function, and regulation of this enzyme from multicellular organisms. We identified a human NAD kinase cDNA and the corresponding gene using available database information. A cDNA was amplified from a human fibroblast cDNA library and functionally overexpressed in Escherichia coli. The obtained cDNA, slightly different from that deposited in the database, encodes a protein of 49 kDa. The gene is expressed in most human tissues, but not in skeletal muscle. Human NAD kinase differs considerably from that of prokaryotes by subunit molecular mass (49 kDa vs 30-35 kDa). The catalytically active homotetramer is highly selective for its substrates, NAD and ATP. It did not phosphorylate the nicotinic acid derivative of NAD (NAAD) suggesting that the potent calcium-mobilizing pyridine nucleotide NAADP is synthesized by an alternative route.

  18. Calcium-Dependent Protein Kinase Genes in Corn Roots

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  19. [Kinase inhibitors against hematological malignancies].

    PubMed

    Tojo, Arinobu

    2014-06-01

    Dysregulation of protein phosphorylation, especially on tyrosine residues, plays a crucial role in development and progression of hematological malignancies. Since remarkable success in imatinib therapy of CML and Ph+ALL, extensive efforts have made to explore candidate molecular targets and next breakthrough drugs. Now that next generation ABL kinase inhibitors are available for CML, the therapeutic algorithm has been revolutionized. As for AML and lymphoid malignancies, many kinase inhibitors targeting FLT3, BTK and aurora-A are on early and late clinical trials, and a number of promising drugs including ibrutinib are picked up for further evaluation.

  20. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  1. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  2. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  3. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases*

    PubMed Central

    Lai, Shenshen; Safaei, Javad

    2016-01-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies. PMID:26742849

  4. Characterization of PDZ-binding kinase, a mitotic kinase

    PubMed Central

    Gaudet, Suzanne; Branton, Daniel; Lue, Robert A.

    2000-01-01

    hDlg, the human homologue of the Drosophila Discs-large (Dlg) tumor suppressor protein, is known to interact with the tumor suppressor protein APC and the human papillomavirus E6 transforming protein. In a two-hybrid screen, we identified a 322-aa serine/threonine kinase that binds to the PDZ2 domain of hDlg. The mRNA for this PDZ-binding kinase, or PBK, is most abundant in placenta and absent from adult brain tissue. The protein sequence of PBK has all the characteristic protein kinase subdomains and a C-terminal PDZ-binding T/SXV motif. In vitro, PBK binds specifically to PDZ2 of hDlg through its C-terminal T/SXV motif. PBK and hDlg are phosphorylated at mitosis in HeLa cells, and the mitotic phosphorylation of PBK is required for its kinase activity. In vitro, cdc2/cyclin B phosphorylates PBK. This evidence shows how PBK could link hDlg or other PDZ-containing proteins to signal transduction pathways regulating the cell cycle or cellular proliferation. PMID:10779557

  5. Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome.

    PubMed Central

    Zhang, C C; Gonzalez, L; Phalip, V

    1998-01-01

    Bacteria usually use two-component systems for signal transduction, while eukaryotic organisms employ Ser/Thr and Tyr kinases and phosphatases for the same purpose. Many prokaryotes turn out to harbor Ser/Thr and Tyr kinases, Ser/Thr and Tyr phosphatases, and their accessory components as well. The sequence determination of the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 offers the possibility to survey the extent of such molecules in a prokaryotic organism. This cyanobacterium possesses seven Ser/Thr kinases, seven Ser/Thr and Tyr phosphatases, one protein kinase interacting protein, one protein kinase regulatory subunit and several WD40-repeat-containing proteins. The majority of the protein phosphatases presented in this study were previously reported as hypothetical proteins. We analyze here the structure and genetic organization of these ORFs in the hope of providing a guidance for their functional analysis. Unlike their eukaryotic counterparts, many of these genes are clustered on the chromosome, and this genetic organization offers the opportunity to study their possible interaction. In several cases, genes of two-component transducers are found within the same cluster as those encoding a Ser/Thr kinase or a Ser/Thr phosphatase; the implication for signal transduction mechanism will be discussed. PMID:9685474

  6. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.

    PubMed

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles

    2014-06-03

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  7. Chemical Space of DNA-Encoded Libraries.

    PubMed

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  8. Optimal stimulus encoders for natural tasks

    PubMed Central

    Geisler, Wilson S.; Najemnik, Jiri; Ing, Almon D.

    2010-01-01

    Determining the features of natural stimuli that are most useful for specific natural tasks is critical for understanding perceptual systems. A new approach is described that involves finding the optimal encoder for the natural task of interest, given a relatively small population of noisy “neurons” between the encoder and decoder. The optimal encoder, which necessarily specifies the most useful features, is found by maximizing accuracy in the natural task, where the decoder is the Bayesian ideal observer operating on the population responses. The approach is illustrated for a patch identification task, where the goal is to identify patches of natural image, and for a foreground identification task, where the goal is to identify which side of a natural surface boundary belongs to the foreground object. The optimal features (receptive fields) are intuitive and perform well in the two tasks. The approach also provides insight into general principles of neural encoding and decoding. PMID:20055550

  9. A multifunctional rotary photoelectric encoder management system

    NASA Astrophysics Data System (ADS)

    Ye, Zunzhong; Ying, Yibin

    2005-11-01

    The rotary photoelectric encoder can be used in many fields, such as robot research, fruit assembly lines, and so on. If there have many photoelectric encoders in one system, it's difficult to manage them and acquire the right pulse number. So it's important to design a multifunctional management system. It includes a powerful microchip with high processing speed, assuring the acquisition precision of rotary pulse. It uses a special method to judge the rotary direction and will be competent for many occasions which rotary direction changes quickly. Considering encoder data transmission, the management system provides a serial port using RS-485 protocol to transmit current pulse data and rotary direction. It allows linking a maximum of 100 management systems using only two communication lines to up-systems and also configing the encoder counting pattern locally (using the keyboard) or remotely (through the computer).

  10. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2013-09-24

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  11. Cellobiohydrolase variants and polynucleotides encoding same

    DOEpatents

    Wogulis, Mark

    2014-10-14

    The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  12. Cellobiohydrolase variants and polynucleotides encoding the same

    DOEpatents

    Wogulis, Mark

    2014-09-09

    The present invention relates to variants of a parent cellobiohydrolase. The present invention also relates to polynucleotides encoding the cellobiohydrolase variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the cellobiohydrolase variants.

  13. Genes encoding a callose synthase and phytochrome A are adjacent to a MAP3Ka-like gene in Beta vulgaris USH20

    USDA-ARS?s Scientific Manuscript database

    MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...

  14. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    PubMed

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  15. Clustering of polarization-encoded images.

    PubMed

    Zallat, Jihad; Collet, Christophe; Takakura, Yoshitate

    2004-01-10

    Polarization-encoded imaging consists of the distributed measurements of polarization parameters for each pixel of an image. We address clustering of multidimensional polarization-encoded images. The spatial coherence of polarization information is considered. Two methods of analysis are proposed: polarization contrast enhancement and a more-sophisticated image-processing algorithm based on a Markovian model. The proposed algorithms are applied and validated with two different Mueller images acquired by a fully polarimetric imaging system.

  16. A Manual for Encoding Probability Distributions.

    DTIC Science & Technology

    1978-09-01

    summary of the most significant information contained in the report. If the report contains a significant bibliography or literature survey, mention it...probability distri- bution. Some terms in the literature that are used synonymously to Encoding: Assessment, Assignment (used for single events in this...sessions conducted as parts of practical decision analyses as well as on experimental evidence in the literature . Probability encoding can be applied

  17. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  18. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  19. Using XML to encode TMA DES metadata

    PubMed Central

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  20. Using XML to encode TMA DES metadata.

    PubMed

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  1. Biochemical properties of human pantothenate kinase 2 isoforms and mutations linked to pantothenate kinase-associated neurodegeneration.

    PubMed

    Zhang, Yong-Mei; Rock, Charles O; Jackowski, Suzanne

    2006-01-06

    The PANK2 gene encodes the human pantothenate kinase 2 protein isoforms, and PANK2 mutations are linked to pantothenate kinase-associated neurodegeneration. Two PanK2 protein forms are proteolytically processed to form a mitochondrially localized, mature PanK2. Another isoform arose from a proposed initiation at a leucine codon and was not processed further. The fifth isoform was postulated to arise from an alternative splicing event and was found to encode an inactive protein. Fourteen mutant PanK2 proteins with single amino acid substitutions, associated with either early or late onset disease, were evaluated for activity. The PanK2(G521R), the most frequent mutation in pantothenate kinase-associated neurodegeneration, was devoid of activity and did not fold properly. However, nine of the mutant proteins associated with disease possessed catalytic activities that were indistinguishable from wild type, including the frequently encountered PanK2(T528M) missense mutation. PanK2 was extremely sensitive to feedback inhibition by CoA thioesters (IC50 values between 250 and 500 nM), and the regulation of the active PanK2 mutants was comparable with that of the wild-type protein. Coexpression of the PanK2(G521R) and wild-type PanK2 did not interfere with wild-type enzyme activity, arguing against a dominant negative effect of the PanK2(G521R) mutation in heterozygous patients. These data described the unique biochemical features of the PanK2 isoforms and suggested that catalytic defects may not be the sole cause for the neurodegenerative phenotype.

  2. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation.

    PubMed Central

    Tyers, M; Tokiwa, G; Nash, R; Futcher, B

    1992-01-01

    In Saccharomyces cerevisiae, several of the proteins involved in the Start decision have been identified; these include the Cdc28 protein kinase and three cyclin-like proteins, Cln1, Cln2 and Cln3. We find that Cln3 is a very unstable, low abundance protein. In contrast, the truncated Cln3-1 protein is stable, suggesting that the PEST-rich C-terminal third of Cln3 is necessary for rapid turnover. Cln3 associates with Cdc28 to form an active kinase complex that phosphorylates Cln3 itself and a co-precipitated substrate of 45 kDa. The cdc34-2 allele, which encodes a defective ubiquitin conjugating enzyme, dramatically increases the kinase activity associated with Cln3, but does not affect the half-life of Cln3. The Cln--Cdc28 complex is inactivated by treatment with non-specific phosphatases; prolonged incubation with ATP restores kinase activity to the dephosphorylated kinase complex. It is thus possible that phosphate residues essential for Cln-Cdc28 kinase activity are added autocatalytically. The multiple post-translational controls on Cln3 activity may help Cln3 tether division to growth. Images PMID:1316273

  3. A novel bacterial tyrosine kinase essential for cell division and differentiation

    PubMed Central

    Wu, Jianguo; Ohta, Noriko; Zhao, Ji-Liang; Newton, Austin

    1999-01-01

    Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases. PMID:10557274

  4. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  5. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  6. Neurally Encoding Time for Olfactory Navigation

    PubMed Central

    Park, In Jun; Hein, Andrew M.; Bobkov, Yuriy V.; Reidenbach, Matthew A.; Ache, Barry W.; Principe, Jose C.

    2016-01-01

    Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing. PMID:26730727

  7. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues.

  8. NGF-induction of the metalloproteinase-transin/stromelysin in PC12 cells: involvement of multiple protein kinases.

    PubMed

    Machida, C M; Scott, J D; Ciment, G

    1991-09-01

    In previous work, we found that nerve growth factor (NGF) induced expression of the mRNA transcript encoding the metalloproteinase transin/stromelysin in PC12 cells. Transin was found, moreover, to be a "late" gene product whose expression correlated with neurites extension. In this study, various aspects of the NGF intracellular signaling pathway in PC12 cells are investigated. We show that the protein kinase inhibitor staurosporine, but not various other kinase inhibitors, specifically blocked the NGF induction of transin. Preliminary characterization of this staurosporine-sensitive kinase suggest that it does not correspond to a tyrosine kinase, nor various serine kinases, and that it is involved both at the transcriptional and posttranscriptional levels of transin gene regulation. In contrast to these effects of staurosporine, various activators of protein kinases C and A augmented the NGF induction of transin. Similar effects of these kinase inhibitors and activators were also observed with the expression of various immediate-early genes that have been proposed to mediate the transcriptional effects of NGF, including c-fos and c-jun. These data suggest, therefore, that the NGF induction of transin mRNA expression involves multiple protein kinases acting at a number of postreceptor regulatory steps in the NGF signaling pathway.

  9. Kinase signalling in Huntington's disease.

    PubMed

    Bowles, Kathryn R; Jones, Lesley

    2014-01-01

    Alterations in numerous signal transduction pathways and aberrant activity of specific kinases have been identified in multiple cell and mouse models of Huntington's disease (HD), as well as in human HD brain. The balance and integration of a network of kinase signalling pathways is paramount for the regulation of a wide range of cellular and physiological processes, such as proliferation, differentiation, inflammation, neuronal plasticity and apoptosis. Unbalanced activity within these pathways provides a potential mechanism for many of the pathological phenotypes associated with HD, such as transcriptional dysregulation, inflammation and ultimately neurodegeneration. The characterisation of aberrant kinase signalling regulation in HD has been inconsistent and may be a result of failure to consider integration between multiple signalling pathways, as well as alterations that may occur over time with both age and disease progression. Collating the information about the effect of mHTT on signalling pathways demonstrates that it has wide ranging effects on multiple pro- and anti-apoptotic kinases, resulting in the dysregulation of numerous complex interactions within a dynamic network.

  10. Case report: pyruvate kinase deficiency.

    PubMed

    Rothman, J M

    1995-09-01

    Pyruvate kinase deficiency is a rare cause of congenital hemolytic anemia. Despite a paucity of reports, splenectomy resulted in successful outcomes for two siblings with this disorder. The sisters were diagnosed at birth with profound jaundice and congenital nonspherocytic hemolytic anemia.

  11. Genetics Home Reference: mevalonate kinase deficiency

    MedlinePlus

    ... shape, leading to a reduction of mevalonate kinase enzyme activity. Despite this shortage (deficiency) of mevalonate kinase activity, ... who have less than 1 percent of normal enzyme activity usually develop MVA. Learn more about the gene ...

  12. Degradation of Activated Protein Kinases by Ubiquitination

    PubMed Central

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

  13. Microtubule affinity-regulating kinase 4: structure, function, and regulation.

    PubMed

    Naz, Farha; Anjum, Farah; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2013-11-01

    MAP/Microtubule affinity-regulating kinase 4 (MARK4) belongs to the family of serine/threonine kinases that phosphorylate the microtubule-associated proteins (MAP) causing their detachment from the microtubules thereby increasing microtubule dynamics and facilitating cell division, cell cycle control, cell polarity determination, cell shape alterations, etc. The MARK4 gene encodes two alternatively spliced isoforms, L and S that differ in their C-terminal region. These isoforms are differentially regulated in human tissues including central nervous system. MARK4L is a 752-residue-long polypeptide that is divided into three distinct domains: (1) protein kinase domain (59-314), (2) ubiquitin-associated domain (322-369), and (3) kinase-associated domain (703-752) plus 54 residues (649-703) involved in the proper folding and function of the enzyme. In addition, residues 65-73 are considered to be the ATP-binding domain and Lys88 is considered as ATP-binding site. Asp181 has been proposed to be the active site of MARK4 that is activated by phosphorylation of Thr214 side chain. The isoform MARK4S is highly expressed in the normal brain and is presumably involved in neuronal differentiation. On the other hand, the isoform MARK4L is upregulated in hepatocarcinoma cells and gliomas suggesting its involvement in cell cycle. Several biological functions are also associated with MARK4 including microtubule bundle formation, nervous system development, and positive regulation of programmed cell death. Therefore, MARK4 is considered as the most suitable target for structure-based rational drug design. Our sequence, structure- and function-based analysis should be helpful for better understanding of mechanisms of regulation of microtubule dynamics and MARK4 associated diseases.

  14. Inhibitory activity for the interferon-induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein.

    PubMed Central

    Imani, F; Jacobs, B L

    1988-01-01

    In this report we demonstrate that reovirus serotype 1-infected cells contain an inhibitor of the interferon-induced, double-stranded RNA (dsRNA)-dependent protein kinase. We provide evidence that suggests that the virus-encoded sigma 3 protein is likely responsible for this kinase inhibitory activity. We could not detect activation of the dsRNA-dependent protein kinase in extracts prepared from either interferon-treated or untreated reovirus serotype 1-infected mouse L cells under conditions that led to activation of the kinase in extracts prepared from either interferon-treated or untreated, uninfected cells. Extracts from reovirus-infected cells blocked activation of kinase in extracts from interferon-treated cells when the two were mixed prior to assay. The kinase inhibitory activity in extracts of reovirus-infected cells could be overcome by adding approximately 100-fold excess of dsRNA over the amount required to activate kinase in extracts of uninfected cells. Kinase inhibitory activity in extracts of interferon-treated, virus-infected cells could be overcome with somewhat less dsRNA (approximately 10-fold excess). Most of the inhibitory activity in the extracts could be removed by adsorption with immobilized anti-reovirus sigma 3 serum or immobilized dsRNA, suggesting that the dsRNA-binding sigma 3 protein is necessary for kinase inhibitory activity. Purified sigma 3 protein, when added to reaction mixtures containing partially purified kinase, inhibited enzyme activation. Control of activation of this kinase, which can modify eukaryotic protein synthesis initiation factor 2, may be relevant to the sensitivity of reovirus replication to treatment of cells with interferon and to the shutoff of host protein synthesis in reovirus-infected cells. Images PMID:2460857

  15. Probing activation/deactivation of the BRASSINOSTEROID INSENSITIVE1 receptor kinase by immunoprecipitation

    PubMed Central

    Martins, Sara; Vert, Grégory; Jaillais, Yvon

    2017-01-01

    Summary Brassinosteroids are plant sterol-derived hormones that control plant growth and development. The BR receptor complex is encoded by the BRASSINOSTEROID INSENSITIVE1 (BRI1) and members of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE family. BR receptor complex activation and deactivation uses different post-translational modifications and recruitment of partner proteins. In this chapter, we describe optimized immunoprecipitation protocols and variants for biochemical analyses of BRI1 post-translational modification and protein-protein interaction. PMID:28124254

  16. MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast

    PubMed Central

    English, Justin G.; Shellhammer, James P.; Malahe, Michael; McCarter, Patrick C.; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Signaling pathways can behave as switches or rheostats, generating binary or graded responses to a given cell stimulus. We evaluated whether a single signaling pathway can simultaneously encode a switch and a rheostat. We found that the kinase Hog1 mediated a bifurcated cellular response: Activation and commitment to adaptation to osmotic stress are switch-like, whereas protein induction and the resolution of this commitment are graded. Through experimentation, bioinformatics analysis, and computational modeling, we determined that graded recovery is encoded through feedback phosphorylation and a gene induction program that is both temporally staggered and variable across the population. This switch-to-rheostat signaling mechanism represents a versatile stress adaptation system, wherein a broad range of inputs generate an “all-in” response that is later tuned to allow graded recovery of individual cells over time. PMID:25587192

  17. MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast.

    PubMed

    English, Justin G; Shellhammer, James P; Malahe, Michael; McCarter, Patrick C; Elston, Timothy C; Dohlman, Henrik G

    2015-01-13

    Signaling pathways can behave as switches or rheostats, generating binary or graded responses to a given cell stimulus. We evaluated whether a single signaling pathway can simultaneously encode a switch and a rheostat. We found that the kinase Hog1 mediated a bifurcated cellular response: Activation and commitment to adaptation to osmotic stress are switchlike, whereas protein induction and the resolution of this commitment are graded. Through experimentation, bioinformatics analysis, and computational modeling, we determined that graded recovery is encoded through feedback phosphorylation and a gene induction program that is both temporally staggered and variable across the population. This switch-to-rheostat signaling mechanism represents a versatile stress adaptation system, wherein a broad range of inputs generate an "all-in" response that is later tuned to allow graded recovery of individual cells over time. Copyright © 2015, American Association for the Advancement of Science.

  18. Multichannel Compressive Sensing MRI Using Noiselet Encoding

    PubMed Central

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548

  19. Multichannel compressive sensing MRI using noiselet encoding.

    PubMed

    Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin

    2015-01-01

    The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  20. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    PubMed Central

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  1. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching.

    PubMed

    Richter, Franziska R; Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures-memory selectivity and global memory-to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm-in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials-with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable.

  2. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  3. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    PubMed Central

    González-Vera, Juan A.; Morris, May C.

    2015-01-01

    Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes. PMID:28248276

  4. Giardia lamblia Nek1 and Nek2 kinases affect mitosis and excystation.

    PubMed

    Smith, Alias J; Lauwaet, Tineke; Davids, Barbara J; Gillin, Frances D

    2012-04-01

    The NIMA-related serine/threonine kinases (Neks) function in the cell cycle and regulate ciliary and flagellar length. The Giardia lamblia genome encodes 198 Neks, of which 56 are predicted to be active. Here we believe that we report the first functional analysis of two G. lamblia Neks. The GlNek1 and GlNek2 kinase domains share 57% and 43% identity to the kinase domains of human Nek1 and Nek2, respectively. Both GlNeks are active in vitro, have dynamic relocalisation during the cell cycle, and are expressed throughout the life cycle, with GlNek1 being upregulated in cysts. Over-expression of inactive GlNek1 delays disassembly of the parental attachment disc and cytokinesis, whilst over-expression of either wild type GlNek1 or inactive mutant GlNek2 inhibits excystation.

  5. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity

    PubMed Central

    Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.

    2011-01-01

    Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377

  6. Characterization of Genes Encoding for Acquired Bacitracin Resistance in Clostridium perfringens

    PubMed Central

    Charlebois, Audrey; Jalbert, Louis-Alexandre; Harel, Josée; Masson, Luke; Archambault, Marie

    2012-01-01

    Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC90 (>256 µg/ml) was identical for both turkey and chicken isolates; whereas MIC50 was higher in turkey isolates (6 µg/ml) than in chicken isolates (3 µg/ml). Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 µg/ml) and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens. PMID:22970221

  7. The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase.

    PubMed Central

    Lorenz, W; Inglese, J; Palczewski, K; Onorato, J J; Caron, M G; Lefkowitz, R J

    1991-01-01

    Light-dependent deactivation of rhodopsin as well as homologous desensitization of beta-adrenergic receptors involves receptor phosphorylation that is mediated by the highly specific protein kinases rhodopsin kinase (RK) and beta-adrenergic receptor kinase (beta ARK), respectively. We report here the cloning of a complementary DNA for RK. The deduced amino acid sequence shows a high degree of homology to beta ARK. In a phylogenetic tree constructed by comparing the catalytic domains of several protein kinases, RK and beta ARK are located on a branch close to, but separate from the cyclic nucleotide-dependent protein kinase and protein kinase C subfamilies. From the common structural features we conclude that both RK and beta ARK are members of a newly delineated gene family of guanine nucleotide-binding protein (G protein)-coupled receptor kinases that may function in diverse pathways to regulate the function of such receptors. Images PMID:1656454

  8. Crystal structure of poxvirus thymidylate kinase: an unexpected dimerization has implications for antiviral therapy.

    PubMed

    Caillat, Christophe; Topalis, Dimitri; Agrofoglio, Luigi A; Pochet, Sylvie; Balzarini, Jan; Deville-Bonne, Dominique; Meyer, Philippe

    2008-11-04

    Unlike most DNA viruses, poxviruses replicate in the cytoplasm of host cells. They encode enzymes needed for genome replication and transcription, including their own thymidine and thymidylate kinases. Some herpes viruses encode only 1 enzyme catalyzing both reactions, a peculiarity used for prodrug activation to obtain maximum specificity. We have solved the crystal structures of vaccinia virus thymidylate kinase bound to TDP or brivudin monophosphate. Although the viral and human enzymes have similar sequences (42% identity), they differ in their homodimeric association and active-site geometry. The vaccinia TMP kinase dimer arrangement is orthogonal and not antiparallel as in human enzyme. This different monomer orientation is related to the presence of a canal connecting the edge of the dimer interface to the TMP base binding pocket. Consequently, the pox enzyme accommodates nucleotides with bulkier bases, like brivudin monophosphate and dGMP; these are efficiently phosphorylated and stabilize the enzyme. The brivudin monophosphate-bound structure explains the structural basis for this specificity, opening the way to the rational development of specific antipox agents that may also be suitable for poxvirus TMP kinase gene-based chemotherapy of cancer.

  9. Crystal structure of poxvirus thymidylate kinase: An unexpected dimerization has implications for antiviral therapy

    PubMed Central

    Caillat, Christophe; Topalis, Dimitri; Agrofoglio, Luigi A.; Pochet, Sylvie; Balzarini, Jan; Deville-Bonne, Dominique; Meyer, Philippe

    2008-01-01

    Unlike most DNA viruses, poxviruses replicate in the cytoplasm of host cells. They encode enzymes needed for genome replication and transcription, including their own thymidine and thymidylate kinases. Some herpes viruses encode only 1 enzyme catalyzing both reactions, a peculiarity used for prodrug activation to obtain maximum specificity. We have solved the crystal structures of vaccinia virus thymidylate kinase bound to TDP or brivudin monophosphate. Although the viral and human enzymes have similar sequences (42% identity), they differ in their homodimeric association and active-site geometry. The vaccinia TMP kinase dimer arrangement is orthogonal and not antiparallel as in human enzyme. This different monomer orientation is related to the presence of a canal connecting the edge of the dimer interface to the TMP base binding pocket. Consequently, the pox enzyme accommodates nucleotides with bulkier bases, like brivudin monophosphate and dGMP; these are efficiently phosphorylated and stabilize the enzyme. The brivudin monophosphate-bound structure explains the structural basis for this specificity, opening the way to the rational development of specific antipox agents that may also be suitable for poxvirus TMP kinase gene-based chemotherapy of cancer. PMID:18971333

  10. Dictyostelium discoideum has a single diacylglycerol kinase gene with similarity to mammalian theta isoforms.

    PubMed Central

    De La Roche, Marc A; Smith, Janet L; Rico, Maribel; Carrasco, Silvia; Merida, Isabel; Licate, Lucila; Côté, Graham P; Egelhoff, Thomas T

    2002-01-01

    Diacylglycerol kinases (DGKs) phosphorylate the neutral lipid diacylglycerol (DG) to produce phosphatidic acid (PA). In mammalian systems DGKs are a complex family of at least nine isoforms that are thought to participate in down-regulation of DG-based signalling pathways and perhaps activation of PA-stimulated signalling events. We report here that the simple protozoan amoeba Dictyostelium discoideum appears to contain a single gene encoding a DGK enzyme. This gene, dgkA, encodes a deduced protein that contains three C1-type cysteine-rich repeats, a DGK catalytic domain most closely related to the theta subtype of mammalian DGKs and a C-terminal segment containing a proline/glutamine-rich region and a large aspargine-repeat region. This gene corresponds to a previously reported myosin II heavy chain kinase designated myosin heavy chain-protein kinase C (MHC-PKC), but our analysis clearly demonstrates that this protein does not, as suggested by earlier data, contain a protein kinase catalytic domain. A FLAG-tagged version of DgkA expressed in Dictyostelium displayed robust DGK activity. Earlier studies indicating that disruption of this locus alters myosin II assembly levels in Dictyostelium raise the intriguing possibility that DG and/or PA metabolism may play a role in controlling myosin II assembly in this system. PMID:12296770

  11. The ENCODE Project at UC Santa Cruz.

    PubMed

    Thomas, Daryl J; Rosenbloom, Kate R; Clawson, Hiram; Hinrichs, Angie S; Trumbower, Heather; Raney, Brian J; Karolchik, Donna; Barber, Galt P; Harte, Rachel A; Hillman-Jackson, Jennifer; Kuhn, Robert M; Rhead, Brooke L; Smith, Kayla E; Thakkapallayil, Archana; Zweig, Ann S; Haussler, David; Kent, W James

    2007-01-01

    The goal of the Encyclopedia Of DNA Elements (ENCODE) Project is to identify all functional elements in the human genome. The pilot phase is for comparison of existing methods and for the development of new methods to rigorously analyze a defined 1% of the human genome sequence. Experimental datasets are focused on the origin of replication, DNase I hypersensitivity, chromatin immunoprecipitation, promoter function, gene structure, pseudogenes, non-protein-coding RNAs, transcribed RNAs, multiple sequence alignment and evolutionarily constrained elements. The ENCODE project at UCSC website (http://genome.ucsc.edu/ENCODE) is the primary portal for the sequence-based data produced as part of the ENCODE project. In the pilot phase of the project, over 30 labs provided experimental results for a total of 56 browser tracks supported by 385 database tables. The site provides researchers with a number of tools that allow them to visualize and analyze the data as well as download data for local analyses. This paper describes the portal to the data, highlights the data that has been made available, and presents the tools that have been developed within the ENCODE project. Access to the data and types of interactive analysis that are possible are illustrated through supplemental examples.

  12. Eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells.

    PubMed

    Glinka, Elena M

    2013-12-01

    Gene therapy has attracted attention for its potential to specifically and efficiently target cancer cells with minimal toxicity to normal cells. At present, it offers a promising direction for the treatment of cancer patients. Numerous vectors have been engineered for the sole purpose of killing cancer cells, and some have successfully suppressed malignant tumours. Many plant proteins have anticancer properties; consequently, genes encoding some of these proteins are being used to design constructs for the inhibition of multiplying cancer cells. Data addressing the function of vectors harbouring genes specifically encoding ricin, saporin, lunasin, linamarase, and tomato thymidine kinase 1 under the control of different promoters are summarised here. Constructs employing genes to encode cytotoxic proteins as well as constructs employing genes of enzymes that convert a nontoxic prodrug into a toxic drug are considered here. Generation of eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells may permit the broadening of cancer gene therapy strategy, particularly because of the specific mode of action of anticancer plant proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  14. Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7.

    PubMed

    Chia, Ruth; Haddock, Sara; Beilina, Alexandra; Rudenko, Iakov N; Mamais, Adamantios; Kaganovich, Alice; Li, Yan; Kumaran, Ravindran; Nalls, Michael A; Cookson, Mark R

    2014-12-15

    LRRK2, a gene relevant to Parkinson's disease, encodes a scaffolding protein with both GTPase and kinase activities. LRRK2 protein is itself phosphorylated and therefore is subject to regulation by cell signalling; however, the kinase(s) responsible for this event have not been definitively identified. Here using an unbiased siRNA kinome screen, we identify and validate casein kinase 1α (CK1α) as being responsible for LRRK2 phosphorylation, including in the adult mouse striatum. We further show that LRRK2 recruitment to TGN46-positive Golgi-derived vesicles is modulated by constitutive LRRK2 phosphorylation by CK1α. These effects are mediated by differential protein interactions of LRRK2 with a guanine nucleotide exchange factor, ARHGEF7. These pathways are therefore likely involved in the physiological maintenance of the Golgi in cells, which may play a role in the pathogenesis of Parkinson's disease.

  15. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations

    PubMed Central

    Muchir, Antoine; Worman, Howard J.

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations. PMID:26795484

  16. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa.

    PubMed

    Liu, Guosheng; Chen, Mingliang; Yu, Chen; Wang, Wei; Yang, Lirong; Li, Zengpeng; Wang, Weiyi; Chen, Jianming

    2017-07-01

    The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Information Theoretic Characterisation of Auditory Encoding

    PubMed Central

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  18. Quantum repeater with continuous variable encoding

    NASA Astrophysics Data System (ADS)

    Li, Linshu; Albert, Victor V.; Michael, Marios; Muralidharan, Sreraman; Zou, Changling; Jiang, Liang

    2016-05-01

    Quantum communication enables faithful quantum state transfer between different parties and protocols for cryptographic purposes. However, quantum communication over long distances (>1000km) remains challenging due to optical channel attenuation. This calls for investigation on developing novel encoding schemes that correct photon loss errors efficiently. In this talk, we introduce the generalization of multi-component Schrödinger cat states and propose to encode quantum information in these cat states for ultrafast quantum repeaters. We detail the quantum error correction procedures at each repeater station and characterize the performance of this novel encoding scheme given practical imperfections, such as coupling loss. A comparison with other quantum error correcting codes for bosonic modes will be discussed.

  19. Noise level and MPEG-2 encoder statistics

    NASA Astrophysics Data System (ADS)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  20. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system.

    PubMed Central

    Brian, P; Riggle, P J; Santos, R A; Champness, W C

    1996-01-01

    Streptomycete antibiotic synthesis is coupled to morphological differentiation such that antibiotics are produced as a colony sporulates. Streptomyces coelicolor produces several structurally and genetically distinct antibiotics. The S. coelicolor absA locus was defined by four UV-induced mutations that globally blocked antibiotic biosynthesis without blocking morphological differentiation. We show that the absA locus encodes a putative eubacterial two-component sensor kinase-response regulator system. All four mutations lie within a single open reading frame, designated absA1, which is predicted to encode a sensor histidine kinase. A second gene downstream of absA1, absA2, is predicted to encode the cognate response regulator. In marked contrast to the antibiotic-deficient phenotype of the previously described absA mutants, the phenotype caused by disruption mutations in the absA locus is precocious hyperproduction of the antibiotics actinorhodin and undecylprodigiosin. Precocious hyperproduction of these antibiotics is correlated with premature expression of XylE activity in a transcriptional fusion to an actinorhodin biosynthetic gene. We propose that the absA locus encodes a signal transduction mechanism that negatively regulates synthesis of the multiple antibiotics produced by S. coelicolor. PMID:8655502

  1. Aurora kinases: novel therapy targets in cancers.

    PubMed

    Tang, Anqun; Gao, Keyu; Chu, Laili; Zhang, Rui; Yang, Jing; Zheng, Junnian

    2017-01-29

    Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.

  2. Receptor tyrosine kinases in carcinogenesis.

    PubMed

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-11-01

    Receptor tyrosine kinases (RTKs) are cell surface glycoproteins with enzymatic activity involved in the regulation of various important functions. In all-important physiological functions including differentiation, cell-cell interactions, survival, proliferation, metabolism, migration and signaling these receptors are the key players of regulation. Additionally, mutations of RTKs or their overexpression have been described in many human cancers and are being explored as a novel avenue for a new therapeutic approach. Some of the deregulated RTKs observed to be significantly affected in cancers included vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, RTK-like orphan receptor 1 (ROR1) and the platelet-derived growth factor receptor. These deregulated RTKs offer attractive possibilities for the new anticancer therapeutic approach involving specific targeting by monoclonal antibodies as well as kinase. The present review aimed to highlight recent perspectives of RTK ROR1 in cancer.

  3. Fatal attraction: cytomegalovirus-encoded chemokine homologs.

    PubMed

    Saederup, N; Mocarski, E S

    2002-01-01

    Members of the cytomegalovirus (CMV) subfamily of betaherpesviruses infecting primates and rodents encode divergent proteins with sequence characteristics and activities of chemokines, a class of small, secreted proteins that control leukocyte migration and trafficking behavior. Human CMV genes UL146 and UL147 encode proteins with sequence characteristics of CXC chemokines, whereas, murine CMV encodes a CC chemokine homolog (MCK-2). Human CMV UL146 encodes a neutrophil-attracting chemokine denoted viral CXC chemokine-1 (vCXCL1) that is as potent as host IL-8 and functions via the CXCR2 receptor, one of two human IL-8 receptors. Murine CMV MCK-2 is composed of a chemokine domain derived from open reading frame (ORF) m131 (and denoted MCK-1) as well as a domain derived from m129 that does not have sequence similarity to any known class of proteins. A synthetic version of murine CMV m131 (MCK-1) protein carries out many of the activities of a positive-acting chemokine, including transient release of intracellular calcium stores and cell adhesion of peritoneal macrophage populations. In the context of the viral genome and infection of the mouse host, the m131-m129 (MCK-2) gene product confers increased inflammation, higher levels of viremia, and higher titers of virus in salivary glands, consistent with a role in promoting dissemination by attracting an important mononuclear leukocyte population. Other characterized primate CMVs, but not other primate betaherpesviruses, encode gene products similar to human UL146 and UL147. Other characterized rodent CMVs encode a gene product similar to the murine CMV chemokine homolog, although not as a spliced gene product. Thus chemokines, like viral proteins that downmodulate MHC class I expression or have sequence homology to host MHC class I proteins, have evolved in primate and rodent CMVs to carry out an analogous set of immunomodulatory functions during infection of the host even though they arise from distinct origins.

  4. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  6. Vector Adaptive/Predictive Encoding Of Speech

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey; Gersho, Allen

    1989-01-01

    Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.

  7. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  8. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  9. Nucleotide selectivity of antibiotic kinases.

    PubMed

    Shakya, Tushar; Wright, Gerard D

    2010-05-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.

  10. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  11. Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1.

    PubMed Central

    Lackner, M R; Kim, S K

    1998-01-01

    The Caenorhabditis elegans mpk-1 gene encodes a MAP kinase protein that plays an important role in Ras-mediated induction of vulval cell fates. We show that mutations that eliminate mpk-1 activity result in a highly penetrant, vulvaless phenotype. A double mutant containing a gain-of-function mpk-1 mutation and a gain-of-function mek mutation (MEK phosphorylates and activates MPK-1) exhibits a multivulva phenotype. These results suggest that mpk-1 may transduce most or all of the anchor cell signal. Epistasis analysis suggests that mpk-1 acts downstream of mek-2 (encodes a MEK homolog) and upstream of lin-1 (encodes an Ets transcription factor) in the anchor cell signaling pathway. Finally, mpk-1 may act together with let-60 ras in multiple developmental processes, as mpk-1 mutants exhibit nearly the same range of developmental phenotypes as let-60 ras mutants. PMID:9725833

  12. Genetic analysis of the Caenorhabditis elegans MAP kinase gene mpk-1.

    PubMed

    Lackner, M R; Kim, S K

    1998-09-01

    The Caenorhabditis elegans mpk-1 gene encodes a MAP kinase protein that plays an important role in Ras-mediated induction of vulval cell fates. We show that mutations that eliminate mpk-1 activity result in a highly penetrant, vulvaless phenotype. A double mutant containing a gain-of-function mpk-1 mutation and a gain-of-function mek mutation (MEK phosphorylates and activates MPK-1) exhibits a multivulva phenotype. These results suggest that mpk-1 may transduce most or all of the anchor cell signal. Epistasis analysis suggests that mpk-1 acts downstream of mek-2 (encodes a MEK homolog) and upstream of lin-1 (encodes an Ets transcription factor) in the anchor cell signaling pathway. Finally, mpk-1 may act together with let-60 ras in multiple developmental processes, as mpk-1 mutants exhibit nearly the same range of developmental phenotypes as let-60 ras mutants.

  13. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002.

    PubMed

    Jacobs, Marc D; Black, James; Futer, Olga; Swenson, Lora; Hare, Brian; Fleming, Mark; Saxena, Kumkum

    2005-04-08

    Pim-1 is an oncogene-encoded serine/threonine kinase primarily expressed in hematopoietic and germ cell lines. Pim-1 kinase was originally identified in Maloney murine leukemia virus-induced T-cell lymphomas and is associated with multiple cellular functions such as proliferation, survival, differentiation, apoptosis, and tumorigenesis (Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N. S. (2001) J. Vet. Sci. 2, 167-179). The crystal structures of Pim-1 complexed with staurosporine and adenosine were determined. Although a typical two-domain serine/threonine protein kinase fold is observed, the inter-domain hinge region is unusual in both sequence and conformation; a two-residue insertion causes the hinge to bulge away from the ATP-binding pocket, and a proline residue in the hinge removes a conserved main chain hydrogen bond donor. Without this hydrogen bond, van der Waals interactions with the hinge serve to position the ligand. The hinge region of Pim-1 resembles that of phosphatidylinositol 3-kinase more closely than it does other protein kinases. Although the phosphatidylinositol 3-kinase inhibitor LY294002 also inhibits Pim-1, the structure of the LY294002.Pim-1 complex reveals a new binding mode that may be general for Ser/Thr kinases.

  14. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    PubMed Central

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  15. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    NASA Astrophysics Data System (ADS)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  16. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A murine fer testis-specific transcript (ferT) encodes a truncated Fer protein.

    PubMed Central

    Fischman, K; Edman, J C; Shackleford, G M; Turner, J A; Rutter, W J; Nir, U

    1990-01-01

    A cDNA for a potential tyrosine kinase-encoding mRNA was isolated from a mouse testis cDNA library. In a survey of eight mouse tissues, a transcript of 2.4 kilobases restricted to testis tissue was found. The mRNA encodes a 453-amino-acid protein of 51,383 daltons, the smallest tyrosine kinase protein ever described. RNA synthesized from the cDNA template directs the synthesis of a 51,000-Mr protein in a cell-free translation system. The carboxy-terminal 409 amino acids are 98 and 90% identical to the carboxy halves of the rat and human Fer proteins, respectively. This suggests that the cDNA represents an alternatively spliced testis-specific fer mRNA and is therefore termed by us ferT. On the basis of the appearance time of the fer mRNA in the testis of maturing neonatal mice, we speculate on the role played by this protein in the development of this organ. Images PMID:2294399

  18. Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning

    PubMed Central

    Cho, Christine E; Brueggemann, Chantal; L'Etoile, Noelle D; Bargmann, Cornelia I

    2016-01-01

    Sensory experience modifies behavior through both associative and non-associative learning. In Caenorhabditis elegans, pairing odor with food deprivation results in aversive olfactory learning, and pairing odor with food results in appetitive learning. Aversive learning requires nuclear translocation of the cGMP-dependent protein kinase EGL-4 in AWC olfactory neurons and an insulin signal from AIA interneurons. Here we show that the activity of neurons including AIA is acutely required during aversive, but not appetitive, learning. The AIA circuit and AGE-1, an insulin-regulated PI3 kinase, signal to AWC to drive nuclear enrichment of EGL-4 during conditioning. Odor exposure shifts the AWC dynamic range to higher odor concentrations regardless of food pairing or the AIA circuit, whereas AWC coupling to motor circuits is oppositely regulated by aversive and appetitive learning. These results suggest that non-associative sensory adaptation in AWC encodes odor history, while associative behavioral preference is encoded by altered AWC synaptic activity. DOI: http://dx.doi.org/10.7554/eLife.14000.001 PMID:27383131

  19. Matrix Encoding For Correction Of Errors

    NASA Technical Reports Server (NTRS)

    Dotson, Ronald S.

    1991-01-01

    Method of matrix encoding and associated decoding provides for correction of errors in digital data recorded on magnetic tape. Intended specifically for use with commercial control circuit board and associated software making it possible to use video cassette recorder as backup for hard-disk memory of personal computer.

  20. Retrieval during Learning Facilitates Subsequent Memory Encoding

    ERIC Educational Resources Information Center

    Pastotter, Bernhard; Schicker, Sabine; Niedernhuber, Julia; Bauml, Karl-Heinz T.

    2011-01-01

    In multiple-list learning, retrieval during learning has been suggested to improve recall of the single lists by enhancing list discrimination and, at test, reducing interference. Using electrophysiological, oscillatory measures of brain activity, we examined to what extent retrieval during learning facilitates list encoding. Subjects studied 5…

  1. Young Children's Automatic Encoding of Social Categories

    ERIC Educational Resources Information Center

    Weisman, Kara; Johnson, Marissa V.; Shutts, Kristin

    2015-01-01

    The present research investigated young children's automatic encoding of two social categories that are highly relevant to adults: gender and race. Three- to 6-year-old participants learned facts about unfamiliar target children who varied in either gender or race and were asked to remember which facts went with which targets. When participants…

  2. Encoding and Retrieval During Bimanual Rhythmic Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Turvey, Michael T.

    2005-01-01

    In 2 experiments, bimanual 1:1 rhythmic coordination was performed concurrently with encoding or retrieval of word lists. Effects of divided attention (DA) on coordination were indexed by changes in mean relative phase and recurrence measures of shared activity between the 2 limbs. Effects of DA on memory were indexed by deficits in recall…

  3. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  4. An extraordinary retrotransposon family encoding dual endonucleases

    PubMed Central

    Kojima, Kenji K.; Fujiwara, Haruhiko

    2005-01-01

    Retrotransposons commonly encode a reverse transcriptase (RT), but other functional domains are variable. The acquisition of new domains is the dominant evolutionary force that brings structural variety to retrotransposons. Non-long-terminal-repeat (non-LTR) retrotransposons are classified into two groups by their structure. Early branched non-LTR retrotransposons encode a restriction-like endonuclease (RLE), and recently branched non-LTR retrotransposons encode an apurinic/apyrimidinic endonuclease-like endonuclease (APE). In this study, we report a novel non-LTR retrotransposon family Dualen, identified from the Chlamydomonas reinhardtii genome. Dualen encodes two endonucleases, RLE and APE, with RT, ribonuclease H, and cysteine protease. Phylogenetic analyses of the RT domains revealed that Dualen is positioned at the midpoint between the early-branched and the recently branched groups. In the APE tree, Dualen was branched earlier than the I group and the Jockey group. The ribonuclease H domains among the Dualen family and other non-LTR retrotransposons are monophyletic. Phylogenies of three domains revealed the monophyly of the Dualen family members. The domain structure and the phylogeny of each domain imply that Dualen is a retrotransposon conserving the domain structure just after the acquisition of APE. From these observations, we discuss the evolution of domain structure of non-LTR retrotransposons. PMID:16077010

  5. Retrieval during Learning Facilitates Subsequent Memory Encoding

    ERIC Educational Resources Information Center

    Pastotter, Bernhard; Schicker, Sabine; Niedernhuber, Julia; Bauml, Karl-Heinz T.

    2011-01-01

    In multiple-list learning, retrieval during learning has been suggested to improve recall of the single lists by enhancing list discrimination and, at test, reducing interference. Using electrophysiological, oscillatory measures of brain activity, we examined to what extent retrieval during learning facilitates list encoding. Subjects studied 5…

  6. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, Paul G.; Ohlrogge, John B.

    1996-01-01

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives thereof which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides.

  7. Gene encoding acetyl-coenzyme A carboxylase

    SciTech Connect

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  8. Encoding of Others' Beliefs without Overt Instruction

    ERIC Educational Resources Information Center

    Cohen, Adam S.; German, Tamsin C.

    2009-01-01

    Under what conditions do people automatically encode and track the mental states of others? A recent investigation showed that when subjects are instructed to track the location of an object but are not instructed to track a belief about that location in a non-verbal false-belief task, they respond more slowly to questions about an agent's belief,…

  9. Design Primer for Reed-Solomon Encoders

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Lee, J. J.

    1985-01-01

    Design and operation of Reed-Solomon (RS) encoders discussed in document prepared as instruction manual for computer designers and others in dataprocessing field. Conventional and Berlekamp architectures compared. Engineers who equip computer memory chips with burst-error and dropout detection and correction find report especially useful.

  10. Design Primer for Reed-Solomon Encoders

    NASA Technical Reports Server (NTRS)

    Perlman, M.; Lee, J. J.

    1985-01-01

    Design and operation of Reed-Solomon (RS) encoders discussed in document prepared as instruction manual for computer designers and others in dataprocessing field. Conventional and Berlekamp architectures compared. Engineers who equip computer memory chips with burst-error and dropout detection and correction find report especially useful.

  11. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  12. Gene encoding acetyl-coenzyme A carboxylase

    DOEpatents

    Roessler, P.G.; Ohlrogge, J.B.

    1996-09-24

    A DNA encoding an acetyl-coenzyme A carboxylase (ACCase) from a photosynthetic organism and functional derivatives are disclosed which are resistant to inhibition from certain herbicides. This gene can be placed in organisms to increase their fatty acid content or to render them resistant to certain herbicides. 5 figs.

  13. Encoders for block-circulant LDPC codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  14. Young Children's Automatic Encoding of Social Categories

    ERIC Educational Resources Information Center

    Weisman, Kara; Johnson, Marissa V.; Shutts, Kristin

    2015-01-01

    The present research investigated young children's automatic encoding of two social categories that are highly relevant to adults: gender and race. Three- to 6-year-old participants learned facts about unfamiliar target children who varied in either gender or race and were asked to remember which facts went with which targets. When participants…

  15. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  16. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  17. 47 CFR 11.32 - EAS Encoder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... used for audio messages and at least one input port used for data messages. (3) Outputs. The encoder shall have at least one audio output port and at least one data output port. (4) Calibration. EAS... that complies with the following: (i) Tone Frequencies. The audio tones shall have fundamental...

  18. Comparative Analysis of Chromosome-Encoded Microcins

    PubMed Central

    Poey, María Eloisa; Azpiroz, María F.; Laviña, Magela

    2006-01-01

    Microcins are ribosomally synthesized peptide antibiotics that are produced by enterobacterial strains. Although the first studies concentrated on plasmid-encoded activities, in the last years three chromosome-encoded microcins have been described: H47, E492, and M. Here, a new microcin, I47, is presented as a fourth member of this group. Common features exhibited by chromosome-encoded microcins were searched for. The comparison of the genetic clusters responsible for microcin production revealed a preserved general scheme. The clusters essentially comprise a pair of activity-immunity genes which determine antibiotic specificity and a set of microcin maturation and secretion genes which are invariably present and whose protein products are highly homologous among the different producing strains. A strict functional relationship between the maturation and secretion pathways of microcins H47, I47, and E492 was demonstrated through genetic analyses, which included heterologous complementation assays. The peptide precursors of these microcins share a maturation process which implies the addition of a catecholate siderophore of the salmochelin type. Microcins thus acquire the ability to enter gram-negative cells through the catechol receptors. In addition, they employ a common mode of secretion to reach the external milieu by means of a type I export apparatus. The results presented herein lead us to propose that chromosome-encoded microcins constitute a defined subgroup of peptide antibiotics which are strictly related by their modes of synthesis, secretion, and uptake. PMID:16569859

  19. How Attention Modulates Encoding of Dynamic Stimuli

    PubMed Central

    Oren, Noga; Shapira-Lichter, Irit; Lerner, Yulia; Tarrasch, Ricardo; Hendler, Talma; Giladi, Nir; Ash, Elissa L.

    2016-01-01

    When encoding a real-life, continuous stimulus, the same neural circuits support processing and integration of prior as well as new incoming information. This ongoing interplay is modulated by attention, and is evident in regions such as the prefrontal cortex section of the task positive network (TPN), and in the posterior cingulate cortex (PCC), a hub of the default mode network (DMN). Yet the exact nature of such modulation is still unclear. To investigate this issue, we utilized an fMRI task that employed movies as the encoded stimuli and manipulated attentional load via an easy or hard secondary task that was performed simultaneously with encoding. Results showed increased intersubject correlation (inter-SC) levels when encoding movies in a condition of high, as compared to low attentional load. This was evident in bilateral ventrolateral and dorsomedial prefrontal cortices and the dorsal PCC (dPCC). These regions became more attuned to the combination of the movie and the secondary task as the attentional demand of the latter increased. Activation analyses revealed that at higher load the prefrontal TPN regions were more activated, whereas the dPCC was more deactivated. Attentional load also influenced connectivity within and between the networks. At high load the dPCC was anti-correlated to the prefrontal regions, which were more functionally coherent amongst themselves. Finally and critically, greater inter-SC in the dPCC at high load during encoding predicted lower memory strength when that information was retrieved. This association between inter-SC levels and memory strength suggest that as attentional demands increased, the dPCC was more attuned to the secondary task at the expense of the encoded stimulus, thus weakening memory for the encoded stimulus. Together, our findings show that attentional load modulated the function of core TPN and DMN regions. Furthermore, the observed relationship between memory strength and the modulation of the dPCC points

  20. JPEG 2000 Encoding with Perceptual Distortion Control

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Liu, Zhen; Karam, Lina J.

    2008-01-01

    An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the