Sample records for encounter-controlled binary reaction

  1. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  2. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    PubMed Central

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-01-01

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998

  3. Coincidence studies of diffraction structures in binary encounter electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.; Hagmann, S.; Richard, P.

    The authors have measured binary encounter electron (BEe) production in collisions of 0.3 MeV/u Cu{sup q+} (q=4,12) projectiles on H{sub 2} targets from 0 to 70 degrees with respect to the beam direction. Prominent features are the appearance of the BEe peak splitting and a very strong forward peaked angular distribution which are attributed to the diffractive scattering of the quasifree target electrons in the short range potential of the projectile. Using electron-projectile final charge state coincidence techniques, different collision reaction channels can be separated. Measurements of this type are being pursued.

  4. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    DOE PAGES

    Han, Lili; Meng, Qingping; Wang, Deli; ...

    2016-12-08

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less

  5. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Leigh, Nathan W. C., E-mail: a-geller@northwestern.edu, E-mail: nleigh@amnh.org

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binarymore » scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.« less

  6. A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.; Benz, Willy

    1995-10-01

    Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.

  7. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  8. Lifetime of binary asteroids versus gravitational encounters and collisions

    NASA Technical Reports Server (NTRS)

    Chauvineau, Bertrand; Farinella, Paolo; Mignard, F.

    1992-01-01

    We investigate the effect on the dynamics of a binary asteroid in the case of a near encounter with a third body. The dynamics of the binary is modeled as a two-body problem perturbed by an approaching body in the following ways: near encounters and collisions with a component of the system. In each case, the typical value of the two-body energy variation is estimated, and a random walk for the cumulative effect is assumed. Results are applied to some binary asteroid candidates. The main conclusion is that the collisional disruption is the dominant effect, giving lifetimes comparable to or larger than the age of the solar system.

  9. Effect of intruder mass on collisions with hard binaries. II - Dependence on impact parameter and computations of the interaction cross sections

    NASA Astrophysics Data System (ADS)

    Hills, J. G.

    1992-06-01

    Over 125,000 encounters between a hard binary with equal mass, components and orbital eccentricity of 0, and intruders with solar masses ranging from 0.01 to 10,000 are simulated. Each encounter was followed up to a maximum of 5 x 10 exp 6 integration steps to allow long-term 'resonances', temporary trinary systems, to break into a binary and a single star. These simulations were done over a range of impact parameters to find the cross sections for various processes occurring in these encounters. A critical impact parameter found in these simulations is the one beyond which no exchange collisions can occur. The energy exchange between the binary and a massive intruder decreases greatly in collisions with Rmin of not less than Rc. The semimajor axes and orbital eccentricity of the surviving binary also drops rapidly at Rc in encounters with massive intruders. The formation of temporary trinary systems is important for all intruder masses.

  10. Dynamical fate of wide binaries in the solar neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.

    1987-01-01

    An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less

  11. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.

  12. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  13. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  14. Impact of ultrasound on hydrophobic interactions in solutions: ultrasonic retardation of benzoin condensation.

    PubMed

    Hagu, Hannes; Salmar, Siim; Tuulmets, Ants

    2007-04-01

    Kinetics of the benzoin condensation of benzaldehyde in presence of KCN as the catalyst in water and in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. A statistically significant 20% decrease of the rate was observed in water. The retardation effect of ultrasound gradually decreases up to 45 wt% ethanol content. We report an evidence of ultrasonic retardation of reactions and thereby a direct evidence for sonochemical processes in the bulk solution. Ultrasound can disturb solvation of the species in the solution. If breaking down the stabilization of the encounter complexes between the reagents, sonication hinders the reaction while perturbation of the solvent-stabilization of the reagents accelerates the reaction.

  15. Simulations of Tidally Driven Formation of Binary Planet Systems

    NASA Astrophysics Data System (ADS)

    Murray, R. Zachary P.; Guillochon, James

    2018-01-01

    In the last decade there have been hundreds of exoplanets discovered by the Kepler, CoRoT and many other initiatives. This wealth of data suggests the possibility of detecting exoplanets with large satellites. This project seeks to model the interactions between orbiting planets using the FLASH hydrodynamics code developed by The Flash Center for Computational Science at University of Chicago. We model the encounters in a wide variety of encounter scenarios and initial conditions including variations in encounter depth, mass ratio, and encounter velocity and attempt to constrain what sorts of binary planet configurations are possible and stable.

  16. In situ monitoring of atomic layer controlled pore reduction in alumina tubular membranes using sequential surface reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berland, B.S.; Gartland, I.P.; Ott, A.W.

    1998-12-01

    The pore diameter in alumina tubular membranes with an initial diameter of 50 {angstrom} was systematically reduced using the atomic layer controlled deposition of Al{sub 2}O{sub 3}. The Al{sub 2}O{sub 3} was deposited using sequential exposures of Al(CH{sub 3}){sub 3} (trimethylaluminum, TMA) and H{sub 2}O in an ABAB... binary reaction sequence. The pore diameter reduction was monitored using in situ N{sub 2} and Ar conductance measurements. The conductance, C = Q/{Delta}P, was measured using a mass flow controller to define a constant gas throughput, Q, and a pair of capacitance manometers to monitor the transmembrane pressure drop, {Delta}P. Conductance measurementsmore » were periodically obtained at 298 K as a function of AB binary reaction cycles. These conductance measurements were consistent with a pore diameter reduction from 50 {angstrom} to {approximately}5--10 {angstrom} at a rate of {approximately}2.5 {angstrom} for each AB cycle. Conductance measurements were also performed during the Al{sub 2}O{sub 3} deposition at 500 K after each half-reaction in the binary reaction sequence. These in situ conductance measurements demonstrate that the pore diameters in mesoporous membranes can be reduced to molecular dimensions with atomic layer control using sequential surface reactions. Poe diameters can be tailored for specific applications by varying the number of AB cycles and changing the nature of the terminating surface functional groups.« less

  17. Bi-lobed Shape of Comet 67P from a Collapsed Binary

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Parker, Joel; Vokrouhlický, David

    2018-06-01

    The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.

  18. The journey of Typhon-Echidna as a binary system through the planetary region

    NASA Astrophysics Data System (ADS)

    Araujo, R. A. N.; Galiazzo, M. A.; Winter, O. C.; Sfair, R.

    2018-06-01

    Among the current population of the 81 known trans-Neptunian binaries (TNBs), only two are in orbits that cross the orbit of Neptune. These are (42355) Typhon-Echidna and (65489) Ceto-Phorcys. In this work, we focused our analyses on the temporal evolution of the Typhon-Echidna binary system through the outer and inner planetary systems. Using numerical integrations of the N-body gravitational problem, we explored the orbital evolutions of 500 clones of Typhon, recording the close encounters of those clones with planets. We then analysed the effects of those encounters on the binary system. It was found that only {≈ }22 per cent of the encounters with the giant planets were strong enough to disrupt the binary. This binary system has an ≈ 3.6 per cent probability of reaching the terrestrial planetary region over a time-scale of approximately 5.4 Myr. Close encounters of Typhon-Echidna with Earth and Venus were also registered, but the probabilities of such events occurring are low ({≈}0.4 per cent). The orbital evolution of the system in the past was also investigated. It was found that in the last 100 Myr, Typhon might have spent most of its time as a TNB crossing the orbit of Neptune. Therefore, our study of the Typhon-Echidna orbital evolution illustrates the possibility of large cometary bodies (radii of 76 km for Typhon and 42 km for Echidna) coming from a remote region of the outer Solar system and that might enter the terrestrial planetary region preserving its binarity throughout the journey.

  19. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  20. Few-body modes of binary formation in core collapse

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Heggie, Douglas C.; Hut, Piet; Makino, Junichiro

    2013-11-01

    At the moment of deepest core collapse, a star cluster core contains less than ten stars. This small number makes the traditional treatment of hard binary formation, assuming a homogeneous background density, suspect. In a previous paper, we have found that indeed the conventional wisdom of binary formation, based on three-body encounters, is incorrect. Here we refine that insight, by further dissecting the subsequent steps leading to hard binary formation. For this purpose, we add some analysis tools in order to make the study less subjective. We find that the conventional treatment does remain valid for direct three-body scattering, but fails for resonant three-body scattering. Especially democratic resonance scattering, which forms an important part of the analytical theory of three-body binary formation, takes too much space and time to be approximated as being isolated, in the context of a cluster core around core collapse. We conclude that, while three-body encounters can be analytically approximated as isolated, subsequent strong perturbations typically occur whenever those encounters give rise to democratic resonances. We present analytical estimates postdicting our numerical results. If we only had been a bit more clever, we could have predicted this qualitative behaviour.

  1. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  2. Ultrasonic evidence of hydrophobic interactions. Effect of ultrasound on benzoin condensation and some other reactions in aqueous ethanol.

    PubMed

    Tuulmets, Ants; Hagu, Hannes; Salmar, Siim; Cravotto, Giancarlo; Järv, Jaak

    2007-03-29

    The kinetics of KCN-catalyzed benzoin condensation of benzaldehyde in water and ethanol-water binary mixtures was investigated both under ultrasound at 22 kHz and without sonication. Thermodynamic activation parameters were calculated from kinetic data obtained at 35, 50, and 65 degrees C. Evidence that ultrasound can retard reactions is reported and hence a direct proof that sonochemical processes occur in the bulk solution. Former results and literature data for ester hydrolyses and tert-butyl chloride solvolysis are involved in the discussion. A quantitative relationship between sonication effects and the hydrophobicity of reagents is presented for the first time. Ultrasound affects hydrophobic interactions with the solvent, which are not manifested in conventional kinetics. When it suppresses the stabilization of the encounter complexes between reagents, sonication hinders the reaction but accelerates it when it perturbs the hydrophobic stabilization of the ground state of a reagent.

  3. Capture of terrestrial-sized moons by gas giant planets.

    PubMed

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  4. Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria

    USDA-ARS?s Scientific Manuscript database

    The polyol process is a widely used strategy for producing nanoparticles from various reducible metallic precursors; however it requires a bulk polyol liquid reaction with additional protective agents at high temperatures. Here, we report a water-based binary polyol process using low concentrations ...

  5. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  6. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Controlling behavioral experiments with a new programming language (SORCA) for microcomputer systems.

    PubMed

    Brinkhus, H B; Klinkenborg, H; Estorf, R; Weber, R

    1983-01-01

    A new programming language SORCA has been defined and a compiler has been written for Z80-based microcomputer systems with CP/M operating system. The language was developed to control behavioral experiments by external stimuli and by time schedule in real-time. Eight binary hardware input lines are sampled cyclically by the computer and can be used to sense switches, level detectors and other binary information, while 8 binary hardware output lines, that are cyclically updated, can be used to control relays, lamps, generate tones or for other purposes. The typical reaction time (cycle time) of a SORCA-program is 500 microseconds to 1 ms. All functions can be programmed as often as necessary. Included are the basic logic functions, counters, timers, majority gates and other complex functions. Parameters can be given as constants or as a result of a step function or of a random process (with Gaussian or equal distribution). Several tasks can be performed simultaneously. In addition, results of an experiment (e.g., number of reactions or latencies) can be measured and printed out on request or automatically. The language is easy to learn and can also be used for many other control purposes.

  8. Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders

    NASA Astrophysics Data System (ADS)

    Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David

    2005-06-01

    The discovery that many trans-Neptunian objects exist in pairs, or binaries, is proving invaluable for shedding light on the formation, evolution and structure of the outer Solar system. Based on recent systematic searches it has been estimated that up to 10 per cent of Kuiper-belt objects might be binaries. However, all examples discovered to date are unusual, as compared with near-Earth and main-belt asteroid binaries, for their mass ratios of the order of unity and their large, eccentric orbits. In this article we propose a common dynamical origin for these compositional and orbital properties based on four-body simulations in the Hill approximation. Our calculations suggest that binaries are produced through the following chain of events. Initially, long-lived quasi-bound binaries form by two bodies getting entangled in thin layers of dynamical chaos produced by solar tides within the Hill sphere. Next, energy transfer through gravitational scattering with a low-mass intruder nudges the binary into a nearby non-chaotic, stable zone of phase space. Finally, the binary hardens (loses energy) through a series of relatively gentle gravitational scattering encounters with further intruders. This produces binary orbits that are well fitted by Kepler ellipses. Dynamically, the overall process is strongly favoured if the original quasi-bound binary contains comparable masses. We propose a simplified model of chaotic scattering to explain these results. Our findings suggest that the observed preference for roughly equal-mass ratio binaries is probably a real effect; that is, it is not primarily due to an observational bias for widely separated, comparably bright objects. Nevertheless, we predict that a sizeable population of very unequal-mass Kuiper-belt binaries is probably awaiting discovery.

  9. Birth of millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Bailyn, C. D.

    1988-01-01

    It is argued here that accretion-induced collapse of white dwarfs in binaries can form millisecond pulsars directly without requiring a precursor low-mass X-ray binary stage. Ablation of the precollapse binary companion by the millisecond pulsar's radiation field, a process invoked to explain some of the characteristics of the recently discovered eclipsing millisecond pulsar, can then yield isolated neutron stars witout requiring an additional stellar encounter.

  10. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  11. Observation of enhanced zero-degree binary encounter electron production with decreasing charge-state q in 30 MeV O{sup q+} + O{sub 2} collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.M.; Wong, K.L.; Hidmi, H.I.

    We have measured binary encounter electron production in collisions of 30 MeV O{sup q+} projectiles (q=4-8) and O{sub 2} targets. Measured double differential BEe cross-sections are found to increase with decreasing charge-state q, in agreement with similar previously reported zero-degree investigations for H{sub 2} and He targets. However, measurements for the same system but at 25{degrees} shows the opposite trend, that BEe cross sections decrease slightly with decreasing charge state.

  12. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  13. BD+43° 3654 - a blue straggler?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-07-01

    The astrometric data on the runaway star BD+43° 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43° 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43° 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43° 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) - the progenitors of the pulsars B2020+28 and B2021+51.

  14. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  15. Solute transport with multisegment, equilibrium-controlled, classical reactions: Problem solvability and feed forward method's applicability for complex segments of at most binary participants

    USGS Publications Warehouse

    Rubin, Jacob

    1992-01-01

    The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.

  16. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  17. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  18. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  19. Electrical and optical properties of binary CNx nanocone arrays synthesized by plasma-assisted reaction deposition.

    PubMed

    Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning

    2014-03-21

    Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.

  20. Israeli Adolescents and Military Service: Encounters.

    ERIC Educational Resources Information Center

    Levy, Amihay; And Others

    1987-01-01

    Asserts that inadequate attention has been paid to the problems of the young soldier entering army life in Israel. Delineates some areas of friction and vulnerability between the worlds of the youth and the military. Describes the systematization of these encounters into groups, creating the "Binary Model," which helps in locating and…

  1. Reconsidering Children's Encounters with Nature and Place Using Posthumanism

    ERIC Educational Resources Information Center

    Malone, Karen

    2016-01-01

    This article explores and reconsiders the view of children's encounters with place as central to a place-based pedagogy that seeks to dismantle rather than support constructions of a nature-culture binary. I unpack the current fervour for reinserting the child in nature and nature-based education as a significant phenomenon in environmental and…

  2. Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: Non-nearest-neighbor effects

    NASA Astrophysics Data System (ADS)

    Bentz, Jonathan L.; Kozak, John J.; Nicolis, Gregoire

    2005-08-01

    The influence of non-nearest-neighbor displacements on the efficiency of diffusion-reaction processes involving one and two mobile diffusing reactants is studied. An exact analytic result is given for dimension d=1 from which, for large lattices, one can recover the asymptotic estimate reported 30 years ago by Lakatos-Lindenberg and Shuler. For dimensions d=2,3 we present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via the theory of finite Markov processes and supported by Monte Carlo simulations. Qualitatively different results are found between processes occurring on d=1 versus d>1 lattices, and between results obtained assuming nearest-neighbor (only) versus non-nearest-neighbor displacements.

  3. Development of a Portable Binary Chlorine Dioxide Generator for Decontamination

    DTIC Science & Technology

    2010-03-01

    chlorine dioxide forms slowly from chlorite solutions through either acid release or a radical chain reaction that we observed at neutral pH. Task 7... Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...error range in gas chromatography measurements. For the chlorine dioxide containing samples, mass spectra were analyzed to determine potential

  4. Trojan horse particle invariance studied with the {sup 6}Li(d,{alpha}){sup 4}He and {sup 7}Li(p,{alpha}){sup 4}He reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzone, R. G.; Spitaleri, C.; Lamia, L.

    2011-04-15

    The Trojan horse nucleus invariance for the binary reaction cross section extracted from the Trojan horse reaction was tested using the quasifree {sup 3}He({sup 6}Li,{alpha}{alpha})H and {sup 3}He({sup 7}Li,{alpha}{alpha}){sup 2}H reactions. The cross sections for the {sup 6}Li(d,{alpha}){sup 4}He and {sup 7}Li(p,{alpha}){sup 4}He binary processes were extracted in the framework of the plane wave approximation. They are compared with direct behaviors as well as with cross sections extracted from previous indirect investigations of the same binary reactions using deuteron as the Trojan horse nucleus instead of {sup 3}He. The very good agreement confirms the applicability of the plane wave approximationmore » which suggests the independence of the binary indirect cross section on the chosen Trojan horse nucleus, at least for the investigated cases.« less

  5. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  6. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations.

    PubMed

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J

    2014-08-07

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  7. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  8. Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing

    2016-01-01

    Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.

  9. Two Upper Bounds for the Weighted Path Length of Binary Trees. Report No. UIUCDCS-R-73-565.

    ERIC Educational Resources Information Center

    Pradels, Jean Louis

    Rooted binary trees with weighted nodes are structures encountered in many areas, such as coding theory, searching and sorting, information storage and retrieval. The path length is a meaningful quantity which gives indications about the expected time of a search or the length of a code, for example. In this paper, two sharp bounds for the total…

  10. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  11. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  12. Population of Nuclei Via 7Li-Induced Binary Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R M; Phair, L W; Descovich, M

    2005-08-09

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involvingmore » beams of weakly bound nuclei and will be of use in future spectroscopic studies.« less

  13. Fast and reliable symplectic integration for planetary system N-body problems

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  14. The kinetics of thermal generation of flavour.

    PubMed

    Parker, Jane K

    2013-01-01

    Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. Copyright © 2012 Society of Chemical Industry.

  15. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  16. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II

    NASA Astrophysics Data System (ADS)

    Fedorenko, S. G.; Burshtein, A. I.

    2014-09-01

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  17. Kinetics of exciplex formation/dissipation in reaction following Weller Scheme II.

    PubMed

    Fedorenko, S G; Burshtein, A I

    2014-09-21

    Creation of exciplexes from the charged products of photoionization is considered by means of Integral Encounter Theory. The general kinetic equations of such a reaction following the Weller scheme II are developed. The special attention is given to the particular case of irreversible remote ionization of primary excited electron donor. Kinetics of exciplex formation is considered at fast biexponential geminate transformation of exciplexes in cage that gives way to subsequent bulk reaction of equilibrated reaction products controlled by power law recombination of ions. It is shown that the initial geminate stage of exciplex kinetics is observed only in diffusion controlled regime of the reaction and disappears with increasing mobility of ions in passing to kinetic regime. The quantum yield of exciplexes is studied along with their kinetics.

  18. Investigation of Reaction Mechanism on the Lime-Free Roasting of Chromium-Containing Slag

    NASA Astrophysics Data System (ADS)

    Yu, Kai-ping; Zhang, Hong-ling; Chen, Bo; Xu, Hong-bin; Zhang, Yi

    2015-12-01

    The lime-free roasting process of trivalent chromium-containing slag was investigated. The effect of Fe and liquid phase on the conversion reaction of chromium was discussed. The oxidation of trivalent chromium depends greatly on the diffusion of Na+ and O2. Both the raw material Na2CO3 and the intermediate product NaFeO2 serve as the carriers of Na+. The Na+ diffusion is improved by the binary liquid phase of Na2CrO4-Na2CO3, whereas excess liquid phase results in a low conversion rate of chromium by hindering the diffusion of oxygen towards the reaction interface. With the increasing of liquid volume, the controlled step of chromium oxidation changes from Na+ diffusion to oxygen diffusion. The mechanism study showed that the volume of liquid phase increased while raising the reaction temperature or prolonging the reaction time. Based on the role of both liquid phase and Fe, the oxidation process of chromium was summarized as a three-stage model: the Na+ diffusion-controlled stage, the O2 diffusion-controlled stage, and the oxidation reaction halted stage.

  19. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  20. Accreting Black Hole Binaries in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.

    2018-01-01

    We explore the formation of mass-transferring binary systems containing black holes (BHs) within globular clusters (GC). We show that it is possible to form mass-transferring BH binaries with main sequence, giant, and white dwarf companions with a variety of orbital parameters in GCs spanning a large range in present-day properties. All mass-transferring BH binaries found in our models at late times are dynamically created. The BHs in these systems experienced a median of ∼30 dynamical encounters within the cluster before and after acquiring the donor. Furthermore, we show that the presence of mass-transferring BH systems has little correlation with the total number of BHs within the cluster at any time. This is because the net rate of formation of BH–non-BH binaries in a cluster is largely independent of the total number of retained BHs. Our results suggest that the detection of a mass-transferring BH binary in a GC does not necessarily indicate that the host cluster contains a large BH population.

  1. X-ray Source Populations in Old Open Clusters - Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti

    2014-11-01

    We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.

  2. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens.

    PubMed

    Kim, Jang Hoon; Cho, In Sook; So, Yang Kang; Kim, Hyeong-Hwan; Kim, Young Ho

    2018-12-01

    Tyrosinase is known for an enzyme that plays a key role in producing the initial precursor of melanin biosynthesis. Inhibition of the catalytic reaction of this enzyme led to some advantage such as skin-whitening and anti-insect agents. To find a natural compound with inhibitory activity towards tyrosinase, the five flavonoids of kushenol A (1), 8-prenylkaempferol (2), kushenol C (3), formononetin (4) and 8-prenylnaringenin (5) were isolated by column chromatography from a 95% methanol extract of Sophora flavescens. The ability of these flavonoids to block the conversion of L-tyrosine to L-DOPA by tyrosinase was tested in vitro. Compounds 1 and 2 exhibited potent inhibitory activity, with IC50 values less than 10 µM. Furthermore, enzyme kinetics and molecular docking analysis revealed the formation of a binary encounter complex between compounds 1-4 and the enzyme. Also, all of the isolated compounds (1-5) were confirmed to possess antioxidant activity.

  3. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: an example of cyanogenic toxicants and aldehydes.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang

    2012-02-01

    Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive toxicants based on the atomic charges. Copyright © 2011 SETAC.

  4. Angular distribution of binary encounter electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.; Richard, P.; Grabbe, S.

    The double differential cross section, DDCS, of the binary encounter electrons (BEe) in 1 MeV/u F{sup q+} + H{sub 2} (q = 4, 6, 8, 9) is measured from 0 to 70 degrees with respect to the beam direction. At 0{degrees} the data confirm the decrease of the cross section with increasing projectile charge state. At larger observation angles, the data are in fair agreement with the prediction proposed by Shingal et al. where the ratio of the DDCS for 6+ ions to bare ions is less than 1 for {theta}{sub lab} > 30{degrees} and greater than 1 for {theta}{submore » lab} < 30{degrees} as recently observed for C{sup q+}. We also observed that the energies of the BEe peak are charge state, q, independent at 0{degrees} observation angle, but q dependent at larger observation angles.« less

  5. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  6. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin

    2012-04-01

    It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.

  7. Resolved Observations of the Patroclus-Menoetius Binary

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, William M.; Buie, Marc W.; Levison, Harold F.

    2017-10-01

    The Trojan binary (617) Patroclus-Menoetius is one of the targets of the Lucy Discovery mission. Lucy is scheduled to launch in October 2021. We observed this system with the Hubble Space Telescope in May and June 2017 in order to resolve the individual components and use the relative positions to update the binary orbit. The updated orbit is required to predict the upcoming mutual event season. A precise determination of the orbit phase, period, orbit plane and pole position that will result from observations of mutual events is essential for planning the Lucy mission’s encounter with this system. We present results of the successful HST observations including preliminary predictions for mutual events observable in semester 2018A.

  8. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  9. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  10. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  11. Tidal disruption of inclined or eccentric binaries by massive black holes

    NASA Astrophysics Data System (ADS)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-07-01

    Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  12. Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em

    2018-04-01

    Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.

  13. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2017-12-09

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  14. Hybrid switched time-optimal control of underactuated spacecraft

    NASA Astrophysics Data System (ADS)

    Olivares, Alberto; Staffetti, Ernesto

    2018-04-01

    This paper studies the time-optimal control problem for an underactuated rigid spacecraft equipped with both reaction wheels and gas jet thrusters that generate control torques about two of the principal axes of the spacecraft. Since a spacecraft equipped with two reaction wheels is not controllable, whereas a spacecraft equipped with two gas jet thrusters is controllable, this mixed actuation ensures controllability in the case in which one of the control axes is unactuated. A novel control logic is proposed for this hybrid actuation in which the reaction wheels are the main actuators and the gas jet thrusters act only after saturation or anticipating future saturation of the reaction wheels. The presence of both reaction wheels and gas jet thrusters gives rise to two operating modes for each actuated axis and therefore the spacecraft can be regarded as a switched dynamical system. The time-optimal control problem for this system is reformulated using the so-called embedding technique and the resulting problem is a classical optimal control problem. The main advantages of this technique are that integer or binary variables do not have to be introduced to model switching decisions between modes and that assumptions about the number of switches are not necessary. It is shown in this paper that this general method for the solution of optimal control problems for switched dynamical systems can efficiently deal with time-optimal control of an underactuated rigid spacecraft in which bound constraints on the torque of the actuators and on the angular momentum of the reaction wheels are taken into account.

  15. On The Validity of the Assumed PDF Method for Modeling Binary Mixing/Reaction of Evaporated Vapor in GAS/Liquid-Droplet Turbulent Shear Flow

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1997-01-01

    An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.

  16. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects

    PubMed Central

    2017-01-01

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor–acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents. PMID:28263599

  17. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects.

    PubMed

    Pham, Van Thi Bich; Hoang, Hao Minh; Grampp, Günter; Kattnig, Daniel R

    2017-03-30

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor-acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents.

  18. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.

    PubMed

    Puxty, Graeme; Rowland, Robert

    2011-03-15

    The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism".

  20. The orbital eccentricities of binary millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Heggie, Douglas C.

    1995-01-01

    Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.

  1. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  2. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  3. Open cluster evolutions in binary system: How they dissolved

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Arifyanto, M. I.; Wulandari, H. R. T.

    2014-03-01

    Binarity among stellar clusters in galaxy is such a reality which has been realized for a long time, but still hides several questions and problems to be solved. Some of binary star clusters are formed by close encounter, but the others are formed together from similar womb. Some of them undergo separation process, while the others are in the middle of merger toward common future. The products of merger binary star cluster have typical characteristics which differ from solo clusters, especially in their spatial distribution and their stellar members kinematics. On the other hand, these merger products still have to face dissolving processes triggered by both internal and external factors. In this study, we performed N-body simulations of merger binary clusters with different initial conditions. After merging, these clusters dissolve with greater mass-loss rate because of their angular momentum. These rotating clusters also experience more deceleration caused by external tidal field.

  4. ThermoData Engine Database - Pure Compounds and Binary Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase)   This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.

  5. The formation of Kuiper-belt binaries through exchange reactions.

    PubMed

    Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke

    2004-02-05

    Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit.

  6. Preparation and application of nanoglued binary titania-silica aerogel.

    PubMed

    Luo, Liang; Cooper, Adrienne T; Fan, Maohong

    2009-01-15

    Nanoglued binary titania (TiO2)-silica (SiO2) aerogel, as a novel type of photocatalyst, has been synthesized on glass substrates. Using an about-to-gel SiO2 sol as nanoglue, anatase TiO2 aerogel was immobilized into a three-dimensional mesoporous network of the SiO2. Factorial designs were employed to optimize both TiO2 aerogel and binary TiO2-SiO2 aerogel synthesis. Characterization of the as-prepared TiO2 and binary samples by surface area, porosity, and surface chemical composition showed that the photocatalysts were high-surface-area nanoporous materials, with a Ti4+ valency. The binary aerogel exhibited high photocatalytic activity for the degradation of methylene blue (MB) under simulated solar light; the reaction followed the pseudo first-order Langmuir-Hinshelwood (L-H) kinetic model. Fluorescence spectroscopy revealed that the hydroxyl (*OH) radical was formed during the illumination of the binary TiO2-SiO2 aerogel in a solution of probe molecules, which corroborates the probable mechanism of hydroxyl radical oxidation of contaminants in photocatalytic reactions.

  7. Three Axis Control of the Hubble Space Telescope Using Two Reaction Wheels and Magnetic Torquer Bars for Science Observations

    NASA Technical Reports Server (NTRS)

    Hur-Diaz, Sun; Wirzburger, John; Smith, Dan

    2008-01-01

    The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.

  8. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Synthesis of nonionic-anionic colloidal systems based on alkaline and ammonium β-nonylphenol polyethyleneoxy (n = 3-20) propionates/dodecylbenzenesulfonates with prospects for food hygiene

    PubMed Central

    2012-01-01

    Background The main objective of this work was to obtain a binary system of surface-active components (nonionic soap – alkaline and/or ammonium dodecylbenzenesulfonate) with potential competences in food hygiene, by accessing a scheme of classical reactions (cyanoethylation, total acid hydrolysis and stoichiometric neutralization with inorganic alkaline and/or organic ammonium bases) adapted to heterogeneously polyethoxylated nonylphenols (n = 3-20). In the processing system mentioned, dodecylbenzenesulfonic acid, initially the acid catalyst for the exhaustive hydrolysis of β-nonylphenolpolyethyleneoxy (n = 3-20) propionitriles, becomes together with the nonionic soap formed the second surface-active component of the binary system. Results In the reaction scheme adopted the influence of the main operating (duration, temperature, molar ratio of reagents) and structural parameters (degree of oligomerization of the polyoxyethylene chain) on the processing yields for the synthetic steps was followed. The favorable role of the polyoxyethylene chain size is remarked, through its specific conformation and its alkaline cations sequestration competences on the yields of cyanoethylation, but also the beneficial influence of phase-transfer catalysts in the total acid hydrolysis step. The chemical stability of dodecylbenzenesulfonic acid (DBSH) at the temperature and strongly acidic pH of the reaction environment is confirmed. The controlled change of the amount of DBSH in the final binary system will later confer it potential colloidal competences in food hygiene receipts. Conclusions The preliminary synthetic tests performed confirmed the prospect of obtaining a broad range of useful colloidal competences in various food hygiene scenarios. PMID:22958389

  10. Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches.

    PubMed

    Schluttig, Jakob; Alamanova, Denitsa; Helms, Volkhard; Schwarz, Ulrich S

    2008-10-21

    We study the formation of protein-protein encounter complexes with a Langevin equation approach that considers direct, steric, and thermal forces. As three model systems with distinctly different properties we consider the pairs barnase:barstar, cytochrome c-cytochrome c peroxidase, and p53:MDM2. In each case, proteins are modeled either as spherical particles, as dipolar spheres, or as collection of several small beads with one dipole. Spherical reaction patches are placed on the model proteins according to the known experimental structures of the protein complexes. In the computer simulations, concentration is varied by changing box size. Encounter is defined as overlap of the reaction patches and the corresponding first passage times are recorded together with the number of unsuccessful contacts before encounter. We find that encounter frequency scales linearly with protein concentration, thus proving that our microscopic model results in a well-defined macroscopic encounter rate. The number of unsuccessful contacts before encounter decreases with increasing encounter rate and ranges from 20 to 9000. For all three models, encounter rates are obtained within one order of magnitude of the experimentally measured association rates. Electrostatic steering enhances association up to 50-fold. If diffusional encounter is dominant (p53:MDM2) or similarly important as electrostatic steering (barnase:barstar), then encounter rate decreases with decreasing patch radius. More detailed modeling of protein shapes decreases encounter rates by 5%-95%. Our study shows how generic principles of protein-protein association are modulated by molecular features of the systems under consideration. Moreover it allows us to assess different coarse-graining strategies for the future modeling of the dynamics of large protein complexes.

  11. Dynamics of protein-protein encounter: A Langevin equation approach with reaction patches

    NASA Astrophysics Data System (ADS)

    Schluttig, Jakob; Alamanova, Denitsa; Helms, Volkhard; Schwarz, Ulrich S.

    2008-10-01

    We study the formation of protein-protein encounter complexes with a Langevin equation approach that considers direct, steric, and thermal forces. As three model systems with distinctly different properties we consider the pairs barnase:barstar, cytochrome c-cytochrome c peroxidase, and p53:MDM2. In each case, proteins are modeled either as spherical particles, as dipolar spheres, or as collection of several small beads with one dipole. Spherical reaction patches are placed on the model proteins according to the known experimental structures of the protein complexes. In the computer simulations, concentration is varied by changing box size. Encounter is defined as overlap of the reaction patches and the corresponding first passage times are recorded together with the number of unsuccessful contacts before encounter. We find that encounter frequency scales linearly with protein concentration, thus proving that our microscopic model results in a well-defined macroscopic encounter rate. The number of unsuccessful contacts before encounter decreases with increasing encounter rate and ranges from 20 to 9000. For all three models, encounter rates are obtained within one order of magnitude of the experimentally measured association rates. Electrostatic steering enhances association up to 50-fold. If diffusional encounter is dominant (p53:MDM2) or similarly important as electrostatic steering (barnase:barstar), then encounter rate decreases with decreasing patch radius. More detailed modeling of protein shapes decreases encounter rates by 5%-95%. Our study shows how generic principles of protein-protein association are modulated by molecular features of the systems under consideration. Moreover it allows us to assess different coarse-graining strategies for the future modeling of the dynamics of large protein complexes.

  12. Inventory Control: A Small Electronic Device for Studying Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez-Rodriguez, A. L.; Calvo-Aguilar, J. L.

    1984-01-01

    Shows how the rate of reaction can be studied using a simple electronic device that overcomes the difficulty students encounter in solving the differential equations describing chemical equilibrium. The device, used in conjunction with an oscilloscope, supplies the voltages that represent the chemical variables that take part in the equilibrium.…

  13. Projectile-charge-state dependence of 0[degree] binary-encounter electron production in 30-MeV O[sup [ital q]+]+O[sub 2] collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.M.; Richard, P.; Wong, K.L.

    Double-differential cross sections (DDCS's) for the production of binary-encounter electrons (BEE's) are reported for 30-MeV O[sup [ital q]+]+O[sub 2] collisions. The BEE DDCS's were measured at [theta]=0[degree] with respect to the beam direction for projectile charge states [ital q]=4--8. The measured BEE DDCS's were found to increase with decreasing charge state in agreement with other recent BEE results employing simpler H[sub 2] and He targets. Impulse-approximation calculations of BEE production for [theta]=0[degree]--45[degree] are also presented, in which it is assumed that target electrons undergo elastic scattering in the screened Coulomb field of the projectile ion. These calculations are shown tomore » be in agreement with our data at [theta]=0[degree] where only 2[ital s] and 2[ital p] target electrons are considered.« less

  14. A possible origin of the Galactic Center magnetar SGR 1745-2900

    NASA Astrophysics Data System (ADS)

    Cheng, Quan; Zhang, Shuang-Nan; Zheng, Xiao-Ping

    2017-05-01

    Since there is a large population of massive O/B stars and putative neutron stars (NSs) located in the vicinity of the Galactic Center (GC), intermediate-mass X-ray binaries (IMXBs) constituted by an NS and a B-type star probably exist there. We investigate the evolutions of accreting NSs in IMXBs (similar to M82 X-2) with a ˜ 5.2 {M}⊙ companion and orbital period ≃ 2.53 d. By adopting a mildly super-Eddington rate \\dot{M}=6× {10}-8 {M}⊙ {{yr}}-1 for the early Case B Roche-lobe overflow (RLOF) accretion, we find that only in accreting NSs with quite elastic crusts (slippage factor s = 0.05) can the toroidal magnetic fields be amplified within 1 Myr, which is assumed to be the longest duration of the RLOF. These IMXBs will evolve into NS+white dwarf (WD) binaries if they are dynamically stable. However, before the formation of NS+WD binaries, the high stellar density in the GC will probably lead to frequent encounters between the NS+evolved star binaries (in post-early Case B mass transfer phase) and NSs or exchange encounters with other stars, which may produce single NSs. These NSs will evolve into magnetars when the amplified poloidal magnetic fields diffuse out to the NS surfaces. Consequently, our results provide a possible explanation for the origin of the GC magnetar SGR 1745-2900. Moreover, the accreting NSs with s> 0.05 will evolve into millisecond pulsars (MSPs). Therefore, our model reveals that the GC magnetars and MSPs could both originate from a special kind of IMXB.

  15. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of themore » same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.« less

  16. Travel Behavior Change in Older Travelers: Understanding Critical Reactions to Incidents Encountered in Public Transport.

    PubMed

    Sundling, Catherine

    2015-11-18

    Accessibility of travel may be better understood if psychological factors underlying change in travel behavior are known. This paper examines older (65+) travelers' motives for changing their travel behavior. These changes are grounded in critical incidents earlier encountered in public-transport travel. A scientific framework is developed based on cognitive and behavioral theory. In 29 individual interviews, travelers' critical reactions (i.e., cognitive, emotional, and/or behavioral) to 77 critical incidents were examined. By applying critical incident technique (CIT), five reaction themes were identified that had generated travel-behavior change: firm restrictions, unpredictability, unfair treatment, complicated trips, and earlier adverse experiences. To improve older travelers' access to public transport, key findings were: (a) service must be designed so as to strengthen the feeling of being in control throughout the journey; (b) extended personal service would increase predictability in the travel chain and decrease travel complexity; consequently, (c) when designing new services and making effective accessibility interventions, policy makers should consider and utilize underlying psychological factors that could direct traveler behavior.

  17. Travel Behavior Change in Older Travelers: Understanding Critical Reactions to Incidents Encountered in Public Transport

    PubMed Central

    Sundling, Catherine

    2015-01-01

    Accessibility of travel may be better understood if psychological factors underlying change in travel behavior are known. This paper examines older (65+) travelers’ motives for changing their travel behavior. These changes are grounded in critical incidents earlier encountered in public-transport travel. A scientific framework is developed based on cognitive and behavioral theory. In 29 individual interviews, travelers’ critical reactions (i.e., cognitive, emotional, and/or behavioral) to 77 critical incidents were examined. By applying critical incident technique (CIT), five reaction themes were identified that had generated travel-behavior change: firm restrictions, unpredictability, unfair treatment, complicated trips, and earlier adverse experiences. To improve older travelers’ access to public transport, key findings were: (a) service must be designed so as to strengthen the feeling of being in control throughout the journey; (b) extended personal service would increase predictability in the travel chain and decrease travel complexity; consequently, (c) when designing new services and making effective accessibility interventions, policy makers should consider and utilize underlying psychological factors that could direct traveler behavior. PMID:26593935

  18. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  19. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  20. Modelling Chemical Reasoning to Predict and Invent Reactions.

    PubMed

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  2. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    PubMed

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  4. Ontologies of Place, Creative Meaning Making and Critical Cosmopolitan Education

    ERIC Educational Resources Information Center

    Hawkins, Margaret R.

    2014-01-01

    Discourses of globalization and cosmopolitanism, focusing on the rapid flows of people, resources, and knowledge around the globe and subsequent encounters between global citizens, present a binary between "global" and "local." At the same time educational theories, perhaps especially in the areas of language and literacy…

  5. Interacting star clusters in the Large Magellanic Cloud. Overmerging problem solved by cluster group formation

    NASA Astrophysics Data System (ADS)

    Leon, Stéphane; Bergond, Gilles; Vallenari, Antonella

    1999-04-01

    We present the tidal tail distributions of a sample of candidate binary clusters located in the bar of the Large Magellanic Cloud (LMC). One isolated cluster, SL 268, is presented in order to study the effect of the LMC tidal field. All the candidate binary clusters show tidal tails, confirming that the pairs are formed by physically linked objects. The stellar mass in the tails covers a large range, from 1.8x 10(3) to 3x 10(4) \\msun. We derive a total mass estimate for SL 268 and SL 356. At large radii, the projected density profiles of SL 268 and SL 356 fall off as r(-gamma ) , with gamma = 2.27 and gamma =3.44, respectively. Out of 4 pairs or multiple systems, 2 are older than the theoretical survival time of binary clusters (going from a few 10(6) years to 10(8) years). A pair shows too large age difference between the components to be consistent with classical theoretical models of binary cluster formation (Fujimoto & Kumai \\cite{fujimoto97}). We refer to this as the ``overmerging'' problem. A different scenario is proposed: the formation proceeds in large molecular complexes giving birth to groups of clusters over a few 10(7) years. In these groups the expected cluster encounter rate is larger, and tidal capture has higher probability. Cluster pairs are not born together through the splitting of the parent cloud, but formed later by tidal capture. For 3 pairs, we tentatively identify the star cluster group (SCG) memberships. The SCG formation, through the recent cluster starburst triggered by the LMC-SMC encounter, in contrast with the quiescent open cluster formation in the Milky Way can be an explanation to the paucity of binary clusters observed in our Galaxy. Based on observations collected at the European Southern Observatory, La Silla, Chile}

  6. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.

    2018-07-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  7. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  8. Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, C.; Deng, L.

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.

  9. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  10. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less

  11. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  12. Orbit of the Patroclus-Menoetius Binary, a Lucy Mission Target

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2016-10-01

    We are proposing to observe Trojan binary asteroid (617) Patroclus-Menoetius, one of the targets of the Lucy mission. Lucy was selected as the next Discovery mission on January 4, 2017, for launch in October 2021. Observations this year are needed to establish the mutual orbit of the binary, which is of critical importance for mission planning. The mutual orbit phase is essentially undetermined from the accumulation of orbit period uncertainty since last measured in 2010. Orbital phase is needed in order to be able to predict the timing of mutual events that will begin late in 2017. These mutual events are essential to planning for the Lucy mission, especially in establishing the precise orientation of the mutual orbit plane and ascending node that is critical to early planning for flyby encounter design and capabilities.

  13. Metastable phase in binary and ternary 12-carat gold alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Lamiri, Imene; Abdelbaky, Mohammed S. M.; Hamana, Djamel; García-Granda, Santiago

    2018-04-01

    Low temperature phase transitions in 12-carat gold alloys have been investigated for binary Au-Cu and ternary Au-Cu-Ag compositions. The thermal analyses investigations using differential scanning calorimetry (DSC) and the dilatometry were performed in the 50–300 °C temperature range in order to detect the structural transformations. The thermal analyses were carried out on annealed samples at 700 °C for two hour followed by water quenching. They reveal an important new reaction for both used compositions and both thermal techniques confirm each other. This reaction has been assessed as pre-ordering reaction. SEM and STM imaging were performed on annealed samples at 700 °C for two hours and water quenched followed by a heating from room temperature up to the temperature of the new peaks obtained in the thermal study. The imaging reveals the relationship between the pre-ordering reaction and the surface aspect presented in the fact of dendrite precipitates. A series of SEM observation have been performed in order to follow the kinetic of the observed precipitates by the way of several series of heating up, from 140 to 220 °C for the binary composition and from 100 to 180 °C for the ternary composition. Furthermore, this study shows that the silver accelerates the ordering reaction.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schäfer, Gerhard

    The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.

  15. How important is thermodynamics for identifying elementary flux modes?

    PubMed Central

    Peres, Sabine; Jolicœur, Mario; Moulin, Cécile

    2017-01-01

    We present a method for computing thermodynamically feasible elementary flux modes (tEFMs) using equilibrium constants without need of internal metabolite concentrations. The method is compared with the method based on a binary distinction between reversible and irreversible reactions. When all reactions are reversible, adding the constraints based on equilibrium constants reduces the number of elementary flux modes (EFMs) by a factor of two. Declaring in advance some reactions as irreversible, based on reliable biochemical expertise, can in general reduce the number of EFMs by a greater factor. But, even in this case, computing tEFMs can rule out some EFMs which are biochemically irrelevant. We applied our method to two published models described with binary distinction: the monosaccharide metabolism and the central carbon metabolism of Chinese hamster ovary cells. The results show that the binary distinction is in good agreement with biochemical observations. Moreover, the suppression of the EFMs that are not consistent with the equilibrium constants appears to be biologically relevant. PMID:28222104

  16. Phenomenological study of exclusive binary light particle production from antiproton-proton annihilation at FAIR/PANDA

    NASA Astrophysics Data System (ADS)

    Ying, Wang

    2016-08-01

    Exclusive binary annihilation reactions induced by antiprotons of momentum from 1.5 to 15 GeV/c can be extensively investigated at FAIR/PANDA [1]. We are especially interested in the channel of charged pion pairs. Whereas this very probable channel constitutes the major background for other processes of interest in the PANDA experiment, it carries unique physical information on the quark content of proton, allowing to test different models (quark counting rules, statistical models,..). To study the binary reactions of light meson formation, we are developing an effective Lagrangian model based on Feynman diagrams which takes into account the virtuality of the exchanged particles. Regge factors [2] and form factors are introduced with parameters which may be adjusted on the existing data. We present preliminary results of our formalism for different reactions of light meson production leading to reliable predictions of cross sections, energy and angular dependencies in the PANDA kinematical range.

  17. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumino, A.; Gulino, M.; Spitaleri, C.

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent resultsmore » will be presented to demonstrate how THM works experimentally.« less

  18. The influence of massive black hole binaries on the morphology of merger remnants

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  19. Raman Spectroscopy as the Method of Detection for Constructing a Binary Liquid-Vapor Phase Diagram

    ERIC Educational Resources Information Center

    Scardino, Debra J.; Howard, Austin A.; McDowell, Matthew D.; Hammer, Nathan I.

    2011-01-01

    The physical chemistry laboratory is sometimes constrained to one semester, resulting in pedagogical deficiencies for the students taking the course. The use of a multidimensional laboratory exercise offers students the opportunity to encounter multiple experimental techniques and physical chemistry concepts while not sacrificing a significant…

  20. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  1. SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS

    PubMed Central

    Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.

    1959-01-01

    Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197

  2. Binary counting with chemical reactions.

    PubMed

    Kharam, Aleksandra; Jiang, Hua; Riedel, Marc; Parhi, Keshab

    2011-01-01

    This paper describes a scheme for implementing a binary counter with chemical reactions. The value of the counter is encoded by logical values of "0" and "1" that correspond to the absence and presence of specific molecular types, respectively. It is incremented when molecules of a trigger type are injected. Synchronization is achieved with reactions that produce a sustained three-phase oscillation. This oscillation plays a role analogous to a clock signal in digital electronics. Quantities are transferred between molecular types in different phases of the oscillation. Unlike all previous schemes for chemical computation, this scheme is dependent only on coarse rate categories for the reactions ("fast" and "slow"). Given such categories, the computation is exact and independent of the specific reaction rates. Although conceptual for the time being, the methodology has potential applications in domains of synthetic biology such as biochemical sensing and drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental chassis.

  3. Characterizing X-ray Sources in the Rich Open Cluster NGC 7789 Using XMM-Newton

    NASA Astrophysics Data System (ADS)

    Farner, William; Pooley, David

    2018-01-01

    It is well established that globular clusters exhibit a correlation between their population of exotic binaries and their rate of stellar encounters, but little work has been done to characterize this relationship in rich open clusters. X-ray observations are the most efficient means to find various types of close binaries, and optical (and radio) identifications can provide secure source classifications. We report on an observation of the rich open cluster NGC 7789 using the XMM-Newton observatory. We present the X-ray and optical imaging data, source lists, and preliminary characterization of the sources based on their X-ray and multiwavelength properties.

  4. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  5. A binary origin for 'blue stragglers' in globular clusters.

    PubMed

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  6. Efficient common-envelope ejection through dust-driven winds

    NASA Astrophysics Data System (ADS)

    Glanz, Hila; Perets, Hagai B.

    2018-04-01

    Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the extended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.

  7. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  8. Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1975-01-01

    Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.

  9. The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

    PubMed

    Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye

    2013-10-11

    One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    NASA Astrophysics Data System (ADS)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  11. Urticaria.

    PubMed

    Amar, Sheila M; Dreskin, Stephen C

    2008-03-01

    Urticaria with or without angioedema is frequently encountered in primary care medicine. Although many patients and physicians think that urticaria is evidence of an IgE-mediated allergic reaction, often the etiology of urticaria is unknown. This uncertainty frequently results in patients enduring unnecessary lifestyle changes or extensive testing. In more persistent cases, patients achieve control of their disease only with the use of more toxic medications, such as corticosteroids, and this can lead to a range of systemic complications. Acute urticaria is typically due to a hypersensitivity reaction while chronic urticaria has a more complex pathogenesis. Antihistamines remain the mainstay of symptomatic treatment for both.

  12. Empirical comparison study of approximate methods for structure selection in binary graphical models.

    PubMed

    Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel

    2014-03-01

    Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel mechanism for creating double pulsars

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1992-01-01

    Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.

  14. Deterministic binary vectors for efficient automated indexing of MEDLINE/PubMed abstracts.

    PubMed

    Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R; Bernstam, Elmer V; Cohen, Trevor

    2012-01-01

    The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI.

  15. Deterministic Binary Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts

    PubMed Central

    Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R.; Bernstam, Elmer V.; Cohen, Trevor

    2012-01-01

    The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI. PMID:23304369

  16. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  17. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  18. Understanding the Varying Investments in Researcher and Teacher Development and Enhancement: Implications for Academic Developers

    ERIC Educational Resources Information Center

    Petrova, Petia; Hadjianastasis, Marios

    2015-01-01

    The increasing disparity between the research and teaching aspects of academic careers has been an area of concern in different national contexts over a number of decades. Anyone working with educational enhancement will have encountered the binary choice between research development and educational enhancement that academics are forced to make,…

  19. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  20. Black Hole Mergers in the Universe.

    PubMed

    Portegies Zwart SF; McMillan

    2000-01-01

    Mergers of black hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates that are too low to be of observational interest. In this Letter, we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation then causes them to sink to the cluster core, where they form binaries. These black hole binaries become more tightly bound by superelastic encounters with other cluster members and are ultimately ejected from the cluster. The majority of escaping black hole binaries have orbital periods short enough and eccentricities high enough that the emission of gravitational radiation causes them to coalesce within a few billion years. We predict a black hole merger rate of about 1.6x10-7 yr-1 Mpc-3, implying gravity-wave detection rates substantially greater than the corresponding rates from neutron star mergers. For the first-generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we expect about one detection during the first 2 years of operation. For its successor LIGO-II, the rate rises to roughly one detection per day. The uncertainties in these numbers are large. Event rates may drop by about an order of magnitude if the most massive clusters eject their black hole binaries early in their evolution.

  1. Gravitational interactions of stars with supermassive black hole binaries - I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-07-01

    Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).

  2. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  3. Signals of dynamical and statistical process from IMF-IMF correlation function

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.

    2017-11-01

    In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.

  4. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  5. The influence of the "cage" effect on the mechanism of reversible bimolecular multistage chemical reactions proceeding from different sites in solutions.

    PubMed

    Doktorov, Alexander B

    2016-08-28

    Manifestations of the "cage" effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the "cage complex," just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of the "cage" effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.

  6. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    NASA Astrophysics Data System (ADS)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  7. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  8. Relative Incidence of Acute Adverse Events with Ferumoxytol Compared to Other Intravenous Iron Compounds: A Matched Cohort Study.

    PubMed

    Wetmore, James B; Weinhandl, Eric D; Zhou, Jincheng; Gilbertson, David T

    2017-01-01

    Concerns persist about adverse reactions to intravenous (IV) iron. We aimed to determine the relative safety of ferumoxytol compared to other IV iron compounds. This retrospective cohort study with propensity-score matching for patients and drug doses used the Medicare 20% random sample to identify patients (1) without chronic kidney disease (non-CKD) and (2) with non-dialysis-dependent chronic kidney disease (NDD-CKD) who received a first dose of IV iron in 2010-2012. Exposures were ferumoxytol, iron sucrose, sodium ferric gluconate, or iron dextran. Outcomes were hypersensitivity symptoms, anaphylaxis, emergency department (ED) encounters, hospitalizations, and death after acute IV iron exposure. In the primary analysis for reactions on the day of or following exposure, there was no difference in hypersensitivity symptoms (hazard ratio 1.04, 95% confidence interval 0.94-1.16) or hypotension (0.83, 0.52-1.34) between 4289 non-CKD ferumoxytol users and an equal number of users of other compounds; results were similar for 7358 NDD-CKD patients and an equal number of controls. All-cause ED encounters or hospitalizations were less common in both the non-CKD (0.56, 0.45-0.70) and NDD-CKD ferumoxytol-treated patients (0.83, 0.71-0.95). Fewer than 10 deaths occurred in both the non-CKD and NDD-CKD ferumoxytol users and in matched controls; the hazard for death did not differ significantly between ferumoxytol users and controls in the non-CKD patients (2.00, 0.33-11.97) or in the NDD-CKD patients (0.25, 0.04-1.52). Multiple sensitivity analyses showed similar results. Ferumoxytol did not appear to be associated with more adverse reactions than other compounds for the treatment of iron-deficiency anemia in both non-CKD and NDD-CKD patients.

  9. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    PubMed

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations.

  10. Heat and Mass Transfer in Unsteady Rotating Fluid Flow with Binary Chemical Reaction and Activation Energy

    PubMed Central

    Awad, Faiz G.; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  11. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  12. Application of mixing-controlled combustion models to gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1990-01-01

    Gas emissions were studied from a staged Rich Burn/Quick-Quench Mix/Lean Burn combustor were studied under test conditions encountered in High Speed Research engines. The combustor was modeled at conditions corresponding to different engine power settings, and the effect of primary dilution airflow split on emissions, flow field, flame size and shape, and combustion intensity, as well as mixing, was investigated. A mathematical model was developed from a two-equation model of turbulence, a quasi-global kinetics mechanism for the oxidation of propane, and the Zeldovich mechanism for nitric oxide formation. A mixing-controlled combustion model was used to account for turbulent mixing effects on the chemical reaction rate. This model assumes that the chemical reaction rate is much faster than the turbulent mixing rate.

  13. Physiological Responses to Racism and Discrimination: An Assessment of the Evidence

    PubMed Central

    Harrell, Jules P.; Hall, Sadiki; Taliaferro, James

    2003-01-01

    A growing body of research explores the impact of encounters with racism or discrimination on physiological activity. Investigators have collected these data in laboratories and in controlled clinical settings. Several but not all of the studies suggest that higher blood pressure levels are associated with the tendency not to recall or report occurrences identified as racist and discriminatory. Investigators have reported that physiological arousal is associated with laboratory analogues of ethnic discrimination and mistreatment. Evidence from survey and laboratory studies suggests that personality variables and cultural orientation moderate the impact of racial discrimination. The neural pathways that mediate these physiological reactions are not known. The evidence supports the notion that direct encounters with discriminatory events contribute to negative health outcomes. PMID:12554577

  14. Specific and Non-Specific Protein Association in Solution: Computation of Solvent Effects and Prediction of First-Encounter Modes for Efficient Configurational Bias Monte Carlo Simulations

    PubMed Central

    Cardone, Antonio; Pant, Harish; Hassan, Sergio A.

    2013-01-01

    Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772

  15. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  16. Element distributions after binary fission of /sup 44/Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pl-dash-baraneta, R.; Belery, P.; Brzychczyk, J.

    1986-08-01

    Inclusive and coincidence measurements have been performed to study symmetric fragmentation of /sup 44/Ti binary decay from the /sup 32/S+/sup 12/C reaction at 280 MeV incident energy. Element distributions after binary decay were measured. Angular distributions and fragment correlations are presented. Total c.m. kinetic energy for the symmetric products is extracted from our data and from Monte-Carlo model calculations including Q-italic-value fluctuations. This result was compared to liquid drop model calculations and standard fission systematics. Comparison between the experimental value of the total kinetic energy and the rotating liquid-drop model predictions locates the angular momentum window for symmetric splitting ofmore » /sup 44/Ti between 33h-dash-bar and 38h-dash-bar. It also showed that 50% of the corresponding rotational energy contributes to the total kinetic energy values. The dominant reaction mechanism was found to be symmetric splitting followed by evaporation.« less

  17. A multiplex PCR-based method to identify strongylid parasite larvae recovered from ovine faecal cultures and/or pasture samples.

    PubMed

    Bisset, S A; Knight, J S; Bouchet, C L G

    2014-02-24

    A multiplex PCR-based method was developed to overcome the limitations of microscopic examination as a means of identifying individual infective larvae from the wide range of strongylid parasite species commonly encountered in sheep in mixed sheep-cattle grazing situations in New Zealand. The strategy employed targets unique species-specific sequence markers in the second internal transcribed spacer (ITS-2) region of ribosomal DNA of the nematodes and utilises individual larval lysates as reaction templates. The basic assay involves two sets of reactions designed to target the ten strongylid species most often encountered in ovine faecal cultures under New Zealand conditions (viz. Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus axei, Trichostrongylus colubriformis, Trichostrongylus vitrinus, Cooperia curticei, Cooperia oncophora, Nematodirus spathiger, Chabertia ovina, and Oesophagostomum venulosum). Five species-specific primers, together with a pair of "generic" (conserved) primers, are used in each of the reactions. Two products are generally amplified, one by the generic primer pair regardless of species (providing a positive PCR control) and the other (whose size is indicative of the species present) by the appropriate species-specific primer in combination with one or other of the generic primers. If necessary, any larvae not identified by these reactions can subsequently be tested using primers designed specifically to detect those species less frequently encountered in ovine faecal cultures (viz. Ostertagia ostertagi, Ostertagia leptospicularis, Cooperia punctata, Nematodirus filicollis, and Bunostomum trigonocephalum). Results of assays undertaken on >5500 nematode larvae cultured from lambs on 16 different farms distributed throughout New Zealand indicated that positive identifications were initially obtained for 92.8% of them, while a further 4.4% of reactions gave a generic but no visible specific product and 2.8% gave no discernible PCR products (indicative of insufficient or poor quality DNA template). Of the reactions which yielded only generic products, 91% gave positive identifications in an assay re-run, resulting in a failure rate of just ∼ 0.4% for reactions containing amplifiable template. Although the method was developed primarily to provide a reliable way to identify individual strongylid larvae for downstream molecular applications, it potentially has a variety of other research and practical applications which are not readily achievable at present using other methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Development of the gateway recycling cloning system for multiple linking of expression cassettes in a defined order, and direction on gateway compatible binary vectors.

    PubMed

    Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi

    2013-01-01

    We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru

    Manifestations of the “cage” effect at the encounters of reactants have been theoretically treated on the example of multistage reactions (including bimolecular exchange reactions as elementary stages) proceeding from different active sites in liquid solutions. It is shown that for reactions occurring near the contact of reactants, consistent consideration of quasi-stationary kinetics of such multistage reactions (possible in the framework of the encounter theory only) can be made on the basis of chemical concepts of the “cage complex,” just as in the case of one-site model described in the literature. Exactly as in the one-site model, the presence of themore » “cage” effect gives rise to new channels of reactant transformation that cannot result from elementary event of chemical conversion for the given reaction mechanism. Besides, the multisite model demonstrates new (as compared to one-site model) features of multistage reaction course.« less

  20. Electron ionization cross-section calculations for liquid water at high impact energies

    NASA Astrophysics Data System (ADS)

    Bousis, C.; Emfietzoglou, D.; Hadjidoukas, P.; Nikjoo, H.; Pathak, A.

    2008-04-01

    Cross-sections for the ionization of liquid water is perhaps the most essential set of data needed for modeling electron transport in biological matter. The complexity of ab initio calculations for any multi-electron target has led to largely heuristic semi-empirical models which take advantage elements of the Bethe, dielectric and binary collision theories. In this work we present various theoretical models for calculating total ionization cross-sections (TICSs) for liquid water over the 10 keV-1 MeV electron energy range. In particular, we extend our recent dielectric model calculations for liquid water to relativistic energies using both the appropriate kinematic corrections and the transverse part. Comparisons are made with widely used atomic and molecular TICS models such as those of Khare and co-workers, Kim-Rudd, Deutsch-Märk, Vriens and Gryzinski. The required dipole oscillator strength was provided by our recent optical-data model which is based on the latest experimental data for liquid water. The TICSs computed by the above models differ by up to 40% from the dielectric results. The best agreement (to within ∼10%) was obtained by Khare's original model and an approximate form of Gryzinski's model. In contrast, the binary-encounter-dipole (BED) models of both Kim-Rudd and Khare and co-workers resulted in ∼10-20% higher TICS values, while discrepancies increased to ∼30-40% when their simpler binary-encounter-Bethe (BEB) versions were used. Finally, we discuss to what extent the accuracy of the TICS is indicative of the reliability of the underlying differential cross-sections.

  1. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  2. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE PAGES

    Li, Luyao; Liu, Haiqing; Qin, Chao; ...

    2018-02-28

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  3. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Luyao; Liu, Haiqing; Qin, Chao

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  4. Study of rare encounters in a membrane using quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals.

    PubMed

    Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I

    2005-09-21

    Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.

  5. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  6. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.

    PubMed

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-05-11

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.

  7. Three-body affairs in the outer solar system

    NASA Astrophysics Data System (ADS)

    Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke

    Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper Belt. The TNO binaries are strikingly different from asteroid binaries in four respects: their frequency is an order of magnitude larger, the mass ratio of their components is closer to unity, and their orbits are wider and highly eccentric. Two explanations have been proposed for their formation, one assuming large numbers of massive bodies, and one assuming large numbers of light bodies. We argue that both assumptions are unwarranted, and we show how TNO binaries can be produced from a modest number of intermediate-mass bodies of the type predicted by the gravitational instability theory for the formation of planetesimals. We start with a TNO binary population similar to the asteroid binary population, but subsequently modified by three-body exchange reactions, a process that is far more efficient in the Kuiper belt, because of the much smaller tidal perturbations by the Sun. Our mechanism can naturally account for all four characteristics that distinguish TNO binaries from main-belt asteroid binaries.

  8. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed formore » inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.« less

  9. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  10. A comparison of multiple imputation methods for incomplete longitudinal binary data.

    PubMed

    Yamaguchi, Yusuke; Misumi, Toshihiro; Maruo, Kazushi

    2018-01-01

    Longitudinal binary data are commonly encountered in clinical trials. Multiple imputation is an approach for getting a valid estimation of treatment effects under an assumption of missing at random mechanism. Although there are a variety of multiple imputation methods for the longitudinal binary data, a limited number of researches have reported on relative performances of the methods. Moreover, when focusing on the treatment effect throughout a period that has often been used in clinical evaluations of specific disease areas, no definite investigations comparing the methods have been available. We conducted an extensive simulation study to examine comparative performances of six multiple imputation methods available in the SAS MI procedure for longitudinal binary data, where two endpoints of responder rates at a specified time point and throughout a period were assessed. The simulation study suggested that results from naive approaches of a single imputation with non-responders and a complete case analysis could be very sensitive against missing data. The multiple imputation methods using a monotone method and a full conditional specification with a logistic regression imputation model were recommended for obtaining unbiased and robust estimations of the treatment effect. The methods were illustrated with data from a mental health research.

  11. In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team

    2016-10-01

    In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.

  12. Speckle Interferometry of Four Close Binaries: First Results of the Tierra Astronomical Institute Telescope

    NASA Astrophysics Data System (ADS)

    Wasson, Rick; Goldbaum, Jesse; Boyce, Pat; Harwell, Robert; Hillburn, Jerry; Rowe, Dave; Sadjadi, Sina; Westergren, Donald; Genet, Russell

    2017-04-01

    This paper documents first use for speckle interferometry of the Tierra Astronomical Institute’s 24-inch telescope, located at Terra Del Sol, some 60-miles east of San Diego, CA. Measurements are reported for four close binary systems - STF2173AB, D15, STF2205, and HSD2685 - observed over the weekend of July 1-3, 2016. The objectives of this engineering checkout run were to evaluate the integration of the telescope and ZWO ASI 290MM high speed CMOS camera, and to establish observational procedures for future speckle observations, including those made with advanced high school and college student researchers. Difficulties encountered in the checkout are described, along with suggestions for overcoming them in the next run.

  13. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures.

    PubMed

    Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J

    2016-11-01

    Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    PubMed Central

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). PMID:27542932

  15. Innate defensive behaviour and panic-like reactions evoked by rodents during aggressive encounters with Brazilian constrictor snakes in a complex labyrinth: behavioural validation of a new model to study affective and agonistic reactions in a prey versus predator paradigm.

    PubMed

    Guimarães-Costa, Raquel; Guimarães-Costa, Maria Beatriz; Pippa-Gadioli, Leonardo; Weltson, Alfredo; Ubiali, Walter Adriano; Paschoalin-Maurin, Tatiana; Felippotti, Tatiana Tocchini; Elias-Filho, Daoud Hibrahim; Laure, Carlos Júlio; Coimbra, Norberto Cysne

    2007-09-15

    Defensive behaviour has been extensively studied, and non-invasive methodologies may be interesting approaches to analyzing the limbic system function as a whole. Using experimental models of animals in the state of anxiety has been fundamental in the search for new anxiolytic and antipanic compounds. The aim of this present work is to examine a new model for the study of affective behaviour, using a complex labyrinth consisting of an arena and galleries forming a maze. Furthermore, it aims to compare the defensive behaviour of Wistar rats, Mongolian gerbils and golden hamsters in a complex labyrinth, as well as the defensive behaviour of Meriones unguiculatus in aggressive encounters with either Epicrates cenchria assisi or Boa constrictor amarali in this same model. Among species presently studied, the Mongolian gerbils showed better performance in the exploration of both arena and galleries of the labyrinth, also demonstrating less latency in finding exits of the galleries. This increases the possibility of survival, as well as optimizes the events of encounter with the predator. The duration of alertness and freezing increased during confrontation with living Epicrates, as well as the duration of exploratory behaviour in the labyrinth. There was an increase in the number of freezing and alertness behaviours, as well as in duration of alertness during confrontations involving E.c. assisi, compared with behavioural reactions elicited by jirds in presence of B.c. amarali. Interestingly, the aggressive behaviour of Mongolian gerbils was more prominent against B.c. amarali compared with the other Boidae snake. E.c. assisi elicited more offensive attacks and exhibited a greater time period of body movement than B.c. amarali, which spent more time in the arena and in defensive immobility than the E.c. assisi. Considering that jirds evoked more fear-like reaction in contact with E.c. assisi, a fixed E.c. assisi kept in a hermetically closed acrylic box was used as control. In these prey/predator encounter-based experiments, there was an increase in the number of alertness and freezing behaviours exhibited by gerbils, and a decrease in the number of crossing elicited by them, when comparing confrontations between the living E.c. assisi and the control. The experiments were performed at 7.0 p.m. In the labyrinth, the snakes showed in confrontation similar performance to that observed in nature (organizing hunting behaviour, offensive/defensive attack, constriction, prey inspection and feeding behaviour), which were essential to the validity of the experiments and gave behavioural validation within the complex labyrinth.

  16. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  17. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2013-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  18. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils

    NASA Astrophysics Data System (ADS)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando

    2009-02-01

    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.

  19. Effects of g-Jitter on Diffusion in Binary Liquids

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1999-01-01

    The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system.

  20. The influence of the "cage effect" on the mechanism of reversible bimolecular multistage chemical reactions in solutions.

    PubMed

    Doktorov, Alexander B

    2015-08-21

    Manifestations of the "cage effect" at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a "cage complex." Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the "cage effect" leads to some important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.

  1. Deficit of Wide Binaries in the η Chamaeleontis Young Cluster

    NASA Astrophysics Data System (ADS)

    Brandeker, Alexis; Jayawardhana, Ray; Khavari, Parandis; Haisch, Karl E., Jr.; Mardones, Diego

    2006-12-01

    We have carried out a sensitive high-resolution imaging survey of stars in the young (6-8 Myr), nearby (97 pc) compact cluster around η Chamaeleontis to search for stellar and substellar companions. Our data were obtained using the NACO adaptive optics system on the ESO Very Large Telescope (VLT). Given its youth and proximity, any substellar companions are expected to be luminous, especially in the near-infrared, and thus easier to detect next to their parent stars. Here, we present VLT NACO adaptive optics imaging with companion detection limits for 17 η Cha cluster members, and follow-up VLT ISAAC near-infrared spectroscopy for companion candidates. The widest binary detected is ~0.2", corresponding to the projected separation 20 AU, despite our survey being sensitive down to substellar companions outside 0.3", and planetary-mass objects outside 0.5". This implies that the stellar companion probability outside 0.3" and the brown dwarf companion probability outside 0.5" are less than 0.16 with 95% confidence. We compare the wide binary frequency of η Cha to that of the similarly aged TW Hydrae association and estimate the statistical likelihood that the wide binary probability is equal in both groups to be less than 2×10-4. Even though the η Cha cluster is relatively dense, stellar encounters in its present configuration cannot account for the relative deficit of wide binaries. We thus conclude that the difference in wide binary probability in these two groups provides strong evidence for multiplicity properties being dependent on environment. In two appendices we derive the projected separation probability distribution for binaries, used to constrain physical separations from observed projected separations, and summarize statistical tools useful for multiplicity studies.

  2. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.

    PubMed

    Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-06-01

    In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The asteroid impact mission: testing laser communication in deep-space

    NASA Astrophysics Data System (ADS)

    Carnelli, I.; Mellab, K.; Heese, C.; Sodnik, Z.; Pesquita, V.; Gutierrez, B.

    2017-09-01

    In October 2022 the binary asteroid system 65803 Didymos will have an exceptionally close approach with the Earth flying by within only 0.088 AU. ESA is planning to leverage on this close encounter to launch a small mission of opportunity called Asteroid Impact Mission (AIM) to explore and demonstrate new technologies for future science and exploration missions while addressing planetary defence and performing asteroid scientific investigations.

  4. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    NASA Astrophysics Data System (ADS)

    Leigh, N. W. C.; Geller, A. M.; McKernan, B.; Ford, K. E. S.; Mac Low, M.-M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O'Dowd, M.; Kocsis, B.; Endlich, S.

    2018-03-01

    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disc components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGW needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disc components. Using a Monte Carlo approach, we refine our calculations for NGW to include gravitational wave emission between scattering events. For astrophysically plausible models, we find that typically NGW ≲ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low-velocity dispersions, and no significant Keplerian component and (2) migration traps in discs around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disc. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because discs enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.

  5. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  6. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  7. Binary collision rates of relativistic thermal plasmas. I Theoretical framework

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1985-01-01

    Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.

  8. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    NASA Astrophysics Data System (ADS)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  9. Effects of surface poisons on the oxidation of binary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, P.S.; Polizzotti, R.S.; Luckman, G.

    1985-10-01

    A system of reaction-diffusion equations describing the oxidation of binary alloys in environments containing small amounts of surface poisons is analyzed. These poisons reduce the oxygen flux into the alloy, which causes the alloy to oxidize in two stages.During the initial stage, the oxidation reaction occurs in a stationary boundary layer at the alloy surface. Consequently, a thin zone containing a very high concentration of the metal oxide is created at the alloy surface. During the second stage, the oxidation reaction occurs in a moving boundary layer. This leads to a Stefan problem, which is analyzed by using asymptotic andmore » numerical techniques. By comparing the solutions to those of alloys in unpoisoned environments, it is concluded that surface poisons can lead to the formation of protective external oxide scales in alloys which would not normally form such scales. 11 references.« less

  10. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.

  11. Concurrent generation of multivariate mixed data with variables of dissimilar types.

    PubMed

    Amatya, Anup; Demirtas, Hakan

    2016-01-01

    Data sets originating from wide range of research studies are composed of multiple variables that are correlated and of dissimilar types, primarily of count, binary/ordinal and continuous attributes. The present paper builds on the previous works on multivariate data generation and develops a framework for generating multivariate mixed data with a pre-specified correlation matrix. The generated data consist of components that are marginally count, binary, ordinal and continuous, where the count and continuous variables follow the generalized Poisson and normal distributions, respectively. The use of the generalized Poisson distribution provides a flexible mechanism which allows under- and over-dispersed count variables generally encountered in practice. A step-by-step algorithm is provided and its performance is evaluated using simulated and real-data scenarios.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktorov, Alexander B., E-mail: doktorov@kinetics.nsc.ru

    Manifestations of the “cage effect” at the encounters of reactants are theoretically treated by the example of multistage reactions in liquid solutions including bimolecular exchange reactions as elementary stages. It is shown that consistent consideration of quasi-stationary kinetics of multistage reactions (possible only in the framework of the encounter theory) for reactions proceeding near reactants contact can be made on the basis of the concepts of a “cage complex.” Though mathematically such a consideration is more complicated, it is more clear from the standpoint of chemical notions. It is established that the presence of the “cage effect” leads to somemore » important effects not inherent in reactions in gases or those in solutions proceeding in the kinetic regime, such as the appearance of new transition channels of reactant transformation that cannot be caused by elementary event of chemical conversion for the given mechanism of reaction. This results in that, for example, rate constant values of multistage reaction defined by standard kinetic equations of formal chemical kinetics from experimentally measured kinetics can differ essentially from real values of these constants.« less

  13. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  14. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  15. [Interferons--its method of administration and adverse effect related to pharmacokinetics ].

    PubMed

    Furue, H

    1984-02-01

    The potential role of interferons in the treatment of malignant diseases is currently being evaluated. This paper reviews experimental and clinical findings regarding pharmacokinetics, method of administration, and side reactions of interferons. Interferon in the blood is rapidly cleared from the circulation. Intramuscular injection of alpha-interferon causes low but stable interferon levels in the blood. However, in the case of beta-interferon, interferon is never detected consistently in the blood after intramuscular or subcutaneous administration. The studies with animal models suggest that doses higher than those given in current clinical trials will be necessary to obtain clearly beneficial effects in human. The maximum safely tolerated daily dose is appreciably higher than that used in most previous studies, although even at this level, considerable toxicity may be encountered. Adequate method of administration, route, dose and interval are not yet established at all. Exact mechanism of anticancer activity is not yet well defined. The most frequent side reaction is fever. However, the exact mechanism to cause these side reactions is also not yet clarified. Dose limiting central nervous system toxicities, hypotension, hypocalcaemia etc. are occasionally encountered in some instances. Antibody to interferon is demonstrated in some cases. Purification of interferon does not always causes reduction of side reactions. The treatment of cancer cases with interferon has just started and there are many problems to be solved. However, therapeutic beneficial may be achieved in the treatment of malignant tumors by appropriate combinations of interferon with conventional treatment. More laboratory studies as well as carefully controlled clinical observations are warranted.

  16. Fomalhaut’s Stellar Companions as the Driver of its Morphology

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan; White, Ethan; Izidoro, Andre

    2018-01-01

    Fomalhaut A is among the most well-studied nearby stars and has been discovered to possess a putative planetary object as well as a remarkable eccentric dust belt. This eccentric dust belt has often been interpreted as the dynamical signature of one or more planets that elude direct detection. However, the system also contains two other stellar companions residing ~100,000 AU from Fomalhaut A. Using numerical simulations of the system's dynamical evolution, we find that close encounters between Fomalhaut A and B are expected, with a ~25% probability that the two stars have passed within at least 400 AU of each other at some point. Although the outcomes of such encounter histories are extremely varied, these close encounters nearly always excite the eccentricity of Fomalhaut A's dust belt and occasionally yield morphologies very similar to the observed belt. With these results, we argue that close encounters with Fomalhaut A's stellar companions should be considered a plausible mechanism to explain its eccentric belt, especially in the absence of detected planets capable of sculpting the belt's morphology. More broadly, we can also conclude from this work that very wide binary stars may often generate asymmetries in the stellar debris disks they host.

  17. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    PubMed Central

    Kolel-Veetil, Manoj K.; Keller, Teddy M.

    2010-01-01

    The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  18. A Simple and Novel Approach to Delineating Stereochemistry of Electrocyclic Reactions

    ERIC Educational Resources Information Center

    Mandal, Dipak K.

    2012-01-01

    The dynamic stereochemistry of electrocyclic reactions (a class of pericyclic reactions) stems from the operation of either conrotatory (con) or disrotatory (dis) mode of ring-closing and ring-opening processes. Difficulty is often encountered in depicting product stereochemistry resulting from such movements of substituents. A novel, simple,…

  19. The Treatment of Male Sexual Offenders: Countertransference Reactions.

    ERIC Educational Resources Information Center

    Mitchell, Cynthia; Melikian, Karen

    1995-01-01

    Addresses the therapist's reactions to clinical work with sex offenders. Focuses on the particular experiences of one case, and discusses the female therapist's responses to the male client that may be the result of other experiences. Explores some reactions and difficulties that professionals may encounter in work with sex offenders. (JPS)

  20. Gravitational Conundrum? Dynamical Mass Segregation versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  1. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials.

    PubMed

    Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H

    2014-02-21

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.

  2. How to make an efficient propaganda

    NASA Astrophysics Data System (ADS)

    Carletti, T.; Fanelli, D.; Grolli, S.; Guarino, A.

    2006-04-01

    The effects of propaganda are analyzed in an opinion dynamics model in which, under certain conditions, individuals adjust their opinion as a result of random binary encounters. The aim of this paper is to study under what conditions propaganda changes the opinion dynamics of a social system. Four different scenarios are found, characterized by different sensitivities to the propaganda. For each scenario the maximum efficiency of propaganda is attained following a given strategy that is here outlined.

  3. The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Neugebauer, G.; Matthews, K.

    1993-01-01

    We present the results of a magnitude limited (K less than = 8.5 mag) speckle imaging survey of 69 T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius. Thirty-three companion stars were found with separations ranging from 0.07 sec to 2.5 sec, nine are new detections. This survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary star distribution is enhanced at the closer separations (less than 50 AU) relative to the CTTS binary star distribution. We suggest that the nearby companion stars shorten the accretion time scale in multiple star systems, thereby accounting for the presence of WTTS that are coeval with many CTTS. The binary star frequency in the projected linear separation range 16 to 252 AU for T Tauri stars (60 (+/- 17)%) is a factor of 4 greater than that of the solar-type main-sequence stars (16(+/- 3)%). Given the limited separation range of this survey, the rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions. We propose that the observed overabundance of companions of T Tauri stars is an evolutionary effect, in which triple and higher order T Tauri stars are disrupted by close encounters with another star or system of stars.

  4. On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Pinsonneault, Marc H.

    1995-01-01

    We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.

  5. Cisplatin Binding to Biological Ligands Revealed at the Encounter Complex Level by IR Action Spectroscopy.

    PubMed

    Corinti, Davide; Coletti, Cecilia; Re, Nazzareno; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2016-03-07

    Cisplatin [cis-diamminedichloroplatinum(II)] was the first platinum-based antineoplastic agent and is still a cornerstone for the treatment of various solid tumors. Reactive events responsible for cisplatin activity are unveiled here at the molecular level. Simple ligands (L) representing ubiquitous functional groups in the biological environment likely to be encountered by administered cisplatin have been allowed to react with cis-[PtCl(NH3)2 (H2O)](+), the primary intermediate from cisplatin hydrolysis. The substitution reactions have been examined by a combined experimental and computational approach and the structural features of the substitution product, cis-[PtCl(NH3)2(L)](+), have been probed by IR multiple-photon dissociation (IRMPD) spectroscopy. Furthermore, IRMPD spectroscopy has been exploited to elucidate the structure of [PtCl(NH3)2(L)(H2O)](+) clusters, also obtained by electrospray ionization (ESI) from the aqueous solution and representing the major focus of this investigation. These ions conform to the encounter complex of cis-[PtCl(NH3)2 (H2O)](+) with the incoming ligand and represent the first direct evidence of a prototypical Eigen-Wilkins encounter complex in solution, lying on the reaction coordinate for ligand substitution and extracted by ESI for mass spectrometric analysis. Activated [PtCl(NH3)2(L)(H2O)](+) ions dissociate by the loss of either H2O or L, the former process implying a ligand substitution event. IRMPD spectroscopy has thus revealed both structural details and reaction dynamics at the level of the isolated encounter complex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Patients Covertly Recording Clinical Encounters: Threat or Opportunity? A Qualitative Analysis of Online Texts

    PubMed Central

    Tsulukidze, Maka; Grande, Stuart W.; Thompson, Rachel; Rudd, Kenneth; Elwyn, Glyn

    2015-01-01

    Background The phenomenon of patients covertly recording clinical encounters has generated controversial media reports. This study aims to examine the phenomenon and analyze the underlying issues. Methods and Findings We conducted a qualitative analysis of online posts, articles, blogs, and forums (texts) discussing patients covertly recording clinical encounters. Using Google and Google Blog search engines, we identified and analyzed 62 eligible texts published in multiple countries between 2006 and 2013. Thematic analysis revealed four key themes: 1) a new behavior that elicits strong reactions, both positive and negative, 2) an erosion of trust, 3) shifting patient-clinician roles and relationships, and 4) the existence of confused and conflicting responses. When patients covertly record clinical encounters – a behavior made possible by various digital recording technologies – strong reactions are evoked among a range of stakeholders. The behavior represents one consequence of an erosion of trust between patients and clinicians, and when discovered, leads to further deterioration of trust. Confused and conflicting responses to the phenomenon by patients and clinicians highlight the need for policy guidance. Conclusions This study describes strong reactions, both positive and negative, to the phenomenon of patients covertly recording clinical encounters. The availability of smartphones capable of digital recording, and shifting attitudes to patient-clinician relationships, seems to have led to this behavior, mostly viewed as a threat by clinicians but as a welcome and helpful innovation by some patients, possibly indicating a perception of subordination and a lack of empowerment. Further examination of this tension and its implications is needed. PMID:25933002

  7. Building one molecule from a reservoir of two atoms

    NASA Astrophysics Data System (ADS)

    Liu, L. R.; Hood, J. D.; Yu, Y.; Zhang, J. T.; Hutzler, N. R.; Rosenband, T.; Ni, K.-K.

    2018-05-01

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

  8. Low cost solar array project 1: Silicon material

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1980-01-01

    The low cost production of silicon by deposition of silicon from a hydrogen/chlorosilane mixture is described. Reactor design, reaction vessel support systems (physical support, power control and heaters, and temperature monitoring systems) and operation of the system are reviewed. Testing of four silicon deposition reactors is described, and test data and consequently derived data are given. An 18% conversion of trichlorosilane to silicon was achieved, but average conversion rates were lower than predicted due to incomplete removal of byproduct gases for recycling and silicon oxide/silicon polymer plugging of the gas outlet. Increasing the number of baffles inside the reaction vessel improved the conversion rate. Plans for further design and process improvements to correct the problems encountered are outlined.

  9. Self-assembly of Nano-rods in Photosensitive Phase Separation

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; Maresov, Egor; Balazs, Anna

    2012-02-01

    Computer simulations reveal how photo-induced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials whose features range from the sub-micron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. We now build on this approach by introducing nanorods that have a preferential affinity for one the phases in a binary mixture. By rastering over the sample with the higher intensity light, we can create ordered arrays of rods within periodically ordered materials in essentially one processing step.

  10. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds.

    PubMed

    Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2010-06-01

    Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.

  11. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models

    PubMed Central

    Chen, Han; Wang, Chaolong; Conomos, Matthew P.; Stilp, Adrienne M.; Li, Zilin; Sofer, Tamar; Szpiro, Adam A.; Chen, Wei; Brehm, John M.; Celedón, Juan C.; Redline, Susan; Papanicolaou, George J.; Thornton, Timothy A.; Laurie, Cathy C.; Rice, Kenneth; Lin, Xihong

    2016-01-01

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM’s constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. PMID:27018471

  12. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes

    NASA Astrophysics Data System (ADS)

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-05-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.

  13. Socially disadvantaged women's views of barriers to feeling safe to engage in decision-making in maternity care.

    PubMed

    Ebert, Lyn; Bellchambers, Helen; Ferguson, Alison; Browne, Jenny

    2014-06-01

    Although midwifery literature suggests that woman-centred care can improve the birthing experiences of women and birth outcomes for women and babies, recent research has identified challenges in supporting socially disadvantaged women to engage in decision-making regarding care options in order to attain a sense of control within their maternity care encounters. The objective of this paper is to provide an understanding of the issues that affect the socially disadvantaged woman's ability to actively engage in decision-making processes relevant to her care. The qualitative approach known as Interpretative Phenomenological Analysis was used to gain an understanding of maternity care encounters as experienced by each of the following cohorts: socially disadvantaged women, registered midwives and student midwives. This paper focuses specifically on data from participating socially disadvantaged women that relate to the elements of woman-centred care-choice and control and their understandings of capacity to engage in their maternity care encounters. Socially disadvantaged women participants did not feel safe to engage in discussions regarding choice or to seek control within their maternity care encounters. Situations such as inadequate contextualised information, perceived risks in not conforming to routine procedures, and the actions and reactions of midwives when these women did seek choice or control resulted in a silent compliance. This response was interpreted as a consequence of women's decisions to accept responsibility for their baby's wellbeing by delegating health care decision-making to the health care professional. This research found that socially disadvantaged women want to engage in their care. However without adequate information and facilitation of choice by midwives, they believe they are outsiders to the maternity care culture and decision-making processes. Consequently, they delegate responsibility for maternity care choices to those who do belong; midwives. These findings suggest that midwives need to better communicate a valuing of the woman's participation in decision-making processes and to work with women so they do have a sense of belonging within the maternity care environment. Midwives need to ensure that socially disadvantaged women do feel safe about having a voice regarding their choices and find ways to give them a sense of control within their maternity care encounters. Copyright © 2013. Published by Elsevier Ltd.

  14. How humans transmit language: horizontal transmission matches word frequencies among peers on Twitter.

    PubMed

    Bryden, John; Wright, Shaun P; Jansen, Vincent A A

    2018-02-01

    Language transmission, the passing on of language features such as words between people, is the process of inheritance that underlies linguistic evolution. To understand how language transmission works, we need a mechanistic understanding based on empirical evidence of lasting change of language usage. Here, we analysed 200 million online conversations to investigate transmission between individuals. We find that the frequency of word usage is inherited over conversations, rather than only the binary presence or absence of a word in a person's lexicon. We propose a mechanism for transmission whereby for each word someone encounters there is a chance they will use it more often. Using this mechanism, we measure that, for one word in around every hundred a person encounters, they will use that word more frequently. As more commonly used words are encountered more often, this means that it is the frequencies of words which are copied. Beyond this, our measurements indicate that this per-encounter mechanism is neutral and applies without any further distinction as to whether a word encountered in a conversation is commonly used or not. An important consequence of this is that frequencies of many words can be used in concert to observe and measure language transmission, and our results confirm this. These results indicate that our mechanism for transmission can be used to study language patterns and evolution within populations. © 2018 The Author(s).

  15. Study of binary asteroids with three space missions

    NASA Astrophysics Data System (ADS)

    Kovalenko, Irina; Doressoundiram, Alain; Hestroffer, Daniel

    Binary and multiple asteroids are common in the Solar system and encountered in various places going from Near-Earth region, to the main-belt, Trojans and Centaurs, and beyond Neptune. Their study can provide insight on the Solar System formation and its subsequent dynamical evolution. Binaries are also objects of high interest because they provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. We will present our current project on analysis of such systems based on three space missions. The first one is the Herschel space observatory (ESA), the largest infrared telescope ever launched. Thirty Centaurs and trans-Neptunian binaries were observed by Herschel and the measurement allowed to define size, albedo and thermal properties [1]. The second one is the satellite Gaia (ESA). This mission is designed to chart a three-dimensional map of the Galaxy. Gaia will provide positional measurements of Solar System Objects - including asteroid binaries - with unprecedented accuracy [2]. And the third one is the proposed mission AIDA, which would study the effects of crashing a spacecraft into an asteroid [3]. The objectives are to demonstrate the ability to modify the trajectory of an asteroid, to precisely measure its trajectory change, and to characterize its physical properties. The target of this mission is a binary system: (65803) Didymos. This encompasses orbital characterisations for both astrometric and resolved binaries, as well as unbound orbit, study of astrometric binaries, derivation of densities, and general statistical analysis of physical and orbital properties of trans-Neptunian and other asteroid binaries. Acknowledgements : work supported by Labex ESEP (ANR N° 2011-LABX-030) [1] Müller T., Lellouch E., Stansberry J. et al. 2009. TNOs are Cool: A Survey of the Transneptunian Region. EM&P 105, 209-219. [2] Mignard F., Cellino A., Muinonen K. et al. 2007. The Gaia Mission: Expected Applications to Asteroid Science. EM&P 1001, 97-125. [3] Galvez A., Carnelli I. et al. 2013. AIDA: The Asteroid Impact & Deflection Assessment Mission. EPSC 2013 - 1043.

  16. Nonlinear Systems.

    ERIC Educational Resources Information Center

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  17. Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Galley, Chad R.; Rothstein, Ira Z.

    2017-05-01

    We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.

  18. Determination and characterization of the Hubble Space Telescope pointing stability

    NASA Technical Reports Server (NTRS)

    Bradley, A. J.; Connor, C. T.; Del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; Van Altena, William F.

    1993-01-01

    The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.

  19. Determination and characterization of the Hubble Space Telescope pointing stability

    NASA Astrophysics Data System (ADS)

    Bradley, A. J.; Connor, C. T.; del Toro, Y.; Andersen, G. C.; Bely, Pierre Y.; Decker, J.; Franz, O. G.; Wasserman, L. H.; van Altena, William F.

    The Hubble Space Telescope (HST) was designed to maintian a pointing stability (jitter) of 0.007 arc seconds rms throughout every observing period, which can last from a few seconds to several orbits. On-orbit measurements indicate that the hardware excitation induced by the reaction wheels. gyros, high gain antennae, science instrument mechanisms and tape recorders are well within specifications. Unexpectedly, the solar arrays because the dominant source of jitter. Every passage through an orbital terminator produces vibrations which emanate from the solar arrays due to thermal effects, which affect the relative positional stability. Broadband frequencies centered about 0.11 and 0.65 Hz were detected in the frequency content of the vehicle jitter. On-board modifications to the control law have attenuated the disturbance torques and reduced the vehicle jitter close to specification. Replacement of the solar arrays in December, 1993, should eliminate the torque distubances. Astrometric science observations are extremely susceptible to corruption from vehicle jitter. The removal of vehicle jitter from astrometric Transfer function scans of binary stars is explained in detail. A binary star separation of 16 milli-seconds of arc has been achieved, a separation resolution of 10 to 12 milli-seconds of arc appears feasible, with a binary star magnitude of 9 m(sub V). The achievement of this resolution is in part due to vehicle jitter removal. Comparison of vehicle jitter measurements from the position path of the vehicle control law, or from the guiding Fine Guidance Sensors (FGS), are shown to be equivalent to approximately 0.001 arc second.

  20. Charge-state dependence of binary-encounter-electron cross sections and peak energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidmi, H.I.; Richard, P.; Sanders, J.M.

    The charge-state dependence of the binary-encounter-electron (BEE) double-differential cross section (DDCS) at 0[degree] with respect to the beam direction resulting from collisions of 1 MeV/amu H[sup +], C[sup [ital q]+], N[sup [ital q]+], O[sup [ital q]+], F[sup [ital q]+], Si[sup [ital q]+], and Cl[sup [ital q]+], and 0.5 MeV/amu Cu[sup [ital q]+] with H[sub 2] is reported. The data show an enhancement in the BEE DDCS as the charge state of the projectile is decreased, in agreement with the data reported by Richard [ital et] [ital al]. [J. Phys. B 23, L213 (1990)]. The DDCS enhancement ratios observed for themore » three-electron isoelectronic sequence C[sup 3+]:C[sup 6+], N[sup 4+]:N[sup 7+], O[sup 5+]:O[sup 8+], and F[sup 6+]:F[sup 9+] are about 1.35, whereas a DDCS enhancement of 3.5 was observed for Cu[sup 4+]. The BEE enhancement with increasing electrons on the projectile has been shown by several authors to be due to the non-Coulomb static potential of the projectile and additionally to the [ital e]-[ital e] exchange interaction. An impulse-approximation (IA) model fits the shape of the BEE DDCS and predicts a [ital Z][sub [ital p

  1. Massive Binary Black Holes in the Cosmic Landscape

    NASA Astrophysics Data System (ADS)

    Colpi, Monica; Dotti, Massimo

    2011-02-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.

  2. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  3. The Cu-Li-Sn Phase Diagram: Isopleths, Liquidus Projection and Reaction Scheme

    PubMed Central

    Flandorfer, Hans

    2016-01-01

    The Cu-Li-Sn phase diagram was constructed based on XRD and DTA data of 60 different alloy compositions. Eight ternary phases and 14 binary solid phases form 44 invariant ternary reactions, which are illustrated by a Scheil-Schulz reaction scheme and a liquidus projection. Phase equilibria as a function of concentration and temperature are shown along nine isopleths. This report together with an earlier publication of our group provides for the first time comprehensive investigations of phase equilibria and respective phase diagrams. Most of the phase equilibria could be established based on our experimental results. Only in the Li-rich part where many binary and ternary compounds are present estimations had to be done which are all indicated by dashed lines. A stable ternary miscibility gap could be found which was predicted by modelling the liquid ternary phase in a recent work. The phase diagrams are a crucial input for material databases and thermodynamic optimizations regarding new anode materials for high-power Li-ion batteries. PMID:27788175

  4. DNA probe for monitoring dynamic and transient molecular encounters on live cell membranes

    PubMed Central

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Wu, Cuichen Sam; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-01-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, such as motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within different lipid domains. PMID:28319616

  5. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    ERIC Educational Resources Information Center

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  6. Mechanism of atomic layer deposition of SiO2 on the silicon (100)-2×1 surface using SiCl4 and H2O as precursors

    NASA Astrophysics Data System (ADS)

    Kang, Jeung Ku; Musgrave, Charles B.

    2002-03-01

    We use density functional theory to investigate atomic layer deposition (ALD) mechanism of silicon dioxide on the Si(100)-2×1 surface from the precursors SiCl4 and H2O. First, we explore the reaction mechanism of water with the bare Si(100)-2×1 surface to produce surface hydroxyl groups. We find that this reaction proceeds through a two-step pathway with an overall barrier of 33.3 kcal/mol. Next, we investigate the ALD mechanism for the binary reaction sequence: the SiCl4 half reaction and the H2O half reaction. For the SiCl4 half reaction, SiCl4 first forms a σ-bond with the oxygen of the surface OH group and then releases an HCl molecule. The predicted barrier for this process is 15.8 kcal/mol. Next, adsorbed SiCl3 reacts with a neighboring OH group to form bridged SiCl2 with a barrier of 22.6 kcal/mol. The H2O half reaction also proceeds through two sequential steps with an overall barrier of 19.1 kcal/mol for the reaction of H2O with bridged SiCl2 to form bridged Si(OH)2. The predicted barrier of 22.6 kcal/mol for the rate-limiting step of the ALD binary reaction mechanism is consistent with the experimental value of 22.0 kcal/mol. In addition, we find that the calculated frequencies are in good agreement with the experimentally measured IR spectra.

  7. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.

    PubMed

    Chen, Han; Wang, Chaolong; Conomos, Matthew P; Stilp, Adrienne M; Li, Zilin; Sofer, Tamar; Szpiro, Adam A; Chen, Wei; Brehm, John M; Celedón, Juan C; Redline, Susan; Papanicolaou, George J; Thornton, Timothy A; Laurie, Cathy C; Rice, Kenneth; Lin, Xihong

    2016-04-07

    Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Al-Zubaidy, Basem; Prangnell, Philip B.

    2018-01-01

    The dissimilar welding of aluminum to magnesium is challenging because of the rapid formation of brittle intermetallic compounds (IMC) at the weld interface. An Al-Si coating interlayer was selected to address this problem, based on thermodynamic calculations which predicted that silicon would change the reaction path to avoid formation of the normally observed binary Al-Mg IMC phases ( β-Al3Mg2 and γ-Al12Mg17). Long-term static heat treatments confirmed that a Si-rich coating will preferentially produce the Mg2Si phase in competition with the less stable, β-Al3Mg2 and γ-Al12Mg17 binary IMC phases, and this reduced the overall reaction layer thickness. However, when an Al-Si clad sheet was tested in a real welding scenario, using the Refill™ friction stir spot welding (FSSW) technique, Mg2Si was only produced in very small amounts owing to the much shorter reaction time. Surprisingly, the coating still led to a significant reduction in the IMC reaction layer thickness and the welds exhibited enhanced mechanical performance, with improved strength and fracture energy. This beneficial behavior has been attributed to the softer coating material both reducing the welding temperature and giving rise to the incorporation of Si particles into the reaction layer, which toughened the brittle interfacial IMC phases during crack propagation.

  9. Less haste, less waste: on recycling and its limits in strand displacement systems

    PubMed Central

    Condon, Anne; Hu, Alan J.; Maňuch, Ján; Thachuk, Chris

    2012-01-01

    We study the potential for molecule recycling in chemical reaction systems and their DNA strand displacement realizations. Recycling happens when a product of one reaction is a reactant in a later reaction. Recycling has the benefits of reducing consumption, or waste, of molecules and of avoiding fuel depletion. We present a binary counter that recycles molecules efficiently while incurring just a moderate slowdown compared with alternative counters that do not recycle strands. This counter is an n-bit binary reflecting Gray code counter that advances through 2n states. In the strand displacement realization of this counter, the waste—total number of nucleotides of the DNA strands consumed—is polynomial in n, the number of bits of the counter, while the waste of alternative counters grows exponentially in n. We also show that our n-bit counter fails to work correctly when many (Θ(n)) copies of the species that represent the bits of the counter are present initially. The proof applies more generally to show that in chemical reaction systems where all but one reactant of each reaction are catalysts, computations longer than a polynomial function of the size of the system are not possible when there are polynomially many copies of the system present. PMID:22649584

  10. A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; Van Den Berg, Maureen

    2017-01-01

    We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.

  11. Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit

    NASA Astrophysics Data System (ADS)

    Knispel, B.; Lyne, A. G.; Stappers, B. W.; Freire, P. C. C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Eggenstein, H.-B.; Fehrmann, H.; Ferdman, R.; Hessels, J. W. T.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; van Leeuwen, J.; Lorimer, D. R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Scholz, P.; Siemens, X.; Spitler, L. G.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; Venkataraman, A.; Wharton, R. S.; Zhu, W. W.

    2015-06-01

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.

  12. Brownian motion of massive black hole binaries and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.

    2016-09-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.

  13. Tidal breakup of triple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Gualandris, Alessia

    2018-04-01

    The last decade has seen the detection of fast moving stars in the Galactic halo, the so-called hypervelocity stars (HVSs). While the bulk of this population is likely the result of a close encounter between a stellar binary and the supermassive black hole (MBH) in the Galactic Centre (GC), other mechanims may contribute fast stars to the sample. Few observed HVSs show apparent ages, which are shorter than the flight time from the GC, thereby making the binary disruption scenario unlikely. These stars may be the result of the breakup of a stellar triple in the GC, which led to the ejection of a hypervelocity binary (HVB). If such binary evolves into a blue straggler star due to internal processes after ejection, a rejuvenation is possible that make the star appear younger once detected in the halo. A triple disruption may also be responsible for the presence of HVBs, of which one candidate has now been observed. We present a numerical study of triple disruptions by the MBH in the GC and find that the most likely outcomes are the production of single HVSs and single/binary stars bound to the MBH, while the production of HVBs has a probability ≲ 1 per cent regardless of the initial parameters. Assuming a triple fraction of ≈ 10 per cent results in an ejection rate of ≲ 1 Gyr - 1, insufficient to explain the sample of HVSs with lifetimes shorter than their flight time. We conclude that alternative mechanisms are responsible for the origin of such objects and HVBs in general.

  14. Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor

    EPA Science Inventory

    Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...

  15. Hydrodynamic flow of ions and atoms in partially ionized plasmas.

    PubMed

    Nemirovsky, R A; Fredkin, D R; Ron, A

    2002-12-01

    We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.

  16. Is there a relationship between the presence of the binary toxin genes in Clostridium difficile strains and the severity of C. difficile infection (CDI)?

    PubMed

    Berry, C E; Davies, K A; Owens, D W; Wilcox, M H

    2017-12-01

    Some strains of Clostridium difficile produce a binary toxin, in addition to the main C. difficile virulence factors (toxins A and B). There have been conflicting reports regarding the role of binary toxin and its relationship to the severity of C. difficile infection (CDI). Samples, isolates and clinical data were collected as part of a prospective multicentre diagnostic study. Clostridium difficile isolates (n = 1259) were tested by polymerase chain reaction (PCR) assay to detect binary toxin genes cdtA and cdtB. The PCR binary toxin gene results were compared with clinical severity and outcome data, including 30-day all-cause mortality. The 1259 isolates corresponded to 1083 different patients (October 2010 to September 2011). The prevalence of binary toxin positive strains was significantly higher in faecal samples with detectable toxin A/B than in those without toxin but that were positive by cytotoxigenic culture (26.3% vs. 10.3%, p < 0.001). The presence of binary toxin correlated moderately with markers of CDI severity (white cell count, serum albumin concentration and serum creatinine concentration). However, the risk ratio for all-cause mortality was 1.68 for binary toxin positive patients and patients were significantly less likely to survive if they had CDI caused by a binary toxin gene positive strain, even after adjusting for age (p < 0.001). The presence of binary toxin genes does not predict the clinical severity of CDI, but it is significantly associated with the risk of all-cause mortality.

  17. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions.

    PubMed

    Krajbich, Ian; Rangel, Antonio

    2011-08-16

    How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.

  18. Molten salt corrosion of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.; Fox, D. S.

    1986-01-01

    The most severe type of corrosion encountered in heat engines is corrosion by molten sodium sulfate, formed by the reaction of ingested sodium chloride and sulfur impurities in the fuel. This problem was studied extensively for superalloys, but only recently examined for ceramics. This problem is addressed with laboratory studies to understand the fundamental reaction mechanisms and with burner studies to provide a more realistic simulation of the conditions encountered in a heat engine. In addition the effect of corrosion on the strengths of these materials was assessed. Each of these aspects will be reviewed and some ideas toward possible solutions will be discussed.

  19. Binary toxin and its clinical importance in Clostridium difficile infection, Belgium.

    PubMed

    Pilate, T; Verhaegen, J; Van Ranst, M; Saegeman, V

    2016-11-01

    Binary toxin-producing Clostridium difficile strains such as ribotypes 027 and 078 have been associated with increased Clostridium difficile infection (CDI) severity. Our objective was to investigate the association between presence of the binary toxin gene and CDI severity and recurrence. We performed a laboratory-based retrospective study including patients between January 2013 and March 2015 whose fecal samples were analyzed by polymerase chain reaction (PCR) for the presence of the genes for toxin B and binary toxin and a deletion in the tcdC gene, specific for ribotype 027. Clinical and epidemiological characteristics were compared between 33 binary toxin-positive CDI patients and 33 binary toxin-negative CDI patients. Subsequently, the characteristics of 66 CDI patients were compared to those of 66 diarrhea patients who were carriers of non-toxigenic C. difficile strains. Fifty-nine of 1034 (5.7 %) fecal samples analyzed by PCR were binary toxin-positive, belonging to 33 different patients. No samples were positive for ribotype 027. Binary toxin-positive CDI patients did not differ from binary toxin-negative CDI patients in terms of disease recurrence, morbidity, or mortality, except for a higher peripheral leukocytosis in the binary toxin-positive group (16.30 × 10 9 /L vs. 11.65 × 10 9 /L; p = 0.02). The second part of our study showed that CDI patients had more severe disease, but not a higher 30-day mortality rate than diarrhea patients with a non-toxicogenic C. difficile strain. In our setting with a low prevalence of ribotype 027, the presence of the binary toxin gene is not associated with poor outcome.

  20. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    PubMed

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  1. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    manganese, nickel , lead, and tin. Subtracting the total of these impurities from the oxygen remainder would give a more nearly 1:2 uranium -oxygen ratio. The...Astin, Dire~ctor High -Temperature Reactions of Uranium Dioxide With Various Metal Oxides Acceson For NTIS CRAWI DTfC TAB Unannounced D JustifiCation...1 2. The uranium -oxygen system ------------------------------------- 1 3. Binary systems containing

  2. Synthesis and molecular structure of a spheroidal binary nanoscale copper sulfide cluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-09-27

    The reaction of copper(4-(tert-butyl)phenyl)methanethiolate [CuSCH 2 C 6 H 4 t Bu] with bis(trimethylsilyl)sulfide S(SiMe 3 ) 2 in the presence of triphenylphosphine PPh 3 afforded the binary 52 nuclear copper cluster [Cu 52 S 12 (SCH 2 C 6 H 4 t Bu) 28 (PPh 3 ) 8 ]. The molecular structure of this intensely red coloured nanoscale Cu 2 S mimic was established by single crystal X-ray diffraction.

  3. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  4. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.

  5. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  6. Blue straggler stars: lessons from open clusters.

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.

    Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.

  7. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  8. A 110-ms pulsar, with negative period derivative, in the globular cluster M15

    NASA Technical Reports Server (NTRS)

    Wolszczan, A.; Kulkarni, S. R.; Middleditch, J.; Backer, D. C.; Fruchter, A. S.; Dewey, R. J.

    1989-01-01

    The discovery of a 110-ms pulsar, PSR2127+11, in the globular cluster M15, is reported. The results of nine months of timing measurements place the new pulsar about 2 arcsec from the center of the cluster, and indicate that it is not a member of a close binary system. The measured negative value of the period derivative is probably the result of the pulsar being bodily accelerated in our direction by the gravitational field of the collapsed core of M15. This apparently overwhelms a positive contribution to the period derivative due to magnetic braking. Although the pulsar has an unexpectedly long period, it is argued that it belongs to the class of 'recycled' pulsars, which have been spun up by accretion in a binary system. The subsequent loss of the pulsar's companion is probably due to disruption of the system by close encounters with other stars.

  9. THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchis, F.; Cuk, M.; Durech, J.

    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125 km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formedmore » the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.« less

  10. COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong

    2000-09-30

    The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420more » C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.« less

  11. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    NASA Astrophysics Data System (ADS)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  12. Non-hydrolytic Sol-gel Synthesis of Tin Sulfides

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder

    The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A systematic study was carried out to understand the influence of all reaction variables, which include tin halides, thioethers, solvents, time, temperature, stoichiometry and concentration. Fine tuning of all reaction variables was carried out. The crystallization and phase stability of the as-recovered products was further studied by heat treatments of the samples. A detailed investigation of synthetic variables during NHSG reactions resulted in controlled synthesis of two crystalline tin sulfide polymorphs, SnS and SnS2. A third polymorph, Sn2S3, could be obtained after heat treatments in the temperature range of 400 to 500 °C. Conditions for the targeted synthesis of particles with various sizes and morphologies were established. Samples were characterized by powder X-ray diffraction, electron microscopy in combination with EDS, CHNS analysis and thermo gravimetric/differential thermal analysis.

  13. A novel probabilistic framework for event-based speech recognition

    NASA Astrophysics Data System (ADS)

    Juneja, Amit; Espy-Wilson, Carol

    2003-10-01

    One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.

  14. [Roles of histologic examination and polymerase chain reaction in diagnosis of toxoplasmic lymphadenitis].

    PubMed

    Dai, Lin; Huang, Juan; Tang, Yuan; Liao, Dian-ying; Dong, Dan-dan; Xu, Gang; Li, Gan-di

    2010-06-01

    To study the roles of histologic examination and polymerase chain reaction in diagnosis of toxoplasmic lymphadenitis (TL). Forty-six archival cases of histologically diagnosed TL, encountered during the period from April, 1999 to September, 2009 and with the paraffin-embedded lymph node tissue blocks available, were enrolled into the study. The presence of genome fragments of Toxoplasma gondii (T. gondii) was analyzed using semi-nested polymerase chain reaction (PCR). Thirty cases of one or two histopathologic triad of TL as the controls. The positive rate of PCR in TL group was 76.1% (35/46), as compared to 10.0% (3/30) in the control group. The difference was of statistical significance. The sensitivity and specificity of the histologic triad in diagnosing TL was 92.1% (35/38) and 71.1% (27/38), respectively. The predictive value of positive and negative PCR results was 76.1% (35/46) and 90.0% (27/30). respectively. The high specificity but low sensitivity of applying the histologic triad in diagnosing TL cases may be due to the occurrence of atypical histologic pattern. The sensitivity is improved with the use of semi-nested PCR in detecting T. gondii DNA.

  15. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  16. Browndye: A Software Package for Brownian Dynamics

    PubMed Central

    McCammon, J. Andrew

    2010-01-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109

  17. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  18. The rate of epinephrine administration associated with allergy skin testing in a suburban allergy practice from 1997 to 2010.

    PubMed

    Swender, David A; Chernin, Leah R; Mitchell, Chris; Sher, Theodore; Hostoffer, Robert; Tcheurekdjian, Haig

    2012-01-01

    Allergy skin testing is considered a safe method for testing for IgE-mediated allergic responses although anaphylactic events can occur. Reported rates of anaphylaxis per patient are not consistent and range from 0.008 to 4%. The aim of this study was to determine the rate of epinephrine use associated with allergy skin-prick testing (SPT) and intradermal testing (IDT) in a suburban practice over 13 years. This retrospective chart review used billing and procedure coding records during the time period from January 1997 to June 2010 to identify encounters where epinephrine was administered after SPT or IDT. Patient encounters with procedure codes for skin testing plus either parenteral epinephrine, corticosteroid, antihistamine, or i.v. fluid administration were identified. These patient charts were reviewed to determine if epinephrine was administered, whether systemic reactions developed, and rates of epinephrine administration were calculated. There were 28,907 patient encounters for SPT and 18,212 for IDT. Epinephrine was administered in six patient encounters (0.02%) where SPT was performed; no IDT encounters led to epinephrine administration. There were no fatalities. Allergy skin testing to a variety of allergens, when administered by well-trained personnel, is a safe procedure. This study, involving the largest population to date, showed a rate of systemic reactions requiring epinephrine of 20 per 100,000 SPT visits. No epinephrine was given after IDT.

  19. The rate of epinephrine administration associated with allergy skin testing in a suburban allergy practice from 1997 to 2010

    PubMed Central

    Chernin, Leah R.; Mitchell, Chris; Sher, Theodore; Hostoffer, Robert; Tcheurekdjian, Haig

    2012-01-01

    Allergy skin testing is considered a safe method for testing for IgE-mediated allergic responses although anaphylactic events can occur. Reported rates of anaphylaxis per patient are not consistent and range from 0.008 to 4%. The aim of this study was to determine the rate of epinephrine use associated with allergy skin-prick testing (SPT) and intradermal testing (IDT) in a suburban practice over 13 years. This retrospective chart review used billing and procedure coding records during the time period from January 1997 to June 2010 to identify encounters where epinephrine was administered after SPT or IDT. Patient encounters with procedure codes for skin testing plus either parenteral epinephrine, corticosteroid, antihistamine, or i.v. fluid administration were identified. These patient charts were reviewed to determine if epinephrine was administered, whether systemic reactions developed, and rates of epinephrine administration were calculated. There were 28,907 patient encounters for SPT and 18,212 for IDT. Epinephrine was administered in six patient encounters (0.02%) where SPT was performed; no IDT encounters led to epinephrine administration. There were no fatalities. Allergy skin testing to a variety of allergens, when administered by well-trained personnel, is a safe procedure. This study, involving the largest population to date, showed a rate of systemic reactions requiring epinephrine of 20 per 100,000 SPT visits. No epinephrine was given after IDT. PMID:23342290

  20. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  1. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  2. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  3. Saying "no" to temptation: Want-to motivation improves self-regulation by reducing temptation rather than by increasing self-control.

    PubMed

    Milyavskaya, Marina; Inzlicht, Michael; Hope, Nora; Koestner, Richard

    2015-10-01

    Self-regulation has been conceptualized as the interplay between controlled and impulsive processes; however, most research has focused on the controlled side (i.e., effortful self-control). The present studies focus on the effects of motivation on impulsive processes, including automatic preferences for goal-disruptive stimuli and subjective reports of temptations and obstacles, contrasting them with effects on controlled processes. This is done by examining people's implicit affective reactions in the face of goal-disruptive "temptations" (Studies 1 and 2), subjective reports of obstacles (Studies 2 and 3) and expended effort (Study 3), as well as experiences of desires and self-control in real-time using experience sampling (Study 4). Across these multiple methods, results show that want-to motivation results in decreased impulsive attraction to goal-disruptive temptations and is related to encountering fewer obstacles in the process of goal pursuit. This, in turn, explains why want-to goals are more likely to be attained. Have-to motivation, on the other hand, was unrelated to people's automatic reactions to temptation cues but related to greater subjective perceptions of obstacles and tempting desires. The discussion focuses on the implications of these findings for self-regulation and motivation. (c) 2015 APA, all rights reserved).

  4. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE PAGES

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-10-04

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  5. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  6. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.

    PubMed

    Zhang, Lin; Sun, Ge; Bi, Xihe

    2016-11-07

    The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    NASA Astrophysics Data System (ADS)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  8. Adverse drug events in the oral cavity.

    PubMed

    Yuan, Anna; Woo, Sook-Bin

    2015-01-01

    Adverse reactions to medications are common and may have a variety of clinical presentations in the oral cavity. Targeted therapies and the new biologic agents have revolutionized the treatment of cancers, autoimmune diseases, and inflammatory and rheumatologic diseases but have also been associated with adverse events in the oral cavity. Some examples include osteonecrosis, seen with not only bisphosphonates but also antiangiogenic agents, and the distinctive ulcers caused by mammalian target of rapamycin inhibitors. As newer therapeutic agents are approved, it is likely that more adverse drug events will be encountered. This review describes the most common clinical presentations of oral mucosal reactions to medications, namely, xerostomia, lichenoid reactions, ulcers, bullous disorders, pigmentation, fibrovascular hyperplasia, white lesions, dysesthesia, osteonecrosis, infection, angioedema, and malignancy. Oral health care providers should be familiar with such events, as they will encounter them in their practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Exploring Digital Encounters in the Public Arena

    NASA Astrophysics Data System (ADS)

    Schieck, Ava Fatah Gen.; Kostakos, Vassilis; Penn, Alan

    In this chapter, we explore the types of encounters that technology enables. We consider the differences between digital and nondigital encounters through two pilot studies carried out in the city of Bath, United Kingdom. We investigate how technology can be appropriated for shared interactions that support conscious (or unconscious) social encounters, and highlight the importance of space and the role of place in providing temporal and spatial mechanisms facilitating different types of shared encounters. Here, we apply a method based on intervention through "sensing and projecting" Bluetooth names and digital identity in the public arena, and describe initial observations about people's reaction toward the projection of their Bluetooth names in public. In particular, we note the significance of constructing socially meaningful relations between people mediated by these technologies. We discuss initial results and outline issues raised in detail before finally describing the ongoing work.

  10. Difficult Clients: Who Are They and How Do We Help Them?

    ERIC Educational Resources Information Center

    Seligman, Linda; Gaaserud, Lynn

    1994-01-01

    Reviewed literature on dealing with resistant clients and, based on review, developed survey to elicit counselors' reactions to and experiences with resistant clients. Responses from 215 American Mental Health Counselors Association members suggest that nearly all counselors have encountered resistant clients, but counselors' reactions to and…

  11. A Binary-Encounter-Bethe Approach to Simulate DNA Damage by the Direct Effect

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2013-01-01

    The DNA damage is of crucial importance in the understanding of the effects of ionizing radiation. The main mechanisms of DNA damage are by the direct effect of radiation (e.g. direct ionization) and by indirect effect (e.g. damage by.OH radicals created by the radiolysis of water). Despite years of research in this area, many questions on the formation of DNA damage remains. To refine existing DNA damage models, an approach based on the Binary-Encounter-Bethe (BEB) model was developed[1]. This model calculates differential cross sections for ionization of the molecular orbitals of the DNA bases, sugars and phosphates using the electron binding energy, the mean kinetic energy and the occupancy number of the orbital. This cross section has an analytic form which is quite convenient to use and allows the sampling of the energy loss occurring during an ionization event. To simulate the radiation track structure, the code RITRACKS developed at the NASA Johnson Space Center is used[2]. This code calculates all the energy deposition events and the formation of the radiolytic species by the ion and the secondary electrons as well. We have also developed a technique to use the integrated BEB cross section for the bases, sugar and phosphates in the radiation transport code RITRACKS. These techniques should allow the simulation of DNA damage by ionizing radiation, and understanding of the formation of double-strand breaks caused by clustered damage in different conditions.

  12. Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew; Clarke, Cathie; Wyatt, Mark

    2014-07-01

    Fomalhaut is a triple system, with all components widely separated (˜105 au). Such widely separated binaries are thought to form during cluster dissolution, but that process is unlikely to form such a triple system. We explore an alternative scenario, where A and C form as a tighter binary from a single molecular cloud core (with semimajor axis ˜104 au), and B is captured during cluster dispersal. We use N-body simulations augmented with the Galactic tidal forces to show that such a system naturally evolves into a Fomalhaut-like system in about half of cases, on a time-scale compatible with the age of Fomalhaut. From initial non-interacting orbits, Galactic tides drive cycles in B's eccentricity that lead to a close encounter with C. After several close encounters, typically lasting tens of millions of years, one of the stars is ejected. The Fomalhaut-like case with both components at large separations is almost invariably a precursor to the ejection of one component, most commonly Fomalhaut C. By including circumstellar debris in a subset of the simulations, we also show that such an evolution usually does not disrupt the coherently eccentric debris disc around Fomalhaut A, and in some cases can even produce such a disc. We also find that the final eccentricity of the disc around A and the disc around C are correlated, which may indicate that the dynamics of the three stars stirred C's disc, explaining its unusual brightness.

  13. In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil.

    PubMed

    McCann, Clare M; Peacock, Caroline L; Hudson-Edwards, Karen A; Shrimpton, Thomas; Gray, Neil D; Johnson, Karen L

    2018-01-15

    The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70mgg -1 and 32mgg -1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p<0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  15. Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knispel, B.; Allen, B.; Lyne, A. G.

    2015-06-10

    We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M{sub ⊙} and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbitalmore » eccentricities e < 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 < e < 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.« less

  16. Polymerase chain reaction-based identification of clinically relevant Pasteurellaceae isolated from cats and dogs in Poland.

    PubMed

    Król, Jaroslaw; Bania, Jacek; Florek, Magdalena; Pliszczak-Król, Aleksandra; Staroniewicz, Zdzislaw

    2011-05-01

    A set of polymerase chain reaction (PCR) assays for identification of the most important Pasteurellaceae species encountered in cats and dogs were developed. Primers for Pasteurella multocida were designed to detect a fragment of the kmt, a gene encoding the outer-membrane protein. Primers specific to Pasteurella canis, Pasteurella dagmatis, and Pasteurella stomatis were based on the manganese-dependent superoxide dismutase gene (sodA) and those specific to [Haemophilus] haemoglobinophilus on species-specific sequences of the 16S ribosomal RNA gene. All the primers were tested on respective reference and control strains and applied to the identification of 47 canine and feline field isolates of Pasteurellaceae. The PCR assays were shown to be species specific, providing a valuable supplement to phenotypic identification of species within this group of bacteria. © 2011 The Author(s)

  17. Sex differences in succumbing to sexual temptations: a function of impulse or control?

    PubMed

    Tidwell, Natasha D; Eastwick, Paul W

    2013-12-01

    Men succumb to sexual temptations (e.g., infidelity, mate poaching) more than women. Explanations for this effect vary; some researchers propose that men and women differ in sexual impulse strength, whereas others posit a difference in sexual self-control. These studies are the first to test such underlying mechanisms. In Study 1, participants reported on their impulses and intentional control exertion when they encountered a real-life tempting but forbidden potential partner. Study 2 required participants to perform a reaction-time task in which they accepted/rejected potential partners, and we used process dissociation to separate the effects of impulse and control. In both studies, men succumbed to the sexual temptations more than women, and this sex difference emerged because men experienced stronger impulses, not because they exerted less intentional control. Implications for the integration of evolutionary and self-regulatory perspectives on sex differences are discussed.

  18. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than ismore » DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.« less

  19. The Lightcurve of New Horizons Encounter TNO 2014 MU69

    NASA Astrophysics Data System (ADS)

    Benecchi, Susan

    2016-10-01

    The New Horizons spacecraft was recently redirected to encounter the Transneptunian Object (TNO) 2014 MU69 on 1 January 2019. In order to optimally plan the fly-by sequencing, we must learn as much about this object in advance of the encounter as possible. In particular, it is critical that we determine, to the best of our ability, if the object is binary (as is the case for 20% of cold classical TNOs in this size range), the rotation period and shape of the body. All of these parameters influence the encounter design and timing. Existing and proposed HST astrometric datasets constrain its diameter (21-41 km for an albedo of 0.15-0.04) and orbit, and suggest a rotational lightcurve amplitude of >0.3 mags, but cannot determine the rotation period or lightcurve shape. To that end we propose to use 24 HST orbits over 4 days to measure the lightcurve amplitude of 2014 MU69, and constrain its rotation period to better than 5%. 2014 MU69's orbit identifies it as very typical member of the cold classical TNO population. This makes it an ideal target for our spacecraft mission because close-up observations obtained of 2014 MU69 can be extrapolated to understand the cold classical population as a whole, which is the most primitive and least disturbed part of the Kuiper Belt.

  20. Simulated single molecule microscopy with SMeagol.

    PubMed

    Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan

    2016-08-01

    SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  2. The Behavior of Regular Satellites during the Nice Model's Planetary Close Encounters

    NASA Astrophysics Data System (ADS)

    Nogueira, E. C.; Gomes, R. S.; Brasser, R.

    2014-10-01

    In order to explain the behavior of the regular satellites of the ice planets during the instability phase of the Nice model, we used numerical simulations to investigate the evolution of the satellite systems when these two planets experienced encounters with the gas giants. For the initial conditions we placed an ice planet in between Jupiter and Saturn, according to the evolution of Nice model simulations in a jumping Jupiter scenario (Brasser et al. 2009). We used the MERCURY integrator (Chambers 1999) and we obtained 101 successful runs which kept all planets, of which 24 were jumping Jupiter cases. Subsequently we performed additional numerical integrations in which the ice giant that encountered a gas giant was started on the same orbit but with its regular satellites included. This is done as follows: For each of the 101 basic runs, we save the orbital elements of all objects in the integration at all close encounter events. Then we performed a backward integration to start the system 100 years before the encounter and re-enacted the forward integration with the regular satellites around the ice giant. The final orbital elements of the satellites with respect to the ice planet were used to restart the integration for the next planetary encounter. If we assume that Uranus is the ice planet that had encounters with a gas giant, we considered the satellites Miranda, Ariel, Umbriel, Titania and Oberon with their present orbits. For Neptune we introduced Triton with an orbit with a 15% larger than the actual semi-major axis to account for the tidal decay from the LHB to present time. We also assume that Triton was captured through binary disruption (Agnor and Hamilton 2006, Nogueira et al. 2011) and its orbit was circularized by tides during the 500 million years before the LHB.

  3. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  4. DIRECT N-BODY MODELING OF THE OLD OPEN CLUSTER NGC 188: A DETAILED COMPARISON OF THEORETICAL AND OBSERVED BINARY STAR AND BLUE STRAGGLER POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu, E-mail: jhurley@astro.swin.edu.au

    2013-01-01

    Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidalmore » circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.« less

  5. Orbital period changes of OB-type contact binaries and their implications for the triplicity, formation and evolution of this type of binary stars

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Kreiner, J. M.; Liu, L.; He, J.-J.; Zhu, L.-Y.; Yuan, J.-Z.; Dai, Z.-B.

    2007-08-01

    Orbital period variations of NINE well-observed OB-type contact binary stars, LY Aur, BH Cen, V382 CYg, V729 Cyg, AW Lac, TU Mus, RZ Pyx, V701 Sco and CT Tau, are investigated in detail. Of the nine systems, V701 Sco and CT Tau are two contact binaries containing twin components with a mass ratio of unit, LY Aur and V729 Cyg have the longest period among contact binary stars (P=4.0 and 6.6 days, respectively), and BH Cen and V701 Sco are the members of two extremely young galactic cluster IC 2994 and NGC 6383. It is discovered that, apart from the two systems with twin components (V701 Sco and CT Tau), the orbital periods of the rest SEVEN binary stars show a long-term increase. This is different from the situations of the late-type (W UMa-type) contact binaries where both secular period increase and decrease are usually encountered, indicating that magnetic field may play an important role in causing the long-term period decrease of W UMa-type contact binary stars. The fact that no long-term continuous period variations were found for V701 Sco and CT Tau may suggest that contact binary with twin components can be in an equilibrium. Based on the rates of period changes (dP/dt) of the SEVEN sample binary stars, statistical relations between dP/dt and orbital period (P) and the mean density of the secondary component were found. Our results suggest that the period increases of the short-period systems (P<2 days) may be mainly caused by a mass transfer from the less massive component to the more massive one, while for the long-period ones (P>2 days), LY Aur and V729 Cyg, their period increases may be resulted from a combination of stellar wind and mass transfer from the secondary to the primary. Meanwhile, cyclic period changes are found for all of the nine binary systems. Those periodic variations can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the tertiary components in the nine systems have been determined. The tertiary components in the seven binaries, BH Cen, V382 Cyg, AW Lac, TU Mus, RZ Pyx, V701 Sco and CT Tau, may be invisible, while those in LY Aur and V729 Cyg may be the fainter visual companions in the two systems. It is possible that the tertiary components in those binaries played an important role for the formations and evolutions of the contact configurations by bringing angular momentum out from the central systems. Thus they have initial short period and can evolve into a contact configuration in a short timescale.

  6. Skin rash in the intensive care unit: Stevens-Johnson syndrome, toxic epidermal necrolysis, or a rare manifestation of a hidden cutaneous malignancy: A case report.

    PubMed

    Al-Saffar, Farah; Ibrahim, Saif; Patel, Pujan; Jacob, Rafik; Palacio, Carlos; Cury, James

    2016-03-01

    Skin rashes are infrequently encountered in the intensive care units, either as a result or as a cause of admission. The entities of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) form a spectrum of desquamating skin diseases that have multiple etiologies, the most common being drug-related reactions; very rarely, the cause may be cutaneous malignancies. We herein present a unique case of a 54-year-old male patient with psoriasis treated with methotrexate, who presented with a cellulitis-like clinical picture, then developed a severe progressive systemic inflammatory response syndrome, and progressed clinically to SJS, then TEN even after discontinuing the antibiotics and methotrexate. A skin biopsy demonstrated an aggressive and rapidly-progressing T-cell lymphoma. The present case highlights the necessity of skin biopsy when encountering SJS and TEN in the ICU in order to identify potentially treatable/controllable causes. Although it appeared reasonable to correlate TEN solely to medications, the skin biopsies clearly demonstrated an aggressive T-cell skin lymphoma. In a patient with a better general condition it may have been helpful to treat this malignancy. TEN is a life-threatening condition and skin biopsy is the cornerstone of diagnosis, despite the presence of multiple risk factors and the typical physical findings of a drug-induced reaction.

  7. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    PubMed Central

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  8. Mass correlation between light and heavy reaction products in multinucleon transfer 197Au+130Te collisions

    NASA Astrophysics Data System (ADS)

    Galtarossa, F.; Corradi, L.; Szilner, S.; Fioretto, E.; Pollarolo, G.; Mijatović, T.; Montanari, D.; Ackermann, D.; Bourgin, D.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; Jia, H. M.; John, P. R.; Mengoni, D.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Skukan, N.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.

    2018-05-01

    We studied multinucleon transfer reactions in the 197Au+130Te system at Elab=1.07 GeV by employing the PRISMA magnetic spectrometer coupled to a coincident detector. For each light fragment we constructed, in coincidence, the distribution in mass of the heavy partner of the reaction. With a Monte Carlo method, starting from the binary character of the reaction, we simulated the de-excitation process of the produced heavy fragments to be able to understand their final mass distribution. The total cross sections for pure neutron transfer channels have also been extracted and compared with calculations performed with the grazing code.

  9. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  10. Review of calcium methodologies.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1975-01-01

    A review of calcium methodologies for serum has been described. The analytical systems developed over the past century have been classified as to type beginning with gravimetry and extending to isotope dilution-mass spectrometry by covering all of the commonly used technics which have evolved during that period. Screening and referee procedures are discussed along with comparative sensitivities encountered between atomic absorption spectrophotometry and molecular absorption spectrophotometry. A procedure involving a simple direct reaction for serum calcium using cresolphthalein complexone is recommended in which high blanks are minimized by repressing the ionization of the color reagent on lowering the dielectric constant characteristics of the mixture with dimethylsulfoxide. Reaction characteristics, errors which can be encountered, normal ranges and an interpretative resume are included in its discussion.

  11. Duelling with doctors, restoring honour and avoiding shame? A cross-sectional study of sick-listed patients' experiences of negative healthcare encounters with special reference to feeling wronged and shame.

    PubMed

    Lynøe, Niels; Wessel, Maja; Olsson, Daniel; Alexanderson, Kristina; Tännsjö, Torbjörn; Juth, Niklas

    2013-10-01

    The aim of this study was to examine if it is plausible to interpret the appearance of shame in a Swedish healthcare setting as a reaction to having one's honour wronged. Using a questionnaire, we studied answers from a sample of long-term sick-listed patients who had experienced negative encounters (n=1628) and of these 64% also felt wronged. We used feeling wronged to examine emotional reactions such as feeling ashamed and made the assumption that feeling shame could be associated with having one's honour wronged. In statistical analyses relative risks (RRs) were computed, adjusting for age, sex, disease-labelling, educational levels, as well as their 95% CI. Approximately half of those who had been wronged stated that they also felt shame and of those who felt shame, 93% (CI 91 to 95) felt that they had been wronged. The RR was 4.5 (CI 3.0 to 6.8) for shame when wronged. This can be compared with the other emotional reactions where the RRs were between 1.1 (CI 0.9 to 1.3)-1.4 (CI 1.2 to 1.7). We found no association between country of birth and feeling shame after having experienced negative encounters. We found that the RR of feeling shame when wronged was significantly higher compared with other feelings. Along with theoretical considerations, and the specific types of negative encounters associated with shame, the results indicate that our research hypothesis might be plausible. We think that the results deserve to be used as point of departure for future research.

  12. A decade of vaccinating allergic travellers: a clinical audit.

    PubMed

    McCallum, Andrew D; Duncan, Christopher J A; MacDonald, Rona; Jones, Michael E

    2011-09-01

    Adverse reactions following vaccination are rare but may include potentially fatal anaphylaxis. This audit is a retrospective review of 38 patients with a history, or potential risk, of 'vaccine allergy' referred to an Infectious Diseases Unit for vaccination over a 10 year period. A total of 59 patient encounters were recorded, of which 89.8% were uneventful. Of the 6 adverse events, 3 patients had a local reaction, 1 patient developed urticaria and 1 patient had a vasovagal episode. Only 1 patient developed anaphylaxis secondary to vaccination, and she had no prior history of vaccine allergy. Of these patients 17 had a history suggesting the need for immunological investigation but only 7 had laboratory evidence of allergy. The differential diagnosis of anaphylaxis includes vasovagal reactions and non-specific mediator release and immunological work-up of such events can help avoid such patients being incorrectly labelled as allergic. The vast majority of immunisations are uncomplicated and patients with a history of allergic reactions to vaccination may be vaccinated safely in a controlled setting. Unduly conservative guidelines risk withholding vaccines providing protection against dangerous pathogens but which can be safely administered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Rare earth separations by selective borate crystallization

    PubMed Central

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448

  14. Building one molecule from a reservoir of two atoms.

    PubMed

    Liu, L R; Hood, J D; Yu, Y; Zhang, J T; Hutzler, N R; Rosenband, T; Ni, K-K

    2018-05-25

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. [Poisonous animals at bathing beaches].

    PubMed

    Junghanss, T; Bodio, M

    2000-05-18

    Tourists and native inhabitants of tropical and subtropical regions differ significantly with regard to the risk and nature of incidents involving venomous and poisonous animals. While the indigenous population encounters such risks daily during work and other activities, tourists are usually endangered while swimming or diving, or by ingesting toxin-containing fish and/or other seafood. Whether abroad or at home, allergic reactions to the stings of bees, wasps and hornets are probably the most common manifestations of an encounter with a "poisonous animal". Travellers should be well acquainted with the dangers entailed in encountering or ingesting a venomous or poisonous animal--prevention is the most important measure.

  16. Chemical and isotopic fractionations by evaporation and their cosmochemical implications

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Nagahara, Hiroko

    2001-07-01

    A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.

  17. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  18. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    PubMed

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  19. Binary agonist surface patterns prime platelets for downstream adhesion in flowing whole blood.

    PubMed

    Eichinger, Colin D; Hlady, Vladimir

    2017-04-28

    As platelets encounter damaged vessels or biomaterials, they interact with a complex milieu of surface-bound agonists, from exposed subendothelium to adsorbed plasma proteins. It has been shown that an upstream, surface-immobilized agonist is capable of priming platelets for enhanced adhesion downstream. In this study, binary agonists were integrated into the upstream position of flow cells and the platelet priming response was measured by downstream adhesion in flowing whole blood. A nonadditive response was observed in which platelets transiently exposed to two agonists exhibited greater activation and downstream adhesion than that from the sum of either agonist alone. Antibody blocking of one of the two upstream agonists eliminated nonadditive activation and downstream adhesion. Crosstalk between platelet activation pathways likely led to a synergistic effect which created an enhanced activation response in the platelet population. The existence of synergy between platelet priming pathways is a concept that has broad implications for the field of biomaterials hemocompatibility and platelet activity testing.

  20. Test equality between two binary screening tests with a confirmatory procedure restricted on screen positives.

    PubMed

    Lui, Kung-Jong; Chang, Kuang-Chao

    2015-01-01

    In studies of screening accuracy, we may commonly encounter the data in which a confirmatory procedure is administered to only those subjects with screen positives for ethical concerns. We focus our discussion on simultaneously testing equality of sensitivity and specificity between two binary screening tests when only subjects with screen positives receive the confirmatory procedure. We develop four asymptotic test procedures and one exact test procedure. We derive sample size calculation formula for a desired power of detecting a difference at a given nominal [Formula: see text]-level. We employ Monte Carlo simulation to evaluate the performance of these test procedures and the accuracy of the sample size calculation formula developed here in a variety of situations. Finally, we use the data obtained from a study of the prostate-specific-antigen test and digital rectal examination test on 949 Black men to illustrate the practical use of these test procedures and the sample size calculation formula.

  1. When do star clusters become multiple star systems? II. Toward a half-life formalism with four bodies

    NASA Astrophysics Data System (ADS)

    Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba

    2018-03-01

    We present a half-life formalism for describing the disruption of gravitationally-bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.

  2. When do star clusters become multiple star systems? II. Towards a half-life formalism with four bodies

    NASA Astrophysics Data System (ADS)

    Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba

    2018-07-01

    We present a half-life formalism for describing the disruption of gravitationally bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point-particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.

  3. Percolation of binary disk systems: Modeling and theory

    DOE PAGES

    Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.

    2017-01-12

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less

  4. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet onto the star. Only rarely do unstable planets make it through the 10,000-yr integration without being removed from the system via ejection or collision.Tidal EffectsAs a final experiment, the authors also added the effects of tidal stripping, which occurs when the stars of the binary tear away some of the planets mass during close encounters. They found that this alters the orbit of the planets that have close encounters with one of the stars, making it slightly more likely that they can be captured around a star.How can we test these models? When a star tidally strips a planet or accretes a planet in a collision, this process leaves its mark on the star in the form of stellar pollution. By comparing the amount of planetary material in the two stars of a binary, it may be possible to confirm the rates predicted here thereby answering the question of what happens to unstable Tattooines.CitationAdam P. Sutherland and Daniel C. Fabrycky 2016 ApJ 818 6. doi:10.3847/0004-637X/818/1/6

  5. A review of the pathophysiology, diagnosis, and management of allergic reactions in the dental office.

    PubMed

    Rochford, Christopher; Milles, Maano

    2011-02-01

    Since more than 50 million people in the United States have allergies, knowledge of the management of allergic reactions in the dental office is extremely important. Appropriate care may range from a simple referral to a primary care physician to lifesaving measures implemented during acute anaphylactic reactions. The authors present a basic review of the pathophysiology of allergic reactions and provide information detailing the diagnosis and management of allergic reactions that may be encountered in the dental office. Utilizing this information, the dental practitioner and ancillary staff will have a thorough understanding of allergic reactions and be prepared to successfully identify and treat these reactions.

  6. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  7. Chandra Reveals Nest of Tight Binaries in Dense Cluster

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Scientists have gazed into an incredibly dense star cluster with NASA's Chandra X-ray Observatory and identified a surprising bonanza of binary stars, including a large number of rapidly rotating neutron stars. The discovery may help explain how one of the oldest structures in our Galaxy evolved over its lifetime. By combining Chandra, Hubble Space Telescope, and ground-based radio data, the researchers conducted an important survey of the binary systems that dominate the dynamics of 47 Tucanae, a globular cluster about 12 billion years old located in our Milky Way galaxy. Most of the binaries in 47 Tucanae are systems in which a normal, Sun-like companion orbits a collapsed star, either a white dwarf or a neutron star. White dwarf stars are dense, burnt-out remnants of stars like the Sun, while neutron stars are even denser remains of a more massive star. When matter from a nearby star falls onto either a white dwarf or a neutron star, as in the case with the binaries in 47 Tucanae, X-rays are produced. 47 Tuc This composite image shows relation of the Chandra image of 47 Tucanae to ground-based, optical observations. "This Chandra image provides the first complete census of compact binaries in the core of a globular cluster," said Josh Grindlay of the Harvard-Smithsonian Center for Astrophysics (CfA) and lead author of the report that appears in the May 18 issue of Science. "The relative number of neutron stars versus white dwarfs in these binaries tell us about the development of the first stars in the cluster, and the binaries themselves are key to the evolution of the entire cluster core." Many of the binaries in 47 Tucanae are exotic systems never before seen in such large quantities. Perhaps the most intriguing are the "millisecond pulsars", which contain neutron stars that are rotating extremely rapidly, between 100 to nearly 1000 times a second. "The Chandra data, in conjunction with radio observations, indicate that there are many more millisecond pulsars than we would expect based on the number of their likely progenitors we found," said co-author Peter Edmonds, also of the CfA. "While there is a general consensus on how some of the millisecond pulsars form, these new data suggest that there need to be other methods to create them." In addition to the millisecond pulsars, Chandra also detected other important populations of binary systems, including those with white dwarf stars and normal stars, and others where pairs of normal stars undergo large flares induced by their close proximity. The Chandra data also indicate an apparent absence of a central black hole. Stellar-sized mass black holes -- those about five to ten times as massive as the Sun -- have apparently not coalesced to the center of the star cluster. All or most stellar-sized black holes that formed over the lifetime of the cluster have likely been ejected by their slingshot encounters with binaries deep in the cluster core. "These results show that binary star systems are a source of gravitational energy which ejects stellar mass black holes and prevents the collapse of the cluster’s core to a more massive, central black hole," said the CfA's Craig Heinke. "In other words, binary systems - not black holes - are the dynamical heat engines that drive the evolution of globular clusters." Chandra observed 47 Tucanae on March 16-17, 2000, for a period of 74,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  8. Trojan horse particle invariance: The impact on nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzone, R. G.; La Cognata, M.; Spitaleri, C.

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previousmore » studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.« less

  9. Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction.

    PubMed

    Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Lu, Dianchen; Farooq, Umer

    2017-10-10

    A mathematical model has been developed to examine the magneto hydrodynamic micropolar nanofluid flow with buoyancy effects. Flow analysis is carried out in the presence of nonlinear thermal radiation and dual stratification. The impact of binary chemical reaction with Arrhenius activation energy is also considered. Apposite transformations are engaged to transform nonlinear partial differential equations to differential equations with high nonlinearity. Resulting nonlinear system of differential equations is solved by differential solver method in Maple software which uses Runge-Kutta fourth and fifth order technique (RK45). To authenticate the obtained results, a comparison with the preceding article is also made. The evaluations are executed graphically for numerous prominent parameters versus velocity, micro rotation component, temperature, and concentration distributions. Tabulated numerical calculations of Nusselt and Sherwood numbers with respective well-argued discussions are also presented. Our findings illustrate that the angular velocity component declines for opposing buoyancy forces and enhances for aiding buoyancy forces by changing the micropolar parameter. It is also found that concentration profile increases for higher values of chemical reaction parameter, whereas it diminishes for growing values of solutal stratification parameter.

  10. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-01

    Mass and energy distributions of binary reaction products obtained in the reactions 22Ne+249Cf,26Mg+248Cm,36S+238U and 58Fe+208Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction 26Mg+248Cm, is observed. In the reaction 36S+238U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the 58Fe+208Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  11. Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.

    PubMed

    Yao, Peipei; Yu, Xinxin; Huang, Xirong

    2015-01-01

    In the present study, the lipase-catalyzed hydrolysis of p-nitrophenyl butyrate is used as a model reaction to determine the activity and stability of Candida rugosa lipase in binary ionic liquids (ILs). The binary ILs consist of hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) and a small amount of hydrophilic 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3) or 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim]CF3SO3) or 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The activity and the stability of lipase are first correlated with the physicochemical properties of the binary ILs. In the three binary IL systems, both the hydrophilicity and the polarity of the systems increase with the increase of the content of hydrophilic ILs (HILs). At a fixed concentration of HIL, they vary in a descending order of [Bmim]PF6/[Bmim]NO3>[Bmim]PF6/[Bmim]CF3SO3>[Bmim]PF6/[Bmim]BF4. This order is in contrast with the order of the lipase conformation stability, i.e., the higher the polarity of ILs, the more unstable the lipase conformation. However, both the activity and the stability of lipase depend on the type and the content of the HIL in binary ILs, showing a complex dependency. Analysis shows that the catalytic performance of lipase in the binary ILs is affected not only by the direct influence of the ILs on lipase conformation, but also through their indirect influence on the physicochemical properties of water. The present study helps to explore binary IL mixtures suitable for lipase-based biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.

    2016-12-01

    White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia supernova (SN) when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia SN rate imply that all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g mode or a harmonic of a low-order quadrupolar p mode could, in principle, drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inwards-travelling p-waves may result in core detonation. Thermalization at a boundary in the core can also result in detonation. If energy can be efficiently transferred from the orbit to modes as the WD binary passes through resonances, the WD merger time-scale will be shortened by Myr-Gyr compared to expected time-scales from gravitational wave (GW)-emission alone and GW detectors will observe deviations from predicted chirp profiles in resolved WD binaries. Future work in this area should focus on whether tidal locking in WD binaries is naturally driven towards low-order mode frequencies.

  13. Improving children's affective decision making in the Children's Gambling Task.

    PubMed

    Andrews, Glenda; Moussaumai, Jennifer

    2015-11-01

    Affective decision making was examined in 108 children (3-, 4-, and 5-year-olds) using the Children's Gambling Task (CGT). Children completed the CGT and then responded to awareness questions. Children in the binary_experience and binary_experience+awareness (not control) conditions first completed two simpler versions. Children in the binary_experience+awareness condition also responded to questions about relational components of the simpler versions. Experience with simpler versions facilitated decision making in 4- and 5-year-olds, but 3-year-olds' advantageous choices declined across trial blocks in the binary_experience and control conditions. Responding to questions about relational components further benefited the 4- and 5-year-olds. The 3-year-olds' advantageous choices on the final block were at chance level in the binary_experience+awareness condition but were below chance level in the other conditions. Awareness following the CGT was strongly correlated with advantageous choices and with age. Awareness was demonstrated by 5-year-olds (all conditions) and 4-year-olds (binary_experience and binary_experience+awareness) but not by 3-year-olds. The findings demonstrate the importance of complexity and conscious awareness in cognitive development. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Triton burnup in plasma focus plasmas

    NASA Astrophysics Data System (ADS)

    Brzosko, Jan S.; Brzosko, Jan R., Jr.; Robouch, Benjamin V.; Ingrosso, Luigi

    1995-04-01

    Pure deuterium plasma discharge from plasma focus breeds 1.01 MeV tritons via the D(d,p)T fusion branch, which has the same cross section as the D(d,n)3He (En=2.45 MeV) fusion branch. Tritons are trapped in and collide with the background deuterium plasma, producing 14.1 MeV neutrons via the D(t,n)4He reaction. The paper presents published in preliminary form as well as unpublished experimental data and theoretical studies of the neutron yield ratio R=Yn(14.1 MeV)/Yn(2.45 MeV). The experimental data were obtained from 1 MJ Frascati plasma focus operated at W=490 kJ with pure deuterium plasma (in the early 1980s). Neutrons were monitored using the nuclear activation method and nuclear emulsions. The present theoretical analysis of the experimental data is based on an exact adaptation of the binary encounter theory developed by Gryzinski. It is found that the experimentally defined value 1ṡ10-3

  15. Solvent friction changes the folding pathway of the tryptophan zipper TZ2.

    PubMed

    Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J

    2009-07-17

    Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.

  16. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  17. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-09-01

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  18. What Is A Homosexual? A Definitional Model.

    ERIC Educational Resources Information Center

    Berger, Raymond M.

    1983-01-01

    Presents a definitional model to explain homosexuality and discusses its implications for practice. Contends that social workers must discard the traditional binary model of hetersexual versus homesexual for one incorporating relevant psychosocial factors including life experiences, social reaction, and association with others. (Author/JAC)

  19. Test and Evaluation Management Guide

    DTIC Science & Technology

    1993-08-01

    between Ser- biotoxicity . Chemical-mixing tests are con- vice and DOE test personnel (Reference ducted to obtain information on the binary 55). chemical...reaction. Biotoxicity tests are per- formed to assess the potency of the agent Since the United States signed and ratified generated. Chemical weapons

  20. Simulations of the Fomalhaut system within its local galactic environment

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.; White, Ethan B.; Izidoro, André

    2018-01-01

    Fomalhaut A is among the most well-studied nearby stars and has been discovered to possess a putative planetary object as well as a remarkable eccentric dust belt. This eccentric dust belt has often been interpreted as the dynamical signature of one or more planets that elude direct detection. However, the system also contains two other stellar companions residing ∼105 au from Fomalhaut A. We have designed a new symplectic integration algorithm to model the evolution of Fomalhaut A's planetary dust belt in concert with the dynamical evolution of its stellar companions to determine if these companions are likely to have generated the dust belt's morphology. Using our numerical simulations, we find that close encounters between Fomalhaut A and B are expected, with an ∼25 per cent probability that the two stars have passed within at least 400 au of each other at some point. Although the outcomes of such encounter histories are extremely varied, these close encounters nearly always excite the eccentricity of Fomalhaut A's dust belt and occasionally yield morphologies very similar to the observed belt. With these results, we argue that close encounters with Fomalhaut A's stellar companions should be considered a plausible mechanism to explain its eccentric belt, especially in the absence of detected planets capable of sculpting the belt's morphology. More broadly, we can also conclude from this work that very wide binary stars may often generate asymmetries in the stellar debris discs they host.

  1. Encounters With Health-Care Providers and Advance Directive Completion by Older Adults.

    PubMed

    Koss, Catheryn

    2018-01-01

    The Patient Self-Determination Act (PSDA) requires hospitals, home health agencies, nursing homes, and hospice providers to offer new patients information about advance directives. There is little evidence regarding whether encounters with these health-care providers prompt advance directive completion by patients. To examine whether encounters with various types of health-care providers were associated with higher odds of completing advance directives by older patients. Logistic regression using longitudinal data from the 2012 and 2014 waves of the Health and Retirement Study. Participants were 3752 US adults aged 65 and older who reported not possessing advance directives in 2012. Advance directive was defined as a living will and/or durable power of attorney for health care. Four binary variables measured whether participants had spent at least 1 night in a hospital, underwent outpatient surgery, received home health or hospice care, or spent at least one night in a nursing home between 2012 and 2014. Older adults who received hospital, nursing home, or home health/hospice care were more likely to complete advance directives. Outpatient surgery was not associated with advance directive completion. Older adults with no advance directive in 2012 who encountered health-care providers covered by the PSDA were more likely to have advance directives by 2014. The exception was outpatient surgery which is frequently provided in freestanding surgery centers not subject to PSDA mandates. It may be time to consider amending the PSDA to cover freestanding surgery centers.

  2. From Threat to Fear: The neural organization of defensive fear systems in humans

    PubMed Central

    Mobbs, Dean; Marchant, Jennifer L; Hassabis, Demis; Seymour, Ben; Tan, Geoffrey; Gray, Marcus; Petrovic, Predrag; Dolan, Raymond J.; Frith, Christopher D.

    2009-01-01

    Post-encounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the post-encounter reflects the initial detection of the potential threat, whilst the circa-strike is associated with direct predatory attack. We used fMRI to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous post-encounter and circa-strike contexts of threat. Consistent with defense systems models, post-encounter threat elicited activity in forebrain areas including subgenual anterior cingulate cortex (sgACC), hippocampus and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala and hippocampus. Greater activity was observed in the right pregenual ACC for high compared to low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared to low probability of capture during the circa-strike threat and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early threat responses, including the assignment and control of fear, whereas as imminent danger results in fast, likely “hard-wired”, defensive reactions mediated by the midbrain. PMID:19793982

  3. Memory for friends or foes: the social context of past encounters with faces modulates their subsequent neural traces in the brain.

    PubMed

    Vrticka, Pascal; Andersson, Frédéric; Sander, David; Vuilleumier, Patrik

    2009-01-01

    Every day we encounter new people, interact with them, and form person impressions based on quick and automatic inferences from minimal contextual information. Previous studies have identified an extensive network of brain areas involved in familiar face recognition, but there is little evidence to date concerning the neural bases of negative vs. positive person impressions. In the present study, participants were repeatedly exposed to 16 unfamiliar face identities within a pseudo-interactive game context to generate a perception of either "friends" or "foes". Functional magnetic resonance imaging (fMRI) was then performed during an old/new memory task to assess any difference in brain responses to these now familiar face identities, relative to unfamiliar faces. Importantly, whereas facial expressions were always emotional (either smiling or angry) during the encoding phase, they were always neutral during the memory task. Our results reveal that several brain regions involved in familiar face recognition, including fusiform cortex, posterior cingulate gyrus, and amygdala, plus additional areas involved in motivational control such as caudate and anterior cingulate cortex, were differentially modulated as a function of a previous encounter, and generally more activated when faces were perceived as "foes" rather than "friends". These findings underscore that a key dimension of social judgments, based on past impressions of who may be supportive or hostile, may lead to long-lasting effects on memory for faces and thus influence affective reactions to people during a subsequent encounter even in a different (neutral) context.

  4. [Preliminary activities of the program for the control and treatment of onchocerciasis in the Yanomâmi territory, Roraima, Brazil].

    PubMed

    Coelho, G E; Vieira, J B; Oliveira, C E; Francisco, D A; Pinheiro, L R

    1997-01-01

    After to characterize the clinic and epidemiological picture of the onchocerciasis in Yanomâmi region, RR, Brazil, begun in 1993, the National Health Foundation (FNS) implemented a Control and Treatment Pilot Project in Tootobi and Balawaú. Here, it was studied skin biopsies from 426 inhabitants. In the nodules of 86.7% from patients was encountered Onchocerca volvulus. The over-all prevalence in the examined population was 66.2%. The treatment with ivermectin covered 80.1% of total population. Adverse reactions, light and moderate, of the medicament were reported in 12.3% of the patients. These results agreeing with the medical literature and suggesting the viability of to increase of the programme for all Yanomâmi area in the next phase.

  5. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  6. Factors associated with opioid dose increases: a chart review of patients’ first year on long-term opioids

    PubMed Central

    Bautista, Christopher A.; Iosif, Ana-Maria; Wilsey, Barth L.; Melnikow, Joy A.; Crichlow, Althea; Henry, Stephen G.

    2016-01-01

    OBJECTIVE To examine encounter-level factors associated with opioid dose increases during patients’ first year on opioid therapy for chronic pain. DESIGN Case-control study analyzing all opioid prescriptions for patients with chronic pain during their first year after opioid initiation. Cases were patients who experienced an overall dose escalation of ≥30 mg morphine equivalents over the 1-year period; controls did not experience overall dose escalation. Main measures were encounter type; opioid dose change; documented prescribing rationale; documentation of guideline-concordant opioid prescribing practices. Two coders reviewed all encounters associated with opioid prescriptions. Analysis of factors associated with dose increases and provider documentation of prescribing rationale was conducted using multiple logistic regression. RESULTS 674 encounters were coded for 66 patients (22 cases, 44 controls). Fifty-three percent of opioid prescriptions were associated with telephone encounters; 13% were associated with email encounters. No prescribing rationale was documented for 43% of all opioid prescriptions and 25% of dose increases. Likelihood of dose increase and documentation of prescribing rationale did not significantly differ for cases versus controls. Compared to face-to-face encounters, dose increases were significantly less likely for telephone (OR 0.18, 95%CI 0.11 – 0.28) and email (OR 0.23, 95%CI 0.12 – 0.47) encounters; documentation of prescribing rationale was significantly more likely for email (OR 5.06, 95%CI 1.87–13.72) and less likely for telephone (OR 0.30, 95%CI 0.18–0.51) encounters. CONCLUSION Most opioid prescriptions were written without face-to-face encounters. One quarter of dose increases contained no documented prescribing rationale. Documented encounter-level factors were not significantly associated with overall opioid dose escalation. PMID:27477581

  7. Implementing transmission eigenchannels of disordered media by a binary-control digital micromirror device

    NASA Astrophysics Data System (ADS)

    Kim, Donggyu; Choi, Wonjun; Kim, Moonseok; Moon, Jungho; Seo, Keumyoung; Ju, Sanghyun; Choi, Wonshik

    2014-11-01

    We report a method for measuring the transmission matrix of a disordered medium using a binary-control of a digital micromirror device (DMD). With knowledge of the measured transmission matrix, we identified the transmission eigenchannels of the medium. We then used binary control of the DMD to shape the wavefront of incident waves and to experimentally couple light to individual eigenchannels. When the wave was coupled to the eigenchannel with the largest eigenvalue, in particular, we were able to achieve about two times more energy transmission than the mean transmittance of the medium. Our study provides an elaborated use of the DMD as a high-speed wavefront shaping device for controlling the multiple scattering of waves in highly scattering media.

  8. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  9. A digitally controlled AGC loop circuitry for GNSS receiver chip with a binary weighted accurate dB-linear PGA

    NASA Astrophysics Data System (ADS)

    Gang, Jin; Yiqi, Zhuang; Yue, Yin; Miao, Cui

    2015-03-01

    A novel digitally controlled automatic gain control (AGC) loop circuitry for the global navigation satellite system (GNSS) receiver chip is presented. The entire AGC loop contains a programmable gain amplifier (PGA), an AGC circuit and an analog-to-digital converter (ADC), which is implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and measured. A binary-weighted approach is proposed in the PGA to achieve wide dB-linear gain control with small gain error. With binary-weighted cascaded amplifiers for coarse gain control, and parallel binary-weighted trans-conductance amplifier array for fine gain control, the PGA can provide a 64 dB dynamic range from -4 to 60 dB in 1.14 dB gain steps with a less than 0.15 dB gain error. Based on the Gaussian noise statistic characteristic of the GNSS signal, a digital AGC circuit is also proposed with low area and fast settling. The feed-backward AGC loop occupies an area of 0.27 mm2 and settles within less than 165 μs while consuming an average current of 1.92 mA at 1.8 V.

  10. Foundations of an effective-one-body model for coalescing binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Babak, Stanislav

    2017-11-01

    We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. Our approach uses the strategy that is commonly employed in black-hole perturbation theory: we introduce an efficient, relativistic parameterization of the dynamics that is defined by the orbital geometry and consists of a set of phase variables and quantities that evolve only due to gravitational radiation reaction. Specializing to nonspinning binaries, we derive the EOB equations of motion for the new variables and make use of the fundamental frequencies of the motion to compute the binary's radiative multipole moments that determine the gravitational waves. Our treatment has several advantages over the quasi-Keplerian approach that is often used in post-Newtonian (PN) calculations: a smaller set of variables, parameters that reflect the features of strong-field dynamics, and a greater transparency of the calculations when using the fundamental frequencies that leads to simplifications and an unambiguous orbit-averaging operation. While our description of the conservative dynamics is fully relativistic, we limit explicit derivations in the radiative sector to 1.5PN order for simplicity. This already enables us to establish methods for computing both instantaneous and hereditary contributions to the gravitational radiation in EOB coordinates that have straightforward extensions to higher PN order. The weak-field, small eccentricity limit of our results for the orbit-averaged fluxes agrees with known PN results when expressed in terms of gauge-invariant quantities. We further address considerations for the numerical implementation of the model and the completion of the waveforms to include the merger and ringdown signals, and provide illustrative results.

  11. Test and Evaluation Management Guide, Third Edition.

    DTIC Science & Technology

    1998-03-01

    chemical tests — chemical mixing and biotoxicity . Chemical-mixing tests are con- ducted to obtain information on the binary chemical reaction... Biotoxicity tests are per- formed to assess the potency of the agent generated. Chemical weapons testing, of necessity, relies heavily on the use of non

  12. A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy.

    PubMed

    Lu, Dianchen; Ramzan, M; Ullah, Naeem; Chung, Jae Dong; Farooq, Umer

    2017-12-05

    A numerical investigation of steady three dimensional nanofluid flow carrying effects of gyrotactic microorganism with anisotropic slip condition along a moving plate near a stagnation point is conducted. Additionally, influences of Arrhenius activation energy, joule heating accompanying binary chemical reaction and viscous dissipation are also taken into account. A system of nonlinear differential equations obtained from boundary layer partial differential equations is found by utilization of apposite transformations. RK fourth and fifth order technique of Maple software is engaged to acquire the solution of the mathematical model governing the presented fluid flow. A Comparison with previously done study is also made and a good agreement is achieved with existing results; hence reliable results are being presented. Evaluations are carried out for involved parameters graphically against velocity, temperature, concentration fields, microorganism distribution, density number, local Nusselt and Sherwood numbers. It is detected that microorganism distribution exhibit diminishing behavior for rising values of bio-convection Lewis and Peclet numbers.

  13. Experimental investigation of the phase equilibria and thermodynamic assessment in the U-Ga and U-Al-Ga systems

    NASA Astrophysics Data System (ADS)

    Moussa, Chantal; Berche, Alexandre; Barbosa, José; Pasturel, Mathieu; Stepnik, Bertrand; Tougait, Olivier

    2018-02-01

    The phase relations in the binary U-Ga and ternary U-Al-Ga systems were established as an isopleth section and two isothermal sections at 900 K and 1150 K for the whole concentration range, respectively. They were experimentally determined by means of powder and single crystal XRD, SEM-EDS analyses on both as-cast and heat-treated samples and DTA measurements. Both systems were thermodynamically assessed using the Calphad method based on the available data, i.e. phase relations and thermodynamic properties. The new description of the U-Ga phase diagram improves the composition-temperature description for most of invariant reactions. The U-Al-Ga system is characterized by large ternary extensions of the binary phases and the absence of ternary intermediate phase at both 900 K and 1150 K. These experimental results are nicely reproduced by the Calphad assessment, allowing to extract the thermodynamic parameters further used to calculate the liquidus projection and the invariant reactions along with their temperature.

  14. A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism

    PubMed Central

    Arnò, Barbara; Coletta, Andrea; Tesauro, Cinzia; Zuccaro, Laura; Fiorani, Paola; Lentini, Sara; Galloni, Pierluca; Conte, Valeria; Floris, Barbara; Desideri, Alessandro

    2013-01-01

    The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase–DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme–CPT (camptothecin)–DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5′ DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism. PMID:23368812

  15. Controlling the selective formation of calcium sulfate polymorphs at room temperature.

    PubMed

    Tritschler, Ulrich; Van Driessche, Alexander E S; Kempter, Andreas; Kellermeier, Matthias; Cölfen, Helmut

    2015-03-23

    Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  17. On the adequacy of modeling the concentration dependences of the activity coefficients for the components of solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2006-11-01

    An analysis of the accepted methods for calculating the activity coefficients for the components of binary aqueous solutions was performed. It was demonstrated that the use of the osmotic coefficients in auxiliary calculations decreases the accuracy of estimates of the activity coefficients. The possibility of calculating the activity coefficient of the solute from the concentration dependence of the water activity was examined. It was established that, for weak electrolytes, the interpretation of data on heterogeneous equilibria within the framework of the standard assumption that the dissociation is complete encounters serious difficulties.

  18. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  19. Lucy: Navigating a Jupiter Trojan Tour

    NASA Technical Reports Server (NTRS)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  20. Low intensity magnetic field influences short-term memory: A study in a group of healthy students.

    PubMed

    Navarro, Enrique A; Gomez-Perretta, Claudio; Montes, Francisco

    2016-01-01

    This study analyzes if an external magnetic stimulus (2 kHz and approximately 0.1 μT applied near frontal cortex) influences working memory, perception, binary decision, motor execution, and sustained attention in humans. A magnetic stimulus and a sham stimulus were applied to both sides of the head (frontal cortex close to temporal-parietal area) in young and healthy male test subjects (n = 65) while performing Sternberg's memory scanning task. There was a significant change in reaction time. Times recorded for perception, sustained attention, and motor execution were lower in exposed subjects (P < 0.01). However, time employed in binary decision increased for subjects exposed to magnetic fields. From results, it seems that a low intensity 2 kHz exposure modifies short-term working memory, as well as perception, binary decision, motor execution, and sustained attention. © 2015 Wiley Periodicals, Inc.

  1. Thermochemical parameters of minerals from oxygen-buffered hydrothermal equilibrium data: Method, application to annite and almandine

    USGS Publications Warehouse

    Zen, E.-A.

    1973-01-01

    Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy Gf,A0 (298, 1) is -1192.36??4 kcal, and the enthalpy Hf,A0 (298, 1) is -1273.56??5 kcal. ?? 1973 Springer-Verlag.

  2. Patient perspectives of telemedicine quality

    PubMed Central

    LeRouge, Cynthia M; Garfield, Monica J; Hevner, Alan R

    2015-01-01

    Background The purpose of this study was to explore the quality attributes required for effective telemedicine encounters from the perspective of the patient. Methods We used a multi-method (direct observation, focus groups, survey) field study to collect data from patients who had experienced telemedicine encounters. Multi-perspectives (researcher and provider) were used to interpret a rich set of data from both a research and practice perspective. Results The result of this field study is a taxonomy of quality attributes for telemedicine service encounters that prioritizes the attributes from the patient perspective. We identify opportunities to control the level of quality for each attribute (ie, who is responsible for control of each attribute and when control can be exerted in relation to the encounter process). This analysis reveals that many quality attributes are in the hands of various stakeholders, and all attributes can be addressed proactively to some degree before the encounter begins. Conclusion Identification of the quality attributes important to a telemedicine encounter from a patient perspective enables one to better design telemedicine encounters. This preliminary work not only identifies such attributes, but also ascertains who is best able to address quality issues prior to an encounter. For practitioners, explicit representation of the quality attributes of technology-based systems and processes and insight on controlling key attributes are essential to implementation, utilization, management, and common understanding. PMID:25565781

  3. Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts.

    PubMed

    Arán-Ais, Rosa M; Dionigi, Fabio; Merzdorf, Thomas; Gocyla, Martin; Heggen, Marc; Dunin-Borkowski, Rafal E; Gliech, Manuel; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M; Strasser, Peter

    2015-11-11

    Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.

  4. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    PubMed Central

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  5. Viscosities of nonelectrolyte liquid mixtures. II. Binary mixtures of n-hexane with alkanoates and bromoalkanoates

    NASA Astrophysics Data System (ADS)

    Oswal, S. L.; Dave, J. P.

    1992-11-01

    Viscosity measurements are reported for mixtures of ethyl ethanoate, ethyl propionate, ethyl butyrate, ethyl-2-bromopropionate, ethyl-3-bromopropionate, ethyl-2-bromobutyrate, and ethyl-4-bromobutyrate with n-hexane at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess Gibbs energies of activation ΔG * E of viscous flow have been calculated with Eyring's theory of absolute reaction rates and values of ΔG * E for the present binary mixtures have been explained in terms of the dipole-dipole interaction in alkanoates and the intramolecular Br...O interaction in bromoalkanoates.

  6. Catalyst and method for production of methylamines

    DOEpatents

    Klier, Kamil; Herman, Richard G.; Vedage, Gamini A.

    1987-01-01

    This invention relates to an improved catalyst and method for the selective production of methylamines. More particularly, it is concerned with the preparation of stable highly active catalysts for producing methylamines by a catalytic reaction of ammonia or substituted amines and binary synthesis gas (CO+H.sub.2).

  7. Test and Evaluation Management Guide, Fifth Edition

    DTIC Science & Technology

    2005-01-01

    determine if a weapon will be useful in combat), chemical weapons testing involves two types of chemical tests—chemical mixing and biotoxicity . Chemical...mixing tests are conducted to obtain in- formation on the binary chemical reaction. Biotoxicity tests are performed to assess the potency of the agent

  8. New Performance Metrics for Quantitative Polymerase Chain Reaction-Based Microbial Source Tracking Methods

    EPA Science Inventory

    Binary sensitivity and specificity metrics are not adequate to describe the performance of quantitative microbial source tracking methods because the estimates depend on the amount of material tested and limit of detection. We introduce a new framework to compare the performance ...

  9. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less

  10. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oks, E.

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape ofmore » a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the stability of the conic-helical planetary orbits, as well as on the transitability. Then for the general case, we also show that the power of the gravitational radiation due to this planet can be comparable or even exceed the power of the gravitational radiation due to the stars in the binary. This means that in the future, with a progress of gravitational wave detectors, the presence of a planet in a conic-helical orbit could be revealed by the noticeably enhanced gravitational radiation from the binary star system.« less

  11. [Management of asthma in a context of ambulatory pediatrics: relevance and possibility to avoid the problems. Gruppo de lavoro pediatri dell'Abruzzo Basilicata e Puglia].

    PubMed

    Misticoni, G; Marchetti, F; D'Andrea, N

    1994-01-01

    41 pediatricians agreed to register on a very simple form, all the cases of children affected by bronchial asthma visited in their clinic during october 1993. The data included basic information related to the therapy prescribed, its duration, a judgement on the efficacy of symptoms control and the main problems encountered with the children and their families. 237 cases were reported (mean age 4.6 year, range 2 months-13 years). 80% of children were monitored by the pediatrician; 47% had allergic reactions. The main drug used for profilaxis is ketotifen, a compound without documented efficacy; the main route for drug administration (especially during acute attacks) is by mouth, instead of by aerosol, evidencing problems in the health education on practical skills. In fact the main problems encountered by doctors are related to the communication with patients and families. This survey represents also a research model for involving health care providers and easily and quickly obtaining a useful, methodologically sound and interesting picture of everyday practice.

  12. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    PubMed

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  13. Dynamical Aspects of Quasifission Process in Heavy-Ion Reactions

    NASA Astrophysics Data System (ADS)

    Knyazheva, G. N.; Itkis, I. M.; Kozulin, E. M.

    2015-06-01

    The study of mass-energy distributions of binary fragments obtained in the reactions of 36S, 48Ca, 58Fe and 64Ni ions with the 232Th, 238U, 244Pu and 248Cm at energies below and above the Coulomb barrier is presented. For all the reactions the main component of the distributions corresponds to asymmetrical mass division typical for asymmetric quasifission process. To describe the quasifission mass distribution the simple method has been proposed. This method is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions. It has been found that the QF time exponentially decreases when the reaction Coulomb factor Z1Z2 increases.

  14. Subthreshold resonances and resonances in the R -matrix method for binary reactions and in the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.

    2017-08-01

    In this paper we discuss the R -matrix approach to treat the subthreshold resonances for the single-level and one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We present the relationship between the resonance width and the ANC for the general case and consider two limiting cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R -matrix approach are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are obtained using the surface-integral formalism and the generalized R -matrix approach for the three-body resonant reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α ,n )16O in low-mass AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level 1 /2+,Ex=6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.

  15. Bayesian performance metrics of binary sensors in homeland security applications

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Forrester, Thomas C.

    2008-04-01

    Bayesian performance metrics, based on such parameters, as: prior probability, probability of detection (or, accuracy), false alarm rate, and positive predictive value, characterizes the performance of binary sensors; i.e., sensors that have only binary response: true target/false target. Such binary sensors, very common in Homeland Security, produce an alarm that can be true, or false. They include: X-ray airport inspection, IED inspections, product quality control, cancer medical diagnosis, part of ATR, and many others. In this paper, we analyze direct and inverse conditional probabilities in the context of Bayesian inference and binary sensors, using X-ray luggage inspection statistical results as a guideline.

  16. Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system?

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.; van den Heuvel, E. P. J.

    2016-03-01

    We discuss the events that led to the giant eruption of Eta Carinae, and find that the mid-nineteenth century (in 1838-1843) giant mass-loss outburst has the characteristics of being produced by the merger event of a massive close binary, triggered by the gravitational interaction with a massive third companion star, which is the current binary companion in the Eta Carinae system. We come to this conclusion by a combination of theoretical arguments supported by computer simulations using the Astrophysical Multipurpose Software Environment. According to this model the ˜90 M⊙ present primary star of the highly eccentric Eta Carinae binary system is the product of this merger, and its ˜30 M⊙ companion originally was the third star in the system. In our model, the Homunculus nebula was produced by an extremely enhanced stellar wind, energized by tidal energy dissipation prior to the merger, which enormously boosted the radiation-driven wind mass-loss. The current orbital plane is then aligned with the equatorial plane of the Homunculus, and the symmetric lobes are roughly aligned with the argument of periastron of the current Eta Carina binary. The merger itself then occurred in 1838, which resulted in a massive asymmetric outflow in the equatorial plane of the Homunculus. The 1843 outburst can in our model be attributed to the subsequent encounter when the companion star (once the outermost star in the triple system) plunges through the bloated envelope of the merger product, once when it passed periastron again. We predict that the system has an excess space velocity of order 50 km s-1 in the equatorial plane of the Homunculus. Our triple model gives a viable explanation for the high runaway velocities typically observed in LBVs.

  17. Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies.

    PubMed

    Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E

    2016-01-01

    Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.

  18. Binary-encounter electrons observed at 0 degree in collisions of 1--2-MeV/amu H sup + , C sup 6+ , N sup 7+ , O sup 8+ , and F sup 9+ ions with H sub 2 and He targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.H.; Richard, P.; Zouros, T.J.M.

    The energy distribution of binary-encounter electrons (BEE) produced in collisions of 1--2 MeV/amu H{sup +} and bare C, N, O, and F ions with H{sub 2} and He gas targets is reported at 0{degree} with respect to the beam direction. These electrons result from ionization of the target due to hard collisions with the projectile and can thus be considered to be produced in a process analogous to elastic scattering of a free electron from a highly charged ion. An impulse-approximation (IA) model has been developed to describe this process in which quasifree'' target electrons undergo 180{degree} Rutherford scattering inmore » the projectile frame. The measured BEE double-differential production cross sections for bare ions were well described by this model and were found to scale with {ital Z}{sub {ital p}}{sup 2} and {ital E}{sub {ital p}}{sup {minus}({similar to}2.6--2.7)} where {ital Z}{sub {ital p}} and {ital E}{sub {ital p}} are the charge and energy of the projectile, respectively. An energy shift of the BEE below 4{ital t}, where {ital t} is the cusp electron energy, is observed and is also predicted by the IA treatment. A plane-wave Born approximation (PWBA) calculation for BEE production is also found to be in overall agreement with our data. However, the energy shift of the BEE peak could not be fully accounted for within this PWBA calculation.« less

  19. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  20. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the LMC. When this speed is combined with the orbital velocity of the LMC itself (another ~380 km/s relative to the Milky Way), this could result in hypervelocity stars moving faster than the escape speed of the Milky Way, as observed.Predicted distribution of hypervelocity stars ejected from the LMC, in galactic coordinates. The red crosses show locations of detected hypervelocity stars, and the green arrow marks the path of the LMC over the last 350 million years. [Boubert Evans 2016]If the LMC is indeed ejecting hypervelocity stars along its orbit, this could explain an observed anisotropy in the hypervelocity stars weve detected, with many of these stars clustering in the constellations of Leo and Sextans. This clustering is consistent with stars ejected ahead of the LMCs orbit.How can we test this model for the production of hypervelocity stars? The authors model predicts the presence of a significant number of hypervelocity stars near the LMC in the southern hemisphere, a region which has been poorly surveyed before now. Surveys such as SkyMapper and Gaia, however, will observe this region and their discoveries (or lack thereof) should provide a useful test of whether hypervelocity stars are accelerated by the LMC.CitationDouglas Boubert and N. Wyn Evans 2016 ApJ 825 L6. doi:10.3847/2041-8205/825/1/L6

  1. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  2. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.

    PubMed

    Spaar, Alexander; Helms, Volkhard

    2005-07-01

    Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the motional freedom. In the simulations the orientational degrees of freedom at the encounter state are found to be less restricted than the translational degrees of freedom. Therefore, the orientational alignment of the two binding partners seems to take place beyond this free energy minimum. The free energy profiles along the reaction pathway are compared for different ionic strength and temperature. This novel analysis technique facilitates mechanistic interpretation of protein-protein encounter pathways which should be useful for interpretation of experimental results as well.

  3. Brain systems underlying encounter expectancy bias in spider phobia.

    PubMed

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas.

  4. Scaling up Effects in the Organic Laboratory

    ERIC Educational Resources Information Center

    Persson, Anna; Lindstrom, Ulf M.

    2004-01-01

    A simple and effective way of exposing chemistry students to some of the effects of scaling up an organic reaction is described. It gives the student an experience that may encounter in an industrial setting.

  5. Meaning and Process in Erotic Offensiveness: An Expose of Exposees

    ERIC Educational Resources Information Center

    Kantorowski, Davis Sharon; Davis, Phillip W.

    1976-01-01

    This study concerns the reactions of women who have encountered male strangers engaging in what is most often referred to in lay, psychiatric, and legal parlance as "exhibitionism" or "indecent exposure." (Author/AM)

  6. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  7. Exact statistical results for binary mixing and reaction in variable density turbulence

    NASA Astrophysics Data System (ADS)

    Ristorcelli, J. R.

    2017-02-01

    We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ ⁣2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ ⁣2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived analytic results relating several other second and third order moments and see coupling between odd and even order moments demonstrating a natural and inherent skewness in the mixing in variable density turbulence. The analytic results have applications in the areas of isothermal material mixing, isobaric thermal mixing, and simple chemical reaction (in progress variable formulation).

  8. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  9. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  10. Shuttle PRCS plume contamination analysis for Astro-2 mission

    NASA Technical Reports Server (NTRS)

    Wang, Francis C.; Greene, Cindy

    1993-01-01

    The Astro-2 mission scheduled for Jan. 1995 flight is co-manifested with the Spartan experiment. The Astro instrument array consists of several telescopes operating in the UV spectrum. To obtain the desired 300 observations with the telescope array in a shorter time than the Astro-1 mission, it will be necessary to use the primary reaction control system (PRCS) rather than just the Vernier reaction control system. The high mass flow rate of the PRCS engines cause considerable concern about contamination due to PRCS plume return flux. Performance of these instruments depends heavily on the environment they encounter. The ability of the optical system to detect a remote signal depends not only on the intensity of the incoming signal, but also on the ensuing transmission loss through the optical train of the instrument. Performance of these instruments is thus dependent on the properties of the optical surface and the medium through which it propagates. The on-orbit contamination environment will have a strong influence on the performance of these instruments. The finding of a two-month study of the molecular contamination environment of the Astro-2 instruments due to PRCS thruster plumes during the planned Astro-2 mission are summarized.

  11. Mechanical diffraction in a sand-specialist snake

    NASA Astrophysics Data System (ADS)

    Schiebel, Perrin E.; Rieser, Jennifer M.; Hubbard, Alex M.; Chen, Lillian; Goldman, Daniel I.

    Limbless locomotors such as snakes move by pressing the trunk against terrain heterogeneities. Our laboratory studies of the desert-dwelling Mojave Shovel-nosed snake (C. occipitalis, 40cm long, N=9) reveal that these animals use a stereotyped sinusoidal traveling wave of curvature. However, this snake also encounters rigid obstacles in its natural environment, and the tradeoff between using a cyclic, shape controlled gait versus one which changes shape in response to the terrain is not well understood. We challenged individuals to move across a model deformable substrate (carpet) through a row of 6.4 mm diameter force-sensitive pegs, a model of obstacles such as grass, oriented perpendicular to the direction of motion. Instead of forward-directed reaction forces, reaction forces generated by the pegs were more often perpendicular to the direction of motion. Distributions of post-peg travel angles displayed preferred directions revealing a diffraction-like pattern with a central peak at zero and symmetric peaks at 193 ° and 415 °. We observed similar dynamics in a robotic snake using shape-based control. This suggests that this sand-specialist snake adheres to its preferred waveform as opposed to changing in response to heterogeneity.

  12. Meta-Analysis of Rare Binary Adverse Event Data

    PubMed Central

    Bhaumik, Dulal K.; Amatya, Anup; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D.

    2013-01-01

    We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease. PMID:23734068

  13. Understanding Fomalhaut as a Cooper pair

    NASA Astrophysics Data System (ADS)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J E

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussedmore » in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.« less

  15. Defining a Materials Database for the Design of Copper Binary Alloy Catalysts for Electrochemical CO2 Conversion.

    PubMed

    Lee, Chan Woo; Yang, Ki Dong; Nam, Dae-Hyun; Jang, Jun Ho; Cho, Nam Heon; Im, Sang Won; Nam, Ki Tae

    2018-01-24

    While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO 2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO 2 conversion and, ultimately, achieve a carbon-neutral cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies

    USGS Publications Warehouse

    Sato, M.

    1992-01-01

    At temperatures prevailing near the Earth's surface, metastable co-existence of chemical substances is common because chemical reactions that would directly lead to the attainment of thermody-namically most stable equilibria are often blocked by high activation energy barriers. The persistency of a metastable assemblage is then governed by alternative reaction paths that provide lower activation energy barriers. Comparison of observed mineral assemblages in the supergene oxidized and enriched sulfide ores with corresponding stability Eh-pH diagrams reveals that the supergene assemblages are mostly metastable due primarily to the persistency of sulfide minerals beyond stability boundaries. A new set of diagrams called persistency-field Eh-pH diagrams has been constructed for binary metal sulfides on the basis of electrochemical and other experimental data. Each diagram delineates the persistency field, which is a combined field of thermodynamic stability and reaction path-controlled metastability, for a specific sulfide mineral. When applied to the supergene assemblages, these new diagrams show much better correspondence to the field observations. Although there may still be room for further refinement, the new diagrams appear to provide a strong visual aid to the understanding of the behavior of sulfide minerals in the supergene conditions. ?? 1992.

  17. Hypersensitivity to contrast media and dyes.

    PubMed

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  19. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  20. Static-dynamic hybrid communication scheduling and control co-design for networked control systems.

    PubMed

    Wen, Shixi; Guo, Ge

    2017-11-01

    In this paper, the static-dynamic hybrid communication scheduling and control co-design is proposed for the networked control systems (NCSs) to solve the capacity limitation of the wireless communication network. The analytical most regular binary sequences (MRBSs) are used as the communication scheduling function for NCSs. When the communication conflicts yielded in the binary sequence MRBSs, a dynamic scheduling strategy is proposed to on-line reallocate the medium access status for each plant. Under such static-dynamic hybrid scheduling policy, plants in NCSs are described as the non-uniform sampled-control systems, whose controller have a group of controller gains and switch according to the sampling interval yielded by the binary sequence. A useful communication scheduling and control co-design framework is proposed for the NCSs to simultaneously decide the controller gains and the parameters used to generate the communication sequences MRBS. Numerical example and realistic example are respectively given to demonstrate the effectiveness of the proposed co-design method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Computation of elementary modes: a unifying framework and the new binary approach

    PubMed Central

    Gagneur, Julien; Klamt, Steffen

    2004-01-01

    Background Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. Results We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. Conclusions The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks. PMID:15527509

  2. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    PubMed

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sampling strategies exploiting multi-pumping flow systems.

    PubMed

    Prior, João A V; Santos, João L M; Lima, José L F C

    2003-04-01

    In this work new strategies were exploited to implement multi-pumping flow systems relying on the utilisation of multiple devices that act simultaneously as sample-insertion, reagent-introduction, and solution-propelling units. The solenoid micro-pumps that were initially used as the only active elements of multi-pumping systems, and which were able to produce pulses of 3 to 25 microL, were replaced by syringe pumps with the aim of producing pulses between 1 and 4 microL. The performance of the developed flow system was assessed by using distinct sample-insertion strategies like single sample volume, merging zones, and binary sampling in the spectrophotometric determination of isoniazid in pharmaceutical formulations upon reaction with 1,2-naphthoquinone-4-sulfonate, in alkaline medium. The results obtained showed that enhanced sample/reagent mixing could be obtained with binary sampling and by using a 1 microL per step pump, even in limited dispersion conditions. Moreover, syringe pumps produce very reproducible flowing streams and are easily manipulated and controlled by a computer program, which is greatly simplified since they are the only active manifold component. Linear calibration plots up to 18.0 microg mL(-1), with a relative standard deviation of less than 1.48% (n=10) and a throughput of about 20 samples per hour, were obtained.

  4. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping.

    PubMed

    Liu, Wen; Sun, Weiling; Borthwick, Alistair G L; Wang, Ting; Li, Fan; Guan, Yidong

    2016-11-05

    Clean-up of wastewaters with coexisting heavy metals and organic contaminants is a huge issue worldwide. In this study, a novel anatase/titanate nanosheet composite material (labeled as TNS) synthesized through a one-step hydrothermal reaction was demonstrated to achieve the goal of simultaneous removal of Cr(VI) and 4-cholophenol (4-CP) from water. TEM and XRD analyses indicated the TNS was a nano-composite of anatase and titanate, with anatase acting as the primary photocatalysis center and titanate as the main adsorption site. Enhanced photocatalytic removal of co-existent Cr(VI) and 4-CP was observed in binary systems, with apparent rate constants (k1) for photocatalytic reactions of Cr(VI) and 4-CP about 3.1 and 2.6 times of that for single systems. In addition, over 99% of Cr(VI) and 4-CP was removed within 120min through photocatalysis by TNS at pH 7 in the binary system. Mechanisms for enhanced photocatalytic efficiency in the binary system are identified as: (1) a synergetic effect on the photo-reduction of Cr(VI) and photo-oxidation of 4-CP due to efficient separation of electron-hole pairs, and (2) autosynchronous doping because of reduced Cr(III) adsorption onto TNS. Furthermore, TNS could be efficiently reused after a simple acid-base treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  6. Pragmatic approach to gravitational radiation reaction in binary black holes

    PubMed

    Lousto

    2000-06-05

    We study the relativistic orbit of binary black holes in systems with small mass ratio. The trajectory of the smaller object (another black hole or a neutron star), represented as a particle, is determined by the geodesic equation on the perturbed massive black hole spacetime. Here we study perturbations around a Schwarzschild black hole using Moncrief's gauge invariant formalism. We decompose the perturbations into l multipoles to show that all l-metric coefficients are C0 at the location of the particle. Summing over l, to reconstruct the full metric, gives a formally divergent result. We succeed in bringing this sum to a Riemann's zeta-function regularization scheme and numerically compute the first-order geodesics.

  7. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.

  8. Carbon Nanomaterials in Direct Liquid Fuel Cells.

    PubMed

    Du, Huayun; Zhao, Cindy Xinxin; Lin, Jing; Guo, Jiang; Wang, Bin; Hu, Zhen; Shao, Qian; Pan, Duo; Wujcik, Evan K; Guo, Zhanhu

    2018-04-19

    Fuel cells have attracted more attentions due to many advantages they can provide, including high energy efficiency and low environmental burden. To form a stable, low cost and efficient catalyst, we presented here the state of the art of electrocatalyst fabrication approaches, involving carbon nanotubes and their multifunctional nanocomposites incorporated with noble metals, such as Pt, Pd, Au, their binary and ternary systems. Both fuel oxidation reactions and oxygen reduction reactions were emphasized with comprehensive examples and future prospects. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The phase stability of Ca2TiO4 and related Ruddlesden-Popper phases

    NASA Astrophysics Data System (ADS)

    Ramadan, Amr H. H.; Hesselmann, Linda; De Souza, Roger A.

    2015-11-01

    The Ruddlesden-Popper phases of the Ca-Ti-O system, Can+1TinO3n+1, are investigated by means of atomistic simulations employing empirical pair potentials. The stability of the phases is examined in terms of various reaction schemes: the formation from the binary oxides, the addition of the perovskite oxide to a given phase, and the reaction between perovskite and rock-salt oxides. The energies of these reactions are compared with results previously obtained for the Ruddlesden-Popper phases of the Sr-Ti-O system. The importance of the disproportionation reaction of the various R-P phases in both Ca and Sr systems is also emphasized. The results obtained are in good agreement with experimental observations regarding both systems.

  10. Simulation studies of chemical erosion on carbon based materials at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kenmotsu, T.; Kawamura, T.; Li, Zhijie; Ono, T.; Yamamura, Y.

    1999-06-01

    We simulated the fluence dependence of methane reaction yield in carbon with hydrogen bombardment using the ACAT-DIFFUSE code. The ACAT-DIFFUSE code is a simulation code based on a Monte Carlo method with a binary collision approximation and on solving diffusion equations. The chemical reaction model in carbon was studied by Roth or other researchers. Roth's model is suitable for the steady state methane reaction. But this model cannot estimate the fluence dependence of the methane reaction. Then, we derived an empirical formula based on Roth's model for methane reaction. In this empirical formula, we assumed the reaction region where chemical sputtering due to methane formation takes place. The reaction region corresponds to the peak range of incident hydrogen distribution in the target material. We adopted this empirical formula to the ACAT-DIFFUSE code. The simulation results indicate the similar fluence dependence compared with the experiment result. But, the fluence to achieve the steady state are different between experiment and simulation results.

  11. A Grignard-like Organic Reaction in Water

    NASA Astrophysics Data System (ADS)

    Breton, Gary W.; Hughey, Christine A.

    1998-01-01

    The addition of a Grignard reagent to a carbonyl-containing compound to form an alcohol is an important reaction to demonstrate in organic chemistry laboratory courses. However, the reaction presents several practical problems for the lab instructor including the need for anhydrous solvents (e.g., ether), dry glassware, and the occasional problem of slow reaction initiation. We have scaled, and tested, a known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties. Thus, addition of allyl bromide (1.2 eq) to benzaldehyde and zinc in a two-phase mixture of THF and saturated aqueous NH4Cl afforded addition product 1-phenyl-3-buten-1-ol in 70-85% yields.

  12. Quantitative skin prick and bronchial provocation tests with platinum salt.

    PubMed Central

    Merget, R; Schultze-Werninghaus, G; Bode, F; Bergmann, E M; Zachgo, W; Meier-Sydow, J

    1991-01-01

    Occupational asthma due to platinum salts is a frequent disease in platinum refineries. The diagnosis is based upon a history of work related symptoms and a positive skin prick test with platinum salts. Bronchial provocation tests have not been performed in epidemiological studies because the skin test is believed to be highly specific and sensitive. As no reliable data about this issue currently exist, this study assesses the use of skin prick and bronchial provocation tests with methacholine and platinum salt in platinum refinery workers. Twenty seven of 35 workers, who were referred to our clinic with work related symptoms and nine control subjects with bronchial hyperreactivity underwent a skin prick test and bronchial provocation with methacholine and platinum salt. For skin prick and bronchial provocation tests with platinum salt a 10(-2)-10(-8) mol/l hexachloroplatinic acid solution, in 10-fold dilutions was used. Four of the 27 subjects and all controls showed neither a bronchial reaction nor a skin reaction. Twenty three subjects were considered allergic to platinum salt; 22 of these showed a fall of 50% or more in specific airway conductance after inhalation of the platinum salt solution. Four workers experienced a positive bronchial reaction despite a negative skin prick test. No correlation of responsiveness to methacholine with responsiveness to platinum salt was found, but the skin prick test correlated with the bronchial reaction to platinum salt (rs = 0.50, p less than 0.023, n = 22). One dual reaction was seen in bronchial provocation tests. Side effects of both skin tests and bronchial provocation tests with platinum salt were rare and were not encountered in workers without a skin reaction to platinum salt. It is concluded that bronchial provocation tests with platinum salts should be performed on workers with work related symptoms but negative skin tests with platinum salts. PMID:1772797

  13. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  14. A digital advocate? Reactions of rural people who experience homelessness to the idea of recording clinical encounters.

    PubMed

    Grande, Stuart W; Castaldo, Mary Ganger; Carpenter-Song, Elizabeth; Griesemer, Ida; Elwyn, Glyn

    2017-08-01

    Are the benefits of recording clinical encounters shared across different groups, or do they vary based on social position? Studies show that educated patients record their clinical visits to enhance their experience, but very little is known about recording benefits among "hard-to-reach" populations. To examine the reactions of homeless people to the idea of using a smartphone to record their own clinical encounter, either covertly or with permission from their physician. We conducted semi-structured interviews with individuals at a temporary housing shelter in Northern New England. A thematic analysis identified themes that were iteratively refined into representative groups. Eighteen (18) interviews were conducted, 12 with women and six with men. Initial reactions to clinical recordings were positive (11 of 18). A majority (17 of 18) were willing to use recordings in future visits. A thematic analysis characterized data in two ways: (i) by providing reliable evidence for review, they functioned as an advocacy measure for patients; (ii) by promoting transparency and levelling social distance, this technology modified clinical relationships. Recordings permitted the sharing of data with others, providing tangible proof of behaviour and refuting misconceptions. Asking permission to record appeared to modify relationships and level perceived social distance with clinicians. We found that while many rural, disadvantaged individuals felt marginalized by the wide social distance between themselves and their clinicians, recording technology may serve as an advocate by holding both patients and doctors accountable and by permitting the burden of clinical proof to be shared. © 2016 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  15. Social Class and Work-Related Decisions: Measurement, Theory, and Social Mobility

    ERIC Educational Resources Information Center

    Fouad, Nadya A.; Fitzpatrick, Mary E.

    2009-01-01

    In this reaction to Diemer and Ali's article, "Integrating Social Class Into Vocational Psychology: Theory and Practice Implications," the authors point out concerns with binary schema of social class, highlight the contribution of social class to the social cognitive career theory, argue for a more nuanced look at ways that work…

  16. Investigations of Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantites, Demetrios; Reviol, W.

    The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less

  17. Search for kinematic siblings of the sun based on data from the XHIP catalog

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.

    2014-06-01

    From the XHIP catalogue, we have selected 1872 F-G-K stars with relative parallax measurement errors <20% and absolute values of their space velocities relative to the Sun <15 km s-1. For all these stars, we have constructed their Galactic orbits for 4.5 Gyr into the past using an axisymmetric Galactic potential model with allowance made for the perturbations from the spiral density wave. Parameters of the encounter with the solar orbit have been calculated for each orbit. We have detected three new stars whose Galactic orbits were close to the solar one during a long time interval in the past. These stars are HIP 43852, HIP 104047, and HIP 112158. The spectroscopic binary HIP 112158 is poorly suited for the role of a kinematic sibling of the Sun by its age and spectroscopic characteristics. For the single star HIP 43852 and the multiple system HIP 104047, this role is quite possible. We have also confirmed the status of our previously found candidates for close encounters, HIP 47399 and HIP 87382. The star HIP 87382 with a chemical composition very close to the solar one is currently the most likely candidate, because it persistently shows close encounters with the Sun on time scales of more than 3 Gyr when using various Galactic potential models both without and with allowance made for the influence of the spiral density wave.

  18. RITRACKS: A Software for Simulation of Stochastic Radiation Track Structure, Micro and Nanodosimetry, Radiation Chemistry and DNA Damage for Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, I; Wu, H

    2014-01-01

    The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.

  19. The attentional drift-diffusion model extends to simple purchasing decisions.

    PubMed

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.

  20. An attentional drift diffusion model over binary-attribute choice.

    PubMed

    Fisher, Geoffrey

    2017-11-01

    In order to make good decisions, individuals need to identify and properly integrate information about various attributes associated with a choice. Since choices are often complex and made rapidly, they are typically affected by contextual variables that are thought to influence how much attention is paid to different attributes. I propose a modification of the attentional drift-diffusion model, the binary-attribute attentional drift diffusion model (baDDM), which describes the choice process over simple binary-attribute choices and how it is affected by fluctuations in visual attention. Using an eye-tracking experiment, I find the baDDM makes accurate quantitative predictions about several key variables including choices, reaction times, and how these variables are correlated with attention to two attributes in an accept-reject decision. Furthermore, I estimate an attribute-based fixation bias that suggests attention to an attribute increases its subjective weight by 5%, while the unattended attribute's weight is decreased by 10%. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions

    PubMed Central

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions. PMID:22707945

  2. The InKiIsSy experiment at LNS: A study of size vs. isospin effects with 124Xe + 64Zn , 64Ni reactions at 35 A MeV

    NASA Astrophysics Data System (ADS)

    Norella, S.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Minniti, T.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczynska, K.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyński, J.

    2017-11-01

    In previous experiments, performed by CHIMERA Collaboration, a strong difference in the cross sections of "dynamical" PLF binary decay between neutron-poor 112Sn (35 A MeV)+ 58Ni and neutron-rich 124Sn (35 A MeV)+ 64Ni colliding systems has been reported. The same effect was not seen in the "statistical" binary decay. The observed difference was related to the different N/ Z content between the two systems. However, size effects could not be excluded. In order to disentangle Isospin effects from size ones, the systems 124Xe (35 A MeV)+ 64Zn ( 64Ni were studied in the InKiIsSy (Inverse Kinematic Isobaric Systems) experiment, carried out at Laboratori Nazionali del Sud on April 2013, using the multi-detector CHIMERA and 4 prototype-modules of FARCOS array. We will report preliminary results on the binary PLF splitting mechanism.

  3. A thermodynamic study of complexation process between N, N'-dipyridoxylidene(1,4-butanediamine) and Cd2+ in some binary mixed solvents using conductometry

    NASA Astrophysics Data System (ADS)

    Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali

    2016-12-01

    Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.

  4. Evaluating impacts of different longitudinal driver assistance systems on reducing multi-vehicle rear-end crashes during small-scale inclement weather.

    PubMed

    Li, Ye; Xing, Lu; Wang, Wei; Wang, Hao; Dong, Changyin; Liu, Shanwen

    2017-10-01

    Multi-vehicle rear-end (MVRE) crashes during small-scale inclement (SSI) weather cause high fatality rates on freeways, which cannot be solved by traditional speed limit strategies. This study aimed to reduce MVRE crash risks during SSI weather using different longitudinal driver assistance systems (LDAS). The impact factors on MVRE crashes during SSI weather were firstly analyzed. Then, four LDAS, including Forward collision warning (FCW), Autonomous emergency braking (AEB), Adaptive cruise control (ACC) and Cooperative ACC (CACC), were modeled based on a unified platform, the Intelligent Driver Model (IDM). Simulation experiments were designed and a large number of simulations were then conducted to evaluate safety effects of different LDAS. Results indicate that the FCW and ACC system have poor performance on reducing MVRE crashes during SSI weather. The slight improvement of sight distance of FCW and the limitation of perception-reaction time of ACC lead the failure of avoiding MVRE crashes in most scenarios. The AEB system has the better effect due to automatic perception and reaction, as well as performing the full brake when encountering SSI weather. The CACC system has the best performance because wireless communication provides a larger sight distance and a shorter time delay at the sub-second level. Sensitivity analyses also indicated that the larger number of vehicles and speed changes after encountering SSI weather have negative impacts on safety performances. Results of this study provide useful information for accident prevention during SSI weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Predatory threat of harpy eagles for yellow-breasted capuchin monkeys in the Atlantic Forest.

    PubMed

    Suscke, Priscila; Verderane, Michele; de Oliveira, Robson Santos; Delval, Irene; Fernández-Bolaños, Marcelo; Izar, Patrícia

    2017-01-01

    We describe seven encounters between different harpy eagle individuals (Harpia harpyja) and a group of yellow-breasted capuchin monkeys (Sapajus xanthosternos) in Una Biological Reserve. These interactions lasted 58 min on average. In each of those encounters, the capuchin monkeys used particular behavioral strategies against the harpy eagle that were not employed in reaction to other aerial predators. We did not observe any successful predation events, but after one of those encounters an infant disappeared from the capuchin group. As a whole, these observations indicate that the presence of harpy eagles in the group's home range increases predation risk for capuchin monkeys. The present report also suggests a reoccupation by H. harpyja of this area, as no previous recent records identify harpy eagle occurrence in Una Biological Reserve.

  6. Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, Sondre K.; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Department of Chemistry, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, 4791 Trondheim

    2014-10-14

    We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtainedmore » with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.« less

  7. Variation of isomer distribution in electrophilic nitration of toluene, anisole, and o-xylene: Independence of high regioselectivity from reactivity of reagent*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    The nitration of toluene and anisole was studied with nitrating systems of varying reactivity. High regioselectivity of ortho-para over meta substitution was maintained in all nitrations, regardless of the reactivity of the nitrating system. At the same time, the amount of meta substitution stayed low (3% or less), even when the fast reactions may have reached the encounter-controlled limit. Because the nitration of o-xylene, in which both ring positions are activated by the effect of a methyl group, also does not show any diminishing of regioselectivity, the possibility of a dual mechanistic pathway, in which the activated position would react by a fast, encounter-controlled path, whereas the nonactivated meta position by a slower σ-type path, can be ruled out. The data unambiguously prove that the high regioselectivity of electrophilic aromatic nitration is independent of the reactivity of the reagent, because no significant increase of meta substitution of toluene or anisole was observed, regardless of the activity of the nitrating system. No selectivity-reactivity relationship is thus evident and the ortho-para directing effect of primary substituents over meta substitution is always maintained. The variation in the amount of the meta isomer, up to the observed limit of about 3% in the case of toluene and <2% for anisole, is probably significant but, at the present time, cannot be quantitatively evaluated with the ±0.5% overall reproducible accuracy of the nitrations. Steric factors, such as increasing bulkiness of the nitrating agent, also can affect the ortho-para isomer ratios but are not considered to be the only reason for the observed variations, which reflect the specific nitrating systems, affecting the nature and position of the transition state of highest energy on the reaction pathway. PMID:16592489

  8. 1I/‘Oumuamua as a Tidal Disruption Fragment from a Binary Star System

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija

    2018-01-01

    1I/‘Oumuamua is the first known interstellar small body, probably being only about 100 m in size. Against expectations based on comets, ‘Oumuamua does not show any activity and has a very elongated figure, and it also exhibits undamped rotational tumbling. In contrast, ‘Oumuamua’s trajectory indicates that it was moving with the local stars, as expected from a low-velocity ejection from a relatively nearby system. Here, I assume that ‘Oumuamua is typical of 100 m interstellar objects and speculate on its origins. I find that giant planets are relatively inefficient at ejecting small bodies from inner solar systems of main-sequence stars, and that binary systems offer a much better opportunity for ejections of non-volatile bodies. I also conclude that ‘Oumuamua is not a member of a collisional population, which could explain its dramatic difference from small asteroids. I observe that 100 m small bodies are expected to carry little mass in realistic collisional populations and that occasional events, when whole planets are disrupted in catastrophic encounters, may dominate the interstellar population of 100 m fragments. Unlike the Sun or Jupiter, red dwarf stars are very dense and are capable of thoroughly tidally disrupting terrestrial planets. I conclude that ‘Oumuamua may have originated as a fragment from a planet that was tidally disrupted and then ejected by a dense member of a binary system, which could explain its peculiarities.

  9. Prediction of ice content in biological model solutions when frozen under high pressure.

    PubMed

    Guignon, B; Aparicio, C; Otero, L; Sanz, P D

    2009-01-01

    High pressure is, at least, as effective as cryoprotective agents (CPAs) and are used for decreasing both homogenous nucleation and freezing temperatures. This fact gives rise to a great variety of possible cryopreservation processes under high pressure. They have not been optimized yet, since they are relatively recent and are mainly based on the pressure-temperature phase diagram of pure water. Very few phase diagrams of biological material are available under pressure. This is owing to the lack of suitable equipment and to the difficulties encountered in carrying out the measurements. Different aqueous solutions of salt and CPAs as biological models are studied in the range of 0 degrees C down to -35 degrees C, 0.1 up to 250 MPa, and 0-20% w/w total solute concentration. The phase transition curves of glycerol and of sodium chloride with either glycerol or sucrose in aqueous solutions are determined in a high hydrostatic pressure vessel. The experimental phase diagrams of binary solutions were well described by a third-degree polynomial equation. It was also shown that Robinson and Stokes' equation at high pressure succeeds in predicting the phase diagrams of both binary and ternary solutions. The solute cryoconcentration and the ice content were calculated as a function of temperature and pressure conditions during the freezing of a binary solution. This information should provide a basis upon which high-pressure cryopreservation processes may be performed and the damages derived from ice formation evaluated. (c) 2009 American Institute of Chemical Engineers Biotechnol.

  10. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.

  11. Collapse and Fragmentation Models of Tidally Interacting Molecular Cloud Cores. IV. Initial Slow Rotation and Magnetic Field Support

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Klapp, Jaime

    2000-03-01

    Fragmentation has long been advocated as the primary mechanism for explaining the observed binary frequency among pre-main-sequence stars and, more recently, for explaining the emerging evidence for binary and multiple protostellar systems. The role of magnetic fields and ambipolar diffusion is essential to understand how dense cloud cores begin dynamic collapse and eventually fragment into protostars. Here we consider new numerical models of the gravitational collapse and fragmentation of slowly rotating molecular cloud cores, including the effects of magnetic support and ambipolar diffusion. The starting point of the evolution is provided by a magnetically stable (subcritical) condensation that results from adding a magnetic field pressure, B2/8π [with the field strength given by the scaling relation B=B0(ρ/ρ0)1/2], to a reference state consisting of a thermally supercritical (α~0.36), slowly rotating (β~0.037), Gaussian cloud core of prolate shape and central density ρ0. The effects of ambipolar diffusion are approximated by allowing the reference field strength B0 to gradually decrease over a timescale of 10 free-fall times. The models also include the effects of tidal interaction due to a gravitational encounter with another protostar, and so they may apply to low-mass star formation within a cluster-forming environment. The results indicate that the magnetic forces delay the onset of dynamic collapse, and hence of fragmentation, by an amount of time that depends on the initial central mass-to-flux ratio. Compared with previous magnetic collapse calculations of rapidly rotating (β=0.12) clouds, lower initial rotation (β~0.037) is seen to result in much shorter delay periods, thus anticipating binary fragmentation. In general, the results show that the models are still susceptible to fragment into binary systems. Intermediate magnetic support (η~0.285) and low tidal forces (τ<~0.201) may lead to final triple or quadruple protostellar systems, while increasing the size of η and τ always results in final binary protostellar cores. The formed binary systems have separations of ~200-350 AU, suggesting that the recently observed peaks around ~90 AU and 215 AU for T Tauri stars may be explained by the collapse and fragmentation of initially slowly rotating magnetic cloud cores with β<~0.04.

  12. Nanopatterning of Group V Elements for Tailoring the Electronic Properties of Semiconductors by Monolayer Doping.

    PubMed

    Thissen, Peter; Cho, Kyeongjae; Longo, Roberto C

    2017-01-18

    Control of the electronic properties of semiconductors is primarily achieved through doping. While scaling down the device dimensions to the molecular regime presents an increasing number of difficulties, doping control at the nanoscale is still regarded as one of the major challenges of the electronic industry. Within this context, new techniques such as monolayer doping (MLD) represent a substantial improvement toward surface doping with atomic and specific doping dose control at the nanoscale. Our previous work has explained in detail the atomistic mechanism behind MLD by means of density-functional theory calculations (Chem. Mater. 2016, 28, 1975). Here, we address the key questions that will ultimately allow one to optimize the scalability of the MLD process. First, we show that dopant coverage control cannot be achieved by simultaneous reaction of several group V elements, but stepwise reactions make it possible. Second, using ab initio molecular dynamics, we investigate the thermal decomposition of the molecular precursors, together with the stability of the corresponding binary and ternary dopant oxides, prior to the dopant diffusion into the semiconductor surface. Finally, the effect of the coverage and type of dopant on the electronic properties of the semiconductor is also analyzed. Furthermore, the atomistic characterization of the MLD process raises unexpected questions regarding possible crystal damage effects by dopant exchange with the semiconductor ions or the final distribution of the doping impurities within the crystal structure. By combining all our results, optimization recipes to create ultrashallow doped junctions at the nanoscale are finally proposed.

  13. Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Kazakov, Andrei; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    2000-01-01

    The microgravity ethanol droplet combustion experiments were performed aboard the STS-94/MSL-1 Shuttle mission within the Fiber-Supported Droplet Combustion-2 (FSDC-2) program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets were obtained from the images recorded with two 8 mm videocameras. The obtained results show that average gasification rate is related to the initial droplet size in a manner similar to n-alkanes and methanol and consistent with the results of Hara and Kumagai and the data taken recently in the NASA-Lewis 2.2 s droptower. A transient, moving finite-element chemically reacting flow model applied previously to sphero-symmetric combustion of methanol, methanol/water, n-alkane, and n-alkane binary mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes detailed description of gas-phase reaction chemistry and transport, a simplified description of liquid phase transport, and non-luminous radiative heat transfer. Gas-phase chemistry was described with the detailed reaction mechanism of Norton and Dryer, which consists of 142 reversible elementary reactions of 33 species. Another recently published reaction mechanism of high-temperature ethanol oxidation was also considered. The model predictions were found to compare favorably with the experimental data. The model analysis also indicates that water condensation in the case of ethanol has smaller effect on average droplet gasification rate as compared with previously studied methanol cases. This effect is explained by non-ideal (azeotropic) behavior of binary ethanol-water mixtures. Further analysis of computational results and ethanol droplet radiative extinction behavior will be discussed.

  14. Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker.

    PubMed

    Rentschler, Andrew J; Cooper, Rory A; Blasch, Bruce; Boninger, Michael L

    2003-01-01

    A walker that could help navigate and avoid collisions with obstacles could help reduce health costs and increase the quality of care and independence of thousands of people. This study evaluated the safety and performance of the Veterans Affairs Personal Adaptive Mobility Aid (VA-PAMAID). We performed engineering tests on the VA-PAMAID to determine safety factors, including stability, energy consumption, fatigue life, and sensor and control malfunctions. The VA-PAMAID traveled 10.9 km on a full charge and avoided obstacles while traveling at a speed of up to 1.2 m/s. No failures occurred during static stability, climatic, or fatigue testing. Some problems were encountered during obstacle climbing and sensor and control testing. The VA-PAMAID has good range, has adequate reaction time, and is structurally sound. Clinical trials are planned to compare the device to other low-technical adaptive mobility devices.

  15. Reaction rate for carbon burning in massive stars

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K. E.; Back, B. B.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Bourgin, D.; Courtin, S.; Haas, F.; Heine, M.; Fruet, G.; Montanari, D.; Jenkins, D. G.; Morris, L.; Lefebvre-Schuhl, A.; Alcorta, M.; Fang, X.; Tang, X. D.; Bucher, B.; Deibel, C. M.; Marley, S. T.

    2018-01-01

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+12C fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5 -4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate.

  16. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  17. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    DTIC Science & Technology

    2017-02-21

    analyze malicious software (malware) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program...AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      21-02-2017 2. REPORT

  18. Differences in job stress experienced by female and male Japanese psychiatric nurses.

    PubMed

    Yada, Hironori; Abe, Hiroshi; Omori, Hisamitsu; Matsuo, Hisae; Masaki, Otsubo; Ishida, Yasushi; Katoh, Takahiko

    2014-10-01

    In psychiatric nursing, female nurses tend to spend more time building rapport with patients and developing cooperative working relationships with colleagues; they encounter more sexual harassment by patients. In contrast, male nurses respond to aggressive patients and tend to resist physically caring for female patients; they encounter more physical and verbal assault from patients. These gender differences might result in differences in job-related stress. We quantitatively examined gender differences in psychiatric nurses' job stress. The Psychiatric Nurse Job Stressor Scale and the Stress Reaction Scale of the Brief Job Stress Questionnaire were administered to 159 female and 85 male Japanese psychiatric nurses. The results indicated that female nurses had significantly higher stress levels than males related to psychiatric nursing ability, attitude towards nursing, and stress reactions of fatigue and anxiety. Moreover, the factors affecting stress reactions differed somewhat between sexes. In particular, male nurses reported that greater irritability was affected by patients' attitudes. Their anxiety and somatic symptoms were affected by their attitude towards nursing, and depressed mood was affected by psychiatric nursing ability. Knowledge of these differences can lead to better mental health-care interventions for psychiatric nurses. © 2014 Australian College of Mental Health Nurses Inc.

  19. Recognition by Rats of Binary Taste Solutions and Their Components.

    PubMed

    Katagawa, Yoshihisa; Yasuo, Toshiaki; Suwabe, Takeshi; Yamamura, Tomoki; Gen, Keika; Sako, Noritaka

    2016-09-13

    This behavioral study investigated how rats conditioned to binary mixtures of preferred and aversive taste stimuli, respectively, responded to the individual components in a conditioned taste aversion (CTA) paradigm. The preference of stimuli was determined based on the initial results of 2 bottle preference test. The preferred stimuli included 5mM sodium saccharin (Sacc), 0.03M NaCl (Na), 0.1M Na, 5mM Sacc + 0.03M Na, and 5mM Sacc + 0.2mM quinine hydrochloride (Q), whereas the aversive stimuli tested were 1.0M Na, 0.2mM Q, 0.3mM Q, 5mM Sacc + 1.0M Na, and 5mM Sacc + 0.3mM Q. In CTA tests where LiCl was the unconditioned stimulus, the number of licks to the preferred binary mixtures and to all tested preferred components were significantly less than in control rats. No significant difference resulted between the number of licks to the aversive binary mixtures or to all tested aversive components. However, when rats pre-exposed to the aversive components contained of the aversive binary mixtures were conditioned to these mixtures, the number of licks to all the tested stimuli was significantly less than in controls. Rats conditioned to components of the aversive binary mixtures generalized to the binary mixtures containing those components. These results suggest that rats recognize and remember preferred and aversive taste mixtures as well as the preferred and aversive components of the binary mixtures, and that pre-exposure before CTA is an available method to study the recognition of aversive taste stimuli. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The UMIST database for astrochemistry 2006

    NASA Astrophysics Data System (ADS)

    Woodall, J.; Agúndez, M.; Markwick-Kemper, A. J.; Millar, T. J.

    2007-05-01

    Aims:We present a new version of the UMIST Database for Astrochemistry, the fourth such version to be released to the public. The current version contains some 4573 binary gas-phase reactions, an increase of 10% from the previous (1999) version, among 420 species, of which 23 are new to the database. Methods: Major updates have been made to ion-neutral reactions, neutral-neutral reactions, particularly at low temperature, and dissociative recombination reactions. We have included for the first time the interstellar chemistry of fluorine. In addition to the usual database, we have also released a reaction set in which the effects of dipole-enhanced ion-neutral rate coefficients are included. Results: These two reactions sets have been used in a dark cloud model and the results of these models are presented and discussed briefly. The database and associated software are available on the World Wide Web at www.udfa.net. Tables 1, 2, 4 and 9 are only available in electronic form at http://www.aanda.org

  1. A novel asynchronous access method with binary interfaces

    PubMed Central

    2008-01-01

    Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches). Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation. PMID:18959797

  2. PHARMACOKINETIC AND PHARMACODYNAMIC INTERACTION FOR A BINARY MIXTURE OF CHLORPYRIFOS AND DIAZINON IN THE RAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Poet, Torka S.; Hinman, Melissa N.

    2005-05-15

    Chlorpyrifos (CPF) and diazinon (DZN) are two commonly used organophosphorus (OP) insecticides and potential exists for concurrent exposures. The primary neurotoxic effects from OP pesticide exposures result from the inhibition of acetylcholinesterase (AChE) by their oxon metabolites. The pharmacokinetic and pharmacodynamic impact of acute binary exposures to CPF and DZN in rats were evaluated in this study. Rats were orally administered CPF, DZN or a CPF/DZN mixture (0, 15, 30 or 60 mg/kg) and blood (plasma and RBC), and brain were collected at 0, 3, 6, 12 and 24 h post-dosing, urine was also collected at 24 h. Chlorpyrifos, DZNmore » and their respective metabolites 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) were quantified in blood and/or urine and cholinesterase (ChE) inhibition was measured in brain, RBCs and plasma. Co-exposure to CPF/DZN at 15/15 mg/kg, did not appreciably alter the pharmacokinetics of CPF, DZN or their metabolites in blood; whereas, a 60/60 mg/kg dose resulted in a transient increase in Cmax, AUC, and decreased clearance of both compounds, likely due to competition between CPF and DZN for CYP450 metabolism. At lower doses, most likely to be encountered in occupational or environmental exposures, the pharmacokinetics were linear. A dose-dependent inhibition of ChE was noted in tissues for both the single and co-exposures. The overall potency for ChE inhibition was greater for CPF than DZN and the binary mixture response appeared to be strongly influenced by CPF. A comparison of the ChE binary response at the low dose (15 mg/kg), where there were no apparent pharmacokinetic interactions, suggested that the overall ChE response was additive. These are the first reported experiments we are aware of that characterize both the pharmacokinetic and pharmacodynamic interactions between CPF and DZN in the rat, and will be used to further develop a binary physiologically based pharmacokinetic and pharmacodynamic model for mixtures.« less

  3. Biological Response Modifiers in Rheumatoid Arthritis: Systematic Review and Meta-analysis of Safety

    PubMed Central

    Tank, Nitishkumar D.; Karelia, Bharti N.; Vegada, Bhavisha N.

    2017-01-01

    Objective: To analyze available evidence on the safety of different biological response modifiers which are used for a treatment of rheumatoid arthritis (RA). Materials and Methods: We searched systematically for randomized controlled clinical trials on treatment of RA with different biological response modifiers, followed by a systematic review with meta-analysis. Trials were searched from MEDLINE and Cochrane Library databases. The following safety parameters reported in the selected trials were analyzed: number of patients suffering any adverse event (AE), withdrawal due to AEs, serious AE (SAEs), infections, serious infections, infusion reactions, injection site reactions, malignancies, and overall mortality. Undesired effects were estimated using combined relative risks (RR) and number needed to harm (NNH). Heterogeneity was evaluated by Cochrane's Q and I2 statistics. Results: According to inclusion criteria, a total of 43 trials (20,504 patients) were included in this study. A total number of AEs were found more with abatacept (RR: 1.05, NNH: 21.93). Withdrawal due to AEs was found with all biologicals, highest with anakinra (RR: 3.48, NNH: 15.70). Patients receiving newer tumor necrosis factor-alpha inhibitors, golimumab, were more likely to develop SAEs (RR: 2.44, NNH: 12.72) and infection (RR: 1.25, NNH: 10.09), and in certolizumab, serious infections (RR: 2.95, NNH: 37.31) were found more. Infusion reaction develops more with rituximab (RR: 1.52, NNH: 8.47). Etanercept showed the highest risk to develop infusion site reaction (RR: 5.33, NNH: 4.65). Biologicals showed no difference to their control counterparts in malignancy and mortality risk. Conclusion: This meta-analysis helps to clarify some frequently encountered and unanswered safety questions of different biological response modifiers, a new class of drugs, in the clinical care of RA patients. PMID:29081616

  4. Athletic Training Student Core Competency Implementation During Patient Encounters.

    PubMed

    Cavallario, Julie M; Van Lunen, Bonnie L; Hoch, Johanna M; Hoch, Matthew; Manspeaker, Sarah A; Pribesh, Shana L

    2018-03-01

      Health care research evidence suggests that early patient encounters (PEs), as well as the purposeful implementation of professional core competencies (CCs), for athletic training students (ATSs) may be beneficial to their ability to provide care. However, no investigators have related facets of the clinical education experience with CC implementation as a form of summative assessment of the clinical experience.   To determine the relationship between the frequency and length of PEs, as well as the student's role and clinical site during PEs, and the students' perceived CC implementation during these encounters.   Cross-sectional study.   Professional athletic training program, National Collegiate Athletic Association Division I institution.   We purposefully recruited 1 athletic training program that used E*Value software; 40 participants (31 females, 9 males) enrolled in the professional phase (12 first year, 14 second year, 14 third year) participated.   Participants viewed a 20-minute recorded CC educational module followed by educational handouts, which were also posted online for reference throughout the semester. The E*Value software was used to track PEs, including the type of encounter (ie, actual patient, practice encounter, didactic practice scenario), the type of site where the encounter occurred (university, high school), and the participant's role (observed, assisted, performed), as well as responses to an added block of questions indicating which, if any, of the CCs were implemented during the PE.   Variables per patient were PE length (minutes), participant role, site at which the encounter occurred, and whether any of the 6 CCs were implemented ( yes/ no). Variables per participant were average encounter length (minutes), encounter frequency, modal role, clinical site assignment, and the number of times each CC was implemented. Separate 1-way analyses of variance were used to examine the relationships between role or clinical site and implementation of total number of CCs. Multiple linear regressions were used to determine how the average length and frequency of PEs were related to the average and total number of implemented CCs. Binary logistic regression models indicated how the length of each encounter, role of the participant, and type of clinical site related to the implementation of each CC.   The roles of participants during PEs were related to their ability to implement the total number of CCs ( F = 103.48, P < .001). Those who observed were likely to implement fewer total CCs than those who assisted (M diff = -0.29, P < .001); those who assisted were likely to implement more total CCs than those who performed (M diff = 0.32, P < .001). Frequency of encounters was the only significant variable in the model examining all independent variables with CC implementation ( b 4,32 = 3.34, t = 9.46, P < .001).   The role of the student, namely assisting during PEs, and the volume of PEs should be considered priorities for students to promote greater CC implementation.

  5. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  6. Improvements to the construction of binary black hole initial data

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla

    2015-12-01

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  7. Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs

    NASA Astrophysics Data System (ADS)

    Fu, Hai

    2016-09-01

    Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.

  8. Adaptation of Chain Event Graphs for use with Case-Control Studies in Epidemiology.

    PubMed

    Keeble, Claire; Thwaites, Peter Adam; Barber, Stuart; Law, Graham Richard; Baxter, Paul David

    2017-09-26

    Case-control studies are used in epidemiology to try to uncover the causes of diseases, but are a retrospective study design known to suffer from non-participation and recall bias, which may explain their decreased popularity in recent years. Traditional analyses report usually only the odds ratio for given exposures and the binary disease status. Chain event graphs are a graphical representation of a statistical model derived from event trees which have been developed in artificial intelligence and statistics, and only recently introduced to the epidemiology literature. They are a modern Bayesian technique which enable prior knowledge to be incorporated into the data analysis using the agglomerative hierarchical clustering algorithm, used to form a suitable chain event graph. Additionally, they can account for missing data and be used to explore missingness mechanisms. Here we adapt the chain event graph framework to suit scenarios often encountered in case-control studies, to strengthen this study design which is time and financially efficient. We demonstrate eight adaptations to the graphs, which consist of two suitable for full case-control study analysis, four which can be used in interim analyses to explore biases, and two which aim to improve the ease and accuracy of analyses. The adaptations are illustrated with complete, reproducible, fully-interpreted examples, including the event tree and chain event graph. Chain event graphs are used here for the first time to summarise non-participation, data collection techniques, data reliability, and disease severity in case-control studies. We demonstrate how these features of a case-control study can be incorporated into the analysis to provide further insight, which can help to identify potential biases and lead to more accurate study results.

  9. The Benefits of Anticipatory Grief for the Parents of Dying Children

    ERIC Educational Resources Information Center

    Powers, Meredith A.

    1977-01-01

    The crisis of losing a child is described by a parent as she personally rethinks her experiences with terminal illness and grief, the reactions of family and friends, and her encounter with the hospital system and family counseling. (Author)

  10. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  11. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  12. Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2012-02-01

    We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1-3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL) with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated. This project is supported by Siemens Corporate Technology.

  13. Spins of complex fragments in binary reactions within a dinuclear system model

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2017-10-01

    The average angular momenta and widths of the spin distributions of reaction products are calculated within the dinuclear system model. The thermal excitation of rotational bearing modes is considered in the dinuclear system. The calculated fragment spins (γ multiplicities) and their variances in the reactions 20Ne (166 MeV) + 63Cu, 40Ar (280 MeV) + 58Ni, 20Ne (175 MeV) + natAg, 40Ar (237 MeV) + 89Y, 40Ar (288 and 340 MeV) + Ag,109107, and 16O (100 MeV) + 58Ni are compared with the available experimental data. The influence of the entrance channel charge (mass) asymmetry and bombarding energy on the characteristics of spin distribution is studied.

  14. Facile Fabrication of Hierarchically Thermoresponsive Binary Polymer Pattern for Controlled Cell Adhesion.

    PubMed

    Hou, Jianwen; Cui, Lele; Chen, Runhai; Xu, Xiaodong; Chen, Jiayue; Yin, Ligang; Liu, Jingchuan; Shi, Qiang; Yin, Jinghua

    2018-03-01

    A versatile platform allowing capture and detection of normal and dysfunctional cells on the same patterned surface is important for accessing the cellular mechanism, developing diagnostic assays, and implementing therapy. Here, an original and effective method for fabricating binary polymer brushes pattern is developed for controlled cell adhesion. The binary polymer brushes pattern, composed of poly(N-isopropylacrylamide) (PNIPAAm) and poly[poly(ethylene glycol) methyl ether methacrylate] (POEGMA) chains, is simply obtained via a combination of surface-initiated photopolymerization and surface-activated free radical polymerization. This method is unique in that it does not utilize any protecting groups or procedures of backfilling with immobilized initiator. It is demonstrated that the precise and well-defined binary polymer patterns with high resolution are fabricated using this facile method. PNIPAAm chains capture and release cells by thermoresponsiveness, while POEGMA chains possess high capability to capture dysfunctional cells specifically, inducing a switch of normal red blood cells (RBCs) arrays to hemolytic RBCs arrays on the pattern with temperature. This novel platform composed of binary polymer brush pattern is smart and versatile, which opens up pathways to potential applications as microsensors, biochips, and bioassays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    PubMed

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  16. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  17. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  18. Importance of serum basal tryptase levels in children with insect venom allergy.

    PubMed

    Yavuz, S T; Sackesen, C; Sahiner, U M; Buyuktiryaki, B; Arik Yilmaz, E; Sekerel, B E; Soyer, O U; Tuncer, A

    2013-03-01

    The importance of serum basal tryptase (sBT) levels on patients with venom allergy is highlighted in recent adulthood studies. The aim of this study was to evaluate the sBT levels of venom-allergic children with varying severity of clinical reactions. We also aimed to document the association between sBT levels and severe systemic reactions (SR). Serum basal tryptase levels were estimated by UniCAP (Pharmacia & Upjohn, Uppsala, Sweden). Children who suffered from large local reaction (LLR) or SR after insect stings were included along with healthy control subjects without a history of any local or SR after insect stings. A total of 128 children (55 with SR, 18 with LLR, and 55 age and sex-matched control subjects) with a median age of 8.9 years (range 3.2-17.4) were enrolled. Severe SR was encountered in 24 (44%) patients with SRs. The median level of sBT in children with SRs (median, interquartile range) [4.2 μg/l (3.6-4.9)] was significantly higher than in children with LLRs [3.1 μg/l (2.5-4.0)] and healthy control subjects [2.9 μg/l (2.3-3.4)] (P < 0.001). Logistic regression analysis revealed sBT ≥ 4.8 μg/l as a significant risk factor for severe SR (5.7 [1.5-21.4]; P = 0.01) in children with venom allergy. Our results indicate that sBT levels are associated with a higher risk of severe SR in children with insect venom hypersensitivity. Determination of sBT levels may help clinicians to identify patients under risk of severe SRs and optimal and timely use of therapeutic interventions in children with venom allergy. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data

    NASA Astrophysics Data System (ADS)

    Brew, Julian; Holzinger, Marcus J.

    2018-05-01

    Recent progress in the detection of small space objects, at geosynchronous altitudes, through ground-based optical and radar measurements is demonstrated as a viable method. However, in general, these methods are limited to detection of objects greater than 10 cm. This paper examines the use of magnetometers to detect plausible flyby encounters with charged space objects using a matched filter signal existence binary hypothesis test approach. Relevant data-set processing and reduction of archival fluxgate magnetometer data from the NASA THEMIS mission is discussed in detail. Using the proposed methodology and a false alarm rate of 10%, 285 plausible detections with probability of detection greater than 80% are claimed and several are reviewed in detail.

  20. A Telescopic Binary Learning Machine for Training Neural Networks.

    PubMed

    Brunato, Mauro; Battiti, Roberto

    2017-03-01

    This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.

  1. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    PubMed

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (< 1 g m-3) and VOC loads (< 50 g m-3 hr-1). Recently, however, U.S. industry has shown an interest in applying biofilters to higher concentrations of VOCs and hazardous air pollutants (HAPs). In this study, the behavior of biofilters under high loads of binary VOC mixtures was studied. Two bench-scale biofilters were operated using a commercially available medium and a mixture of wood chips and compost. Both were exposed to varying mixtures of ethyl acetate and toluene. Concentration profiles and the corresponding removal efficiencies as a function of VOC loading were determined through frequent grab-sampling and GC analysis. Biofilter response to two frequently encountered operating problems--media dry-out and operating temperatures exceeding 40 degrees C--was also evaluated under controlled conditions. Microbial populations were also monitored to confirm the presence of organisms capable of degrading both major off-gas constituents. The results demonstrated several characteristics of biofilters operating under high VOC load conditions. Maximum elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  2. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites. Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.

  3. Construction of New Potential Reactivators of Phosphonylated Acetylcholinesterase. Substitution of F for H in the Nucleus of Pyridinecarboxaldehyde Oximes.

    DTIC Science & Technology

    1983-11-01

    essential to the content of the re- port and in all cases NMR data subjected to interpretation in this report have been entered in typography to...compared. In the Second Quarter reactions in the synthetic pathway to 3-F-2-PAM were scaled-up. Low yields were encountered for the specific nitration...oxime was synthetically achieved by way of the Markovac-Stevens-Ash-Hackley reaction , and the compound was characterized by its mass spectrum, NMR

  4. Theoretical Modeling of Molecular and Electron Kinetic Processes. Volume I. Theoretical Formulation of Analysis and Description of Computer Program.

    DTIC Science & Technology

    1979-01-01

    syn- thesis proceed s by ignoring unacceptable syntax or other errors , pro- tection against subsequent execution of a faulty reaction scheme can be...resulting TAPE9 . During subroutine syn thesis and reaction processing, a search is made (fo r each secondary electron collision encountered) to...program library, which can be cat- alogued and saved if any future specialized modifications (beyond the scope of the syn thesis capability of LASER

  5. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding.

    PubMed

    Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu

    Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.

  6. Subsocial Cockroaches Nauphoeta cinerea Mate Indiscriminately with Kin Despite High Costs of Inbreeding

    PubMed Central

    Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu

    2016-01-01

    Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition. PMID:27655156

  7. Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers.

    PubMed

    Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin

    2013-01-01

    DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.

  8. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  9. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  10. NANOGrav Constraints on Gravitational Wave Bursts with Memory

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Demorest, P. B.; Deng, X.; Dolch, T.; Ellis, J. A.; Ferdman, R. D.; Fonseca, E.; Garver-Daniels, N.; Jenet, F.; Jones, G.; Kaspi, V. M.; Koop, M.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; Lommen, A. N.; Lorimer, D. R.; Luo, J.; Lynch, R. S.; Madison, D. R.; McLaughlin, M. A.; McWilliams, S. T.; Nice, D. J.; Palliyaguru, N.; Pennucci, T. T.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stinebring, D. R.; Stovall, K.; Swiggum, J.; Vallisneri, M.; van Haasteren, R.; Wang, Y.; Zhu, W. W.; NANOGrav Collaboration

    2015-09-01

    Among efforts to detect gravitational radiation, pulsar timing arrays are uniquely poised to detect “memory” signatures, permanent perturbations in spacetime from highly energetic astrophysical events such as mergers of supermassive black hole binaries. The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) observes dozens of the most stable millisecond pulsars using the Arecibo and Green Bank radio telescopes in an effort to study, among other things, gravitational wave memory. We herein present the results of a search for gravitational wave bursts with memory (BWMs) using the first five years of NANOGrav observations. We develop original methods for dramatically speeding up searches for BWM signals. In the directions of the sky where our sensitivity to BWMs is best, we would detect mergers of binaries with reduced masses of {10}9 {M}⊙ out to distances of 30 Mpc; such massive mergers in the Virgo cluster would be marginally detectable. We find no evidence for BWMs. However, with our non-detection, we set upper limits on the rate at which BWMs of various amplitudes could have occurred during the time spanned by our data—e.g., BWMs with amplitudes greater than 10-13 must encounter the Earth at a rate less than 1.5 yr-1.

  11. Application of the Grunwald-Winstein Equations to Studies of Solvolytic Reactions of Chloroformate and Fluoroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Kevill, Dennis N.

    2014-01-01

    Chloroformates are important laboratory and industrial chemicals with almost one hundred listed in the catalogs of leading suppliers. They are, for example, of prime importance as protecting groups in peptide synthesis. In some instances, the more stable fluoroformate is preferred. In recent years, the specific rates of solvolysis (k) for chloroformates and fluoroformates in solvents of widely ranging nucleophilicity and ionizing power have been studied. Analysis of these rates using the extended (two-term) Grunwald-Winstein equation has led to important information concerning reaction mechanism. Also assisting in this effort have been studies of kinetic solvent isotope effects (KSIE), of leaving group effects (especially kF/kCl ratios), and of entropies of activation from studies of specific rate variations with temperature. For solvolyses of chloroformate esters, two mechanisms (addition-elimination and ionization) are commonly encountered. For solvolyses of fluoroformates, mainly because of a strong C–F bond, the ionization pathway is rare and the addition-elimination pathway is in most situations the one encountered. PMID:25364780

  12. Reaction rate for carbon burning in massive stars

    DOE PAGES

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; ...

    2018-01-10

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+ 12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+ 12C fusion cross sections where these backgrounds have been minimized. In conclusion, it is found that the astrophysical S factor exhibits a maximum around E cm=3.5–4.0 MeV, which leadsmore » to a reduction of the previously predicted astrophysical reaction rate.« less

  13. DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls.

    PubMed

    Krzemińska, Agnieszka; Paneth, Piotr

    2016-06-21

    Nucleophilic dechlorination of all 209 PCBs congeners by ethylene glycol anion has been studied theoretically at the DFT level. The obtained Gibbs free energies of activation are in the range 7-22 kcal/mol. The reaction Gibbs free energies indicate that all reactions are virtually irreversible. Due to geometric constrains these reactions undergo rather untypical attack with attacking oxygen atom being nearly perpendicular to the attacked C-Cl bond. The most prone to substitution are chlorine atoms that occupy ortho- (2, 2', 6, 6') positions. These results provide extensive information on the PEG/KOH dependent PCBs degradation. They can also be used in further developments of reaction class transition state theory (RC-TST) for description of complex reactive systems encountered for example in combustion processes.

  14. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  15. Co/NHPI-mediated aerobic oxygenation of benzylic C–H bonds in pharmaceutically relevant molecules

    DOE PAGES

    Hruszkewycz, Damian P.; Miles, Kelsey C.; Thiel, Oliver R.; ...

    2016-10-07

    A simple cobalt(II)/N-hydroxyphthalimide catalyst system has been identified for selective conversion of benzylic methylene groups in pharmaceutically relevant (hetero)arenes to the corresponding (hetero)aryl ketones. The radical reaction pathway tolerates electronically diverse benzylic C–H bonds, contrasting recent oxygenation reactions that are initiated by deprotonation of a benzylic C–H bond. The reactions proceed under practical reaction conditions (1 M substrate in BuOAc or EtOAc solvent, 12 h, 90–100 °C), and they tolerate common heterocycles, such as pyridines and imidazoles. A cobalt-free, electrochemical, NHPI-catalyzed oxygenation method overcomes challenges encountered with chelating substrates that inhibit the chemical reaction. The utility of the aerobic oxidationmore » method is showcased in the multigram synthesis of a key intermediate towards a drug candidate (AMG 579) under process-relevant reaction conditions.« less

  16. Magnetic Fields and Multiple Protostar Formation

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    2001-12-01

    Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.

  17. Collapse and Fragmentation of Molecular Cloud Cores. VII. Magnetic Fields and Multiple Protostar Formation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2002-04-01

    Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.

  18. Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department.

    PubMed

    Brown, Samuel M; Jones, Jason; Kuttler, Kathryn Gibb; Keddington, Roger K; Allen, Todd L; Haug, Peter

    2016-08-22

    Sepsis is an often-fatal syndrome resulting from severe infection. Rapid identification and treatment are critical for septic patients. We therefore developed a probabilistic model to identify septic patients in the emergency department (ED). We aimed to produce a model that identifies 80 % of sepsis patients, with no more than 15 false positive alerts per day, within one hour of ED admission, using routine clinical data. We developed the model using retrospective data for 132,748 ED encounters (549 septic), with manual chart review to confirm cases of severe sepsis or septic shock from January 2006 through December 2008. A naïve Bayes model was used to select model features, starting with clinician-proposed candidate variables, which were then used to calculate the probability of sepsis. We evaluated the accuracy of the resulting model in 93,733 ED encounters from April 2009 through June 2010. The final model included mean blood pressure, temperature, age, heart rate, and white blood cell count. The area under the receiver operating characteristic curve (AUC) for the continuous predictor model was 0.953. The binary alert achieved 76.4 % sensitivity with a false positive rate of 4.7 %. We developed and validated a probabilistic model to identify sepsis early in an ED encounter. Despite changes in process, organizational focus, and the H1N1 influenza pandemic, our model performed adequately in our validation cohort, suggesting that it will be generalizable.

  19. Pet ownership increases human risk of encountering ticks.

    PubMed

    Jones, E H; Hinckley, A F; Hook, S A; Meek, J I; Backenson, B; Kugeler, K J; Feldman, K A

    2018-02-01

    We examined whether pet ownership increased the risk for tick encounters and tickborne disease among residents of three Lyme disease-endemic states as a nested cohort within a randomized controlled trial. Information about pet ownership, use of tick control for pets, property characteristics, tick encounters and human tickborne disease were captured through surveys, and associations were assessed using univariate and multivariable analyses. Pet-owning households had 1.83 times the risk (95% CI = 1.53, 2.20) of finding ticks crawling on and 1.49 times the risk (95% CI = 1.20, 1.84) of finding ticks attached to household members compared to households without pets. This large evaluation of pet ownership, human tick encounters and tickborne diseases shows that pet owners, whether of cats or dogs, are at increased risk of encountering ticks and suggests that pet owners are at an increased risk of developing tickborne disease. Pet owners should be made aware of this risk and be reminded to conduct daily tick checks of all household members, including the pets, and to consult their veterinarian regarding effective tick control products. © 2017 Blackwell Verlag GmbH.

  20. Development of an assay for rapid identification of meat from yak and cattle using polymerase chain reaction technique.

    PubMed

    Yin, R H; Bai, W L; Wang, J M; Wu, C D; Dou, Q L; Yin, R L; He, J B; Luo, G B

    2009-09-01

    Yak meat is of good quality with fine texture, high protein and low fat content, and rich in amino acids compared with that of cattle, and it lacks anabolic steroids or other drugs. In general terms, however, the meat yield of yak is relatively low compared with that of the cattle. In order to prevent possible adulteration of yak meat with cattle meat, based on the sequence of mitochondrial 12S rRNA gene, a multiplex PCR-based approach was proposed for rapid identification of the meat from yak and cattle using three primers designed in this work. Through the combinatorial usage of three primers with a single reaction set, two fragments of 290 and 159bp were amplified from the cattle meat DNA, whereas only a fragment of 290bp was obtained from the yak meat DNA. Using the assay described, satisfactory amplification was accomplished in the analysis of raw and heat-treated binary meat mixtures of yak/cattle with a detection limit of 0.1% for cattle meat. The technique is fast and straightforward. It might be a useful tool in the quality control of yak meat and meat products.

  1. Ternary gradient metal-organic frameworks.

    PubMed

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  2. Orange-spotted grouper Epinephelus coioides that have encountered low salinity stress have decreased cellular and humoral immune reactions and increased susceptibility to Vibrio alginolyticus.

    PubMed

    Chen, Yu-Yuan; Cheng, Ann-Chang; Cheng, Shao-An; Chen, Jiann-Chu

    2018-06-18

    Orange-spotted grouper Epinephelus coioides reared at 34‰ and 27 °C were abruptly transferred to 6‰, 20‰ and 34‰ (control) and examined for innate cellular and humoral parameters after 3-96 h. Total leucocyte count (TLC), respiratory burst (RB), phagocytic activity (PA), alternative complement pathway (ACP) and lysozyme activity were significantly decreased 3-6 h, 3-6 h, 3-96 h, 3-96 h and 3-96 h, respectively after transferal into 6‰ salinity. TLC, RB and PA significantly increased after 3-48 h, 3-96 h and 3-24 h, respectively, with recovery of TLC and PA after 96 h and 48-96 h, whereas ACP and lysozyme activity significantly decreased 3-96 h after being transferred to 20‰. In another experiment, grouper reared at 34‰ and 27 °C were injected with Vibrio alginolyticus grown in tryptic soy broth (TSB) at 2.3 × 10 9  colony-forming units (cfu) fish -1 and then transferred to 6‰, 20‰ and 34‰ (control). The cumulative mortalities of V. alginolyticus-injected fish held in 6‰ were significantly higher than in injected fish held at 20‰ and 34‰. It was concluded that grouper E. coioides encountering a 34‰-6‰ salinity drop stress exhibited a depression in immunity as evidenced by decreased cellular and humoral parameters and increased susceptibility to V. alginolyticus. Grouper encountering a salinity stress drop from 34‰ to 20‰, however, exhibited decreased humoral immune parameters but also increased TLC and cellular immune parameters, indicating immunomodulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Constructing binary black hole initial data with high mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  4. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  5. The reaction mechanism of methyl-coenzyme M reductase: How an enzyme enforces strict binding order

    DOE PAGES

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-02-17

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB 7SH) to CH 4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM)more » is productive whereas the other (MCR·CoB 7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB 7SH complex is highly disfavored ( Kd = 56 mM). However, binding of CoB 7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB 7SH·MCR(Ni I)·CH 3SCoM) is highly favored ( Kd = 79 μM). Only then can the chemical reaction occur ( kobs = 20 s -1 at 25 °C), leading to rapid formation and dissociation of CH 4 leaving the binary product complex (MCR(Ni II)·CoB 7S -·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. In conclusion, this first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates.« less

  6. On boredom: a close encounter with encapsulated parts of the psyche.

    PubMed

    Bergstein, Avner

    2009-06-01

    The psychoanalytical literature has numerous scattered references to the analyst's experience of boredom, especially amongst writers working with primitive mental states. In the present paper, the author tries to gather some of these references in an attempt to integrate the various facets of this widespread phenomenon, and reflect on some clinical issues and dilemmas it raises. It is suggested that the experience of boredom in analysis may be a reaction to an encounter with a hidden, encapsulated part of the psyche, a bidimensional area of experience in which mental activity has been suspended, and experience remains meaningless. This is a barren area of lack, an encounter with the autistic core of the psyche. However, boredom may also be an experiential expression of despair, a re-living of primitive object relations with an emotionally non-existent primary object. Through bringing the emptiness and desolation into analysis, the individual makes room for the empty, blunt, dead inner object which resides within him, and that needs to be integrated into the psyche. This inner object is a vital part of the patient's inner world, part of his history, and can neither be erased nor filled in order to eradicate the emptiness. This is illustrated by clinical material from patients along the spectrum of autism, autistic reaction following trauma and autistic barriers in neurotic patients.

  7. Voyager 2 Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Hill, M.

    1982-01-01

    A description is given of the Voyager Attitude and Articulation Control System (AACS). The complex series of maneuvers required for Voyager 2 during the near encounter period to obtain fields and particle data, track the limb of Saturn during the earth occultation period, and reflect the RF beam off the Saturnian ring system are discussed. It is noted that some of these maneuvers involved rotating the spacecraft simultaneously about multiple axes while maintaining accurate pointing of the scan platform, a first for interplanetary missions. Also described are two anomalies experienced by the AACS during the near encounter period. The first was the significant roll attitude error that occurred shortly after all axis inertial control and that continued to grow until celestial reacquisition. The second was that the scan platform slewing in the azimuth axis stopped midway through the near encounter. These anomalies are analyzed, and their effect on future missions is assessed.

  8. Occupational asthma due to formaldehyde.

    PubMed Central

    Burge, P S; Harries, M G; Lam, W K; O'Brien, I M; Patchett, P A

    1985-01-01

    Bronchial provocation studies on 15 workers occupationally exposed to formaldehyde are described. The results show that formaldehyde exposure can cause asthmatic reactions, and suggest that these are sometimes due to hypersensitivity and sometimes to a direct irritant effect. Three workers had classical occupational asthma caused by formaldehyde fumes, which was likely to be due to hypersensitivity, with late asthmatic reactions following formaldehyde exposure. Six workers developed immediate asthmatic reactions, which were likely to be due to a direct irritant effect as the reactions were shorter in duration than those seen after soluble allergen exposure and were closely related to histamine reactivity. The breathing zone concentrations of formaldehyde required to elicit these irritant reactions (mean 4.8 mg/m3) were higher than those encountered in buildings recently insulated with urea formaldehyde foam, but within levels sometimes found in industry. Images PMID:4023975

  9. Controlling total spot power from holographic laser by superimposing a binary phase grating.

    PubMed

    Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying

    2011-04-25

    By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.

  10. "I am yet to encounter any survey that actually reflects my life": a qualitative study of inclusivity in sexual health research.

    PubMed

    Carrotte, Elise R; Vella, Alyce M; Bowring, Anna L; Douglass, Caitlin; Hellard, Margaret E; Lim, Megan S C

    2016-07-27

    Heteronormativity describes a set of norms and assumptions pertaining to heterosexual identities and binary gender. In 2015, we conducted our annual Sex, Drugs and Rock'n'Roll study, an online health survey of over 1000 Victorians aged 15-29 years. Feedback from participants suggested that our survey contained heteronormative language. In response to this, we aimed to make inclusive changes to our survey via consultation with young gender and sexually diverse (GSD) people. We conducted two semi-structured focus groups in Melbourne with a total of 16 participants (age range: 21-28 years). Participants were mostly cisgender women, and there were two transgender participants and one non-binary participant. Participants also had a range of sexual identities including lesbian, queer, bisexual, pansexual, and asexual. Focus group discussions were transcribed verbatim and analysed thematically. Most participants indicated heteronormativity affects their lives in multiple ways, noting its impacts on access to sexual healthcare, invalidating sexual experiences and miscommunication in forms and surveys. Overall, participants emphasised the need for sexual health research to avoid assumptions about behaviour, to be clear and eliminate question ambiguity and avoiding treating gender as binary. Participants also discussed how the Sex, Drugs and Rock'n'Roll survey could address a range of sexual behaviours and experiences, rather than focusing on penetrative sex, which many participants found invalidating. Our findings have important implications for future health surveys aimed at general populations. We present recommendations that encourage research to be more inclusive to ensure data collection from GSD participants is respectful and rigorous.

  11. Missing binary data extraction challenges from Cochrane reviews in mental health and Campbell reviews with implications for empirical research.

    PubMed

    Spineli, Loukia M

    2017-12-01

    Tο report challenges encountered during the extraction process from Cochrane reviews in mental health and Campbell reviews and to indicate their implications on the empirical performance of different methods to handle missingness. We used a collection of meta-analyses on binary outcomes collated from a previous work on missing outcome data. To evaluate the accuracy of their extraction, we developed specific criteria pertaining to the reporting of missing outcome data in systematic reviews. Using the most popular methods to handle missing binary outcome data, we investigated the implications of the accuracy of the extracted meta-analysis on the random-effects meta-analysis results. Of 113 meta-analyses from Cochrane reviews, 60 (53%) were judged as "unclearly" extracted (ie, no information on the outcome of completers but available information on how missing participants were handled) and 42 (37%) as "unacceptably" extracted (ie, no information on the outcome of completers as well as no information on how missing participants were handled). For the remaining meta-analyses, it was judged that data were "acceptably" extracted (ie, information on the completers' outcome was provided for all trials). Overall, "unclear" extraction overestimated the magnitude of the summary odds ratio and the between-study variance and additionally inflated the uncertainty of both meta-analytical parameters. The only eligible Campbell review was judged as "unclear." Depending on the extent of missingness, the reporting quality of the systematic reviews can greatly affect the accuracy of the extracted meta-analyses and by extent, the empirical performance of different methods to handle missingness. Copyright © 2017 John Wiley & Sons, Ltd.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonini, Fabio; Chatterjee, Sourav; Rodriguez, Carl L.

    Hierarchical triple-star systems are expected to form frequently via close binary–binary encounters in the dense cores of globular clusters (GCs). In a sufficiently inclined triple, gravitational interactions between the inner and outer binary can cause large-amplitude oscillations in the eccentricity of the inner orbit (“Lidov–Kozai (LK) cycles”), which can lead to a collision and merger of the two inner components. In this paper we use Monte Carlo models of dense star clusters to identify all triple systems formed dynamically and we compute their evolution using a highly accurate three-body integrator which incorporates relativistic and tidal effects. We find that amore » large fraction of these triples evolve through a non-secular dynamical phase which can drive the inner binary to higher eccentricities than predicted by the standard secular perturbation theory (even including octupole-order terms). We place constraints on the importance of LK-induced mergers for producing: (i) gravitational wave sources detectable by Advanced LIGO (aLIGO), for triples with an inner pair of stellar black holes (BHs); and (ii) blue straggler stars, for triples with main-sequence-star components. We find a realistic aLIGO detection rate of BH mergers due to the LK mechanism of ∼1 yr{sup −1}, with about 20% of these having a finite eccentricity when they first chirp into the aLIGO frequency band. While rare, these events are likely to dominate among eccentric compact object inspirals that are potentially detectable by aLIGO. For blue stragglers, we find that the LK mechanism can contribute up to ∼10% of their total numbers in GCs.« less

  13. Actions and Reactions: Exploring International Students' Use of Online Information Resources

    ERIC Educational Resources Information Center

    Hughes, Hilary

    2005-01-01

    The trends in higher education towards internationalisation and increasing dependence on ICTs (information and communication technologies) are contributing to the diversification of the student population and their learning needs. In this context learners may encounter an array of educational and technological challenges. For international…

  14. South East Asia to America: Links in a Chain (Part Two).

    ERIC Educational Resources Information Center

    Rose, Peter I.

    1981-01-01

    Discusses the transfer of Indochinese refugees from Southeast Asia to the United States, their stay in interim refugee camps, the voyage by plane, bureaucratic problems, and their first encounter with American life. Provides an anecdotal account of one family's experiences and reactions. (GC)

  15. Transformation of Lesquerella fendleri with the new binary vector pGPro4-35S

    USDA-ARS?s Scientific Manuscript database

    Crop genetic engineering requires the use of various promoters to control the expression of introduced transgenes. Some of the binary vectors currently available for promoter characterization in dicotyledonous plants have pitfalls due to their construction, such as containing a selectable marker ca...

  16. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less

  17. Pattern formation in binary colloidal assemblies: hidden symmetries in a kaleidoscope of structures.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2018-06-10

    In this study we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of non-preservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology in order to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are precious for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor physical properties of colloidal assemblies.

  18. Satellite radiance data assimilation for binary tropical cyclone cases over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Choi, Yonghan; Cha, Dong-Hyun; Lee, Myong-In; Kim, Joowan; Jin, Chun-Sil; Park, Sang-Hun; Joh, Min-Su

    2017-06-01

    A total of three binary tropical cyclone (TC) cases over the Western North Pacific are selected to investigate the effects of satellite radiance data assimilation on analyses and forecasts of binary TCs. Two parallel cycling experiments with a 6 h interval are performed for each binary TC case, and the difference between the two experiments is whether satellite radiance observations are assimilated. Satellite radiance observations are assimilated using the Weather Research and Forecasting Data Assimilation (WRFDA)'s three-dimensional variational (3D-Var) system, which includes the observation operator, quality control procedures, and bias correction algorithm for radiance observations. On average, radiance assimilation results in slight improvements of environmental fields and track forecasts of binary TC cases, but the detailed effects vary with the case. When there is no direct interaction between binary TCs, radiance assimilation leads to better depictions of environmental fields, and finally it results in improved track forecasts. However, positive effects of radiance assimilation on track forecasts can be reduced when there exists a direct interaction between binary TCs and intensities/structures of binary TCs are not represented well. An initialization method (e.g., dynamic initialization) combined with radiance assimilation and/or more advanced DA techniques (e.g., hybrid method) can be considered to overcome these limitations.

  19. Mobbing behaviors encountered by nurse teaching staff.

    PubMed

    Yildirim, Dilek; Yildirim, Aytolan; Timucin, Arzu

    2007-07-01

    The term 'mobbing' is defined as antagonistic behaviors with unethical communication directed systematically at one individual by one or more individuals in the workplace. This cross-sectional and descriptive study was conducted for the purpose of determining the mobbing behaviors encountered by nursing school teaching staff in Turkey, its effect on them, and their responses to them. A large percentage (91%) of the nursing school employees who participated in this study reported that they had encountered mobbing behaviors in the institution where they work and 17% that they had been directly exposed to mobbing in the workplace. The academic staff who had been exposed to mobbing behaviors experienced various physiological, emotional and social reactions. They frequently 'worked harder and [were] more organized and worked very carefully to avoid criticism' to escape from mobbing. In addition, 9% of the participants stated that they 'thought about suicide occasionally'.

  20. 0{degree} binary encounter electron production in 30-MeV O{ital {sup q}}{sup +}+H{sub 2}, He, O{sub 2}, Ne, and Ar collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.; Wong, K.L.; Grabbe, S.

    Double-differential cross sections (DDCS{close_quote}s) for the production of binary encounter electrons (BEE{close_quote}s) were measured for collisions of 30-MeV O{sup {ital q}+} projectiles with H{sub 2}, He, O{sub 2}, Ne, and Ar targets with {ital q}=4{endash}8 and an electron ejection angle of {theta}=0{degree} with respect to the beam direction. Particular interest focused on (a) the evaluation of the contributions of the different electron subshells of the multielectron targets, O{sub 2}, Ne, and Ar; (b) the study of the well-known enhancement of the BEE DDCS{close_quote}s with decreasing projectile charge-state {ital q}; here this dependence was tested for higher collision energies and newmore » targets; (c) the study of the dependence of the BEE {ital peak} {ital energy} on the particular target and projectile charge state. Results were analyzed in terms of the impulse approximation, in which target electrons in the projectile frame undergo 180{degree} elastic scattering in the field of the projectile ion. The electron scattering calculations were performed in a partial-wave treatment using the Hartree-Fock model. Good agreement with the data was found for the H{sub 2} and He targets, while for the multielectron targets O{sub 2}, Ne, and Ar only electrons whose velocity was lower than the projectile velocity needed to be included for good agreement. All measured BEE DDCS{close_quote}s were found to increase with decreasing projectile charge state, in agreement with other recent BEE results. The BEE peak energies were found to be independent of the projectile charge state for all targets utilized. {copyright} {ital 1996 The American Physical Society.}« less

  1. Role of precursor crystal structure on electrochemical performance of carbide-derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey

    2015-03-01

    Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.

  2. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  3. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  4. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  5. Brief communication: Reaction to fire by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: Conceptualization of "fire behavior" and the case for a chimpanzee model.

    PubMed

    Pruetz, Jill D; LaDuke, Thomas C

    2010-04-01

    The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.

  6. Binary neutron stars with arbitrary spins in numerical relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2015-12-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  7. The binary protein-protein interaction landscape of Escherichia coli

    PubMed Central

    Rajagopala, Seesandra V.; Vlasblom, James; Arnold, Roland; Franca-Koh, Jonathan; Pakala, Suman B.; Phanse, Sadhna; Ceol, Arnaud; Häuser, Roman; Siszler, Gabriella; Wuchty, Stefan; Emili, Andrew; Babu, Mohan; Aloy, Patrick; Pieper, Rembert; Uetz, Peter

    2014-01-01

    Efforts to map the Escherichia coli interactome have identified several hundred macromolecular complexes, but direct binary protein-protein interactions (PPIs) have not been surveyed on a large scale. Here we performed yeast two-hybrid screens of 3,305 baits against 3,606 preys (~70% of the E. coli proteome) in duplicate to generate a map of 2,234 interactions, approximately doubling the number of known binary PPIs in E. coli. Integration of binary PPIs and genetic interactions revealed functional dependencies among components involved in cellular processes, including envelope integrity, flagellum assembly and protein quality control. Many of the binary interactions that could be mapped within multi-protein complexes were informative regarding internal topology and indicated that interactions within complexes are significantly more conserved than those interactions connecting different complexes. This resource will be useful for inferring bacterial gene function and provides a draft reference of the basic physical wiring network of this evolutionarily significant model microbe. PMID:24561554

  8. Dermatology for the Allergist

    PubMed Central

    Lockey, Richard

    2010-01-01

    Abstract: Allergists/immunologists see patients with a variety of skin disorders. Some, such as atopic and allergic contact dermatitis, are caused by abnormal immunologic reactions, whereas others, such as seborrheic dermatitis or rosacea, lack an immunologic basis. This review summarizes a select group of dermatologic problems commonly encountered by an allergist/immunologist. PMID:23268431

  9. Teaching Organic Synthesis: A Comparative Case Study Approach

    ERIC Educational Resources Information Center

    Vosburg, David A.

    2008-01-01

    In this course, students encounter reactions and mechanisms in the context of landmark syntheses of biologically important molecules. Students closely examine pairs of syntheses of related or identical molecules to facilitate their appreciation for synthetic strategy. They then write short, creative papers that critically compare the two synthetic…

  10. The Vocational Rehabilitation of Minorities [and] Reactions.

    ERIC Educational Resources Information Center

    Giles, Frank L.; And Others

    This paper addresses problems encountered by minorities in accessing the state/federal vocational rehabilitation (VR) system, how minorities have fared in the system, the lack of trained minorities in the VR counseling profession, and a comparison of private-for-profit and state/federal VR programs. Minorities considered include Blacks, Hispanic…

  11. Memory and Mourning: An Exhibit History

    ERIC Educational Resources Information Center

    Eberle, Scott G.

    2005-01-01

    Mounted by the Strong Museum in Rochester, New York, in 1993, and traveling nationally thereafter, the exhibit Memory and Mourning provided historical and contemporary perspectives to help museum guests explore their own reactions to loss and grief. In the process the exhibit's development team encountered a range of philosophical, historical,…

  12. The Empirical Stranger.

    ERIC Educational Resources Information Center

    Austin, Norman

    1988-01-01

    Questions the integrity of Meursault in Albert Camus's "The Stranger." Discusses Meursault's dissociation from his feelings, relationship with his mother, reactions or lack of response to events in his life, trial, and encounter with the priest in prison. Explores the concepts of myth and archetype in terms of the novel and its ideology.…

  13. What Shall We Tell the Children? The Press Encounters Columbus.

    ERIC Educational Resources Information Center

    Lunenfeld, Marvin

    1992-01-01

    Discusses scholarly criticism and media coverage of the controversy surrounding the effects of Christopher Columbus' voyages upon the Americas. Examines the reactions of some writers to some scholars' negative portrayals of Columbus. Argues that schools should continue to be the place for respectful study of the explorer. (SG)

  14. George A. Towns Elementary School. Atlanta, Georgia

    ERIC Educational Resources Information Center

    Burt, Ralph H.

    1976-01-01

    A project testing solar heating and cooling in an existing building, the George A. Towns Elementary School, is intended to provide information on system design and performance, allow the identification and correction of problems encountered in installing large units, and gauge community/user reaction to solar equipment. (Author/MLF)

  15. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  16. Direct simulations of chemically reacting turbulent mixing layers

    NASA Technical Reports Server (NTRS)

    Riley, J. J.; Metcalfe, R. W.

    1984-01-01

    The report presents the results of direct numerical simulations of chemically reacting turbulent mixing layers. The work consists of two parts: (1) the development and testing of a spectral numerical computer code that treats the diffusion reaction equations; and (2) the simulation of a series of cases of chemical reactions occurring on mixing layers. The reaction considered is a binary, irreversible reaction with no heat release. The reacting species are nonpremixed. The results of the numerical tests indicate that the high accuracy of the spectral methods observed for rigid body rotation are also obtained when diffusion, reaction, and more complex flows are considered. In the simulations, the effects of vortex rollup and smaller scale turbulence on the overall reaction rates are investigated. The simulation results are found to be in approximate agreement with similarity theory. Comparisons of simulation results with certain modeling hypotheses indicate limitations in these hypotheses. The nondimensional product thickness computed from the simulations is compared with laboratory values and is found to be in reasonable agreement, especially since there are no adjustable constants in the method.

  17. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  18. Ge14 Br8 (PEt3 )4 : A Subhalide Cluster of Germanium.

    PubMed

    Kunz, Tanja; Schrenk, Claudio; Schnepf, Andreas

    2018-04-03

    Heating a metastable solution of Ge I Br to room temperature led to the first structurally characterized metalloid subhalide cluster Ge 14 Br 8 (PEt 3 ) 4 (1). Furthermore 1 can be seen as the first isolated binary halide cluster on the way from Ge I Br to elemental germanium, giving insight into the complex reaction mechanism of its disproportionation reaction. Quantum chemical calculations further indicate that a classical bonding situation is realized within 1 and that the last step of the formation of 1 might include the trapping of GeBr 2 units. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of pharmaceutical excipients on the stability of angiotensin-converting enzyme inhibitors in their solid dosage formulations.

    PubMed

    Stanisz, Beata; Regulska, Katarzyna; Kania, Jagoda; Garbacki, Piotr

    2013-01-01

    The compatibility studies of moexipril hydrochloride (MOXL), imidapril hydrochloride (IMD), enalapril maleate, (ENA) and lisinopril (LIS) in solid state with magnesium stearate and glyceryl behenate were performed. The aim of this study was to detect any possible drug-excipient interactions in order to optimize technological process conditions by the selection of the most adequate lubricant. Reversed-phase high-performance liquid chromatography was employed for studying drug-excipient binary mixtures in 1:1 ratio and pure drugs under forced ageing test conditions: temperature 318K (45 °C) and relative humidity range of 50.9%-75.4%. The method had been revalidated prior to use. The degradation rate constants for the binary mixtures and pure substances were calculated. The experimental results evidenced that moexipril and enalapril degradation accorded with autocatalytic-second-order kinetics, imidapril degradation followed first-order reaction mechanism, and LIS followed reversible first-order reaction mechanism. A degradation pathway for each substance was proposed to account for the observed decomposition products. It was determined that moexipril stability decreased threefold in the presence of magnesium stearate indicating an incompatibility--(4.15 ± 0.12) 10(-3) compared to (1.43 ± 0.32) 10(-6) for moexipril in pure. No interaction between magnesium stearate and the remaining studied compounds was observed. The stability studies of MOXL-glyceryl behenate binary mixture revealed no interaction. Magnesium stearate and increased relative humidity induce MOXL instability, while glyceryl behenate is an optimal lubricant, and therefore, it is recommended for moexipril-containing solid formulations. However, for the formulations containing moexipril and magnesium stearate, it is suggested to minimize the humidity level during storage.

  20. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    PubMed

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

Top