Aging and response interference across sensory modalities.
Guerreiro, Maria J S; Adam, Jos J; Van Gerven, Pascal W M
2014-06-01
Advancing age is associated with decrements in selective attention. It was recently hypothesized that age-related differences in selective attention depend on sensory modality. The goal of the present study was to investigate the role of sensory modality in age-related vulnerability to distraction, using a response interference task. To this end, 16 younger (mean age = 23.1 years) and 24 older (mean age = 65.3 years) adults performed four response interference tasks, involving all combinations of visual and auditory targets and distractors. The results showed that response interference effects differ across sensory modalities, but not across age groups. These results indicate that sensory modality plays an important role in vulnerability to distraction, but not in age-related distractibility by irrelevant spatial information.
Compact photonic crystal fiber refractometer based on modal interference
NASA Astrophysics Data System (ADS)
Wong, Wei Chang; Chan, Chi Chiu; Tou, Zhi Qiang; Chen, Li Han; Leong, Kam Chew
2011-05-01
A compact photonic crystal fiber (PCF) refractometer based on modal interference has been proposed by the use of commercial fusion splicer to collapse the holes of PCF to form a Mach Zehnder interferometer by splitting the fundamental core mode into cladding and core modes in the PCF. Collapsed of holes was done at the interface between the single mode fiber and PCF, and the PCF's end. The shift of the interference fringes was measured when the sensor was placed into different refractive index liquid. High linear sensitivity of 253.13nm/RIU with resolution of 3.950×10-5RIU was obtained.
Bicket, Mark C; Hanna, George M
2016-02-01
Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.
Seemüller, Anna; Fiehler, Katja; Rösler, Frank
2011-01-01
The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun
2004-05-01
This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.
Differential effects of non-informative vision and visual interference on haptic spatial processing
van Rheede, Joram J.; Postma, Albert; Kappers, Astrid M. L.
2008-01-01
The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline to determine the participant-dependent biasing influence of the egocentric reference frame. As expected, large systematic participant-dependent deviations from veridicality were observed. In the second experiment we probed the effect of non-informative vision on the egocentric bias. Moreover, orienting mechanisms (gazing directions) were studied with respect to the presentation of haptic information in a specific hemispace. Non-informative vision proved to have a beneficial effect on haptic spatial processing. No effect of gazing direction or hemispace was observed. In the third experiment we investigated the effect of simultaneously presented interfering visual information on the haptic bias. Interfering visual information parametrically influenced haptic performance. The interplay of reference frames that subserves haptic spatial processing was found to be related to both the effects of non-informative vision and visual interference. These results suggest that spatial representations are influenced by direct cross-modal interactions; inter-participant differences in the haptic modality resulted in differential effects of the visual modality. PMID:18553074
Temporal overlap estimation based on interference spectrum in CARS microscopy
NASA Astrophysics Data System (ADS)
Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen
2018-01-01
Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.
Fiber-Optic Strain Sensors With Linear Characteristics
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.
Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork
2011-03-21
To) 5/1/2005-12/31/2010 4. TITLE AND SUBTITLE Shallow Water Acoustic Experiments and Preliminary Planning for FY06 Fieldwork 5a. CONTRACT NUMBERS...numerical computations show horizontal interference patterns within the duct. Richly de - tailed sound radiation fields are predicted at locations far...4) for the vertical modal amplitude Tm at x^L is now de - scribed in detail. First, the assumption of total transmission at the open-ended
Stephan, Denise Nadine; Koch, Iring
2016-11-01
The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.
Representations of temporal information in short-term memory: Are they modality-specific?
Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M
2016-10-01
Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser reflector with an interference coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vol'pyan, O D; Semenov, A A; Yakovlev, P P
1998-10-31
An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd{sup 3+}:YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)
NASA Astrophysics Data System (ADS)
Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin
2016-03-01
Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.
Using the Visual World Paradigm to Study Retrieval Interference in Spoken Language Comprehension
Sekerina, Irina A.; Campanelli, Luca; Van Dyke, Julie A.
2016-01-01
The cue-based retrieval theory (Lewis et al., 2006) predicts that interference from similar distractors should create difficulty for argument integration, however this hypothesis has only been examined in the written modality. The current study uses the Visual World Paradigm (VWP) to assess its feasibility to study retrieval interference arising from distractors present in a visual display during spoken language comprehension. The study aims to extend findings from Van Dyke and McElree (2006), which utilized a dual-task paradigm with written sentences in which they manipulated the relationship between extra-sentential distractors and the semantic retrieval cues from a verb, to the spoken modality. Results indicate that retrieval interference effects do occur in the spoken modality, manifesting immediately upon encountering the verbal retrieval cue for inaccurate trials when the distractors are present in the visual field. We also observed indicators of repair processes in trials containing semantic distractors, which were ultimately answered correctly. We conclude that the VWP is a useful tool for investigating retrieval interference effects, including both the online effects of distractors and their after-effects, when repair is initiated. This work paves the way for further studies of retrieval interference in the spoken modality, which is especially significant for examining the phenomenon in pre-reading children, non-reading adults (e.g., people with aphasia), and spoken language bilinguals. PMID:27378974
Electromagnetic immunity of infusion pumps to GSM mobile phones: a systematic review.
Calcagnini, Giovanni; Censi, Federica; Triventi, Michele; Mattei, Eugenio; Bartolini, Pietro
2007-01-01
Electromagnetic interference with life-sustaining medical care devices has been reported by various groups. Previous studies have demonstrated that volumetric and syringe pumps are susceptible to false alarm buzzing and blocking, when exposed to various electromagnetic sources. The risk of electromagnetic interference depends on several factors such as the phone-emitted power, distance and carrier frequency, phone model and antenna type. The main recommendations and the relevant harmonized standard are also reported and discussed. >From the data available in literature emerges that, for distances lower than 1 m there is a non negligible risk of electromagnetic interferences, although significant differences exists in the reported minimum distances. Interference effects clinically relevant for the patients are rare. No permanent damage to the pumps has been ever reported, although in several cases intervention of personnel is required to resume normal operation.
The Effect of Modality Shifts on Practive Interference in Long-Term Memory.
ERIC Educational Resources Information Center
Dean, Raymond S.; And Others
1983-01-01
In experiment one, subjects learned a word list in blocked or random forms of auditory/visual change. In experiment two, high- and low-conceptual rigid subjects read passages in shift conditions or nonshift, exclusively in auditory or visual modes. A shift in modality provided a powerful release from proactive interference. (Author/CM)
NASA Technical Reports Server (NTRS)
Sisk, Gregory A.
1989-01-01
The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).
Fuel system for rotary distributor fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Kelly, W.W.
1993-06-01
In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery ofmore » fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.« less
Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne
2009-01-15
A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).
Arbitrary-ratio power splitter based on nonlinear multimode interference coupler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat
2015-04-24
We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less
NASA Astrophysics Data System (ADS)
Sharma, A.; Posey, R.
1996-02-01
Four-photon mixing followed by stimulated Raman scattering is observed in LP 02 mode in a 7.9 μm core diameter optical fiber. A localized transverse stress efficiency couples LP 02 to the LP 21 mode with a macroscopic beat length of 1.8 mm. LP 02-LP 21 modal interference is investigated by detecting the 550-590 nm SRS through a pinhole in the far field exit plane. Quantitative explanation of wavelength dependent intensity modulation results in a precise experimental determination of {∂[β 02(λ) - β 21(λ)] }/{∂λ}, for mode-propagation constants β02( λ) and β21( λ) of LP 02 and LP 21 modes respectively, as well as Δ, the relative core-cladding refractive index difference. The LP 02-LP 21 modal interference is used for sensing of temperature between 50-300°C.
Miller, Steven C M
2015-06-01
Portable electronic devices play an important role in the management of type 1 diabetes mellitus. Electromagnetic interference from electronic devices has been shown to impair the function of an avalanche transceiver in search mode (but not in transmitting mode). This study investigates the influence of electromagnetic interference from diabetes devices on a searching avalanche beacon. The greatest distance at which an avalanche transceiver (in search mode) could accurately indicate the location of a transmitting transceiver was assessed when portable electronic devices (including an insulin pump and commonly used real-time continuous subcutaneous glucose monitoring system [rtCGMS]) were held in close proximity to each transceiver. The searching transceiver could accurately locate a transmitted signal at a distance of 30 m when used alone. This distance was unchanged by the Dexcom G4 rtCGMS, but was reduced to 10 m when the Medtronic Guardian rtCGMS was held close (within 30 cm) to the receiving beacon. Interference from the Animas Vibe insulin pump reduced this distance to 5 m, impairing the searching transceiver in a manner identical to the effect of a cell phone. Electromagnetic interference produced by some diabetes devices when held within 30 cm of a searching avalanche transceiver can impair the ability to locate a signal. Such interference could significantly compromise the outcome of a companion rescue scenario. Further investigation using other pumps and rtCGMS devices is required to evaluate all available diabetes electronics. Meantime, all electronic diabetes devices including rtCGMS and insulin pumps should not be used within 30 cm of an avalanche transceiver. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Amplified emission and lasing in a plasmonic nanolaser with many three-level molecules
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Mølmer, Klaus
2018-01-01
Steady-state plasmonic lasing is studied theoretically for a system consisting of many dye molecules arranged regularly around a gold nanosphere. A three-level model with realistic molecular dissipation is employed to analyze the performance as a function of the pump field amplitude and number of molecules. Few molecules and moderate pumping produce a single narrow emission peak because the excited molecules transfer energy to a single dipole plasmon mode by amplified spontaneous emission. Under strong pumping, the single peak splits into broader and weaker emission peaks because two molecular excited levels interfere with each other through coherent coupling with the pump field and with the dipole plasmon field. A large number of molecules gives rise to a Poisson-like distribution of plasmon number states with a large mean number characteristic of lasing action. These characteristics of lasing, however, deteriorate under strong pumping because of the molecular interference effect.
Vandierendonck, André
2016-01-01
Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.
Strickland, G.; Horn, F.L.; White, H.T.
1960-09-27
A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Rui; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045; Jacobs, Paul
2013-06-24
The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The {approx}3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.
NASA Astrophysics Data System (ADS)
Wang, Rui; Jacobs, Paul; Zhao, Hui; Smirl, Arthur L.
2013-06-01
The Dynamic Franz Keldysh Effect (DFKE) is produced and controlled in bulk gallium arsenide by quantum interference without the aid of externally applied fields and is spatially and temporally resolved using ellipsometric pump-probe techniques. The ˜3 THz internal driving field for the DFKE is a transient space-charge field that is associated with a critically damped coherent plasma oscillation produced by oppositely traveling ballistic electron and hole currents that are injected by two-color quantum interference techniques. The relative phase and polarization of the two pump pulses can be used to control the DFKE.
Long-term interference at the semantic level: Evidence from blocked-cyclic picture matching.
Wei, Tao; Schnur, Tatiana T
2016-01-01
Processing semantically related stimuli creates interference across various domains of cognition, including language and memory. In this study, we identify the locus and mechanism of interference when retrieving meanings associated with words and pictures. Subjects matched a probe stimulus (e.g., cat) to its associated target picture (e.g., yarn) from an array of unrelated pictures. Across trials, probes were either semantically related or unrelated. To test the locus of interference, we presented probes as either words or pictures. If semantic interference occurs at the stage common to both tasks, that is, access to semantic representations, then interference should occur in both probe presentation modalities. Results showed clear semantic interference effects independent of presentation modality and lexical frequency, confirming a semantic locus of interference in comprehension. To test the mechanism of interference, we repeated trials across 4 presentation cycles and manipulated the number of unrelated intervening trials (zero vs. two). We found that semantic interference was additive across cycles and survived 2 intervening trials, demonstrating interference to be long-lasting as opposed to short-lived. However, interference was smaller with zero versus 2 intervening trials, which we interpret to suggest that short-lived facilitation counteracted the long-lived interference. We propose that retrieving meanings associated with words/pictures from the same semantic category yields both interference due to long-lasting changes in connection strength between semantic representations (i.e., incremental learning) and facilitation caused by short-lived residual activation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Segall, Liviu; Nistor, Ionut; Van Biesen, Wim; Brown, Edwina A; Heaf, James G; Lindley, Elizabeth; Farrington, Ken; Covic, Adrian
2017-01-01
The number of elderly patients on maintenance dialysis has rapidly increased in the past few decades, particularly in developed countries, imposing a growing burden on dialysis centres. Hence, many nephrologists and healthcare authorities feel that greater emphasis should be placed on the promotion of home dialysis therapies such as peritoneal dialysis (PD) and home haemodialysis (HD). There is currently no general consensus as to the best dialysis modality for elderly patients with end-stage renal disease. In-centre HD is predominant in most countries, although it is widely recognized that PD has several advantages over HD, including the lack of need for vascular access, continuous slow ultrafiltration, less interference with patients' lifestyle and lower costs. Comparisons of outcomes between elderly patients on PD and HD rely on observational studies, as randomized controlled trials are lacking. The results of these studies are variable. However, most of them suggest that survival rates are largely similar between the two modalities, except for elderly patients with diabetes and/or beyond 1-3 years from dialysis initiation, in which cases HD appears to be superior. An equally important aspect to consider when choosing dialysis modality, particularly in this age group, is the quality of life, and in this regard most studies found no significant differences between PD and HD. In these circumstances, we believe that dialysis modality selection should be guided by patient's preference, based on comprehensive and unbiased information. A multidisciplinary team should review elderly patients starting on dialysis, aiming to identify possible barriers to PD and home HD, including physical, visual, cognitive, psychological and social problems, and to overcome such barriers by adequate care, education, psychological counselling and dialysis assistance. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Li, Jian-Lang; Ueda, Ken-ichi; Zhong, Lan-xiang; Musha, Mitsuru; Shirakawa, Akira; Sato, Takashi
2008-07-07
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb(2)O(5)/SiO(2)) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.
CO.sub.2 optically pumped distributed feedback diode laser
Rockwood, Stephen D.
1980-01-01
A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.
Interference in Processing Agreement: The Impact of Grammatical Cues
ERIC Educational Resources Information Center
Garraffa, Maria; Di Domenico, Alberto
2016-01-01
Agreement is a covariation in morphological form that reflects relations between words. A series of experiments were carried out in Italian during production and comprehension where an element interferes with agreement. The likelihood of interference found in both modalities is related to the markedness of the intervener and to its grammatical…
Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.
2017-01-01
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527
Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A
2017-11-28
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiaoying; Liang Chuang; Fook Lee, Kim
We demonstrate an optical-fiber-based source of polarization-entangled photon pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550-nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally polarized pump pulses, one propagating in the clockwise and the other in the counterclockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contaminationmore » of the entangled photon pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: (i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal and idler bands and (ii) broadening of the pump-pulse spectrum due to self-phase modulation causes pump photons to leak into the signal and idler bands. We obtain two-photon interference with visibility >90% without subtracting counts caused by the background photons (only dark counts of the detectors are subtracted), when the mean photon number in the signal (idler) channel is about 0.02/pulse, while no interference is observed in direct detection of either the signal or idler photons.« less
NASA Astrophysics Data System (ADS)
Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning
2018-05-01
In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.
Nd:YAG end pumped by semiconductor laser arrays for free space optical communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
Preliminary experimental results are reported for a diode-pumped Nd:YAG laser employing a tightly focused end-pump geometry. The resonator configuration is planoconcave, with the pumped end of the Nd:YAG rod being coated for high reflection at 1.06 microns. This geometry rectifies nearly all the inefficiencies plaguing side-pumped schemes. This laser is further considered as a candidate for optical communication over the deep space channel.
Evaluation of Dry, Rough Vacuum Pumps
NASA Technical Reports Server (NTRS)
Hunter, Brian
2006-01-01
This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer
Switchable multi-wavelength fiber laser based on modal interference
NASA Astrophysics Data System (ADS)
Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng
2015-08-01
A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.
The effects of aging on the working memory processes of multimodal information.
Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando
2017-05-01
Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.
Heath, Matthew; Gillen, Caitlin; Samani, Ashna
2016-03-01
Antisaccades are a nonstandard task requiring a response mirror-symmetrical to the location of a target. The completion of an antisaccade has been shown to delay the reaction time (RT) of a subsequent prosaccade, whereas the converse switch elicits a null RT cost (i.e., the unidirectional prosaccade switch-cost). The present study sought to determine whether the prosaccade switch-cost arises from low-level interference specific to the sensory features of a target (i.e., modality-dependent) or manifests via the high-level demands of dissociating the spatial relations between stimulus and response (i.e., modality-independent). Participants alternated between pro- and antisaccades wherein the target associated with the response alternated between visual and auditory modalities. Thus, the present design involved task-switch (i.e., switching from a pro- to antisaccade and vice versa) and modality-switch (i.e., switching from a visual to auditory target and vice versa) trials as well as their task- and modality-repetition counterparts. RTs were longer for modality-switch than modality-repetition trials. Notably, however, modality-switch trials did not nullify or lessen the unidirectional prosaccade switch-cost; that is, the magnitude of the RT cost for task-switch prosaccades was equivalent across modality-switch and modality-repetition trials. Thus, competitive interference within a sensory modality does not contribute to the unidirectional prosaccade switch-cost. Instead, the modality-independent findings evince that dissociating the spatial relations between stimulus and response instantiates a high-level and inertially persistent nonstandard task-set that impedes the planning of a subsequent prosaccade.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
NASA Astrophysics Data System (ADS)
Gerhardt, Stefan; Iles-Smith, Jake; McCutcheon, Dara P. S.; He, Yu-Ming; Unsleber, Sebastian; Betzold, Simon; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian
2018-05-01
We report a joint experimental and theoretical study of the interference properties of a single-photon source based on a In(Ga)As quantum dot embedded in a quasiplanar GaAs microcavity. Using resonant laser excitation with a pulse separation of 2 ns, we find near-perfect interference of the emitted photons, and a corresponding indistinguishability of I =(99.6 -1.4+0.4)% . For larger pulse separations, quasiresonant excitation conditions, increasing pump power, or with increasing temperature, the interference contrast is progressively and notably reduced. We present a systematic study of the relevant dephasing mechanisms and explain our results in the framework of a microscopic model of our system. For strictly resonant excitation, we show that photon indistinguishability is independent of pump power, but strongly influenced by virtual phonon-assisted processes which are not evident in excitonic Rabi oscillations.
9. SOUTH END OF GENE PUMPING STATION LOOKING WEST WITH ...
9. SOUTH END OF GENE PUMPING STATION LOOKING WEST WITH DELIVERY LINES IN BACKGROUND. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA
Dispersion of Sound in Marine Sediments
2015-09-30
primary objective of this work is to investigate the approach to use the information in the extracted mode amplitudes to invert for sound attenuation...marine sediment. APPROACH Previous work carried out on the use of modal amplitude information for estimating sound attenuation in the sediments...investigate the intrinsic modal interference. Estimation of sound attenuation in marine sediments from modal amplitudes requires knowledge of the
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
ERIC Educational Resources Information Center
Hanauer, John B.; Brooks, Patricia J.
2005-01-01
Resistance to interference from irrelevant auditory stimuli undergoes development throughout childhood. To test whether semantic processes account for age-related changes in a Stroop-like picture-word interference effect, children (3-to 12-year-olds) and adults named pictures while listening to words varying in terms of semantic relatedness to the…
Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet.
Saghafi, Saiedeh; Haghi-Danaloo, Nikoo; Becker, Klaus; Sabdyusheva, Inna; Foroughipour, Massih; Hahn, Christian; Pende, Marko; Wanis, Martina; Bergmann, Michael; Stift, Judith; Hegedus, Balazs; Dome, Balazs; Dodt, Hans-Ulrich
2018-06-01
Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. © 2018 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Houliston, Bryan; Parry, David; Webster, Craig S; Merry, Alan F
2009-06-19
To replicate electromagnetic interference (EMI) with a common drug infusion device resulting from the use of radio frequency identification (RFID) technology in a simulated operating theatre environment. An infusion pump, of a type previously reported as having failed due to RFID EMI, was placed in radio frequency (RF) fields of various strengths, and its operation observed. Different strength RF fields were created by varying the number of RFID readers, the use of a high-gain RFID antenna, the distance between the reader(s) and the infusion pump, and the presence of an RFID tag on the infusion pump. The infusion pump was not affected by low-power RFID readers, even when in direct contact. The pump was disrupted by a high-power reader at 10 cm distance when an RFID tag was attached, and by a combination of high-power and low-power readers at 10 cm distance. Electronic medical devices may fail in the presence of high-power RFID readers, especially if the device is tagged. However, low-power RFID readers appear to be safer.
Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.
Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan
2016-02-01
We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.
NASA Astrophysics Data System (ADS)
Shen, Yijie; Gong, Mali; Fu, Xing
2018-05-01
Beam quality improvement with pump power increasing in an end-pumped laser oscillator is experimentally realized for the first time, to the best of our knowledge. The phenomenon is caused by the population-dynamic-coupled combined guiding effect, a comprehensive theoretical model of which has been well established, in agreement with the experimental results. Based on an 888 nm in-band dual-end-pumped oscillator using four tandem Nd:YVO4 crystals, the output beam quality of M^2= 1.1/1.1 at the pump power of 25 W is degraded to M^2 = 2.5/1.8 at 75 W pumping and then improved to M^2= 1.8/1.3 at 150 W pumping. The near-TEM_{00} mode is obtained with the highest continuous-wave output power of 72.1 W and the optical-to-optical efficiency of 48.1%. This work demonstrates great potential to further scale the output power of end-pumped laser oscillator while keeping good beam quality.
Operational adaptability evaluation index system of pumped storage in UHV receiving-end grids
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Feng, Junshu
2017-01-01
Pumped storage is an effective solution to deal with the emergency reserve shortage, renewable energy accommodating and peak-shaving problems in ultra-high voltage (UHV) transmission receiving-end grids. However, governments and public opinion in China tend to evaluate the operational effectiveness of pumped storage using annual utilization hour, which may result in unreasonable and unnecessary dispatch of pumped storage. This paper built an operational adaptability evaluation index system for pumped storage in UHV-receiving end grids from three aspects: security insurance, peak-shaving and renewable energy accommodating, which can provide a comprehensive and objective way to evaluate the operational performance of a pumped storage station.
ERIC Educational Resources Information Center
Hantsch, Ansgar; Jescheniak, Jorg D.; Schriefers, Herbert
2009-01-01
A number of recent studies have questioned the idea that lexical selection during speech production is a competitive process. One type of evidence against selection by competition is the observation that in the picture-word interference task semantically related distractors may facilitate the naming of a picture, whereas the selection by…
Theurich, Gordon R.
1976-01-01
1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.
Study on the amplifier experiment of end-pumped long pulse slab laser
NASA Astrophysics Data System (ADS)
Jin, Quanwei; Chen, Xiaoming; Jiang, JianFeng; Pang, Yu; Tong, Lixin; Li, Mi; Hu, Hao; Lv, Wenqiang; Gao, Qingsong; Tang, Chun
2018-03-01
The amplifier experiment research of end-pumped long pulse slab laser is developed, the results of out-put energy, optical-optical efficiency and pulse waveform are obtained at different experiment conditions, such as peak pumped power, amplifier power and pumped pulse width. The seed laser is CW fundamental transverse-mode operation fiber laser, the laser medium is composited Nd:YAG slab. Under end-pumped and the 2 passes, the laser obtain 7.65J out-put energy and 43.1% optical-optical efficiency with 45kW peak-pumped power and 386μs pump pulse width. The experimental results provide the basic for the optimization design to high frequency, high energy and high beam-quality slab lasers.
Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs
2017-01-01
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411
Method and system for small scale pumping
Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL
2010-01-26
The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.
NASA Astrophysics Data System (ADS)
Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe
2015-03-01
Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.
Baldwin, David E.; Logan, B. Grant
1981-01-01
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequency of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technological state of the art required, and the capital cost are all greatly lowered.
Baldwin, D.E.; Logan, B.G.
The invention provides a method and apparatus for raising the potential of a magnetic mirror cell by pumping charged particles of the opposite sign of the potential desired out of the mirror cell through excitation, with the pumping being done by an externally imposed field at the bounce frequence of the above charged particles. These pumped simple mirror cells then provide end stoppering for a center mirror cell for the tandem mirror plasma confinement apparatus. For the substantially complete pumping case, the end plugs of a tandem mirror can be up to two orders of magnitude lower in density for confining a given center mirror cell plasma than in the case of end plugs without pumping. As a result the decrease in recirculating power required to keep the system going, the technical state of the art required, and the capital cost are all greatly lowered.
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro
2018-05-01
Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.
Highly sensitive force sensor based on balloon-like interferometer
NASA Astrophysics Data System (ADS)
Wu, Yue; Xiao, Shiying; Xu, Yao; Shen, Ya; Jiang, Youchao; Jin, Wenxing; Yang, Yuguang; Jian, Shuisheng
2018-07-01
An all-fiber highly sensitive force sensor based on modal interferometer has been presented and demonstrated. The single-mode fiber (SMF) with coating stripped is designed into a balloon-like shape to form a modal interferometer. Due to the bent SMF, the interference occurs between the core mode and cladding modes. With variation of the force applied to the balloon-like interferometer, the bending diameter changes, which caused the wavelength shift of the modal interference. Thus the measurement of the force variation can be achieved by monitoring the wavelength shift. The performances of the interferometer with different bending diameter are experimentally investigated, and the maximum force sensitivity of 24.9 pm/ μ N can be achieved with the bending diameter 14 mm ranging from 0 μ N to 1464.12 μ N. Furthermore, the proposed fiber sensor exhibits the advantages of easy fabrication and low cost, making it a suitable candidate in the optical fiber sensing field.
11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, ...
11. PUMP ROOM FLOOR OF GENE PLANT FROM NORTH END, CENTRIFUGAL PUMPS DESIGNED BY BYRON JACKSON CO., MANUFACTURED BY PELTON WATER WHEEL CO. OF SAN FRANCISCO. POWERED BY G.E. SYNCHRONOUS MOTOR 9000 HP, 6900 VOLTS, 612 AMPS, 7320 KVA, 3 PHASE, 60 CYCLES, 400 RPM, EXCITATION AT 125 VOLTS, 540 AMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA
Unusual placement of intrathecal baclofen pumps: report of two cases.
Devine, Oliver; Harborne, Andrew; Lo, William B; Weinberg, Daniel; Ciras, Mahesh; Price, Rupert
2016-01-01
Intrathecal baclofen delivery via implantable pump represents an important modality for symptomatic relief in patients with chronic spasticity. Pumps are routinely implanted subcutaneously in the anterior abdominal wall. We describe two unusual cases where skin-related complications necessitated revision surgery in order to relocate the pump to alternative sites. The first patient was an international power canoeist, whose strenuous exercise programme interfered with his pump's original siting. The second patient was a cachectic university student with a history of cerebral palsy, who maintained low body mass despite attempted weight gain. The relocation of these two intrathecal devices to the medial compartment of the right thigh and right iliac fossa, respectively, is described.
A FBG pulse wave demodulation method based on PCF modal interference filter
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua
2016-10-01
Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.
Differential Distraction Effects in Short-Term and Long-Term Retention of Pictures and Words
ERIC Educational Resources Information Center
Pellegrino, James W.; And Others
1976-01-01
Comparisons between recall levels following simple acoustic or visual tasks and the simultaneous visual-plus-acoustic task are not based upon equivalent amounts of interference within each modality. This research attempts to test more precisely the relationship between visual and acoustic interference by using a sequential rather than a…
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
The research on the design and performance of 7×1 pump combiners
NASA Astrophysics Data System (ADS)
Cao, Yang; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Shi, Wei; Yao, Jianquan
2018-02-01
The 7×1 end-pumped pump combiners employing 105/125 μm multimode fibers as pump fibers are investigated. Based on the results of our theoretical analysis, sufficient taper length (TL) and low refractive index (RI) of the capillary have been adopted to fabricate high transmission efficiency combiners. A 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰ is fabricated in experiments, which could find its application in high-power fiber laser systems.
Rotary distributor type fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Dordjevic, I.; Higgins, M.C.
1993-07-20
In a fuel injection pump having a pump body and distributor rotor in coaxial alignment, the pump body is described having a pumping chamber provided by an annular arrangement of pumping plunger bores with axes extending generally radially outwardly from the axis of the distributor rotor, a pumping plunger mounted in each plunger bore for reciprocation, annular cam means surrounding the annular arrangement of plunger bores for reciprocating the pumping plungers to provide alternating intake and pumping strokes thereof for respectively supplying intake charges of fuel to the pumping chamber and delivering high pressure charges of fuel from the pumpingmore » chamber for fuel injection, a distributor head with a plurality of distributor outlets, the distributor rotor being rotatably mounted in the distributor head for distributing the high pressure charges of fuel to the distributor outlets; the improvement wherein the pump body and distributor rotor have a central coaxial bore extending there through and providing a valve bore intersecting the annular arrangement of plunger bores, the pump body providing an annular valve seat around the central bore between one end thereof away from the distributor rotor and the intersection of the valve bore and annular arrangement of plunger bores, an elongated valve member mounted in the valve bore having a sealing head at one end thereof engageable with the annular valve seat and extending from the sealing head toward the other end of the central bore, a fuel supply chamber connected to the one end of the central bore for supplying fuel to the pumping chamber, valve actuating means comprising an electromagnet at the other end of the valve member from the sealing head and operable when energized to shift the valve member in one axial direction thereof to one of its the positions, and means for shifting the valve member in the opposite axial direction thereof to its other position when the electromagnet is deenergized.« less
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping
NASA Astrophysics Data System (ADS)
Arbabzadah, E. A.; Damzen, M. J.
2016-06-01
We report the investigation of an Alexandrite laser end-pumped by a fibre-coupled red diode laser module. Power, efficiency, spatial, spectral, and wavelength tuning performance are studied as a function of pump and laser cavity parameters. It is the first demonstration, to our knowledge, of greater than 1 W power and also highest laser slope efficiency (44.2%) in a diode-pumped Alexandrite laser with diffraction-limited TEM00 mode operation. Spatial quality was excellent with beam propagation parameter M 2 ~ 1.05. Wavelength tuning from 737-796 nm was demonstrated using an intracavity birefringent tuning filter. Using a novel double pass end-pumping scheme to get efficient absorption of both polarisation states of the scrambled fibre-delivered diode pump, a total output coupled power of 1.66 W is produced in TEM00 mode with 40% slope efficiency.
Czarnecki, John B.
2007-01-01
Cabot WaterWorks, located in Lonoke County, Arkansas, plans to increase ground-water withdrawals from the Mississippi River Valley alluvial aquifer from a 2004 rate of approximately 2.24 million gallons per day to between 4.8 and 8 million gallons per day by the end of 2049. The effects of increased pumping from several wells were simulated using a digital model of ground-water flow. The proposed additional withdrawals by Cabot WaterWorks were specified in three 1-square-mile model cells with increased pumping beginning in 2007. Increased pumping was specified at various combined rates for a period of 44 years. In addition, augmented pumping from wells owned by Grand Prairie Water Users Association, located about 2 miles from the nearest Cabot WaterWorks wells, was added to the model beginning in 2007 and continuing through to the end of 2049 in 10 of the 16 scenarios analyzed. Eight of the scenarios included reductions in pumping rates in model cells corresponding to either the Grand Prairie Water Users Association wells or to wells contained within the Grand Prairie Area Demonstration Project. Drawdown at the end of 44 years of pumping at 4.8 million gallons per day from the Cabot WaterWorks wells ranged from 15 to 25 feet in the three model cells; pumping at 8 million gallons per day resulted in water-level drawdown ranging from about 15 to 40 feet. Water levels in those cells showed no indication of leveling out at the end of the simulation period, indicating non-steady-state conditions after 44 years of pumping. From one to four new dry cells occurred in each of the scenarios by the end of 2049 when compared to a baseline scenario in which pumping was maintained at 2004 rates, even in scenarios with reduced pumping in the Grand Prairie Area Demonstration Project; however, reduced pumping produced cells that were no longer dry when compared to the baseline scenario at the end of 2049. Saturated thickness at the end of 2049 in the three Cabot WaterWorks wells ranged from about 52 to 68.5 feet for pumping rates of 4.8 million gallons per day, and from about 38 to 64 feet for pumping rates of 8 million gallons per day, the latter causing water level to fall below half the aquifer thickness in the most heavily pumped of the three cells.
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, Alex Blair; Ballas, Gary J.
1998-01-01
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.
Bottom head to shell junction assembly for a boiling water nuclear reactor
Fife, A.B.; Ballas, G.J.
1998-02-24
A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.
Method for nano-pumping using carbon nanotubes
Insepov, Zeke [Darien, IL; Hassanein, Ahmed [Bolingbrook, IL
2009-12-15
The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
Acoustical heat pumping engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.
Acoustical heat pumping engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.
Cobb, W.G.
1959-06-01
A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)
Effects of mobile phone use on specific intensive care unit devices.
Hans, Nidhi; Kapadia, Farhad N
2008-10-01
To observe the effects of mobile phone use in the vicinity of medical devices used in a critical care setting. Electromagnetic interference (EMI) was tested by using two types of mobile phones - GSM and CDMA. Mobile phones were placed at a distance of one foot from three medical devices - syringe pump, mechanical ventilator, and the bedside monitor - in switch off, standby, and talking modes of the phone. Medical devices were observed for any interference caused by the electromagnetic radiations (EMR) from the mobile phones. Out of the three medical devices that were tested, EMI occurred while using the mobile phone in the vicinity of the syringe pump, in the 'talk mode.' The mean variation observed in the calculated and delivered volume of the syringe pump was 2.66 ml. Mechanical ventilator did not show any specific adverse effects with mobile phone use in the one-foot vicinity. No other adverse effects or unexplained malfunctions or shutdown of the syringe pump, mechanical ventilator, or the bedside monitor was noted during the study period of 36 hours. EMI from mobile phones have an adverse effect on the medical devices used in critical care setup. They should be used at least one foot away from the diameter of the syringe pump.
Investigation on high transmission efficiency 7 × 1 pump combiner
NASA Astrophysics Data System (ADS)
Cao, Yang; Shi, Wei; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Qi, Liang; Yao, Jianquan
2016-12-01
The 7×1 end-pumped combiner employing 105/125 μm multimode fibers as pump fibers is investigated. The theoretical analysis reveals that sufficient taper length and low refractive index of the capillary should be adopted to fabricate high transmission efficiency combiners. Based on the simulation results, we fabricate a 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰. The measured internal operating temperature of this combiner indicates it can endure pump power of the order of kilowatts.
ERIC Educational Resources Information Center
Brown, Tracy L.
2011-01-01
The relationship between interference and facilitation effects in the Stroop task is poorly understood yet central to its implications. At question is the modal view that they arise from a single mechanism--the congruency of color and word. Two developments have challenged that view: (a) the belief that facilitation effects are fractionally small…
Presentation Modality and Proactive Interference in Children's Short-Term Memory.
ERIC Educational Resources Information Center
Douglas, Joan Delahanty
This study examined the role of visual and auditory presentation in memory encoding processes of 80 second-grade children, using the release-from-proactive-interference short-term memory (STM) paradigm. Words were presented over three trials within one of the presentation modes and one taxonomic category, followed by a fourth trial in which the…
Han, Xiahui; Li, Jianlang
2014-11-01
The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.
Index-antiguided planar waveguide lasers with large mode area
NASA Astrophysics Data System (ADS)
Liu, Yuanye
The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.
Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xu, Liang; Hu, Xiaobin
2017-08-01
An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.
Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.
5. VIEW OF THE WEST FACADE WITH THE END OF ...
5. VIEW OF THE WEST FACADE WITH THE END OF THE PUMP DISCHARGE VISIBLE IN THE FOREGROUND. LOOKING EAST. NOTE THE FLAP VALVE OF THE NO. 1 PUMPING UNIT. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
Analytical thermal model for end-pumped solid-state lasers
NASA Astrophysics Data System (ADS)
Cini, L.; Mackenzie, J. I.
2017-12-01
Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.
Pellegrino, J W; Siegel, A W; Dhawan, M
1976-01-01
Picture and word triads were tested in a Brown-Peterson short-term retention task at varying delay intervals (3, 10, or 30 sec) and under acoustic and simultaneous acoustic and visual distraction. Pictures were superior to words at all delay intervals under single acoustic distraction. Dual distraction consistently reduced picture retention while simultaneously facilitating word retention. The results were interpreted in terms of the dual coding hypothesis with modality-specific interference effects in the visual and acoustic processing systems. The differential effects of dual distraction were related to the introduction of visual interference and differential levels of functional acoustic interference across dual and single distraction tasks. The latter was supported by a constant 2/1 ratio in the backward counting rates of the acoustic vs. dual distraction tasks. The results further suggest that retention may not depend on total processing load of the distraction task, per se, but rather that processing load operates within modalities.
Phonological Priming with Nonwords in Children with and without Specific Language Impairment
ERIC Educational Resources Information Center
Brooks, Patricia J.; Seiger-Gardner, Liat; Obeid, Rita; MacWhinney, Brian
2015-01-01
Purpose: The cross-modal picture-word interference task is used to examine contextual effects on spoken-word production. Previous work has documented lexical-phonological interference in children with specific language impairment (SLI) when a related distractor (e.g., bell) occurs prior to a picture to be named (e.g., a bed). In the current study,…
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Jafri, Mohd Zubir Mat
2015-04-01
The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.
Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.
2017-01-01
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421
Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F
2017-06-02
A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.
In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less
CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen
2015-11-02
Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.
Vortex Chain in a Resonantly Pumped Polariton Superfluid
Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.
2015-01-01
Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592
Methods for increasing noise immunity of radio electronic systems with redundancy
NASA Astrophysics Data System (ADS)
Orlov, P. E.; Medvedev, A. V.; Sharafutdinov, V. R.; Gazizov, T. R.; Ubaichin, A. V.
2018-05-01
The idea of increasing the noise immunity of radioelectronic systems with redundancy is presented. Specific technical solutions based on this idea of modal redundancy are described. An estimation of noise immunity improvement was performed by the example of implementation of modal redundancy with the broad-side electromagnetic coupling for a printed circuit board of the digital signal processing unit for an autonomous navigation system of a spacecraft. It is shown that the implementation of modal redundancy can provide an attenuation coefficient for the interference signal up to 12 dB.
Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities
NASA Astrophysics Data System (ADS)
Lukoshkin, V. A.; Kalevich, V. K.; Afanasiev, M. M.; Kavokin, K. V.; Hatzopoulos, Z.; Savvidis, P. G.; Sedov, E. S.; Kavokin, A. V.
2018-05-01
We have experimentally observed an eddy current of exciton polaritons arising in a cylindrical GaAs/AlGaAs pillar microcavity under the nonresonant optical pumping. The polariton current manifests itself in a Mach-Zehnder interferometry image as a characteristic spiral that occurs due to the interference of the light emitted by an exciton-polariton condensate with a reference spherical wave. We have experimentally observed the condensates with the topological charges m =+1 ,m =-1 , and m =-2 . The interference pattern corresponding to the m =-2 current represents the twin spiral emerging from the center of the micropillar. The switching between the current modes with different topological charges is achieved by a weak displacement of the pump spot.
Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.
Microfabricated optically pumped magnetometer arrays for biomedical imaging
NASA Astrophysics Data System (ADS)
Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.
2017-02-01
Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.
Endotherapy and surgery for GERD.
Triadafilopoulos, George
2007-07-01
Today, there are several modalities to treat gastroesophageal reflux disease (GERD) (medications, endoscopic therapies, surgery) and such therapies can be used either singly, or in tandem, or in combination with the others, aiming at "normalization" of the patient's GERD-related quality of life and, if possible, esophageal acid exposure. Several intermediate end points or clinically significant outcomes have not been reached by some therapeutic modalities and no single modality is or can be perfect. Statistically significant improvements in these intermediate end points have been shown in "some" but not all studies. Although healing of esophagitis can be accomplished with either medical or surgical therapy, there is inadequate data with endotherapies, because most patients treated with endotherapies have had prior trials of proton pump inhibitors (PPIs) and hence healed their esophagitis. Effective prevention of complications, such as esophageal adenocarcinoma, remains challenging for all modalities. Patients who have not normalized their GERD-related quality of life with once or twice daily PPI therapy should undergo functional esophageal evaluation with pH testing and esophageal motility study and they should be evaluated by both an endoscopist and a surgeon. The decision on how to proceed should be made on the basis of the criteria for endotherapy and surgery, availability of local endoscopic and surgical expertise and patients' preference. Such multimodality therapy model is in many ways similar to the long-term management of coronary artery disease where pharmacotherapy, angioplasty, and bypass surgery are frequently used in tandem or in combination. Multimodality therapy aiming at normalization of GERD-related quality of life is an option today, and should be available to all patients in need of therapy. The target population for GERD endotherapy currently consists of PPI-dependent GERD patients, who have a small (<2-cm-long) or no sliding hiatal hernia, and without severe esophagitis or Barrett esophagus. Thus far, only Stretta and the NDO plicator have been studied in sham-controlled trials. Registries of complications suggest that these techniques are relatively safe, but serious morbidity, including rare mortality have been reported (for a continuous update on complications related to endoscopic therapies see: http://www.fda.gov/cdrh/maude.html). All can be performed on an outpatient basis, under intravenous sedation and local pharyngeal anesthesia. Future comparative studies with predetermined clinically significant end points, validated outcome measures, prolonged follow-up, and complete complication registries will eventually determine the precise role of endoscopic procedures for the patients with GERD.
Beam splitter coupled CDSE optical parametric oscillator
Levinos, Nicholas J.; Arnold, George P.
1980-01-01
An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation.
EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment
NASA Technical Reports Server (NTRS)
Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.
1992-01-01
After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.
CARS module for multimodal microscopy
NASA Astrophysics Data System (ADS)
Zadoyan, Ruben; Baldacchini, Tommaso; Carter, John; Kuo, Chun-Hung; Ocepek, David
2011-03-01
We describe a stand alone CARS module allowing upgrade of a two-photon microscope with CARS modality. The Stokes beam is generated in a commercially available photonic crystal fiber (PCF) using fraction of the power of femtosecond excitation laser. The output of the fiber is optimized for broadband CARS at Stokes shifts in 2900cm-1 region. The spectral resolution in CARS signal is 50 cm-1. It is achieved by introducing a bandpass filter in the pump beam. The timing between the pump and Stokes pulses is preset inside the module and can be varied. We demonstrate utility of the device on examples of second harmonic, two-photon fluorescence and CARS images of several biological and non-biological samples. We also present results of studies where we used CARS modality to monitor in real time the process of fabrication of microstructures by two-photon polymerization.
End-pumped 1.5 microm monoblock laser for broad temperature operation.
Schilling, Bradley W; Chinn, Stephen R; Hays, A D; Goldberg, Lew; Trussell, C Ward
2006-09-01
We describe a next-generation monoblock laser capable of a greater than 10 mJ, 1.5 microm output at 10 pulses/s (pps) over broad ambient temperature extremes with no active temperature control. The transmitter design is based on a Nd:YAG laser with a Cr4+ passive Q switch and intracavity potassium titanyl phosphate optical parametric oscillator. To achieve the repetition rate and efficiency goals of this effort, but still have wide temperature capability, the Nd:YAG slab is end pumped with a 12-bar stack of 100 W (each) diode bars. Different techniques for focusing the pump radiation into the 4.25 mmx4.25 mm end of the slab are compared, including a lensed design, a reflective concentrator, and a lens duct. A wide temperature operation (-20 degrees C to 50 degrees C) for each end-pumped configuration is demonstrated.
Assembly for facilitating inservice inspection of a reactor coolant pump rotor
Veronesi, Luciano
1990-01-01
A reactor coolant pump has an outer casing with an internal cavity holding a coolant and a rotor rotatably mounted in the cavity within the coolant. An assembly for permitting inservice inspection of the pump rotor without first draining the coolant from the casing cavity is attached to an end of the pump. A cylindrical bore is defined through the casing in axial alignment with an end of pump rotor and opening into the internal cavity. An extension attached on the rotor end and rotatable therewith has a cylindrical coupler member extending into the bore. An outer end of the coupler member has an element configured to receive a tool for performance of inservice rotor inspection. A hollow cylindrical member is disposed in the bore and surrounds the coupler member. The cylindrical member is slidably movable relative to the coupler member along the bore between a retracted position wherein the cylindrical member is stored for normal pump operation and an extended position wherein the cylindrical member is extended for permitting inservice rotor inspection. A cover member is detachably and sealably attached to the casing across the bore for closing the bore and retaining the cylindrical member at its retracted position for normal pump operation. Upon detachment of the cover member, the cylindrical member can be extended to permit inservice rotor inspection.
Optimization of end-pumped, actively Q-switched quasi-III-level lasers.
Jabczynski, Jan K; Gorajek, Lukasz; Kwiatkowski, Jacek; Kaskow, Mateusz; Zendzian, Waldemar
2011-08-15
The new model of end-pumped quasi-III-level laser considering transient pumping processes, ground-state-depletion and up-conversion effects was developed. The model consists of two parts: pumping stage and Q-switched part, which can be separated in a case of active Q-switching regime. For pumping stage the semi-analytical model was developed, enabling the calculations for final occupation of upper laser level for given pump power and duration, spatial profile of pump beam, length and dopant level of gain medium. For quasi-stationary inversion, the optimization procedure of Q-switching regime based on Lagrange multiplier technique was developed. The new approach for optimization of CW regime of quasi-three-level lasers was developed to optimize the Q-switched lasers operating with high repetition rates. Both methods of optimizations enable calculation of optimal absorbance of gain medium and output losses for given pump rate. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Aber, Gregory S. (Inventor)
1999-01-01
Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.
NASA Technical Reports Server (NTRS)
Aber, Gregory S. (Inventor)
2000-01-01
An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.
Nano-displacement sensor based on photonic crystal fiber modal interferometer.
Dash, Jitendra Narayan; Jha, Rajan; Villatoro, Joel; Dass, Sumit
2015-02-15
A stable nano-displacement sensor based on large mode area photonic crystal fiber (PCF) modal interferometer is presented. The compact setup requires simple splicing of a small piece of PCF with a single mode fiber (SMF). The excitation and recombination of modes is carried out in a single splice. The use of a reflecting target creates an extra cavity that discretizes the interference pattern of the mode interferometer, boosting the displacement resolution to nanometer level. The proposed modal interferometric based displacement sensor is highly stable and shows sensitivity of 32 pm/nm.
Accuracy of intravenous infusion pumps in continuous renal replacement therapies.
Jenkins, R; Harrison, H; Chen, B; Arnold, D; Funk, J
1992-01-01
Most extracorporeal continuous renal replacement therapies (CRRT) require inflow pumping of either dialysate, filtrate replacement solution, or both. Outflow of spent dialysate and ultrafiltrate can be accomplished by gravity drainage or pump. Intravenous infusion pumps have been commonly used for these purposes, although little is known about the accuracy of these pumps. To evaluate accuracy of two different types of intravenous infusion pumps used in CRRT, we studied flow rates at nine different pressure variations in three piston type and three linear peristaltic pumps. The results showed that error of either pump was not different for flow rates of 4 and 16 ml/min. Both types of pumps were affected by fluid circuit pressures, although pressure conditions under which error was low were different for each pump type. The linear peristaltic pumps were most accurate under conditions of low pump inlet pressure, whereas piston pumps were most accurate under conditions of low pump pressure gradient (outlet minus inlet) of 0 or -100 mmHg. The magnitude of error outside these conditions was substantial, reaching 12.5% for the linear peristaltic pump when inlet pressure was -100 mmHg and outlet pressure was 100 mmHg. Error may be minimized in the clinical setting by choosing the pump type best suited for the pressure conditions expected for the renal replacement modality in use.
Interference effects in a cavity for optical amplification
NASA Astrophysics Data System (ADS)
Cardimona, D. A.; Alsing, P. M.
2009-08-01
In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.
PUMP SETS NO. 5 AND NO. 4. Each pump set ...
PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Time dependent temperature distribution in pulsed Ti:sapphire lasers
NASA Technical Reports Server (NTRS)
Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.
1988-01-01
An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.
LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm
NASA Astrophysics Data System (ADS)
Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.
2011-06-01
We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.
Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip.
Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan
2011-09-07
We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.
Fast modal decomposition for optical fibers using digital holography.
Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai
2017-07-26
Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.
Laser-diode pumped 40-W Yb:YAG ceramic laser.
Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping
2009-09-28
We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.
High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode
NASA Astrophysics Data System (ADS)
Ma, Qinglei; Mo, Haiding; Zhao, Jay
2018-04-01
A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.
Convergent strand array liquid pumping system
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor)
1989-01-01
A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload
Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.
2012-01-01
Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407
Minimizing End-to-End Interference in I/O Stacks Spanning Shared Multi-Level Buffer Caches
ERIC Educational Resources Information Center
Patrick, Christina M.
2011-01-01
This thesis presents an end-to-end interference minimizing uniquely designed high performance I/O stack that spans multi-level shared buffer cache hierarchies accessing shared I/O servers to deliver a seamless high performance I/O stack. In this thesis, I show that I can build a superior I/O stack which minimizes the inter-application interference…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, Stephan; Chow, Weng; Schneider, Hans
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.
Goldberg, Lew; McIntosh, Chris; Cole, Brian
2011-02-28
A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.
Otsuka, Kenju; Chu, Shu-Chun
2013-05-01
We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.
In situ performance curves measurements of large pumps
NASA Astrophysics Data System (ADS)
Anton, A.
2010-08-01
The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.
Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser
NASA Astrophysics Data System (ADS)
Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan
2017-11-01
High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.
Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory
NASA Astrophysics Data System (ADS)
Spiegel, Daniel R.; Tuli, Santona
2011-07-01
Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.
Modal method for Second Harmonic Generation in nanostructures
NASA Astrophysics Data System (ADS)
Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.
2015-05-01
Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.
Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju
2012-03-26
This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.
Spectra- and temperature-dependent dynamics of directly end-pumped holmium lasers
NASA Astrophysics Data System (ADS)
Ji, Encai; Shen, Yijie; Nie, Mingming; Fu, Xing; Liu, Qiang
2017-04-01
We develop a theoretical model with high accuracy for directly end-pumped Ho3+ laser system considering the influences of ground-state depletion, energy transfer up-conversion, temperature-dependent cross sections, and pump spectra shift. The heat generation in our model is precisely evaluated by calculating the transition rates of non-radiation relaxation processes among manifolds and in-band relaxation processes based on a detailed analysis of energy levels structure of holmium ions. A spatial dynamic thermal iteration method, just developed by our group, is applied to describe the coupled influences between spatial thermal effects and pump spectra. This model is verified to both adapt to the narrow-band good beam-quality pumped case and the broad-band bad beam-quality pumped case, which is in accordance with our previous reported experimental results.
35. WEST END ELEVATION, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS ...
35. WEST END ELEVATION, PROPOSED EXTENSION OF COAL HOUSE, EXTENSIONS OF ENGINE AND COAL HOUSES, DEER ISLAND PUMPING STATION, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JANUARY 1908, SHEET NO. 7. Aperture card 6498-7. - Deer Island Pumping Station, Boston, Suffolk County, MA
Optical fiber sensors and signal processing for intelligent structure monitoring
NASA Technical Reports Server (NTRS)
Thomas, Daniel; Cox, Dave; Lindner, D. K.; Claus, R. O.
1989-01-01
Few mode optical fibers have been shown to produce predictable interference patterns when placed under strain. The use is described of a modal domain sensor in a vibration control experiment. An optical fiber is bonded along the length of a flexible beam. Output from the modal domain sensor is used to suppress vibrations induced in the beam. A distributed effect model for the modal domain sensor is developed. This model is combined with the beam and actuator dynamics to produce a system suitable for control design. Computer simulations predict open and closed loop dynamic responses. An experimental apparatus is described and experimental results are presented.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Wearable devices for blood purification: principles, miniaturization, and technical challenges.
Armignacco, Paolo; Lorenzin, Anna; Neri, Mauro; Nalesso, Federico; Garzotto, Francesco; Ronco, Claudio
2015-01-01
The prevalences of end-stage renal disease (ESRD) and renal replacement therapy (RRT) continue to increase across the world imposing staggering costs on providers. Therefore, strategies to optimize the treatment and improve survival are of fundamental importance. Despite the benefits of daily dialysis, its implementation is difficult and wearable hemodialysis might represent an alternative by which frequent treatments can be delivered to ESRD patients with much less interference in their routines promoting better quality of life. The development of the wearable artificial kidney (WAK) requires incorporation of basic components of a dialysis system into a wearable device that allows mobility, miniaturization, and above all, patient-oriented management. The technical requirements necessary for WAK can be divided into the following broad categories: dialysis membranes, dialysis regeneration, vascular access, patient monitoring systems, and power sources. Pumping systems for blood and other fluids are the most critical components of the entire device. © 2015 Wiley Periodicals, Inc.
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
Evidence for modality-independent order coding in working memory.
Depoorter, Ann; Vandierendonck, André
2009-03-01
The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.
NASA Astrophysics Data System (ADS)
Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing
2011-02-01
A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.
The mechanism of muscle injury in the crush syndrome: ischemic versus pressure-stretch myopathy.
Better, O S; Abassi, Z; Rubinstein, I; Marom, S; Winaver, Y; Silberman, M
1990-01-01
Crush injuries are ubiquitous, common sequelae in victims of seismic, industrial and military catastrophes, and were considered to be mainly due to ischemia of the affected limbs. Our clinical experience suggests that early in the crush syndrome, interference with the circulation may occur but is rare. The predominant earliest lesion in the crush syndrome is postulated to be pressure-stretch myopathy, rather than ischemic myopathy. It is proposed that at the membrane level, stretch increases sarcoplasmic influx of Na, Cl, H2O and Ca down their electrochemical gradient. Energy-requiring cationic extrusion pumps work at maximal capacity, but are unable to cope with the increased load. This results in cell swelling and increase in cytosolic and mitochondrial calcium with activation of autolytic destructive processes and interference with cellular respiration. Extensive muscle swelling may cause late muscle tamponade and myoneural ischemic damage (compartmental syndrome). Thus, whereas prevalent theory suggests that the sarcolemmal cationic pump activity is attenuated in the crush syndrome due to early ischemia, we propose that the cationic extrusion pump is maximally activated as in the amphotericin B model. Because the cationic pump is maximally activated in the stretched muscle and in cells exposed to amphotericin, these models rapidly deplete their scarce ATP stores and are susceptible to hypoxia in the face of initially normal circulation.
OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser
Dorrer, C.; Consentino, A.; Irwin, D.; ...
2015-09-01
OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, T Y; Deng, Yu; Ju, Y-L
2015-12-31
We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-01-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
NASA Astrophysics Data System (ADS)
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-13
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
2008-02-01
Photonics. New York: John J. Wiley & Sons, Inc, 1991. 30. “How to (Maybe) Measure Laser Beam Quality” Prof. A. E. Siegman Tutorial Presentation at...Deterministic Nanosecond Laser -Induced Breakdown Thresholds in Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE 6453 (2007) 37. Siegman , A.E...seeded at one end and pumped at the other end, using dichroic filters to protect the pump and seed lasers , creating a fiber amplifier. The seed laser
Zigzag laser with reduced optical distortion
Albrecht, G.F.; Comaskey, B.; Sutton, S.B.
1994-04-19
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.
Zigzag laser with reduced optical distortion
Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.
1994-01-01
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.
Mishra, Jyoti; Zanto, Theodore; Nilakantan, Aneesha; Gazzaley, Adam
2013-01-01
Intrasensory interference during visual working memory (WM) maintenance by object stimuli (such as faces and scenes), has been shown to negatively impact WM performance, with greater detrimental impacts of interference observed in aging. Here we assessed age-related impacts by intrasensory WM interference from lower-level stimulus features such as visual and auditory motion stimuli. We consistently found that interference in the form of ignored distractions and secondary task i nterruptions presented during a WM maintenance period, degraded memory accuracy in both the visual and auditory domain. However, in contrast to prior studies assessing WM for visual object stimuli, feature-based interference effects were not observed to be significantly greater in older adults. Analyses of neural oscillations in the alpha frequency band further revealed preserved mechanisms of interference processing in terms of post-stimulus alpha suppression, which was observed maximally for secondary task interruptions in visual and auditory modalities in both younger and older adults. These results suggest that age-related sensitivity of WM to interference may be limited to complex object stimuli, at least at low WM loads. PMID:23791629
Observation of stimulated Mie-Bragg scattering from large-size-gold-nanorod suspension in water
NASA Astrophysics Data System (ADS)
He, Guang S.; Yong, Ken-Tye; Zhu, Jing; Prasad, P. N.
2012-04-01
Highly directional backward stimulated scattering has been observed from large-size-gold nanorods suspended in water, pumped with ˜816 nm and ˜10 ns laser pulses. In comparison with other known stimulated scattering effects, the newly observed effect exhibits the following features. (i) The scattering centers are impurity particles with a size comparable in order of magnitude to the incident wavelength. (ii) There is no frequency shift between the pump wavelength and the stimulated scattering wavelength. (iii) The pump threshold can be significantly lower than that of stimulated Brillouin scattering in pure water. The nonfrequency shift can be explained by the formation of a standing-wave Bragg grating induced by the interference between the forward pump beam and the backward Mie-scattering beam. The low pump threshold results from stronger initial Mie-scattering (seed) signals and the intensity-dependent refractive-index change of the scattering medium enhanced by metallic nanoparticles.
Wallin, Mats K E B; Marve, Therese; Hakansson, Peter K
2005-11-01
Hospitals rely on pagers and ordinary telephones to reach staff members in emergency situations. New telecommunication technologies such as General Packet Radio Service (GPRS), the third generation mobile phone system Universal Mobile Telecommunications System (UMTS), and Wireless Local Area Network (WLAN) might be able to replace hospital pagers if they are electromagnetically compatible with medical devices. In this study, we sought to determine if GPRS, UMTS (Wideband Code Division Multiple Access-Frequency Division Duplex [WCDMA FDD]), and WLAN (IEEE 802.11b) transmitted signals interfere with life-supporting equipment in the intensive care and operating room environment. According to United States standard, ANSI C63.18-1997, laboratory tests were performed on 76 medical devices. In addition, clinical tests during 11 operations and 100 h of intensive care were performed. UMTS and WLAN signals caused little interference. Devices using these technologies can be used safely in critical care areas and during operations, but direct contact between medical devices and wireless communication devices ought to be avoided. In the case of GPRS, at a distance of 50 cm, it caused an older infusion pump to alarm and stop infusing; the pump had to be reset. Also, 10 cases of interference with device displays occurred. GPRS can be used safely at a distance of 1 m. Terminals/cellular phones using these technologies should be allowed without restriction in public areas because the risk of interference is minimal.
Dunn, Steven P.; Steinhubl, Steven R.; Bauer, Deborah; Charnigo, Richard J.; Berger, Peter B.; Topol, Eric J.
2013-01-01
Background Proton pump inhibitors (PPIs) may interfere with the metabolic activation of clopidogrel via inhibition of cytochrome P450 2C19, but the clinical implications remain unclear. Methods and Results The impact of PPI use on the 1‐year primary end point (ischemic stroke, myocardial infarction [MI], or vascular death) in the Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events (CAPRIE) trial and the 28‐day (all‐cause death, MI, or urgent target vessel revascularization) and 1‐year (all‐cause death, MI, or stroke) primary end points in the Clopidogrel for Reduction of Events During Observation (CREDO) trial were examined. Clopidogrel appeared to elevate risk for the primary end point in CAPRIE among PPI users (estimated hazard ratio [EHR] 2.66, 95% CI 0.94 to 7.50) while lowering it for non‐PPI users (EHR 0.90, 95% CI 0.83 to 0.99, interaction P=0.047). Moreover, PPI use was associated with worse outcomes in patients receiving clopidogrel (EHR 2.39, 95% CI 1.74 to 3.28) but not aspirin (EHR 1.04, 95% CI 0.70 to 1.57, interaction P=0.001). Clopidogrel did not significantly alter risk for the 1‐year primary end point in CREDO among PPI users (EHR 0.82, 95% CI 0.48 to 1.40) while lowering it for non‐PPI users (EHR 0.71, 95% CI 0.52 to 0.98, interaction P=0.682). Also, PPI use was associated with worse outcomes in both patients receiving clopidogrel (EHR 1.67, 95% CI 1.06 to 2.64) and those receiving placebo (EHR 1.56, 95% CI 1.06 to 2.30, interaction P=0.811). Conclusions In CREDO, the efficacy of clopidogrel was not significantly affected by PPI use. However, in CAPRIE, clopidogrel was beneficial to non‐PPI users while apparently harmful to PPI users. Whether this negative interaction is clinically important for patients receiving clopidogrel without aspirin needs further study. PMID:23525436
Wilbiks, Jonathan M P; Dyson, Benjamin J
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus.
Wilbiks, Jonathan M. P.; Dyson, Benjamin J.
2016-01-01
Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus. PMID:27977790
A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.
Mehra, Mandeep R; Naka, Yoshifumi; Uriel, Nir; Goldstein, Daniel J; Cleveland, Joseph C; Colombo, Paolo C; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Jorde, Ulrich P; Pagani, Francis D; Aaronson, Keith D; Dean, David A; McCants, Kelly; Itoh, Akinobu; Ewald, Gregory A; Horstmanshof, Douglas; Long, James W; Salerno, Christopher
2017-02-02
Continuous-flow left ventricular assist systems increase the rate of survival among patients with advanced heart failure but are associated with the development of pump thrombosis. We investigated the effects of a new magnetically levitated centrifugal continuous-flow pump that was engineered to avert thrombosis. We randomly assigned patients with advanced heart failure to receive either the new centrifugal continuous-flow pump or a commercially available axial continuous-flow pump. Patients could be enrolled irrespective of the intended goal of pump support (bridge to transplantation or destination therapy). The primary end point was a composite of survival free of disabling stroke (with disabling stroke indicated by a modified Rankin score >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove the device at 6 months after implantation. The trial was powered for noninferiority testing of the primary end point (noninferiority margin, -10 percentage points). Of 294 patients, 152 were assigned to the centrifugal-flow pump group and 142 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 131 patients (86.2%) in the centrifugal-flow pump group and in 109 (76.8%) in the axial-flow pump group (absolute difference, 9.4 percentage points; 95% lower confidence boundary, -2.1 [P<0.001 for noninferiority]; hazard ratio, 0.55; 95% confidence interval [CI], 0.32 to 0.95 [two-tailed P=0.04 for superiority]). There were no significant between-group differences in the rates of death or disabling stroke, but reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (1 [0.7%] vs. 11 [7.7%]; hazard ratio, 0.08; 95% CI, 0.01 to 0.60; P=0.002). Suspected or confirmed pump thrombosis occurred in no patients in the centrifugal-flow pump group and in 14 patients (10.1%) in the axial-flow pump group. Among patients with advanced heart failure, implantation of a fully magnetically levitated centrifugal-flow pump was associated with better outcomes at 6 months than was implantation of an axial-flow pump, primarily because of the lower rate of reoperation for pump malfunction. (Funded by St. Jude Medical; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
ON-Q infusion pump linked to increased hospital stay after total knee arthroplasty.
O'Neil, Stephen; Danielson, Kristopher; Johnson, Kory; Matelic, Thomas
2018-06-01
The purpose of this study was to evaluate immediate postoperative pain control modalities after total knee arthroplasty at the author's specific institution and compare those modalities with patient satisfaction, rehabilitation status, and length of hospital stay. A retrospective chart review of 101 patients who underwent total knee arthroplasty from 2013 to 2016 was performed. Data was collected including the pain control modality, total pain medication consumption, physical therapy progress, length of hospital stay and Visual Analog Scores. Analysis was then performed using SAS proprietary software. Results were reported as statistically significant if p value was less than 0.05. Multiple variables proved to be statistically significant (p value <0.05) in this particular study. Patients who received Valium required more morphine equivalents on average and reported higher Visual Analog Scores (VAS). For those patients who received a lower extremity nerve block pre operatively, there was a decrease in morphine equivalents on postoperative day one and lower VAS. For those patients who received the continuous pain pump, ON-Q postoperatively, there was an average increase in length of hospital stay by one day and a decrease in ambulation on postoperative day one. Also, females required less overall pain medication on postoperative days two and three compared to their male counterparts. Finally, there was no statistically significant difference for those patients who received Lyrica (pregabalin) or NSAIDS for the parameters that were measured in this study. Postoperative pain control modalities after total knee arthroplasty are highly variable among physicians. This variability has allowed researchers to review each modality and compare and contrast the benefits with the potential adverse effects of these medications on total knee replacement outcomes. The data in this study suggests that the use of Valium is correlated with increased pain medication consumption and decreased patient satisfaction. Data from this study also reveals that patients who underwent preoperative nerve blocks experienced decreased pain on postoperative day one and greater patient satisfaction. The most notable contribution of this study was the discovery of the adverse effects of the continuous pain pump, ON-Q. Patients treated with this modality had decreased ambulation on postoperative day one and on average remained in the hospital one extra day, a variable that significantly increases the cost of a total knee arthroplasty for the hospital, the surgeon and the patient. Even though this data is significant, further studies should be performed to enhance our knowledge of postoperative pain control for these patients.
Levy-Gigi, Einat; Vakil, Eli
2012-01-01
The influence of contextual factors on encoding and retrieval in recognition memory was investigated using a retroactive interference paradigm. Participants were randomly assigned to four context conditions constructed by manipulating types of presentation modality (pictures vs words) for study, interference, and test stages, respectively (ABA, ABB, AAA, & AAB). In Experiment 1 we presented unrelated items in the study and interference stages, while in Experiment 2 each stage contained items from the same semantic category. The results demonstrate a dual role for context in memory processes-at encoding as well as at retrieval. In Experiment 1 there is a hierarchical order between the four context conditions, depending on both target-test and target-interference contextual similarity. Adding a categorical context in Experiment 2 helped to specify each list and therefore better distinguish between target and interferer information, and in some conditions compensated for their perceptual similarity.
Bacterial cell identification in differential interference contrast microscopy images.
Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente
2013-04-23
Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei
2017-03-20
A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300 MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiaoxin; Li Xiaoying; Cui Liang
2011-08-15
Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g{sup (2)}more » of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.« less
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
Code of Federal Regulations, 2010 CFR
2010-10-01
... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...
Code of Federal Regulations, 2011 CFR
2011-10-01
... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...
Code of Federal Regulations, 2013 CFR
2013-10-01
... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...
Code of Federal Regulations, 2014 CFR
2014-10-01
... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...
Code of Federal Regulations, 2012 CFR
2012-10-01
... operator at the cargo pump controls. (c) Each pipe and valve in the pumping system that has an open end... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...
Method and apparatus for measuring volatile compounds in an aqueous solution
Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA
2002-07-16
The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.
Crossmodal attention switching: auditory dominance in temporal discrimination tasks.
Lukas, Sarah; Philipp, Andrea M; Koch, Iring
2014-11-01
Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.
Continuously active interferometer stabilization and control for time-bin entanglement distribution
Toliver, Paul; Dailey, James M.; Agarwal, Anjali; ...
2015-02-10
In this study, we describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. In addition, the co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe.
Frazier, O H; Tuzun, Egemen; Cohn, William E; Conger, Jeffrey L; Kadipasaoglu, Kamuran A
2006-01-01
Continuous-flow pumps are small, simple, and respond physiologically to input variations, making them potentially ideal for total heart replacement. However, the physiological effects of complete pulseless flow during long-term circulatory support without a cardiac interface or with complete cardiac exclusion have not been well studied. We evaluated the feasibility of dual continuous-flow pumps as a total artificial heart (TAH) in a chronic bovine model. Both ventricles of a 6-month-old Corriente crossbred calf were excised and sewing rings attached to the reinforced atrioventricular junctions. The inlet portions of 2 Jarvik 2000 pumps were positioned through their respective sewing rings at the mid-atrial level and the pulseless atrial reservoir connected end-to-end to the pulmonary artery and aorta. Pulseless systemic and pulmonary circulations were thereby achieved. Volume status was controlled, and systemic and pulmonary resistance were managed pharmacologically to keep mean arterial pressures at 100+/-10 mmHg (systemic) and 20+/-5 mmHg (pulmonary) and both left and right atrial pressures at 15+/-5 mmHg. The left pump speed was maintained at 14,000 rpm and its output autoregulated in response to variations in right pump flow, systemic and pulmonary pressures, fluid status, and activity level. Hemodynamics, end-organ function, and neurohormonal status remained normal. These results suggest the feasibility of using dual continuous-flow pumps as a TAH.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1995-01-01
A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.
1996-10-29
A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.
Hydraulic pump with in-ground filtration and monitoring capability
Hopkins, Charles D.; Livingston, Ronald R.; Toole, Jr., William R.
1996-01-01
A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.
Helicobacter Pylori Infections
... sure he takes the full course of these antibiotics as directed by your pediatrician. They are usually prescribed in combination with drugs called proton pump inhibitors or histamine receptor blockers that interfere with the production of acid in the stomach. What Is the ...
Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 μm
NASA Astrophysics Data System (ADS)
Wu, Z. H.; Sun, D. L.; Wang, S. Z.; Luo, J. Q.; Li, X. L.; Huang, L.; Hu, A. L.; Tang, Y. Q.; Guo, Q.
2013-05-01
We demonstrated a 967 nm diode end-pumped Er:GSGG laser operated at 2.794 μm with spectral width 3.6 nm in the continuous wave (CW) mode. A maximum output power of 440 mW is obtained at an incident pumping power of 3.4 W, which corresponds to an optical-to-optical efficiency of 13% and slope efficiency of 13.2%. The results suggest that a short cavity and efficient cooling setup for the crystal help to improve laser performance.
7 CFR 58.219 - High pressure pumps and lines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
Analyses of mode filling factor of a laser end-pumped by a LD with high-order transverse modes
NASA Astrophysics Data System (ADS)
Han, Juhong; Wang, You; An, Guofei; Rong, Kepeng; Yu, Hang; Wang, Shunyan; Zhang, Wei; Cai, He; Xue, Liangping; Wang, Hongyuan; Zhou, Jie
2017-05-01
Although the concept of the mode filling factor (also named as "mode-matching efficiency") has been well discussed decades before, the concept of so-called overlap coefficient is often confused by the laser technicians because there are several different formulae for various engineering purposes. Furthermore, the LD-pumped configurations have become the mainstream of solid-state lasers since their compact size, high optical-to-optical efficiency, low heat generation, etc. As the beam quality of LDs are usually very unsatisfactory, it is necessary to investigate how the mode filling factor of a laser system is affected by a high-powered LD pump source. In this paper, theoretical analyses of an end-pumped laser are carried out based on the normalized overlap coefficient formalism. The study provides a convenient tool to describe the intrinsically complex issue of mode interaction corresponding to a laser and an end-pumped source. The mode filling factor has been studied for many cases in which the pump mode and the laser mode have been considered together in the calculation based on analyses of the rate equations. The results should be applied for analyses of any other types of lasers with the similar optical geometry.
Mid-Infrared Quantum-Dot Quantum Cascade Laser: A Theoretical Feasibility Study
Michael, Stephan; Chow, Weng; Schneider, Hans
2016-05-01
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. We study the influence of two important quantum-dot material parameters, here, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density canmore » compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. By minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.« less
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric
1999-01-01
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.
NASA Astrophysics Data System (ADS)
Tsai, Ko-Fan; Chu, Shu-Chun
2018-03-01
This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.
Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-04-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.
Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh
2016-01-01
The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441
13. VIEW OF PUMPS NO. 5 AND 4. NOTE THE ...
13. VIEW OF PUMPS NO. 5 AND 4. NOTE THE TRAVELING CRANE AT THE FAR END OF THE ROOM, LOOKING SOUTH. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
NASA Astrophysics Data System (ADS)
Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.
2012-06-01
In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
Diode-pumped laser with improved pumping system
Chang, Jim J.
2004-03-09
A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.
Thermal Lens Measurement in Diode-Pumped Nd:YAG Zig-Zag Slab
NASA Technical Reports Server (NTRS)
Smoak, M. C.; Kay, R. B.; Coyle, D. B.; Hopf, D.
1998-01-01
A major advantage that solid state zig-zag slab lasers have over conventional rod-based designs is that a much weaker thermal lens is produced in the slab when side-pumped with Quasi-CW laser diode arrays, particularly if the pump radiation is kept well away from the Brewster-cut ends. This paper reports on a rather strong thermal lens produced when diode pump radiation is collimated into a narrow portion of the zig-zag slab. The collimation of multi-bar pump packages to increase brightness and improve overlap is a direct consequence of designs which seek to maximize performance and efficiency. Our slab design employed a 8.1 cm x 2.5 mm x 5 mm slab with opposing Brewster end faces. It was pumped through the 2.5 mm direction by seven laser diode array packages, each housing four 6OW diode bars, 1 cm in width. The pump face, anti-reflection (AR) coated at 809 nm, was 6.8 cm in width and the 8.1 cm opposing side, high-reflection (HR) coated at 809 nm, reflected the unabsorbed pump beam for a second pass through the slab.
Initial in vitro evaluation of a pediatric vortex-mixing membrane lung.
Peacock, J A; Bellhouse, B J; Abel, K; Bellhouse, E L; Bellhouse, F H; Jeffree, M A; Sykes, M K; Gardaz, J P
1983-05-01
A new design for a pediatric membrane lung is described in this paper. The lung consists of eight blood compartments, each having six U-shaped blood channels, with microporous PTFE membranes supported on rigid plates in such a way that the membranes form furrowed blood channels. Two rolling diaphragm pumps are attached to the open ends of the U-shaped blood channels; these pumps are operated in antiphase. Mean flow is provided by a roller pump placed at the inlet end of the membrane lung. Pulsatile blood flow within the blood channels produces successive vortex formation and ejection, leading to good blood mixing and high efficiency in gas transport. The design of the rolling diaphragm piston pumps ensures that the blood prime volume is low (280 ml), and the grouping of the pumps at one end of the oxygenator allows the driving mechanism to be simple and compact. The relatively wide blood channels (minimum width 0.5 mm) and vortex mixing make priming the membrane lung particularly easy. The membrane area is 0.39 m2. Preliminary performance testing of the pediatric membrane lung was undertaken by pumping blood around a circuit containing a roller pump, the membrane lung, and a bubble oxygenator (to adjust the blood gases at the inlet to the membrane lung). In five such experiments it was shown that the membrane lung transferred 80 ml O2/min and 120 ml CO2/min at a blood flow rate of 1.5 L/min.
NASA Astrophysics Data System (ADS)
Rasouli, Saifollah; Sakha, Fereshteh; Mojarrad, Aida G.; Zakavi, Saeed
2018-05-01
In this work, measurement of thermally induced nonlinear refractive index of meso-tetraphenylporphyrin (H2TPP) at different concentrations in 1,2-dicoloroethane using a double-grating interferometer set-up in a pump-probe configuration is reported. The formation of aggregates of H2TPP at concentrations greater than ca. 5 × 10-5 M was evident by deviation from Beer's law. An almost focused pump beam passes through the solution. A part of the pump beam energy is absorbed by the sample and therefore a thermal lens is generated in the sample. An expanded probe beam propagates through the sample and indicates the sample refractive index changes. Just after the sample a band-pass filter cuts off the pump beam from the path but the distorted probe beam passes through a double-grating interferometer consisting of two similar diffraction gratings with a few centimetres distance. A CCD camera is installed after the interferometer in which on its sensitive area two diffraction orders of the gratings are overlying and producing interference pattern. The refractive index changes of the sample are obtained from the phase distribution of the successive interference patterns recorded at different times after turning on of the pump beam using Fourier transform method. In this study, for different concentrations of H2TPP in 1,2-dichloroethane solution the thermal nonlinear refractive index is determined. Also, we present the measurement of the temperature changes induced by the pump beam in the solution. We found that value of nonlinear refractive index increased by increasing the concentration up to a concentration of 5 × 10-4 M and then decreased at higher concentrations. In addition, we have investigated the stability of the observed thermal nonlinearity after a period of two weeks from the sample preparation.
NASA Astrophysics Data System (ADS)
Saleh, Mohammad Abu
2007-05-01
When overlapping monochromatic light beams interfere in a photorefractive material, the resulting intensity fringes create a spatially modulated charge distribution. The resulting refractive index grating may cause power transfer from one beam (the pump) to the other beam (the signal). In a special case of the reflection grating geometry, the Fresnel reflection of the pump beam from the rear surface of the crystal is used as the signal beam. It has been noted that for this self-pumped, contra-directional two-beam coupling (SPCD-TBC) geometry, the coupling efficiency seems to be strongly dependent on the focal position and spot size, which is attributed to diffraction and the resulting change in the spatial overlaps between the pump and signal. In this work a full diffraction based simulation of SPCD-TBC for a Gaussian beam is developed with a novel algorithm. In a related context involving reflection gratings, a particular phenomenon named six-wave mixing has received some interest in the photorefractive research. The generation of multiple waves during near-oblique incidence of a 532 nm weakly focused laser light on photorefractive iron doped lithium niobate in a typical reflection geometry configuration is studied. It is shown that these waves are produced through two-wave coupling (self-diffraction) and four-wave mixing (parametric diffraction). One of these waves, the stimulated photorefractive backscatter produced from parametric diffraction, contains the self-phase conjugate. The dynamics of six-wave mixing, and their dependence on crystal parameters, angle of incidence, and pump power are analyzed. A novel order analysis of the interaction equations provides further insight into experimental observations in the steady state. The quality of the backscatter is evaluated through image restoration, interference experiments, and visibility measurement. Reduction of two-wave coupling may significantly improve the quality of the self-phase conjugate.
NASA Astrophysics Data System (ADS)
Mojahedi, Mahdi; Shekoohinejad, Hamidreza
2018-02-01
In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
'E-learning' modalities in the current era of Medical Education in Pakistan.
Jawaid, Masood; Aly, Syed Moyn
2014-09-01
There are a number of e-Learning modalities, some or all of which may be used throughout a medical, dental, nursing or any other health related undergraduate curriculum. The purpose of this paper is to briefly describe what e-learning is along with some of the modalities, their common advantages and limitations. This publication ends with practical implications of these modalities for Pakistan.
NASA Astrophysics Data System (ADS)
Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej
2017-05-01
High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).
New concept of critical infrastructure strengthening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazizov, Talgat R.; Orlov, Pavel E.; Zabolotsky, Alexander M.
2016-06-08
Strengthening of critical infrastructure is considered. Modal reservation of electronics is proposed as a new concept of the strengthening. The concept combines a widely used cold backup and a recently proposed modal filtration. It makes electronics reliable as well as protected against electromagnetic interference, especially the ultra-wide band pulses. New printed circuit board structure is suggested for implementation of the proposed concept. Results of simulation in time and frequency domains are presented for the suggested structures. Considerable attenuation of dangerous excitations shows that the new concept and structure are promising.
Wiest, Katharina L.; Colditz, Jason B.; Carr, Kathryn; Asphaug, Victoria J.; McCarty, Dennis; Pilkonis, Paul A.
2014-01-01
Objectives: A secondary analysis assessed health-related quality of life characteristics (i.e. anxiety, depression, fatigue, and types of pain) among patients entering substance-use treatment, and identified characteristics specific to treatment modalities relative to a representative comparison group. Methods: As part of a larger alcohol bank assessment, substance-use patients (n=406) beginning methadone treatment (n=170) or other outpatient treatment (n=236) and a comparison group representative of the general population (n=1000) completed a survey measuring anxiety, depression, fatigue, pain interference, and pain in the last 7 days. Previous studies lacked comparable and concurrent assessments across these three groups. Results: Patients entering substance-use treatment had relatively high levels of emotional distress and poorer health-related quality of life relative to the general population. Among treatment modalities, patients beginning methadone treatment reported the highest levels of pain interference and pain behavior and the poorest physical functioning. Prior to the potentially modifying effects of methadone maintenance, patients beginning agonist therapy reported the greatest levels of compromised quality of life. Conclusion: These data present the magnitude of differences in health-related quality of life characteristics between treatment and comparison groups using the same assessment rubric and may help inform the design and timing of treatment modalities, thereby enhancing treatment efficacy for patients. PMID:25275876
Incidental category learning and cognitive load in a multisensory environment across childhood.
Broadbent, H J; Osborne, T; Rea, M; Peng, A; Mareschal, D; Kirkham, N Z
2018-06-01
Multisensory information has been shown to facilitate learning (Bahrick & Lickliter, 2000; Broadbent, White, Mareschal, & Kirkham, 2017; Jordan & Baker, 2011; Shams & Seitz, 2008). However, although research has examined the modulating effect of unisensory and multisensory distractors on multisensory processing, the extent to which a concurrent unisensory or multisensory cognitive load task would interfere with or support multisensory learning remains unclear. This study examined the role of concurrent task modality on incidental category learning in 6- to 10-year-olds. Participants were engaged in a multisensory learning task while also performing either a unisensory (visual or auditory only) or multisensory (audiovisual) concurrent task (CT). We found that engaging in an auditory CT led to poorer performance on incidental category learning compared with an audiovisual or visual CT, across groups. In 6-year-olds, category test performance was at chance in the auditory-only CT condition, suggesting auditory concurrent tasks may interfere with learning in younger children, but the addition of visual information may serve to focus attention. These findings provide novel insight into the use of multisensory concurrent information on incidental learning. Implications for the deployment of multisensory learning tasks within education across development and developmental changes in modality dominance and ability to switch flexibly across modalities are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Apparatus for generating coherent infrared energy of selected wavelength
Stevens, C.G.
A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.
NASA Astrophysics Data System (ADS)
Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong
2014-01-01
Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.
Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong
2014-01-01
Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.
Temperature distribution of laser crystal in end-pumped DPSSL
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Jia, Liping; Zhang, Lei; Wen, Jihua; Kang, Junjian
2009-11-01
The temperature distribution in different cooling system was studied. A thermal distribution model of laser crystal was established. Based on the calculation, the temperature distribution and deformation of ND:YVO4 crystal in different cooling system were obtained. When the pumping power is 2 W and the radius of pumping beams is 320μm, the temperature distribution and end face distortion of the laser crystal are lowest by using side directly hydrocooling method. The study shows that, the side directly hydrocooling method is a more efficient method to control the crystal temperature distribution and reduce the thermal effect.
Modal analysis of a nonuniform string with end mass and variable tension
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Galaboff, Z. J.
1983-01-01
Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
Collisional Quenching of No A2sigma+(nu’= 0) Between 125 and 294 (Postprint)
2009-05-28
using an oil-free pumping system consisting of a turbomolecular pump backed by a dry scroll pump . The measured leak rate of the cell was less than 10...mode-locked laser producing pulses of approximately 100 ps duration, was used to pump a DFDL, a side- pumped dye amplifier, and an end- pumped dye...conditions, the calibrated pressure Vacuum C N2 Laser PMTMono L2 L3 Cryostat W1 W2 L1 L1 Ap ND FIG. 1. Experimental arrangement with section detail of cryostat
Multimodal Nonlinear Optical Microscopy
Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-01-01
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747
Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho
2009-07-20
Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.
Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser
NASA Astrophysics Data System (ADS)
Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun
2018-03-01
Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.
‘E-learning’ modalities in the current era of Medical Education in Pakistan
Jawaid, Masood; Aly, Syed Moyn
2014-01-01
There are a number of e-Learning modalities, some or all of which may be used throughout a medical, dental, nursing or any other health related undergraduate curriculum. The purpose of this paper is to briefly describe what e-learning is along with some of the modalities, their common advantages and limitations. This publication ends with practical implications of these modalities for Pakistan. PMID:25225547
Unmet Needs in the Treatment of Gastroesophageal Reflux Disease
Dickman, Ram; Maradey-Romero, Carla; Gingold-Belfer, Rachel; Fass, Ronnie
2015-01-01
Gastroesophageal reflux disease (GERD) is a highly prevalent gastrointestinal disorder. Proton pump inhibitors have profoundly revolutionized the treatment of GERD. However, several areas of unmet need persist despite marked improvements in the therapeutic management of GERD. These include the advanced grades of erosive esophagitis, nonerosive reflux disease, maintenance treatment of erosive esophagitis, refractory GERD, postprandial heartburn, atypical and extraesophageal manifestations of GERD, Barrett’s esophagus, chronic protein pump inhibitor treatment, and post-bariatric surgery GERD. Consequently, any future development of novel therapeutic modalities for GERD (medical, endoscopic, or surgical), would likely focus on the aforementioned areas of unmet need. PMID:26130628
NASA Astrophysics Data System (ADS)
Jasim, A. A.; Ahmad, H.
2017-12-01
The generation and switching of dual-wavelength laser based on compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is reported. The CM-MZI is constructed by overlapping two portions of a single tapered optical fiber which has a diameter of 9 μm as to create multi-mode interference and also to produce spatial mode beating as to suppress mode competition in the homogeneous gain medium. The system is able to generate a dual-wavelength laser output that can be switched with the aid of the polarization rotation technique. Four dual-wavelength oscillation pairs are obtained from the interference fringe peaks of the CM-MZI comb filter with a switched channel spacing of 1.5 nm, 3.0 nm, and 6.0 nm. The wavelength spacing is stable at different pump powers. The lasing wavelength has a 3-dB linewidth of about 30 pm and peak-to-floor ration of about 55 dB at a pump power of 38 mW.
1978-07-01
horizontally mounted, single-end suction, single- stage centrifugal pumps. The rotating elements are mounted on the shaft of the driving motor, and the pump...annual open-and-inspect requirement for MIP E-17/296-21, MRC 21 A14V A. Industrial Facility Improvements -- None IMA Improvements -- None Intergrated ...Circulating Pump, Warren Pumps, Inc., NAVSHIPS 347-3146, January 1959. 4. Technical Manual - Horizontal Close-Co!;pled Pumps Sea (Salt) Water
Breining, Bonnie; Nozari, Nazbanou; Rapp, Brenda
2016-04-01
Past research has demonstrated interference effects when words are named in the context of multiple items that share a meaning. This interference has been explained within various incremental learning accounts of word production, which propose that each attempt at mapping semantic features to lexical items induces slight but persistent changes that result in cumulative interference. We examined whether similar interference-generating mechanisms operate during the mapping of lexical items to segments by examining the production of words in the context of others that share segments. Previous research has shown that initial-segment overlap amongst a set of target words produces facilitation, not interference. However, this initial-segment facilitation is likely due to strategic preparation, an external factor that may mask underlying interference. In the present study, we applied a novel manipulation in which the segmental overlap across target items was distributed unpredictably across word positions, in order to reduce strategic response preparation. This manipulation led to interference in both spoken (Exp. 1) and written (Exp. 2) production. We suggest that these findings are consistent with a competitive learning mechanism that applies across stages and modalities of word production.
Dunford, Benjamin B; Perrigino, Matthew; Tucker, Sharon J; Gaston, Cynthia L; Young, Jim; Vermace, Beverly J; Walroth, Todd A; Buening, Natalie R; Skillman, Katherine L; Berndt, Dawn
2017-09-01
We investigated nurse perceptions of smart infusion medication pumps to provide evidence-based insights on how to help reduce work around and improve compliance with patient safety policies. Specifically, we investigated the following 3 research questions: (1) What are nurses' current attitudes about smart infusion pumps? (2) What do nurses think are the causes of smart infusion pump work arounds? and (3) To whom do nurses turn for smart infusion pump training and troubleshooting? We surveyed a large number of nurses (N = 818) in 3 U.S.-based health care systems to address the research questions above. We assessed nurses' opinions about smart infusion pumps, organizational perceptions, and the reasons for work arounds using a voluntary and anonymous Web-based survey. Using qualitative research methods, we coded open-ended responses to questions about the reasons for work arounds to organize responses into useful categories. The nurses reported widespread satisfaction with smart infusion pumps. However, they reported numerous organizational, cultural, and psychological causes of smart pump work arounds. Of 1029 open-ended responses to the question "why do smart pump work arounds occur?" approximately 44% of the causes were technology related, 47% were organization related, and 9% were related to individual factors. Finally, an overwhelming majority of nurses reported seeking solutions to smart pump problems from coworkers and being trained primarily on the job. Hospitals may significantly improve adherence to smart pump safety features by addressing the nontechnical causes of work arounds and by providing more leadership and formalized training for resolving smart pump-related problems.
Lowery, Guy B.
1991-01-01
A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.
Choroidal microcirculation in patients with rotary cardiac assist device.
Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold
2007-06-01
In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.
Stroboscopic Interferometer for Measuring Mirror Vibrations
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Robers, Ted
2005-01-01
Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.
Is Phonological Encoding in Naming Influenced by Literacy?
ERIC Educational Resources Information Center
Ventura, Paulo; Kolinsky, Regine; Querido, Jose-Luis; Fernandes, Sandra; Morais, Jose
2007-01-01
We examined phonological priming in illiterate adults, using a cross-modal picture-word interference task. Participants named pictures while hearing distractor words at different Stimulus Onset Asynchronies (SOAs). Ex-illiterates and university students were also tested. We specifically assessed the ability of the three populations to use…
Laser rods with undoped, flanged end-caps for end-pumped laser applications
Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.
1999-08-10
A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan
2018-02-01
A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.
Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate
NASA Astrophysics Data System (ADS)
Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.
2017-12-01
Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.
Nd:GdVO4 ring laser pumped by laser diodes
NASA Astrophysics Data System (ADS)
Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.
2013-02-01
The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... without fittings or insulation) suitable for connecting an outdoor air conditioner or heat pump to an..., swaged end, flared end, expanded end, crimped end, threaded), coating (e.g., plastic, paint), insulation...
Children's On-Line Processing of Epistemic Modals
ERIC Educational Resources Information Center
Moscati, Vincenzo; Zhan, Likan; Zhou, Peng
2017-01-01
In this paper we investigated the real-time processing of epistemic modals in five-year-olds. In a simple reasoning scenario, we monitored children's eye-movements while processing a sentence with modal expressions of different force ("might/must"). Children were also asked to judge the truth-value of the target sentences at the end of…
Common Modality Effects in Immediate Free Recall and Immediate Serial Recall
ERIC Educational Resources Information Center
Grenfell-Essam, Rachel; Ward, Geoff; Tan, Lydia
2017-01-01
In 2 experiments, participants were presented with lists of between 2 and 12 words for either immediate free recall (IFR) or immediate serial recall (ISR). Auditory recall advantages at the end of the list (modality effects) and visual recall advantages early in the list (inverse modality effects) were observed in both tasks and the extent and…
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Jun, Naram; Lee, Sang Bae; Han, Young-Geun
2014-05-01
A reflective in-line modal interferometer based on a polarization-maintaining photonic crystal fiber (PM-PCF) with two exterior air holes is proposed for simultaneous measurement of chemical vapor and temperature. After fusion-splicing the PM-PCF with a standard single-mode fiber, we collapse all of air holes in the PM-PCF resulting in two types of interference patterns between the core and the cladding modes in the PM-PCF depending on two polarization states. Since two large air holes at the facet of the proposed modal interferometer are left open, a chemical vapor can be infiltrated into the voids. Different sensitivities corresponding to input polarization states are utilized for discrimination between chemical vapor and temperature sensitivities.
Laser diode side-pumped Nd:YVO4 microchip laser with film-etched microcavity mirrors.
Li, Jiyang; Niu, Yanxiong; Chen, Sanbin; Tan, Yidong
2017-10-01
Microchip lasers are applied as the light sources on various occasions with the end-pumping scheme. However, the vibration, the temperature drift, or the mechanical deformation of the pumping light in laser diodes in the end-pumping scheme will lead to instability in the microchip laser output, which causes errors and malfunctioning in the optic systems. In this paper, the side-pumping scheme is applied for improving the disturbance-resisting ability of the microchip laser. The transverse mode and the frequency purity of the laser output are tested. To ensure unicity in the frequency of the laser output, numerical simulations based on Fresnel-Kirchhoff diffraction theory are conducted on the parameters of the microchip laser cavity. Film-etching technique is applied to restrain the area of the film and form the microcavity mirrors. The laser output with microcavity mirrors is ensured to be in single frequency and with good beam quality, which is significant in the applications of microchip lasers as the light sources in optical systems.
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
NASA Astrophysics Data System (ADS)
Brewick, Patrick T.; Smyth, Andrew W.
2016-12-01
The authors have previously shown that many traditional approaches to operational modal analysis (OMA) struggle to properly identify the modal damping ratios for bridges under traffic loading due to the interference caused by the driving frequencies of the traffic loads. This paper presents a novel methodology for modal parameter estimation in OMA that overcomes the problems presented by driving frequencies and significantly improves the damping estimates. This methodology is based on finding the power spectral density (PSD) of a given modal coordinate, and then dividing the modal PSD into separate regions, left- and right-side spectra. The modal coordinates were found using a blind source separation (BSS) algorithm and a curve-fitting technique was developed that uses optimization to find the modal parameters that best fit each side spectra of the PSD. Specifically, a pattern-search optimization method was combined with a clustering analysis algorithm and together they were employed in a series of stages in order to improve the estimates of the modal damping ratios. This method was used to estimate the damping ratios from a simulated bridge model subjected to moving traffic loads. The results of this method were compared to other established OMA methods, such as Frequency Domain Decomposition (FDD) and BSS methods, and they were found to be more accurate and more reliable, even for modes that had their PSDs distorted or altered by driving frequencies.
Friedlander, M A; Wu, Y C; Schulak, J A; Monnier, V M; Hricik, D E
1995-03-01
Plasma and tissue concentrations of pentose-derived glycation end-products ("pentosidine") are elevated in diabetic patients with normal renal function and in both diabetic and nondiabetic patients with end-stage renal disease. To determine the influence of dialysis modality and other clinical variables on the accumulation of pentosidine, we used high-performance liquid chromatography to measure this advanced glycation end-product in plasma, skin, and peritoneal samples obtained from 65 hemodialysis and 45 peritoneal dialysis patients. Plasma pentosidine levels were significantly lower in peritoneal dialysis patients. Concentrations of pentosidine in skin were similar in the two groups. In contrast, peritoneal concentrations of pentosidine were significantly higher in the patients maintained on peritoneal dialysis. Our results demonstrate that dialysis modality influences the plasma and tissue distribution of pentosidine. Compared with hemodialysis, peritoneal dialysis is associated with lower levels of this glycation end-product in plasma, but with higher levels in the peritoneum. The mechanisms accounting for lower circulating levels of pentosidine in peritoneal dialysis patients remain to be determined. Higher levels in peritoneal tissues may reflect chronic exposure to the high concentrations of glucose in peritoneal dialysate.
NASA Astrophysics Data System (ADS)
Asadi, Reza; Ouyang, Zhengbiao
2018-03-01
A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.
NASA Technical Reports Server (NTRS)
Taylor, Eric S. (Inventor); Myers, W. Neill (Inventor); Martin, Michael A. (Inventor)
2005-01-01
An ignitor for use with the MC-1 rocket engine has a cartridge bounded by two end caps with rupture disc assemblies connected thereto. A piston assembly within the cartridge moves from one end of the cartridge during the ignition process. The inlet of the ignitor communicates with a supply taken from the discharge of the fuel pump. When the pump is initially started, the pressure differential bursts the first rupture disc to begin the movement of the piston assembly toward the discharge end. The pressurization of the cartridge causes the second rupture disc to rupture and hypergolic fluid contained within the cartridge is discharged out the ignitor outlet.
Seawater Hydraulics: A Multi-Function Tool System for U.S. Navy Construction Divers.
1991-05-01
0.80. Each tool was designed so that it can be repaired in a minimum time. Tool maintenance at the end of the day is satisfied by a fresh- water rinse...oil hydraulic system is used to regulate the speed of the centrifugal pump. The centrifugal pump supplies 200 psi water to a jet eductor pump suspended...in the ocean. The jet eductor pump returns a larger volume of water to fill the 50-gallon reservoir. The seawater output from the jet eductor pump is
USDA-ARS?s Scientific Manuscript database
Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...
A phaseonium magnetometer: A new optical magnetometer based on index enhanced media
NASA Technical Reports Server (NTRS)
Scully, Marlan O.; Fleischauer, Michael; Graf, Martin
1993-01-01
An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.
Vibratory pumping of a free fluid stream
Merrigan, M.A.; Woloshun, K.A.
1990-11-13
A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.
Transverse Diode Pumping of Solid-State Lasers
1992-05-29
more common apertures (laser rod end and cavity end mirror ) leads to a thin-film coating damage issue. The transverse pumped geometry avoids the...proprietary one-half inch square cooler developed for high-power adaptive optics mirror applications. The laser performance observed, with up to 35 watts of...including the development of active mirrors capable of sustaining high power loadings. As part of those efforts, TTC has developed a small (one-half inch
Acoustic wave propagation and intensity fluctuations in shallow water 2006 experiment
NASA Astrophysics Data System (ADS)
Luo, Jing
Fluctuations of low frequency sound propagation in the presence of nonlinear internal waves during the Shallow Water 2006 experiment are analyzed. Acoustic waves and environmental data including on-board ship radar images were collected simultaneously before, during, and after a strong internal solitary wave packet passed through a source-receiver acoustic track. Analysis of the acoustic wave signals shows temporal intensity fluctuations. These fluctuations are affected by the passing internal wave and agrees well with the theory of the horizontal refraction of acoustic wave propagation in shallow water. The intensity focusing and defocusing that occurs in a fixed source-receiver configuration while internal wave packet approaches and passes the acoustic track is addressed in this thesis. Acoustic ray-mode theory is used to explain the modal evolution of broadband acoustic waves propagating in a shallow water waveguide in the presence of internal waves. Acoustic modal behavior is obtained from the data through modal decomposition algorithms applied to data collected by a vertical line array of hydrophones. Strong interference patterns are observed in the acoustic data, whose main cause is identified as the horizontal refraction referred to as the horizontal Lloyd mirror effect. To analyze this interference pattern, combined Parabolic Equation model and Vertical-mode horizontal-ray model are utilized. A semi-analytic formula for estimating the horizontal Lloyd mirror effect is developed.
Investigation of a quadrupole ultra-high vacuum ion pump
NASA Technical Reports Server (NTRS)
Schwarz, H. J.
1974-01-01
The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.
Apparatus for generating coherent infrared energy of selected wavelength
Stevens, Charles G.
1985-01-01
A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).
Pulse-actuated fuel-injection spark plug
Murray, Ian; Tatro, Clement A.
1978-01-01
A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.
Enhancement of pumped current in quantum dots
NASA Astrophysics Data System (ADS)
Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro
A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
Kampmann, Peter; Kirchner, Frank
2014-01-01
With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach. PMID:24743158
NASA Technical Reports Server (NTRS)
Sunshine, Jessica M.; Pieters, Carle M.
1993-01-01
The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.
Controlling modal interactions in lasers for frequency selection and power enhancement
NASA Astrophysics Data System (ADS)
Ge, Li
2015-03-01
The laser is an out-of-equilibrium non-linear wave system where the interplay of the cavity geometry and non-linear wave interactions determines the self-organized oscillation frequencies and the associated spatial field patterns. Using the correspondence between nonlinear and linear systems, we propose a simple and systematic method to achieve selective excitation of lasing modes that would have been dwarfed by more dominant ones. The key idea is incorporating the control of modal interaction into the spatial pump profile. Our proposal is most valuable in the regime of spatially and spectrally overlapping modes, which can lead to a significant enhancement of laser power as well.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... without fittings or insulation) suitable for connecting an outdoor air conditioner or heat pump to an..., swaged end, flared end, expanded end, crimped end, threaded), coating (e.g., plastic, paint), insulation...
EEG measures reveal dual-task interference in postural performance in young adults
Woollacott, Marjorie
2014-01-01
The study used a dual-task (DT) postural paradigm (two tasks performed at once) that included electroencephalography (EEG) to examine cortical interference when a visual working memory (VWM) task was paired with a postural task. The change detection task was used, as it requires storage of information without updating or manipulation and predicts VWM capacity. Ground reaction forces (GRFs) (horizontal and vertical), EMG, and EEG elements, time locked to support surface perturbations, were used to infer the active neural processes underlying the automatic control of balance in 14 young adults. A significant reduction was seen between single task (ST) and DT conditions in VWM capacity (F(1,13) = 6.175, p < 0.05, r = 0.6) and event-related potential (ERP) N1 component amplitude over the L motor (p < 0.001) and R sensory (p < 0.05) cortical areas. In addition, a significant increase in the COP trajectory peak (pkcopx) was seen in the DT versus ST condition. Modulation of VWM capacity as well as ERP amplitude and pkcopx in DT conditions provided evidence of an interference pattern, suggesting that the two modalities shared a similar set of attentional resources. The results provide direct evidence of the competition for central processing attentional resources between the two modalities, through the reduction in amplitude of the ERP evoked by the postural perturbation. PMID:25273924
Effects of visual and verbal interference tasks on olfactory memory: the role of task complexity.
Annett, J M; Leslie, J C
1996-08-01
Recent studies have demonstrated that visual and verbal suppression tasks interfere with olfactory memory in a manner which is partially consistent with a dual coding interpretation. However, it has been suggested that total task complexity rather than modality specificity of the suppression tasks might account for the observed pattern of results. This study addressed the issue of whether or not the level of difficulty and complexity of suppression tasks could explain the apparent modality effects noted in earlier experiments. A total of 608 participants were each allocated to one of 19 experimental conditions involving interference tasks which varied suppression type (visual or verbal), nature of complexity (single, double or mixed) and level of difficulty (easy, optimal or difficult) and presented with 13 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Both recognition and recall performance showed an overall effect for suppression nature, suppression level and time of testing with no effect for suppression type. The results lend only limited support to Paivio's (1986) dual coding theory, but have a number of characteristics which suggest that an adequate account of olfactory memory may be broadly similar to current theories of face and object recognition. All of these phenomena might be dealt with by an appropriately modified version of dual coding theory.
The study on dynamic properties of monolithic ball end mills with various slenderness
NASA Astrophysics Data System (ADS)
Wojciechowski, Szymon; Tabaszewski, Maciej; Krolczyk, Grzegorz M.; Maruda, Radosław W.
2017-10-01
The reliable determination of modal mass, damping and stiffness coefficient (modal parameters) for the particular machine-toolholder-tool system is essential for the accurate estimation of vibrations, stability and thus the machined surface finish formed during the milling process. Therefore, this paper focuses on the analysis of ball end mill's dynamical properties. The tools investigated during this study are monolithic ball end mills with different slenderness values, made of coated cemented carbide. These kinds of tools are very often applied during the precise milling of curvilinear surfaces. The research program included the impulse test carried out for the investigated tools clamped in the hydraulic toolholder. The obtained modal parameters were further applied in the developed tool's instantaneous deflection model, in order to estimate the tool's working part vibrations during precise milling. The application of the proposed dynamics model involved also the determination of instantaneous cutting forces on the basis of the mechanistic approach. The research revealed that ball end mill's slenderness can be considered as an important milling dynamics and machined surface quality indicator.
Yb:YAG master oscillator power amplifier for remote wind sensing.
Sridharan, A K; Saraf, S; Byer, R L
2007-10-20
We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.
End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal
NASA Astrophysics Data System (ADS)
Yang, F. G.; You, Z. Y.; Zhu, Z. J.; Wang, Y.; Li, J. F.; Tu, C. Y.
2010-01-01
We present an end-pumped continuous-wave intra-cavity yellow Raman laser at 590 nm with a 60 mm long pure crystal SrWO4 and an intra-cavity LiB3O5 frequency doubling crystal. The highest output power of yellow laser at 590 nm was 230 mW and the output power and threshold were found to be correlative with the polarized directions of pure single crystal SrWO4 deeply. Along different directions, the minimum and maximum thresholds of yellow Raman laser at 590 nm were measured to be 2.8 W and 14.3 W with respect to 808 nm LD pump power, respectively.
Chen, Jien-Jiun; Lin, Lian-Yu; Yang, Yao-Hsu; Hwang, Juey-Jen; Chen, Pau-Chung; Lin, Jiunn-Lee; Chi, Nai-Hsin
2017-01-15
The usage of on or off cardiopulmonary bypass in patients with coronary artery disease receiving coronary artery bypass grafting (CABG) surgery had been debated and had not yet been investigated thoroughly in patients with end-stage renal disease (ESRD). We aimed to study cardiovascular outcomes and total mortality in these patients by using our National Health Insurance (NHI) database. By using our NHI ESRD claim database, we searched ESRD patients aged more than 18years, who received CABG and divided them into on pump and off pump groups. Baseline characteristics and underlying comorbidities were identified from the database. Propensity score (PS) method was used to match all the potential confounders between patients. Outcomes including mortality, myocardial infarction, stroke and repeat revascularization within 30days, 1year and whole follow-up period were also obtained. A total of 134,410 ESRD patients were identified in the database. We included 341 patients and 543 patients who received off pump and on pump CABG respectively. The hazard ratios of different outcomes at 30days, 1year and a median of 745days after CABG did not show significant different between on, or off pump groups before and after PS match. ESRD patients with CAD undergoing either on pump or off pump CABG surgery showed similar outcomes in 30days, 1year and whole follow-up period. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
Tapered fiber based Brillouin random fiber laser and its application for linewidth measurement.
Gao, Song; Zhang, Liang; Xu, Yanping; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-12-12
A one-end pumping Brillouin random fiber laser (BRFL) based on a 5-km tapered fiber (TF) is demonstrated. The enhanced Rayleigh scattering and the increased power density from tapering in the TF provide good directionality and a high degree of coherent feedback. Both the transmitting and TF enhanced Rayleigh scattered pump lights formed effective bi-direction pumping for the Brillouin gain in the standing cavity configuration in the distributed way as the gain and random feedback in the same fiber. The linewidth of the laser shows ~1.17 kHz while the relative intensity noise (RIN) has been verified to be suppressed comparing with that of the two-end pumping of the standard single mode fiber (SMF). Furthermore, utilizing the proposed laser, a high-resolution (~kHz) linewidth measurement method is demonstrated without long delay fiber (>100km) and extra frequency shifter thanks to the acoustic frequency shift from fiber itself.
2017-04-01
INTERFERENCE-CANCELLATION AND N-PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N- PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...techniques for developing interference mitigation technology (IMT) enabling frequency-agile, reconfigurable filter -less receivers. Wideband noise
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A; Hill, Dallas D
2014-12-02
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A.; Hill, Dallas D.
2016-07-19
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
NASA Astrophysics Data System (ADS)
Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang
2018-05-01
We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.
Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto
2015-01-01
We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.
ERIC Educational Resources Information Center
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; De Smedt, Bert; Ghesquiere, Pol
2008-01-01
The general magnocellular theory postulates that dyslexia is the consequence of a multimodal deficit in the processing of transient and dynamic stimuli. In the auditory modality, this deficit has been hypothesized to interfere with accurate speech perception, and subsequently disrupt the development of phonological and later reading and spelling…
Identifiable Orthographically Similar Word Primes Interfere in Visual Word Identification
ERIC Educational Resources Information Center
Burt, Jennifer S.
2009-01-01
University students participated in five experiments concerning the effects of unmasked, orthographically similar, primes on visual word recognition in the lexical decision task (LDT) and naming tasks. The modal prime-target stimulus onset asynchrony (SOA) was 350 ms. When primes were words that were orthographic neighbors of the targets, and…
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Optically Remote Noncontact Heart Rates Sensing Technique
NASA Astrophysics Data System (ADS)
Thongkongoum, W.; Boonduang, S.; Limsuwan, P.
2017-09-01
Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.
Sapkota, Kishor; Franco, Sandra; Lira, Madalena
2018-06-01
To investigate the effect of soft contact lenses (SCL) wearing modality and lens materials on the changes in conjunctival bulbar and limbal redness and conjunctival and corneal staining after two months of SCL wear. Comfort level was also analyzed. In this longitudinal clinical trial, forty-seven neophyte myopic subjects were fitted with a monthly disposable lens (lotrafilcon-B or comfilcon-A or balafilcon-A) in one eye and a daily disposable lens (nelfilcon-A or stenofilcon-A or nesofilcon-A) in the other eye, randomly selected. Conjunctival bulbar and limbal redness and conjunctival and corneal staining were evaluated before and after lens wear. Effect of lens wearing modality and lens materials on these changes was also determined. Level of comfort was evaluated subjectively twice per day. Comfort level and reduction in end-of-day comfort were compared between different lens wearing modalities and materials. Bulbar and limbal redness and conjunctival and corneal staining were increased (p<0.001) after lens wear, and changes were similar with daily and monthly disposable lens wear (p>0.05). Limbal redness was associated with lens materials, and lotrafilcon-B induced the least among the studied lenses (p<0.05). There was no significant association between the wearing modality and the average comfort level and reduction of end-of-day comfort (p>0.05). Two months of SCL wear increased conjunctival redness, conjunctival and corneal staining, which were not associated with the lens wearing modality. There was a reduction in end-of-day comfort, similar to daily and monthly lenses. The change in limbal redness and reduction in end-of-day comfort were associated with the characteristics of the lens material. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2008-09-16
Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.
Highly Efficient Nd:yag Lasers for Free-space Optical Communications
NASA Technical Reports Server (NTRS)
Sipes, D. L., Jr.
1985-01-01
A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.
NASA Technical Reports Server (NTRS)
Shannon, Robert V., Jr.
1989-01-01
The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer
Chen, Hao; Zhang, Shulian; Tan, Yidong
2016-04-10
The pump polarization direction can greatly influence the characteristics of the laser diode end-pumped monolithic microchip Nd:YAG dual-frequency laser. We experimentally observe the lasing thresholds and the optical powers of two splitting modes versus the pump polarization direction. The effect of the pump-induced gain anisotropy on the mode oscillation sequence is analyzed. And the effect on the intensities of these modes is also proved with a rate equation model. This study contributes to the improvement of the stability and the reliability of the Nd:YAG dual-frequency laser.
[Effect of sound amplification on parent's communicative modalities].
Couto, Maria Inês Vieira; Lichtig, Ida
2007-01-01
auditory rehabilitation in deaf children users of sign language. to verify the effects of sound amplification on parent's communicative modalities when interacting with their deaf children. participants were twelve deaf children, aged 50 to 80 months and their hearing parents. Children had severe or profound hearing loss in their better ear and were fitted with hearing aids in both ears. Children communicated preferably through sign language. The cause-effect relation between the children's auditory skills profile (insertion gain, functional gain and The Meaningful Auditory Integration Scale--MAIS) and the communicative modalities (auditive-oral, visuo-spacial, bimodal) used by parents was analyzed. Communicative modalities were compared in two different experimental situations during a structured interaction between parents and children, i.e. when children were not fitted with their hearing aids (Situation 1) and when children were fitted with them (Situation 2). Data was analyzed using descriptive statistics. the profile of the deaf children's auditory skills demonstrated to be lower than 53% (unsatisfactory). Parents used predominately the bimodal modality to gain children's attention, to transmit and to end tasks. A slight positive effect of sound amplification on the communicative modalities was observed, once parents presented more turn-takings during communication when using the auditory-oral modality in Situation 2. hearing parents tend to use more turn-takings during communication in the auditory-oral modality to gain children's attention, to transmit and to end tasks, since they observe an improvement in the auditory skills of their children.
An overview of clinical and experimental treatment modalities for port wine stains
Chen, Jennifer K.; Ghasri, Pedram; Aguilar, Guillermo; van Drooge, Anne Margreet; Wolkerstorfer, Albert; Kelly, Kristen M.; Heger, Michal
2014-01-01
Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy. PMID:22305042
Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
Gabbard, Carl; Ammar, Diala; Cordova, Alberto
2009-01-01
We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.
Liu, Yan; Cui, Hu-jun; Tao, Liang; Chen, Xu-fa
2011-04-01
To analyze the clinical effect of minimal extracorporeal circulation (MECC) in blood conservation perioperatively coronary artery bypass graft (CABG). The data of 120 cases received simple CABG since August 2006 to October 2009 was analyzed retrospectively. All the patients were divided to three groups according to the mode of circulation support in-operation: MECC, conventional extracorporeal circulation (cECC) or off-pump, 40 cases in each group. Jostra MECC system with normal temperature was used in MECC group, and common membrane oxygenator with moderate hypo-temperature was used in cECC group. Collect the data of coagulation and the blood cytological examination perioperatively, the draining volume during the first 24 h after operation, and consumption of blood products perioperatively. Standard and logistic EuroSCORE were higher in MECC group than the others (P < 0.01). The operative time and the number of distal anastomosis of off-pump group were less than MECC and cECC groups (P < 0.05), while no difference between MECC group and cECC group. Intrinsic coagulation (activated partial thromboplastin time) were much more prolonged early postoperatively in cECC group, and higher than in MECC group and off-pump group at 2 h, 6 h and 12 h postoperatively (P < 0.05), but no difference in extrinsic coagulation (prothrombin time) among three group. Adjusted by hematocrit of the same sample, free hemoglobin level rose up during the ECC procedure and reached the maximum at the end of ECC in cECC group and MECC group, but the levels were more higher in cECC group than in MECC group (P < 0.05). The draining volume during the first 24 h after operation of cECC group was larger than MECC group and off-pump group (P < 0.05). Although the decreased platelet count perioperatively and more consumed of the blood products in cECC group, but no difference among the three groups. MECC could reduce the ruin to blood cell and interfere to coagulation function during the conventional ECC procedure, decrease the postoperative draining volume and requirement of blood products.
The taste-visual cross-modal Stroop effect: An event-related brain potential study.
Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L
2014-03-28
Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
A Cognitive Paradigm to Investigate Interference in Working Memory by Distractions and Interruptions
Janowich, Jacki; Mishra, Jyoti; Gazzaley, Adam
2015-01-01
Goal-directed behavior is often impaired by interference from the external environment, either in the form of distraction by irrelevant information that one attempts to ignore, or by interrupting information that demands attention as part of another (secondary) task goal. Both forms of external interference have been shown to detrimentally impact the ability to maintain information in working memory (WM). Emerging evidence suggests that these different types of external interference exert different effects on behavior and may be mediated by distinct neural mechanisms. Better characterizing the distinct neuro-behavioral impact of irrelevant distractions versus attended interruptions is essential for advancing an understanding of top-down attention, resolution of external interference, and how these abilities become degraded in healthy aging and in neuropsychiatric conditions. This manuscript describes a novel cognitive paradigm developed the Gazzaley lab that has now been modified into several distinct versions used to elucidate behavioral and neural correlates of interference, by to-be-ignored distractors versus to-be-attended interruptors. Details are provided on variants of this paradigm for investigating interference in visual and auditory modalities, at multiple levels of stimulus complexity, and with experimental timing optimized for electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) studies. In addition, data from younger and older adult participants obtained using this paradigm is reviewed and discussed in the context of its relationship with the broader literatures on external interference and age-related neuro-behavioral changes in resolving interference in working memory. PMID:26273742
Yaffe, Beril; Walder, Deborah J
2016-05-30
Attentional-interference using emotional Stroop tasks (ESTs) is greater among individuals in the general population with positive (versus negative) schizotypal traits; specifically in response to negatively (versus positively) valenced words, potentially capturing threat-sensitivity. Variability in attentional-interference as a function of subcategories of negatively valenced words (and in relation to schizotypal traits) remains underexplored in EST studies. We examined attentional-interference across negative word subcategories (fear/anger/sadness/disgust), and in relation to positive schizotypy, among non-clinical individuals in the general population reporting varying degrees of schizotypal traits. As hypothesized, performance differed across word subcategories, though the pattern varied from expectation. Attentional-interference was greater for fear and sadness compared to anger; and analogous for fear, disgust, and sadness. In the high schizotypy group, positive schizotypal traits were directly associated with attentional-interference to disgust. Attentional-interference was comparable between high- and low-positive schizotypy. Results suggest negative emotion subcategories may differentially reflect threat-sensitivity. Disgust-sensitivity may be particularly salient in (non-clinical) positive schizotypy. Findings have implications for understanding negative emotion specificity and variability in stimulus presentation modality when studying threat-related attentional-interference. Finally, disgust-related attentional-interference may serve as a cognitive correlate of (non-clinical) positive schizotypy. Expanding this research to prodromal populations will help explore disgust-related attentional-interference as a potential cognitive marker of positive symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Casale, M; Sabatino, L; Moffa, A; Capuano, F; Luccarelli, V; Vitali, M; Ribolsi, M; Cicala, M; Salvinelli, F
2016-11-01
Gastroesophageal reflux disease (GERD) represents one of the most common gastrointestinal disorders, but is still a challenge to cure. Proton pump inhibitors (PPIs) are currently the GERD's standard treatment, although not successful in all patients; some concerns have been raised regarding their long term consumption. Recently, some studies showed the benefits of inspiratory muscle training in increasing the lower esophageal sphincter pressure in patients affected by GERD, thereby reducing their symptoms. Relevant published studies were searched in Pubmed, Google Scholar, Ovid or Medical Subject Headings using the following keywords: "GERD" and physiotherapy", "GERD" and "exercise", "GERD" and "breathing", "GERD and "training". At the end of our selection process, four publications have been included for systematic review. All of them were prospective controlled studies, mainly based on the training of the diaphragm muscle. GERD symptoms, pH-manometry values and PPIs usage were assessed. Among the non-surgical, non-pharmacological treatment modalities, the breathing training on diaphragm could play an important role in selected patients to manage the symptoms of GERD.
A dual-end-pumped Ho:YAG laser with a high energy output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X M; Cui, Zh; Dai, T Y
2015-08-31
We report a high energy output from a Ho:YAG oscillator resonantly double-end pumped by Tm:YLF lasers at room temperature. The maximum pulse energy of 52.5 mJ was achieved at a pulse repetition rate of 100Hz and a pulse duration of 35.2 ns, corresponding to a peak power of approximately 1.5 MW. The output wavelength was 2090.7 nm with beam quality factor M{sup 2} ∼ 1.2. (lasers)
AAFES Gas Station at Creech Air Force Base Environmental Assessment
2009-07-01
Creech AFB with modern fuel refilling services. The AAFES Gas Station would include a one pump two hose filling station, a concrete slab, a 12,000...at both end of each hose , a shear valve at the base of the pump, and an electronic sensor in the dispenser to detect fuel leakage. In order to add...designed and built with leak prevention safety equipment. Shut- off valves would be installed at both ends of each hose . A shear valve would be
Sprouse, Kenneth M
2014-11-25
A pump system includes a pump that includes a first belt and a second belt that are spaced apart from each other to provide generally straight sides of a passage there between. There is an inlet at one end of the passage and an outlet at an opposite end of the passage, with a passage length that extends between the inlet and the outlet. The passage defines a gap distance in a width direction between the straight sides at the passage inlet. A hopper includes an interior space that terminates at a mouth at the passage inlet. At least one screw is located within the interior space of the hopper and includes a screw diameter in the width direction that is less than or equal to the gap distance.
The study of the thermally expanded core technique in end-pumped (N+1)×1 type combiner
NASA Astrophysics Data System (ADS)
Wu, Juan; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Feng, Yujun; Ma, Yi
2015-02-01
Tapering will raise the signal loss in an end-pumped (N+1)×1 type combiner. In this paper, the Thermally Expanded Core (TEC) technique is used in the signal loss optimization experiment with the tapering ratio of the pump combiner is 0.6. The experimental results indicate that the coupling efficiency of the 1.55μm signal light increases from 81.1% to 86.6%, after being heated 10 minutes at the homo-waist region of the tapered signal fiber with an 8mm wide hydroxygen flame. Detail analysis shows that the TEC technique can both reduce the loss of the LP01 mode and the LP11 mode in the signal fiber.
Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin
2015-06-20
We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... insulation) suitable for connecting an outdoor air conditioner or heat pump to an indoor evaporator unit. The... end, expanded end, crimped end, threaded), coating (e.g., plastic, paint), insulation, attachments (e...
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.
2017-03-01
The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.
Rigorous modal analysis of plasmonic nanoresonators
NASA Astrophysics Data System (ADS)
Yan, Wei; Faggiani, Rémi; Lalanne, Philippe
2018-05-01
The specificity of modal-expansion formalisms is their capabilities to model the physical properties in the natural resonance-state basis of the system in question, leading to a transparent interpretation of the numerical results. In electromagnetism, modal-expansion formalisms are routinely used for optical waveguides. In contrast, they are much less mature for analyzing open non-Hermitian systems, such as micro- and nanoresonators. Here, by accounting for material dispersion with auxiliary fields, we considerably extend the capabilities of these formalisms, in terms of computational effectiveness, number of states handled, and range of validity. We implement an efficient finite-element solver to compute the resonance states, and derive closed-form expressions of the modal excitation coefficients for reconstructing the scattered fields. Together, these two achievements allow us to perform rigorous modal analysis of complicated plasmonic resonators, being not limited to a few resonance states, with straightforward physical interpretations and remarkable computation speeds. We particularly show that, when the number of states retained in the expansion increases, convergence toward accurate predictions is achieved, offering a solid theoretical foundation for analyzing important issues, e.g., Fano interference, quenching, and coupling with the continuum, which are critical in nanophotonic research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Otobe, Tomohito; Nishikino, Masaharu
2016-01-04
The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallationmore » layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.« less
Takagi, Sachiko; Hiramatsu, Saori; Tabei, Ken-ichi; Tanaka, Akihiro
2015-01-01
Previous studies have shown that the perception of facial and vocal affective expressions interacts with each other. Facial expressions usually dominate vocal expressions when we perceive the emotions of face–voice stimuli. In most of these studies, participants were instructed to pay attention to the face or voice. Few studies compared the perceived emotions with and without specific instructions regarding the modality to which attention should be directed. Also, these studies used combinations of the face and voice which expresses two opposing emotions, which limits the generalizability of the findings. The purpose of this study is to examine whether the emotion perception is modulated by instructions to pay attention to the face or voice using the six basic emotions. Also we examine the modality dominance between the face and voice for each emotion category. Before the experiment, we recorded faces and voices which expresses the six basic emotions and orthogonally combined these faces and voices. Consequently, the emotional valence of visual and auditory information was either congruent or incongruent. In the experiment, there were unisensory and multisensory sessions. The multisensory session was divided into three blocks according to whether an instruction was given to pay attention to a given modality (face attention, voice attention, and no instruction). Participants judged whether the speaker expressed happiness, sadness, anger, fear, disgust, or surprise. Our results revealed that instructions to pay attention to one modality and congruency of the emotions between modalities modulated the modality dominance, and the modality dominance is differed for each emotion category. In particular, the modality dominance for anger changed according to each instruction. Analyses also revealed that the modality dominance suggested by the congruency effect can be explained in terms of the facilitation effect and the interference effect. PMID:25698945
Learning to learn: From within-modality to cross-modality transfer during infancy.
Hupp, Julie M; Sloutsky, Vladimir M
2011-11-01
One critical aspect of learning is the ability to apply learned knowledge to new situations. This ability to transfer is often limited, and its development is not well understood. The current research investigated the development of transfer between 8 and 16 months of age. In Experiment 1, 8- and 16-month-olds (who were established to have a preference to the beginning of a visual sequence) were trained to attend to the end of a sequence. They were then tested on novel visual sequences. Results indicated transfer of learning, with both groups changing baseline preferences as a result of training. In Experiment 2, participants were trained to attend to the end of a visual sequence and were then tested on an auditory sequence. Unlike Experiment 1, only older participants exhibited transfer of learning by changing baseline preferences. These findings suggest that the generalization of learning becomes broader with development, with transfer across modalities developing later than transfer within a modality. Copyright © 2011 Elsevier Inc. All rights reserved.
Learning to Learn: From Within-Modality to Cross-Modality Transfer in Infancy
Hupp, Julie M.; Sloutsky, Vladimir M.
2011-01-01
One critical aspect of learning is the ability to apply learned knowledge to new situations. This ability to transfer is often limited, and its development is not well understood. The current research investigated the development of transfer between 8- and 16-months of age. In Experiment 1, 8- and 16-month-olds (who were established to have a preference to the beginning of a visual sequence) were trained to attend to the end of a sequence. They were then tested on novel visual sequences. Results indicated transfer of learning, as both groups changed baseline preferences as a result of training. In Experiment 2, participants were trained to attend to the end of a visual sequence and then tested on an auditory sequence. Unlike Experiment 1, only older participants exhibited transfer of learning by changing baseline preferences. These findings suggest that the generalization of learning becomes broader with development, with transfer across modalities developing later than transfer within a modality. PMID:21663920
Attention and Modality Effects in STM: A Second Look. Occasional Paper No. 14.
ERIC Educational Resources Information Center
Evans, Thomas; Byers, Joe
The auditory/verbal short-term memory of 64 college students was examined across a wide range of retention intervals (5 seconds to 60 seconds). High attention during interpolated processing was ensured by monitoring rehearsal with a combination of methods, and errors were analyzed for evidence of proactive and intra-unit interference. Recall of…
Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.
Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C
2011-12-19
We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.
Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.
Kamioka, Hayato; Miura, Taisuke; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo
2002-01-01
Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
2013-01-01
Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems. PMID:23845013
Seidman, Seth J; Guag, Joshua W
2013-07-11
The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior to RFID system deployment or prior to placing new medical devices in an RFID environment. The methods presented in this paper are time-consuming and burdensome and suggest the need for standard test methods for assessing the immunity of medical devices to RFID systems.
Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure.
Mehra, Mandeep R; Goldstein, Daniel J; Uriel, Nir; Cleveland, Joseph C; Yuzefpolskaya, Melana; Salerno, Christopher; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Ewald, Gregory A; Itoh, Akinobu; Dean, David; Krishnamoorthy, Arun; Cotts, William G; Tatooles, Antone J; Jorde, Ulrich P; Bruckner, Brian A; Estep, Jerry D; Jeevanandam, Valluvan; Sayer, Gabriel; Horstmanshof, Douglas; Long, James W; Gulati, Sanjeev; Skipper, Eric R; O'Connell, John B; Heatley, Gerald; Sood, Poornima; Naka, Yoshifumi
2018-04-12
In an early analysis of this trial, use of a magnetically levitated centrifugal continuous-flow circulatory pump was found to improve clinical outcomes, as compared with a mechanical-bearing axial continuous-flow pump, at 6 months in patients with advanced heart failure. In a randomized noninferiority and superiority trial, we compared the centrifugal-flow pump with the axial-flow pump in patients with advanced heart failure, irrespective of the intended goal of support (bridge to transplantation or destination therapy). The composite primary end point was survival at 2 years free of disabling stroke (with disabling stroke indicated by a modified Rankin score of >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove a malfunctioning device. The noninferiority margin for the risk difference (centrifugal-flow pump group minus axial-flow pump group) was -10 percentage points. Of 366 patients, 190 were assigned to the centrifugal-flow pump group and 176 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 151 patients (79.5%) in the centrifugal-flow pump group, as compared with 106 (60.2%) in the axial-flow pump group (absolute difference, 19.2 percentage points; 95% lower confidence boundary, 9.8 percentage points [P<0.001 for noninferiority]; hazard ratio, 0.46; 95% confidence interval [CI], 0.31 to 0.69 [P<0.001 for superiority]). Reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (3 patients [1.6%] vs. 30 patients [17.0%]; hazard ratio, 0.08; 95% CI, 0.03 to 0.27; P<0.001). The rates of death and disabling stroke were similar in the two groups, but the overall rate of stroke was lower in the centrifugal-flow pump group than in the axial-flow pump group (10.1% vs. 19.2%; hazard ratio, 0.47; 95% CI, 0.27 to 0.84, P=0.02). In patients with advanced heart failure, a fully magnetically levitated centrifugal-flow pump was superior to a mechanical-bearing axial-flow pump with regard to survival free of disabling stroke or reoperation to replace or remove a malfunctioning device. (Funded by Abbott; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).
Active vibration control using a modal-domain fiber optic sensor
NASA Technical Reports Server (NTRS)
Cox, David E.
1992-01-01
A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.; Vidulich, Michael A.
1991-01-01
The potential benefit of speech as a control modality has been investigated with mixed results. Earlier studies suggests that speech controls can reduce the potential of manual control overloads and improve time-sharing performance. However, these benefits were not without costs. Pilots reported higher workload levels associated with the use of speech controls. To further investigate these previous findings, an experiment was conducted in a simulation of an advanced single-pilot, scout/attack helicopter at NASA-Ames' ICAB (interchangeable cab) facility. Objective performance data suggested that speech control modality was effective in reducing interference of discrete, time-shared responses during continuous flight control activity. Subjective ratings, however, indicated that the speech control modality increased workload. Post-flight debriefing indicated that these results were mainly due to the increased effort to speak precisely to a less than perfect voice recognition system.
Eye closure helps memory by reducing cognitive load and enhancing visualisation.
Vredeveldt, Annelies; Hitch, Graham J; Baddeley, Alan D
2011-10-01
Closing the eyes helps memory. We investigated the mechanisms underlying the eyeclosure effect by exposing 80 eyewitnesses to different types of distraction during the witness interview: blank screen (control), eyes closed, visual distraction, and auditory distraction. We examined the cognitive load hypothesis by comparing any type of distraction (visual or auditory) with minimal distraction (blank screen or eyes closed). We found recall to be significantly better when distraction was minimal, providing evidence that eyeclosure reduces cognitive load. We examined the modality-specific interference hypothesis by comparing the effects of visual and auditory distraction on recall of visual and auditory information. Visual and auditory distraction selectively impaired memory for information presented in the same modality, supporting the role of visualisation in the eyeclosure effect. Analysis of recall in terms of grain size revealed that recall of basic information about the event was robust, whereas recall of specific details was prone to both general and modality-specific disruptions.
Comprehension of Navigation Directions
NASA Technical Reports Server (NTRS)
Schneider, Vivian I.; Healy, Alice F.
2000-01-01
In an experiment simulating communication between air traffic controllers and pilots, subjects were given navigation instructions varying in length telling them to move in a space represented by grids on a computer screen. The subjects followed the instructions by clicking on the grids in the locations specified. Half of the subjects read the instructions, and half heard them. Half of the subjects in each modality condition repeated back the instructions before following them,and half did not. Performance was worse for the visual than for the auditory modality on the longer messages. Repetition of the instructions generally depressed performance, especially with the longer messages, which required more output than did the shorter messages, and especially with the visual modality, in which phonological recoding from the visual input to the spoken output was necessary. These results are explained in terms of the degrading effects of output interference on memory for instructions.
Continuous cryopump with a device for regenerating the cryosurface
Foster, C.A.
1988-02-16
A high throughput continuous cryopump is provided. The cryopump incorporates an improved method for regenerating the cryopumping surface while the pump is in continuous operation. The regeneration of the cryopumping surface does not thermally cycle the pump, and to this end a small chamber connected to a secondary pumping source serves to contain and exhaust frost removed from the cryopumping surface during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated. 8 figs.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power
NASA Astrophysics Data System (ADS)
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-01
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-03
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
46. (Credit LSU) High service pumping room, c1904. The # ...
46. (Credit LSU) High service pumping room, c1904. The # 1 Worthington horizontal, triple expansion, high service engine is in the background. The pump whose steam end is in the foreground is a Blake compound, duplex horizontal engine, installed c1904. The engine in the center of the illustration is one of the original 1887 Blake high service engines (compound, duplex). It was shortly after removed. (From: Shreveport Progressive League, Shreveport of To-Day, September 1904, p. 47) - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
NASA Astrophysics Data System (ADS)
Tajaldini, Mehdi; Mat Jafri, M. Z.
2014-05-01
We present a highly miniaturized multimode interference (MMI) coupler based on nonlinear modal propagation analysis (NMPA) method as a novel design method and potential application for optical NAND, NOR and XNOR logic gates for Boolean logic signal processing devices. Crystalline polydiacetylene is used to allow the appearances of nonlinear effects in low input intensities and ultra- short length to control the MMI coupler as an active device to access light switching due to its high nonlinear susceptibility. We consider a 10x33 μm2 MMI structure with three inputs and one output. Notably, the access facets are single-mode waveguides with sub-micron width. The center input contributes to control the induced light propagation in MMI by intensity variation whereas others could be launched by particular intensity when they are ON and 0 in OFF. Output intensity is analyzed in various sets of inputs to show the capability of Boolean logic gates, the contrast between ON and OFF is calculated on mentioned gates to present the efficiency. Good operation in low intensity and highly miniaturized MMI coupler is observed. Furthermore, nonlinear effects could be realized through the modal interferences. The issue of high insertion loss is addressed with a 3×3 upgraded coupler. Furthermore, the main significant aspect of this paper is simulating an MMI coupler that is launched by three nonlinear inputs, simultaneously, whereas last presents have never studied more than one input in nonlinear regimes.
Interference of the end: why recency bias in memory determines when a food is consumed again.
Garbinsky, Emily N; Morewedge, Carey K; Shiv, Baba
2014-07-01
The results of three experiments reveal that memory for end enjoyment, rather than beginning enjoyment, of a pleasant gustatory experience determines how soon people desire to repeat that experience. We found that memory for end moments, when people are most satiated, interferes with memory for initial moments. Consequently, end moments are more influential than initial moments when people decide how long to wait until consuming a food again. The findings elucidate the role of memory in delay until repeated consumption, demonstrate how sensory-specific satiety and portion sizes influence future consumption, and suggest one process by which recency effects influence judgments and decisions based on past experiences. © The Author(s) 2014.
Compact sources for eyesafe illumination
NASA Astrophysics Data System (ADS)
Baranova, Nadia; Pu, Rui; Stebbins, Kenneth; Bystryak, Ilya; Rayno, Michael; Ezzo, Kevin; DePriest, Christopher
2018-02-01
Q-peak has demonstrated a compact, pulsed eyesafe laser architecture operating with >10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2˜4), while also providing a path toward higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high-pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse widths <30 ns, and utilizing an end-pumped Nd:YAG gain medium with a rubidium titanyl phosphate electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes potassium titanyl arsenate in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.
Compact sources for eyesafe illumination
NASA Astrophysics Data System (ADS)
Baranova, N.; Pu, R.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.
2017-02-01
Q-Peak has demonstrated a novel, compact, pulsed eyesafe laser architecture operating with <10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2 4), while also providing a path towards higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse-widths <30 ns, and utilizing an end-pumped Nd: YAG gain medium with a Rubidium Titanyl Phosphate (RTP) electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes Potassium Titanyl Arsenate (KTA) in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.
USDA-ARS?s Scientific Manuscript database
Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require a considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular culture tank can interfere with the hydrodynamics of water rotation a...
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
NASA Astrophysics Data System (ADS)
Hasegawa, Kazuo; Ichikawa, Tadashi; Takeda, Yasuhiko; Ikesue, Akio; Ito, Hiroshi; Motohiro, Tomoyoshi
2018-04-01
We have proposed a new configuration of solar-pumped lasers employing transparent ceramic rods. The laser rod has a composite structure consisting of a Nd/Cr:YAG gain domain surrounded by Gd:YAG with the same refractive index as that of Nd/Cr:YAG. The lasing mode is well controlled by the output coupler, and the parasitic oscillation is suppressed, owing to the refractive index matching. A high laser slope efficiency and a low laser oscillation threshold were achieved owing to the suppressed absorption outside the lasing mode, which was previously a serious issue for the end-pumping configuration using a high-NA focusing optics. The laser oscillation threshold of 136 mW and the slope efficiency of 25.3% were derived. Thus, we have resolved the issue of useless absorption associated with the high-NA end-pumping, and achieved significant improvements compared with the conventional structure of uniform Nd/Cr:YAG.
Modeling of thermal lensing in side and end-pumped finite solid-state laser rods. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brackett, Vincent G.
1990-01-01
An analytical expression for approximating the time-dependent thermal focal length in finite solid state laser rods was derived. The analysis is based on the temperature variation of the material refractive index caused by optical pumping of these rods. Several quantities were found to be relevant to this analysis. These quantities were the specific thermal profiles of the rods, type of optical pumping employed, type of cooling scheme employed (side and end-cooling parameters), and the specific material characteristics of the rods. The Thermal Lensing Model was formulated using the geometric ray tracing approach. The focal lengths are then approximated, by calculating the phase shift in the index of refraction, as the different rays of an incident plane wave are tracked through a lens-like crystal medium. The approach also applies in the case of Gaussian or parabolic pump beams. It is shown that the prediction of thermal focal length is in good quantitative agreement with experimentally obtained data.
Domain-Specific Interference Tests on Navigational Working Memory in Military Pilots.
Verde, Paola; Boccia, Maddalena; Colangeli, Stefano; Barbetti, Sonia; Nori, Raffaella; Ferlazzo, Fabio; Piccolo, Francesco; Vitalone, Roberto; Lucertini, Elena; Piccardi, Laura
2016-06-01
Human navigation is a very complex ability that encompasses all four stages of human information processing (sensory input, perception/cognition, selection, and execution of an action), involving both cognitive and physical requirements. During flight, the pilot uses all of these stages and one of the most critical aspect is interference. In fact, spatial tasks competing for the same cognitive resource cause greater distraction from a concurrent task than another task that uses different resource modalities. Here we compared and contrasted the performance of pilots and nonpilots of both genders performing increasingly complex navigational memory tasks while exposed to various forms of interference. We investigated the effects of four different sources of interference: motor, spatial motor, verbal, and spatial environment, focusing on gender differences. We found that flight experts perform better than controls (Pilots: 6.50 ± 1.29; Nonpilots: 5.45 ± 1.41). Furthermore, in the general population, navigational working memory is compromised only by spatial environmental interference (Nonpilots: 4.52 ± 1.50); female nonpilots were less able than male nonpilots. Also, the flight expert group showed the same interference, even if reduced (Pilots: 5.24 ± 0.92); moreover, we highlighted a complete absence of gender-related effects. Spatial environmental interference is the only interference producing a decrease in performance. Nevertheless, pilots are less affected than the general population. This is probably a consequence of the need to commit substantial cognitive resources to process spatial information during flight.
Testing of Liquid Metal Components for Nuclear Surface Power Systems
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.; Pearson, J. Boise
2010-01-01
The Early Flight Fission Test Facility (EFF-TF) was established by the Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations. The EFF-TF is currently supporting an effort to develop an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled (Sodium-Potassium eutectic, NaK-78) reactor design. This design was derived from the only fission system that the United States has deployed for space operation, the Systems for Nuclear Auxiliary Power (SNAP) 10A reactor, which was launched in 1965. Two prototypical components recently tested at MSFC were a pair of Stirling power conversion units that would be used in a reactor system to convert heat to electricity, and an annular linear induction pump (ALIP) that uses travelling electromagnetic fields to pump the liquid metal coolant through the reactor loop. First ever tests were conducted at MSFC to determine baseline performance of a pair of 1 kW Stirling convertors using NaK as the hot side working fluid. A special test rig was designed and constructed and testing was conducted inside a vacuum chamber at MSFC. This test rig delivered pumped NaK for the hot end temperature to the Stirlings and water as the working fluid on the cold end temperature. These test were conducted through a hot end temperature range between 400 to 550C in increments of 50 C and a cold end temperature range from 30 to 70 C in 20 C increments. Piston amplitudes were varied from 6 to 1 1mm in .5 mm increments. A maximum of 2240 Watts electric was produced at the design point of 550 hot end, 40 C cold end with a piston amplitude of 10.5mm. This power level was reached at a gross thermal efficiency of 28%. A baseline performance map was established for the pair of 1kW Stirling convertors. The performance data will then be used for design modification to the Stirling convertors. The ALIP tested at MSFC has no moving parts and no direct electrical connections to the liquid metal containing components. Pressure is developed by the interaction of the magnetic field produced by the stator and the current which flows as a result of the voltage induced in the liquid metal contained in the pump duct. Flow is controlled by variation of the voltage supplied to the pump windings. Under steady-state conditions, pump performance is measured for flow rates from 0.5-4.3 kg/s. The pressure rise developed by the pump to support these flow rates is roughly 5-65 kPa. The RMS input voltage (phase-to-phase voltage) ranges from 5-120 V, while the frequency can be varied arbitrarily up to 60 Hz. Performance is quantified at different loop temperature levels from 50 C up to 650 C, which is the peak operating temperature of the proposed AFSP reactor. The transient response of the pump is also evaluated to determine its behavior during startup and shut-down procedures.
Modulation of alpha oscillations is required for the suppression of semantic interference.
Melnik, Natalia; Mapelli, Igor; Özkurt, Tolga Esat
2017-10-01
Recent findings on alpha band oscillations suggest their important role in memory consolidation and suppression of external distractors such as environmental noise. However, less attention was given to the phenomenon of internal distracting information being solely inherent to the stimuli content. Human memory may be prone to internal distractions caused by semantic relatedness between the meaning of words (e.g., atom, neutron, nucleus, etc.) to be encoded, i.e., semantic interference. Our study investigates the brain oscillatory dynamics behind the semantic interference phenomenon, whose possible outcome is known as false memories. In this direction, Deese-Roediger-McDermott word lists were appropriated for a modified Sternberg paradigm in auditory modality. Participants received semantically related and unrelated word lists via headphones while EEG data were acquired. Semantic interference triggered the false memory rates to be higher than those of other types of memory errors. Analysis demonstrated that the upper part of alpha band (∼10-12Hz) power decreases on parieto-occipital channels in the retention interval, prior to the probe item for semantically related condition. Our study elucidates the oscillatory mechanisms behind semantic interference by relying on alpha functional inhibition theory. Copyright © 2017 Elsevier Inc. All rights reserved.
Watanabe, Sharon; Pereira, Jose; Tarumi, Yoko; Hanson, John; Bruera, Eduardo
2008-05-01
ABSTRACT Although the preferred route of opioid administration is oral, patients with cancer often require an alternative route. Options include continuous subcutaneous infusion (CSCI) or regularly scheduled intermittent subcutaneous injections (ISCI). CSCI maintains steady drug levels, theoretically avoiding the "bolus effect" of nausea and sedation immediately post-dose, and breakthrough pain prior to the next dose. However, portable infusion pumps can be costly to use. The Edmonton Injector is an inexpensive portable device for ISCI. CSCI and ISCI have not been directly compared. The objective of this trial was to compare CSCI and ISCI of opioid for treatment of cancer pain. Patients were recruited from two tertiary palliative care units. Eligibility criteria included stable cancer pain requiring opioid therapy, need for parenteral route, and normal cognition. Patients were randomly assigned to receive opioid by CSCI by portable pump or ISCI by Edmonton Injector for 48 hours, followed by crossover to the alternative modality for 48 hours. During each phase, placebo was administered by the alternative modality. The study was closed after 12 patients were entered, due to slow accrual. Eleven patients completed the study. There were no differences between CSCI and ISCI in mean visual analogue score (VAS) for pain, nausea or drowsiness; categorical rating score of pain; number of breakthrough opioid doses per day; global rating of treatment effectiveness; or adverse effects. In all cases, patients and investigators expressed no preference for one modality over another. Further research is required to confirm that opioid administration by CSCI and ISCI provide similar analgesic and adverse effects.
Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.
Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan
2015-11-10
A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57 pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56 pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.
Intrusive effects of implicitly processed information on explicit memory.
Sentz, Dustin F; Kirkhart, Matthew W; LoPresto, Charles; Sobelman, Steven
2002-02-01
This study described the interference of implicitly processed information on the memory for explicitly processed information. Participants studied a list of words either auditorily or visually under instructions to remember the words (explicit study). They were then visually presented another word list under instructions which facilitate implicit but not explicit processing. Following a distractor task, memory for the explicit study list was tested with either a visual or auditory recognition task that included new words, words from the explicit study list, and words implicitly processed. Analysis indicated participants both failed to recognize words from the explicit study list and falsely recognized words that were implicitly processed as originating from the explicit study list. However, this effect only occurred when the testing modality was visual, thereby matching the modality for the implicitly processed information, regardless of the modality of the explicit study list. This "modality effect" for explicit memory was interpreted as poor source memory for implicitly processed information and in light of the procedures used. as well as illustrating an example of "remembering causing forgetting."
Apparatus and method for removing particle species from fusion-plasma-confinement devices
Hamilton, G.W.
1981-10-26
In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.
Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline
2017-01-01
Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo
2017-01-01
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046
Potential GPRS 900/180-MHz and WCDMA 1900-MHz interference to medical devices.
Iskra, Steve; Thomas, Barry W; McKenzie, Ray; Rowley, Jack
2007-10-01
This study compared the potential for interference to medical devices from radio frequency (RF) fields radiated by GSM 900/1800-MHz, general packet radio service (GPRS) 900/1800-MHz, and wideband code division multiple access (WCDMA) 1900-MHz handsets. The study used a balanced half-wave dipole antenna, which was energized with a signal at the standard power level for each technology, and then brought towards the medical device while noting the distance at which interference became apparent. Additional testing was performed with signals that comply with the requirements of the international immunity standard to RF fields, IEC 61000-4-3. The testing provides a sense of the overall interference impact that GPRS and WCDMA (frequency division duplex) may have, relative to current mobile technologies, and to the internationally recognized standard for radiated RF immunity. Ten medical devices were tested: two pulse oximeters, a blood pressure monitor, a patient monitor, a humidifier, three models of cardiac defibrillator, and two models of infusion pump. Our conclusion from this and a related study on consumer devices is that WCDMA handsets are unlikely to be a significant interference threat to medical electronics at typical separation distances.
Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.
Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel
2018-04-16
We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.
Augustinova, Maria; Ferrand, Ludovic
2014-03-01
Recently, Goldfarb, Aisenberg, and Henik (2011) showed that in a manual format of the Stroop task, dyslexia priming eliminates the normal magnitude of the interference-based Stroop-like findings otherwise exhibited by individuals participating in such research. Goldfarb et al. (2011) consequently concluded that the effect of word reading in a Stroop task (i.e., one automatic behavior) can be effectively controlled through an automatic instruction "do not read" (i.e., another automatic behavior). The present study further investigated these ideas by examining when and how dyslexia priming controls different processes involved in a Stroop task. To this end, the original finding was first replicated (Experiment 1) and subsequently extended to the vocal (instead of manual) response modality to examine whether previously reported eliminations of the Stroop effect persist with this response format (i.e., format producing larger Stroop effects). Since past work (e.g., Augustinova & Ferrand, 2012a; Brown, Joneleit et al., 2002; Ferrand & Augustinova, 2013) had suggested that various interventions were likely to reduce (rather than eliminate) the interference-based Stroop-like findings with vocal responses, a further aim of these experiments was to identify the component of these findings that dyslexia priming actually reduces. To this end, the effects of this intervention were examined in a more fine-grained variant of the Stroop task that distinguished between interference resulting from task-irrelevant processes involved in computing the lexical and semantic representations of the word (i.e., a written distractor to ignore) and task-relevant processes involved in the selection of a response (i.e., a color target to name) that are both involved in this task. In line with our past work (e.g., Augustinova & Ferrand, 2012a; Ferrand & Augustinova, 2013), the results of two experiments (Experiments 2 and 3) showed that in the vocal format, dyslexia priming reduces but does not eliminate the normal magnitude of the interference-based Stroop-like findings and that this reduction is solely due to the control of processes involved in the selection of a response (i.e., a color target to name) - processes that are known to be controllable in this format (Ferrand & Augustinova, 2013). Given that in this format, dyslexia priming had no effect on task-irrelevant processes involved in computing the lexical and semantic representations of a written distractor to be ignored - processes that are known to be automatic - further implications for the control of automatic processes via dyslexia priming are considered and an interpretation in terms of a unitary control mechanism for both the manual and vocal formats is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.
Metabolic control after years of completing a clinical trial on sensor-augmented pump therapy.
Quirós, Carmen; Giménez, Marga; Orois, Aida; Conget, Ignacio
2015-11-01
Sensor-augmented pump (SAP) therapy has been shown to be effective and safe for improving metabolic control in patients with type 1 diabetes mellitus (T1DM) in a number of trials. Our objective was to assess glycemic control in a group of T1DM patients on insulin pump or SAP therapy after years of participating in the SWITCH (Sensing With Insulin pump Therapy To Control HbA1c) trial and their return to routine medical monitoring. A retrospective, observational study of 20 patients who participated in the SWITCH trial at our hospital from 2008 to 2010. HbA1c values were compared at the start, during (at the end of the periods with/without SAP use - Sensor On/Sensor Off period respectively - of the cross-over design), and 3 years after study completion. HbA1c values of patients who continued SAP therapy (n=6) or only used insulin pump (n=14) were also compared. Twenty patients with T1DM (44.4±9.3 years, 60% women, baseline HbA1c level 8.43±0.55%) were enrolled into the SWITCH study). Three years after study completion, HbA1c level was 7.79±0.77 in patients on pump alone, with no significant change from the value at the end of the Off period of the study (7.85±0.57%; p=0.961). As compared to the end of the On period, HbA1c worsened less in patients who remained on SAP than in those on pump alone (0.18±0.42 vs. 0.55±0.71%; p=0.171), despite the fact that levels were similar at study start (8.41±0.60 vs. 8.47±0.45; p=0.831) and at the end of the On period (7.24±0.48 vs. 7.38±0.61; p=0.566). Frequency of CGM use in patients who continued SAP therapy was high (61.2% of the time in the last 3 months). Our study suggests that the additional benefit of SAP therapy achieved in a clinical trial may persist in the long term in routine clinical care of patients with T1DM. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
DIRECT CURRENT ELECTROMAGNETIC PUMP
Barnes, A.H.
1957-11-01
An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.
Measurement of infrared optical constants with visible photons
NASA Astrophysics Data System (ADS)
Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid
2018-04-01
We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.
Channel simulation to facilitate mobile-satellite communications research
NASA Technical Reports Server (NTRS)
Davarian, Faramaz
1987-01-01
The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.
Ray convergence in a flux-like propagation formulation.
Harrison, Chris H
2013-06-01
The energy flux formulation of waveguide propagation is closely related to the incoherent mode sum, and its simplicity has led to development of efficient computational algorithms for reverberation and target echo strength, but it lacks the effects of convergence or modal interference. By starting with the coherent mode sum and rejecting the most rapid interference but retaining beats on a scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity cross terms using Taylor expansions. In the most efficient approach the double summation of the cross terms is reduced to a single numerical sum by solving the other summation analytically. The other two solutions are a local range average and a local depth average. Favorable comparisons are made between these three solutions and the wave model Orca with, and without, spatial averaging in an upward refracting duct. As a by-product, it is shown that the running range average is very close to the mode solution excluding its fringes, given a relation between averaging window size and effective number of modes which, in turn, is related to the waveguide invariant.
Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation.
Korkiakoski, Visa; Vérinaud, Christophe; Le Louarn, Miska
2008-01-01
We describe a solution to increase the performance of a pyramid wavefront sensor (P-WFS) under bad seeing conditions. We show that most of the issues involve a reduced sensitivity that depends on the magnitude of the high frequency atmospheric distortions. We demonstrate in end-to-end closed loop adaptive optics simulations that with a modal sensitivity compensation method a high-order system with a nonmodulated P-WFS is robust in conditions with the Fried parameter r 0 at 0.5 microm in the range of 0.05-0.10 m. We also show that the method makes it possible to use a modal predictive control system to reach a total performance improvement of 0.06-0.45 in Strehl ratio at 1.6 microm. Especially at r 0=0.05 m the gain is dramatic.
BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES
Treshow, M.
1963-04-30
This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)
Continuous cryopump with a device for regenerating the cryosurface
Foster, Christopher A.
1988-01-01
A high throughput continuous cryopump is provided. The cryopump (10) incorporates an improved method for regenerating the cryopumping surface (22) while the pump is in continuous operation. The regeneration of the cryopumping surface (22) does not thermally cycle the pump, and to this end a small chamber (91) connected to a secondary pumping source (60) serves to contain and exhaust frost removed from the cryopumping surface (22) during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated.
Aybush, Arseniy; Gostev, Fedor; Shelaev, Ivan; Titov, Andrey; Umanskiy, Stanislav; Cherepanov, Dmitry
2017-01-01
The main goal of the present work is to study the coherent phonon in strongly confined CdSe quantum dots (QDs) under varied pump fluences. The main characteristics of coherent phonons (amplitude, frequency, phase, spectrogram) of CdSe QDs under the red-edge pump of the excitonic band [1S(e)-1S3/2(h)] are reported. We demonstrate for the first time that the amplitude of the coherent optical longitudinal-optical (LO) phonon at 6.16 THz excited in CdSe nanoparticles by a femtosecond unchirped pulse shows a non-monotone dependence on the pump fluence. This dependence exhibits the maximum at pump fluence ~0.8 mJ/cm2. At the same time, the amplitudes of the longitudinal acoustic (LA) phonon mode at 0.55 THz and of the coherent wave packet of toluene at 15.6, 23.6 THz show a monotonic rise with the increase of pump fluence. The time frequency representation of an oscillating signal corresponding to LO phonons revealed by continuous wavelet transform (CWT) shows a profound destructive quantum interference close to the origin of distinct (optical phonon) and continuum-like (exciton) quasiparticles. The CWT spectrogram demonstrates a nonlinear chirp at short time delays, where the chirp sign depends on the pump pulse fluence. The CWT spectrogram reveals an anharmonic coupling between optical and acoustic phonons. PMID:29113056
Deppe, Antje-Christin; Arbash, Wasim; Kuhn, Elmar W; Slottosch, Ingo; Scherner, Maximilian; Liakopoulos, Oliver J; Choi, Yeong-Hoon; Wahlers, Thorsten
2016-04-01
In the present systematic review with meta-analysis, we sought to determine the current strength of evidence for or against off-pump and on-pump coronary artery bypass grafting (CABG) with regard to hard clinical end-points, graft patency and cost-effectiveness. We performed a meta-analysis of only randomized controlled trials (RCT) which reported at least one of the desired end-points including: (i) major adverse cardiac and cerebrovascular events (MACCE), (ii) all-cause mortality, (iii) myocardial infarction, (iv) cerebrovascular accident, (v) repeat revascularization, (vi) graft patency and (vii) cost-effectiveness. The pooled treatment effects [odds ratio (OR) or weighted mean difference, 95% confidence intervals (95% CIs)] were assessed using a fixed or random effects model. A total of 16 904 patients from 51 studies were identified after literature search of the major databases using a predefined keyword list. The incidence of MACCE did not differ between the groups, neither during the first 30 days (OR: 0.93; 95% CI: 0.82-1.04) nor for the longest available follow-up (OR: 1.01; 95% CI: 0.92-1.12). While the incidence of mid-term graft failure (OR: 1.37; 95% CI: 1.09-1.72) and the need for repeat revascularization (OR: 1.55; 95% CI: 1.33-1.80) was increased after off-pump surgery, on-pump surgery was associated with an increased occurrence of stroke (OR: 0.74; 95% CI: 0.58-0.95), renal impairment (OR: 0.79; 95% CI: 0.71-0.89) and mediastinitis (OR: 0.44; 95% CI: 0.31-0.62). There was no difference with regard to hard clinical end-points between on- or off-pump surgery, including myocardial infarction or mortality. The present systematic review emphasizes that both off- and on-pump surgery provide excellent and comparable results in patients requiring surgical revascularization. The choice for either strategy should take into account the individual patient profile (comorbidities, life expectancy, etc.) and importantly, the surgeon's experience in performing on- or off-pump CABG in their routine practice. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...
ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
GENERAL VIEW OF PUMPHOUSE FOUNDATIONS, ALSO SHOWING THREE PUMPS STILL ...
GENERAL VIEW OF PUMPHOUSE FOUNDATIONS, ALSO SHOWING THREE PUMPS STILL ON THE PAD, AND THE ELECTRICAL SUBSTATION IN LEFT MIDDLE DISTANCE - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.
Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige
2013-09-15
We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.
Resonantly pumped high efficiency Ho:YAG laser.
Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu
2012-11-20
High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.
Item-specific proactive interference in olfactory working memory.
Moss, Andrew; Miles, Christopher; Elsley, Jane; Johnson, Andrew
2018-04-01
We examine item-specific olfactory proactive interference (PI) effects and undertake comparisons with verbal and non-verbal visual stimuli. Using a sequential recent-probes task, we show no evidence for PI with hard-to-name odours (Experiment 1). However, verbalisable odours do exhibit PI effects (Experiment 2). These findings occur despite above chance performance and similar serial position functions across both tasks. Experiments 3 and 4 apply words and faces, respectively, to our modified procedure, and show that methodological differences cannot explain the null finding in Experiment 1. The extent to which odours exhibit analogous PI effects to that of other modalities is, we argue, contingent on the characteristics of the odours employed.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
End-to-End Multimodal Emotion Recognition Using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos
2017-12-01
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
Hencken, Kenneth R.; Sartor, George B.
2004-08-03
An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide
2014-12-19
Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.
Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo
2015-01-01
Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395
Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo
2015-01-01
Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.
An overview of clinical and experimental treatment modalities for port wine stains.
Chen, Jennifer K; Ghasri, Pedram; Aguilar, Guillermo; van Drooge, Anne Margreet; Wolkerstorfer, Albert; Kelly, Kristen M; Heger, Michal
2012-08-01
Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Bound and free waves in non-collinear second harmonic generation.
Larciprete, M C; Bovino, F A; Belardini, A; Sibilia, C; Bertolotti, M
2009-09-14
We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference pattern.
Yoshino, S; Oohata, G; Mizoguchi, K
2015-10-09
We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.
Aronson, R; Reznik, Y; Conget, I; Castañeda, J A; Runzis, S; Lee, S W; Cohen, O
2016-05-01
To compare insulin pump therapy and multiple daily injections (MDI) in patients with type 2 diabetes receiving basal and prandial insulin analogues. After a 2-month dose-optimization period, 331 patients with glycated haemoglobin (HbA1c) levels ≥8.0% and ≤12% were randomized to pump therapy or continued MDI for 6 months [randomization phase (RP)]. The MDI group was subsequently switched to pump therapy during a 6-month continuation phase (CP). The primary endpoint was the between-group difference in change in mean HbA1c from baseline to the end of the RP. The mean HbA1c at baseline was 9% in both groups. At the end of the RP, the reduction in HbA1c was significantly greater with pump therapy than with MDI (-1.1 ± 1.2% vs -0.4 ± 1.1%; p < 0.001). The pump therapy group maintained this improvement to 12 months while the MDI group, which was switched to pump therapy, showed a 0.8% reduction: the final HbA1c level was identical in both arms. In the RP, total daily insulin dose (TDD) was 20.4% lower with pump therapy than with MDI and remained stable in the CP. The MDI-pump group showed a 19% decline in TDD, such that by 12 months TDD was equivalent in both groups. There were no differences in weight gain or ketoacidosis between groups. In the CP, one patient in each group experienced severe hypoglycaemia. Pump therapy has a sustained durable effect on glycaemic control in uncontrolled type 2 diabetes. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Reznik, Y.; Conget, I.; Castañeda, J. A.; Runzis, S.; Lee, S. W.; Cohen, O.
2016-01-01
Aims To compare insulin pump therapy and multiple daily injections (MDI) in patients with type 2 diabetes receiving basal and prandial insulin analogues. Methods After a 2‐month dose‐optimization period, 331 patients with glycated haemoglobin (HbA1c) levels ≥8.0% and ≤12% were randomized to pump therapy or continued MDI for 6 months [randomization phase (RP)]. The MDI group was subsequently switched to pump therapy during a 6‐month continuation phase (CP). The primary endpoint was the between‐group difference in change in mean HbA1c from baseline to the end of the RP. Results The mean HbA1c at baseline was 9% in both groups. At the end of the RP, the reduction in HbA1c was significantly greater with pump therapy than with MDI (−1.1 ± 1.2% vs −0.4 ± 1.1%; p < 0.001). The pump therapy group maintained this improvement to 12 months while the MDI group, which was switched to pump therapy, showed a 0.8% reduction: the final HbA1c level was identical in both arms. In the RP, total daily insulin dose (TDD) was 20.4% lower with pump therapy than with MDI and remained stable in the CP. The MDI–pump group showed a 19% decline in TDD, such that by 12 months TDD was equivalent in both groups. There were no differences in weight gain or ketoacidosis between groups. In the CP, one patient in each group experienced severe hypoglycaemia. Conclusions Pump therapy has a sustained durable effect on glycaemic control in uncontrolled type 2 diabetes. PMID:26854123
Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser
Sakadić, Sava; Demirbas, Umit; Mempel, Thorsten R.; Moore, Anna; Ruvinskaya, Svetlana; Boas, David A.; Sennaroglu, Alphan; Kartner, Franz X.; Fujimoto, James G.
2009-01-01
Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications. PMID:19065223
The effects of magnesium doping on the modal loss in AlGaN-based deep UV lasers
NASA Astrophysics Data System (ADS)
Martens, M.; Kuhn, C.; Simoneit, T.; Hagedorn, S.; Knauer, A.; Wernicke, T.; Weyers, M.; Kneissl, M.
2017-02-01
Absorption losses in the Mg-doped layers significantly contribute to the modal losses in group-III-nitride-based lasers. In this paper, we investigate the influence of Mg-doping on the modal absorption of optically pumped UVC lasers grown on epitaxially laterally overgrown AlN/sapphire substrates with an averaged threading dislocation density of 1 × 109 cm-2. By varying the setback of the Mg-doping (˜1 × 1020 cm-3) within the upper Al0.70Ga0.30N waveguide layer, the overlap of the optical mode with the Mg-doped region increases. For all structures, internal losses were derived from gain spectra obtained by the variable stripe length method. The internal losses increase from 10 cm-1 for lasers without Mg-doping to 28 cm-1 for lasers with a fully Mg-doped upper waveguide layer. The overlap of the optical mode with the Mg-doped waveguide ΓMg clearly correlates with the modal losses. This allows to calculate the Mg-induced losses in current injection laser diodes by αm o d M g = Γ M g × 50 cm - 1 .
Application and research of artificial water mist on photoelectric interference
NASA Astrophysics Data System (ADS)
He, Yuejun; Ren, Baolin
2018-04-01
Water mist is a new type of photoelectric interfering material. It can exert a strong interference and shielding effect on infrared light, laser and radar wave through scattering, reflection, refraction and absorption. Based on this, this paper illustrates the application of an artificial high pressure water mist technology in infrared interference system. First, the operating principle of the infrared interference system is introduced. Next, the design principle of self-excited rotary vortex nozzle, the key part of the system, is elaborated. Then, the calculation of the main control parameters of the system is clarified. In the end, the paper verifies interference and shielding effect of the system by experiment. Experiment shows that the interference system can significantly reduce infrared signature of the target, featuring excellent infrared interference performance and high practical value.
Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R.
2016-01-01
Objective/Hypothesis It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared to singing within a register would be represented as neurological differences in event-related potentials (ERPs). Study Design/Methods Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and head/falsetto registers) and at the low end (the boundary between the modal and fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register (“toward” the register boundary) or within the modal register (“away from” the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Results Vocal response latencies and magnitude of the accompanying N1 and P2 ERPs were greatest at the lower (modal-fry) boundary when the pitch shift carried the subjects’ voices into the fry register as opposed to remaining within the modal register. Conclusions These findings suggest that when a singer lowers the pitch of their voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. PMID:26739860
Long-term animal experiments with an intraventricular axial flow blood pump.
Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H
1997-01-01
A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.
Yudow, B.D.
1986-02-24
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Yudow, Bernard D.
1987-01-01
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Formica, Francesco; Broccolo, Francesco; Martino, Antonello; Sciucchetti, Jennifer; Giordano, Vincenzo; Avalli, Leonello; Radaelli, Gianluigi; Ferro, Orazio; Corti, Fabrizio; Cocuzza, Clementina; Paolini, Giovanni
2009-05-01
This prospective randomized study sought to verify the systemic inflammatory response, inflammatory myocardial damage, and early clinical outcome in coronary surgery with the miniaturized extracorporeal circulation system or on the beating heart. Sixty consecutive patients were randomized to miniaturized extracorporeal circulation (n = 30) or off-pump coronary revascularization (off-pump coronary artery bypass grafting, n = 30). Intraoperative and postoperative data were recorded. Plasma levels of interleukin-6 and tumor necrosis factor-alpha were measured from systemic blood intraoperatively, at the end of operation, and 24 and 48 hours thereafter. Levels of the same markers and blood lactate were measured from coronary sinus blood intraoperatively to evaluate myocardial inflammation. Markers of myocardial damage were also analyzed. One patient died in the off-pump coronary artery bypass grafting group. There was no statistical difference in early clinical outcome in both groups. Release of interleukin-6 was higher in the off-pump coronary artery bypass grafting group 24 hours after the operation (P = .03), whereas levels of tumor necrosis factor-alpha were not different in both groups. Cardiac release of interleukin-6, tumor necrosis factor-alpha, and blood lactate were not different in both groups. Release of troponin T was not significantly different in both groups. Levels of creatine kinase mass were statistically higher in the miniaturized extracorporeal circulation group than in the off-pump coronary artery bypass grafting group, but only at the end of the operation (P < .0001). Hemoglobin levels were significantly higher in the miniaturized extracorporeal circulation group than in the off-pump coronary artery bypass grafting group after 24 hours (P = .01). Miniaturized extracorporeal circulation can be considered similar to off-pump surgery in terms of systemic inflammatory response, myocardial inflammation and damage, and early outcome.
Auto-locking waveguide amplifier system for lidar and magnetometric applications
NASA Astrophysics Data System (ADS)
Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.
2018-02-01
We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli
Kamke, Marc R.; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.
Kamke, Marc R; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.
Mehta, Neel; Bucior, Iwona; Bujanover, Shay; Shah, Rajiv; Gulati, Amitabh
2016-04-01
Postherpetic neuralgia (PHN) interferes with patients' quality of life, and disturbed sleep is a prevalent complaint. Pain-associated sleep interference in turn enhances pain and/or reduces pain tolerance. Therefore, reducing sleep interference by pain, in addition to pain control, may improve patient care. To address this notion, we characterized relationships among changes in pain intensity, sleep interference, and overall impression of improvement in PHN patients treated with gastroretentive gabapentin (G-GR). Patients with PHN (n = 556) received G-GR 1,800 mg once-daily in two phase 3 and one phase 4 study. Visual Analog Scale (VAS) and Brief Pain Inventory (BPI) were completed at baseline and the end of study. Patients' Global Impression of Change (PGIC) was completed at the end of study. Regression analyses examined relationships between VAS, BPI sleep interference by pain, and PGIC. At the end of treatment, 53.7 and 63.2 % of patients reported a ≥ 30 % reduction in VAS and BPI pain-associated sleep interference (BPISI) respectively; 46.3 % reported feeling "Much" or "Very Much" improved on the PGIC. There were positive correlations between the percent reductions in VAS and BPISI; both correlated with PGIC improvements. Percent changes in VAS and BPISI were significant (p < 0.0001 and p = 0.0082, respectively), and were independent predictors of feeling "Much" or "Very Much" improved on the PGIC. Reductions in pain intensity and in BPISI were correlated, and both also correlated with overall impression of improvement for patients with PHN treated with G-GR. Both pain relief and improvement BPISI independently predicted improvement in PGIC. For optimal patient care, clinicians should consider reducing the impact of pain on quality of sleep as well as overall pain reduction. ClinicalTrials.gov numbers, NCT00335933 , NCT00636636 , NCT01426230.
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain can be determined by monitoring the modal pattern variation of an optical fiber. The results of a numerical model developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain is presented. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term for the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Convection pump and method of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhour, Leif Alexi
2017-07-11
This disclosure provides systems, methods, and apparatus related to a convection pump. In one aspect, an apparatus includes a chamber, the chamber having an inlet at a first end of the chamber and an outlet at a second end of the chamber. The chamber further has a first surface and a second surface, the first surface being opposite to the second surface. A baffle having a substantially helical shape is disposed inside the chamber. A heating device is configured to heat the first surface of the chamber. A cooling device is configured to cool the second surface of the chamber.
Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack
NASA Astrophysics Data System (ADS)
Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming
2005-06-01
A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.
Practical and efficient magnetic heat pump
NASA Technical Reports Server (NTRS)
Brown, G. V.
1978-01-01
Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.
77 FR 55817 - Georgia-Alabama-South Carolina System
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... number EF10-11-000 on June 20, 2011, for a period ending September 30, 2015 (135 FERC ] 62,267). Public... published June 8, 2012, (77 FR 34037) the comment period was extended to June 19, 2012. Comments were... strategy for using pumped storage facilities and, in particular, the acquisition of energy for pumping...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankowski, Todd Andrew; Gamboa, Jose A
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Temperature effects on tunable cw Alexandrite lasers under diode end-pumping.
Kerridge-Johns, William R; Damzen, Michael J
2018-03-19
Diode pumped Alexandrite is a promising route to high power, efficient and inexpensive lasers with a broad (701 nm to 858 nm) gain bandwidth; however, there are challenges with its complex laser dynamics. We present an analytical model applied to experimental red diode end-pumped Alexandrite lasers, which enabled a record 54 % slope efficiency with an output power of 1.2 W. A record lowest lasing wavelength (714 nm) and record tuning range (104 nm) was obtained by optimising the crystal temperature between 8 °C and 105 °C in the vibronic mode. The properties of Alexandrite and the analytical model were examined to understand and give general rules in optimising Alexandrite lasers, along with their fundamental efficiency limits. It was found that the lowest threshold laser wavelength was not necessarily the most efficient, and that higher and lower temperatures were optimal for longer and shorter laser wavelengths, respectively. The pump excited to ground state absorption ratio was measured to decrease from 0.8 to 0.7 by changing the crystal temperature from 10 °C to 90 °C.
Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.
Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae
2017-08-07
Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.
VCSEL End-Pumped Passively Q-Switched Nd:YAG Laser with Adjustable Pulse Energy
2011-02-28
entire VCSEL array. Neglecting lens aberrations, the focused spot diameter is given by focal length of the lens times the full divergence angle of the...pump intensity distribution generated by a pump-light-focusing lens . ©2011 Optical Society of America OCIS codes: (140.3530) Lasers Neodymium...Passive Q-Switch and Brewster Plate in a Pulsed Nd: YAG Laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995). 6. G. Xiao, and M. Bass, “A
Control Optimization for a Dual-Mode Single-State Nuclear Shuttle,
1980-01-01
Variables at a •.2 as Functions of the Pump ! Power# ..... ............ ......... 36 ’’i I ’I [ I I OIAPTER I INTRODUCTION Since the end of the Apollo...If this is not the case, the assIumption is slightly optimistic. 4. The effective pump power and the reactor-exit stagnation tempar- ature are...independent of the reactor-exit stagnation pressure. I ("Effective puImp power" is the power required to pump the propellants, assumed to be incompressible
Theoretical study on the thermal and optical features of a diode side-pumped alkali laser
NASA Astrophysics Data System (ADS)
Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You
2018-03-01
As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.
Backward pumping kilowatt Yb3+-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.
2011-09-01
A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.
NASA Astrophysics Data System (ADS)
Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian
2018-04-01
Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.
Hyphantis, Thomas; Katsoudas, Spiros; Voudiclari, Sonia
2010-03-24
Several parameters mediate the selection of treatment modality in end-stage renal disease (ESRD). The nephrology community suggests that patient preference should be the prime determinant of modality choice. We aimed to test whether ego mechanisms of defense are associated with patients' treatment modality preferences, independent of psychological distress. In 58 eligible ESRD patients who had themselves chosen their treatment modality, we administered the Symptom Distress Checklist-90-R and the Defense Style Questionnaire. Thirty-seven patients (53.4%) had chosen hemodialysis and 21 (46.6%) peritoneal dialysis. Patients who preferred peritoneal dialysis were younger (odds ratio [OR], 0.89; 95% confidence interval [CI]: 0.804-0.988), had received more education (OR, 8.84; 95% CI: 1.301-60.161), and were twice as likely to adopt an adaptive defense style as compared to patients who preferred hemodialysis (57.1% vs 27.0%, respectively; P < 0.033). On the contrary, the latter were more likely to adopt an image-distorting defense style (35.1% vs 14.3%; P = 0.038) and passive-aggressive defenses (OR, 0.73: 95% CI: 0.504-1.006). These results were independent of psychological distress. Our findings indicate that the patient's personality should be taken into account, if we are to better define which modalities are best suited to which patients. Also, physicians should bear in mind passive-aggressive behaviors that warrant attention and intervention in patients who preferred hemodialysis.
Khan, Anwar; Ahmedy, Ismail; Anisi, Mohammad Hossein; Javaid, Nadeem; Ali, Ihsan; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-09
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay.
Khan, Anwar; Anisi, Mohammad Hossein; Javaid, Nadeem; Khan, Nawsher; Alsaqer, Mohammed; Mahmood, Hasan
2018-01-01
Interference and energy holes formation in underwater wireless sensor networks (UWSNs) threaten the reliable delivery of data packets from a source to a destination. Interference also causes inefficient utilization of the limited battery power of the sensor nodes in that more power is consumed in the retransmission of the lost packets. Energy holes are dead nodes close to the surface of water, and their early death interrupts data delivery even when the network has live nodes. This paper proposes a localization-free interference and energy holes minimization (LF-IEHM) routing protocol for UWSNs. The proposed algorithm overcomes interference during data packet forwarding by defining a unique packet holding time for every sensor node. The energy holes formation is mitigated by a variable transmission range of the sensor nodes. As compared to the conventional routing protocols, the proposed protocol does not require the localization information of the sensor nodes, which is cumbersome and difficult to obtain, as nodes change their positions with water currents. Simulation results show superior performance of the proposed scheme in terms of packets received at the final destination and end-to-end delay. PMID:29315247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sui, Meihua; Fan Weimin
2005-03-15
Purpose: Combination therapy with different modalities is a common practice in the treatment of cancer. The promising clinical profile of vincristine and vinblastine has promoted considerable interest in combining these vinca alkaloids with radiation therapy to treat a variety of solid tumors. However, the therapeutic efficacy and the interaction between the vinca alkaloids with radiation is not entirely clear. In this study, we assessed the potential interactions in the combination of vincristine or vinblastine with {gamma}-radiation against human tumor cells in vitro. Methods and materials: Vincristine or vinblastine and {gamma}-radiation were administrated at three different sequences designed as preradiated, coradiated,more » and postradiated combinations in human breast cancer cells and human epidermoid carcinoma cells. The cytotoxic interactions and mutual influences between these two modalities were analyzed by a series of assays including cytotoxic, morphologic, and biochemical examinations. Results: Our results showed that the combination of these two modalities did not produce any synergistic or additive effects. Instead, the clonogenic assays showed the survival rates of these combinations were increased up to 2.17-fold and 2.7-fold, respectively, of those treated with vincristine or vinblastine alone (p < 0.01). DNA fragmentation, T{alpha}T-mediated dUTP nick end labeling (TUNEL) assay, and flow cytometric assays also showed that the combination of {gamma}-radiation significantly interfered with the ability of these vinca alkaloids to induce apoptosis. Further analyses indicated that addition of {gamma}-radiation resulted in cell cycle arrest at the G{sub 2} phase, which subsequently prevented the mitotic arrest induced by vincristine or vinblastine. In addition, biochemical examinations revealed that {gamma}-radiation regulated p34{sup cdc2}/cyclin B1 and survivin, and inhibited I{kappa}B{alpha} degradation and bcl-2 phosphorylation. Conclusions: These results suggest that {gamma}-radiation might specifically block the cell cycle at the G{sub 2} phase, which in turn interferes with the cytotoxic effects of vincristine or vinblastine on mitotic arrest and apoptosis. Thereby, it eventually results in an antagonistic interaction between these two modalities. This finding may be implicated in the clinical application of combination therapy of vinca alkaloids and radiation.« less
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
Fiber optics interface for a dye laser oscillator and method
Johnson, Steve A.; Seppala, Lynn G.
1986-01-01
A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.
High-Power Nd:GdVO4 Innoslab Continuous-Wave Laser under Direct 880 nm Pumping
NASA Astrophysics Data System (ADS)
Deng, Bo; Zhang, Heng-Li; Xu, Liu; Mao, Ye-Fei; He, Jing-Liang; Xin, Jian-Guo
2014-11-01
A high-power cw end-pumped laser device is demonstrated with a slab crystal of Nd:GdVO4 operating at 1063 nm. Diode laser stacks at 880 nm are used to pump Nd:GdVO4 into emitting level 4F3/2. The 149 W output power is presented when the absorbed pump power is 390 W and the optical-to-optical conversion efficiency is 38.2%. When the output power is 120 W, the M2 factors are 2.3 in both directions. Additionally, mode overlap inside the resonator is analyzed to explain the beam quality deterioration.
Fiber optics interface for a dye laser oscillator and method
Johnson, S.A.; Seppala, L.G.
1984-06-13
A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.
Intracavity doubling of cw LD pumped Nd:S-FAP laser with KTP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shaojun; Sun Lianke; Wang Qingpu
In this paper the lasing performance of a intracavity doubling of CW diode-laser end-pumped Nd{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F, Nd:S-FAP, laser with KTP crystal was reported. The authors measured the single output performance of the green laser: the pumping threshold was 8mW; when the pumping light of 210mW was absorbed, the maximum single output at 529.7nm was 4.4mW (TEM{sub 00} mode), corresponding to a total conversion efficiency 2.1%. The comparison between experimental results and theoretical calculation was also discussed in this paper.
Interchangeability of gas detection tubes and hand pumps.
Haag, W R
2001-01-01
Users of gas detection tubes occasionally seek the convenience of using a single hand pump with different brands of tubes, to avoid the need to carry more than one pump. Several professional organizations recommend against such interchange. However, these recommendations appear to be based on a single study of pump designs that mostly are no longer in use. The present study was undertaken to determine if current hand pumps are interchangeable. Both piston-type and bellows-type hand pumps were evaluated by comparing pump flow profiles and test gas measurements with a variety of tubes. The results demonstrate that three piston hand pumps in common use (Sensidyne/Gastec GV/100, RAE Systems LP-1200, and Matheson-Kitagawa 8104-400A) are fully interchangeable. Two bellows pumps (Draeger Accuro and MSA Kwik-Draw) also are interchangeable with each other. Mixing of bellows and piston systems is often possible, but there are enough exceptions to conclude that such practice should be discouraged because it can give inaccurate readings. It is recommended that technical standards be adopted, such as total volume and an initial pump vacuum or a pump flow curve, to assess hand pump interchangeability. When two manufacturers' pumps meet the same standard and routine leak tests are conducted, interchangeability is scientifically valid and poses no risk to the end user while offering greater convenience.
Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.
Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R
2014-10-10
Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062 nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067 nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067 nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.
Choi, Sangil; Park, Jong Hyuk
2016-12-02
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.
Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network
Choi, Sangil; Park, Jong Hyuk
2016-01-01
Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438
Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning
2012-01-17
The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.
Insert sleeve prevents tube soldering contamination
NASA Technical Reports Server (NTRS)
Stein, J.
1966-01-01
Teflon sleeve insert prevents contamination of internal tube surfaces by solder compound during soldering operations that connect and seal the tube ends. The sleeve insert is pressed into the mating tube ends with a slight interference fit.
Assessment of performing an MST strike in Tank 21H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, Michael R.
2014-09-29
Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tankmore » size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.« less
Analysis of intra-aortic balloon pump model with ovine myocardial infarction.
Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran; Rabbani, Shahram; Ahmadi, Hossein
2009-12-01
In this study, we have tried to model the effects of intra-aortic balloon pump (IABP) on myocardial infarction (MI) using the standardized data of MI in sheep which was obtained by ligation of the left anterior descending coronary artery. Mathematical model of whole cardiovascular system was presented in accordance to the arterial tree. The lumped parameter model was primarily obtained for a rigid vessel regarding the vessel diameter. In this study, the proper lumped model of every vessel was obtained by incorporating the rigid vessel lumped model into the capacitance as a compliance of the vessel. Intra-aortic balloon pump was modeled with the hemodynamic parameters of the aorta. It was assumed that balloon pump inflates at the beginning of the diastole and deflates near the beginning of the next systole. During balloon pumping, the vessel diameter variation function counter pulsates sinusoidally with the same period of the cardiac cycle. End systolic pressure and end diastolic pressure decreases along with hemodynamic flow optimized through systemic arteries due to balloon pumping in diastole. It has been shown that the blood flow in subclavian artery increases as well. Moreover, the cardiac work keeps low, which prone to lower oxygen consumption. The results of modeling are in good agreement with IABP documentation. The presented model is a useful tool for studying of the cardiovascular system pathology and the presented modeling data are in good agreement with the experimental ones.
Advanced Laser Based Measurements in Porous Media Combustion
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.
2009-01-01
We present measurements using dual-pump dual-broadband coherent anti-Stokes Raman scattering spectroscopy (DP-DBB-CARS) inside a porous media burner. This work continues our previous measurements in such combustion systems. The existing setup was significantly modified with the aim of providing improved data quality and data rate, reduction of interferences and additional species information. These changes are presented and discussed in detail. The CARS technique was expanded to a dual-pump dual-broadband CARS system which in principle enables acquisition of temperatures together with relative H2/N2- and O2/N2- species concentrations. Experimental complexity was reduced by the use of a modified spectrometer enabling the detection of both signals, vibrational and rotational CARS, with only one detection system.
Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae.
Knorre, Dmitry A; Markova, Olga V; Smirnova, Ekaterina A; Karavaeva, Iuliia E; Sokolov, Svyatoslav S; Severin, Fedor F
2014-08-08
Multiple drug resistance pumps are potential drug targets. Here we asked whether the lipophilic cation dodecyltriphenylphosphonium (C12TPP) can interfere with their functioning. First, we found that suppression of ABC transporter gene PDR5 increases the toxicity of C12TPP in yeast. Second, C12TPP appeared to prevent the efflux of rhodamine 6G - a fluorescent substrate of Pdr5p. Moreover, C12TPP increased the cytostatic effects of some other known Pdr5p substrates. The chemical nature of C12TPP suggests that after Pdr5p-driven extrusion the molecules return to the plasma membrane and then into the cytosol, thus effectively competing with other substrates of the pump. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Gang; Zhu, Peiwang; Marks, Tobin J.; Ketterson, J. B.
2002-09-01
Thin films consisting of self-assembled chromophoric superlattices exhibit very large second-order nonlinear responses [chi](2). Using such films, a "static" diffraction grating is created by the interference of two coherent infrared beams from a pulsed yttritium-aluminum-garnet laser. This grating is used to switch the second-harmonic and third-harmonic "signal" beams (generated from the fundamental "pump" beam or mixed within the chromophoric superlattice) into different channels (directions). Ultrafast switching response as a function of the time overlap of the pumping beams is demonstrated. It is suggested that such devices can be used to spatially and temporally separate signal trains consisting of pulses having different frequencies and arrival times.
66. (Credit JTL) Filter rooms looking south from end of ...
66. (Credit JTL) Filter rooms looking south from end of 1924 wing extension. Concrete gravity filters are in foreground, converted New York filters in background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
40 CFR Appendix B to Part 63 - Sources Defined for Early Reduction Provisions
Code of Federal Regulations, 2010 CFR
2010-07-01
.... All valves in gas or light liquid service within a process unit b. All pumps in light liquid service within a process unit c. All connectors in gas or light liquid service within a process unit d. Each...-ended valve or line i. Each sampling connection system j. Each instrumentation system k. Each pump...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... end, expanded end, crimped end, threaded), coating (e.g., plastic, paint), insulation, attachments (e... products, including ``line sets'' of seamless refined copper tubes (with or without fittings or insulation) suitable for connecting an outdoor air conditioner or heat pump to an indoor evaporator unit. The phrase...
NASA Astrophysics Data System (ADS)
Spanner, Michael; Brumer, Paul
2006-02-01
Experimental results on adaptive feedback control of transient (i.e., nonimpulsive) Stokes emission in liquid methanol [Pearson and Bucksbaum, Phys. Rev. Lett. 92, 243003 (2004)] are analyzed. In the experiment, a pump pulse comprising two frequency-shifted Gaussian pulses was used to control the ratio of two Stokes emission lines by varying the relative phase ϕL between the pulses. Extending the theory of stimulated Raman scattering to accommodate two coupled levels, we show that control of this type is possible, in the strongly driven regime, using Raman coupling alone. Control via variation of ϕL is shown to also result from self- and cross-phase-modulation of the pump and Stokes pulses as well as via the focused-beam geometry of the pump pulse. In all cases, the general control mechanism is nonlinear optical modulation between the pump and the Stokes pulse; no coherent quantum interference effects are involved. Finally, although the vibrational populations are affected by the same control mechanisms that affect the Stokes spectra, the ratio of the Stokes spectra peak heights does not directly reflect the ratio of the level populations, as was assumed in the experiment.
Neural network approach to prediction of temperatures around groundwater heat pump systems
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Gnavi, Loretta; Verda, Vittorio
2014-01-01
A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. This is particularly important to avoid interference with previously existing groundwater uses (wells) and underground structures. Temperature anomalies are detected through numerical methods. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions. The final results appeared to be reliable and the temperature anomalies around the injection well appeared to be well predicted.
Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?
Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S
2018-01-01
To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
Axial strain may be determined by monitoring the modal pattern variation of an optical fiber. In this paper we present the results of a numerical model that has been developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction and the propagation constants of each fiber mode change. In consequence, the modal phase term of the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
Automatic Omega Station and LOP (Line of Position) Selection,
1987-09-01
LL- jAj C) LJ b- I- I LL I-0 a- 5~52 3.2.2 SOLAR EFFECTS The sun effects Omega modal interference in several significant ways. Firstly the effect...nx(n+l) TD and F are 2x(n+l) -67- %..T C ..4 . (43). a -Je MT Therefore to form BTH requires 4n multiplies and (H TH)- 1 requires 6 multiplies and
Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers
NASA Astrophysics Data System (ADS)
Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.
2013-08-01
Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.
Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.
Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon
2010-06-01
Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
Redwan, Bassam; Ziegeler, Stephan; Semik, Michael; Fichter, Joachim; Dickgreber, Nicolas; Vieth, Volker; Ernst, Erik Christian; Fischer, Stefan
Lung volume reduction surgery (LVRS) is an important treatment option for end-stage lung emphysema in carefully selected patients. Here, we first describe the application of low-flow venovenous extracorporeal CO2 removal (LFVV-ECCO2R) as bridge to LVRS in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute failure of the breathing pump. Between March and October 2015, n = 4 patients received single-site LFVV-ECCO2R as bridge to LVRS. Indication for extracorporeal lung support was severe hypercapnia with respiratory acidosis and acute breathing pump failure. Two patients required continuous mechanical ventilation over a temporary tracheostomy and were bed ridden. The other two patients were nearly immobile because of severe dyspnea at rest. Length of preoperative ECCO2R was 14 (1-42) days. All patients underwent unilateral LVRS. Anatomical resection of the right (n = 3) or left (n = 1) upper lobe was performed. Postoperatively, both patients with previous mechanical ventilatory support were successfully weaned. ECCO2R in patients with end-stage lung emphysema experiencing severe hypercapnia caused by acute breathing pump failure is a safe and effective bridging tool to LVRS. In such patients, radical surgery leads to a significant improvement of the performance status and furthermore facilitates respiratory weaning from mechanical ventilation.
ERIC Educational Resources Information Center
McLay, Laurie; Schäfer, Martina C. M.; van der Meer, Larah; Couper, Llyween; McKenzie, Emma; O'Reilly, Mark F.; Lancioni, Giulio E.; Marschik, Peter B.; Sigafoos, Jeff; Sutherland, Dean
2017-01-01
Identifying an augmentative and alternative communication (AAC) method for children with autism spectrum disorder (ASD) might be informed by comparing their performance with, and preference for, a range of communication modalities. Towards this end, the present study involved two children with ASD who were taught to request the continuation of toy…
Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.
Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y
2012-04-15
A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America
UV diode-pumped solid state laser for medical applications
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.; Konstantinov, K. V.; Sirotkin, A. A.
1999-07-01
A compact, solid-state, high-efficiency, and safe UV laser medical system with optical fiber output was created for treatment of destructive forms of pulmonary tuberculosis. A frequency-quadruped quasi-CW Nd:YVO4 laser system pumped by laser-diode array is investigated with various resonator configurations. A longitudinal end-pumping scheme was used in a compact acousto-optical Q-switched laser for producing stable pulses of UV radiation at the repetition frequency 10-20 kHz and the duration 7-10 ns with the fiber-guide output power exceeding 10 mW.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON ...
1. AERIAL VIEW OF THE HIGHLINE PUMPING PLANT SITE ON THE WESTERN CANAL, LOOKING NORTH. THE OLD PLANT IS ON THE RIGHT BANK, NEAREST THE CANAL. THE NEW PLANT IS ON THE LEFT BANK AT THE END OF THE INLET CANAL. THE KYRENE DITCH RUNS OUT OF THE BOTTOM OF THE PICTURE, AND PART OF THE SWITCHYARD FOR THE KYRENE STEAM PLANT IS VISIBLE AT LOWER RIGHT. c. 1955 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schearer, L.D.; Leduc, M.
Over 250 mW of CW laser emission at 1084 nm is obtained from Nd:LiNbO{sub 3} when the rod is end-pumped along the crystalline {open quote}{ital y}{close quote} axis by 1 W from a Kr{sup +} laser at 752 nm. The laser can be tuned over 3 nm at the 1084 nm peak with a thin, uncoated etalon in the cavity. Thresholds of 30 mW of absorbed pump power were obtained with a weak output coupler, rising to 220 mW with a 35% transmitting output mirror. No pump-induced photorefractive effects were observed.
Wave-particle dualism and complementarity unraveled by a different mode
Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.
2012-01-01
The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM01 pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561
High-order dispersion effects in two-photon interference
NASA Astrophysics Data System (ADS)
Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.
2016-12-01
Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.
NASA Astrophysics Data System (ADS)
Wang, M.; Huang, Y. J.; Ruan, S. C.
2018-04-01
In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.
Redfern, Mark S; Chambers, April J; Jennings, J Richard; Furman, Joseph M
2017-08-01
This study investigated the impact of attention on the sensory and motor actions during postural recovery from underfoot perturbations in young and older adults. A dual-task paradigm was used involving disjunctive and choice reaction time (RT) tasks to auditory and visual stimuli at different delays from the onset of two types of platform perturbations (rotations and translations). The RTs were increased prior to the perturbation (preparation phase) and during the immediate recovery response (response initiation) in young and older adults, but this interference dissipated rapidly after the perturbation response was initiated (<220 ms). The sensory modality of the RT task impacted the results with interference being greater for the auditory task compared to the visual task. As motor complexity of the RT task increased (disjunctive versus choice) there was greater interference from the perturbation. Finally, increasing the complexity of the postural perturbation by mixing the rotational and translational perturbations together increased interference for the auditory RT tasks, but did not affect the visual RT responses. These results suggest that sensory and motoric components of postural control are under the influence of different dynamic attentional processes.
The Influence of Task-Irrelevant Music on Language Processing: Syntactic and Semantic Structures
Hoch, Lisianne; Poulin-Charronnat, Benedicte; Tillmann, Barbara
2011-01-01
Recent research has suggested that music and language processing share neural resources, leading to new hypotheses about interference in the simultaneous processing of these two structures. The present study investigated the effect of a musical chord's tonal function on syntactic processing (Experiment 1) and semantic processing (Experiment 2) using a cross-modal paradigm and controlling for acoustic differences. Participants read sentences and performed a lexical decision task on the last word, which was, syntactically or semantically, expected or unexpected. The simultaneously presented (task-irrelevant) musical sequences ended on either an expected tonic or a less-expected subdominant chord. Experiment 1 revealed interactive effects between music-syntactic and linguistic-syntactic processing. Experiment 2 showed only main effects of both music-syntactic and linguistic-semantic expectations. An additional analysis over the two experiments revealed that linguistic violations interacted with musical violations, though not differently as a function of the type of linguistic violations. The present findings were discussed in light of currently available data on the processing of music as well as of syntax and semantics in language, leading to the hypothesis that resources might be shared for structural integration processes and sequencing. PMID:21713122
Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm
NASA Astrophysics Data System (ADS)
Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.
2013-07-01
Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.
Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.
Almeida, J; Liang, D; Vistas, C R; Guillot, E
2015-03-10
We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1 W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.
Harding, Andrew D
2012-01-01
The use of infusion pumps that incorporate "smart" technology (smart pumps) can reduce the risks associated with receiving IV therapies. Smart pump technology incorporates safeguards such as a list of high-alert medications, soft and hard dosage limits, and a drug library that can be tailored to specific patient care areas. Its use can help to improve patient safety and to avoid potentially catastrophic harm associated with medication errors. But when one independent community hospital in Massachusetts switched from older mechanical pumps to smart pumps, it neglected to assign an "owner" to oversee the implementation process. One result was that nurses were using the smart pump library for only 37% of all infusions.To increase pump library usage percentage-thereby reducing the risks associated with infusion and improving patient safety-the hospital undertook a continuous quality improvement project over a four-month period in 2009. With the involvement of direct care nurses, and using quantitative data available from the smart pump software, the nursing quality and pharmacy quality teams identified ways to improve pump and pump library use. A secondary goal was to calculate the hospital's return on investment for the purchase of the smart pumps. Several interventions were developed and, on the first of each month, implemented. By the end of the project, pump library usage had nearly doubled; and the hospital had completely recouped its initial investment.
Theoretical and experimental studies of a magnetically actuated valveless micropump
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali
2017-01-01
This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.
Optical multichannel room temperature magnetic field imaging system for clinical application
Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.
2014-01-01
Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820
Electromagnetically driven peristaltic pump
Marshall, Douglas W.
2000-01-01
An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.
4.5-kW Hall Effect Thruster Evaluated
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2000-01-01
As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.
Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide
2014-01-01
Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646
A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.
Dame, Don
1996-05-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.
A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
Dame, D
1996-06-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.
Kabei, N; Tuichiya, K; Sakurai, Y
1994-09-01
When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
Imaging with hypertelescopes: a simple modal approach
NASA Astrophysics Data System (ADS)
Aime, C.
2008-05-01
Aims: We give a simple analysis of imaging with hypertelescopes, a technique proposed by Labeyrie to produce snapshot images using arrays of telescopes. The approach is modal: we describe the transformations induced by the densification onto a sinusoidal decomposition of the focal image instead of the usual point spread function approach. Methods: We first express the image formed at the focus of a diluted array of apertures as the product R_0(α) X_F(α) of the diffraction pattern of the elementary apertures R_0(α) by the object-dependent interference term X_F(α) between all apertures. The interference term, which can be written in the form of a Fourier Series for an extremely diluted array, produces replications of the object, which makes observing the image difficult. We express the focal image after the densification using the approach of Tallon and Tallon-Bosc. Results: The result is very simple for an extremely diluted array. We show that the focal image in a periscopic densification of the array can be written as R_0(α) X_F(α/γ), where γ is the factor of densification. There is a dilatation of the interference term while the diffraction term is unchanged. After de-zooming, the image can be written as γ2 X_F(α)R_0(γ α), an expression which clearly indicates that the final image corresponds to the center of the Fizeau image intensified by γ2. The imaging limitations of hypertelescopes are therefore those of the original configuration. The effect of the suppression of image replications is illustrated in a numerical simulation for a fully redundant configuration and a non-redundant one.
NASA Technical Reports Server (NTRS)
Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)
1979-01-01
A very high pressure pump apparatus which minimizes wear on the seals thereof and on valves connected thereto, by utilizing a very long stroke piston rod whose opposite ends are received in long cylinders. An electric motor which drives the rod, includes a rotor with a threaded aperture that receives a long threaded middle portion of the rod, so that as the rotor turns it advances the rod.
Evaluation of a depth proportional intake device for automatic pumping samplers
Rand E. Eads; Robert B. Thomas
1983-01-01
Abstract - A depth proportional intake boom for portable pumping samplers was used to collect suspended sediment samples in two coastal streams for three winters. The boom pivots on the stream bed while a float on the downstream end allows debris to depress the boom and pass without becoming trapped. This equipment modifies point sampling by maintaining the intake...
High Efficiency End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Jirong; Singh, Upendra N.; Petros, Mulugeta; Axenson, Theresa J.; Barnes, Norman P.
1999-01-01
Space based coherent lidar for global wind measurement requires an all solid state laser system with high energy, high efficiency and narrow linewidth that operates in the eye safe region. A Q-switched, diode pumped Ho:Tm:YLF 2 micrometer laser with output energy of as much as 125 mJ at 6 Hz with an optical-to-optical efficiency of 3% has been reported. Single frequency operation of the laser was achieved by injection seeding. The design of this laser is being incorporated into NASA's SPARCLE (SPAce Readiness Coherent Lidar Experiment) wind lidar mission. Laser output energy ranging from 500 mJ to 2 J is required for an operational space coherent lidar. We previously developed a high energy Ho:Tm:YLF master oscillator and side pumped power amplifier system and demonstrated a 600-mJ single frequency pulse at a repetition rate of 10 Hz. Although the output energy is high, the optical-to-optical efficiency is only about 2%. Designing a high energy, highly efficient, conductively cooled 2-micrometer laser remains a challenge. In this paper, the preliminary result of an end-pumped amplifier that has a potential to provide a factor 3 of improvement in the system efficiency is reported.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg
2015-01-19
We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. Themore » quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.« less
Acoustic and semantic interference effects in words and pictures.
Dhawan, M; Pellegrino, J W
1977-05-01
Interference effects for pictures and words were investigated using a probe-recall task. Word stimuli showed acoustic interference effects for items at the end of the list and semantic interference effects for items at the beginning of the list, similar to results of Kintsch and Buschke (1969). Picture stimuli showed large semantic interference effects at all list positions with smaller acoustic interference effects. The results were related to latency data on picture-word processing and interpreted in terms of the differential order, probability, and/or speed of access to acoustic and semantic levels of processing. A levels of processing explanation of picture-word retention differences was related to dual coding theory. Both theoretical positions converge on an explanation of picture-word retention differences as a function of the relative capacity for semantic or associative processing.
Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes
NASA Astrophysics Data System (ADS)
Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin
2014-11-01
Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.
Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.
Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-04-02
Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.
Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, T.-T. D.; Chen, R.; Ng, K. W.
2014-09-15
As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.
4. Engine room, east end looking east toward engine #4 ...
4. Engine room, east end looking east toward engine #4 (Enterprise Diesel; reduction gear in foreground; in left rear, two D.C. generators with Ames Ironworks horizontal engine and sturtevant vertical engine - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA
Ly, Trang T; Brnabic, Alan J M; Eggleston, Andrew; Kolivos, Athena; McBride, Margaret E; Schrover, Rudolf; Jones, Timothy W
2014-07-01
To assess the cost-effectiveness of sensor-augmented insulin pump therapy with "Low Glucose Suspend" (LGS) functionality versus standard pump therapy with self-monitoring of blood glucose in patients with type 1 diabetes who have impaired awareness of hypoglycemia. A clinical trial-based economic evaluation was performed in which the net costs and effectiveness of the two treatment modalities were calculated and expressed as an incremental cost-effectiveness ratio (ICER). The clinical outcome of interest for the evaluation was the rate of severe hypoglycemia in each arm of the LGS study. Quality-of-life utility scores were calculated using the three-level EuroQol five-dimensional questionnaire. Resource use costs were estimated using public sources. After 6 months, the use of sensor-augmented insulin pump therapy with LGS significantly reduced the incidence of severe hypoglycemia compared with standard pump therapy (incident rate difference 1.85 [0.17-3.53]; P = 0.037). Based on a primary randomized study, the ICER per severe hypoglycemic event avoided was $18,257 for all patients and $14,944 for those aged 12 years and older. Including all major medical resource costs (e.g., hospital admissions), the ICERs were $17,602 and $14,289, respectively. Over the 6-month period, the cost per quality-adjusted life-year gained was $40,803 for patients aged 12 years and older. Based on the Australian experience evaluating new interventions across a broad range of therapeutic areas, sensor-augmented insulin pump therapy with LGS may be considered a cost-effective alternative to standard pump therapy with self-monitoring of blood glucose in hypoglycemia unaware patients with type 1 diabetes. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths.
Bruno, N; Martin, A; Guerreiro, T; Sanguinetti, B; Thew, R T
2014-07-14
We report on the generation of indistinguishable photon pairs at telecom wavelengths based on a type-II parametric down conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal. The phase matching, pump laser characteristics and coupling geometry are optimised to obtain spectrally uncorrelated photons with high coupling efficiencies. Four photons are generated by a counter-propagating pump in the same crystal and anlysed via two photon interference experiments between photons from each pair source as well as joint spectral and g((2)) measurements. We obtain a spectral purity of 0.91 and coupling efficiencies around 90% for all four photons without any filtering. These pure indistinguishable photon sources at telecom wavelengths are perfectly adapted for quantum network demonstrations and other multi-photon protocols.
Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia
2011-02-28
We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.
Seeing touch is correlated with content-specific activity in primary somatosensory cortex.
Meyer, Kaspar; Kaplan, Jonas T; Essex, Ryan; Damasio, Hanna; Damasio, Antonio
2011-09-01
There is increasing evidence to suggest that primary sensory cortices can become active in the absence of external stimulation in their respective modalities. This occurs, for example, when stimuli processed via one sensory modality imply features characteristic of a different modality; for instance, visual stimuli that imply touch have been observed to activate the primary somatosensory cortex (SI). In the present study, we addressed the question of whether such cross-modal activations are content specific. To this end, we investigated neural activity in the primary somatosensory cortex of subjects who observed human hands engaged in the haptic exploration of different everyday objects. Using multivariate pattern analysis of functional magnetic resonance imaging data, we were able to predict, based exclusively on the activity pattern in SI, which of several objects a subject saw being explored. Along with previous studies that found similar evidence for other modalities, our results suggest that primary sensory cortices represent information relevant for their modality even when this information enters the brain via a different sensory system.
NASA Astrophysics Data System (ADS)
Wang, F.; Yao, C. F.; Li, C. Z.; Jia, Z. X.; Li, Q.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2018-02-01
We report the experimental observation of breathing solitons and a third harmonic in a tapered fluorotellurite photonic crystal fiber (PCF) pumped by a 1560 nm femtosecond fiber laser. The PCF has a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 1325 nm to 906 nm over the transition region. By finely controlling the dispersion map of the tapered PCF and increasing the order of the optical solitons, their breathing behavior is observed in the frequency domain and the number of breaths goes up to 9. Furthermore, the breathing behavior of the optical soliton is transferred to the third harmonic through inter-modal phase-matched processes in the tapered PCF, and the third harmonic also breathes with an increase in the pump power.
Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W
2013-05-01
The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuo; Chen, Rongzhang; Nelsen, Bryan
2016-03-15
This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, andmore » limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.« less
Power flow control based solely on slow feedback loop for heart pump applications.
Wang, Bob; Hu, Aiguo Patrick; Budgett, David
2012-06-01
This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.
Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis
NASA Technical Reports Server (NTRS)
1986-01-01
A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.
Reduced energy and volume air pump for a seat cushion
Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.
1997-08-19
An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
Reduced energy and volume air pump for a seat cushion
Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.
1997-01-01
An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.
NASA Astrophysics Data System (ADS)
Shwa, David; Katz, Nadav
2014-08-01
When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.
Classical imaging with undetected light
NASA Astrophysics Data System (ADS)
Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.
2018-03-01
We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.
1983-09-01
drawdowns during droughts. yields of groundwater were identified tapsco, Magothy , and Aquia aquifers. Finished Water Interconnections at the outset of...interference Patapsco aquifers would be prudent following seven reservoir sites between aquifers. since pumping in the Magothy deserved further...Charles County Well systems 4.0 mgd (6.1 mgd)5 Elevation of Magothy Aquifer Dept. of Public water level declining. Works Town of Indian Well system 4
6. Engine room, view looking west from east end of ...
6. Engine room, view looking west from east end of room, engine #4 (enterprise diesel) on left, Ames Ironworks horizontal engine and sturtevant vertical engine on right, and engine #3 to the rear - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA
High sensitivity waveguide micro-displacement sensor based on intermodal interference
NASA Astrophysics Data System (ADS)
Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming
2017-11-01
An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.
Effect of crystal length on the thermal characteristic in Nd: YLF laser with 20W diode pumped
NASA Astrophysics Data System (ADS)
Yahya, K. A.; Hussein, O. A.; Mustafa, O. H.
2016-03-01
Theoretical results are reported on thermal effects along the π- 1047nm and σ- 1053nm polarizations in a cut Nd: YLF rod crystal by using 20W Diode -End-pumped. The crystal length effects on the fraction of absorbed pump radiation converted into heat, radial temperature distribution, and the change in a radial refractive index. The result from this study has shown that a maximum fraction converted into heat is calculated to be around 24% and thermal effects of π-polarized 1047 nm stronger than σ-polarized 1053 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohatt, D; Malhotra, H
Purpose: To evaluate and verify the accuracy of alternative treatment modalities for stereotactic lung therapy with end-to-end testing. We compared three dimensional conformal therapy (3DCRT), dynamic conformal arc therapy (DCAT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment using 6 MV, 6 MV flattening filter free (FFF) and 10 MV FFF photons. Methods: A QUASAR respiratory motion phantom was utilized with custom ion chamber and gafchromatic EBT2 film inserts. The phantom contained a low density lung medium with a cylindrical polystyrene tumor (35 cc). Pseudo representative structures for various organs at risk (OAR) were created. Allmore » treatment plans were created using Eclipse ver. 11 using the same image and structure sets, and delivered via Varian TrueBeam STx linear accelerator equipped with high definition MLC. Evaluation of plan quality followed ROTG 0813 criterion for conformity index (CI100%), high dose spillage, D2cm, and R50%. Results: All treatment plans met the OAR dose constraints per protocol and could be delivered without any beam hold offs or other interlocks and hence were deemed clinically safe. For equivalent beam energies, target conformity was improved for all modalities when switching to FFF mode. Treatment efficiency increased for VMAT FFF by a factor of 3–4 over IMRT, and up to factor of 7 when compared to 3DCRT. Pass rates were > 97% for all treatment using gamma criteria of 3%, 3mm. Absolute dose at iso-center was verified with ion chamber, and found to be within 2% of the treatment planning system. Conclusion: The higher dose rate associated with FFF not only reduces delivery times, but in most cases enhances plan quality. The one modality with succeeding best results for all RTOG criterions was VMAT 6 MV FFF. This end-to-end testing provides necessary confidence in the entire dose delivery chain for lung SBRT patients.« less
NASA Astrophysics Data System (ADS)
Kang, Jeeun; Chang, Jin Ho; Wilson, Brian C.; Veilleux, Israel; Bai, Yanhui; DaCosta, Ralph; Kim, Kang; Ha, Seunghan; Lee, Jong Gun; Kim, Jeong Seok; Lee, Sang-Goo; Kim, Sun Mi; Lee, Hak Jong; Ahn, Young Bok; Han, Seunghee; Yoo, Yangmo; Song, Tai-Kyong
2015-03-01
Multi-modality imaging is beneficial for both preclinical and clinical applications as it enables complementary information from each modality to be obtained in a single procedure. In this paper, we report the design, fabrication, and testing of a novel tri-modal in vivo imaging system to exploit molecular/functional information from fluorescence (FL) and photoacoustic (PA) imaging as well as anatomical information from ultrasound (US) imaging. The same ultrasound transducer was used for both US and PA imaging, bringing the pulsed laser light into a compact probe by fiberoptic bundles. The FL subsystem is independent of the acoustic components but the front end that delivers and collects the light is physically integrated into the same probe. The tri-modal imaging system was implemented to provide each modality image in real time as well as co-registration of the images. The performance of the system was evaluated through phantom and in vivo animal experiments. The results demonstrate that combining the modalities does not significantly compromise the performance of each of the separate US, PA, and FL imaging techniques, while enabling multi-modality registration. The potential applications of this novel approach to multi-modality imaging range from preclinical research to clinical diagnosis, especially in detection/localization and surgical guidance of accessible solid tumors.
Conflict when making decisions about dialysis modality.
Chen, Nien-Hsin; Lin, Yu-Ping; Liang, Shu-Yuan; Tung, Heng-Hsin; Tsay, Shiow-Luan; Wang, Tsae-Jyy
2018-01-01
To explore decisional conflict and its influencing factors on choosing dialysis modality in patients with end-stage renal diseases. The influencing factors investigated include demographics, predialysis education, dialysis knowledge, decision self-efficacy and social support. Making dialysis modality decisions can be challenging for patients with end-stage renal diseases; there are pros and cons to both haemodialysis and peritoneal dialysis. Patients are often uncertain as to which one will be the best alternative for them. This decisional conflict increases the likelihood of making a decision that is not based on the patient's values or preferences and may result in undesirable postdecisional consequences. Addressing factors predisposing patients to decisional conflict helps to facilitate informed decision-making and then to improve healthcare quality. A predictive correlational cross-sectional study design was used. Seventy patients were recruited from the outpatient dialysis clinics of two general hospitals in Taiwan. Data were collected with study questionnaires, including questions on demographics, dialysis modality and predialysis education, the Dialysis Knowledge Scale, the Decision Self-Efficacy scale, the Social Support Scale, and the Decisional Conflict Scale. The mean score on the Decisional Conflict Scale was 29.26 (SD = 22.18). Decision self-efficacy, dialysis modality, predialysis education, professional support and dialysis knowledge together explained 76.4% of the variance in decisional conflict. Individuals who had lower decision self-efficacy, did not receive predialysis education on both haemodialysis and peritoneal dialysis, had lower dialysis knowledge and perceived lower professional support reported higher decisional conflict on choosing dialysis modality. When providing decisional support to predialysis stage patients, practitioners need to increase patients' decision self-efficacy, provide both haemodialysis and peritoneal dialysis predialysis education, increase dialysis knowledge and provide professional support. © 2017 John Wiley & Sons Ltd.
Dieltjens, Sylvain M; Heynderickx, Priscilla C; Dees, Marianne K; Vissers, Kris C
2014-04-01
The literature, field research, and daily practice stress the need for adequate communication in palliative care. Although language is of the utmost importance in communication, linguistic analysis of end-of-life discussions is scarce. Our aim is 2-fold: We want to determine what the use of 4 significant Dutch modal verbs expressing volition, obligation, possibility, and permission reveals about the concept of unbearable suffering and about physicians' communicative style. We quantitatively (TextStat) and qualitatively (bottom-up approach) analyzed the use of the modal verbs in 15 interviews, with patients requesting euthanasia or physician-assisted suicide, their physicians, and their closest relatives. An essential element of unbearable suffering is the patient's incapacity to perform certain tasks. Further, the physician's preference for particular modal verbs reveals whether his attitude toward patients is more or less patronizing and more or less appreciative. Linguistic analysis can help medical professionals to better understand their communicative skills, styles, and approach to patients in end-of-life situations. We have shown how linguistic analysis can contribute to a better understanding of physician-patient interaction. Moreover, we have illustrated the usefulness of interdisciplinary research in the medical domain. © 2013 World Institute of Pain.
Theoretical investigation of output features of a diode-pumped rubidium vapor laser
NASA Astrophysics Data System (ADS)
Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Han, Juhong
2014-02-01
In the recent years, diode-pumped alkali lasers (DPALs) have been paid many attentions because of their excellent performances. In fact, the characteristics of a DPAL strongly depend on the physical features of buffer gases. In this report, we selected a diode-pumped rubidium vapor laser (DPRVL), which is an important type among three common DPALs, to investigate how the characteristics of a DPRVL are affected by different conditions. The results signify that the population ratio of two excitation energy-levels are close to that corresponding to thermal equilibrium as the pressure of buffer gases and the temperature of a vapor cell become higher. It has been found that quenching of the upper levels cannot be simply ignored especially for the case of weak pump. The conclusions are thought to be helpful for the configuration design of an end-pumped DPAL.
Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho
2013-10-21
Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.
A new technique to control brushless motor for blood pump application.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Legendre, Daniel; Bock, Eduardo; Lucchi, Júlio César
2008-04-01
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.
Jongman, Rianne M; Zijlstra, Jan G; Kok, Wendelinde F; van Harten, Annemarie E; Mariani, Massimo A; Moser, Jill; Struys, Michel M R F; Absalom, Anthony R; Molema, Grietje; Scheeren, Thomas W L; van Meurs, Matijs
2014-08-01
Coronary artery bypass graft (CABG) surgery can result in severe postoperative organ failure. During CABG surgery, cardiopulmonary bypass (CPB) with cardiac arrest is often used (on-pump CABG), which often results in a systemic inflammatory response. To reduce this inflammatory response, off-pump CABG was reintroduced, thereby avoiding CPB. There is increasing evidence that the endothelium plays an important role in the pathophysiology of organ failure after CABG surgery. In this study, 60 patients who were scheduled for elective CABG surgery were randomized to have surgery for on-pump or off-pump CABG. Blood was collected at four time points: start, end, 6 h, and 24 h postoperatively. Levels of inflammatory cytokines, soluble adhesion molecules, and angiogenic factors and their receptors were measured in the plasma. No differences were found in preoperative characteristics between the patient groups. The levels of tumor necrosis factor-α, interleukin 10, and myeloperoxidase, but not interleukin 6, were increased to a greater extent in the on-pump CABG compared with off-pump CABG after sternum closure. The soluble endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 were not elevated in the plasma during and after CABG surgery in both on-pump and off-pump CABG. Angiopoietin 2 was only increased 24 h after surgery in both on-pump and off-pump CABG. Higher levels of sFlt-1 were found after sternum closure in off-pump CABG compared with on-pump CABG. Avoiding CPB and aortic cross clamping in CABG surgery reduces the systemic inflammatory response. On-pump CABG does not lead to an increased release of soluble endothelial adhesion molecules in the circulation compared with off-pump CABG.
Grove, Erik L; Hansen, Peter Riis; Olesen, Jonas B; Ahlehoff, Ole; Selmer, Christian; Lindhardsen, Jesper; Madsen, Jan Kyst; Køber, Lars; Torp-Pedersen, Christian; Gislason, Gunnar H
2011-01-01
Objective To examine the effect of proton pump inhibitors on adverse cardiovascular events in aspirin treated patients with first time myocardial infarction. Design Retrospective nationwide propensity score matched study based on administrative data. Setting All hospitals in Denmark. Participants All aspirin treated patients surviving 30 days after a first myocardial infarction from 1997 to 2006, with follow-up for one year. Patients treated with clopidogrel were excluded. Main outcome measures The risk of the combined end point of cardiovascular death, myocardial infarction, or stroke associated with use of proton pump inhibitors was analysed using Kaplan-Meier analysis, Cox proportional hazard models, and propensity score matched Cox proportional hazard models. Results 3366 of 19 925 (16.9%) aspirin treated patients experienced recurrent myocardial infarction, stroke, or cardiovascular death. The hazard ratio for the combined end point in patients receiving proton pump inhibitors based on the time dependent Cox proportional hazard model was 1.46 (1.33 to 1.61; P<0.001) and for the propensity score matched model based on 8318 patients it was 1.61 (1.45 to 1.79; P<0.001). A sensitivity analysis showed no increase in risk related to use of H2 receptor blockers (1.04, 0.79 to 1.38; P=0.78). Conclusion In aspirin treated patients with first time myocardial infarction, treatment with proton pump inhibitors was associated with an increased risk of adverse cardiovascular events. PMID:21562004
Time-Dependent Modeling of Brillouin Scattering in Optical Fibers Excited by a Chirped Diode Laser
2012-10-31
backscattering. To demonstrate this effect, we simulated an ytterbium -cladding- doped fiber with length L = 18 m and modal radius r = 13.75 μm at a...The resulting SBS suppression is well described by an adiabatic model and agrees with experimental results. For an 18-m active fiber pumped at 1.06...8] R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers
Marriage and End-Stage Renal Disease: Implications for African Americans
ERIC Educational Resources Information Center
Shortridge, Emily F.; James, Cara V.
2010-01-01
African Americans are disproportionately represented among patients with end-stage renal disease (ESRD). ESRD is managed with a strict routine that might include regular dialysis as well as dietary, fluid intake, and other lifestyle changes. In a disease such as this, with such disruptive treatment modalities, marriage, specifically, and its ties…
Phase-sensitive, through-amplification with a double-pumped JPC
NASA Astrophysics Data System (ADS)
Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.
The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.
Hardware and circuit design of a vibrational cleaner
NASA Astrophysics Data System (ADS)
Fhong Soon, Chin; Thong, Kok Tung; Sek Tee, Kian; Nayan, Nafarizal; Khairul Ahmad, Mohd; Nurashikin Nordin, Anis
2016-11-01
Microtissue can be grown on soft substrates of hydrogel or liquid crystal gel. These gels are adherent to the microtissues and they may interfere fluorescence imaging as background noise due to their absorbance property. A microfluidic vibrational cleaner with polydimethylsiloxane (PDMS) microfluidic chip platform was proposed and developed to remove the residual gel of liquid crystal adhered to the microtissues. The microtissues were placed in a microfluidic chip attaching to a microfluidic vibrational platform. In the system design, two motorised vibrators vibrating attached to a microfluidic platform and generating vibration signals at 148 Hz and 0.89 Grms to clean the microtissues. The acceleration of the vibration increased gradually from 0 to 0.96 Grms when the duty cycle of PWM pulses increased from 50 - 90%. It dropped slightly to 0.89 Grms at 100% duty cycle. Irrigation water valve was designed to control the fluid flow from water pump during cleaning process. Water pumps were included to flush the channels of the microfluidic device. The signals in controlling the pump, motor and valve were linearly proportional to the duty cycles of the pulse width modulation signals generated from a microcontroller.
Sherr, Jennifer L; Hermann, Julia M; Campbell, Fiona; Foster, Nicole C; Hofer, Sabine E; Allgrove, Jeremy; Maahs, David M; Kapellen, Thomas M; Holman, Naomi; Tamborlane, William V; Holl, Reinhard W; Beck, Roy W; Warner, Justin T
2016-01-01
While the use of insulin pumps in paediatrics has expanded dramatically, there is still considerable variability among countries in the use of pump technology. The present study sought to describe differences in metabolic control and pump use in young people with type 1 diabetes using data collected in three multicentre registries. Data for the years 2011 and 2012 from 54,410 children and adolescents were collected from the Prospective Diabetes Follow-up Registry (DPV; n = 26,198), T1D Exchange (T1DX; n = 13,755) and the National Paediatric Diabetes Audit (NPDA; n = 14,457). The modality of insulin delivery, based on age, sex and ethnic minority status, and the impact of pump use on HbA1c levels were compared. The overall mean HbA1c level was higher in the NPDA (8.9 ± 1.6% [74 ± 17.5 mmol/mol]) than in the DPV (8.0 ± 1.6% [64 ± 17.0 mmol/mol], p < 0.001) and T1DX (8.3 ± 1.4% [68 ± 15.4 mmol/mol], p < 0.001). Conversely, pump use was much lower in the NPDA (14%) than in the DPV (41%, p < 0.001) and T1DX (47%, p < 0.001). In a pooled analysis, pump use was associated with a lower mean HbA1c (pump: 8.0 ± 1.2% [64 ± 13.3 mmol/mol] vs injection: 8.5 ± 1.7% [69 ± 18.7 mmol/mol], p < 0.001). In all three registries, those with an ethnic minority status were less likely to be treated with a pump (p < 0.001) and boys were treated with a pump less often compared with girls (p < 0.001). Despite similar clinical characteristics and proportion of minority participants, substantial differences in metabolic control exist across the three large transatlantic registries of paediatric patients with type 1 diabetes, which appears to be due in part to the frequency of insulin pump therapy.
Toulmond, A; Dejours, P
1994-04-01
The aim of this study was to tentatively estimate the energy cost of breathing in the lugworm, Arenicola marina (L.), a gallery-dwelling, piston-pump breather that moves water in a tail-to-head direction. Each tested lugworm was placed in a horizontal glass tube. The caudal end of the tube was connected to a well-aerated seawater reservoir at 20{deg}C, and the cephalic end attached to a drop meter through a tube resistance. At the exit of the cephalic chamber the O2 tension was recorded via an in situ O2 electrode, and the hydrostatic pressure of the exhaled water was also recorded. Water flow rate, total O2 uptake rate {Mdot}TOTO2, O2 extraction coefficient, and the mechanical power necessary to pump water through the resistive anterior exit of the apparatus ({Wdot}MEC), were computed. The basal metabolic rate of each animal ({Mdot}CONFO2) was separately estimated by the confinement method. {Mdot}CONFO2 subtracted from {Mdot}TOTO2 approximates {Mdot}CBO2, the O2 uptake rate necessary to activate the piston-pump breathing mechanism and to ensure the corresponding mechanical work rate, {Wdot}MEC. The results show that the energy cost of breathing, {Mdot}CBO2, of the piston-pump-breathing Arenicola is very high, with mean values approximating 47% of the {Mdot}TOTO2 value; that the mechanical power we measured, {Wdot}MEC, is very low; and that the mechanical-to-metabolic efficiency, the ratio {Wdot}MEC/{Mdot}CBO2, does not exceed 1%. These observations are compared to those obtained in other piston-pump breathers, such as Chaetopterus variopedatus and Urechis caupo, and in ciliary filter feeders including polychaetes, bivalves, and ascidians.
Ntalianis, Argyrios S; Drakos, Stavros G; Charitos, Christos; Dolou, Paraskevi; Pierrakos, Charalampos N; Terrovitis, John V; Papaioannou, Theodoros; Charitos, Efstratios; Nanas, John N
2008-01-01
The present experimental study compared the effectiveness of counterpulsation provided by the intra-aortic balloon pump (IABP) versus that of a nonpulsatile, radial-flow centrifugal pump (CFP) in rapidly worsening acute heart failure (HF). Eighteen pigs were included in the study. After the induction of acute moderate HF, circulatory support was randomly provided with either the IABP or CFP. No significant change in cardiac output (CO) and mean aortic pressure (MAP) was observed with either pump. The IABP caused a significantly greater decrease than the CFP in 1) double product (13.138 +/- 2.476 mm Hg/min vs. 14.217 +/- 2.673 mm Hg/min, p = 0.023), 2) left ventricular systolic pressure (LVSP, 100 +/- 8 mm Hg vs. 106 +/- 10 mm Hg, p = 0.046), and 3) end-diastolic aortic pressure (EDAP, 70 +/- 6 mm Hg vs. 86 +/- 6 mm Hg, p = 0.000). The effects of both pumps on total tension time index and LAD flow were similar. After the induction of severe HF, the IABP had its main effects on afterload and decreased LVSP from 88 +/- 6 mm Hg to 78 +/- 9 mm Hg, (p = 0.008), and EDAP from 57 +/- 9 mm Hg to 49 +/- 14 mm Hg, (p = 0.044), whereas the CFP exerted its effects mainly on preload, lowering LV end-diastolic pressure from 19 +/- 5 mm Hg to 11 +/- 4 mm Hg, (p = 0.002). CO and MAP were similarly increased by both assist systems. The IABP (by lowering afterload) and CFP (by lowering preload) both offered significant mechanical support in acute HF. However, afterload reduction offered principally by the IABP seems preferable for the recovery of the acutely failing heart.
Maltais, Simon; Kilic, Ahmet; Nathan, Sriram; Keebler, Mary; Emani, Sitaramesh; Ransom, John; Katz, Jason N; Sheridan, Brett; Brieke, Andreas; Egnaczyk, Gregory; Entwistle, John W; Adamson, Robert; Stulak, John; Uriel, Nir; O'Connell, John B; Farrar, David J; Sundareswaran, Kartik S; Gregoric, Igor
2017-01-01
Recommended structured clinical practices including implant technique, anti-coagulation strategy, and pump speed management (PREVENT [PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management] recommendations) were developed to address risk of early (<3 months) pump thrombosis (PT) risk with HeartMate II (HMII; St. Jude Medical, Inc. [Thoratec Corporation], Pleasanton, CA). We prospectively assessed the HMII PT rate in the current era when participating centers adhered to the PREVENT recommendations. PREVENT was a prospective, multi-center, single-arm, non-randomized study of 300 patients implanted with HMII at 24 participating sites. Confirmed PT (any suspected PT confirmed visually and/or adjudicated by an independent assessor) was evaluated at 3 months (primary end-point) and at 6 months after implantation. The population included 83% men (age 57 years ± 13), 78% destination therapy, and 83% Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Profile 1-3. Primary end-point analysis showed a confirmed PT of 2.9% at 3 months and 4.8% at 6 months. Adherence to key recommendations included 78% to surgical recommendations, 95% to heparin bridging, and 79% to pump speeds ≥9,000 RPMs (92% >8,600 RPMs). Full adherence to implant techniques, heparin bridging, and pump speeds ≥9,000 RPMs resulted in a significantly lower risk of PT (1.9% vs 8.9%; p < 0.01) and lower composite risk of suspected thrombosis, hemolysis, and ischemic stroke (5.7% vs 17.7%; p < 0.01) at 6 months. Adoption of all components of a structured surgical implant technique and clinical management strategy (PREVENT recommendations) is associated with low rates of confirmed PT. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Section 7 reactor incident file general information from 1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1969-01-10
At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
NASA Astrophysics Data System (ADS)
Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng
2016-09-01
A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.
Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing
2012-08-27
To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.
Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia
2016-10-01
With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.