Science.gov

Sample records for end-systolic wall stress

  1. Importance of right ventricular end-systolic regional wall stress in idiopathic pulmonary arterial hypertension: a new method for estimation of right ventricular wall stress.

    PubMed

    Quaife, Robert A; Chen, Marcus Y; Lynch, David; Badesch, David B; Groves, Bertron M; Wolfel, Eugene; Robertson, Alastair D; Bristow, Michael R; Voelkel, Norbert F

    2006-05-05

    RV dysfunction in idiopathic (primary) pulmonary hypertension (IPAH) is often characterized by chamber dilation, ventricular hypertrophy, and impaired systolic function. In this study we characterize right ventricular (RV) chamber size, end-diastolic thickness, myocardial mass, and ejection fraction in patients with right ventricular heart failure from IPAH, n = 16 and compare these characteristics to a control population of cardiac transplant patients (TX, n = 4) and a group of normal subjects (N, n = 5). Subjects underwent both gated cardiac magnetic resonance imaging (MRI) of the right ventricle and right heart catheterization (RHC). Using parameters from both the MRI and RHC, an estimate of RV end-systolic relative wall stress (RWS) was calculated. RV RWS was 34.7 +/- 8.4 and 17.3 +/- 3.8 Kdynes/cm2 in the cardiac transplant and control subjects respectively and was significantly elevated 104.1 Kdynes/cm2 in IPAH patients (IPAH vs N and TX; p = 0.004 and 0.008 ). RV ejection fraction RVEF was lower in IPAH patients 0.36 +/- .10 than in N and TX 0.57 +/- .04 and 0.55 +/- .08 respectively, (p = 0.0006 N and 0.0007 TX). An inverse linear correlation was demonstrated between RWS and RVEF (y = 215- 332x; R = .80, p < or = .0001). Right ventricular RWS is significantly elevated in IPAH and may provide a useful quantitative monitoring tool in patients with IPAH to assess the benefit of different therapeutic interventions and provide prognostic information.

  2. [Morphological and functional parameters of the left ventricle (mass, wall thickness and end-systolic stress) in school children with different levels of blood pressure, at rest and during maximal exercise].

    PubMed

    Muñoz, S; Soltero, I; Onorato, E; Pietri, C; Zambrano, F

    1990-01-01

    Echocardiographically determined left ventricular mass, diastolic septal and posterior wall thickness and end-systolic wall stress, as well as electrocardiographic indexes of left ventricular enlargement (Sokolow-Lyon index and Romhilt-Estes score) and of left atrial enlargement (P terminal index) were correlated with resting and exercise systolic and diastolic blood pressures, and with several parameters of body size (weight, height, body surface area, Quetelet index), in 130 school children (61 boys, 69 girls) 6 to 15 years of age. Parameters of body size had a positive correlation both with systolic and diastolic blood pressures and with parameters of left ventricular size. Thus, the latter were adjusted for body surface area, for correlation with blood pressure. Left ventricular mass and diastolic septal and posterior wall thickness had a very poor correlation with resting and exercise diastolic blood pressures. Left ventricular mass and diastolic posterior wall thickness had a significantly higher correlation with peak exercise systolic blood pressure than with resting systolic blood pressure. End-systolic wall stress had a positive correlation with resting diastolic and systolic blood pressures. Electrocardiographic parameters of left ventricular and left atrial enlargement had a very poor correlation with resting and exercise blood pressure. Our findings suggest that early in life left ventricular mass and wall thickness are more closely related to maximal systolic blood pressure during physical exercise than to blood pressure in basal conditions. The electrocardiogram is an insensitive method to detect early modifications of left ventricular size in relation to different levels of blood pressure. The echocardiogram is the method of choice for this purpose.

  3. End-Systolic Elastance and Ventricular-Arterial Coupling Reserve Predict Cardiac Events in Patients with Negative Stress Echocardiography

    PubMed Central

    Bombardini, Tonino; Costantino, Marco Fabio; Sicari, Rosa; Ciampi, Quirino; Pratali, Lorenza; Picano, Eugenio

    2013-01-01

    Background. A maximal negative stress echo identifies a low-risk subset for coronary events. However, the potentially prognostically relevant information on cardiovascular hemodynamics for heart-failure-related events is unsettled. Aim of this study was to assess the prognostic value of stress-induced variation in cardiovascular hemodynamics in patients with negative stress echocardiography. Methods. We enrolled 891 patients (593 males mean age 63 ± 12, ejection fraction 48 ± 17%), with negative (exercise 172, dipyridamole 482, and dobutamine 237) stress echocardiography result. During stress we assessed left ventricular end-systolic elastance index (E LVI), ventricular arterial coupling (VAC) indexed by the ratio of the E LVI to arterial elastance index (E aI), systemic vascular resistance (SVR), and pressure-volume area (PVA). Changes from rest to peak stress (reserve) were tested as predictors of main outcome measures: combined death and heart failure hospitalization. Results. During a median followup of 19 months (interquartile range 8–36), 50 deaths and 84 hospitalization occurred. Receiver-operating-characteristic curves identified as best predictors E LVI reserve for exercise (AUC = 0.871) and dobutamine (AUC = 0.848) and VAC reserve (AUC = 0.696) for dipyridamole. Conclusions. Patients with negative stress echocardiography may experience an adverse outcome, which can be identified by assessment of E LVI reserve and VAC reserve during stress echo. PMID:24024185

  4. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments

    PubMed Central

    Genet, Martin; Lee, Lik Chuan; Nguyen, Rebecca; Haraldsson, Henrik; Acevedo-Bolton, Gabriel; Zhang, Zhihong; Ge, Liang; Ordovas, Karen; Kozerke, Sebastian

    2014-01-01

    Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite-element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4 ± 6.3 and 0.5 ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 and 16.54 ± 4.73 kPa, respectively. Thus these stresses could serve as targets for in silico design of heart failure treatments. PMID:24876359

  5. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments.

    PubMed

    Genet, Martin; Lee, Lik Chuan; Nguyen, Rebecca; Haraldsson, Henrik; Acevedo-Bolton, Gabriel; Zhang, Zhihong; Ge, Liang; Ordovas, Karen; Kozerke, Sebastian; Guccione, Julius M

    2014-07-15

    Ventricular wall stress is believed to be responsible for many physical mechanisms taking place in the human heart, including ventricular remodeling, which is frequently associated with heart failure. Therefore, normalization of ventricular wall stress is the cornerstone of many existing and new treatments for heart failure. In this paper, we sought to construct reference maps of normal ventricular wall stress in humans that could be used as a target for in silico optimization studies of existing and potential new treatments for heart failure. To do so, we constructed personalized computational models of the left ventricles of five normal human subjects using magnetic resonance images and the finite-element method. These models were calibrated using left ventricular volume data extracted from magnetic resonance imaging (MRI) and validated through comparison with strain measurements from tagged MRI (950 ± 170 strain comparisons/subject). The calibrated passive material parameter values were C0 = 0.115 ± 0.008 kPa and B0 = 14.4 ± 3.18; the active material parameter value was Tmax = 143 ± 11.1 kPa. These values could serve as a reference for future construction of normal human left ventricular computational models. The differences between the predicted and the measured circumferential and longitudinal strains in each subject were 3.4 ± 6.3 and 0.5 ± 5.9%, respectively. The predicted end-diastolic and end-systolic myofiber stress fields for the five subjects were 2.21 ± 0.58 and 16.54 ± 4.73 kPa, respectively. Thus these stresses could serve as targets for in silico design of heart failure treatments.

  6. Novel, single-beat approach for determining both end-systolic pressure-dimension relationship and preload recruitable stroke work.

    PubMed

    Inuzuka, Ryo; Kass, David A; Senzaki, Hideaki

    2016-01-01

    The end-systolic pressure-dimension relationship (ESPDR) and the preload recruitable stroke work (PRSW) relationship are load-insensitive measures of contractility, but their clinical application has been limited by the need to record multiple beats over a wide volume range. In this study, we therefore sought to validate a new method to concomitantly determine the ESPDR and the PRSW relationship from a single beat. Pressure-dimension loops were recorded in 14 conscious dogs under various haemodynamic and pathological conditions. Multiple-beat PRSW relationship was determined for its slope (Mw) and for a dimension-axis intercept (Dw). The ESPDR represented by the formula [Formula: see text], was estimated from a steady-state, single-beat late-systolic pressure-dimension relationship. The single-beat Mw was determined as an end-systolic pressure when the end-systolic dimension was equal to Dw. A strong correlation was observed between multiple-beat and single-beat ESPDRs (zero-stress dimension; r=0.98, p<0.0001). The single-beat estimation of Mw calculated using the wall thickness was strongly correlated with the actual Mw (r=0.93, p<0.0001) and was sensitive enough to detect the change in contractility by dobutamine infusion (p<0.001) and by tachycardia-induced heart failure (p<0.001). Similar results were obtained for Mw estimated without information on wall thickness. Mw can be interpreted as an end-systolic pressure when the end-systolic dimension is equal to Dw. By using the non-linear ESPDR, accurate single-beat estimation of the ESPDR and Mw is possible even without information on wall thickness. These results should enhance the applicability of pressure-volume framework to clinical medicine.

  7. Correlation of echocardiographic wall stress and left ventricular pressure and function in aortic stenosis.

    PubMed

    DePace, N L; Ren, J F; Iskandrian, A S; Kotler, M N; Hakki, A H; Segal, B L

    1983-04-01

    Previous studies have suggested that left ventricular pressure (P) can be predicted in patients with aortic stenosis by the equation P = 235 h/r, where 235 is a constant peak wall stress (sigma), h is end-systolic wall thickness, and r is end-systolic dimension/2; h and r are measured by M-mode echocardiography. In 73 patients with aortic stenosis (valve area less than 0.7 cm2), measured and predicted left ventricular pressure correlated poorly (r = 0.17). The measured wall stress in our patients varied from 120 to 250 mm Hg in patients with normal left ventricular function and from 250 to 550 mm Hg in patients with abnormal function. The correlation between sigma and h was only fair (r = 0.53), because many patients had inappropriate left ventricular hypertrophy. There was a statistically significant correlation between ejection fraction and sigma (r = 0.62) and between ejection fraction and end-systolic dimension (r = -0.70), but there was considerable scatter of ejection fractions for any given end-systolic dimension. We conclude that sigma is not constant in aortic stenosis, and the use of a constant sigma to predict left ventricular pressure is unreliable; inappropriate left ventricular hypertrophy may explain why sigma is not constant. M-mode echocardiography is not reliable in assessing the severity of aortic stenosis in adults; such assessment requires precise measurements of pressure gradients and flow by cardiac catheterization.

  8. Evaluation of ventricular wall stress and cardiac function in patients with dilated cardiomyopathy.

    PubMed

    Scardulla, Francesco; Rinaudo, Antonino; Pasta, Salvatore; Scardulla, Cesare

    2016-01-01

    Dilated cardiomyopathy is a heart disease characterized by both left ventricular dilatation and left ventricular systolic dysfunction, leading to cardiac remodeling and ultimately heart failure. We aimed to investigate the effect of dilated cardiomyopathy on the pump performance and myocardial wall mechanics using patient-specific finite element analysis. Results evinced pronounced end-systolic wall stress on left ventricular wall of patients with dilated cardiomyopathy as compared to that of normal hearts. In dilated cardiomyopathy, both end-diastolic and end-systolic pressure-volume relationships of left ventricle and right ventricle were shifted to the right compared to controls, suggesting reduced myocardial contractility. We hereby propose that finite element analysis represents a useful tool to assess the myocardial wall stress and cardiac work, which are responsible for progressive left ventricular deterioration and poor clinical course.

  9. Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients.

    PubMed

    Zhong, L; Su, Y; Gobeawan, L; Sola, S; Tan, R-S; Navia, J L; Ghista, D N; Chua, T; Guccione, J; Kassab, G S

    2011-05-01

    Surgical ventricular restoration (SVR) was designed to treat patients with aneurysms or large akinetic walls and dilated ventricles. Yet, crucial aspects essential to the efficacy of this procedure like optimal shape and size of the left ventricle (LV) are still debatable. The objective of this study is to quantify the efficacy of SVR based on LV regional shape in terms of curvedness, wall stress, and ventricular systolic function. A total of 40 patients underwent magnetic resonance imaging (MRI) before and after SVR. Both short-axis and long-axis MRI were used to reconstruct end-diastolic and end-systolic three-dimensional LV geometry. The regional shape in terms of surface curvedness, wall thickness, and wall stress indexes were determined for the entire LV. The infarct, border, and remote zones were defined in terms of end-diastolic wall thickness. The LV global systolic function in terms of global ejection fraction, the ratio between stroke work (SW) and end-diastolic volume (SW/EDV), the maximal rate of change of pressure-normalized stress (dσ*/dt(max)), and the regional function in terms of surface area change were examined. The LV end-diastolic and end-systolic volumes were significantly reduced, and global systolic function was improved in ejection fraction, SW/EDV, and dσ*/dt(max). In addition, the end-diastolic and end-systolic stresses in all zones were reduced. Although there was a slight increase in regional curvedness and surface area change in each zone, the change was not significant. Also, while SVR reduced LV wall stress with increased global LV systolic function, regional LV shape and function did not significantly improve.

  10. Left ventricular wall stress compendium.

    PubMed

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  11. Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension: Comparison With Validated Models.

    PubMed

    Amsallem, Myriam; Sweatt, Andrew J; Aymami, Marie C; Kuznetsova, Tatiana; Selej, Mona; Lu, HongQuan; Mercier, Olaf; Fadel, Elie; Schnittger, Ingela; McConnell, Michael V; Rabinovitch, Marlene; Zamanian, Roham T; Haddad, Francois

    2017-06-01

    Right ventricular (RV) end-systolic dimensions provide information on both size and function. We investigated whether an internally scaled index of end-systolic dimension is incremental to well-validated prognostic scores in pulmonary arterial hypertension. From 2005 to 2014, 228 patients with pulmonary arterial hypertension were prospectively enrolled. RV end-systolic remodeling index (RVESRI) was defined by lateral length divided by septal height. The incremental values of RV free wall longitudinal strain and RVESRI to risk scores were determined. Mean age was 49±14 years, 78% were female, 33% had connective tissue disease, 52% were in New York Heart Association class ≥III, and mean pulmonary vascular resistance was 11.2±6.4 WU. RVESRI and right atrial area were strongly connected to the other right heart metrics. Three zones of adaptation (adapted, maladapted, and severely maladapted) were identified based on the RVESRI to RV systolic pressure relationship. During a mean follow-up of 3.9±2.4 years, the primary end point of death, transplant, or admission for heart failure was reached in 88 patients. RVESRI was incremental to risk prediction scores in pulmonary arterial hypertension, including the Registry to Evaluate Early and Long-Term PAH Disease Management score, the Pulmonary Hypertension Connection equation, and the Mayo Clinic model. Using multivariable analysis, New York Heart Association class III/IV, RVESRI, and log NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) were retained (χ(2), 62.2; P<0.0001). Changes in RVESRI at 1 year (n=203) were predictive of outcome; patients initiated on prostanoid therapy showed the greatest improvement in RVESRI. Among right heart metrics, RVESRI demonstrated the best test-retest characteristics. RVESRI is a simple reproducible prognostic marker in patients with pulmonary arterial hypertension. © 2017 American Heart Association, Inc.

  12. Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning.

    PubMed

    Gifani, Parisa; Behnam, Hamid; Shalbaf, Ahmad; Sani, Zahra Alizadeh

    2010-09-01

    The automatic detection of end-diastole and end-systole frames of echocardiography images is the first step for calculation of the ejection fraction, stroke volume and some other features related to heart motion abnormalities. In this paper, the manifold learning algorithm is applied on 2D echocardiography images to find out the relationship between the frames of one cycle of heart motion. By this approach the nonlinear embedded information in sequential images is represented in a two-dimensional manifold by the LLE algorithm and each image is depicted by a point on reconstructed manifold. There are three dense regions on the manifold which correspond to the three phases of cardiac cycle ('isovolumetric contraction', 'isovolumetric relaxation', 'reduced filling'), wherein there is no prominent change in ventricular volume. By the fact that the end-systolic and end-diastolic frames are in isovolumic phases of the cardiac cycle, the dense regions can be used to find these frames. By calculating the distance between consecutive points in the manifold, the isovolumic frames are mapped on the three minimums of the distance diagrams which were used to select the corresponding images. The minimum correlation between these images leads to detection of end-systole and end-diastole frames. The results on six healthy volunteers have been validated by an experienced echo cardiologist and depict the usefulness of the presented method.

  13. End-systolic pressure-volume relationship and intracellular control of contraction.

    PubMed

    Landesberg, A

    1996-01-01

    The left ventricular (LV) pressure-volume relationship and the effect of ejection on pressure generation are predicted theoretically based on the intracellular control mechanisms. The control of contraction is described based on coupling calcium kinetics and cross-bridge cycling. The analysis of published skinned and intact cardiac muscle data suggests two feedback control loops: 1) a positive cooperative mechanism that determines the force-length relationship, the length dependence calcium sensitivity of the contractile filaments, and the related Frank Starling law; and 2) a negative mechanical feedback that determines the force-velocity relationship and the generated power. The interplay between these two feedback mechanisms explains the wide spectrum of phenomena associated with the end-systolic pressure-volume relationship (ESPVR); it provides an explanation for the "shortening deactivation" and for the recent observations of the positive effect of ejection on the ESPVR, i.e., the increase of the end-systolic pressure of the ejecting beat over the pressure of the isovolumic beat at the same end-systolic volume. Furthermore, the analysis suggests that the LV contractility depends on the balance between the two intracellular mechanisms and that the effect of loading conditions is determined through these intracellular mechanisms.

  14. Partial left ventriculectomy improves left ventricular end systolic elastance in patients with idiopathic dilated cardiomyopathy

    PubMed Central

    Gradinac, S

    2000-01-01

    OBJECTIVE—To assess the effect of partial left ventriculectomy (PLV) on estimate of left ventricular end systolic elastance (Ees), arterial elastance, and ventriculoarterial coupling.
PATIENTS—11 patients with idiopathic dilated cardiomyopathy before and two weeks after PLV, and 11 controls.
INTERVENTIONS—Single plane left ventricular angiography with simultaneous measurements of femoral artery pressure was performed during right heart pacing before and after load reduction.
RESULTS—PLV increased mean (SD) Ees from 0.52 (0.27) to 1.47 (0.62) mm Hg/ml (p = 0.0004). The increase in Ees remained significant after correction for the change in left ventricular mass (p = 0.004) and end diastolic volume (p = 0.048). As PLV had no effect on arterial elastance, ventriculoarterial coupling improved from 3.25 (2.17) to 1.01 (0.93) (p = 0.017), thereby maximising left ventricular stroke work.
CONCLUSION—It appears that PLV improves both Ees and ventriculoarterial coupling, thus increasing left ventricular work efficiency.


Keywords: dilated cardiomyopathy; elastance; partial left ventriculectomy PMID:10677413

  15. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  16. Wall shear stress in collapsed tubes

    NASA Astrophysics Data System (ADS)

    Naili, S.; Ribreau, C.

    1999-01-01

    A small flexural wall rigidity brings unique features to cross-sectional shapes and blood flow within veins, which are characterised by a non-uniform hemodynamical environment acting upon endothelial cells. Velocity fields and related wall shear stress were numerically determined for a large number of conditions, assuming a fully developed, steady, incompressible laminar flow through an uniform smooth pipe with a constant cross-section. It was shown that the flatness greatly influences the resulting distribution of the wall shear stresses along the lumen perimeter. For instance, under a steady longitudinal pressure gradient at about 500 Pascal per meter inside a constant oval-shaped tube, with a lumen perimeter of the order of 5 × 10^{-2} meter, the maximum wall shear stress is found at about 2 Pascal where the local curvature is minimal. On the other hand, the minimal wall shear stress of the order of 1 Pascal is found where the local curvature is maximal. Clear indications have been reported showing that the hemodynamical wall shear stress does alter endothelial cell morphology and orientation. These results are being used for developing an experimental set-up in order to locally map out the characteristic shear stresses looking for endothelial shape modifications whenever a viscous fluid flow is applied.

  17. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  18. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  19. Left ventricular pressure-volume diagrams and end-systolic pressure-volume relations in human beings

    SciTech Connect

    McKay, R.G.; Aroesty, J.M.; Heller, G.V.; Royal, H.; Parker, J.A.; Silverman, K.J.; Kolodny, G.M.; Grossman, W.

    1984-02-01

    Assessment of left ventricular pressure-volume relations serially in response to altered loading conditions and heart rate has been difficult to achieve with contrast ventriculography. Accordingly, to study changing pressure-volume relations during altered loading and heart rate, left ventricular pressure and radionuclide absolute volume curves (obtained using a counts-based method with attenuation factor corrections) were recorded in 20 patients. Ventricular pressure and radionuclide volume curves were digitized and synchronized to end-diastole, and pressure-volume plots were subsequently constructed from 32 pressure-volume coordinates throughout the cardiac cycle. In all patients, the correlation between radionuclide absolute volumes and angiographic ventricular volumes was r . 0.92. In 10 patients in whom both radionuclide and angiographic pressure-volume diagrams were constructed, the agreement between the two methods was excellent. With this method, end-systolic pressure-volume relations were examined during altered left ventricular loading conditions, pacing-induced incremental increases in heart rate and pacing-induced ischemia. Using pharmacologically induced changes in left ventricular loading conditions, the slope and volume intercept of the end-systolic pressure-volume line could be calculated as a means of assessing basal contractility. During pacing-induced tachycardia, the slope and volume intercept of the end-systolic pressure-volume line could be calculated to quantify the Treppe effect and assess negative inotropic changes secondary to ischemia. This study supports the validity of using serial recordings of left ventricular pressure and radionuclide volumes to assess left ventricular pressure-volume relations, and indicates that this approach may be useful in the analysis of end-systolic pressure-volume relations in patients.

  20. The impact of end-diastolic and end-systolic phase selection in the volumetric evaluation of cardiac MRI

    PubMed Central

    Contijoch, Francisco; Witschey, Walter RT; Rogers, Kelly; Gorman, Joseph; Gorman, Robert C; Ferrari, Victor; Han, Yuchi

    2015-01-01

    Purpose To evaluate the impact of end-diastolic (ED) and end-systolic (ES) cardiac phase selection methods since task force recommendation have neither provided quantitative evidence nor explored errors introduced by clinical shortcuts. Materials and Methods Multi-slice, short-axis cine images were collected in 60 clinical patients on a 1.5T scanner. User-initialized active contour segmentation software quantified global left ventricular (LV) volume across all cardiac phases. Different approaches for selection of (ED) and (ES) phase were evaluated by quantification of temporal and volumetric errors. Results For diastole, the mid-ventricular maximum slice volume coincided with maximum global volume in 82.1% of patients with ejection fraction (EF) ≥ 55% (p = 0.66) and 71.9% of patients with EF <55% (p = 0.28) and is an accurate approximation of maximum global volume while the first and last phases in a retrospectively ECG-gated acquisition introduced differences in cardiac phase selection (p < 0.001) which led to large errors in measured volume in some patients (12.7 and 10.1 mL, respectively). For systole, post-systolic shortening occured in a significantly higher number of patients with EF < 55% (18.9%) compared to 3.6% of patients with EF ≥ 55% (p = 0.001), which differentially impacted end-systolic volume estimation. Conclusion For end-diastolic phase selection, our results indicated that the use of the mid-ventricular slice volume maximum provided accurate volume estimates while selection of the first or last cardiac phase introduced differences in measured volume. For end-systolic phase, patients with EF < 55% had a higher prevalence of post-systolic shortening which suggests aortic valve closure should be used to estimate end-systolic volume. PMID:26331591

  1. Left ventricular pressure-volume diagrams and end-systolic pressure-volume relations in human beings.

    PubMed

    McKay, R G; Aroesty, J M; Heller, G V; Royal, H; Parker, J A; Silverman, K J; Kolodny, G M; Grossman, W

    1984-02-01

    Assessment of left ventricular pressure-volume relations serially in response to altered loading conditions and heart rate has been difficult to achieve with contrast ventriculography. Accordingly, to study changing pressure-volume relations during altered loading and heart rate, left ventricular pressure and radionuclide absolute volume curves (obtained using a counts-based method with attenuation factor corrections) were recorded in 20 patients. Ventricular pressure and radionuclide volume curves were digitized and synchronized to end-diastole, and pressure-volume plots were subsequently constructed from 32 pressure-volume coordinates throughout the cardiac cycle. In all patients, the correlation between radionuclide absolute volumes and angiographic ventricular volumes was r = 0.92. In 10 patients in whom both radionuclide and angiographic pressure-volume diagrams were constructed, the agreement between the two methods was excellent. With this method, end-systolic pressure-volume relations were examined during altered left ventricular loading conditions, pacing-induced incremental increases in heart rate and pacing-induced ischemia. Using pharmacologically induced changes in left ventricular loading conditions, the slope and volume intercept of the end-systolic pressure-volume line could be calculated as a means of assessing basal contractility. During pacing-induced tachycardia, the slope and volume intercept of the end-systolic pressure-volume line could be calculated to quantify the Treppe effect and assess negative inotropic changes secondary to ischemia. This study supports the validity of using serial recordings of left ventricular pressure and radionuclide volumes to assess left ventricular pressure-volume relations, and indicates that this approach may be useful in the analysis of end-systolic pressure-volume relations in patients.

  2. Improved Cardiac MRI Volume Measurements in Patients with Tetralogy of Fallot by Independent End-Systolic and End-Diastolic Phase Selection

    PubMed Central

    Freling, Hendrik G.; Pieper, Petronella G.; Vermeulen, Karin M.; van Swieten, Jeroen M.; Sijens, Paul E.; van Veldhuisen, Dirk J.; Willems, Tineke P.

    2013-01-01

    Objectives To investigate to what extent cardiac MRI derived measurements of right ventricular (RV) volumes using the left ventricular (LV) end-systolic and end-diastolic frame misrepresent RV end-systolic and end-diastolic volumes in patients with tetralogy of Fallot (ToF) and a right bundle branch block. Methods Sixty-five cardiac MRI scans of patients with ToF and a right bundle branch block, and 50 cardiac MRI scans of control subjects were analyzed. RV volumes and function using the end-systolic and end-diastolic frame of the RV were compared to using the end-systolic and end-diastolic frame of the LV. Results Timing of the RV end-systolic frame was delayed compared to the LV end-systolic frame in 94% of patients with ToF and in 50% of control subjects. RV end-systolic volume using the RV end-systolic instead of LV end-systolic frame was smaller in ToF (median −3.3 ml/m2, interquartile range −1.9 to −5.6 ml/m2; p<0.001) and close to unchanged in control subjects. Using the RV instead of LV end-systolic and end-diastolic frame hardly affected RV end-diastolic volumes in both groups and ejection fraction in control subjects (54±4%, both methods), while increasing ejection fraction from 45±7% to 48±7% for patients with ToF (p<0.001). QRS duration correlated positively with the changes in the RV end-systolic volume (p<0.001) and RV ejection fraction obtained in ToF patients when using the RV instead of the LV end-systolic and end-diastolic frame (p = 0.004). Conclusion For clinical decision making in ToF patients RV volumes derived from cardiac MRI should be measured in the end-systolic frame of the RV instead of the LV. PMID:23383197

  3. Stent implantation influence wall shear stress evolution

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  4. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  5. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart☆,☆☆

    PubMed Central

    Lee, Lik Chuan; Wall, Samuel T.; Klepach, Doron; Ge, Liang; Zhang, Zhihong; Lee, Randall J.; Hinson, Andy; Gorman, Joseph H.; Gorman, Robert C.; Guccione, Julius M.

    2013-01-01

    Background Left ventricular (LV) wall stress reduction is a cornerstone in treating heart failure. Large animal models and computer simulations indicate that adding non-contractile material to the damaged LV wall can potentially reduce myofiber stress. We sought to quantify the effects of a novel implantable hydrogel (Algisyl-LVR™) treatment in combination with coronary artery bypass grafting (i.e. Algisyl-LVR™+CABG) on both LV function and wall stress in heart failure patients. Methods and results Magnetic resonance images obtained before treatment (n=3), and at 3 months (n=3) and 6 months (n=2) afterwards were used to reconstruct the LV geometry. Cardiac function was quantified using end-diastolic volume (EDV), end-systolic volume (ESV), regional wall thickness, sphericity index and regional myofiber stress computed using validated mathematical modeling. The LV became more ellipsoidal after treatment, and both EDV and ESV decreased substantially 3 months after treatment in all patients; EDV decreased from 264±91 ml to 146±86 ml and ESV decreased from 184±85 ml to 86±76 ml. Ejection fraction increased from 32±8% to 47±18% during that period. Volumetric-averaged wall thickness increased in all patients, from 1.06±0.21 cm (baseline) to 1.3±0.26 cm (3 months). These changes were accompanied by about a 35% decrease in myofiber stress at end-of-diastole and at end-of-systole. Post-treatment myofiber stress became more uniform in the LV. Conclusions These results support the novel concept that Algisyl-LVR™+CABG treatment leads to decreased myofiber stress, restored LV geometry and improved function. PMID:23394895

  6. End-systolic Pressure-Volume Relation, Ejection Fraction, and Heart Failure: Theoretical Aspect and Clinical Applications.

    PubMed

    Shoucri, Rachad M

    2015-01-01

    A mathematical formalism describing the nonlinear end-systolic pressure-volume relation (ESPVR) is used to derive new indexes that can be used to assess the performance of the heart left ventricle by using the areas under the ESPVR (units of energy), the ordinates of the ESPVR (units of pressure), or from slopes of the curvilinear ESPVR. New relations between the ejection fraction (EF) and the parameters describing the ESPVR give some insight into the problem of heart failure (HF) with normal or preserved ejection fraction. Relations between percentage occurrence of HF and indexes derived from the ESPVR are also discussed. When ratios of pressures are used, calculation can be done in a noninvasive way with the possibility of interesting applications in routine clinical work. Applications to five groups of clinical data are given and discussed (normal group, aortic stenosis, aortic valvular regurgitation, mitral valvular regurgitation, miscellaneous cardiomyopathies). No one index allows a perfect segregation between all clinical groups, it is shown that appropriate use of two indexes (bivariate analysis) can lead to better separation of different clinical groups.

  7. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  8. Streamwise shear stress driven compliant wall for drag reduction

    NASA Astrophysics Data System (ADS)

    Józsa, Tamás István; Viola, Ignazio Maria; Balaras, Elias

    2015-11-01

    The interaction between a viscous fluid and a solid wall in relative motion to each other leads to wall shear stress, which results in often-undesirable friction drag. In fully turbulent flow, it has been shown that a compliant wall whose streamwise velocity is equal to the streamwise flow velocity fluctuation in the buffer layer can lead to drag reduction (Choi et al., JFM, 1994; 262:75-110). Practical exploitation of this mechanism would require knowledge of the instantaneous velocity fluctuations in the near-wall region and active control of the wall velocity. However, the near-wall fluid velocity can be approximated by the wall shear stresses through a first-order Taylor expansion; therefore we propose a passively controlled compliant wall whose streamwise wall velocity is driven by the streamwise wall shear stress fluctuations. We show that this wall behaviour can be modelled with a damped harmonic oscillator, where the damping coefficient is related to the target distance of the flow fluctuation from the wall. Our results suggest that a passively-controlled shear-stress-driven compliant wall can be developed for drag reduction. On-going works include the use of direct numerical simulation where the proposed slip condition is applied to quantify the potential drag reduction.

  9. Effects of the flexibility of the arterial wall on the wall shear stresses and wall tension in Abdominal Aortic Aneurysms.

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Fernandez, Miguel; Chomaz, Jean-Marc

    2005-11-01

    As an abdominal aortic aneurysm develops, large changes occur in the composition and structure of the arterial wall, which result in its stiffening. So far, most studies, whether experimental or numerical, have been conducted assuming the walls to be rigid. A numerical simulation of the fluid structure interactions is performed in different models of aneurysms in order to analyze the effects that the wall compliance might have on the flow topology. Both symmetric and non-symmetric models of aneurysms are considered, all idealistic in shape. The wall mechanical properties are varied in order to simulate the progressive stiffening of the walls. The spatial and temporal distributions of wall tension are calculated for the different values of the wall elasticity and compared to the results for the rigid walls. In the case of rigid walls, the calculation of the wall shear stresses and pressure compare very well with experimental results.

  10. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  11. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  12. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  13. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload.

    PubMed

    Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2016-08-01

    Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III

  14. Stroke volume-to-wall stress ratio as a load-adjusted and stiffness-adjusted indicator of ventricular systolic performance in chronic loading

    PubMed Central

    Chemaly, Elie R.; Chaanine, Antoine H.; Sakata, Susumu

    2012-01-01

    Load-adjusted measures of left ventricle (LV) systolic performance are limited by dependence on LV stiffness and afterload. To our knowledge, no stiffness-adjusted and afterload-adjusted indicator was tested in models of pressure (POH) and volume overload hypertrophy (VOH). We hypothesized that wall stress reflects changes in loading, incorporating chamber stiffness and afterload; therefore, stroke volume-to-wall stress ratio more accurately reflects systolic performance. We used rat models of POH (ascending aortic banding) and VOH (aorto-cava shunt). Animals underwent echocardiography and pressure-volume analysis at baseline and dobutamine challenge. We achieved extreme bidirectional alterations in LV systolic performance, end-systolic elastance (Ees), passive stiffness, and arterial elastance (Ea). In POH with LV dilatation and failure, some load-independent indicators of systolic performance remained elevated compared with controls, while some others failed to decrease with wide variability. In VOH, most, but not all indicators, including LV ejection fraction, were significantly reduced compared with controls, despite hyperdynamic circulation, lack of heart failure, and preserved contractile reserve. We related systolic performance to Ees adjusted for Ea and LV passive stiffness in multivariate models. Calculated residual Ees was not reduced in POH with heart failure and was reduced in VOH, while it positively correlated to dobutamine dose. Conversely, stroke volume-to-wall stress ratio was normal in compensated POH, markedly decreased in POH with heart failure, and, in contrast with LV ejection fraction, normal in VOH. Our results support stroke volume-to-wall stress ratio as a load-adjusted and stiffness-adjusted indicator of systolic function in models of POH and VOH. PMID:22923502

  15. Phase-averaged wall shear stress, wall pressure, and near-wall velocity field measurements in a whirling annular seal

    SciTech Connect

    Morrison, G.L.; Winslow, R.B.; Thames, H.D. III

    1996-07-01

    The flow field inside a 50 percent eccentric whirling annular seal operating at a Reynolds number of 24,000 and a Taylor number of 6600 has been measured using a three-dimensional laser-Doppler anemometer system. Flush mount pressure and wall shear stress probes have been used to measure the stresses (normal and shear) along the length of the stator. The rotor was mounted eccentrically on the shaft so that the rotor orbit was circular and rotated at the same speed as the shaft (a whirl ratio of 1.0). This paper presents mean pressure, mean wall shear stress magnitude, and mean wall shear stress direction distributions along the length of the seal. Phase-averaged wall pressure and wall shear stress are presented along with phase-averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall, where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure, and wall shear stress are very complex and do not follow simple bulk flow predictions.

  16. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  17. Improving the efficiency of abdominal aortic aneurysm wall stress computations.

    PubMed

    Zelaya, Jaime E; Goenezen, Sevan; Dargon, Phong T; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses.

  18. Wall shear stress estimates in coronary artery constrictions

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Crawford, D. W.

    1992-01-01

    Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

  19. Wall shear stress estimates in coronary artery constrictions

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Crawford, D. W.

    1992-01-01

    Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

  20. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  1. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  2. 2D FSI determination of mechanical stresses on aneurismal walls.

    PubMed

    Veshkina, Natalia; Zbicinski, Ireneusz; Stefańczyk, Ludomir

    2014-01-01

    In this study, a fluid-structure interaction analysis based on the application of patient-specific mechanical parameters of the aneurismal walls was carried out to predict the rupture side during an abdominal aortic aneurysm (AAA). Realistic geometry of the aneurysm was reconstructed from CT data acquired from the patient, and patient-specific flow conditions were applied as boundary conditions. A newly developed non-invasive methodology for determining the mechanical parameters of the patient-specific aortic wall was employed to simulate realistic aortic wall behaviors. Analysis of the results included time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and von Mises stress (VMS). Results of the TAWSS, OSI, and VMS were compared to identify the most probable region of the AAA's rupture. High OSI, which identified the region of wall degradation, coincided with the location of maximum VMS, meaning that the anterior part of the aneurismal wall was a potential region of rupture.

  3. Distribution of Wall Stress in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Lasheras, Juan

    2005-11-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. Therefore, knowledge of the AAA wall stress distribution could be useful in assessing its risk of rupture. In our research, a finite element analysis was used to determine the wall stresses both in idealized models and in a real clinical model in which the aorta was considered isotropic with nonlinear material properties and was loaded with a given pressure. In the idealized models, both maximum diameter and asymmetry were found to have substantial influence on the distribution of the wall stress. The thrombus inside the AAA was also found to help protecting the walls from high stresses. Using CT scans of the AAA, the actual geometry of the aneurysm was reconstructed and we found that wall tension increases on the flatter surface (typically corresponds to the posterior surface) and at the inflection points of the bulge. In addition to the static analysis, we also performed simulations of the effect of unsteady pressure wave propagation inside the aneurysm.

  4. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  5. Changes in wall shear stresses in abdominal aortic aneurysms with increasing wall stiffness

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Fernandez, Miguel

    2006-11-01

    During the growth of abdominal aortic aneurysms, local changes occur in the composition and structure of the diseased wall, resulting in its stiffening. A numerical simulation of the fluid structure interactions is performed in idealized models of aneurysms using a finite element method. A full coupling of the equations governing the pulsatile blood flow and the deformation of the compliant wall is undertaken. The effect of the progressive stiffening of the wall is analyzed at various stages in the growth of the aneurysm. Increasing the wall stiffness alters the distribution of wall shear stresses and leads to an increase in their magnitude. The wall compliance is shown to have a more pronounced effect on non-axisymmetric aneurysms, which sustain large displacements. The overall movement of the aneurysm models increases the three-dimensionality of the flow.

  6. Wall shear stress manifolds and near wall flow topology in aneurysms

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Gambaruto, Alberto M.; Chen, Guoning; Shadden, Shawn C.

    2015-11-01

    Transport of atherogenic and thrombogenic chemicals near the vessel wall highly influences atherosclerosis and thrombosis. The high Schmidt number of these species leads to a thin concentration boundary layer near the wall. The wall shear stress (WSS) vector field can be scaled to obtain the near wall velocity in this region, thus providing first order approximation to near wall transport. In this study, the complex blood flow in patient-specific abdominal aortic aneurysms was considered. Lagrangian tracking of surface-bound tracers representing near wall species was employed to identify Lagrangian coherent structures (LCS) for the WSS surface vector field. The WSS LCS matched the stable and unstable manifolds of saddle type fixed points of the time-average WSS vector field, due to the quasi-steady nature of these near wall transport processes. A WSS exposure time measure is introduced to quantify the concentration of near wall species. The effect of diffusion and normal flow on these structures is investigated. The WSS LCS highly influence the concentration of near wall species, and provide a template for near-wall transport.

  7. A review of near-wall Reynolds-stress

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data.

  8. Xylem Wall Collapse in Water-Stressed Pine Needles

    PubMed Central

    Cochard, Hervé; Froux, Fabienne; Mayr, Stefan; Coutand, Catherine

    2004-01-01

    Wall reinforcement in xylem conduits is thought to prevent wall implosion by negative pressures, but direct observations of xylem geometry during water stress are still largely lacking. In this study, we have analyzed the changes in xylem geometry during water stress in needles of four pine species (Pinus spp.). Dehydrated needles were frozen with liquid nitrogen, and xylem cross sections were observed, still frozen, with a cryo-scanning electron microscope and an epifluorescent microscope. Decrease in xylem pressure during drought provoked a progressive collapse of tracheids below a specific threshold pressure (Pcollapse) that correlates with the onset of cavitation in the stems. Pcollapse was more negative for species with smaller tracheid diameter and thicker walls, suggesting a tradeoff between xylem efficiency, xylem vulnerability to collapse, and the cost of wall stiffening. Upon severe dehydration, tracheid walls were completely collapsed, but lumens still appeared filled with sap. When dehydration proceeded further, tracheids embolized and walls relaxed. Wall collapse in dehydrated needles was rapidly reversed upon rehydration. We discuss the implications of this novel hydraulic trait on the xylem function and on the understanding of pine water relations. PMID:14657404

  9. Thermal Sensors for Wall-Shear Stress: Reality and Myth

    NASA Astrophysics Data System (ADS)

    Löfdahl, L.; Johansson, P.; Bakchinov, A.; Sen, M.; Gad-El-Hak, M.

    1999-11-01

    Instantaneous wall-shear stress is a quantity of fundamental importance in wall-bounded turbulent flows. While there are many methods capable of measuring the time-averaged value of the wall-shear stress, no reliable technique exists for measuring the time-resolved stress. One of the oldest strategies for wall-shear-stress measurements is based on the so-called thermal principle. Through the years, it has been argued and shown in many investigations that the thermal sensors suffer from large heat losses to the substrate, yielding a larger active sensor area and thus adversely affecting the temporal and spatial response of the probe. The MEMS technology offers possibilities to circumvent these drawbacks. But none of the MEMS-based sensors has gone through the mandatory validation to understand exactly what is being sensed. In this talk, we will present detailed measurements of a MEMS-based thermal sensor designed for an improved response. This is achieved by having a very small (60 μm × 300 μm) heated part separated from the surrounding wall by an insulating polyimide. Results and discussions about important features such as temperature of the surrounding material, response time and dependence on packaging will be presented. It seems that even microsensors are cursed by unacceptable levels of heat conduction to the surrounding solid.

  10. Buried wire gage for wall shear stress measurements

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1978-01-01

    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  11. Wall shear stress evolution in carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Bosioc, A. I.; Totorean, A. F.; Petre, I.; Bernad, E. S.

    2017-07-01

    The steady flow in an anatomically realistic human carotid bifurcation was simulated numerically. Main parameters such as wall shear stress (WSS), velocity profiles and pressure distributions are investigated in the carotid artery, namely in bifurcation and sinusoidal enlargement regions. Flow in the carotid sinus is dominated by a single secondary vortex motion accompanied by a strong helical flow. This type of flow is induced primarily by the curvature and asymmetry of the in vivo geometry. Low wall shear stress concentration occurs at both the anterior and posterior aspects of the proximal internal bulb.

  12. Working stress design method for reinforced soil walls

    SciTech Connect

    Ehrlich, M. ); Mitchell, J.K. )

    1994-04-01

    A method for the internal design of reinforced soil walls based on working stresses is developed and evaluated using measurements from five full-scale structures containing a range of reinforcement types. It is shown that, in general, the stiffer the reinforcement system and the higher the stresses induced during compaction, the higher are the tensile stresses that must be resisted by the reinforcements. Unique features of this method, compared to currently used reinforced soil wall design methods, are that it can be applied to all types of reinforcement systems, reinforcement and soil stiffness properties are considered, and backfill compaction stresses are taken explicitly into account. The method can be applied either analytically or using design charts. A design example is included.

  13. Prediction of wall shear-stress fluctuations in wall-modeled large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Park, George; Howland, Michael; Lozano-Duran, Adrian; Moin, Parviz

    2016-11-01

    Wall-modeled large-eddy simulation (WMLES) is emerging as a viable and affordable tool for predicting mean flow statistics in high Reynolds number turbulent boundary layers. Recently, we examined the performance of two RANS-based wall models in prediction of wall pressure and shear stress fluctuations which are important in flow/structure interaction problems. Whereas the pressure statistics were predicted with reasonable accuracy, the magnitude of wall shear stress fluctuations was severely underestimated. The present study expands on this finding to characterize in more detail the capabilities of wall models for predicting τw'. Predictions of several wall models in high Reynolds number channel flows (Reτ = 2000) will be presented. Additionally, a recent empirical inner-outer model for τw' is reconstructed using channel flow DNS database , and it is coupled to WMLES to assess its performance as a predictive model in LES. The majority of this work was carried out during the 16th biannual Center for Turbulence Research (CTR) summer program, 2016. George Park was partially supported through NASA under the Subsonic Fixed-Wing Program (Grant No. NNX11AI60A).

  14. Effects of the Transient Blood Flow-Wall Interaction on the Wall Stress Distribution in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Geindreau, Christian; Lasheras, Juan

    2006-11-01

    Our static finite element analysis (FEA) of both idealized and real clinical models has shown that the maximum diameter and asymmetry have substantial influence on the AAA wall stress distribution. The thrombus inside the AAA was also found to reduce the magnitude of the wall stresses. To achieve a better understanding of the wall stress distribution in real AAAs, a dynamic FEA was also performed. We considered models, both symmetric and non-symmetric, in which the aorta is assumed isotropic with nonlinear material properties. For the limiting case of rigid walls, the evolution of the flow pattern and the wall shear stresses due to fluid flow at different stages of cardiac cycle predicted by our simulations are compared with experimental results obtained in in-vitro models. A good agreement is found between both results. Finally, we have extended the analysis to the physiologically correct case of deformable walls and characterized the transient effects on the wall stresses.

  15. A Reynolds stress model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  16. A Reynolds stress model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  17. [Wall stress in the assessment of left ventricular function in surgery of abdominal aortic aneurysm. Validity and importance of transesophageal echocardiography (TEE) in intraoperative monitoring].

    PubMed

    Anguissola, G B; Mangiarotti, R; Pierini, A; Lubatti, L; Conti, E; Arpesani, A; Burdick, L; Trazzi, R

    1994-05-01

    To verify the applicability and the clinical significance of left ventricular wall stress determinations by intraoperative transesophageal echocardiography (TEE) during resections of abdominal aortic aneurysms. Prospective comparison of changes in left ventricular wall stress between two groups of patients with and without coronary artery disease. Operatory room of Universitary Institute. Twenty-three patients with abdominal aortic aneurysms; 8 had clinically evident coronary artery disease (CAD+); 15 patients did not have clinical or electrocardiographic evidence of coronary artery disease (CAD-). Resection of the aortic aneurysm and insertion of a synthetic prosthesis. During operation transesophageal monitoring of left ventricular volumes and wall stress was performed during induction of anesthesia (T1), for two minutes after aortic clamping (T2), at the end of the proximal anastomosis (T3), for two minutes after aortic declamping (T4) and at the end of the procedure (T5). Circumpherential stress at end systole (sES) and end diastole (sED) was more sensitive than hemodynamic and volumetric parameters in detecting changes i function of the ischemic myocardium. In detail we observed: a significant increase of sES in CAD+versus CAD- at T2: 98 (sd 18) vs 83 (sd 14) 10(3) dyne/cm2. a significant increase of sED in CAD + versus CAD- at T2: 28.5 (sd 6) vs 22 (sd 4.5) 10(3) dyne/cm3. a similar trend of sES and sED at T4: 73 (sd 20.5) vs 46 (sd 15) 10(3) dyne/cm2 and 31 (sd 12) vs 16 (sd 7.7) 10(3) dyne/cm2 respectively. a significant increase of sED in CAD + at T5 (about 20' after T4): 26.5 (sd 9.5) vs 16 (sd 5.2) 10(3) dyne/cm2 which is expression of a persistent reduction of ventricular compliance in the ischemic patients. Wall stress modifies MVO2 and subsequently is sensitive in detecting changes in myocardial performance. TEE could valuably integrate routine hemodynamic monitoring of patients with coronary heart disease who undergo surgical resection of abdominal

  18. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease.

    PubMed

    Galizia, Mauricio S; Barker, Alex; Liao, Yihua; Collins, Jeremy; Carr, James; McDermott, Mary M; Markl, Michael

    2014-04-01

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. • Femoral plaques are associated with altered dynamics of peripheral blood flow. • Multi-contrast MRI can investigate the presence and type of atherosclerotic plaques. • Three-dimensional velocity-encoding phase-contrast MRI can investigate flow and wall shear stress. • Atherosclerotic peripheral arteries demonstrate increased systolic velocities and wall shear stress.

  19. Vascular wall stress during intravascular optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Yang, Victor

    2015-03-01

    Biomechanical properties of arterial wall is crucial for understanding the changes in the cardiovascular system. Catheters are used during intravascular optical coherence tomography (IVOCT) imaging. The presence of a catheter alters the flow field, pressure distribution and frictional resistance to flow in an artery. In this paper, we first study the transmural stress distribution of the catheterized vessel. COMSOL (COMSOL 4.4) was used to simulate the blood flow induced deformation in a catheterized vessel. Blood is modeled as an incompressible Newtonian fluid. Stress distribution from an three-layer vascular model with an eccentric catheter are simulated, which provides a general idea about the distribution of the displacement and the stress. Optical coherence elastography techniques were then applied to porcine carotid artery samples to look at the deformation status of the vascular wall during saline or water injection. Preliminary simulation results show nonuniform stress distribution in the circumferential direction of the eccentrically catheterized vascular model. Three strain rate methods were tested for intravascular OCE application. The tissue Doppler method has the potential to be further developed to image the vascular wall biomechnical properties in vivo. Although results in this study are not validated quantitatively, the experiments and methods may be valuable for intravascular OCE studies, which may provide important information for cardiovascular disease prevention, diagnosis and treatment.

  20. Geometric Predictors of Abdominal Aortic Aneurysm Maximum Wall Stress

    PubMed Central

    Rojas-Solórzano, Luis R.; Finol, Ender

    2017-01-01

    Abdominal aortic aneurysm (AAA) is a dilation of the abdominal aorta (above 50 % of its original diameter), which can cause death upon rupturing. It usually grows asymptomatically leading to late clinical intervention. The medical criteria to indicate surgery are based on measuring the diameter and growth rate, but in many cases aneurysms fail at uncharacterized critical values. In search of a more efficient technique in predicting AAA failure, there is consensus on the importance of studying its geometric characteristics and estimation of the wall stress, but no fully successful correlation has been found between the two yet. This work examines the relationship between a parameterized geometry (18 input variables and 10 dependent indices) and 1 output variable: the maximum wall stress. Design of Experiments (DOE) techniques are used to generate 183 geometric configurations, for which Finite Element Analyses are performed using ANSYS™ state-of-the-art solver with a hyperelastic, isotropic and homogeneous arterial model for the wall, considering systolic internal pressure (steady state) and the restriction of longitudinal movement at the blood vessel end-sections. Due to the large number of independent parameters to consider, a preliminary Parameters Correlation analysis was performed to determine if a correlation between all input parameters and the maximum stress existed. The correlations between input parameters and the output variable were determined using the Spearman Rank correlation. Correlations with the maximum wall stress for: maximum diameter (ρ = 0.46), wall thickness (ρ = 0.35), dc parameter (ρ = 0.21) and tortuosity (ρ = 0.55) were found. The response surface function between geometry and maximum wall stress was estimated by three models: Universal Kriging geostatistical regression (18 parameters), multiple linear regression (4 parameters) and multiple exponential regression (4 parameters). The models accounted for the stress variance by 99 %, 61

  1. A method for measurement of turbulent wall shear stress

    NASA Astrophysics Data System (ADS)

    Wagner, Peter M.; Leehey, Patrick

    A cylinder is placed near the wall in the viscous sublayer of a turbulent boundary layer. It is suspended torsionally about its axis. The axis is parallel to the wall and transverse to the mean flow direction. The torque on the cylinder is proportional to the shear stress of the fluid on the wall below. In principle the torque is insensitive to the blockage effect of the cylinder. The device has been tested in a laminar shear flow created in a cone-and-plate apparatus. It shows a long range of linear response. There is no evidence of hysteresis upon flow reversal. Plans for dynamic testing in a turbulent oil channel flow and the applicability of micro-machining techniques from silicon technololgy to the further miniaturization of this gauge are discussed.

  2. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  3. Pressure and wall shear stress in blood hammer - Analytical theory.

    PubMed

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. Copyright © 2016. Published by Elsevier Inc.

  4. Critical stress of thin-walled cylinders in axial compression

    NASA Technical Reports Server (NTRS)

    Batdorf, S B; Schildcrout, Murry; Stein, Manuel

    1947-01-01

    Empirical design curves are presented for the critical stress of thin-wall cylinders loaded in axial compression. These curves are plotted in terms of the nondimensional parameters of small-deflection theory and are compared with theoretical curves derived for the buckling of cylinders with simply supported and clamped edges. An empirical equation is given for the buckling of cylinders having a length-radius ratio greater than about 0.75.

  5. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  6. Mean wall shear stress boundary condition for large eddy simulation using near-wall streamwise momentum equation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Choi, Haecheon; Lee, Jungil

    2014-11-01

    The mean wall shear stress boundary condition based on the log law has been proven as an appropriate boundary condition for large eddy simulations (LES) of turbulent channel and boundary layer flows without resolving near-wall region (Lee, Cho & Choi, PoF, 2013). In the present study, we use near-wall streamwise momentum equation following Chung & Pullin (JFM, 2009), to determine the mean shear stress at the wall. In this procedure, the near-wall streamwise momentum equation is averaged over a few off-wall grid points, in which the velocity at the first grid point is approximated with the Taylor series expansion. We test this wall boundary condition for turbulent channel and boundary layer flows, showing good prediction capability at high Reynolds numbers. The result of applying this boundary condition to a separating flow will be also shown at the presentation. Supported by NRF-2011-0028032, 2013055323.

  7. Wall shear stress measurement method based on parallel flow model near vascular wall in echography

    NASA Astrophysics Data System (ADS)

    Shimizu, Motochika; Tanaka, Tomohiko; Okada, Takashi; Seki, Yoshinori; Nishiyama, Tomohide

    2017-07-01

    A high-risk vessel of arteriosclerosis is detected by assessing wall shear stress (WSS), which is calculated from the distribution of velocity in a blood flow. A novel echographic method for measuring WSS, which aims to distinguish a normal vessel from a high-risk vessel, is proposed. To achieve this aim, the measurement error should be less than 28.8%. The proposed method is based on a flow model for the area near a vascular wall under a parallel-flow assumption to avoid the influences of error factors. This was verified by an in vitro experiment in which the WSS of a carotid artery phantom was measured. According to the experimental results, the WSS measured by the proposed method correlated with the ground truth measured by particle image velocimetry; in particular, the correlation coefficient and measurement error between them were respectively 0.70 and 27.4%. The proposed method achieved the target measurement performance.

  8. Stress analysis for wall structure in mobile hot cell design

    SciTech Connect

    Bahrin, Muhammad Hannan Rahman, Anwar Abdul Hamzah, Mohd Arif Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  9. Reynolds stress closure modeling in wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1993-01-01

    This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.

  10. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    PubMed

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  11. Airway Wall Stiffening Increases Peak Wall Shear Stress: A Fluid-structure Interaction Study in Rigid and Compliant Airways

    PubMed Central

    Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall - both of which can serve to restrain airway wall motion - have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease. PMID:20162357

  12. Space-time characteristics of wall-pressure and wall shear-stress fluctuations in wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-06-01

    We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at Reτ=2000 . Two standard zonal wall models (equilibrium stress model and nonequilibrium model based on unsteady RANS) are employed, and it is shown that they yield similar results in predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure fluctuations is more stringent than that for predicting the velocity. At least δ /Δ x >20 and δ /Δ z >30 are required to marginally resolve the integral length scales of the pressure-producing eddies near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to significant overprediction of the second-order pressure statistics. When these conditions are met, the pressure statistics and spectra at low wave number or low frequency agree well with the DNS and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely through the RANS-based wall models, are largely underpredicted and relatively insensitive to the grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor modeled adequately in the wall models, seem to be important for accurate prediction of the wall shear-stress fluctuations.

  13. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  14. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.

    PubMed

    Cornejo, Sergio; Guzmán, Amador; Valencia, Alvaro; Rodríguez, Jose; Finol, Ender

    2014-01-01

    Fluid-structure interaction simulations of three patient-specific models of cerebral aneurysms were carried out with the objective of quantifying the effects of non-Newtonian blood flow and the vessel mechanical behavior on the time-dependent fluid shear and normal stresses, and structural stress and stretch. The average wall shear stress at peak systole was found to be approximately one order of magnitude smaller than the shear stresses in the proximal communicating arteries, regardless of the shape or size of the aneurysms. Spatial distributions of oscillatory shear index were consistent with the reciprocal of wall shear stress distributions at peak systole for all aneurysm geometries, demonstrating that oscillatory shear index correlates inversely with wall shear at this time point in the cardiac cycle. An aneurysm wall modeled with an isotropic material resulted in an underestimation of both the maximum principal stress and stretch, compared to the anisotropic material model. For the three aneurysm geometries, anisotropic peak wall stresses were approximately 50% higher than for an isotropic material. Regardless of the constitutive material, the maximum stresses were consistently located at the aneurysm neck; stresses in the dome were 30% of those in the neck.

  15. Local wall shear stress measurements with a thin plate submerged in the sublayer in wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Hua, Dan; Suzuki, Hiroki; Mochizuki, Shinsuke

    2017-09-01

    A local wall shear stress measurement technique has been developed using a thin plate, referred to as a sublayer plate which is attached to the wall in the sublayer of a near-wall turbulent flow. The pressure difference between the leading and trailing edges of the plate is correlated to the known wall shear stress obtained in the fully developed turbulent channel flow. The universal calibration curve can be well represented in dimensionless form, and the sensitivity of the proposed method is as high as that of the sublayer fence, even if the sublayer fence is enveloped by the linear sublayer. The results of additional experiments prove that the sublayer plate has fairly good angular resolution in detecting the direction of the local wall shear stress vector.

  16. Wall shear stress distributions on stented patent ductus arteriosus

    NASA Astrophysics Data System (ADS)

    Kori, Mohamad Ikhwan; Jamalruhanordin, Fara Lyana; Taib, Ishkrizat; Mohammed, Akmal Nizam; Abdullah, Mohammad Kamil; Ariffin, Ahmad Mubarak Tajul; Osman, Kahar

    2017-04-01

    A formation of thrombosis due to hemodynamic conditions after the implantation of stent in patent ductus arteriosus (PDA) will derived the development of re-stenosis. The phenomenon of thrombosis formation is significantly related to the distribution of wall shear stress (WSS) on the arterial wall. Thus, the aims of this study is to investigate the distribution of WSS on the arterial wall after the insertion of stent. Three dimensional model of patent ductus arteriosus inserted with different types of commercial stent are modelled. Computational modelling is used to calculate the distributions of WSS on the arterial stented PDA. The hemodynamic parameters such as high WSS and WSSlow are considered in this study. The result shows that the stented PDA with Type III stent has better hemodynamic performance as compared to others stent. This model has the lowest distributions of WSSlow and also the WSS value more than 20 dyne/cm2. From the observed, the stented PDA with stent Type II showed the highest distributions area of WSS more than 20 dyne/cm2. This situation revealed that the high possibility of atherosclerosis to be developed. However, the highest distribution of WSSlow for stented PDA with stent Type II indicated that high possibility of thrombosis to be formed. In conclusion, the stented PDA model calculated with the lowest distributions of WSSlow and WSS value more than 20dyne/cm2 are considered to be performed well in stent hemodynamic performance as compared to other stents.

  17. Wall shear stress indicators in abnormal aortic geometries

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Gutmark-Little, Iris

    2015-11-01

    Cardiovascular disease, such as atherosclerosis, occurs at specific locations in the arterial tree. Characterizing flow and forces at these locations is crucial to understanding the genesis of disease. Measures such as time average wall shear stress, oscillatory shear index, relative residence time and temporal wall shear stress gradients have been shown to identify plaque prone regions. The present paper examines these indices in three aortic geometries obtained from patients whose aortas are deformed due to a genetic pathology and compared to one normal geometry. This patient group is known to be prone to aortic dissection and our study aims to identify early indicators that will enable timely intervention. Data obtained from cardiac magnetic resonance imaging is used to reconstruct the aortic arch. The local unsteady flow characteristics are calculated, fully resolving the flow field throughout the entire cardiac cycle. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different red blood cell loading. The impact of the deformed aortic geometries is analyzed to identify flow patterns that could lead to arterial disease at certain locations.

  18. Ultrasonography reveals in vivo dose-dependent inhibition of end systolic and diastolic volumes, heart rate and cardiac output by nesfatin-1 in zebrafish.

    PubMed

    Nair, Neelima; Gerger, Courtney; Hatef, Azadeh; Weber, Lynn P; Unniappan, Suraj

    2016-08-01

    Nesfatin-1 is an 82 amino acid peptide that inhibits food intake in rodents and fish. While endogenous nesfatin-1, and its role in the regulation of food intake and hormone secretion has been reported in fish, information on cardiovascular functions of nesfatin-1 in fish is in its infancy. We hypothesized that cardiac NUCB2 expression is meal responsive and nesfatin-1 is a cardioregulatory peptide in zebrafish. NUCB2/nesfatin-1 like immunoreactivity was detected in zebrafish cardiomyocytes. Real-time quantitative PCR analysis found that the cardiac expression of NUCB2A mRNA in unfed fish decreased at 1h post-regular feeding time. Food deprivation for 7days did not change NUCB2A mRNA expression. However, NUCB2B mRNA expression was increased in the heart of zebrafish after a 7-day food deprivation. Ultrasonography of zebrafish heart at 15min post-intraperitoneal injection of nesfatin-1 (250 and 500ng/g body weight) showed a dose-dependent inhibition of end diastolic and end systolic volumes. A dose dependent decrease in heart rate and cardiac output was observed in zebrafish that received nesfatin-1, but no changes in stroke volume were found. Nesfatin-1 treatment caused a significant increase in the expression of Atp2a2a mRNA encoding the calcium-handling pump, SERCA2a, while it had no effects on the expression of calcium handling protein RyR1b encoding mRNA. Our data support cardiosuppressive effects of nesfatin-1 in zebrafish, and reveals energy availability as one determinant of cardiac NUCB2 mRNA expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm

    PubMed Central

    2015-01-01

    Background The computation of arterial wall deformation and stresses under physiologic conditions requires a coupled compliant arterial wall-blood flow interaction model. The in-vivo arterial wall motion is constrained by tethering from the surrounding tissues. This tethering, together with the average in-vivo pressure, results in wall pre-stress. For an accurate simulation of the physiologic conditions, it is important to incorporate the wall pre-stress in the computational model. The computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial shape with residual stress is unknown. In this study, the arterial wall deformation and stresses in a canine femoral artery under pulsatile pressure was computed after incorporating the wall pre-stresses. A nonlinear least square optimization based inverse algorithm was developed to compute the in-vivo wall pre-stress. Methods First, the proposed inverse algorithm was used to obtain the un-loaded and un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length. Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall material properties were modeled with an incompressible, Mooney-Rivlin model derived from previously published experimental stress-strain data (Attinger et al., 1968). Results The un-loaded and un-tethered artery geometry computed by the inverse algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and 0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within 0.01 mm (0.019%) of the in

  20. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.

    PubMed

    Das, Ashish; Paul, Anup; Taylor, Michael D; Banerjee, Rupak K

    2015-01-01

    The computation of arterial wall deformation and stresses under physiologic conditions requires a coupled compliant arterial wall-blood flow interaction model. The in-vivo arterial wall motion is constrained by tethering from the surrounding tissues. This tethering, together with the average in-vivo pressure, results in wall pre-stress. For an accurate simulation of the physiologic conditions, it is important to incorporate the wall pre-stress in the computational model. The computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial shape with residual stress is unknown. In this study, the arterial wall deformation and stresses in a canine femoral artery under pulsatile pressure was computed after incorporating the wall pre-stresses. A nonlinear least square optimization based inverse algorithm was developed to compute the in-vivo wall pre-stress. First, the proposed inverse algorithm was used to obtain the un-loaded and un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length. Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall material properties were modeled with an incompressible, Mooney-Rivlin model derived from previously published experimental stress-strain data (Attinger et al., 1968). The un-loaded and un-tethered artery geometry computed by the inverse algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and 0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within 0.01 mm (0.019%) of the in-vivo length of 52.0 mm; the

  1. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  2. Wall shear stress at the initiation site of cerebral aneurysms.

    PubMed

    Geers, A J; Morales, H G; Larrabide, I; Butakoff, C; Bijlenga, P; Frangi, A F

    2017-02-01

    Hemodynamics are believed to play an important role in the initiation of cerebral aneurysms. In particular, studies have focused on wall shear stress (WSS), which is a key regulator of vascular biology and pathology. In line with the observation that aneurysms predominantly occur at regions of high WSS, such as bifurcation apices or outer walls of vascular bends, correlations have been found between the aneurysm initiation site and high WSS. The aim of our study was to analyze the WSS field at an aneurysm initiation site that was neither a bifurcation apex nor the outer wall of a vascular bend. Ten cases with aneurysms on the A1 segment of the anterior cerebral artery were analyzed and compared with ten controls. Aneurysms were virtually removed from the vascular models of the cases to mimic the pre-aneurysm geometry. Computational fluid dynamics (CFD) simulations were created to assess the magnitude, gradient, multidirectionality, and pulsatility of the WSS. To aid the inter-subject comparison of hemodynamic variables, we mapped the branch surfaces onto a two-dimensional parametric space. This approach made it possible to view the whole branch at once for qualitative evaluation. It also allowed us to empirically define a patch for quantitative analysis, which was consistent among subjects and encapsulated the aneurysm initiation sites in our dataset. To test the sensitivity of our results, CFD simulations were repeated with a second independent observer virtually removing the aneurysms and with a 20 % higher flow rate at the inlet. We found that branches harboring aneurysms were characterized by high WSS and high WSS gradients. Among all assessed variables, the aneurysm initiation site most consistently coincided with peaks of temporal variation in the WSS magnitude.

  3. Flow Instability and Wall Shear Stress Ocillation in Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Baek, Hyoungsu; Jayamaran, Mahesh; Richardson, Peter; Karniadakis, George

    2009-11-01

    We investigate the flow dynamics and oscillatory behavior of wall shear stress (WSS) vectors in intracranial aneurysms using high-order spectral/hp simulations. We analyze four patient- specific internal carotid arteries laden with aneurysms of different characteristics : a wide-necked saccular aneurysm, a hemisphere-shaped aneurysm, a narrower-necked saccular aneurysm, and a case with two adjacent saccular aneurysms. Simulations show that the pulsatile flow in aneurysms may be subject to a hydrodynamic instability during the decelerating systolic phase resulting in a high-frequency oscillation in the range of 30-50 Hz. When the aneurysmal flow becomes unstable, both the magnitude and the directions of WSS vectors fluctuate. In particular, the WSS vectors around the flow impingement region exhibit significant spatial and temporal changes in direction as well as in magnitude.

  4. Stress intensity factors in a reinforced thick-walled cylinder

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1984-01-01

    An elastic thick-walled cylinder containing a radial crack is considered. It is assumed that the cylinder is reinforced by an elastic membrane on its inner surface. The model is intended to simulate pressure vessels with cladding. The formulation of the problem is reduced to a singular integral equation. Various special cases including that of a crack terminating at the cylinder-reinforcement interface are investigated and numerical examples are given. Results indicate that in the case of the crack touching the interface the crack surface displacement derivative is finite and consequently the stress state around the corresponding crack tip is bounded; and generally, for realistic values of the stiffness parameter, the effect of the reinforcement is not very significant.

  5. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow

    PubMed Central

    Arzani, Amirhossein; Shadden, Shawn C.

    2016-01-01

    Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations. PMID:26592536

  6. Understanding the fluid mechanics behind transverse wall shear stress.

    PubMed

    Mohamied, Yumnah; Sherwin, Spencer J; Weinberg, Peter D

    2017-01-04

    The patchy distribution of atherosclerosis within arteries is widely attributed to local variation in haemodynamic wall shear stress (WSS). A recently-introduced metric, the transverse wall shear stress (transWSS), which is the average over the cardiac cycle of WSS components perpendicular to the temporal mean WSS vector, correlates particularly well with the pattern of lesions around aortic branch ostia. Here we use numerical methods to investigate the nature of the arterial flows captured by transWSS and the sensitivity of transWSS to inflow waveform and aortic geometry. TransWSS developed chiefly in the acceleration, peak systolic and deceleration phases of the cardiac cycle; the reverse flow phase was too short, and WSS in diastole was too low, for these periods to have a significant influence. Most of the spatial variation in transWSS arose from variation in the angle by which instantaneous WSS vectors deviated from the mean WSS vector rather than from variation in the magnitude of the vectors. The pattern of transWSS was insensitive to inflow waveform; only unphysiologically high Womersley numbers produced substantial changes. However, transWSS was sensitive to changes in geometry. The curvature of the arch and proximal descending aorta were responsible for the principal features, the non-planar nature of the aorta produced asymmetries in the location and position of streaks of high transWSS, and taper determined the persistence of the streaks down the aorta. These results reflect the importance of the fluctuating strength of Dean vortices in generating transWSS.

  7. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study.

    PubMed

    Tribouilloy, Christophe; Grigioni, Francesco; Avierinos, Jean François; Barbieri, Andrea; Rusinaru, Dan; Szymanski, Catherine; Ferlito, Marinella; Tafanelli, Laurence; Bursi, Francesca; Trojette, Faouzi; Branzi, Angelo; Habib, Gilbert; Modena, Maria G; Enriquez-Sarano, Maurice

    2009-11-17

    This study analyzed the association of left ventricular end-systolic diameter (LVESD) with survival after diagnosis in organic mitral regurgitation (MR) due to flail leaflets. LVESD is a marker of left ventricular function in patients with organic MR but its association to survival after diagnosis is unknown. The MIDA (Mitral Regurgitation International Database) registry is a multicenter registry of echocardiographically diagnosed organic MR due to flail leaflets. We enrolled 739 patients with MR due to flail leaflets (age 65 +/- 12 years; ejection fraction: 65 +/- 10%) in whom LVESD was measured (36 +/- 7 mm). Under conservative management, 10-year survival and survival free of cardiac death were higher with LVESD <40 mm versus > or =40 mm (64 +/- 5% vs. 48 +/- 10%; p < 0.001, and 73 +/- 5% vs. 63 +/- 10%; p = 0.001). LVESD > or =40 mm independently predicted overall mortality (hazard ratio [HR]: 1.95, 95% confidence interval [CI]: 1.01 to 3.83) and cardiac mortality (HR: 3.09, 95% CI: 1.35 to 7.09) under conservative management. Mortality risk increased linearly with LVESD >40 mm (HR: 1.15, 95% CI: 1.04 to 1.27 per 1-mm increment). During the entire follow-up (including post-surgical), LVESD > or =40 mm independently predicted overall mortality (HR: 1.86, 95% CI: 1.24 to 2.80) and cardiac mortality (HR: 2.14, 95% CI: 1.29 to 3.56), due to persistence of excess mortality in patients with LVESD > or =40 mm after surgery (HR: 1.86, 95% CI: 1.11 to 3.15 for overall death, and HR: 1.81, 95% CI: 1.05 to 3.54 for cardiac death). In MR due to flail leaflets, LVESD > or =40 mm is independently associated with increased mortality under medical management but also after mitral surgery. These findings support prompt surgical rescue in patients with LVESD > or =40 mm but also suggest that best preservation of survival is achieved in patients operated before LVESD reaches 40 mm.

  8. Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis

    PubMed Central

    Frisk, Michael; Ruud, Marianne; Espe, Emil K. S.; Aronsen, Jan Magnus; Røe, Åsmund T.; Zhang, Lili; Norseng, Per Andreas; Sejersted, Ole M.; Christensen, Geir A.; Sjaastad, Ivar; Louch, William E.

    2016-01-01

    Aims Invaginations of the cellular membrane called t-tubules are essential for maintaining efficient excitation–contraction coupling in ventricular cardiomyocytes. Disruption of t-tubule structure during heart failure has been linked to dyssynchronous, slowed Ca2+ release and reduced power of the heartbeat. The underlying mechanism is, however, unknown. We presently investigated whether elevated ventricular wall stress triggers remodelling of t-tubule structure and function. Methods and results MRI and blood pressure measurements were employed to examine regional wall stress across the left ventricle of sham-operated and failing, post-infarction rat hearts. In failing hearts, elevated left ventricular diastolic pressure and ventricular dilation resulted in markedly increased wall stress, particularly in the thin-walled region proximal to the infarct. High wall stress in this proximal zone was associated with reduced expression of the dyadic anchor junctophilin-2 and disrupted cardiomyocyte t-tubular structure. Indeed, local wall stress measurements predicted t-tubule density across sham and failing hearts. Elevated wall stress and disrupted cardiomyocyte structure in the proximal zone were also associated with desynchronized Ca2+ release in cardiomyocytes and markedly reduced local contractility in vivo. A causative role of wall stress in promoting t-tubule remodelling was established by applying stretch to papillary muscles ex vivo under culture conditions. Loads comparable to wall stress levels observed in vivo in the proximal zone reduced expression of junctophilin-2 and promoted t-tubule loss. Conclusion Elevated wall stress reduces junctophilin-2 expression and disrupts t-tubule integrity, Ca2+ release, and contractile function. These findings provide new insight into the role of wall stress in promoting heart failure progression. PMID:27226008

  9. Modelling of the Reynolds stress redistribution with a wall effect vector

    NASA Astrophysics Data System (ADS)

    Shima, Nobuyuki; Kobayashi, Hiroshi

    2007-04-01

    The idea of the elliptic relaxation method of Durbin [1993. A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465-498] is employed to construct a simpler and numerically more stable model for the Reynolds stress redistribution. The stress redistribution process in near-wall regions is modelled by using a vector which represents the wall effect. The vector is obtained by solving an elliptic equation with a simple wall boundary condition. The present model and Durbin's model are tested in five different flows of fundamental importance. The performance of the present model is comparable to that of the Durbin model with much less numerical effort.

  10. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  11. Response of hot element wall shear stress gages in laminar oscillating flows

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Murphy, J. D.; Giddings, T. A.

    1986-01-01

    An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.

  12. Response of hot element wall shear stress gages in laminar oscillating flows

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Murphy, J. D.; Giddings, T. A.

    1986-01-01

    An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.

  13. A Single Parameter to Characterize Wall Shear Stress Developed from an Underexpanded Axisymmetric Impinging Jet

    NASA Astrophysics Data System (ADS)

    Fillingham, Patrick; Murali, Harikrishnan

    2016-11-01

    Wall shear stress is characterized for underexpanded axisymmetric impinging jets for the application of aerodynamic particle resuspension from a surface. Analysis of the flow field and the wall shear stress resulted from normally impinging axisymmetric jets is conducted using Computational Fluid Dynamics. A normally impinging jet is modeled with a constant area nozzle, while varying height to diameter ratio (H/D) and inlet pressures. Schlieren photography is used to visualize the density gradient of the flow field for validation of the CFD. The Dimensionless Jet Parameter (DJP) is developed to describe flow regimes and characterize the shear stress. The DJP is defined as being proportional to the jet pressure ratio divided by the H/D ratio squared. Maximum wall shear stress is examined as a function of DJP with three distinct regimes: (i) subsonic impingement (DJP<1), (ii) transitional (12). Due to the jet energy dissipation in shock structures, which become a dominant dissipation mechanism in the supersonic impingement regime, wall shear stress is limited to a finite value. Additionally, formation of shock structures in the wall flow were observed for DJP>2 resulting in difficulties with dimensionless analysis. In the subsonic impingement and transitional regimes equations as a function of the DJP are obtained for the maximum wall shear stress magnitude, maximum shear stress location, and shear stress decay. Using these relationships wall shear stress can be predicted at all locations along the impingement surface.

  14. Cell-free layer and wall shear stress variation in microvessels.

    PubMed

    Yin, Xuewen; Zhang, Junfeng

    2012-01-01

    In this study, we simulated multiple red blood cells flowing through straight microvessels with the immersed-boundary lattice-Boltzmann model to examine the shear stress variation on the microvessel surface and its relation to the properties of cell-free layer. Significant variation in shear stress has been observed due to the irregular configuration of blood cells flowing near the microvessel wall. A low shear stress is typically found at locations where there is a cell flowing close to the wall, and a large shear stress at locations with a relatively wide gap between cell and wall. This relationship between the shear stress magnitude and the distance between cell and wall has been attributed to the reverse pressure difference developed between the front and rear sides of a cell flowing near the vessel wall. We further studied the effects of several hemodynamic factors on the variation of shear stress, including the cell deformability, the flow rate, and the aggregation among red blood cells. These simulations show that the shear stress variation is less profound in situations with wider cell-free layers, since the reverse pressure difference around the edge cells is less evident, and the influence of this pressure difference on wall shear stress becomes weaker. This study also demonstrates the complexity of the flow field in the gap between cell and wall. More precise experimental techniques are required accurately measure such shear stress variation in microcirculation.

  15. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall

    NASA Astrophysics Data System (ADS)

    Hodis, S.; Zamir, M.

    2008-08-01

    Mechanical events within the thickness of the vessel wall caused by pulsatile blood flow are considered, with focus on axial dynamics of the wall, driven by the oscillatory drag force exerted by the fluid on the endothelial layer of the wall. It is shown that the focus on the axial direction makes it possible to derive simplified equations of motion which, combined with a viscoelastic model of the wall material, makes it possible in turn to obtain solutions in closed form for the displacement and stress of material elements within the wall. The viscoelastic model allows a study of the dynamics of the wall with different ratios of viscosity to elasticity of the wall material, to mimic changes in the properties of the arterial wall caused by disease or aging. It is found that when the wall is highly viscous the displacements and stresses caused by the flow are confined to a thin layer close to the inner boundary of the wall, while as the wall material becomes less viscous and more rigid the displacements and stresses spread deeper into the thickness of the wall to affect most of its elements.

  16. Flow instability and wall shear stress variation in intracranial aneurysms

    PubMed Central

    Baek, H.; Jayaraman, M. V.; Richardson, P. D.; Karniadakis, G. E.

    2010-01-01

    We investigate the flow dynamics and oscillatory behaviour of wall shear stress (WSS) vectors in intracranial aneurysms using high resolution numerical simulations. We analyse three representative patient-specific internal carotid arteries laden with aneurysms of different characteristics: (i) a wide-necked saccular aneurysm, (ii) a narrower-necked saccular aneurysm, and (iii) a case with two adjacent saccular aneurysms. Our simulations show that the pulsatile flow in aneurysms can be subject to a hydrodynamic instability during the decelerating systolic phase resulting in a high-frequency oscillation in the range of 20–50 Hz, even when the blood flow rate in the parent vessel is as low as 150 and 250 ml min−1 for cases (iii) and (i), respectively. The flow returns to its original laminar pulsatile state near the end of diastole. When the aneurysmal flow becomes unstable, both the magnitude and the directions of WSS vectors fluctuate at the aforementioned high frequencies. In particular, the WSS vectors around the flow impingement region exhibit significant spatio-temporal changes in direction as well as in magnitude. PMID:20022896

  17. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  18. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.

    PubMed

    Finol, Ender A; Amon, Cristina H

    2002-08-01

    In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.

  19. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows.

    PubMed

    Arzani, Amirhossein; Gambaruto, Alberto M; Chen, Guoning; Shadden, Shawn C

    2017-06-01

    Near-wall transport is of utmost importance in connecting blood flow mechanics with cardiovascular disease progression. The near-wall region is the interface for biologic and pathophysiologic processes such as thrombosis and atherosclerosis. Most computational and experimental investigations of blood flow implicitly or explicitly seek to quantify hemodynamics at the vessel wall (or lumen surface), with wall shear stress (WSS) quantities being the most common descriptors. Most WSS measures are meant to quantify the frictional force of blood flow on the vessel lumen. However, WSS also provides an approximation to the near-wall blood flow velocity. We herein leverage this fact to compute a wall shear stress exposure time (WSSET) measure that is derived from Lagrangian processing of the WSS vector field. We compare WSSET against the more common relative residence time (RRT) measure, as well as a WSS divergence measure, in several applications where hemodynamics are known to be important to disease progression. Because these measures seek to quantify near-wall transport and because near-wall transport is important in several cardiovascular pathologies, surface concentration computed from a continuum transport model is used as a reference. The results show that compared to RRT, WSSET is able to better approximate the locations of near-wall stagnation and concentration build-up of chemical species, particularly in complex flows. For example, the correlation to surface concentration increased on average from 0.51 (RRT) to 0.79 (WSSET) in abdominal aortic aneurysm flow. Because WSSET considers integrated transport behavior, it can be more suitable in regions of complex hemodynamics that are traditionally difficult to quantify, yet encountered in many disease scenarios.

  20. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    PubMed

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ(0)). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ(0) cells. Deletion of SCW11 significantly decreases the sensitivity of ρ(0) cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ(0) cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  1. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA

    PubMed Central

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-01-01

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ0). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent. PMID:28357227

  2. Microflow-induced shear stress on biomaterial wall by ultrasound-induced encapsulated microbubble oscillation

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Wen; Qian, Sheng-You; Sun, Jia-Na; Lü, Yun-Bin; Hu, Ping

    2015-09-01

    A model of an ultrasound-driven encapsulated microbubble (EMB) oscillation near biomaterial wall is presented and used for describing the microflow-induced shear stress on the wall by means of a numerical method. The characteristic of the model lies in the explicit treatment of different types of wall for the EMB responses. The simulation results show that the radius-time change trends obtained by our model are consistent with the existing models and experimental results. In addition, the effect of the elastic wall on the acoustic EMB response is stronger than that of the rigid wall, and the shear stress on the elastic wall is larger than that of the rigid wall. The closer the EMB to the wall, the greater the shear stress on the wall. The substantial shear stress on the wall surface occurs inside a circular zone with a radius about two-thirds of the bubble radius. This paper may be of interest in the study of potential damage mechanisms to the microvessel for drug and gene delivery due to sonoporation. Projects supported by the National Natural Science Foundation of China (Grant Nos. 11174077 and 11474090), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3076), the Science Research Program of Education Department of Hunan Province, China (Grant No. 14A127), and the Doctoral Fund of University of South China (Grant No. 2011XQD46).

  3. [Determining wall shear stress in artificial blood pumps of heart assist devices].

    PubMed

    Debaene, P; Aguilera, D; Kertzscher, U; Affeld, K

    2002-01-01

    The walls in blood pumps are made of artificial material and thus are thrombogenic to a lesser or larger degree. Also the flow plays a role: a blood flow with no flow separations and stagnation zones is required to avoid the generation of thrombi. A precondition for solving this problem is the assessment of the wall shear rate. However this parameter is difficult to assess because of the deformability of the walls and the pulsation of the flow. Two methods are proposed to estimate the wall shear stress in bloodpumps. The paint erosion method allows a characterisation of the flow near the wall. The second method is a special development of standard Particle Image Velocimetry (PIV). A vector field of the flow close to the wall results. Both methods should permit the assessment of the wall shear stress in bloodpumps.

  4. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  5. Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission.

    PubMed

    Hejnowicz, Zygmunt; Borowska-Wykret, Dorota

    2005-01-01

    The inner layer of the cell wall in tissues that are under tensile stress in situ, e.g. epidermis and collenchyma of etiolated sunflower hypocotyls, shows a pattern of transverse folds when the tissues are detached and plasmolysed. This can be observed by Nomarski imaging of inner surfaces of the outer cell walls and electron microscopy of longitudinal sections after peeling the epidermis and bathing it in plasmolysing solutions. The folds are apparently caused by buckling of the inner layer due to the longitudinal compressive force exerted on this layer by the outer wall layer, when it shrinks after the removal of the longitudinal tensile stresses. In these stresses, two components can be distinguished: the tissue stress, disappearing on peeling, and that caused directly by turgor pressure, disappearing in hyperosmotic solution. Investigation of the buckling indicates that the outer layer of the cell wall transmits in situ most of the longitudinal tensile stress in the wall. The common concept that the inner layer of the wall is the region bearing most stress and therefore regulating growth can still be valid with respect to the transverse stress component.

  6. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms.

    PubMed

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard

    2014-12-01

    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented.

  7. Relation between wall shear stress and carotid artery wall thickening MRI versus CFD.

    PubMed

    Cibis, Merih; Potters, Wouter V; Selwaness, Mariana; Gijsen, Frank J; Franco, Oscar H; Arias Lorza, Andres M; de Bruijne, Marleen; Hofman, Albert; van der Lugt, Aad; Nederveen, Aart J; Wentzel, Jolanda J

    2016-03-21

    Wall shear stress (WSS), a parameter associated with endothelial function, is calculated by computational fluid dynamics (CFD) or phase-contrast (PC) MRI measurements. Although CFD is common in WSS (WSSCFD) calculations, PC-MRI-based WSS (WSSMRI) is more favorable in population studies; since it is straightforward and less time consuming. However, it is not clear if WSSMRI and WSSCFD show similar associations with vascular pathology. Our aim was to test the associations between wall thickness (WT) of the carotid arteries and WSSMRI and WSSCFD. The subjects (n=14) with an asymptomatic carotid plaque who underwent MRI scans two times within 4 years of time were selected from the Rotterdam Study. We compared WSSCFD and WSSMRI at baseline and follow-up. Baseline WSSMRI and WSSCFD values were divided into 3 categories representing low, medium and high WSS tertiles. WT of each tertile was compared by a one-way ANOVA test. The WSSMRI and WSSCFD were 0.50±0.13Pa and 0.73±0.25Pa at baseline. Although WSSMRI was underestimated, a significant regression was found between WSSMRI and WSSCFD (r(2)=0.71). No significant difference was found between baseline and follow-up WSS by CFD and MRI-based calculations. The WT at baseline was 1.36±0.16mm and did not change over time. The WT was 1.55±0.21mm in low, 1.33±0.20mm in medium and 1.21±0.21mm in the high WSSMRI tertiles. Similarly, the WT was 1.49±0.21mm in low, 1.33±0.20mm in medium and 1.26±0.21mm in high WSSCFD tertiles. We found that WSSMRI and WSSCFD were inversely related with WT. WSSMRI and WSSCFD patterns were similar although MRI-based calculations underestimated WSS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Patient Specific Wall Stress Analysis and Mechanical Characterization of Abdominal Aortic Aneurysms Using 4D Ultrasound.

    PubMed

    van Disseldorp, E M J; Petterson, N J; Rutten, M C M; van de Vosse, F N; van Sambeek, M R H M; Lopata, R G P

    2016-11-01

    The aim of this study was to perform wall stress analysis (WSA) using 4D ultrasound (US) in 40 patients with an abdominal aortic aneurysm (AAA). The geometries and wall stress results were compared with computed tomography (CT) in seven patients. Additionally, the WSA models were calibrated using 4D motion estimation, resulting in patient specific material parameters that were compared among patients. 4D-US images were acquired for 40 patients (AAA diameter 27-52 mm). Patient specific AAA geometries and wall motion were extracted from the 4D-US. WSA was performed and corresponding patient specific material properties were derived. For seven patients, CT data were available and analyzed for geometry and wall stress comparison. The 4D-US based 99th percentile wall stress ranged from 198 to 390 kPa. Regression analysis showed no significant relation between wall stress and diameter of the AAA. The similarity indices between US and CT were very good and ranged between 0.90 and 0.96, and the 25th, 50th, 75th, and 95th percentile wall stresses of the US and CT data were in agreement. The characterized patient specific shear modulus had a median of 1.1 MPa (interquartile range, 0.7-1.4 MPa). Based on the maximum AAA diameter, the AAAs were divided in a small, medium, and large diameter groups. The largest AAAs revealed an increased wall stiffness compared with the smallest AAAs. 4D ultrasound is applicable for wall stress analysis of AAAs, and offers the opportunity to perform wall stress analysis over time, also for AAAs who do not qualify for a CT or magnetic resonance imaging. Moreover, the patient specific material properties can be determined, which could possibly improve risk assessment. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms

    PubMed Central

    2012-01-01

    Background The predictions of stress fields in Abdominal Aortic Aneurysm (AAA) depend on constitutive descriptions of the aneurysm wall and the Intra-luminal Thrombus (ILT). ILT is a porous diluted structure (biphasic solid–fluid material) and its impact on AAA biomechanics is controversially discussed in the literature. Specifically, pressure measurements showed that the ILT cannot protect the wall from the arterial pressure, while other (numerical and experimental) studies showed that at the same time it reduces the stress in the wall. Method To explore this phenomenon further a poroelastic description of the ILT was integrated in Finite Element (FE) Models of the AAA. The AAA model was loaded by a pressure step and a cyclic pressure wave and their transition into wall tension was investigated. To this end ILT’s permeability was varied within a microstructurally motivated range. Results The two-phase model verified that the ILT transmits the entire mean arterial pressure to the wall while, at the same time, it significantly reduces the stress in the wall. The predicted mean stress in the AAA wall was insensitive to the permeability of the ILT and coincided with the results of AAA models using a single-phase ILT description. Conclusion At steady state, the biphasic ILT behaves like a single-phase material in an AAA model. Consequently, computational efficient FE single-phase models, as they have been exclusively used in the past, accurately predict the wall stress in AAA models. PMID:22931215

  10. Three-dimensional imaging and computational modelling for estimation of wall stresses in arteries.

    PubMed

    Hoskins, P R; Hardman, D

    2009-01-01

    The paper reviews techniques for the estimation of wall stresses in arterial disease. Wall stresses are important as arterial disease progresses through a complex interplay between local biology and local mechanical stresses. The possibility then arises of using wall stresses as new diagnostic indicators in patients with arterial disease. Estimation of wall stresses using imaging systems is problematic. Developments in the last 10 years have been aimed at providing tools for estimation of wall stresses within individual patients, using a combination of three-dimensional (3D) imaging and computational modelling. For blood flow, 3D arterial lumen information is obtained from 3D imaging. Computational fluid dynamics is then used to estimate the 3D velocity field within the lumen, from which wall shear stress may be calculated. For arterial mechanics, the 3D arterial wall geometry is integrated with solid modelling to provide estimates of the strain field and stress field within the artery wall. For intraplaque stresses, this has been achieved through the use of detailed two-dimensional (2D) intraplaque geometry from MRI. Inverse techniques have been used to provide images of Young's modulus in atherosclerotic plaque using intravascular ultrasound and solid modelling. Several research centres now have processing chains to allow this technology to be used in clinical studies. In time, possibly over the next 10 years or so, robust protocols with proven clinical utility will arise which, when combined with high-performance computing, will allow image-guided modelling to be used as an adjunct to modern radiology in the same way that image-processing tools are used today.

  11. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    NASA Astrophysics Data System (ADS)

    Ding, Song; Tian, GuiYun; Dobmann, Gerd; Wang, Ping

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness.

  12. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  13. Influence and Modeling of Residual Stresses in Thick Walled Pressure Vessels with Through Holes

    DTIC Science & Technology

    2012-02-28

    Technical Report ARWSB-TR-12003 INFLUENCE AND MODELING OF RESIDUAL STRESSES IN THICK WALLED PRESSURE VESSELS WITH...DATE (DD-MM-YYYY) 28/02/2012 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Influence and Modeling of...Residual Stresses in Thick Walled Pressure Vessels with Through Holes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  14. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    NASA Astrophysics Data System (ADS)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  15. Using two soft computing methods to predict wall and bed shear stress in smooth rectangular channels

    NASA Astrophysics Data System (ADS)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2017-03-01

    Two soft computing methods were extended in order to predict the mean wall and bed shear stress in open channels. The genetic programming (GP) and Genetic Algorithm Artificial Neural Network (GAA) were investigated to determine the accuracy of these models in estimating wall and bed shear stress. The GP and GAA model results were compared in terms of testing dataset in order to find the best model. In modeling both bed and wall shear stress, the GP model performed better with RMSE of 0.0264 and 0.0185, respectively. Then both proposed models were compared with equations for rectangular open channels, trapezoidal channels and ducts. According to the results, the proposed models performed the best in predicting wall and bed shear stress in smooth rectangular channels. The obtained equation for rectangular channels could estimate values closer to experimental data, but the equations for ducts had poor, inaccurate results in predicting wall and bed shear stress. The equation presented for trapezoidal channels did not have acceptable accuracy in predicting wall and bed shear stress either.

  16. Wall shear stress and near-wall convective transport: Comparisons with vascular remodelling in a peripheral graft anastomosis

    NASA Astrophysics Data System (ADS)

    Gambaruto, A. M.; Doorly, D. J.; Yamaguchi, T.

    2010-08-01

    Fluid dynamic properties of blood flow are implicated in cardiovascular diseases. The interaction between the blood flow and the wall occurs through the direct transmission of forces, and through the dominating influence of the flow on convective transport processes. Controlled, in vitro testing in simple geometric configurations has provided much data on the cellular-level responses of the vascular walls to flow, but a complete, mechanistic explanation of the pathogenic process is lacking. In the interim, mapping the association between local haemodynamics and the vascular response is important to improve understanding of the disease process and may be of use for prognosis. Moreover, establishing the haemodynamic environment in the regions of disease provides data on flow conditions to guide investigations of cellular-level responses. This work describes techniques to facilitate comparison between the temporal alteration in the geometry of the vascular conduit, as determined by in vivo imaging, with local flow parameters. Procedures to reconstruct virtual models from images by means of a partition-of-unity implicit function formulation, and to align virtual models of follow-up scans to a common coordinate system, are outlined. A simple Taylor series expansion of the Lagrangian dynamics of the near-wall flow is shown to provide both a physical meaning to the directional components of the flow, as well as demonstrating the relation between near-wall convection in the wall normal direction and spatial gradients of the wall shear stress. A series of post-operative follow-up MRI scans of two patient cases with bypass grafts in the peripheral vasculature are presented. These are used to assess how local haemodynamic parameters relate to vascular remodelling at the location of the distal end-to-side anastomosis, i.e. where the graft rejoins the host artery. Results indicate that regions of both low wall shear stress and convective transport towards the wall tend to be

  17. Freezing stresses and hydration of isolated cell walls.

    PubMed

    Yoon, Yonghyeon; Pope, Jim; Wolfe, Joe

    2003-06-01

    The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.

  18. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.

    PubMed

    Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F

    2011-07-01

    A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.

  19. Characteristics of the response of the iliac artery to wall shear stress in the anaesthetized pig.

    PubMed

    Kelly, R F; Snow, H M

    2007-07-15

    The functional significance of shear stress-induced vasodilatation in large conduit arteries is unclear since changes in the diameter have little effect on the resistance to blood flow. However, changes in diameter have a relatively large effect on wall shear stress which suggests that the function of flow-mediated dilatation is to reduce wall shear stress. The mean and pulsatile components of shear stress vary widely throughout the arterial system and areas of low mean and high amplitude of wall shear stress are prone to the development of atheroma. In this study, using an in vivo model with the ability to control flow rate and amplitude of flow independently, we investigated the characteristics of the response of the iliac artery to variations in both the mean and amplitude of wall shear stress. The results of this study confirm that increases in mean wall shear stress are an important stimulus for the release of nitric oxide by the endothelium as indicated by changes in arterial diameter and show for the first time, in vivo, that increases in the amplitude of the pulsatile component of shear stress have a small but significant inhibitory effect on this response. A negative feedback mechanism was identified whereby increases in shear stress brought about by increases in blood flow are reduced by the release of nitric oxide from the endothelium causing dilatation of the artery, thus decreasing the stimulus to cell adhesion and, through a direct action of nitric oxide, inhibiting the process of cell adhesion. The results also provide an explanation for the uneven distribution of atheroma throughout the arterial system, which is related to the ratio of pulsatile to mean shear stress and consequent variability in the production of NO.

  20. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  1. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress.

    PubMed

    Joldes, Grand Roman; Miller, Karol; Wittek, Adam; Doyle, Barry

    2016-05-01

    Abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the lower region of the aorta. It is a symptomless condition that if left untreated can expand to the point of rupture. Mechanically-speaking, rupture of an artery occurs when the local wall stress exceeds the local wall strength. It is therefore desirable to be able to non-invasively estimate the AAA wall stress for a given patient, quickly and reliably. In this paper we present an entirely new approach to computing the wall tension (i.e. the stress resultant equal to the integral of the stresses tangent to the wall over the wall thickness) within an AAA that relies on trivial linear elastic finite element computations, which can be performed instantaneously in the clinical environment on the simplest computing hardware. As an input to our calculations we only use information readily available in the clinic: the shape of the aneurysm in-vivo, as seen on a computed tomography (CT) scan, and blood pressure. We demonstrate that tension fields computed with the proposed approach agree well with those obtained using very sophisticated, state-of-the-art non-linear inverse procedures. Using magnetic resonance (MR) images of the same patient, we can approximately measure the local wall thickness and calculate the local wall stress. What is truly exciting about this simple approach is that one does not need any information on material parameters; this supports the development and use of patient-specific modelling (PSM), where uncertainty in material data is recognised as a key limitation. The methods demonstrated in this paper are applicable to other areas of biomechanics where the loads and loaded geometry of the system are known. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    PubMed

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections.

  3. Polar nature of stress-induced twin walls in ferroelastic CaTiO3

    NASA Astrophysics Data System (ADS)

    Yokota, H.; Niki, S.; Haumont, R.; Hicher, P.; Uesu, Y.

    2017-08-01

    A compressive uniaxial mechanical stress is applied on ferroelastic CaTiO3 (CTO), and a change in the domain structure is observed under a polarization microscope and a second harmonic generation (SHG) microscope. New twin walls (TWs) appear perpendicular to the original TWs under stress. The SHG microscope observations and analyses confirm that this type of stress-induced TWs is polar, similar to the original TWs, and is crystallographically prominent with monoclinic symmetry m. A quantitative estimation of this stress-induced effect reveals that CTO is hard ferroelastic in the sense that the TW movement requires a large stress. A possible application of this phenomenon is discussed.

  4. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor.

    PubMed

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas; Escudié, Renaud

    2017-01-01

    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress-four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)-was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10-16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear.

  5. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula.

    PubMed

    Krishnamoorthy, Mahesh K; Banerjee, Rupak K; Wang, Yang; Zhang, Jianhua; Roy, Abhijit Sinha; Khoury, Saeb F; Arend, Lois J; Rudich, Steve; Roy-Chaudhury, Prabir

    2008-12-01

    Venous stenosis is a significant problem in arteriovenous fistulae, likely due to anatomical configuration and wall shear stress profiles. To identify linkages between wall shear stress and the magnitude and pattern of vascular stenosis, we produced curved and straight fistulae in a pig model. A complete wall stress profile was calculated for the curved configuration and correlated with luminal stenosis. Computer modeling techniques were then used to derive a wall shear stress profile for the straight arteriovenous fistula. Differences in the wall shear stress profile of the curved and straight fistula were then related to histological findings. There was a marked inverse correlation between the magnitude of wall shear stress within different regions of the curved arteriovenous fistula and luminal stenosis in these same regions. There were also significantly greater differences in wall shear stress between the outer and inner walls of the straight as compared to curved arteriovenous fistula, which translated into a more eccentric histological pattern of intima-media thickening. Our results suggest a clear linkage between anatomical configuration, wall shear stress profiles, and the pattern of luminal stenosis and intima-media thickening in a pig model of arteriovenous fistula stenosis. These results suggest that fistula failure could be reduced by using computer modeling prior to surgical placement to alter the anatomical and, consequently, the wall shear stress profiles in an arteriovenous fistula.

  6. Evaluation of stresses in large diameter, thin walled piping at support locations

    SciTech Connect

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-01-01

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions.

  7. Evaluation of stresses in large diameter, thin walled piping at support locations

    SciTech Connect

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-12-31

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions.

  8. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  9. Pressure-volume Relationship in the Stress-echocardiography Laboratory: Does (Left Ventricular End-diastolic) Size Matter?

    PubMed

    Bombardini, Tonino; Mulieri, Louis A; Salvadori, Stefano; Costantino, Marco Fabio; Scali, Maria Chiara; Marzilli, Mario; Picano, Eugenio

    2017-02-01

    The variation between rest and peak stress end-systolic pressure-volume relation is an afterload-independent index of left ventricular contractility. Whether and to what extent it depends on end-diastolic volume remains unclear. The aim of this study was to assess the dependence of the delta rest-stress end-systolic pressure-volume relation on end-diastolic volume in patients with negative stress echo and all ranges of resting left ventricular function. We analyzed interpretable data obtained in 891 patients (593 men, age 63 ± 12 years) with ejection fraction 47% ± 12%: 338 were normal or near-normal or hypertensive; 229 patients had coronary artery disease; and 324 patients had ischemic or nonischemic dilated cardiomyopathy. They were studied with exercise (n = 172), dipyridamole (n = 482) or dobutamine (n = 237) stress echocardiography. The end-systolic pressure-volume relation was evaluated at rest and peak stress from raw measurement of systolic arterial pressure by cuff sphygmomanometer and end-systolic volume by biplane Simpson rule 2-dimensional echocardiography. Absolute values of delta rest-stress end-systolic pressure-volume relation were higher for exercise and dobutamine than for dipyridamole. In the overall population, an inverse relationship between end-systolic pressure-volume relation and end-diastolic volume was present at rest (r(2) = 0.69, P < .001) and peak stress (r(2) = 0.56, P < .001), but was absent if the delta rest-stress end-systolic pressure-volume relation was considered (r(2) = 0.13). Left ventricular end-diastolic volume does not affect the rest-stress changes in end-systolic pressure-volume relation in either normal or abnormal left ventricles during physical or pharmacological stress. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Alteration of mean wall shear stress near an oscillating stagnation point.

    PubMed

    Hazel, A L; Pedley, T J

    1998-04-01

    The site opposite an end-to-side anastomosis, resulting from femoral bypass surgery, and the carotid sinus are two regions well known to be prone to fibrous intimal hyperplasia or atherogenesis, respectively. The blood flow at these two sites features a stagnation point, which oscillates in strength and position. Mathematical models are used to determine some of the features of such a flow; in particular, the mean wall shear stress is calculated. The positional oscillations cause a significant change in the distribution and magnitude of the mean wall shear stress from that of the well-studied case of a stagnation point that oscillates only in strength. It is therefore proposed that the recorded effect of time dependence in the flow upon atherogenesis could still be a result of the distribution of the mean and not the time-varying components of the wall shear stress.

  11. A simulation framework for estimating wall stress distribution of abdominal aortic aneurysm.

    PubMed

    Qin, Jing; Zhang, Jing; Chui, Chee-Kong; Huang, Wei-Min; Yang, Tao; Pang, Wai-Man; Sudhakar, Venkatesh; Chang, Stephen

    2011-01-01

    Abdominal aortic aneurysm (AAA) rupture is believed to occur when the mechanical stress acting on the wall exceeds the strength of the wall tissue. In endovascular aneurysm repair, a stent-graft in a catheter is released at the aneurysm site to form a new blood vessel and protect the weakened AAA wall from the pulsatile pressure and, hence, possible rupture. In this paper, we propose a framework to estimate the wall stress distribution of non-stented/stented AAA based on fluid-structure interaction, which is utilized in a surgical simulation system (IRAS). The 3D geometric model of AAA is reconstructed from computed tomography angiographic (CTA) images. Based on our experiments, a combined logarithm and polynomial strain energy equation is applied to model the elastic properties of arterial wall. The blood flow is modeled as laminar, incompressible, and non-Newtonian flow by applying Navier-Stokes equation. The obtained pressure of blood flow is applied as load on the AAA meshes with and without stent-graft and the wall stress distribution is calculated by fluid-structure interaction (FSI) solver equipped in ANSYS. Experiments demonstrate that our analytical results are consistent with clinical observations.

  12. Debonding Stress Concentrations in a Pressurized Lobed Sandwich-Walled Generic Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    A finite-element stress analysis has been conducted on a lobed composite sandwich tank subjected to internal pressure and cryogenic cooling. The lobed geometry consists of two obtuse circular walls joined together with a common flat wall. Under internal pressure and cryogenic cooling, this type of lobed tank wall will experience open-mode (a process in which the honeycomb is stretched in the depth direction) and shear stress concentrations at the junctures where curved wall changes into flat wall (known as a curve-flat juncture). Open-mode and shear stress concentrations occur in the honeycomb core at the curve-flat junctures and could cause debonding failure. The levels of contributions from internal pressure and temperature loading to the open-mode and shear debonding failure are compared. The lobed fuel tank with honeycomb sandwich walls has been found to be a structurally unsound geometry because of very low debonding failure strengths. The debonding failure problem could be eliminated if the honeycomb core at the curve-flat juncture is replaced with a solid core.

  13. Estimation of wall shear stress in bypass grafts with computational fluid dynamics method.

    PubMed

    Goubergrits, L; Affeld, K; Wellnhofer, E; ZurbrüggR; Holmer, T

    2001-03-01

    Coronary artery bypass graft (CABG) operation for coronary artery disease with different types of grafts has a large clinical application world wide. Immediately after this operation patients are usually relieved of their chest pain and have improved cardiac function. However, after a while, these bypass grafts may fail due to for example, neointimal hyperplasia or thrombosis. One of the causes for this bypass graft failure is assumed to be the blood flow with low wall shear stress. The aim of this research is to estimate the wall shear stress in a graft and thus to locate areas were wall shear stress is low. This was done with the help of a blood flow computer model. Post-operative biplane angiograms of the graft were recorded, and from these the three-dimensional geometry of the graft was reconstructed and imported into the computational fluid dynamics (CFD) program FLUENT. The stationary diastolic flow through the grafts was calculated, and the wall shear stress distribution was estimated. This procedure was carried out for one native vessel and two different types of bypass grafts. One bypass graft was a saphenous vein and the other one was a varicose saphenous vein encased in a fine, flexible metal mesh. The mesh was attached to give the graft a defined diameter. The computational results show that each graft has distinct areas of low wall shear stress. The graft with the metal mesh has an area of low wall shear stress (< 1 Pa, stationary flow), which is four times smaller than the respective areas in the other graft and in the native vessel. This is thought to be caused by the smaller and more uniform diameter of the metal mesh-reinforced graft.

  14. Development of a shear stress sensor to analyse the influence of polymers on the turbulent wall shear stress

    NASA Astrophysics Data System (ADS)

    Nottebrock, Bernardo; Große, Sebastian; Schröder, Wolfgang

    2011-05-01

    The drag reducing effect of polymers in a channel flow is well known and it is assumed that the polymer filaments interfere with the turbulent structures in the very near-wall flow. To analyse their precise effect, a micro-pillar shear stress sensor (MPS3) measurement system is developed which allows the detection of wall shear stress at high spatial and temporal resolutions. Different manufacturing techniques for the required micro-pillars are discussed and their influence on the flow is investigated evidencing the non-intrusive character of the pillars. Subsequently, a complete calibration is presented to relate the recorded deflection to wall shear stress values and to assure the correct detection over the whole expected frequency spectrum. A feasibility study about the ability to visualize the two-dimensional wall shear stress distribution completes the discussion about the validity of MPS3. In the last step, the drag reduction of a polymer filament grafted on a micro-pillar compared to a plain pillar and the application of MPS3 in an ocean-type polymer solution are investigated. The results confirm the expected behaviour found in the literature.

  15. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor

    PubMed Central

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas

    2017-01-01

    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress—four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)—was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10−16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear. PMID:28207869

  16. Simultaneous wall-shear-stress and wide-field PIV measurements in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Gomit, Guillaume; Fourrie, Gregoire; de Kat, Roeland; Ganapathisubramani, Bharathram

    2015-11-01

    Simultaneous particle image velocimetry (PIV) and hot-film shear stress sensor measurements were performed to study the large-scale structures associated with shear stress events in a flat plate turbulent boundary layer at a high Reynolds number (Reτ ~ 4000). The PIV measurement was performed in a streamwise-wall normal plane using an array of six high resolution cameras (4 ×16MP and 2 ×29MP). The resulting field of view covers 8 δ (where δ is the boundary layer thickness) in the streamwise direction and captures the entire boundary layer in the wall-normal direction. The spatial resolution of the measurement is approximately is approximately 70 wall units (1.8 mm) and sampled each 35 wall units (0.9 mm). In association with the PIV setup, a spanwise array of 10 skin-friction sensors (spanning one δ) was used to capture the footprint of the large-scale structures. This combination of measurements allowed the analysis of the three-dimensional conditional structures in the boundary layer. Particularly, from conditional averages, the 3D organisation of the wall normal and streamwise velocity components (u and v) and the Reynolds shear stress (-u'v') related to a low and high shear stress events can be extracted. European Research Council Grant No-277472-WBT.

  17. Interaction of wall shear stress magnitude and gradient in the prediction of arterial macromolecular permeability.

    PubMed

    LaMack, Jeffrey A; Himburg, Heather A; Li, Xue-Mei; Friedman, Morton H

    2005-04-01

    Large spatial shear stress gradients have anecdotally been associated with early atherosclerotic lesion susceptibility in vivo and have been proposed as promoters of endothelial cell dysfunction in vitro. Here, experiments are presented in which several measures of the fluid dynamic shear stress, including its gradient, at the walls of in vivo porcine iliac arteries, are correlated against the transendothelial macromolecular permeability of the vessels. The fluid dynamic measurements are based on postmortem vascular casts, and permeability is measured from Evans blue dye (EBD) uptake. Time-averaged wall shear stress (WSS), as well as a new parameter termed maximum gradient stress (MGS) that describes the spatial shear stress gradient due to flow acceleration at a given point, are mapped for each artery and compared on a point-by-point basis to the corresponding EBD patterns. While there was no apparent relation between MGS and EBD uptake, a composite parameter, WSS(-0.11) MGS(0.044), was highly correlated with permeability. Notwithstanding the small exponents, the parameter varied widely within the region of interest. The results suggest that sites exposed to low wall shear stresses are more likely to exhibit elevated permeability, and that this increase is exacerbated in the presence of large spatial shear stress gradients.

  18. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.

    PubMed

    Zheng, Xianbing; Ren, Jiusheng

    2016-03-21

    Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls are analyzed in this paper, based on the model which considered the bending and stretching both in the circumferential and axial directions of the three distinct arterial layers. Moreover, different constitutive models are proposed to quantify the nonlinear mechanics of the three distinct layers and the important constituents, i.e. elastin, collagen fibers and smooth muscle cells (SMCs), are all taken into account. The stress distributions and pressure-radius curves of the arterial wall are given in details. Results demonstrate that the maximum values of the circumferential stress and the corresponding stress gradient in the media under the mean arterial pressure are reduced significantly as a consequence of the SMCs. The bending in the axial direction of the media and the opening angle of the intima have an obvious impact on the mechanical behaviors of arterial walls. This study may not only develop the understanding of effects of the three-dimensional residual stresses on the arterial wall response, but also can increase the accuracy of the analyses for patient-specific studies used for the treatments of arterial diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels.

    PubMed

    Yan, W W; Cai, B; Liu, Y; Fu, B M

    2012-05-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30-50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method , and the tumor cell dynamics was governed by the Newton's law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor cell adhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10(-2)) laminar flow.

  20. Stress analysis of a double-wall vacuum vessel for ITER

    SciTech Connect

    Conner, D.L.; Williamson, D.E.; Nelson, B.E.

    1991-01-01

    The preliminary structural analyses performed in support of the design of the vacuum vessel for the International Thermonuclear Experimental Reactor (ITER) are described. A thin, double-wall, all-welded structure is the proposed design concept analyzed. The results of the static stress analysis indicate the adequacy of such a structure. The effects of the proposed high-aspect-ratio design configuration on loading and stresses are also discussed. 4 refs., 6 figs., 1 tab.

  1. Feature extraction and wall motion classification of 2D stress echocardiography with support vector machines

    NASA Astrophysics Data System (ADS)

    Chykeyuk, Kiryl; Clifton, David A.; Noble, J. Alison

    2011-03-01

    Stress echocardiography is a common clinical procedure for diagnosing heart disease. Clinically, diagnosis of the heart wall motion depends mostly on visual assessment, which is highly subjective and operator-dependent. Introduction of automated methods for heart function assessment have the potential to minimise the variance in operator assessment. Automated wall motion analysis consists of two main steps: (i) segmentation of heart wall borders, and (ii) classification of heart function as either "normal" or "abnormal" based on the segmentation. This paper considers automated classification of rest and stress echocardiography. Most previous approaches to the classification of heart function have considered rest or stress data separately, and have only considered using features extracted from the two main frames (corresponding to the end-of-diastole and end-of-systole). One previous attempt [1] has been made to combine information from rest and stress sequences utilising a Hidden Markov Model (HMM), which has proven to be the best performing approach to date. Here, we propose a novel alternative feature selection approach using combined information from rest and stress sequences for motion classification of stress echocardiography, utilising a Support Vector Machines (SVM) classifier. We describe how the proposed SVM-based method overcomes difficulties that occur with HMM classification. Overall accuracy with the new method for global wall motion classification using datasets from 173 patients is 92.47%, and the accuracy of local wall motion classification is 87.20%, showing that the proposed method outperforms the current state-of-the-art HMM-based approach (for which global and local classification accuracy is 82.15% and 78.33%, respectively).

  2. Static and dynamic stress heterogeneity in a multiscale model of the asthmatic airway wall.

    PubMed

    Hiorns, J E; Jensen, O E; Brook, B S

    2016-07-01

    Airway hyperresponsiveness (AHR) is a key characteristic of asthma that remains poorly understood. Tidal breathing and deep inspiration ordinarily cause rapid relaxation of airway smooth muscle (ASM) (as demonstrated via application of length fluctuations to tissue strips) and are therefore implicated in modulation of AHR, but in some cases (such as application of transmural pressure oscillations to isolated intact airways) this mechanism fails. Here we use a multiscale biomechanical model for intact airways that incorporates strain stiffening due to collagen recruitment and dynamic force generation by ASM cells to show that the geometry of the airway, together with interplay between dynamic active and passive forces, gives rise to large stress and compliance heterogeneities across the airway wall that are absent in tissue strips. We show further that these stress heterogeneities result in auxotonic loading conditions that are currently not replicated in tissue-strip experiments; stresses in the strip are similar to hoop stress only at the outer airway wall and are under- or overestimates of stresses at the lumen. Taken together these results suggest that a previously underappreciated factor, stress heterogeneities within the airway wall and consequent ASM cellular response to this micromechanical environment, could contribute to AHR and should be explored further both theoretically and experimentally. Copyright © 2016 the American Physiological Society.

  3. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions

    PubMed Central

    Houston, Kelly; Tucker, Matthew R.; Chowdhury, Jamil; Shirley, Neil; Little, Alan

    2016-01-01

    The plant cell wall has a diversity of functions. It provides a structural framework to support plant growth and acts as the first line of defense when the plant encounters pathogens. The cell wall must also retain some flexibility, such that when subjected to developmental, biotic, or abiotic stimuli it can be rapidly remodeled in response. Genes encoding enzymes capable of synthesizing or hydrolyzing components of the plant cell wall show differential expression when subjected to different stresses, suggesting they may facilitate stress tolerance through changes in cell wall composition. In this review we summarize recent genetic and transcriptomic data from the literature supporting a role for specific cell wall-related genes in stress responses, in both dicot and monocot systems. These studies highlight that the molecular signatures of cell wall modification are often complex and dynamic, with multiple genes appearing to respond to a given stimulus. Despite this, comparisons between publically available datasets indicate that in many instances cell wall-related genes respond similarly to different pathogens and abiotic stresses, even across the monocot-dicot boundary. We propose that the emerging picture of cell wall remodeling during stress is one that utilizes a common toolkit of cell wall-related genes, multiple modifications to cell wall structure, and a defined set of stress-responsive transcription factors that regulate them. PMID:27559336

  4. Measurement of turbulent wall shear-stress using micro-pillars

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, E. P.; Nottebrock, B.; Große, S.; Sullivan, J. P.; Schröder, W.

    2013-12-01

    In experimental fluid mechanics, measuring spatially and temporally resolved wall shear-stress (WSS) has proved a challenging problem. The micro-pillar shear-stress sensor (MPS3) has been developed with the goal of filling this gap in measurement techniques. The MPS3 comprises an array of flexible micro-pillars flush mounted on the wall of a wall-bounded flow field. The deflection of these micro-pillars in the presence of a shear field is a direct measure of the WSS. This paper presents the MPS3 development work carried out by RWTH Aachen University and Purdue University. The sensor concept, static and dynamic characterization and data reduction issues are discussed. Also presented are demonstrative experiments where the MPS3 was used to measure the WSS in both water and air. The salient features of the measurement technique, sensor development issues, current capabilities and areas for improvement are highlighted.

  5. Material parameter identification of arterial wall layers from homogenised stress-strain data.

    PubMed

    Skacel, Pavel; Bursa, Jiri

    2011-01-01

    Multilayer structure of the artery can have significant effects on the resulting mechanical behaviour of the artery wall. Separation of the artery into individual layers is sometimes performed to identify the layer-specific parameters of constitutive model proposed by Holzapfel, Gasser and Ogden (HGO model). Inspired by this single-layer model, a double-layer model was formulated and used for identification of material parameters from homogenised stress-strain data (of non-separated artery wall). The paper demonstrates that the layer-specific parameters of the double-layer constitutive model can be identified without the need of artery separation. The resulting double-layer model can credibly describe the homogenised stress-strain behaviour of the real artery wall including large-strain stiffening effects attributed to multilayer nature of the artery.

  6. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method

    NASA Astrophysics Data System (ADS)

    Kulak, S. M.; Novikov, V. F.; Baranov, A. V.

    2016-10-01

    Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.

  7. Patient-specific models of wall stress in abdominal aortic aneurysm: a comparison between MR and CT

    NASA Astrophysics Data System (ADS)

    de Putter, Sander; Breeuwer, Marcel; van de Vosse, Frans N.; Kose, Ursula; Gerritsen, Frans A.

    2006-03-01

    Finite element method based patient-specific wall stress in abdominal aortic aneurysm (AAA) may provide a more accurate rupture risk predictor than the currently used maximum transverse diameter. In this study, we have investigated the sensitivity of the wall stress in AAA with respect to geometrical variations. We have acquired MR and CT images for four patients with AAA. Three individual users have delineated the AAA vessel wall contours on the image slices. These contours were used to generate synthetic feature images for a deformable model based segmentation method. We investigated the reproducibility and the influence of the user variability on the wall stress. For sufficiently smooth models of the AAA wall, the peak wall stress is reproducible for three out of the four AAA geometries. The 0.99 percentiles of the wall stress show excellent reproducibility for all four AAAs. The variations induced by user variability are larger than the errors caused by the segmentation variability. The influence of the user variability appears to be similar for MR and CT. We conclude that the peak wall stress in AAA is sensitive to small geometrical variations. To increase reproducibility it appears to be best not to allow too much geometrical detail in the simulations. This could be achieved either by using a sufficiently smooth geometry representation or by using a more robust statistical parameter derived from the wall stress distribution.

  8. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2001-01-01

    Stress, including that caused by ethanol, has been shown to induce or promote secondary metabolism in a number of microbial systems. Rotating-wall bioreactors provide a low stress and simulated microgravity environment which, however, supports only poor production of microcin B17 by Escherichia coli ZK650, as compared to production in agitated flasks. We wondered whether the poor production is due to the low level of stress and whether increasing stress in the bioreactors would raise the amount of microcin B17 formed. We found that applying shear stress by addition of a single Teflon bead to a rotating wall bioreactor improved microcin B17 production. By contrast, addition of various concentrations of ethanol to such bioreactors (or to shaken flasks) failed to increase microcin B17 production. Ethanol stress merely decreased production and, at higher concentrations, inhibited growth. Interestingly, cells growing in the bioreactor were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks.

  9. Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2001-01-01

    Stress, including that caused by ethanol, has been shown to induce or promote secondary metabolism in a number of microbial systems. Rotating-wall bioreactors provide a low stress and simulated microgravity environment which, however, supports only poor production of microcin B17 by Escherichia coli ZK650, as compared to production in agitated flasks. We wondered whether the poor production is due to the low level of stress and whether increasing stress in the bioreactors would raise the amount of microcin B17 formed. We found that applying shear stress by addition of a single Teflon bead to a rotating wall bioreactor improved microcin B17 production. By contrast, addition of various concentrations of ethanol to such bioreactors (or to shaken flasks) failed to increase microcin B17 production. Ethanol stress merely decreased production and, at higher concentrations, inhibited growth. Interestingly, cells growing in the bioreactor were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks.

  10. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress.

    PubMed

    Thijssen, Dick H J; Dawson, Ellen A; van den Munckhof, Inge C L; Tinken, Toni M; den Drijver, Evert; Hopkins, Nicola; Cable, N Timothy; Green, Daniel J

    2011-07-01

    Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.

  11. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    NASA Technical Reports Server (NTRS)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  12. PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model

    NASA Astrophysics Data System (ADS)

    Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.

  13. Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device.

    PubMed

    Hwang, Wonjun; Volk, Brent L; Akberali, Farida; Singhal, Pooja; Criscione, John C; Maitland, Duncan J

    2012-05-01

    In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses.

  14. Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device

    PubMed Central

    Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.

    2012-01-01

    In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546

  15. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue.

    PubMed

    Zhang, Wei; Liu, Yi; Kassab, Ghassan S

    2007-10-01

    The mechanical behavior of blood vessels is known to be viscoelastic rather than elastic. The functional role of viscoelasticity, however, has remained largely unclear. The hypothesis of this study is that viscoelasticity reduces the stresses and strains in the vessel wall, which may have a significant impact on the fatigue life of the blood vessel wall. To verify the hypothesis, the pulsatile stress in rabbit thoracic artery at physiological loading condition was investigated with a quasi-linear viscoelastic model, where the normalized stress relaxation function is assumed to be isotropic, while the stress-strain relationship is anisotropic and nonlinear. The artery was subjected to the same boundary condition, and the mechanical equilibrium equation was solved for both the viscoelastic and an elastic (which has a constant relaxation function) model. Numerical results show that, compared with purely elastic response, the viscoelastic property of arteries reduces the magnitudes and temporal variations of circumferential stress and strain. The radial wall movement is also reduced due to viscoelasticity. These findings imply that viscoelasticity may be beneficial for the fatigue life of blood vessels, which undergo millions of cyclic mechanical loadings each year of life.

  16. Continuum Theory of Dislocations: Yield Stress, Work Hardening, and Cell Walls

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James

    2004-03-01

    The yield stress and work hardening of metals is due to the entanglement of dislocations. These dislocations in late stages of hardening form patterns called cell structures. In classical plasticity theories, describing scales large compared to these cells, one usually supplies yield surface and plastic hardening function in order to describe the dynamics. We are developing a theory based on the Nye dislocation density tensor to describe the evolution on scales comparable to the cells. We expect that the yield stress and work hardening should emerge from a proper continuum theory, along with the cell walls. An evolution equation of dislocation density tensor is obtained by employing simple symmetry arguments and the constraint that the energy must decrease with time at fixed stress. A superposition of cell walls can be shown to be stationary-state solutions of the equation. Implementations of our theory with finite element simulations will be discussed.

  17. Pacing stress echocardiography

    PubMed Central

    Gligorova, Suzana; Agrusta, Marco

    2005-01-01

    Background High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/ end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility. Methods The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon). To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer)/end-systolic volume index (biplane Simpson rule). The heart rate is determined from ECG. Conclusion Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker. The force-frequency can be defined as up- sloping (normal) when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress values, biphasic with an

  18. Investigation of a Wall Shear-Stress Inner-Outer Interaction Model for Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Sidebottom, William; Cabrit, Olivier; Marusic, Ivan; Meneveau, Charles; Ooi, Andrew; Jones, David

    2014-11-01

    The very small turbulent motions in the thin layer of fluid immediately adjacent to a solid surface in a turbulent boundary layer make it difficult to effectively scrutinise the near-wall dynamics with physical and numerical experiments. These near-wall turbulent motions, and the no-slip condition, directly affect the tangential stress at the surface-the wall shear-stress. This study investigates a new wall-model for large-eddy simulations capable of predicting the fluctuating wall shear-stress from a large-scale velocity input, without the need to fully resolve the smallest structures in the flow. The model is based on the spectral structure of the turbulent boundary layer and the interaction between large-scale events in the logarithmic layer and small-scale events near the wall. Various methods have previously been used to predict the mean wall shear-stress with sufficient accuracy. There are, however, very few models available to predict the fluctuating component. Results from the new wall-model show that it has only a small effect on mean quantities, such as the skin-friction coefficient, but is able to resolve more of the wall shear-stress variance than a ``standard'' wall-model.

  19. Patient-specific finite element modeling of the Cardiokinetix Parachute(®) device: effects on left ventricular wall stress and function.

    PubMed

    Lee, Lik Chuan; Ge, Liang; Zhang, Zhihong; Pease, Matthew; Nikolic, Serjan D; Mishra, Rakesh; Ratcliffe, Mark B; Guccione, Julius M

    2014-06-01

    The Parachute(®) (Cardiokinetix, Inc., Menlo Park, California) is a catheter-based device intended to reverse left ventricular (LV) remodeling after antero-apical myocardial infarction. When deployed, the device partitions the LV into upper and lower chambers. To simulate its mechanical effects, we created a finite element LV model based on computed tomography (CT) images from a patient before and 6 months after Parachute(®) implantation. Acute mechanical effects were determined by in silico device implantation (VIRTUAL-Parachute). Chronic effects of the device were determined by adjusting the diastolic and systolic material parameters to better match the 6-month post-implantation CT data and LV pressure data at end-diastole (ED) (POST-OP). Regional myofiber stress and pump function were calculated in each case. The principal finding is that VIRTUAL-Parachute was associated with a 61.2 % reduction in the lower chamber myofiber stress at ED. The POST-OP model was associated with a decrease in LV diastolic stiffness and a larger reduction in myofiber stress at the upper (27.1%) and lower chamber (78.4%) at ED. Myofiber stress at end-systole and stroke volume was little changed in the POST-OP case. These results suggest that the primary mechanism of Parachute(®) is a reduction in ED myofiber stress, which may reverse eccentric post-infarct LV hypertrophy.

  20. Patient-specific finite element modeling of the Cardiokinetix Parachute® device: Effects on left ventricular wall stress and function

    PubMed Central

    Lee, Lik Chuan; Ge, Liang; Zhang, Zhihong; Pease, Matthew; Nikolic, Serjan D.; Mishra, Rakesh; Ratcliffe, Mark B.; Guccione, Julius M.

    2014-01-01

    The Parachute® (Cardiokinetix, Inc., Menlo Park, California) is a catheter-based device intended to reverse left ventricular (LV) remodeling after antero-apical myocardial infarction. When deployed, the device partitions the LV into upper and lower chambers. To simulate its mechanical effects, we created a finite element LV model based on computed tomography (CT) images from a patient before and 6 months after Parachute® implantation. Acute mechanical effects were determined by in-silico device implantation (VIRTUAL-Parachute). Chronic effects of the device were determined by adjusting the diastolic and systolic material parameters to better match the 6-month post-implantation CT data and LV pressure data at end-diastole (ED) (POST-OP). Regional myofiber stress and pump function were calculated in each case. The principal finding is that VIRTUAL-Parachute was associated with a 61.2% reduction in the lower chamber myofiber stress at ED. The POST-OP model was associated with a decrease in LV diastolic stiffness, and a larger reduction in myofiber stress at the upper (27.1%) and lower chamber (78.4%) at ED. Myofiber stress at end-systole and stroke volume were little changed in the POST-OP case. These results suggest that the primary mechanism of Parachute® is a reduction in ED myofiber stress, which may reverse eccentric post-infarct LV hypertrophy. PMID:24793158

  1. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, A.-V.; Sparks, S. R.; Chomaz, J.-M.; Lasheras, J. C.

    2006-08-01

    The changes in the evolution of the spatial and temporal distribution of the wall shear stresses (WSS) and gradients of wall shear stresses (GWSS) at different stages of the enlargement of an abdominal aortic aneurysm (AAA) are important in understanding the aetiology and progression of this vascular disease since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. Particle image velocimetry (PIV) measurements were performed in in vitro aneurysm models, while changing their geometric parameters systematically. It has been shown that, even at the very early stages of the disease, i.e. increase in the diameter ≤ 50%, the flow separates from the wall and a large vortex ring, usually followed by internal shear layers, is created. These lead to the generation of WSS that drastically differ in mean and fluctuating components from the healthy vessel. Inside the AAA, the mean WSS becomes negative along most of the aneurysmal wall and the magnitude of the WSS can be as low as 26% of the value in a healthy abdominal aorta.

  2. Mean wall shear stress in the femoral arterial bifurcation is low and independent of age at rest.

    PubMed

    Kornet, L; Hoeks, A P; Lambregts, J; Reneman, R S

    2000-01-01

    In elastic arteries, mean wall shear stress appears to be close to 1. 5 Pa, the value predicted by the theory of minimal energy loss. This finding in elastic arteries does not necessarily represent the situation in muscular arteries. Elastic arteries have to store potential energy, while muscular arteries have mainly a conductive function. Therefore, we determined wall shear stress and its age dependency in the common and superficial femoral arteries, 2-3 cm from the flow divider in 54 presumed healthy volunteers between 21 and 74 years of age, using a non-invasive ultrasound system. Prior to the study, the reliability of this system was determined in terms of intrasubject variation. Mean wall shear stress was significantly lower in the common femoral artery (0.35 +/- 0.18 Pa) than in the superficial femoral artery (0.49 +/- 0.15 Pa). In all age categories, peak systolic wall shear stress and the maximal cyclic change in wall shear stress were not significantly different in the common and the superficial femoral arteries. Peak systolic wall shear stress in the common and the superficial femoral arteries was not significantly different from the value previously determined in the common carotid artery, but mean wall shear stress was lower in the common and superficial femoral arteries than in the common carotid artery by a factor of 2-4. In both the common and the superficial femoral arteries, mean, peak systolic and maximal cyclic change in wall shear stress did not change significantly with age, nor did diameter. We conclude that, as compared to elastic arteries, mean wall shear stress is low in the conductive arteries of a resting leg, due to backflow during the first part of the diastolic phase of the cardiac cycle and the absence of flow during the rest of the diastolic phase. Mean wall shear stress is lower in the common than in the superficial femoral artery due to additional reflections from the deep femoral artery.

  3. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions.

    PubMed

    Ghuge, Sandip A; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-07-14

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H₂O₂) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H₂O₂ biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H₂O₂ derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  4. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    PubMed Central

    Ghuge, Sandip A.; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A.; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-01-01

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions. PMID:27135338

  5. Effect of shape and size of lung and chest wall on stresses in the lung

    NASA Technical Reports Server (NTRS)

    Vawter, D. L.; Matthews, F. L.; West, J. B.

    1975-01-01

    To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).

  6. Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy

    PubMed Central

    Feygin, Julia; Hu, Qinsong; Swingen, Cory; Zhang, Jianyi

    2008-01-01

    This study utilized porcine models of postinfarction LV remodeling (MI: n=8) and concentric LVH secondary to aortic banding (AoB: n=8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics (P-31 MR spectroscopy). Physiological assessments were conducted at a 4 week time point after myocardial infarction or aortic banding surgery. Comparisons were made with size matched normal animals (normal: n=8). Both myocardial infarction and aortic banding instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (p<0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of phosphocreatine to adenosine triphosphate (PCr/ATP) decreased from 1.98 ± 0.16 (normal) to 1.06 ± 0.30 (MI, p<0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, p<0.01 vs Normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone. PMID:18326803

  7. Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.

    PubMed

    Hosseinkhah, Nazanin; Goertz, David E; Hynynen, Kullervo

    2015-05-01

    Focused ultrasound with microbubbles is an emerging technique for blood-brain barrier opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble's nonspherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index.

  8. Acute Beta Blockade at Peak Stress: Will It Alter the Sensitivity of Dobutamine Stress Echocardiography in Patients with Normal Resting Wall Motion?

    PubMed

    Abdel-Salam, Zainab; Ghazy, Mohamed; Khaled, Mohamed; Nammas, Wail

    2016-01-01

    We compared the accuracy of recovery phase images following administration of intravenous propranolol with peak stress images, for detection of coronary artery disease in patients with no resting wall motion abnormalities undergoing dobutamine stress echocardiography. We enrolled 100 consecutive patients with no resting wall motion abnormalities who underwent dobutamine stress echocardiography. Propranolol was injected after termination of dobutamine infusion. Positive peak stress images were defined as the induction of wall motion abnormalities at any stage before propranolol injection. Positive recovery phase images were defined as maintenance or worsening of wall motion abnormalities induced at peak stress, or the appearance of new wall motion abnormalities during recovery phase. Significant coronary stenosis was defined as ≥ 50% obstruction of ≥ 1 sizable artery by coronary angiography. Seventy-two patients (72%) had significant coronary artery disease. Analysis of peak stress images revealed sensitivity, specificity, positive and negative predictive values of 80.6%, 85.7%, 93.5%, and 63.2%; the overall accuracy was 82%. Analysis of the recovery phase images revealed sensitivity, specificity, positive and negative predictive values of 91.7%, 75%, 90.4%, and 77.8%; here, the overall accuracy was 87%. In patients with no resting wall motion abnormalities, acute beta blockade during dobutamine stress echocardiography improved the sensitivity of recovery phase images for detection of significant coronary artery disease versus peak stress images, but with reduced specificity. Accuracy; Beta blocker; Coronary artery disease; Dobutamine stress echocardiography; Recovery phase images.

  9. Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Mathurin, Théo; Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2016-02-01

    The motion of a ferromagnetic domain wall in nanodevices is usually induced by means of external magnetic fields or polarized currents. Here, we demonstrate the possibility to reversibly control the position of a Néel domain wall in a ferromagnetic nanostripe through a uniform mechanical stress. The latter is generated by an electro-active substrate combined with the nanostripe in a multiferroic heterostructure. We develop a model describing the magnetization distribution in the ferromagnetic material, properly taking into account the magnetoelectric coupling. Through its numerical implementation, we obtain the relationship between the electric field applied to the piezoelectric substrate and the position of the magnetic domain wall in the nanostripe. As an example, we analyze a structure composed of a PMN-PT substrate and a TbCo2/FeCo composite nanostripe.

  10. Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels

    PubMed Central

    Yan, W. W.; Cai, B.

    2016-01-01

    Tumor cell adhesion to vessel walls in the microcirculation is one critical step in cancer metastasis. In this paper, the hypothesis that tumor cells prefer to adhere at the microvessels with localized shear stresses and their gradients, such as in the curved microvessels, was examined both experimentally and computationally. Our in vivo experiments were performed on the microvessels (post-capillary venules, 30–50 μm diameter) of rat mesentery. A straight or curved microvessel was cannulated and perfused with tumor cells by a glass micropipette at a velocity of ~1mm/s. At less than 10 min after perfusion, there was a significant difference in cell adhesion to the straight and curved vessel walls. In 60 min, the averaged adhesion rate in the curved vessels (n = 14) was ~1.5-fold of that in the straight vessels (n = 19). In 51 curved segments, 45% of cell adhesion was initiated at the inner side, 25% at outer side, and 30% at both sides of the curved vessels. To investigate the mechanical mechanism by which tumor cells prefer adhering at curved sites, we performed a computational study, in which the fluid dynamics was carried out by the lattice Boltzmann method, and the tumor cell dynamics was governed by the Newton’s law of translation and rotation. A modified adhesive dynamics model that included the influence of wall shear stress/gradient on the association/dissociation rates of tumor celladhesion was proposed, in which the positive wall shear stress/gradient jump would enhance tumor cell adhesion while the negative wall shear stress/gradient jump would weaken tumor cell adhesion. It was found that the wall shear stress/gradient, over a threshold, had significant contribution to tumor cell adhesion by activating or inactivating cell adhesion molecules. Our results elucidated why the tumor cell adhesion prefers to occur at the positive curvature of curved microvessels with very low Reynolds number (in the order of 10−2) laminar flow. PMID:21818636

  11. Panoramic diagnostics of shear stresses on the channel wall with a step using the liquid crystals

    NASA Astrophysics Data System (ADS)

    Zharkova, G. M.; Kovrizhina, V. N.; Petrov, A. P.; Pod'yachev, S. P.

    2016-11-01

    Measurements results on the shear stresses of surface friction by means of thin-film coatings based on cholesteric liquid crystals and specialized software for digital processing of experimental video are presented in the paper. The calibration dependencies of shear stress relative to the hue and azimuth angle as well as shear stress spatial distribution at subsonic turbulent flow ( V ∝ = 84 m/s) around a step, trapezoidal in plane (Reynolds number calculated for step height h, Re h = 2.57•104), with a base angle of 46° were derived for two geometries of experiment. The experiments demonstrated high sensitivity of liquid crystals to rearrangement of the near-wall flow structure and possibility to obtain quantitative data about mean shear stress levels.

  12. Impact of Wall Shear Stress and Pressure Variation on the Stability of Atherosclerotic Plaque

    NASA Astrophysics Data System (ADS)

    Taviani, V.; Li, Z. Y.; Sutcliffe, M.; Gillard, J.

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady and unsteady conditions assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding one dimensional models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed linearly elastic, homogeneous isotropic. The analysis showed that wall shear stress is small (less than 3.5%) with respect to pressure drop throughout the cycle even for severe stenosis. On the contrary, the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by one dimensional models. This suggests that the primary source of mistakes in one dimensional studies comes from neglecting the three dimensional geometry of the plaque. Neglecting axial forces only involves minor errors.

  13. Carotid wall stress calculated with continuous intima-media thickness assessment using B-mode ultrasound

    NASA Astrophysics Data System (ADS)

    Pascaner, A. F.; Craiem, D.; Casciaro, M. E.; Danielo, R.; Graf, S.; Guevara, E.

    2016-04-01

    Cardiovascular risk is normally assessed using clinical risk factors but it can be refined using non-invasive infra-clinical markers. Intima-Media Thickness (IMT) is recognized as an early indicator of cardiovascular disease. Carotid Wall Stress (CWS) can be calculated using arterial pressure and carotid size (diameter and IMT). Generally, IMT is measured during diastole when it reaches its maximum value. However, it changes during the cardiac cycle and a time-dependant waveform can be obtained using B-mode ultrasound images. In this work we calculated CWS considering three different approaches for IMT assessment: (i) constant IMT (standard diastolic value), (ii) estimated IMT from diameter waveform (assuming a constant cross-sectional wall area) and (iii) continuously measured IMT. Our results showed that maximum wall stress depends on the IMT estimation method. Systolic CWS progressively increased using the three approaches (p<0.024). We conclude that maximum CWS is highly dependent on wall thickness and accurate IMT measures during systole should be encouraged.

  14. Effect of a small molecule Lipid II binder on bacterial cell wall stress

    PubMed Central

    Malin, Jakob; Shetty, Amol C; Daugherty, Sean C; de Leeuw, Erik PH

    2017-01-01

    We have recently identified small molecule compounds that act as binders of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprised a hydrophilic head group that includes a peptidoglycan subunit composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) coupled to a short pentapeptide moiety. This headgroup is coupled to a long bactoprenol chain via a pyrophosphate group. Here, we report on the cell wall activity relationship of dimethyl-3-methyl(phenyl)amino-ethenylcyclohexylidene-propenyl-3-ethyl-1,3-benzothiazolium iodide (compound 5107930) obtained by functional and genetic analyses. Our results indicate that compounds bind to Lipid II and cause specific upregulation of the vancomycin-resistance associated gene vraX. vraX is implicated in the cell wall stress stimulon that confers glycopeptide resistance. Our small molecule Lipid II inhibitor retained activity against strains of Staphylococcus aureus mutated in genes encoding the cell wall stress stimulon. This suggests the feasibility of developing this new scaffold as a therapeutic agent in view of increasing glycopeptide resistance. PMID:28280373

  15. [Influence of wall thickness on the stress distribution within transtibial monolimb].

    PubMed

    Liu, Zhan; Fan, Yubo; Zhang, Ming; Jiang, Wentao; Pu, Fang; Chen, Junkai

    2004-08-01

    Monolimb is a new type of lower-limb prostheses made of macromolecule polymer, in which the socket and prosthetic shank are integrative. Compared with traditional prosthesis, monolimb is more economical, good-looking and portable, so it indicates a possible direction in the future. Biomechanical research on trans-tibial monolimb is necessary and helpful just like traditional prosthesis. In this article, a 3D FE model based on real geometry shape of an endoskeletal trans-tibial monolimb is established. Keeping the same geometrical shape, three 3D FE models of transtibial monolimbs with different wall thickness are established. The influence of wall thickness on the stress distribution is analyzed under the load corresponding to the subphase of stance of Heel Off. The results indicate that stress within transtibial monolimb and pressure on the surface of soft tissue could be decreased with wall thickness of transtibial monolimb increased. This study will be helpful for the standard of wall thickness in designing transtibial monolimb.

  16. Stress Intensity Factors for Radial Cracks in a Partially Autofrettaged Thick-Wall Cylinder

    DTIC Science & Technology

    1981-07-01

    P., "Simulation of Partial Autofrettage by Thermal Loads," Journal of Pressure Vessel Technology, Vol. 102, No. 3, 1980, pp. 314-318. ^ Baratta , F...OF LOAD RELIEF FACTOR Baratta ^ extended the coefficient of load relief of Neuber^^ to estimate SIF arising from multiple cracking in a thick-wall...Array Radial Cracks Using Isoparametric Singular Elements," ASTM STP-677, 1979, pp. 685-699. ■^ Baratta , F. I., "Stress Intensity Factors For

  17. Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis

    NASA Astrophysics Data System (ADS)

    Doriot, Pierre-André

    2003-01-01

    Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis.

  18. Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Qiu, Fasheng; Ren, Wenwei; Tian, Gui Yun; Gao, Bin

    2017-06-01

    Stress measurement that provides early indication of stress status has become increasingly demanding in the field of Non-destructive testing and evaluation (NDT&E). Bridging the correlation between micro magnetic properties and the applied tensile stress is the first conceptual step to come up with a new method of non-destructive testing. This study investigates the characterization of applied tensile stress with in-situ magnetic domain imaging and their dynamic behaviors by using magneto-optical Kerr effect (MOKE) microscopy assisted with magneto-optical indicator film (MOIF). Threshold magnetic field (TMF) feature to reflect 180 ° domain wall (DW) characteristics behaviors in different grains is proposed for stress detection. It is verified that TMF is a threshold feature with better sensitivity and brings linear correlation for stress characterization in comparison to classical coercive field, remanent magnetization, hysteresis loss and permeability parameters. The results indicate that 180 ° DWs dynamic in the inner grain is highly correlated with stress. The DW dynamics of turn over (TO) tests for different grains is studied to illustrate the repeatability of TMF. Experimental tests of high permeability grain oriented (HGO) electrical steels under stress loading have been conducted to verify this study.

  19. Elliptic blending model: A new near-wall Reynolds-stress turbulence closure

    NASA Astrophysics Data System (ADS)

    Manceau, Rémi; Hanjalić, Kemal

    2002-02-01

    A new approach to modeling the effects of a solid wall in one-point second-moment (Reynolds-stress) turbulence closures is presented. The model is based on the relaxation of an inhomogeneous (near-wall) formulation of the pressure-strain tensor towards the chosen conventional homogeneous (far-from-a-wall) form using the blending function α, for which an elliptic equation is solved. The approach preserves the main features of Durbin's Reynolds-stress model, but instead of six elliptic equations (for each stress component), it involves only one, scalar elliptic equation. The model, called "the elliptic blending model," offers significant simplification, while still complying with the basic physical rationale for the elliptic relaxation concept. In addition to model validation against direct numerical simulation in a plane channel for Reτ=590, the model was applied in the computation of the channel flow at a "real-life" Reynolds number of 106, showing a good prediction of the logarithmic profile of the mean velocity.

  20. Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress.

    PubMed

    Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur

    2012-01-03

    Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Wall Shear Stress in Oscillating Channel Flow Using Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Lance, Blake; Roberts, Jesse; Smith, Barton; Kearney, Sean

    2013-11-01

    Offshore wind and water power are renewable sources with the potential for significant power generation. But each generation mechanism has risks from ocean floor structures that can disrupt natural sediment transport by increasing local shear stress. The Sediment Erosion Actuated by Wave Oscillations and Linear Flow (SEAWOLF) flume was designed and built to replicate wave motion with both oscillatory and unidirectional components to study sediment transport. The rectangular test section provides optical access for Particle Image Velocimetry (PIV) measurements. Additionally series of pressure taps allow for differential pressure measurements. Sine-wave oscillations and unidirectional flow in more than a dozen combinations are measured and presented. Phase locked measurements of volume flow rates, velocity fields, and pressure are acquired over several hundred cycles and phase averaged. High spatial resolution PIV is used near the wall for direct shear stress measurements. Since the flow is unsteady, the pressure drop in the test section has both inertial and friction contributions. To isolate the friction term, the pressure resulting from the fluid acceleration is subtracted. The synced PIV and pressure measurements on smooth walls where the viscous sublayer is formed confirm the accuracy of this method. The pressure sensor then measures shear stress on rough walls where the viscous sublayer is disrupted or non-existent and where optical access is difficult.

  2. Effect of reverse flow on the pattern of wall shear stress near arterial branches.

    PubMed

    Kazakidi, A; Plata, A M; Sherwin, S J; Weinberg, P D

    2011-11-07

    Atherosclerotic lesions have a patchy distribution within arteries that suggests a controlling influence of haemodynamic stresses on their development. The distribution near aortic branches varies with age and species, perhaps reflecting differences in these stresses. Our previous work, which assumed steady flow, revealed a dependence of wall shear stress (WSS) patterns on Reynolds number and side-branch flow rate. Here, we examine effects of pulsatile flow. Flow and WSS patterns were computed by applying high-order unstructured spectral/hp element methods to the Newtonian incompressible Navier-Stokes equations in a geometrically simplified model of an aorto-intercostal junction. The effect of pulsatile but non-reversing side-branch flow was small; the aortic WSS pattern resembled that obtained under steady flow conditions, with high WSS upstream and downstream of the branch. When flow in the side branch or in the aortic near-wall region reversed during part of the cycle, significantly different instantaneous patterns were generated, with low WSS appearing upstream and downstream. Time-averaged WSS was similar to the steady flow case, reflecting the short duration of these events, but patterns of the oscillatory shear index for reversing aortic near-wall flow were profoundly altered. Effects of reverse flow may help explain the different distributions of lesions.

  3. Effect of reverse flow on the pattern of wall shear stress near arterial branches

    PubMed Central

    Kazakidi, A.; Plata, A. M.; Sherwin, S. J.; Weinberg, P. D.

    2011-01-01

    Atherosclerotic lesions have a patchy distribution within arteries that suggests a controlling influence of haemodynamic stresses on their development. The distribution near aortic branches varies with age and species, perhaps reflecting differences in these stresses. Our previous work, which assumed steady flow, revealed a dependence of wall shear stress (WSS) patterns on Reynolds number and side-branch flow rate. Here, we examine effects of pulsatile flow. Flow and WSS patterns were computed by applying high-order unstructured spectral/hp element methods to the Newtonian incompressible Navier–Stokes equations in a geometrically simplified model of an aorto-intercostal junction. The effect of pulsatile but non-reversing side-branch flow was small; the aortic WSS pattern resembled that obtained under steady flow conditions, with high WSS upstream and downstream of the branch. When flow in the side branch or in the aortic near-wall region reversed during part of the cycle, significantly different instantaneous patterns were generated, with low WSS appearing upstream and downstream. Time-averaged WSS was similar to the steady flow case, reflecting the short duration of these events, but patterns of the oscillatory shear index for reversing aortic near-wall flow were profoundly altered. Effects of reverse flow may help explain the different distributions of lesions. PMID:21508011

  4. Stress concentration, stress intensity and fatigue lifetime calculations in autofrettaged tubes containing axial perforations within the wall

    SciTech Connect

    Parker, A.P.; Endersby, S.N.; Bond, T.J.; Underwood, J.H.; Lee, S.L.; Higgins, J.

    1996-12-01

    Elastic, elastic-plastic and experimental stress analyses and fatigue lifetime predictions are presented for thick cylinders containing multiple, axial holes within the wall. The holes are generally semi-elliptical (including semi-circular) and the cylinders are autofrettaged after introduction of the holes and are subsequently subjected to cyclic pressurization of the bore. Two potentially critical failure locations are identified: a fracture-mechanics based design methodology is proposed; elastic and elastic-plastic finite element (FE) analyses are undertaken. The elastic FE analysis predicts hoop stresses at the bore resulting from internal pressurization which are some 7% higher than those for the equivalent plain tube. For a given hole size and location and for nominal overstrains of 40% or greater the residual compressive stress at the bore is reduced by approximately 15% below the value for a plain tube of the same radius ratio. Two experimental investigations are reported, one based upon X-ray diffraction, to measure residual stresses and stress gradients, and the other based upon radial tube slitting, to measure opening angle. They confirm most features of the residual stress profiles predicted from FE analysis with the exception of high compressive residual stresses and stress gradients immediately adjacent to the hole boundaries. Appropriate use of the residual stress information permits prediction of tube lifetimes for cracks emanating from the bore and from the hole. For the geometry and loading under consideration the more critical location is predicted to be the hole boundary, the lifetime for failures originating from this point being some 60% of the lifetime for cracks originating at the bore.

  5. A model of crosslink kinetics in the expanding plant cell wall: yield stress and enzyme action

    PubMed Central

    Dyson, R.J.; Band, L.R.; Jensen, O.E.

    2012-01-01

    The plant primary cell wall is a composite material containing stiff cellulose microfibrils that are embedded within a pectin matrix and crosslinked through a network of hemicellulose polymers. This microstructure endows the wall with nonlinear anisotropic mechanical properties and allows enzymatic regulation of expansive cell growth. We present a mathematical model of hemicellulose crosslink dynamics in an expanding cell wall incorporating strain-enhanced breakage and enzyme-mediated crosslink kinetics. The model predicts the characteristic yielding behaviour in the relationship between stress and strain-rate seen experimentally, and suggests how the effective yield and extensibility of the wall depend on microstructural parameters and on the action of enzymes of the XTH and expansin families. The model suggests that the yielding behaviour encapsulated in the classical Lockhart equation can be explained by the strongly nonlinear dependence of crosslink breakage rate on crosslink elongation. The model also demonstrates how enzymes that target crosslink binding can be effective in softening the wall in its pre-yield state, whereas its post-yield extensibility is determined primarily by the pectin matrix. PMID:22584249

  6. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress.

    PubMed

    Volgger, Michael; Lang, Ingeborg; Ovecka, Miroslav; Lichtscheidl, Irene

    2010-07-01

    We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200-650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC(6)(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150-450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations.

  7. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output.

    PubMed

    Smerup, Morten; Damkjær, Mads; Brøndum, Emil; Baandrup, Ulrik T; Kristiansen, Steen Buus; Nygaard, Hans; Funder, Jonas; Aalkjær, Christian; Sauer, Cathrine; Buchanan, Rasmus; Bertelsen, Mads Frost; Østergaard, Kristine; Grøndahl, Carsten; Candy, Geoffrey; Hasenkam, J Michael; Secher, Niels H; Bie, Peter; Wang, Tobias

    2016-02-01

    Giraffes--the tallest extant animals on Earth--are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. Arterial pressure may exceed 300 mmHg and has historically been attributed to an exceptionally large heart. Recently, this has been refuted by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It thus remains unexplained how the normal-sized giraffe heart generates such massive arterial pressures. We hypothesized that giraffe hearts have a small intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic pressures to calculate left ventricular wall stress. Cardiac output was also determined by inert gas rebreathing to provide an additional and independent estimate of stroke volume. Echocardiography and inert gas-rebreathing yielded similar cardiac outputs of 16.1±2.5 and 16.4±1.4 l min(-1), respectively. End-diastolic and end-systolic volumes were 521±61 ml and 228±42 ml, respectively, yielding an ejection fraction of 56±4% and a stroke volume of 0.59 ml kg(-1). Left ventricular circumferential wall stress was 7.83±1.76 kPa. We conclude that, relative to body mass, a small left ventricular cavity and a low stroke volume characterizes the giraffe heart. The adaptations result in typical mammalian left ventricular wall tensions, but produce a lowered cardiac output.

  8. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.

    PubMed

    Salek, M Mehdi; Sattari, Pooria; Martinuzzi, Robert J

    2012-03-01

    The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these "super bugs", is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes.

  9. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  10. Laser bending of pre-stressed thin-walled nickel micro-tubes

    NASA Astrophysics Data System (ADS)

    Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.

    2015-10-01

    Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.

  11. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge

    USDA-ARS?s Scientific Manuscript database

    This study was designed to investigate the growth promoting effects of supplementing different sources and concentrations of prebiotic yeast cell wall (YCW) products containing mannanoligosaccharides in starter broilers under an immune stress and Clostridium perfringens challenge. Through a series ...

  12. Working Principle Simulations of a Dynamic ResonantWall Shear Stress Sensor Concept.

    PubMed

    Zhang, Xu; Naughton, Jonathan W; Lindberg, William R

    2008-04-17

    This paper discusses a novel dynamic resonant wall shear stress sensor concept based on an oscillating sensor operating near resonance. The interaction between the oscillating sensor surface and the fluid above it is modelled using the unsteady laminar boundary layer equations. The numerical experiment shows that the effect of the oscillating shear stress is well correlated by the Hummer number, the ratio of the steady shear force caused by the outside flow to the oscillating viscous force created by the sensor motion. The oscillating shear stress predicted by the fluid model is used in a mechanical model of the sensor to predict the sensor's dynamic motion. Static calibration curves for amplitude and frequency influences are predicted. These results agree with experimental results on some extent, and shows some expectation for further development of the dynamic resonant sensor concept.

  13. Measurement of wall shear stress in chick embryonic heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen

    2015-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.

  14. Regional wall thickening of left ventricle evaluated by gated positron emission tomography in relation to myocardial perfusion and glucose metabolism

    SciTech Connect

    Yamashita, K.; Tamaki, N.; Yonekura, Y.; Ohtani, H.; Magata, Y.; Nohara, R.; Kambara, H.; Kawai, C.; Ban, T.; Konishi, J. )

    1991-04-01

    Regional wall thickening was assessed by electrocardiographically gated positron emission tomography (ECG-gated PET) in 26 patients with coronary artery disease. The standardized percent count increase from end-diastole to end-systole (S-percent Cl) was calculated as an index of wall thickening. The S-percent Cl was 77.8% +/- 28.9% in the segments with normal perfusion at rest, 51.9% +/- 29.5% in those with mild hypoperfusion, and 32.8% +/- 30.9% in those with severe hypoperfusion (p less than 0.001, each). Among the segments with resting hypoperfusion, the S-percent Cl was 38.9% +/- 31.5% in those without stress-induced ischemia and 48.7% +/- 30.9% in those with ischemia (p less than 0.05). Furthermore, among resting severe hypoperfusion, the S-percent Cl was 23.0% +/- 23.9% in the segments without fluorine-18-fluorodeoxyglucose (FDG) uptake and 37.8 +/- 32.9% in those with FDG uptake (p less than 0.05). These results suggest that stress-induced ischemia and FDG accumulation correlated with wall thickening. Thus, quantitative analysis of regional wall thickening seems to be useful for combined analysis of regional function, perfusion and metabolism in coronary patients.

  15. Validation of Reynolds Stress Transport Models with Velocity/Pressure-Gradient Models in Wall- Bounded Flows

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan D. C.; Poroseva, Svetlana; Murman, Scott

    2014-11-01

    In the traditional formulation of Reynolds Stress Transport (RST) turbulence models, velocity/pressure-gradient correlations are decomposed into pressure-strain correlations and pressure diffusion terms that are modeled separately. In our study, a potential of a different modeling approach for improving simulation results in the near-wall area is investigated. No decomposition of velocity/pressure-gradient correlations is attempted. New linear models for such correlations have been recently developed and successfully validated against DNS data in two-dimensional incompressible turbulent flows such as a zero-pressure gradient boundary layer over a flat plate and a fully-developed channel flow. The models correctly reproduce DNS profiles of velocity/pressure-gradient correlations up to the wall with the same model coefficients in different geometries and at different Reynolds numbers. These models are currently implemented in transport equations for Reynolds stresses. The compatibility of models for such correlations with existing models for the dissipation tensor and turbulent diffusion is investigated. Simulations are conducted with open-source software OpenFOAM and in-house code in two-dimensional wall-bounded flows. A part of the material is based upon work supported by NASA under Award NNX12AJ61A.

  16. Quantitative Assessment of Wall Shear Stress in an Aortic Coarctation - Impact of Virtual Interventions

    NASA Astrophysics Data System (ADS)

    Karlsson, Matts; Andersson, Magnus; Lantz, Jonas

    2014-11-01

    Turbulent and wall impinging blood flow causes abnormal shear forces onto the lumen and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, wall shear stress (WSS) and related flow parameters were studied in a pre-treated aortic coarctation (CoA) as well as after several virtual interventions using computational fluid dynamics (CFD). Patient-specific geometry and flow conditions were derived from magnetic resonance imaging (MRI) data. Finite element analysis was performed to acquire six different dilated CoAs. The unsteady pulsatile flow was resolved by large eddy simulation (LES) including non-Newtonian blood rheology. Pre-intervention, the presence of jet flow wall impingement caused an elevated WSS zone, with a distal region of low and oscillatory WSS. After intervention, cases with a more favorable centralized jet showed reduced high WSS values at the opposed wall. Despite significant turbulence reduction post-treatment, enhanced regions of low and oscillatory WSS were observed for all cases. This numerical method has demonstrated the morphological impact on WSS distribution in an CoA. With the predictability and validation capabilities of a combined CFD/MRI approach, a step towards patient-specific intervention planning is taken.

  17. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    NASA Astrophysics Data System (ADS)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  18. In Vivo Characterization of the Aortic Wall Stress-Strain Relationship

    PubMed Central

    Danpinid, Asawinee; Luo, Jianwen; Vappou, Jonathan; Terdtoon, Pradit; Konofagou, Elisa E.

    2014-01-01

    Arterial stiffness has been shown to be a good indicator of the arterial wall diseases. However, a single parameter is insufficient to describe the complex stress-strain relationship of a multi-component, non-linear tissue such as the aorta. We therefore propose a new approach to measure the stress-strain relationship locally in vivo and present a noninvasively, clinically relevant parameter describing the mechanical interaction between aortic wall constituents. The slope change of the circumferential stress-strain curve was hypothesized as a contribution of elastin and collagen, which was noninvasively defined in the term of strain using only radial aortic wall acceleration, i.e., transition strain (εθT). Two-spring parallel was employed as the phenomenological model and three Young's moduli were accordingly evaluated, i.e., corresponding to the: elastic lamellae (E1), elastin-collagen fibers (E2) and collagen fibers (E3). Our study performed on normal and Angiotensin II (AngII)-treated mouse abdominal aortas using aortic pressure from catheterization and local aortic wall diameters from a cross-correlation technique on the radio frequency (RF) ultrasound signal at 30 MHz and frame rate of 8 kHz. Using our technique, transition strain and three Young’s moduli in both normal and pathological aortas were mapped in 2D. In the results, the slope change of the circumferential stress-strain curve was first observed in vivo under physiologic conditions. The transition strain was identified at the lower strain level in the AngII-treated case, i.e., 0.029±0.006 of normal and 0.012±0.004 of AngII-treated aortas. E1, E2 and E3 were 69.7±18.6, 214.5±65.8 and 144.8±55.2 kPa for normal aortas, respectively, and 222.1±114.8, 775.0±586.4 and 552.9±519.1 kPa for AngII-treated aortas, respectively. This is because of the alteration of structures and content of the wall constituents, the degradation of elastic lamella and collagen formation due to AngII treatment. While

  19. Assessment of pulsatile wall shear stress in compliant arteries: numerical model, validation and experimental data.

    PubMed

    Salvucci, Fernando P; Perazzo, Carlos A; Barra, Juan G; Armentano, Ricardo L

    2009-01-01

    There is evidence that wall shear stress (WSS) is associated with vascular disease. In particular, it is widely accepted that vascular segments with low or oscillatory values of WSS are more probable to develop vascular disease. It is then necessary to establish a realistic model of the blood flow in blood vessels in order to determine precisely WSS. We proposed a numerical 1D model which takes into account the pulsatile nature of blood flow, the elasticity of the vessel, and its geometry. The model allows the calculation of shear stress. It was validated for stationary situations. Then, we computed the time-dependent WSS distribution from experimental data in the sheep thoracic aorta. Results showed that mean WSS calculated through steady flow and rigid walls models is overestimated. Peak WSS values for pulsatile flow must be considered since they resulted to be at least one order higher than mean values. Oscillations in shear stress in a period showed to be approximately of 40%. These findings show that the proposed model is suitable for estimating time-dependent WSS distributions, and confirm the need of using this kind of model when trying to evaluate realistic WSS in blood vessels.

  20. Measurements of gap pressure and wall shear stress of a blood pump model.

    PubMed

    Chua, L P; Akamatsu, T

    2000-04-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial hearts. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and stationary surfaces. As the gap is only 0.2 mm in width, it is very difficult to conduct measurements with present instrumentation. An enlarged model with 5:1 ratio of the pump has been designed and constructed according to specifications. Dimensionless gap pressure measurements of the model are very close to the prototype. The measurements of wall shear stress of the fluid flow in the clearance gap between the impeller face and inlet casing of a blood pump model were accomplished through hot-wire anemometry and rotating disk apparatus. Regions of relatively high and low shear stresses are identified. These correspond to spots where the likelihood of hemolysis and thrombus formation is high. With the use of dimensional analysis, it is found that the highest wall shear stress is equivalent to 146 Pa which is much lower than the threshold value of 400 Pa for hemolysis reported in the literature.

  1. Velocity profile and wall shear stress of saccular aneurysms at the anterior communicating artery.

    PubMed

    Yamaguchi, Ryuhei; Ujiie, Hiroshi; Haida, Sayaka; Nakazawa, Nobuhiko; Hori, Tomokatsu

    2008-01-01

    It has recently been shown that the aspect ratio (dome/neck) of an aneurysm correlates well with intraaneurysmal blood flow. Aneurysms with an aspect ratio larger than 1.6 carry a higher risk of rupture. We examined the effect of aspect ratio (AR) on intra-aneurysmal flow using experimental models. Flow visualization with particle imaging velocimetry and measurement of wall shear stress using laser Doppler anemometry were performed on three different aneurysm models: AR 0.5, 1.0, and 2.0. Intraaneurysmal flow consists of inflow, circulation, and outflow. Rapid inflow impinged on the distal neck creating a stagnant point. Rapid flow and maximum wall shear stress were observed in the vicinity of the stagnant point. By changing the Reynold's number, the stagnant point moved. By increasing the AR of the aneurysm, vortices inside the aneurysm sac closed and very slow flow was observed, resulting in very low shear stress markedly at a Reynold's number of 250, compatible with the diastolic phase. In the aneurysm model AR 2.0, both rapid flow at the neck and vortices inside the aneurysm are sufficient to activate platelets, making a thrombus that may anchor on the dome where very slow flow takes place. Hemodynamics in aneurysms larger than AR 2.0 definitely contribute to thrombus formation.

  2. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  3. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

    PubMed

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon

    2015-11-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. Copyright © 2015 the American Physiological Society.

  4. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels

    PubMed Central

    Kornuta, Jeffrey A.; Nepiyushchikh, Zhanna; Gasheva, Olga Y.; Mukherjee, Anish; Zawieja, David C.

    2015-01-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels. PMID:26333787

  5. Transection of anterior mitral basal stay chords alters left ventricular outflow dynamics and wall shear stress.

    PubMed

    Xiong, Fangli; Yeo, Joon Hock; Chong, Chuh Khiun; Chua, Yeow Leng; Lim, Khee Hiang; Ooi, Ean Tat; Goetz, Wolfgang A

    2008-01-01

    Anterior mitral basal stay chords are relocated to correct prolapse of the anterior mitral leaflet (AML); it has also been suggested that their transection might be used to treat functional ischemic mitral regurgitation. The study aim was to clarify the effect of stay chord transection (SCT) on the hemodynamic aspects of left ventricular outflow. Two three-dimensional left ventricular models including the left ventricular outflow tract and saddle-shaped mitral valve before and after SCT were constructed. After SCT, the AML was specified to be more concave and the aortomitral angle to be narrower than before SCT. Time-dependent turbulent flow in a flow range of 10 to 28 l/min during rapid ejection was simulated using the commercial software, FLUENT. Left ventricular outflow before SCT was streamlined along the AML throughout rapid ejection. After SCT, this flow was redirected in the vicinity of the AML, thereby creating a zone of persistent low-momentum recirculation associated with additional energy loss. Consequently, the axial forward flow delivered into the aorta after SCT was diminished. The high wall shear stress, which was concentrated at the fibrous trigones before SCT, was redistributed along the intertrigonal distance after SCT. The stay chords, which maintain the natural profile of the AML, are essential to streamline left ventricular outflow, facilitate flow delivery into the aorta, minimize dissipation of potential energy, and to create an optimum wall shear stress pattern that conforms to the fibrous trigones. Transection of the stay chords compromises local hemodynamics, resulting in greater energy loss and unfavorable wall shear stress distribution. The study results emphasize the importance of preserving stay chord function in mitral valve surgeries.

  6. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae.

    PubMed

    Jia, Lan; Wang, Lihua; Wei, Fang; Yu, Haibo; Dong, Hongye; Wang, Bo; Lu, Zhi; Sun, Guijiang; Chen, Haiyan; Meng, Jia; Li, Bo; Zhang, Ruining; Bi, Xueqing; Wang, Zhe; Pang, Haiyan; Jiang, Aili

    2015-05-01

    An arteriovenous fistulae (AVF) is the preferred vascular access for maintenance haemodialysis patients. Its dysfunction is often due to venous stenosis, which is mainly caused by neointimal hyperplasia. Additionally, haemodynamic forces, especially wall shear stress (WSS), as a mechanical stimuli to venous wall have a significant role in neointimal hyperplasia. The purpose of this study was to evaluate the association between WSS and neointimal hyperplasia. An 'end-to-side' AVF was created between the right femoral artery and vein of canines. Canines were killed at 7 and 28 days post-surgery. The velocity and WSS in the three-dimensional computational model of AVF were simulated using computational fluid dynamics (CFDs). The four typical sites of the vein evaluated in this study, chosen according to the haemodynamic analysis, included the arteriovenous anastomosis (A-V), the juxta-anastomotic segment (J-V), the juxta-ligation segment (L-V) and the proximal vein (P-V). The specimens were haematoxylin-eosin stained and the intima-media thickening was then measured. Neointimal hyperplasia was more obvious in the inner wall of the J-V and L-V (low-and-disturbed WSS) sites compared with the P-V and A-V sites, and the outer wall of the L-V and J-V segments (high or laminar WSS) (P < 0.01). In this study, we described the haemodynamic condition in the AVF and found that neointimal hyperplasia predisposed to occur in the inner wall of venous segment near the anastomosis. We also found that not only the neointimal hyperplasia has a strong inverse correlation with WSS levels, but also is related to flow patterns. © 2015 Asian Pacific Society of Nephrology.

  7. Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study.

    PubMed

    Fan, Rui; Tang, Dalin; Yang, Chun; Zheng, Jie; Bach, Richard; Wang, Liang; Muccigrosso, David; Billiar, Kristen; Zhu, Jian; Ma, Genshan; Maehara, Akiko; Mintz, Gary S

    2014-03-26

    Atherosclerotic plaque progression and rupture are believed to be associated with mechanical stress conditions. In this paper, patient-specific in vivo intravascular ultrasound (IVUS) coronary plaque image data were used to construct computational models with fluid-structure interaction (FSI) and cyclic bending to investigate correlations between plaque wall thickness and both flow shear stress and plaque wall stress conditions. IVUS data were acquired from 10 patients after voluntary informed consent. The X-ray angiogram was obtained prior to the pullback of the IVUS catheter to determine the location of the coronary artery stenosis, vessel curvature and cardiac motion. Cyclic bending was specified in the model representing the effect by heart contraction. 3D anisotropic FSI models were constructed and solved to obtain flow shear stress (FSS) and plaque wall stress (PWS) values. FSS and PWS values were obtained for statistical analysis. Correlations with p < 0.05 were deemed significant. Nine out of the 10 patients showed positive correlation between wall thickness and flow shear stress. The mean Pearson correlation r-value was 0.278 ± 0.181. Similarly, 9 out of the 10 patients showed negative correlation between wall thickness and plaque wall stress. The mean Pearson correlation r-value was -0.530 ± 0.210. Our results showed that plaque vessel wall thickness correlated positively with FSS and negatively with PWS. The patient-specific IVUS-based modeling approach has the potential to be used to investigate and identify possible mechanisms governing plaque progression and rupture and assist in diagnosis and intervention procedures. This represents a new direction of research. Further investigations using more patient follow-up data are warranted.

  8. Distribution of shear stress over smooth muscle cells in deformable arterial wall.

    PubMed

    Dabagh, Mahsa; Jalali, Payman; Konttinen, Yrjö T; Sarkomaa, Pertti

    2008-07-01

    A biphasic, anisotropic model of the deformable aortic wall in combination with computational fluid dynamics is used to investigate the variation of shear stress over smooth muscle cells (SMCs) with transmural pressure. The media layer is modeled as a porous medium consisting of SMCs and a homogeneous porous medium of interstitial fluid and elastin, collagen and proteoglycans fibers. Interstitial fluid enters the media through fenestral pores, which are distributed over the internal elastic lamina (IEL). The IEL is considered as an impermeable barrier to fluid flow except at fenestral pores. The thickness and the radius of aortic wall vary with transmural pressure ranging from 10 to 180 mm Hg. It is assumed that SMCs are cylinders with a circular cross section at 0 mm Hg. As the transmural pressure increases, SMCs elongate with simultaneous change of cross sectional shape into ellipse according to the strain field in the media. Results demonstrate that the variation of shear stress within the media layer is significantly dependent on the configuration and cross sectional shape of SMCs. In the staggered array of SMCs, the shear stress over the first SMC nearest to the IEL is about 2.2 times lower than that of the square array. The shear stress even over the second nearest SMC to the IEL is considerably higher (about 15%) in the staggered array. In addition to configuration and cross sectional shape of SMCs, the variation of structural properties of the media layer with pressure and the sensitivity of the local shear stress to the minimum distance between SMCs and the IEL (reducing with transmural pressure) between SMCs and the IEL are studied. At 180 mm Hg, the ratio of the local shear stress of the nearest SMC to that of the second nearest SMC is 4.8 in the square array, whereas it reduces to about 1.8 in the staggered array. The importance of the fluid shear stress is associated with its role in the biomolecular state of smooth muscle cells bearing the shear

  9. In vivo characterization of the aortic wall stress-strain relationship.

    PubMed

    Danpinid, Asawinee; Luo, Jianwen; Vappou, Jonathan; Terdtoon, Pradit; Konofagou, Elisa E

    2010-06-01

    Arterial stiffness has been shown to be a good indicator of arterial wall disease. However, a single parameter is insufficient to describe the complex stress-strain relationship of a multi-component, non-linear tissue such as the aorta. We therefore propose a new approach to measure the stress-strain relationship locally in vivo noninvasively, and present a clinically relevant parameter describing the mechanical interaction between aortic wall constituents. The slope change of the circumferential stress-strain curve was hypothesized to be related to the contribution of elastin and collagen, and was defined as the transition strain (epsilon(theta)(T)). A two-parallel spring model was employed and three Young's moduli were accordingly evaluated, i.e., corresponding to the: elastic lamellae (E(1)), elastin-collagen fibers (E(2)) and collagen fibers (E(3)). Our study was performed on normal and Angiotensin II (AngII)-treated mouse abdominal aortas using the aortic pressure after catheterization and the local aortic wall diameters change from a cross-correlation technique on the radio frequency (RF) ultrasound signal at 30 MHz and frame rate of 8 kHz. Using our technique, the transition strain and three Young's moduli in both normal and pathological aortas were mapped in 2D. The slope change of the circumferential stress-strain curve was first observed in vivo under physiologic conditions. The transition strain was found at a lower strain level in the AngII-treated case, i.e., 0.029+/-0.006 for the normal and 0.012+/-0.004 for the AngII-treated aortas. E(1), E(2) and E(3) were equal to 69.7+/-18.6, 214.5+/-65.8 and 144.8+/-55.2 kPa for the normal aortas, and 222.1+/-114.8, 775.0+/-586.4 and 552.9+/-519.1 kPa for the AngII-treated aortas, respectively. This is because of the alteration of structures and content of the wall constituents, the degradation of elastic lamella and collagen formation due to AngII treatment. While such values illustrate the alteration of

  10. Effects of verapamil, carbenoxolone and N-acetylcysteine on gastric wall mucus and ulceration in stressed rats.

    PubMed

    Koo, M W; Ogle, C W; Cho, C H

    1986-01-01

    The effects of verapamil on gastric wall mucus and ulceration were studied in rats which were restrained and exposed to 4 degrees C (stress). Stress for 2 h significantly depleted stomach wall mucus and produced marked gastric glandular ulcers. Verapamil pretreatment (2, 4, 8 or 16 mg/kg), injected intraperitoneally 30 min before experimentation, significantly prevented stress-induced mucus depletion and gastric ulceration; however, it did not itself influence stomach wall mucus levels in nonstressed animals. Intragastric administration of carbenoxolone (100 or 200 mg/kg), also given 30 min before stress, exhibited similar actions as verapamil. A 15% solution of N-acetylcysteine (10 ml/kg), given orally, strongly decreased the mucus content in both nonstress and stress conditions; it induced ulcers in nonstressed rats, and worsened stress ulceration. These effects were not reversed by verapamil pretreatment. The influence of multiple-dose pretreatment with verapamil or carbenoxolone on mucus content and ulceration in the gastric glandular mucosa during stress is also discussed. It is concluded that gastric wall mucus depletion is likely to play an important role in stress ulcer formation; the antiulcer action of verapamil could partly be due to the preservation of mucus.

  11. Residual stress analysis in forming process of filament wound thick-walled CFRP pipes

    SciTech Connect

    Kondo, Toshimi; Sekine, Hideki; Nakano, Kunio

    1995-11-01

    Residual stress analysis for the cracking phenomenon of filament would thick-walled CFRP pipes, which frequently occurs in the forming process of curing and thermal cycling through the course of the wet filament winding, was made from both the experimental and theoretical points of view. A simple analytical model to study the cracking in the CFRP pipes was proposed. The pipes are multilayered and reinforced in the axial and circumferential directions alternatively by carbon fibers. Taking account of the anisotropy of mechanical and thermal properties including the shrinkage strain, which depend considerably on the temperature, the residual stresses in the CFRP pipes were elucidated in the forming process, particularly, in cooling of the cure process.

  12. Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis

    NASA Astrophysics Data System (ADS)

    Awais, M.; Saleem, S.; Hayat, T.; Irum, S.

    2016-12-01

    This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.

  13. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells.

    PubMed

    de Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; de Lourdes Lúcio Ferrarese, Maria; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; de Oliveira Petkowicz, Carmen Lúcia

    2014-11-04

    Coffea arabica is the most important agricultural commodity in the world, and salinity is a major threat to its sustainable irrigation. Coffee leaf polysaccharides from plants subjected to salt stress were extracted and the leaves visualized through optical and electron microscopy. Alterations were detected in the monosaccharide composition of the pectin and hemicelluloses, with increases in uronic acid in all fractions. Changes in the polysaccharides were confirmed by HPSEC and FTIR. Moreover, the monolignol content was increased in the final residue, which suggests increased lignin content. The cytoplasm was altered, and the chloroplasts appeared irregular in shape. The arrangement of the stroma lamellae was disordered, and no starch granules were present. It was concluded that leaves of C. arabica under salt stress showed alterations in cell wall polysaccharides, increased monolignol content and structural damage to the cells of the mesophyll.

  14. Stress distribution in and equivalent width of flanges of wide, thin-wall steel beams

    NASA Technical Reports Server (NTRS)

    Winter, George

    1940-01-01

    The use of different forms of wide-flange, thin-wall steel beams is becoming increasingly widespread. Part of the information necessary for a national design of such members is the knowledge of the stress distribution in and the equivalent width of the flanges of such beams. This problem is analyzed in this paper on the basis of the theory of plane stress. As a result, tables and curves are given from which the equivalent width of any given beam can be read directly for use in practical design. An investigation is given of the limitations of this analysis due to the fact that extremely wide and thin flanges tend to curve out of their plane toward the neutral axis. A summary of test data confirms very satisfactorily the analytical results.

  15. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  16. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    PubMed

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-07

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the

  17. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    PubMed

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  18. The effect of arterial wall shear stress on the incremental elasticity of a conduit artery.

    PubMed

    Kelly, R F; Snow, H M

    2011-05-01

    The purpose of this investigation was to determine the effects of flow mediated dilatation on arterial incremental elasticity (E(inc) ).   In four female anaesthetized pigs, the iliac artery and vein were connected by a shunt with a variable resistance which allowed blood flow and therefore shear stress to be regulated. E(inc) was calculated from simultaneous records of diameter and pressure throughout a minimum of four cardiac cycles. Passive increases in diameter (∼1-2%) throughout a cardiac cycle, brought about by pressure, resulted in a two- to threefold increase in E(inc) . In contrast, increases in shear stress caused active smooth muscle relaxation and a significant increase in diameter from 3.663 ± 0.215 mm to 4.488 ± 0.163 mm (mean ± SEM, P < 0.05) equivalent to a fractional increase in diameter (fD) of 1.5 with no significant change in mean arterial pressure, 108 ± 2 mmHg to 106 ± 1 mmHg (mean ± SEM). The average value of E(inc) per cardiac cycle at baseline was 2.17 ± 0.10 × 10(3) kPa and remained relatively constant until fD exceeded 1.3 thereafter increasing to a maximum of 9.23 ± 1.0 × 10(3) kPa. These results show that in a conduit artery during the dilatory response to shear stress, the interaction between smooth muscle and collagen operates so as to maintain E(inc) relatively constant over much of the working range of dilatation. This is consistent with a model of the arterial wall in which collagen is recruited both by passive stretch, in response to an increase in pressure and therefore wall stress, and also by active contraction of smooth muscle. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  19. Cell wall yield properties of growing tissue: evaluation by in vivo stress relaxation. [Pisum sativus L

    SciTech Connect

    Cosgrove, D.J.

    1985-06-01

    Growing pea stem tissue, when isolated from an external supply of water, undergoes stress relaxation because of continued loosening of the cell wall. A theoretical analysis is presented to show that such stress relaxation should result in an exponential decrease in turgor pressure down to the yield threshold (Y), with a rate constant given by phi epsilon where phi is the metabolically maintained irreversible extensibility of the cell wall and epsilon is the volumetric elastic modulus of the cell. Stress relaxation was measured in pea (Pisum sativus L.) stem segments using the pressure microprobe technique. From the rate of stress relaxation, phi of segments pretreated with water was calculated to be 0.08 per megapascal per hour while that of auxin-pretreated tissue was 0.24 per megapascal per hour. These values agreed closely with estimates of phi made by a steady-state technique. The yield threshold (0.29 megapascal) was not affected by auxin. A theoretical analysis is also presented to show that the tissue hydraulic conductance may be estimated from the T/sub 1/2/ of tissue swelling. Experimentally, pea stems had a swelling T/sub 1/2/ of 2.0 minutes, corresponding to a relative hydraulic conductance of about 2.0 per megapascal per hour. This value is at least 8 times larger than phi. From these data and from computer modeling, it appears that the radial gradient in water potential which sustains water uptake in growing pea segments is small (0.04 megapascal). This means that hydraulic conductance does not substantially restrict growth. The results also demonstrate that the stimulation of growth by auxin can be entirely accounted for by the change in phi.

  20. Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

    PubMed

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A; Mascher, Thorsten

    2012-11-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing).

  1. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation.

    PubMed

    Baek, Hyoungsu; Jayaraman, Mahesh V; Karniadakis, George Em

    2009-12-01

    A growing number of cases of rupture at an infundibulum, progression of infundibulum to a frank aneurysm, and subarachnoid hemorrhage (SAH) in the posterior communicating artery (PCoA) have been reported. Using patient-specific geometric models of the supraclinoid internal carotid artery (ICA) with PCoA infundibulum or aneurysm, high-resolution computational fluid dynamics simulations were performed by solving the Navier-Stokes equations with a spectral/hp element method. Simulation results show that the flow impinges at the distal wall of infundibulum near the outside of the ICA bend and creates a region of higher pressure (4-5 mmHg) surrounded by a band of a high wall shear stress (WSS) (20-30 N/m(2) on average). At the proximal end of the infundibulum, another stagnation area is formed characterized by low WSS (<1 N/m(2)) and high oscillating shear index. This impingement region seems to coincide with the locations of the rupture of infundibulae or progression to aneurysms. In addition, the pulsatile flow becomes unstable due to the presence of aneurysms or aneurysm-like infundibulae, and this leads to WSS temporal fluctuations inside the aneurysm, which may accelerate the degenerative processes in the vessel walls.

  2. Mitral Annular Systolic Velocities Predict Left Ventricular Wall Motion Abnormality During Dobutamine Stress Echocardiography

    PubMed Central

    Sharif, Dawod; Sharif-Rasslan, Amal; Shahla, Camilia

    2011-01-01

    Background Longitudinal systolic left ventricular contraction is complementary to the radial performance and can be assessed using tissue Doppler imaging (TDI). This study was performed to evaluate the contribution of mitral annular systolic velocities using TDI after dobutamine stress echocardiography (DSE). Methods and Results Fifty subjects with suspected coronary artery disease and chest pain were examined, using DSE as usual, as well as TDI imaging of the mitral annulus at the septal, lateral, inferior, anterior, posterior regions and the proximal anteroseptal region from the apical views, before and immediately after DSE. In 24 subjects the study was normal, while wall motion abnormality was seen in 26, 9 of them only after DSE. Mitral annular systolic velocity at the 6 locations increased significantly after DSE both in normal subjects and in those with wall motion abnormality (WMA). After DSE mitral annular septal systolic velocity in normals, 19.2 ± 3.8 cm/sec, was higher than in those with WMA, 14.6 ± 2.5 cm/sec, P < 0.0003. Post-DSE mitral systolic velocity was senstive and accurate in predicting WMA. Conclusions Systolic mitral TDI velocities increase after DSE, however to a lesser extent in those with wall motion abnormality, and can differentiate them from normal subjects.

  3. Cultivar-dependent cell wall modification of strawberry fruit under NaCl salinity stress.

    PubMed

    Keutgen, Anna J; Pawelzik, Elke

    2007-09-05

    Strawberry cultivars differ in their sensitivity to NaCl; fruits of cv. Elsanta suffer from softening, whereas those of cv. Korona retain their firmness. The mean fruit fresh weight is reduced in cv. Elsanta up to 46% and in cv. Korona up to 26%. Cell walls of fruits grown under 0, 40, or 80 mmol/L NaCl were extracted and analyzed. In fruits of cv. Korona, the content of the alcohol-insoluble residue remained comparatively stable as salt levels increased but was reduced in cv. Elsanta. The water-soluble pectin fraction was not affected in cv. Korona, but the content of low methoxy pectinates increased significantly, indicative of the generation of calcium and magnesium bridges that stabilize pectin polysaccharides of cell walls. In cv. Elsanta, the content of water-soluble pectin rose, indicating pectin solubilization. For both cultivars, the significant negative correlation of fruit Cl(-) contents with the contents of NaOH-soluble pectinates, when expressed per fruit fresh mass, indicated that covalently bound pectic substances were degraded. Especially the response of cv. Elsanta is in line with the general observation that severe osmotic stress results in slower cell expansion and weaker cell walls.

  4. Cell Envelope Stress Response in Cell Wall-Deficient L-Forms of Bacillus subtilis

    PubMed Central

    Wolf, Diana; Domínguez-Cuevas, Patricia; Daniel, Richard A.

    2012-01-01

    L-forms are cell wall-deficient bacteria that can grow and proliferate in osmotically stabilizing media. Recently, a strain of the Gram-positive model bacterium Bacillus subtilis was constructed that allowed controlled switching between rod-shaped wild-type cells and corresponding L-forms. Both states can be stably maintained under suitable culture conditions. Because of the absence of a cell wall, L-forms are known to be insensitive to β-lactam antibiotics, but reports on the susceptibility of L-forms to other antibiotics that interfere with membrane-anchored steps of cell wall biosynthesis are sparse, conflicting, and strongly influenced by strain background and method of L-form generation. Here we investigated the response of B. subtilis to the presence of cell envelope antibiotics, with regard to both antibiotic resistance and the induction of the known LiaRS- and BceRS-dependent cell envelope stress biosensors. Our results show that B. subtilis L-forms are resistant to antibiotics that interfere with the bactoprenol cycle, such as bacitracin, vancomycin, and mersacidin, but are hypersensitive to nisin and daptomycin, which both affect membrane integrity. Moreover, we established a lacZ-based reporter gene assay for L-forms and provide evidence that LiaRS senses its inducers indirectly (damage sensing), while the Bce module detects its inducers directly (drug sensing). PMID:22964256

  5. Quantification of disturbed wall shear stress patterns in complex cardiovascular flows

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn C.

    2014-11-01

    Wall shear stress (WSS) affects the cardiovascular system in numerous ways, and is thought to play an important role in the pathology of many cardiovascular diseases. The (endothelial) cells lining the inner wall of blood vessels, and perhaps the cells inside the vessel wall, can actively sense WSS and respond both chemically and mechanically. The complexity of WSS in cardiovascular flows extends both spatially and temporally. Furthermore, WSS has magnitude and direction. These facets make simple quantification of WSS in cardiovascular applications difficult. In this study we propose a framework to quantify measures such as WSS angle gradient, WSS magnitude gradient, WSS angle time derivative and WSS magnitude time derivative. We will explain the relation of these parameters to the tensorial WSS gradient and WSS vector time derivative, and propose a new methodology to unify these concepts into a single measure. The correlation between these metrics and more common WSS metrics used in the literature will be demonstrated. For demonstration, these methods will be used for the quantification of complex blood flow inside abdominal aortic aneurysms.

  6. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation.

    PubMed

    Lantz, Jonas; Gårdhagen, Roland; Karlsson, Matts

    2012-10-01

    In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons.

  7. Timing relationships among maxima of punch and die-wall stress and punch displacement during compaction of viscoelastic solids.

    PubMed

    Morehead, W T; Rippie, E G

    1990-11-01

    The times of occurrence of maxima in punch stress, die-wall stress, and punch displacement in instrumented rotary tablet machines are shown to be noncoincidental for compacts exhibiting viscoelastic behavior. Equations are presented which characterize materials behaving as Kelvin solids in either or both distortion and dilation. These equations explicitly relate the timing of stress maxima to punch strain and strain rate. Typical effects are illustrated by data obtained for Avicel PH 101, Klucel, and mannitol. Punch stress maxima are shown to significantly precede the time of maximum punch insertion into the die for viscoelastic materials compacted at rates typical of production. Die-wall stress maxima occur after punch stress maxima due to internal rate-limited processes.

  8. A multi-layer description of Reynolds stresses in canonical wall bounded flows

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hussain, Fazle; She, Zhen-Su

    2015-11-01

    A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.

  9. Numerical study of wall shear stress-based descriptors in the human left coronary artery.

    PubMed

    Pinto, S I S; Campos, J B L M

    2016-10-01

    The present work is about the application of wall shear stress descriptors - time averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residence time (RRT) - to the study of blood flow in the left coronary artery (LCA). These descriptors aid the prediction of disturbed flow conditions in the vessels and play a significant role in the detection of potential zones of atherosclerosis development. Hemodynamic descriptors data were obtained, numerically, through ANSYS® software, for the LCA of a patient-specific geometry and for a 3D idealized model. Comparing both cases, the results are coherent, in terms of location and magnitude. Low TAWSS, high OSI and high RRT values are observed in the bifurcation - potential zone of atherosclerosis appearance. The dissimilarities observed in the TAWSS values, considering blood as a Newtonian or non-Newtonian fluid, releases the importance of the correct blood rheologic caracterization. Moreover, for a higher Reynolds number, the TAWSS values decrease in the bifurcation and along the LAD branch, increasing the probability of plaques deposition. Furthermore, for a stenotic LCA model, very low TAWSS and high RRT values in front and behind the stenosis are observed, indicating the probable extension, in the flow direction, of the lesion.

  10. Holographic measurement of wall stress distribution and 3D flow over a surface textured by microfibers

    NASA Astrophysics Data System (ADS)

    Bocanegra, Humberto; Gorumlu, Seder; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2015-11-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. Existing methods, such as μPIV, suffers from low spatial resolution and fail to track tracer particle motion very close to a rough surface and within roughness elements. In this paper, we present a technique that combines high speed digital holographic microscopy (DHM) with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories. It allows us to obtain a 3D velocity field with an uncertainty of 0.01% and 2D wall shear stress distribution at the resolution of ~ 65 μPa. Applying the technique to a microfluidics with a surface textured by microfibers, we find that the flow is three-dimensional and complex. While the microfibers affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses. The study of effect of microfiber patterns and flow characteristics on skin frictions are ongoing and will be reported.

  11. Stress-induced self-rolled metal/insulator bifilm microtube with micromesh walls

    NASA Astrophysics Data System (ADS)

    Lee, Kook-Nyung; Seo, Yeong-Tai; Lee, Min-Ho; Jung, Suk-Won; Kim, Yong-Kweon; Kim, Jung-Mu; Kyeong Seong, Woo

    2013-01-01

    A metal/insulator microtube with micromesh walls was constructed using stress-assisted self-rolling technology. The mesh-sidewall Pt/Ti/SiO2 microtube was self-formed by a tensile-stressed metal Pt/Ti film deposited onto a pre-patterned SiO2 micromesh layer. The microtube measured about 25 µm in diameter and was longer than 7 mm. The sidewall of the microtube was a square mesh, 5-20 µm long, and was electrically connected to electrical pads for electrical conductance measurement. The electrical resistance of the rolled-up microtube was measured to be 250-350 Ω when the microtube resistor's length was around 540 µm. The real-time measurement of the conductance change of the microtube with a Pt resistor could monitor the temperature change generated by heat injection. The microtube with micromesh walls is expected to be an interesting structure that has promising potential for use in electronics, chemical and biological applications.

  12. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery

    PubMed Central

    Bernabeu, Miguel O.; Nash, Rupert W.; Groen, Derek; Carver, Hywel B.; Hetherington, James; Krüger, Timm; Coveney, Peter V.

    2013-01-01

    Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83, 031902. (doi:10.1103/PhysRevE.83.031902)) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences. PMID:24427534

  13. Increased Expression of Lamin A/C Correlate with Regions of High Wall Stress in Abdominal Aortic Aneurysms

    PubMed Central

    Malkawi, Amir; Pirianov, Grisha; Torsney, Evelyn; Chetter, Ian; Sakalihasan, Natzi; Loftus, Ian M.; Nordon, Ian; Huggins, Christopher; Charolidi, Nicoletta; Thompson, Matt; Xu, Xie Yun; Cockerill, Gillian W.

    2015-01-01

    Background Since aortic diameter is the most ­significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture. Materials and Methods We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples). Results The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. ­Areas of high wall stress (n = 7) correlate to those ­regions which have the thinnest walls [778 µm (585–1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962–2919 µm)]. Induced expression of Lamin A/C ­correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch. Conclusion Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms. PMID:27175366

  14. Molecular Dynamics Study for Channel Size Dependence of Shear Stress Between Droplet and Wall.

    PubMed

    Fukushima, Akinori; Mima, Toshiki; Kinefuchi, Ikuya; Tokumasu, Takashi

    2015-04-01

    In this study, the channel size dependence of the shear stress between water droplets and solid walls in nm-order channel was analyzed. We considered a several different-sized and highly hydrophobic channel whose macroscopic contact angle was about 150 degrees. We have evaluated the shear stress and the normal pressure by molecular dynamics simulation. Analyzing shear stress and normal pressure based on the macroscopic model, we have discussed the difference between the macroscopic model based on hydrodynamics and the microscopic model. As a result, in the high hydrophobic case, it became clear that the shear stress depends on the channel size due to the large Laplace pressure. Furthermore, in the case that the channel size was less than 50 A, the normal pressure by the molecular simulation didn't agree with the expected value from the Young-Laplace equation. From this study it was clear that molecular simulation is needed when the channel size is less than 40 A.

  15. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting?

    PubMed

    Zörb, Christian; Mühling, Karl H; Kutschera, Ulrich; Geilfus, Christoph-Martin

    2015-01-01

    As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves.

  16. Salinity Stiffens the Epidermal Cell Walls of Salt-Stressed Maize Leaves: Is the Epidermis Growth-Restricting?

    PubMed Central

    Zörb, Christian; Mühling, Karl H.; Kutschera, Ulrich; Geilfus, Christoph-Martin

    2015-01-01

    As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves. PMID:25760715

  17. Nonoperative Treatment of Posterior Wall Acetabular Fractures After Dynamic Stress Examination Under Anesthesia: Revisited.

    PubMed

    McNamara, Andrew R; Boudreau, John A; Moed, Berton R

    2015-08-01

    Performing an examination under general anesthesia (EUA) using dynamic stress fluoroscopy of patients with posterior wall acetabular fractures has been used as a tool to determine hip stability and the need for surgical intervention. The purpose of this study was to further evaluate the effectiveness of this technique, from a source other than its primary advocates, in patients with posterior wall acetabular fractures less than or equal to 50% who were stable on EUA and treated nonoperatively. Retrospective case series. University Level 1 Trauma Center. Seventeen patients with a posterior wall acetabular fracture stable on EUA treated nonoperatively. The patients were treated nonoperatively as guided by an EUA negative for instability. Patient follow-up averaged 30 months (range, 6-64 months). Outcome evaluation included the modified Merle d'Aubigné clinical score and the Short Musculoskeletal Function Assessment Questionnaire. Radiographic evaluation for subluxation or arthritis consisted of the 3 standard pelvic radiographs. Radiographic evaluation showed all hips to be congruent with a normal joint space. Sixteen of the 17 patients had radiographic outcomes rated as "excellent"; 1 patient was rated "good." The modified Merle d'Aubigné score (obtained in 12 patients) averaged very good, with only 1 having less than a good (graded as fair) clinical outcome. The Short Musculoskeletal Function Assessment Questionnaire scores (from 11 patients) were not significantly different from normal and were within the normal reported values for all indices and categories. There was no correlation between fracture fragment size and outcome. This study further supports the contention that a stable hip joint, as determined by EUA, after posterior wall acetabular fracture treated nonoperatively is predictive of continued joint congruity, an excellent radiographic outcome, and good-to-excellent early clinical and functional outcomes. Therapeutic Level IV. See Instructions for

  18. Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition.

    PubMed

    Bahnan, Wael; Koussa, Joseph; Younes, Samer; Abi Rizk, Marybel; Khalil, Bassem; El Sitt, Sally; Hanna, Samer; El-Sibai, Mirvat; Khalaf, Roy A

    2012-08-01

    Candida albicans is a common opportunistic pathogen that causes a wide variety of diseases in a human immunocompromised host leading to death. In a pathogen, cell wall proteins are important for stability as well as for acting as antigenic determinants and virulence factors. Pir32 is a cell wall protein and member of the Pir protein family previously shown to be upregulated in response to macrophage contact and whose other member, Pir1, was found to be necessary for cell wall rigidity. The purpose of this study is to characterize Pir32 by generating a homozygous null strain and comparing the phenotype of the null with that of the wild-type parental strain as far as filamentation, virulence in a mouse model of disseminated candidiasis, resistance to oxidative stress and cell wall disrupting agents, in addition to adhesion, biofilm capacities, and cell wall chitin content. Our mutant was shown to be hyperfilamentous, resistant to sodium dodecyl sulfate, hydrogen peroxide, sodium chloride, and more virulent in a mouse model when compared to the wild type. These results were unexpected, considering that most cell wall mutations weaken the wall and render it more susceptible to external stress factors and suggests the possibility of a cell surface compensatory mechanism. As such, we measured cell wall chitin deposition and found a twofold increase in the mutant, possibly explaining the above-observed phenotypes.

  19. Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways.

    PubMed

    Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2009-11-01

    Fungi occupy diverse environments and are subjected to many extreme conditions. Among the stressful conditions faced by fungi are pH changes, osmotic changes, thermal changes, oxide radicals, nutrient deprivation, and exposure to chemicals. These adversities can be found either in the environment or in animal and human hosts. The cell wall integrity (CWI) pathway provides a means to fortify and repair damages to the cell wall in order to withstand stressful environments. The CWI pathway in comprised of cell wall stress sensors that lead to activation of a mitogen-activated protein kinase (MAPK) cascade. Signaling through the MAPK cascade leads to expression of transcription factors that facilitate biosynthesis of cell wall components and actin organization. Given the relatively limited number of components of the CWI pathway and the very diverse stimuli, there must be a means of expanding the pathway. To manage the diverse stress conditions, the CWI pathway cross talks with other pathways or proteins, and these cross talk events enhance the signaling capabilities of the CWI pathway. Lateral influences that facilitate maintaining the cell wall under stress conditions are TOR signaling, calcineurin signaling, the high-osmolarity glycerol pathway, the cyclic AMP-protein kinase A pathway, and additional proteins. In this article, we highlight several of the cross talk events that have been described for Saccharomyces cerevisiae and several other fungi.

  20. Characterizing microscale biological samples under tensile loading: stress-strain behavior of cell wall fragment of onion outer epidermis.

    PubMed

    Zamil, M S; Yi, Hojae; Haque, M A; Puri, Virendra M

    2013-06-01

    The results of published studies investigating the tissue-scale mechanical properties of plant cell walls are confounded by the unknown contributions of the middle lamella and the shape and size of each cell. However, due to their microscale size, cell walls have not yet been characterized at the wall fragment level under tensile loading. It is imperative to understand the stress-strain behavior of cell wall fragments to relate the wall's mechanical properties to its architecture. • This study reports a novel method used to characterize wall fragments under tensile loading. Cell wall fragments from onion outer epidermal peels were cut to the desired size (15 × 5 µm) using the focused ion beam milling technique, and these fragments were manipulated onto a microelectromechanical system (MEMS) tensile testing device. The stress-strain behavior of the wall fragments both in the major and minor growth directions were characterized in vacuo. • The measured mean modulus, fracture strength, and fracture strain in the major growth direction were 3.7 ± 0.8 GPa, 95.5 ± 24.1 MPa, and 3.0 ± 0.5%, respectively. The corresponding properties along the minor growth direction were 4.9 ± 1.2 GPa, 159 ± 48.4 MPa, and 3.8 ± 0.5%, respectively. • The fracture strength and fracture strain were significantly different along the major and minor growth directions, the wall fragment level modulus of elasticity anisotropy for a dehydrated cell wall was 1.23, suggesting a limited anisotropy of the cell wall itself compared with tissue-scale results.

  1. Effects of arterial blood flow on walls of the abdominal aorta: distributions of wall shear stress and oscillatory shear index determined by phase-contrast magnetic resonance imaging.

    PubMed

    Sughimoto, Koichi; Shimamura, Yoshiaki; Tezuka, Chie; Tsubota, Ken'ichi; Liu, Hao; Okumura, Kenichiro; Masuda, Yoshitada; Haneishi, Hideaki

    2016-07-01

    Although abdominal aortic aneurysms (AAAs) occur mostly inferior to the renal artery, the mechanism of the development of AAA in relation to its specific location is not yet clearly understood. The objective of this study was to evaluate the hypothesis that even healthy volunteers may manifest specific flow characteristics of blood flow and alter wall shear or oscillatory shear stress in the areas where AAAs commonly develop. Eight healthy male volunteers were enrolled in this prospective study, aged from 24 to 27. Phase-contrast magnetic resonance imaging (MRI) was performed with electrocardiographic triggering. Flow-sensitive four-dimensional MR imaging of the abdominal aorta, with three-directional velocity encoding, including simple morphological image acquisition, was performed. Information on specific locations on the aortic wall was applied to the flow encodes to calculate wall shear stress (WSS) and oscillatory shear index (OSI). While time-framed WSS showed the highest peak of 1.14 ± 0.25 Pa in the juxtaposition of the renal artery, the WSS plateaued to 0.61 Pa at the anterior wall of the abdominal aorta. The OSI peaked distal to the renal arteries at the posterior wall of the abdominal aorta of 0.249 ± 0.148, and was constantly elevated in the whole abdominal aorta at more than 0.14. All subjects were found to have elevated OSI in regions where AAAs commonly occur. These findings indicate that areas of constant peaked oscillatory shear stress in the infra-renal aorta may be one of the factors that lead to morphological changes over time, even in healthy individuals.

  2. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.

    PubMed

    Loth, Francis; Jones, Steven A; Zarins, Christopher K; Giddens, Don P; Nassar, Raja F; Glagov, Seymour; Bassiouny, Hisham S

    2002-02-01

    Intimal hyperplastic thickening (IHT) is a frequent cause of prosthetic bypass graft failure. Induction and progression of IHT is thought to involve a number of mechanisms related to variation in the flow field, injury and the prosthetic nature of the conduit. This study was designed to examine the relative contribution of wall shear stress and injury to the induction of IHT at defined regions of experimental end-to-side prosthetic anastomoses. The distribution of IHT was determined at the distal end-to-side anastomosis of seven canine Iliofemoral PTFE grafts after 12 weeks of implantation. An upscaled transparent model was constructed using the in vivo anastomotic geometry, and wall shear stress was determined at 24 axial locations from laser Doppler anemometry measurements of the near wall velocity under conditions of pulsatile flow similar to that present in vivo. The distribution of IHT at the end-to-side PTFE graft was determined using computer assisted morphometry. IHT involving the native artery ranged from 0.0+/-0.1 mm to 0.05+/-0.03 mm. A greater amount of IHT was found on the graft hood (PTFE) and ranged from 0.09+/-0.06 to 0.24+/-0.06 mm. Nonlinear multivariable logistic analysis was used to model IHT as a function of the reciprocal of wall shear stress, distance from the suture line, and vascular conduit type (i.e. PTFE versus host artery). Vascular conduit type and distance from the suture line independently contributed to IHT. An inverse correlation between wall shear stress and IHT was found only for those regions located on the juxta-anastomotic PTFE graft. The data are consistent with a model of intimal thickening in which the intimal hyperplastic pannus migrating from the suture line was enhanced by reduced levels of wall shear stress at the PTFE graft/host artery interface. Such hemodynamic modulation of injury induced IHT was absent at the neighboring artery wall.

  3. A mathematical model for estimating the axial stress of the common carotid artery wall from ultrasound images.

    PubMed

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir; Sharif-Kashani, Shervin

    2016-08-01

    Clarifying the complex interaction between mechanical and biological processes in healthy and diseased conditions requires constitutive models for arterial walls. In this study, a mathematical model for the displacement of the carotid artery wall in the longitudinal direction is defined providing a satisfactory representation of the axial stress applied to the arterial wall. The proposed model was applied to the carotid artery wall motion estimated from ultrasound image sequences of 10 healthy adults, and the axial stress waveform exerted on the artery wall was extracted. Consecutive ultrasonic images (30 frames per second) of the common carotid artery of 10 healthy subjects (age 44 ± 4 year) were recorded and transferred to a personal computer. Longitudinal displacement and acceleration were extracted from ultrasonic image processing using a block-matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation for thin-walled tubes. Performance of the proposed model was evaluated using goodness of fit between approximated and measured longitudinal displacement statistics. Values of goodness-of-fit statistics indicated high quality of fit for all investigated subjects with the mean adjusted R-square (0.86 ± 0.08) and root mean squared error (0.08 ± 0.04 mm). According to the results of the present study, maximum and minimum axial stresses exerted on the arterial wall are 1.7 ± 0.6 and -1.5 ± 0.5 kPa, respectively. These results reveal the potential of this technique to provide a new method to assess arterial stress from ultrasound images, overcoming the limitations of the finite element and other simulation techniques.

  4. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.

    PubMed

    Chen, Yuhang; Schellekens, Michiel; Zhou, Shiwei; Cadman, Joseph; Li, Wei; Appleyard, Richard; Li, Qing

    2011-08-01

    Tissue scaffolds aim to provide a cell-friendly biomechanical environment for facilitating cell growth. Existing studies have shown significant demands for generating a certain level of wall shear stress (WSS) on scaffold microstructural surfaces for promoting cellular response and attachment efficacy. Recently, its role in shear-induced erosion of polymer scaffold has also drawn increasing attention. This paper proposes a bi-directional evolutionary structural optimization (BESO) approach for design of scaffold microstructure in terms of the WSS uniformity criterion, by downgrading highly-stressed solid elements into fluidic elements and/or upgrading lowly-stressed fluidic elements into solid elements. In addition to this, a computational model is presented to simulate shear-induced erosion process. The effective stiffness and permeability of initial and optimized scaffold microstructures are characterized by the finite element based homogenization technique to quantify the variations of mechanical properties of scaffold during erosion. The illustrative examples show that a uniform WSS is achieved within the optimized scaffold microstructures, and their architectural and biomechanical features are maintained for a longer lifetime during shear-induced erosion process. This study provides a mathematical means to the design optimization of cellular biomaterials in terms of the WSS criterion towards controllable shear-induced erosion.

  5. Plaque components affect wall stress in stented human carotid artery: A numerical study

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-Min; Liu, Xiao; Du, Cheng-Fei; Sun, An-Qiang; Zhang, Nan; Fan, Zhan-Ming; Fan, Yu-Bo; Deng, Xiao-Yan

    2016-12-01

    Carotid artery stenting presents challenges of in-stent restenosis and late thrombosis, which are caused primarily by alterations in the mechanical environment of the artery after stent implantation. The present study constructed patient-specific carotid arterial bifurcation models with lipid pools and calcified components based on magnetic resonance imaging. We numerically analyzed the effects of multicomponent plaques on the distributions of von Mises stresses (VMSs) in the patient-specific models after stenting. The results showed that when a stent was deployed, the large soft lipid pool in atherosclerotic plaques cushioned the host artery and reduced the stress within the arterial wall; however, this resulted in a sharp increase of VMS in the fibrous cap. When compared with the lipid pool, the presence of the calcified components led to slightly increased stresses on the luminal surface. However, when a calcification was located close to the luminal surface of the host artery and the stenosis, the local VMS was elevated. Overall, compared with calcified components, large lipid pools severely damaged the host artery after stenting. Furthermore, damage due to the calcified component may depend on location.

  6. Characterization of the stress-strain relationship of the abdominal aortic wall in vivo.

    PubMed

    Danpinid, Asawinee; Luo, Jianwen; Vappou, Jonathan; Terdtoon, Pradit; Konofagou, Elisa E

    2009-01-01

    We hereby propose a new method to determine the regionally passive, elastic, stress-strain relationship of the normal murine abdominal aorta in vivo. The circumferential stress-strain relationship was assessed through Laplace's law, a small deformation framework and a relationship between luminal pressure and diameter variation. The regional diameter variation of the murine abdominal aortas was obtained using a cross-correlation technique on radio-frequency (RF) signals at the extremely high frame rate of 8 kHz. The luminal pressure variation was measured by an ultra-miniature pressure catheter over one cardiac cycle. The change of slope of the stress-strain curve was noticed, which was the contribution of elastin and engaged collagen fibers. The stressstrain relationships before and after this transition was assumed to be linear. Three Young's moduli of the aortic wall were characterized in six mice in vivo: (1) elastin, (2) elastin-collagen and (3) engaged collagen fibers, which were equal to 91.6+/-26.5, 229.0+/-80.4 and 137.5+/-65.6 kPa, respectively. The proposed methodology thus allowed for noninvasive mapping of the mechanical properties of its constituents in vivo.

  7. Analysis of the strain and stress distribution in the wall of the developing and mature rat aorta.

    PubMed

    Rachev, A; Greenwald, S E; Kane, T P; Moore, J E; Meister, J J

    1995-01-01

    The variation of wall stress distribution with age in the thoracic and abdominal aortas of normotensive rats was studied. Dimensions of the zero-stress configurations were measured at the ages of 4, 8, 12, 20, and 52 weeks. Using data from previously published inflation tests, the circumferential stress-strain relationship was obtained in each age group. The calculated stress distribution showed that the average circumferential stress remained practically constant after the age of 20 weeks. The circumferential stress at the innermost part of the arterial wall was greater than the stress at the outermost part, but the difference was maintained at a moderate level with adjustments in the zero-stress configuration. It is speculated that, after the age of 20 weeks, changes in arterial geometry and rheological properties tend to maintain a constant stress distribution under varying conditions of loading. This distribution was achieved by enhanced growth at the inner part of the media in comparison with the growth at its outer margins and suggests that during development and maturity, the growth of the aorta is modulated by circumferential stress.

  8. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    NASA Technical Reports Server (NTRS)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  9. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  10. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension

    PubMed Central

    Kheyfets, Vitaly O.; Schroeder, Joyce D.; Dunning, Jamie; Shandas, Robin; Buckner, J. Kern; Browning, James; Hertzberg, Jean; Hunter, Kendall S.; Fenster, Brett E.

    2016-01-01

    Abstract Pulmonary hypertension (PH) is associated with proximal pulmonary arterial remodeling characterized by increased vessel diameter, wall thickening, and stiffness. In vivo assessment of wall shear stress (WSS) may provide insights into the relationships between pulmonary hemodynamics and vascular remodeling. We investigated the relationship between main pulmonary artery (MPA) WSS and pulmonary hemodynamics as well as markers of stiffness. As part of a prospective study, 17 PH patients and 5 controls underwent same-day four-dimensional flow cardiac magnetic resonance imaging (4-D CMR) and right heart catheterization. Streamwise velocity profiles were generated in the cross-sectional MPA in 45° increments from velocity vector fields determined by 4-D CMR. WSS was calculated as the product of hematocrit-dependent viscosity and shear rate generated from the spatial gradient of the velocity profiles. In-plane average MPA WSS was significantly decreased in the PH cohort compared with that in controls (0.18 ± 0.07 vs. 0.32 ± 0.08 N/m2; P = 0.01). In-plane MPA WSS showed strong inverse correlations with multiple hemodynamic indices, including pulmonary resistance (ρ = −0.74, P < 0.001), mean pulmonary pressure (ρ = −0.64, P = 0.006), and elastance (ρ = −0.70, P < 0.001). In addition, MPA WSS had significant associations with markers of stiffness, including capacitance (ρ = 0.67, P < 0.001), distensibility (ρ = 0.52, P = 0.013), and elastic modulus (ρ = −0.54, P = 0.01). In conclusion, MPA WSS is decreased in PH and is significantly associated with invasive hemodynamic indices and markers of stiffness. 4-D CMR–based assessment of WSS may represent a novel methodology to study blood-vessel wall interactions in PH. PMID:27076906

  11. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension.

    PubMed

    Schäfer, Michal; Kheyfets, Vitaly O; Schroeder, Joyce D; Dunning, Jamie; Shandas, Robin; Buckner, J Kern; Browning, James; Hertzberg, Jean; Hunter, Kendall S; Fenster, Brett E

    2016-03-01

    Pulmonary hypertension (PH) is associated with proximal pulmonary arterial remodeling characterized by increased vessel diameter, wall thickening, and stiffness. In vivo assessment of wall shear stress (WSS) may provide insights into the relationships between pulmonary hemodynamics and vascular remodeling. We investigated the relationship between main pulmonary artery (MPA) WSS and pulmonary hemodynamics as well as markers of stiffness. As part of a prospective study, 17 PH patients and 5 controls underwent same-day four-dimensional flow cardiac magnetic resonance imaging (4-D CMR) and right heart catheterization. Streamwise velocity profiles were generated in the cross-sectional MPA in 45° increments from velocity vector fields determined by 4-D CMR. WSS was calculated as the product of hematocrit-dependent viscosity and shear rate generated from the spatial gradient of the velocity profiles. In-plane average MPA WSS was significantly decreased in the PH cohort compared with that in controls (0.18 ± 0.07 vs. 0.32 ± 0.08 N/m(2); P = 0.01). In-plane MPA WSS showed strong inverse correlations with multiple hemodynamic indices, including pulmonary resistance (ρ = -0.74, P < 0.001), mean pulmonary pressure (ρ = -0.64, P = 0.006), and elastance (ρ = -0.70, P < 0.001). In addition, MPA WSS had significant associations with markers of stiffness, including capacitance (ρ = 0.67, P < 0.001), distensibility (ρ = 0.52, P = 0.013), and elastic modulus (ρ = -0.54, P = 0.01). In conclusion, MPA WSS is decreased in PH and is significantly associated with invasive hemodynamic indices and markers of stiffness. 4-D CMR-based assessment of WSS may represent a novel methodology to study blood-vessel wall interactions in PH.

  12. Wall shear stress assessment in the common carotid artery of end-stage renal failure patients.

    PubMed

    Samijo, S K; Barkhuysen, R; Willigers, J M; Leunissen, K M L; Ledoux, L A F; Kitslaar, P J E H M; Hoeks, A P G

    2002-01-01

    Under physiological circumstances in the common carotid artery (CCA), mean wall shear stress (WSS), defined as mean wall shear rate (WSR) times local whole blood viscosity (WBV), is maintained at approximately 1.5 Pa. In patients with end-stage renal failure (ESRF) whole blood viscosity is low and it is not unlikely that mean WSS is lower in these patients than in control subjects. Moreover, hemodialysis causes an acute increase in blood viscosity with possible effects on WSS. In this study WSS in the CCA was determined with the Shear Rate Estimating System, an apparatus based on ultrasound, in ESRF patients (n = 13) and in presumed healthy age- and sex-matched control subjects (n = 13). Prior to hemodialysis, mean WSS (0.67 +/- 0.23 Pa) was significantly lower (p < 0.05) in patients with ESRF, due to both a lower WBV (2.80 +/- 0.52 mPa.s) and mean WSR (271 +/- 109 s(-1)), than in the control subjects (mean WSS: 1.24 +/- 0.20 Pa; WBV: 3.20 +/- 0.29 mPa.s; WSR: 387 +/- 51 s(-1)). Hemodialysis induced an increase in WBV (up to 3.71 +/- 1.54 mPa.s, p < 0.01), but mean WSS did not change significantly due to a reciprocal decrease in mean wall shear rate. These findings demonstrate that WSS is lower in hemodialysis patients than in control subjects, and that mean WSS is maintained at this low level despite an acute change in blood viscosity.

  13. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  14. The vulnerable plaque: current concepts and future perspectives on coronary morphology, composition and wall stress imaging.

    PubMed

    Silva Marques, João; Pinto, Fausto J

    2014-02-01

    Cardiovascular imaging plays an important role in the identification and characterization of the vulnerable plaque. A major goal is the ability to identify individuals at risk of plaque rupture and developing an acute coronary syndrome. Early recognition of rupture-prone atherosclerotic plaques may lead to the development of pharmacologic and interventional strategies to reduce acute coronary events. We review state-of-the-art cardiovascular imaging for identification of the vulnerable plaque. There is ample evidence of a close relationship between plaque morphology and patient outcome, but molecular imaging can add significant information on tissue characterization, inflammation and subclinical thrombosis. Additionally, identifying arterial wall exposed to high shear stress may further identify rupture-prone arterial segments. These new modalities may help reduce the individual, social and economic burden of cardiovascular disease. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  15. Wall Shear Stress Distribution in a Patient-Specific Cerebral Aneurysm Model using Reduced Order Modeling

    NASA Astrophysics Data System (ADS)

    Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya

    2016-11-01

    We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.

  16. Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe

    NASA Astrophysics Data System (ADS)

    Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.

    2017-04-01

    A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.

  17. Novel high bandwidth wall shear stress sensor for ultrasonic cleaning applications

    NASA Astrophysics Data System (ADS)

    Gonzalez-Avila, S. Roberto; Prabowo, Firdaus; Ohl, Claus-Dieter

    2010-11-01

    Ultrasonic cleaning is due to the action of cavitation bubbles. The details of the cleaning mechanisms are not revealed or confirmed experimentally, yet several studies suggest that the wall shear stresses generated are very high, i.e. of the order of several thousand Pascal. Ultrasonic cleaning applications span a wide range from semiconductor manufacturing, to low pressure membrane cleaning, and the in the medical field cleaning of surgical instruments. We have developed a novel sensor to monitor and quantify cleaning activity which is (1) very sturdy, (2) has a high bandwidth of several megahertz, (3) is cheap in manufacturing costs, and (4) of very small size. We analyze the sensor signal by comparing its response time correlated to single laser induced cavitation bubbles using high-speed photography. Additionally, we will present first measurements in ultrasonic cleaning bathes using again high-speed photography. A preliminary discussion on the working mechanism of the sensor will be presented.

  18. Non-Newtonian Flow of Blood in Arterioles: Consequences for Wall Shear Stress Measurements

    PubMed Central

    SRIRAM, Krishna; INTAGLIETTA, Marcos; TARTAKOVSKY, Daniel M.

    2014-01-01

    We model blood in a microvessel as an inhomogeneous non-Newtonian fluid, whose viscosity varies with hematocrit and shear rate in accordance with the Quemada rheological relation. The flow is assumed to consist of two distinct, immiscible and homogeneous fluid layers: an inner region densely packed with red blood cells, and an outer cell-free layer whose thickness depends on discharge hematocrit. We demonstrate that the proposed model provides a realistic description of velocity profiles, tube hematocrit, core hematocrit and apparent viscosities over a wide range of vessel radii and discharge hematocrits. Our analysis reveals the importance of incorporating this complex blood rheology into estimates of wall shear stress in micro-vessels. The latter is accomplished by specifying a correction factor, which accounts for the deviation of blood flow from the Poiseuille law. PMID:24703006

  19. Wall Shear Stress-Based Model for Adhesive Dynamics of Red Blood Cells in Malaria

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2011-01-01

    Red blood cells (RBCs) infected by the Plasmodium falciparum (Pf-RBCs) parasite lose their membrane deformability and they also exhibit enhanced cytoadherence to vascular endothelium and other healthy and infected RBCs. The combined effect may lead to severe disruptions of normal blood circulation due to capillary occlusions. Here we extend the adhesion model to investigate the adhesive dynamics of Pf-RBCs as a function of wall shear stress (WSS) and other parameters using a three-dimensional, multiscale RBC model. Several types of adhesive behavior are identified, including firm adhesion, flipping dynamics, and slow slipping along the wall. In particular, the flipping dynamics of Pf-RBCs observed in experiments appears to be due to the increased stiffness of infected cells and the presence of the solid parasite inside the RBC, which may cause an irregular adhesion behavior. Specifically, a transition from crawling dynamics to flipping behavior occurs at a Young's modulus approximately three times larger than that of healthy RBCs. The simulated dynamics of Pf-RBCs is in excellent quantitative agreement with available microfluidic experiments if the force exerted on the receptors and ligands by an existing bond is modeled as a nonlinear function of WSS. PMID:21539775

  20. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2011-05-04

    Red blood cells (RBCs) infected by the Plasmodium falciparum (Pf-RBCs) parasite lose their membrane deformability and they also exhibit enhanced cytoadherence to vascular endothelium and other healthy and infected RBCs. The combined effect may lead to severe disruptions of normal blood circulation due to capillary occlusions. Here we extend the adhesion model to investigate the adhesive dynamics of Pf-RBCs as a function of wall shear stress (WSS) and other parameters using a three-dimensional, multiscale RBC model. Several types of adhesive behavior are identified, including firm adhesion, flipping dynamics, and slow slipping along the wall. In particular, the flipping dynamics of Pf-RBCs observed in experiments appears to be due to the increased stiffness of infected cells and the presence of the solid parasite inside the RBC, which may cause an irregular adhesion behavior. Specifically, a transition from crawling dynamics to flipping behavior occurs at a Young's modulus approximately three times larger than that of healthy RBCs. The simulated dynamics of Pf-RBCs is in excellent quantitative agreement with available microfluidic experiments if the force exerted on the receptors and ligands by an existing bond is modeled as a nonlinear function of WSS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Noise in single-wall carbon nanotubes under high electric field stress

    NASA Astrophysics Data System (ADS)

    Richter, Curt; Jurchescu, Oana; Liang, Xuelei; Gundlach, David; Liao, Albert; Pop, Eric

    2010-03-01

    We characterized the noise properties of field effect transistors made from individual semiconducting single-walled carbon nanotubes (CNTs) under high electric field stress to probe scattering mechanisms during avalanche and self-heating conditions. Single-walled CNTs were grown from patterned Fe catalyst by CVD on oxidized p-doped Si wafers which serve as a back gate. Pd source/drain (S/D) contacts were used to form devices ranging in length from 1 μm to 4μm. 1/ f noise measured at room temperature in air shows conventional changes in amplitude as a function of gate voltage and low S/D voltages. As the S/D bias on the CNTs increases, we observe an unexpected increase in noise at 3 V. This change occurs at fields and voltages below those necessary to induce avalanche generation of free electrons and holes. Thermal modeling reveals that the average temperature of the CNTs reaches 370 K when the noise behavior increases, which is consistent with oxygen desorption. Thus, our measurements and modeling provide insight into noise at high field in CNTs, uncovering the role of changes in doping and threshold voltage at high operating temperature.

  2. Growth of Intracranial Aneurysms Arised from Curved Vessels under the Influence of Elevated Wall Shear Stress ─ A Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Feng, Yixiang; Wada, Shigeo; Tsubota, Ken-Ichi; Yamaguchi, Takami

    Recent studies have suggested that long standing elevated wall shear stress might degenerate the arterial wall and be involved in the pathogenesis of intracranial aneurysm formation and development. The present study focuses on the interplay between the hemodynamic stresses, arterial wall degeneration and deformation. By constructing a computational model and examining the hypotheses that govern the rules to grow an intracranial aneurysm, we simulate the formation and development of intracranial aneurysms. The high wall shear stress is found to propagate towards the proximal and distal end of the formed aneurysm, which becomes the key factor for the expansion of wall degeneration and aneurysm progression. The development of aneurysm is influenced by the wall shear stress threshold, the Reynolds number and the rate of wall degeneration. Our preliminary results indicate that computer simulation can be used in the study of aneurysm mechanics and yields new insight into the mechanism of aneurysm pathophysiology.

  3. Wall shear stress effects of different endodontic irrigation techniques and systems.

    PubMed

    Goode, Narisa; Khan, Sara; Eid, Ashraf A; Niu, Li-na; Gosier, Johnny; Susin, Lisiane F; Pashley, David H; Tay, Franklin R

    2013-07-01

    This study examined débridement efficacy as a result of wall shear stresses created by different irrigant delivery/agitation techniques in an inaccessible recess of a curved root canal model. A reusable, curved canal cavity containing a simulated canal fin was milled into mirrored titanium blocks. Calcium hydroxide (Ca(OH)2) paste was used as debris and loaded into the canal fin. The titanium blocks were bolted together to provide a fluid-tight seal. Sodium hypochlorite was delivered at a previously-determined flow rate of 1 mL/min that produced either negligible or no irrigant extrusion pressure into the periapex for all the techniques examined. Nine irrigation delivery/agitation techniques were examined: NaviTip passive irrigation control, Max-i-Probe(®) side-vented needle passive irrigation, manual dynamic agitation (MDA) using non-fitting and well-fitting gutta-percha points, EndoActivator™ sonic agitation with medium and large points, VPro™ EndoSafe™ irrigation system, VPro™ StreamClean™ continuous ultrasonic irrigation and EndoVac apical negative pressure irrigation. Débridement efficacies were analysed with Kruskal-Wallis ANOVA and Dunn's multiple comparisons tests (α=0.05). EndoVac was the only technique that removed more than 99% calcium hydroxide debris from the canal fin at the predefined flow rate. This group was significantly different (p<0.05) from the other groups that exhibited incomplete Ca(OH)2 removal. The ability of the EndoVac system to significantly clean more debris from a mechanically inaccessible recess of the model curved root canal may be caused by robust bubble formation during irrigant delivery, creating higher wall shear stresses by a two-phase air-liquid flow phenomenon that is well known in other industrial débridement systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells.

    PubMed

    Reddy, Anreddy Rama Narsimha; Reddy, Yellu Narsimha; Krishna, Devarakonda Rama; Himabindu, Vurimindi

    2010-06-04

    The present study was aimed at evaluating the potential toxicity and the general mechanism involved in multi wall carbon nanotubes (MWCNT)-induced cytotoxicity using human embryonic kidney cell line (HEK293) cells. Two multi wall carbon nanotubes (coded as MWCNT1, size: 90-150nm and MWCNT2, size: 60-80nm) used in this study are MWCNT1 (produced by the electric arc method and size of the nanotubes was 90-150nm) and MWCNT2 (produced by the chemical vapor deposition method with size of 60-80nm). To elucidate the possible mechanisms of MWCNT induced cytotoxicity, cell viability, mitochondrial function (MTT assay), cell membrane damage (LDH assay), reduced glutathione (GSH), interleukin-8 (IL-8) and lipid peroxidation levels were quantitatively assessed under carbon nanotubes exposed (48h) conditions. Exposure of different sizes of two carbon nanotubes at dosage levels between 3 and 300mug/ml decreased cell viability in a concentration dependent manner. The IC(50) values (concentration of nanoparticles to induce 50% cell mortality) of two (MWCNT1, MWCNT2) nanoparticles were found as 42.10 and 36.95mug/ml. Exposure of MWCNT (10-100mug/ml) to HEK cells resulted in concentration dependent cell membrane damage (as indicated by the increased levels of LDH), increased production of IL-8, increased TBARS and decreased intracellular glutathione levels. The cytotoxicity and oxidative stress was significantly more in MWCNT2 exposed cells than MWCNT1. In summary, exposure of carbon nanotubes resulted in a concentration dependent cytotoxicity in cultured HEK293 cells that was associated with increased oxidative stress.

  5. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.

    PubMed

    Chen, Zheng-Long; Song, Yuan-Lin; Hu, Zhao-Yan; Zhang, Su; Chen, Ya-Zhu

    2015-08-01

    Alveolar overdistension and mechanical stresses generated by repetitive opening and closing of small airways and alveoli have been widely recognized as two primary mechanistic factors that may contribute to the development of ventilator-induced lung injury. A long-duration exposure of alveolar epithelial cells to even small, shear stresses could lead to the changes in cytoskeleton and the production of inflammatory mediators. In this paper, we have made an attempt to estimate in situ the magnitudes of mechanical stresses exerted on the alveolar walls during repetitive alveolar reopening by using a tape-peeling model of McEwan and Taylor (35). To this end, we first speculate the possible ranges of capillary number (Ca) ≡ μU/γ (a dimensionless combination of surface tension γ, fluid viscosity μ, and alveolar opening velocity U) during in vivo alveolar opening. Subsequent calculations show that increasing respiratory rate or inflation rate serves to increase the values of mechanical stresses. For a normal lung, the predicted maximum shear stresses are <15 dyn/cm(2) at all respiratory rates, whereas for a lung with elevated surface tension or viscosity, the maximum shear stress will notably increase, even at a slow respiratory rate. Similarly, the increased pressure gradients in the case of elevated surface or viscosity may lead to a pressure drop >300 dyn/cm(2) across a cell, possibly inducing epithelial hydraulic cracks. In addition, we have conceived of a geometrical model of alveolar opening to make a prediction of the positive end-expiratory pressure (PEEP) required to splint open a collapsed alveolus, which as shown by our results, covers a wide range of pressures, from several centimeters to dozens of centimeters of water, strongly depending on the underlying pulmonary conditions. The establishment of adequate regional ventilation-to-perfusion ratios may prevent recruited alveoli from reabsorption atelectasis and accordingly, reduce the required levels of

  6. Wall shear stress in portal vein of cirrhotic patients with portal hypertension

    PubMed Central

    Wei, Wei; Pu, Yan-Song; Wang, Xin-Kai; Jiang, An; Zhou, Rui; Li, Yu; Zhang, Qiu-Juan; Wei, Ya-Juan; Chen, Bin; Li, Zong-Fang

    2017-01-01

    AIM To investigate wall shear stress (WSS) magnitude and distribution in cirrhotic patients with portal hypertension using computational fluid dynamics. METHODS Idealized portal vein (PV) system models were reconstructed with different angles of the PV-splenic vein (SV) and superior mesenteric vein (SMV)-SV. Patient-specific models were created according to enhanced computed tomography images. WSS was simulated by using a finite-element analyzer, regarding the blood as a Newtonian fluid and the vessel as a rigid wall. Analysis was carried out to compare the WSS in the portal hypertension group with that in healthy controls. RESULTS For the idealized models, WSS in the portal hypertension group (0-10 dyn/cm2) was significantly lower than that in the healthy controls (10-20 dyn/cm2), and low WSS area (0-1 dyn/cm2) only occurred in the left wall of the PV in the portal hypertension group. Different angles of PV-SV and SMV-SV had different effects on the magnitude and distribution of WSS, and low WSS area often occurred in smaller PV-SV angle and larger SMV-SV angle. In the patient-specific models, WSS in the cirrhotic patients with portal hypertension (10.13 ± 1.34 dyn/cm2) was also significantly lower than that in the healthy controls (P < 0.05). Low WSS area often occurred in the junction area of SV and SMV into the PV, in the area of the division of PV into left and right PV, and in the outer wall of the curving SV in the control group. In the cirrhotic patients with portal hypertension, the low WSS area extended to wider levels and the magnitude of WSS reached lower levels, thereby being more prone to disturbed flow occurrence. CONCLUSION Cirrhotic patients with portal hypertension show dramatic hemodynamic changes with lower WSS and greater potential for disturbed flow, representing a possible causative factor of PV thrombosis. PMID:28566887

  7. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

    PubMed

    Avrahami, Idit; Kersh, Dikla; Liberzon, Alexander

    2016-01-01

    Arterial wall shear stress (WSS) parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q) and heart rate (HR) measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity-known as the pulsatility index (PI)-which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV). The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%]), oscillating shear index (OSI) and the ratio of minimum to maximum shear stress rates (min/max), are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS.

  8. Single walled carbon nanotubes at ultra-high pressure/stress

    NASA Astrophysics Data System (ADS)

    Noël, Maxime; Mases, Mattias; Soldatov, Alexander

    2013-06-01

    We report on the first study of single walled nanotubes (SWCNTs) synthesized by HiPCO method under pressure/stress up to 70 GPa aimed at probing structural stability of small diameter SWCNTs and synthesis of new nanostructured carbon phases. Firstly, the material has been exposed to 25 GPa. Raman spectra of the recovered of material exhibited extremely high defect density and evident recovery of the radial breathing mode (RBM) band with some intensity profile alteration. Secondly, the material was pressurized subsequently to 70 GPa followed by a relatively fast pressure release. Raman characterization provides indications of a transformation of the material to a new structural state as the result of the second pressure cycle. We discuss the structural evolution of the system en-route the final structure which is presumably comprised of deformed graphene nanoribbons and/or polymerized CNTs in addition to the smallest diameter SWCNTs which survived ultra-high pressure/stress. Other affiliation: Department of Physics, Harvard University, Cambridge, MA-02138, USA/Corresponding author: Alexander. Soldatov@ltu.se

  9. Wall scaling laws for turbulent BL before and after the Reynolds shear stress maxima

    NASA Astrophysics Data System (ADS)

    Afzal, Noor; Seena, Abu; Afzal, Bushra; Noor Afzal Collaboration; Abu Seena Team; Bushra Afzal Team

    2015-11-01

    The turbulent shear flow has a critical point due to maximas of Reynolds stress tensor has significant role. Three layers with length scales (inner ν /uτ , meso √{ νδ /uτ }, outer δ) have been analyzed. Below this crucial point the mesolayer inner limit matches with with outer limit of wall layer. Above this crucial point the outer limit of mesolayer matches with inner limit of outer layer. The log law velocity and Reynolds in two overlap regions, above and below the critical point, have been presented. The Reynolds shear stress maxima τmax /τw occurs at a point where ratio of mesolayer to outer lengths is of order Rτ-1 / 2 (= √{ ν / δuτ }), and at this point DNS and experimental data predict Um /Ue = 2 / 3 (where Um = mesolayer velocity and Ue = velocity at boundary edge). The turbulent burst time period also scale with mesolayer time. The shape factor in a TBL shows linear behavior with non-dimensional mesolayer length scale. In special case Um /Ue = 1 / 2 , is due to Izakson and Millikan. The above predictions are supported by experimental and DNS data.

  10. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms

    PubMed Central

    Avrahami, Idit; Kersh, Dikla

    2016-01-01

    Arterial wall shear stress (WSS) parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q) and heart rate (HR) measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity—known as the pulsatility index (PI)—which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV). The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%]), oscillating shear index (OSI) and the ratio of minimum to maximum shear stress rates (min/max), are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS. PMID:27893801

  11. Regulation of cell wall remodeling in grapevine (Vitis vinifera L.) callus under individual mineral stress deficiency.

    PubMed

    Fernandes, João C; Goulao, Luis F; Amâncio, Sara

    2016-01-15

    Cell wall (CW) is a dynamic structure that determines the plant form, growth and response to environmental conditions. Vitis vinifera callus grown under nitrogen (-N), phosphorous (-P) and sulfur (-S) deficiency were used as a model system to address the influence of mineral stress in CW remodeling. Callus cells morphology was altered, mostly under -N, resulting in changes in cell length and width compared with the control. CW composition ascertained with specific staining and immuno-detection showed a decrease in cellulose and altered pattern of pectin methylesterification. Under mineral stress genes expression from candidate families disclosed mainly a downregulation of a glycosyl hydrolase family 9C (GH9C), xyloglucan transglycosylase/hydrolases (XTHs) with predicted hydrolytic activity and pectin methylesterases (PMEs). Conversely, upregulation of PMEs inhibitors (PMEIs) was observed. While methylesterification patterns can be associated to PME/PMEI gene expression, the lower cellulose content cannot be attributed to altered cellulose synthase (CesA) gene expression suggesting the involvement of other gene families. Salt extracts from -N and -P callus tissues increased plastic deformation in cucumber hypocotyls while no effect was observed with -S extracts. The lower endo-acting glycosyl hydrolase activity of -N callus extracts pinpoints a more expressive impact of -N on CW-remodeling.

  12. Proteomic analysis of cell wall in four pathogenic species of Candida exposed to oxidative stress.

    PubMed

    Ramírez-Quijas, Mayra Denisse; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2015-10-01

    In order for Candida species to adhere and colonize human host cells they must express cell wall proteins (CWP) and adapt to reactive oxygen species (ROS) generated by phagocytic cells of the human host during the respiratory burst. However, how these pathogens change the expression of CWP in response to oxidative stress (OSR) is not known. Here, fifteen moonlight-like CWP were identified that expressed differentially in four species of Candida after they were exposed to H2O2 or menadione (O2(-)). These proteins included: (i) glycolytic enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (Gapdh), fructose-bisphosphate aldolase (Fba1), phosphoglycerate mutase (Gpm1), phosphoglycerate kinase (Pgk), pyruvate kinase (Pk) and enolase (Eno1); (ii) the heat shock proteins Ssb1 and Ssa2; (iii) OSR proteins such as peroxyredoxin (Tsa1), the stress protein Ddr48 (Ddr48) and glutathione reductase (Glr1); (iv) other metabolic enzymes such as ketol-acid reductoisomerase (Ilv5) and pyruvate decarboxylase (Pdc1); and (v) other proteins such as elongation factor 1-beta (Efb1) and the 14-3-3 protein homolog. RT-PCR revealed that transcription of the genes coding for some of the identified CWP are differentially regulated. To our knowledge this is the first report showing that moonlight-like CWP are the first line of defense of Candida against ROS, and that they are differentially regulated in each of these pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [Stress echocardiography: a sensitive method in diagnosis of coronary heart disease].

    PubMed

    Mertes, H; Erbel, R; Nixdorff, U; Mohr-Kahaly, S; Wölfinger, D; Meyer, J

    1991-10-01

    Prevalence of coronary artery disease requires sensitive diagnostic methods for screening and follow-up. The sensitivity of stress-ECG is low, 201-thallium scintigraphy is more sensitive but has the disadvantages of radiation and costs. Improved echocardiographic resolution with better identification of endocardial border as well as digital imaging technique have increased the interest in stress echocardiography as a diagnostic tool in coronary artery disease since a decade ago the clinical usefulness of stress echocardiography has been demonstrated. For stress echocardiography a semisupine bicycle position for continuous recording of echocardiographic images from the apical position in the two-chamber- and RAO-view was developed. Echocardiographic images were digitized with a frame rate of 30/s and stored on optical discs with a storage capacity of 1 Gbyte. Rest and exercise images were analysed simultaneously for newly-occurring wall motion abnormalities or deterioration of already present hypokinesia or extension of existing wall motion abnormalities. Segmental wall motion was scored according to the scheme in Figure 2. In addition end-diastolic, end-systolic volume, and ejection fraction were calculated. In a patient population of 150, 30 female and 120 male, age 56.6 +/- 8.3 years, we could confirm the results reported by other working groups and demonstrate a high sensitivity in the diagnosis of single vessel disease. Our technique with the patient cycling in semi-supine position allows continuous echocardiographic registration during exercise and offers adequate image quality. The mean workload at peak stress was 127 +/- 30 watts, the maximal heart rate 137 +/- 18 bpm. Digital cine-loop imaging allowed evaluation of the examinations in about 90% of the cases. The sensitivity in the whole study group was 87%, the specificity 80%. Under full antianginal medication, 43% of the patients developed angina pectoris during exercise and 58% had a positive stress

  14. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.

    PubMed

    Loth, F; Jones, S A; Giddens, D P; Bassiouny, H S; Glagov, S; Zarins, C K

    1997-05-01

    The flow field inside a model of a polytetrafluorethylene (PTFE) canine artery end-to-side bypass graft was studied under steady flow conditions using laser-Doppler anemometry. The anatomically realistic in vitro model was constructed to incorporate the major geometric features of the in vivo canine anastomosis geometry, most notably a larger graft than host artery diameter. The velocity measurements at Reynolds number 208, based on the host artery diameter, show the flow field to be three dimensional in nature. The wall shear stress distribution, computed from the near-wall velocity gradients, reveals a relatively low wall shear stress region on the wall opposite to the graft near the stagnation point approximately one artery diameter in axial length at the midplane. This low wall shear stress region extends to the sidewalls, suture lines, and along the PTFE graft where its axial length at the midplane is more than two artery diameters. The velocity distribution inside the graft model presented here provides a data set well suited for validation of numerical solutions on a model of this type.

  15. Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Diaz-Daniel, Carlos; Laizet, Sylvain; Vassilicos, J. Christos

    2017-05-01

    The present work investigates numerically the statistics of the wall shear stress fluctuations in a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the near-wall region. The flow data are obtained from a Direct Numerical Simulation (DNS) of a zero pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lamballais, "High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy," J. Comput. Phys. 228(16), 5989 (2009)]. The maximum Reynolds number of the simulation is R e𝜃≈2000 , based on the free-stream velocity and the momentum thickness of the boundary layer. The simulation data suggest that the root-mean-squared fluctuations of the streamwise and spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds number, consistent with the empirical correlation of Örlü and Schlatter [R. Örlü and P. Schlatter, "On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows," Phys. Fluids 23, 021704 (2011)]. These functional dependencies can be used to estimate the Reynolds number dependence of the wall turbulence dissipation rate in good agreement with reference DNS data. Our results suggest that the rare negative events of τx can be associated with the extreme values of τz and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise vortices. We also develop a theoretical model, based on a generalisation of the Townsend-Perry hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress fluctuations and the second order structure function of fluctuating velocities at a distance y from the wall. This model suggests that the wall shear stress fluctuations may induce a higher slope in the turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry attached

  16. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries.

    PubMed

    Takeuchi, Shigekazu; Karino, Takeshi

    2010-03-01

    The aim of this study is to elucidate the relationship between the flow patterns and the preferred sites of the development of atherosclerotic lesions and cerebral aneurysms in the human ICA and MCA. Five isolated transparent arterial trees containing the ICA and MCA with a sufficient length of the carotid siphon were prepared from humans postmortem, and flow patterns and distributions of fluid velocity and wall shear stress in these vessels were studied in detail using flow visualization and high-speed cinemicrographic techniques. In the carotid siphon that contained several acute bends, due to the impingement and deflection of the flow at the bends, a strong and complex helicoidal flow formed. As a result, the approaching velocity profile was flattened at the terminal bifurcation of the ICA, but it was sharpened at the first bifurcation of the MCA. Thus, at this latter bifurcation, fluid elements impinged on the vessel wall around the flow divider with much larger velocity than that at the preceding terminal bifurcation of the ICA. Throughout the entire arterial tree, atherosclerotic lesions were found almost exclusively in regions of low wall shear stress. The carotid siphon provided a flattened approaching velocity profile at the terminal bifurcation of the ICA, making the hemodynamic stresses (pressure, tension, and shear stress) exerted on the vessel wall much lower than that at the bifurcation of the MCA where the approaching velocity profile was sharpened. This may account for the relatively low incidence of aneurysm formation at this site. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses

    PubMed Central

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-01-01

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop. PMID:26193255

  18. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses.

    PubMed

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-07-16

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.

  19. Image-based biomechanical modeling of aortic wall stress and vessel deformation: response to pulsatile arterial pressure simulations

    NASA Astrophysics Data System (ADS)

    Hazer, Dilana; Bauer, Miriam; Unterhinninghofen, Roland; Dillmann, Rüdiger; Richter, Götz-M.

    2008-03-01

    Image-based modeling of cardiovascular biomechanics may be very helpful for patients with aortic aneurysms to predict the risk of rupture and evaluate the necessity of a surgical intervention. In order to generate a reliable support it is necessary to develop exact patient-specific models that simulate biomechanical parameters and provide individual structural analysis of the state of fatigue and characterize this to the potential of rupture of the aortic wall. The patient-specific geometry used here originates from a CT scan of an Abdominal Aortic Aneurysm (AAA). The computations are based on the Finite Element Method (FEM) and simulate the wall stress distribution and the vessel deformation. The wall transient boundary conditions are based on real time-dependent pressure simulations obtained from a previous computational fluid dynamics study. The physiological wall material properties consider a nonlinear hyperelastic constitutive model, based on realistic ex-vivo analysis of the aneurismal arterial tissue. The results showed complex deformation and stress distribution on the AAA wall. The maximum stresses occurred at the systole and are found around the aneurismal bulge in regions close to inflection points. Biomechanical modeling based on medical images and coupled with patient-specific hemodynamics allows analysing and quantifying the effects of dilatation of the arterial wall due to the pulsatile aortic pressure. It provides a physical and realistic insight into the wall mechanics and enables predictive simulations of AAA growth and assessment of rupture. Further development integrating endovascular models would help evaluating non-invasively individual treatment strategies for optimal placement and improved device design.

  20. Wall Shear Stress Measurement Using Phase Contrast Magnetic Resonance Imaging With Phase Contrast Magnetic Resonance Angiography in Arteriovenous Polytetrafluoroethylene Grafts

    PubMed Central

    Misra, Sanjay; Fu, Alex A.; Misra, Khamal D.; Glockner, James F.; Mukhopadhyay, Debabrata

    2016-01-01

    Purpose The purpose of the present article was to determine the changes in luminal vessel area, blood flow, and wall shear stress in both the inflow artery and the venous stenosis of arteriovenous polytetrafluoroethylene (PTFE) grafts. Methods and materials Polytetrafluoroethylene grafts were placed from the carotid artery to the ipsilateral jugular vein in 8 castrated juvenile male pigs. Contrast-enhanced magnetic resonance angiography (MRA) with cine phase-contrast magnetic resonance imaging (MRI) was performed 2 weeks after graft placement. Results The mean wall shear stress at the venous stenosis was 4 times higher than the control vein, while the inflow artery was only 2-fold higher. By day 14, venous stenosis had formed, which was characterized by narrowed area and elevated blood flow. Conclusion By day 14, there is venous stenosis formation in porcine arteriovenous PTFE grafts with increased shear stress with decreased area when compared to control vein. PMID:19625275

  1. Wall shear stress measurement using phase contrast magnetic resonance imaging with phase contrast magnetic resonance angiography in arteriovenous polytetrafluoroethylene grafts.

    PubMed

    Misra, Sanjay; Fu, Alex A; Misra, Khamal D; Glockner, James F; Mukhopadhyay, Debabrata

    2009-01-01

    The purpose of the present article was to determine the changes in luminal vessel area, blood flow, and wall shear stress in both the inflow artery and the venous stenosis of arteriovenous polytetrafluoroethylene (PTFE) grafts. Polytetrafluoroethylene grafts were placed from the carotid artery to the ipsilateral jugular vein in 8 castrated juvenile male pigs. Contrast-enhanced magnetic resonance angiography (MRA) with cine phase-contrast magnetic resonance imaging (MRI) was performed 2 weeks after graft placement. The mean wall shear stress at the venous stenosis was 4 times higher than the control vein, while the inflow artery was only 2-fold higher. By day 14, venous stenosis had formed, which was characterized by narrowed area and elevated blood flow. By day 14, there is venous stenosis formation in porcine arteriovenous PTFE grafts with increased shear stress with decreased area when compared to control vein.

  2. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  3. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress.

    PubMed

    Serrano-Fujarte, Isela; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2016-01-01

    Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars.

    PubMed

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-06-29

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars.

  5. Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars

    PubMed Central

    Bocanegra Evans, Humberto; Gorumlu, Serdar; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2016-01-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. We use high-speed digital holographic microscopy (DHM) in combination with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories in a microfluidic channel with one surface patterned with micropillars. It allows us to obtain a 3D ensembled velocity field with an uncertainty of 0.06% and 2D wall shear stress distribution at the resolution of ~65 μPa. Contrary to laminar flow in most microfluidics, we find that the flow is three-dimensional and complex for the textured microchannel. While the micropillars affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses at the channel walls. These findings imply that micro-scale mixing and wall stress sensing/manipulation can be achieved through hydro-dynamically smooth but topologically rough micropillars. PMID:27353632

  6. Dynamic radionuclide determination of regional left ventricular wall motion using a new digital imaging device

    NASA Technical Reports Server (NTRS)

    Steele, P.; Kirch, D.

    1975-01-01

    In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.

  7. Comparison of treadmill exercise stress cardiac MRI to stress echocardiography in healthy volunteers for adequacy of left ventricular endocardial wall visualization: A pilot study.

    PubMed

    Thavendiranathan, Paaladinesh; Dickerson, Jennifer A; Scandling, Debbie; Balasubramanian, Vijay; Pennell, Michael L; Hinton, Alice; Raman, Subha V; Simonetti, Orlando P

    2014-05-01

    To compare exercise stress cardiac magnetic resonance (cardiac MR) to echocardiography in healthy volunteers with respect to adequacy of endocardial visualization and confidence of stress study interpretation. Twenty-eight healthy volunteers (age 28 ± 11 years, 15 males) underwent exercise stress echo and cardiac MR one week apart assigned randomly to one test first. Stress cardiac MR was performed using an MRI-compatible treadmill; stress echo was performed as per routine protocol. Cardiac MR and echo images were independently reviewed and scored for adequacy of endocardial visualization and confidence in interpretation of the stress study. Heart rate at the time of imaging was similar between the studies. Average time from cessation of exercise to start of imaging (21 vs. 31 s, P < 0.001) and time to acquire stress images (20 vs. 51 s, P < 0.001) was shorter for cardiac MR. The number of myocardial segments adequately visualized was significantly higher by cardiac MR at rest (99.8% vs. 96.4%, P = 0.002) and stress (99.8% vs. 94.1%, P = 0.001). The proportion of subjects in whom there was high confidence in the interpretation was higher for cardiac MR than echo (96% vs. 60%, P = 0.005). Exercise stress cardiac MR to assess peak exercise wall motion is feasible and can be performed at least as rapidly as stress echo. Copyright © 2013 Wiley Periodicals, Inc.

  8. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses.

    PubMed

    Hamann, Thorsten; Bennett, Mark; Mansfield, John; Somerville, Christopher

    2009-03-01

    Development, abiotic and biotic stress each affect the physical architecture and chemical composition of the plant cell wall, making maintenance of cell-wall integrity an important component of many plant processes. Cellulose biosynthesis inhibition (CBI) was employed to impair the functional integrity of the cell wall, and the plant's response to this specific stress was characterized in an Arabidopsis seedling model system. CBI caused changes in the expression of genes involved in mechanoperception, the response to microbial challenge, and lignin and cell-wall polysaccharide biosynthesis. Following CBI, activation of a UDP-D-xylose 4-epimerase gene correlated with increases in arabinose and uronic acid content in seedling cell walls. Activation of pathogen response genes, lignin deposition and lesion formation were dependent on externally supplied sugars and were suppressed by osmotic support. Lignin deposition in the root elongation zone caused by CBI was reduced in atrbohd (NADPH oxidase) mutant seedlings but increased in jasmonic acid resistant1 (jar1-1) mutant seedlings. Phytohormone measurements showed that CBI-induced increases in jasmonic (JA) and salicylic acids were dependent on sugar availability and prevented by osmotic support. We show that CBI activates responses commonly attributed to both abiotic and microbial challenges. Glucose/sucrose and turgor pressure are critical components in maintenance of cell-wall integrity and the regulation of induced responses, including JA biosynthesis. Lignin deposition induced by CBI is regulated by JAR1-1 and NADPH oxidase-dependent signalling processes. Our results identify components of the mechanism that mediates the response to impairment of cell-wall integrity in Arabidopsis thaliana.

  9. High wall shear stress and high-risk plaque: an emerging concept.

    PubMed

    Eshtehardi, Parham; Brown, Adam J; Bhargava, Ankit; Costopoulos, Charis; Hung, Olivia Y; Corban, Michel T; Hosseini, Hossein; Gogas, Bill D; Giddens, Don P; Samady, Habib

    2017-01-10

    In recent years, there has been a significant effort to identify high-risk plaques in vivo prior to acute events. While number of imaging modalities have been developed to identify morphologic characteristics of high-risk plaques, prospective natural-history observational studies suggest that vulnerability is not solely dependent on plaque morphology and likely involves additional contributing mechanisms. High wall shear stress (WSS) has recently been proposed as one possible causative factor, promoting the development of high-risk plaques. High WSS has been shown to induce specific changes in endothelial cell behavior, exacerbating inflammation and stimulating progression of the atherosclerotic lipid core. In line with experimental and autopsy studies, several human studies have shown associations between high WSS and known morphological features of high-risk plaques. However, despite increasing evidence, there is still no longitudinal data linking high WSS to clinical events. As the interplay between atherosclerotic plaque, artery, and WSS is highly dynamic, large natural history studies of atherosclerosis that include WSS measurements are now warranted. This review will summarize the available clinical evidence on high WSS as a possible etiological mechanism underlying high-risk plaque development.

  10. Measurements of Wall Shear Stress and Aortic Pulse Wave Velocity in Swine with Familial Hypercholesterolemia

    PubMed Central

    Wentland, Andrew L.; Wieben, Oliver; Shanmuganayagam, Dhanansayan; Krueger, Christian G.; Meudt, Jennifer J.; Consigny, Daniel; Rivera, Leonardo; McBride, Patrick E.; Reed, Jess D.; Grist, Thomas M.

    2014-01-01

    PURPOSE To assess measurements of pulse wave velocity (PWV) and wall shear stress (WSS) in a swine model of atherosclerosis. MATERIALS AND METHODS Nine familial hypercholesterolemic (FH) swine with angioplasty balloon catheter-induced atherosclerotic lesions to the abdominal aorta (injured group) and ten uninjured FH swine were evaluated with a 4D phase contrast (PC) MRI acquisition, as well as with radial and Cartesian 2D PC acquisitions, on a 3T MR scanner. PWV values were computed from the 2D and 4D PC techniques, compared between the injured and uninjured swine, and were validated against reference standard pressure probe-based PWV measurements. WSS values were also computed from the 4D PC MRI technique and compared between injured and uninjured groups. RESULTS PWV values were significantly greater in the injured than in the uninjured groups with the 4D PC MRI technique (p=0.03) and pressure probes (p=0.02). No significant differences were found in PWV between groups using the 2D PC techniques (p=0.75–0.83). No significant differences were found for WSS values between the injured and uninjured groups. CONCLUSION The 4D PC MRI technique provides a promising means of evaluating PWV and WSS in a swine model of atherosclerosis, providing a potential platform for developing the technique for the early detection of atherosclerosis. PMID:24964097

  11. Flow visualization and wall shear stress of a flapping model hummingbird wing

    NASA Astrophysics Data System (ADS)

    Swanton, Erik W. M.; Vanier, Blake A.; Mohseni, Kamran

    2010-09-01

    The unsteady low Reynolds number aerodynamics of flapping flight was investigated experimentally through flow visualization by suspended particle imagery and wall shear stress measurement from micro-array hot-film anemometry. In conjunction, a mechanism was developed to create a flapping motion with three degrees of freedom and adjustable flapping frequency. The flapping kinematics and wing shape were selected for dynamic similarity to a hummingbird during hovering flight. Flow visualization was used to validate the anemometry observations of leading edge vortex (LEV) characteristics and to investigate the necessity of spanwise flow in LEV stability. The shear sensors determined LEV characteristics throughout the translation section of the stroke period for various wing speeds. It was observed that a minimum frequency between 2 and 3.5 Hz is required for the formation and stabilization of a LEV. The vortex strength peaked around 30% of the flapping cycle (corresponding to just past the translation midpoint), which agrees with results from previous studies conducted by others. The shear sensors also indicated a mild growth in LEV size during translation sections of the wing’s motion. This growth magnitude was nearly constant through a range of operating frequencies.

  12. Variation in wall shear stress in channel networks of zebrafish models.

    PubMed

    Choi, Woorak; Kim, Hye Mi; Park, Sungho; Yeom, Eunseop; Doh, Junsang; Lee, Sang Joon

    2017-02-01

    Physiological functions of vascular endothelial cells (ECs) vary depending on wall shear stress (WSS) magnitude, and the functional change affects the pathologies of various cardiovascular systems. Several in vitro and in vivo models have been used to investigate the functions of ECs under different WSS conditions. However, these models have technical limitations in precisely mimicking the physiological environments of ECs and monitoring temporal variations of ECs in detail. Although zebrafish (Danio rerio) has several strategies to overcome these technical limitations, zebrafish cannot be used as a perfect animal model because applying various WSS conditions on blood vessels of zebrafish is difficult. This study proposes a new zebrafish model in which various WSS can be applied to the caudal vein. The WSS magnitude is controlled by blocking some parts of blood-vessel networks. The accuracy and reproducibility of the proposed method are validated using an equivalent circuit model of blood vessels in zebrafish. The proposed method is applied to lipopolysaccharide (LPS)-stimulated zebrafish as a typical application. The proposed zebrafish model can be used as an in vivo animal model to investigate the relationship between WSS and EC physiology or WSS-induced cardiovascular diseases. © 2017 The Author(s).

  13. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish

    PubMed Central

    Lee, Sang Joon; Choi, Woorak; Seo, Eunseok; Yeom, Eunseop

    2015-01-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis. PMID:26561854

  14. Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis.

    PubMed

    Zhou, Geng; Zhu, Yueqi; Yin, Yanling; Su, Ming; Li, Minghua

    2017-07-13

    To evaluate the relationship between wall shear stress (WSS) magnitude and cerebral aneurysm rupture and provide new insight into the disparate computational fluid dynamics (CFD) findings concerning the role of WSS in intracranial aneurysm (IA) rupture. A systematic electronic database (PubMed, Medline, Springer, and EBSCO) search was conducted for all accessible published articles up to July 1, 2016, with no restriction on the publication year. Abstracts, full-text manuscripts, and the reference lists of retrieved articles were analyzed. Random effects meta-analysis was used to pool the complication rates across studies. Twenty-two studies containing CFD data on 1257 patients with aneurysms were included in the analysis. A significantly higher rate of low WSS (0-1.5 Pa) was found in ruptured aneurysms (odds ratio [OR] 2.17; 95% confidence interval [CI], 1.73-2.62). The pooled analyses across 14 studies with low WSS showed significantly lower mean WSS (0.64 vs. 1.4 Pa) (p = 0.037) in the ruptured group. This meta-analysis provides evidence that decreased local WSS may be an important predictive parameter of IA rupture.

  15. Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation.

    PubMed

    Gårdhagen, Roland; Lantz, Jonas; Carlsson, Fredrik; Karlsson, Matts

    2010-06-01

    Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.

  16. Differential response of antioxidative systems of maize (Zea mays L.) roots cell walls to osmotic and heavy metal stress.

    PubMed

    Vuletić, M; Hadži-Tašković Šukalović, V; Marković, K; Kravić, N; Vučinić, Ž; Maksimović, V

    2014-01-01

    An analysis of peroxidase and ascorbate oxidase activity, phenolic content and antioxidant capacity of isolated maize root cell walls was performed in controls and plants stressed with polyethylene glycol (PEG) or heavy metals, zinc or copper. Peroxidase activity (oxidative and peroxidative) was more pronounced in the ionic than in the covalent cell wall fraction. PEG induced an increase and Zn(2+) a decrease of both ionically bound peroxidase activities. In the covalent fraction, Cu(2+) decreased oxidative and increased peroxidative activity of peroxidase. Isoelectric focusing of ionically bound proteins and activity staining for peroxidase demonstrated increased intensities and appearance of new acidic isoforms, especially in Zn(2+) and PEG treatments. Most pronounced basic isoforms (pI ~ 7.5) in controls, decreased in intensity or completely disappeared in stressed plants. Ascorbate oxidase activity was significantly increased by PEG and decreased by Zn(2+) treatments, and highly correlated with peroxidase activity. Antioxidant capacity and total phenolics content increased in heavy metal-treated and decreased in PEG-treated plants. Analysis of individual phenolic components revealed p-coumaric and ferulic acids, as the most abundant, as well as ferulic acid dimers, trimers and tetramers in the cell walls; their quantity increased under stress conditions. Results presented demonstrate the existence of diverse mechanisms of plant response to different stresses. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Stress-intensity factors for a thick-walled cylinder containing an annular imbedded or external or internal surface crack

    NASA Technical Reports Server (NTRS)

    Erdol, R.; Erdogan, F.

    1976-01-01

    The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.

  18. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition

  19. A control systems approach to quantify wall shear stress normalization by flow-mediated dilation in the brachial artery.

    PubMed

    van Bussel, Frank C G; van Bussel, Bas C T; Hoeks, Arnold P G; Op 't Roodt, Jos; Henry, Ronald M A; Ferreira, Isabel; Vanmolkot, Floris H M; Schalkwijk, Casper G; Stehouwer, Coen D A; Reesink, Koen D

    2015-01-01

    Flow-mediated dilation is aimed at normalization of local wall shear stress under varying blood flow conditions. Blood flow velocity and vessel diameter are continuous and opposing influences that modulate wall shear stress. We derived an index FMDv to quantify wall shear stress normalization performance by flow-mediated dilation in the brachial artery. In 22 fasting presumed healthy men, we first assessed intra- and inter-session reproducibilities of two indices pFMDv and mFMDv, which consider the relative peak and relative mean hyperemic change in flow velocity, respectively. Second, utilizing oral glucose loading, we evaluated the tracking performance of both FMDv indices, in comparison with existing indices [i.e., the relative peak diameter increase (%FMD), the peak to baseline diameter ratio (Dpeak/Dbase), and the relative peak diameter increase normalized to the full area under the curve of blood flow velocity with hyperemia (FMD/shearAUC) or with area integrated to peak hyperemia (FMD/shearAUC_peak)]. Inter-session and intra-session reproducibilities for pFMDv, mFMDv and %FMD were comparable (intra-class correlation coefficients within 0.521-0.677 range). Both pFMDv and mFMDv showed more clearly a reduction after glucose loading (reduction of ~45%, p≤0.001) than the other indices (% given are relative reductions): %FMD (~11%, p≥0.074); Dpeak/Dbase (~11%, p≥0.074); FMD/shearAUC_peak (~20%, p≥0.016) and FMD/shearAUC (~38%, p≤0.038). Further analysis indicated that wall shear stress normalization under normal (fasting) conditions is already far from ideal (FMDv < 1), which (therefore) does not materially change with glucose loading. Our approach might be useful in intervention studies to detect intrinsic changes in shear stress normalization performance in conduit arteries.

  20. Ejection fraction change and coronary artery disease severity: a vasodilator contrast stress-echocardiography study.

    PubMed

    Squeri, Angelo; Gaibazzi, Nicola; Reverberi, Claudio; Caracciolo, Maria Michela; Ardissino, Diego; Gherli, Tiziano

    2012-04-01

    An important goal of noninvasive stress testing is the identification of patients with left main coronary artery or three-vessel disease, because coronary artery disease extension and severity are major prognostic factors in ischemic heart disease. Wall motion abnormalities during vasodilator stress echocardiography become apparent in more than one coronary territory only in a small number of patients with multivessel disease. The aim of this study was to assess the value of change in left ventricular ejection fraction change (ΔLVEF) to identify patients with multivessel obstructive coronary artery disease during dipyridamole stress echocardiography. All dipyridamole stress echocardiographic studies performed at the authors' institution from October 2007 through March 2010 were retrospectively reviewed, and 150 patients who underwent coronary angiography within the next 60 days were selected. Left ventricular end-diastolic volume and end-systolic volume were measured at baseline and at the end of high-dose dipyridamole; ΔLVEF was calculated as stress ejection fraction minus rest ejection fraction. Patients were divided into four groups (controls and patients with single-vessel, two-vessel, and three-vessel disease) on the basis of coronary angiographic results. The mean LVEF increased significantly from rest to peak stress in all groups except the three-vessel disease group. Mean ΔLVEF was negative in patients with three-vessel or left main coronary artery disease (-2.8 ± 5.1%) and significantly lower compared with all other angiographic groups (10.2 ± 5.1% and 6.2 ± 4.1%, respectively, for single-vessel and two-vessel disease). The negative value of ΔLVEF for three-vessel disease was due mainly to increased end-systolic volume at peak stress. Receiver operating characteristic curves demonstrated excellent accuracy of ΔLVEF compared with change in wall motion score index in identifying patients with multivessel disease, with areas under the curves of 0

  1. Correlation between negative near-wall shear stress in human aorta and various stages of congestive heart failure.

    PubMed

    Gharib, Morteza; Beizaie, Masoud

    2003-06-01

    The critical effect of advanced congestive heart failure is reduced blood flow in descending aorta resulting from mild to severe reduction in cardiac output, usually accompanying low ejection fraction. In these patients the heart tries to compensate by beating faster, but reduced blood flow combined with increased heart rate can lead to retrograde flow and negative shear stress along the vessel walls during each cardiac cycle. Our studies show that near-wall negative shear stress can result from an entire-retrograde flow at normal heart rates or a Womersley-type phase delayed near-wall retrograde flow at high heart rate and low ejection fraction conditions. In our experiments, a compliant aortic loop with appropriate pressure and flow instrumentation was used, running on either various aqueous glycerin solutions or property filtered, anticoagulated diluted bovine blood. The flow field was mapped using a General Electric Vingmed System 5 platform. The resulting images were analyzed with Caltech's digital ultrasound speckle image velocimetry technique. We showed the occurrence of near-wall retrograde flow under certain aortic flow rates and frequencies, charted via an empirical relationship between Reynolds and Womersley numbers. Also, we demonstrated a strong correlation between retrograde flow level and transition from preliminary to advanced congestive heart failure patients.

  2. Evaluation of aneurysm-associated wall shear stress related to morphological variations of circle of Willis using a microfluidic device.

    PubMed

    Nam, Seong-Won; Choi, Samjin; Cheong, Youjin; Kim, Yeon-Hee; Park, Hun-Kuk

    2015-01-21

    Although microfluidic systems have been important tools in analytical chemistry, life sciences, and medical research, their application was rather limited for drug-screening and biosensors. Here, we described a microfluidic device consisting of a multilayer micro-channel system that represented the hemodynamic cerebral vascular system. We analyzed wall shear stresses related to aneurysm formation in the circle of Willis (CoW) and their morphological variations using this system. This device was controlled by pneumatic valves, which occluded various major arteries by closing the associated channels. The hemodynamic analysis indicated that higher degrees of shear stress occurred in an anterior communicating artery (ACoA), particularly in the hypoplastic region of the posterior communicating artery (PCoA) and the P1 segment. Furthermore, occlusion of a common carotid artery (CCA) or a middle cerebral artery (MCA) increased the shear stress, whereas occlusion of a vertebral artery (VA) decreased the shear stress. These results indicate that the morphological variation of the CoW may affect aneurysm formation resulting from increased wall shear stress. Therefore, the technique described in this paper provides a novel method to investigate the hemodynamics of complex cerebral vascular systems not accessible from previous clinical studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress

    PubMed Central

    2011-01-01

    Background Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. Method In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Results Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates

  4. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.

    PubMed

    Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin

    2011-07-19

    Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. Flow shear stress

  5. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    PubMed

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-09-18

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices.

  6. Fusion of fibrous cap thickness and wall shear stress to assess plaque vulnerability in coronary arteries: a pilot study.

    PubMed

    Zahnd, Guillaume; Schrauwen, Jelle; Karanasos, Antonios; Regar, Evelyn; Niessen, Wiro; van Walsum, Theo; Gijsen, Frank

    2016-10-01

    Identification of rupture-prone plaques in coronary arteries is a major clinical challenge. Fibrous cap thickness and wall shear stress are two relevant image-based risk factors, but these two parameters are generally computed and analyzed separately. Accordingly, combining these two parameters can potentially improve the identification of at-risk regions. Therefore, the purpose of this study is to investigate the feasibility of the fusion of wall shear stress and fibrous cap thickness of coronary arteries in patient data. Fourteen patients were included in this pilot study. Imaging of the coronary arteries was performed with optical coherence tomography and with angiography. Fibrous cap thickness was automatically quantified from optical coherence tomography pullbacks using a contour segmentation approach based on fast marching. Wall shear stress was computed by applying computational fluid dynamics on the 3D volume reconstructed from two angiograms. The two parameters then were co-registered using anatomical landmarks such as side branches. The two image modalities were successfully co-registered, with a mean (±SD) error corresponding to [Formula: see text] of the length of the analyzed region. For all the analyzed participants, the average thinnest portion of each fibrous cap was [Formula: see text], and the average WSS value at the location of the fibrous cap was [Formula: see text]. A unique index was finally generated for each patient via the fusion of fibrous cap thickness and wall shear stress measurements, to translate all the measured parameters into a single risk map. The introduced risk map integrates two complementary parameters and has potential to provide valuable information about plaque vulnerability.

  7. The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor.

    PubMed

    Jung, Ilseon S; Oh, Min Kyo; Cho, Young Chae; Kong, In Soo

    2011-12-01

    Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L(-1) as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h- and at the batch culture was μ = 1.13 h- in the exponential period and μ = 0.31 h(-1) in the stationary period. In the fed-batch mode was μ = 1.102 h(-1) for 6 h with inoculation and declined to μ = 0.456 h(-1) with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h(-1). The number of viable cells was 6.01 × 10(12) cfu L(-1) at the batch culture, but increased to 1.15 × 10(14) cfu L(-1) at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40° C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30-40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.

  8. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae.

    PubMed

    García, Raúl; Rodríguez-Peña, Jose M; Bermejo, Clara; Nombela, César; Arroyo, Javier

    2009-04-17

    The adaptation of Saccharomyces cerevisiae to situations in which cell wall integrity is seriously compromised mainly involves the cell wall integrity (CWI) pathway. However, in a recent work ( Bermejo, C., Rodriguez, E., García, R., Rodríguez-Peña, J. M., Rodríguez de la Concepción, M. L., Rivas, C., Arias, P., Nombela, C., Posas, F., and Arroyo, J. (2008) Mol. Biol. Cell 19, 1113-1124 ) we have demonstrated the co-participation of the high osmotic response (HOG) pathway to ensure yeast survival to cell wall stress mediated by zymolyase, which hydrolyzes the beta-1,3 glucan network. Here we have characterized the role of both pathways in the regulation of the overall yeast transcriptional responses to zymolyase treatment using whole genome expression profiling. A main group of yeast genes is dependent on both MAPKs, Slt2 and Hog1, for their induction. The transcriptional activation of these genes depends on the MAPKKK Bck1, the transcription factor Rlm1, and elements of the sho1 branch of the HOG pathway, but not on the sensors of the CWI pathway. A second group of genes is dependent on Slt2 but not Hog1 or Pbs2. However, the induction of these genes is dependent on upstream elements of the HOG pathway such as Sho1, Ste50, and Ste11, in accordance with a sequential activation of the HOG and CWI pathways. Zymolyase also promotes an osmotic-like transcriptional response with the activation of a group of genes dependent on elements of the Sho1 branch of HOG pathway but not on Slt2, with the induction of many of them dependent on Msn2/4. Additionally, in the absence of Hog1, zymolyase induces an alternative response related to mating and filamentation as a consequence of the cross-talk between these pathways and the HOG pathway. Finally, in the absence of Slt2, zymolyase increases the induction of genes associated with osmotic adaptation with respect to the wild type, suggesting an inhibitory effect of the CWI pathway over the HOG pathway. These studies clearly

  9. Transient apical wall thickening in patients with stress cardiomyopathy: Prevalence, profile, and impact on clinical course.

    PubMed

    Shin, Dong Geum; Cho, In-Jeong; Shim, Chi Young; Ryu, Sung Kee; Chang, Hyuk-Jae; Hong, Geu-Ru; Ha, Jong-Won; Chung, Namsik

    2015-09-01

    Transient apical wall thickening (TAWT), mimicking apical hypertrophic cardiomyopathy during recovery from stress cardiomyopathy (SCM), has recently been reported. However, the clinical significance of this phenomenon has not yet been assessed. We aimed to explore the prevalence, profiles, and impact on the clinical course of TAWT in patients with SCM. We retrospectively analyzed the SCM registry from January 2009 to December 2013. Of 429 patients with SCM, 124 patients who had typical features of transient apical ballooning were included. We identified patients who showed evidence of TAWT, which became normalized on serial echocardiograms. Clinical characteristics, incidence of cardiac complications (arrhythmia, pulmonary edema, cardiogenic shock, or left ventricular thrombus), and in-hospital mortality were compared between patients with and without TAWT. Among 124 patients, 17 (14%) patients showed TAWT. During the follow-up period, TAWT was observed 14.6 ± 10.3 days after the initial SCM diagnosis. Patients with TAWT showed a higher prevalence of septic shock as a triggering factor of SCM than those without TAWT (41.2% vs. 19.6%, p=0.048). Furthermore, cardiac complications were more prevalent in patients with TAWT compared to patients without (64.7% vs. 33.6%, p=0.03). Finally, in-hospital mortality was significantly higher in patients with TAWT group during the clinical course of SCM (p=0.009). TAWT in patients with SCM is not uncommon. Patients with SCM and systemic inflammation with hemodynamic instability might be susceptible to TAWT, which is often associated with cardiac complications. These patients showed worse prognosis compared to those without TAWT during recovery from SCM. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees.

    PubMed

    van der Giessen, Alina G; Groen, Harald C; Doriot, Pierre-André; de Feyter, Pim J; van der Steen, Antonius F W; van de Vosse, Frans N; Wentzel, Jolanda J; Gijsen, Frank J H

    2011-04-07

    Patient specific geometrical data on human coronary arteries can be reliably obtained multislice computer tomography (MSCT) imaging. MSCT cannot provide hemodynamic variables, and the outflow through the side branches must be estimated. The impact of two different models to determine flow through the side branches on the wall shear stress (WSS) distribution in patient specific geometries is evaluated. Murray's law predicts that the flow ratio through the side branches scales with the ratio of the diameter of the side branches to the third power. The empirical model is based on flow measurements performed by Doriot et al. (2000) in angiographically normal coronary arteries. The fit based on these measurements showed that the flow ratio through the side branches can best be described with a power of 2.27. The experimental data imply that Murray's law underestimates the flow through the side branches. We applied the two models to study the WSS distribution in 6 coronary artery trees. Under steady flow conditions, the average WSS between the side branches differed significantly for the two models: the average WSS was 8% higher for Murray's law and the relative difference ranged from -5% to +27%. These differences scale with the difference in flow rate. Near the bifurcations, the differences in WSS were more pronounced: the size of the low WSS regions was significantly larger when applying the empirical model (13%), ranging from -12% to +68%. Predicting outflow based on Murray's law underestimates the flow through the side branches. Especially near side branches, the regions where atherosclerotic plaques preferentially develop, the differences are significant and application of Murray's law underestimates the size of the low WSS region.

  11. The role of wall shear stress in the assessment of right ventricle hydraulic workload.

    PubMed

    Kheyfets, Vitaly; Thirugnanasambandam, Mirunalini; Rios, Lourdes; Evans, Daniel; Smith, Triston; Schroeder, Theodore; Mueller, Jeffrey; Murali, Srinivas; Lasorda, David; Spotti, Jennifer; Finol, Ender

    2015-03-01

    Pulmonary hypertension (PH) is a devastating disease affecting approximately 15-50 people per million, with a higher incidence in women. PH mortality is mostly attributed to right ventricle (RV) failure, which results from RV hypotrophy due to an overburdened hydraulic workload. The objective of this study is to correlate wall shear stress (WSS) with hemodynamic metrics that are generally accepted as clinical indicators of RV workload and are well correlated with disease outcome. Retrospective right heart catheterization data for 20 PH patients were analyzed to derive pulmonary vascular resistance (PVR), arterial compliance (C), and an index of wave reflections (Γ). Patient-specific contrast-enhanced computed tomography chest images were used to reconstruct the individual pulmonary arterial trees up to the seventh generation. Computational fluid dynamics analyses simulating blood flow at peak systole were conducted for each vascular model to calculate WSS distributions on the endothelial surface of the pulmonary arteries. WSS was found to be decreased proportionally with elevated PVR and reduced C. Spatially averaged WSS (SAWSS) was positively correlated with PVR (R (2) = 0.66), C (R (2) = 0.73), and Γ (R (2) = 0.5) and also showed promising preliminary correlations with RV geometric characteristics. Evaluating WSS at random cross sections in the proximal vasculature (main, right, and left pulmonary arteries), the type of data that can be acquired from phase-contrast magnetic resonance imaging, did not reveal the same correlations. In conclusion, we found that WSS has the potential to be a viable and clinically useful noninvasive metric of PH disease progression and RV health. Future work should be focused on evaluating whether SAWSS has prognostic value in the management of PH and whether it can be used as a rapid reactivity assessment tool, which would aid in selection of appropriate therapies.

  12. Analysis of wall shear stress around a competitive swimmer using 3D Navier-Stokes equations in CFD.

    PubMed

    Popa, C V; Zaidi, H; Arfaoui, A; Polidori, G; Taiar, R; Fohanno, S

    2011-01-01

    This paper deals with the flow dynamics around a competitive swimmer during underwater glide phases occurring at the start and at every turn. The influence of the head position, namely lifted up, aligned and lowered, on the wall shear stress and the static pressure distributions is analyzed. The problem is considered as 3D and in steady hydrodynamic state. Three velocities (1.4 m/s, 2.2 m/s and 3.1 m/s) that correspond to inter-regional, national and international swimming levels are studied. The flow around the swimmer is assumed turbulent. The Reynolds-averaged Navier-Stokes (RANS) equations are solved with the standard k-ω turbulent model by using the CFD (computational fluid dynamics) numerical method based on a volume control approach. Numerical simulations are carried out with the ANSYS FLUENT® CFD code. The results show that the wall shear stress increases with the velocity and consequently the drag force opposing the movement of the swimmer increases as well. Also, high wall shear stresses are observed in the areas where the body shape, globally rigid in form, presents complex surface geometries such as the head, shoulders, buttocks, heel and chest.

  13. Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients.

    PubMed

    Cheheltani, Rabee; Pichamuthu, Joseph E; Rao, Jayashree; Weinbaum, Justin S; Kiani, Mohammad F; Vorp, David A; Pleshko, Nancy

    2017-03-01

    Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.

  14. Ultrasonic Measurement of Transient Change in Stress-Strain Property of Radial Arterial Wall Caused by Endothelium-Dependent Vasodilation

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    The endothelial dysfunction is considered to be an initial step of atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method for assessing the regional endothelial function and mechanical property of the arterial wall. There is a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization. For more sensitive and regional evaluation, we developed a method of measuring the change in the elasticity of the radial artery due to FMD. In this study, the transient change in the mechanical property of the arterial wall was further revealed by measuring the stress-strain relationship during each heartbeat. The minute change in the thickness (strain) of the radial arterial wall during a cardiac cycle was measured by the phased tracking method, together with the waveform of blood pressure which was continuously measured with a sphygmometer at the radial artery. The transient change in stress-strain relationship during a cardiac cycle was obtained from the measured changes in wall thickness and blood pressure to show the transient change in instantaneous viscoelasticity. From the in vivo experimental results, the stress-strain relationship shows the hysteresis loop. The slope of the loop decreased owing to FMD, which shows that the elastic modulus decreased, and the increasing area of the loop depends on the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  15. Sex-, morph- and size-specific susceptibility to stress measured by haematological variables in captive common wall lizard Podarcis muralis.

    PubMed

    Galeotti, Paolo; Pellitteri-Rosa, Daniele; Sacchi, Roberto; Gentilli, Augusto; Pupin, Fabio; Rubolini, Diego; Fasola, Mauro

    2010-12-01

    In polymorphic species of animals, colour morphs may show alternative physiological properties, and hence evolve or be maintained as an indirect response to selection exerted on these physiological attributes. In this study, we investigated if different colour morphs (white, red and yellow) of the polymorphic common wall lizard differed in their physiological responses to a long-term stress by determining variation between capture and release in leukocytes profiles, haemoparasite loads and body condition of male and females maintained in captivity throughout the breeding season. We found that most blood parameters of lizards varied significantly following captivity, and this variation was sex-, morph- and size-dependent. In particular, the heterophil:lymphocyte ratio (H:L), a sensitive measure of immunodepression and long-term stress, varied significantly among yellow females, larger individuals significantly increasing and smaller individuals decreasing their H:L ratio after captivity. This trend was reversed in red females, where smaller individuals presented raised H:L index at release. Our study indicated that response to long-term stressful conditions, such as those induced by captivity, differed among common wall lizard colour morphs, implying a sex-, size-(i.e. age) and morph-specific sensitivity to stress, and hence a different physiological profile of colour morphs, which may contribute to the maintenance of colour polymorphism in this species. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Free convection in parallelogram-shaped enclosures with isothermal active walls: viscous shear stress in active systems

    NASA Astrophysics Data System (ADS)

    Baïri, A.; Zarco-Pernia, E.; García de María, J.-M.; Laraqi, N.

    2012-10-01

    Thermocouples are often used for thermoregulation of active thermal systems. When the junctions of these sensors are under a natural convection flow, it is necessary to take into account the viscous stress that can affect the measurement of temperature and therefore the regulation set points. The main objective of this work is to study the viscous shear stress taking place close to the active hot wall in closed air-filled cavities of parallelogrammic shape. The influence of shear stress is examined for different inclination angles of the cavity and large Rayleigh numbers which are usual in thermal applications. The local stress distributions are presented for the steady state for all the geometric configurations considered. The Nusselt number at the hot wall as well as the temperature and stream function distributions in the cavities are also included. The findings obtained from the numerical simulation using the finite volume method are validated by thermal measurements on an experimental cavity. This study confirms the need to properly choose the location of thermocouples in the reference cell used for controlling the active system.

  17. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance.

    PubMed

    Leucci, Maria Rosaria; Lenucci, Marcello Salvatore; Piro, Gabriella; Dalessandro, Giuseppe

    2008-07-31

    Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90 mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39 mol%), and arabinoxylans (38-48 mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-D-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.

  18. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses

    PubMed Central

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol

    2016-01-01

    ABSTRACT During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H+-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. IMPORTANCE The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains

  19. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    PubMed

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  20. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses.

    PubMed

    Kornet, L; Hoeks, A P; Lambregts, J; Reneman, R S

    1999-12-01

    In elastic arteries, intima-media thickening is more pronounced in areas with low than with high mean and peak wall shear stress. These findings in elastic arteries are not necessarily representative of the situation in muscular arteries. The former arteries have to store volume energy, whereas the latter are mainly conductive vessels. It was the aim of the present study to investigate noninvasively whether differences in wall shear stress within a muscular artery bifurcation, if any, were associated with different intima-media thicknesses (IMTs). The effect of age on the possible differences was assessed as well. We determined IMT and mean, peak systolic, and the maximum cyclic change in shear stress near the posterior wall in the common (FC) and the superficial (FS) femoral artery 20 to 30 mm from the flow divider in 54 presumed healthy subjects between 21 and 74 years of age. Results were considered in terms of intrasubject differences. Before the study, the reliability of the ultrasonic system to assess wall shear rate and IMT was determined in terms of intrasubject variability. IMT at the posterior wall was significantly larger in the FC than in the FS, probably owing to the significantly lower mean wall shear stress at this site in the FC. The relative differences in IMT and mean wall shear stress between FC and FS were independent of age. The difference in wall shear stress between both arteries can likely be explained by a different influence of reflections. In both the FC and FS, mean, peak systolic, and maximum cyclic change in shear stress near the posterior wall did not change significantly with age, whereas IMT did increase significantly with age.

  1. Stress-Strain State of Thick-Walled Filament-Wound Cylinders at the Macro-, Meso-, and Microscales During Cooling

    NASA Astrophysics Data System (ADS)

    Turusov, R. A.; Memarianfard, H.

    2016-07-01

    A comparative investigation of preconditions for cracking in thick-walled anisotropic unidirectionally and cross-ply filament-wound cylinders was performed. Experiments showed that it was much more difficult to obtain monolithic (without hoop cracks) thick cross-ply filament-wound cylinders than thick unidirectionally filament-wound cylinders. During cooling, cracks in cross-ply cylinders with a smaller ratio of thickness to the inner radius (at/of about 10% compared with 60% for unidirectionally filament-wound ones) are generally formed. However, the calculations of thermal stresses, by two different models, in a continuous anisotropic medium and in rings consisting of n alternating glass and resin layers showed that the radial tensile stresses in thick cross-ply filament-wound cylinders were lower than in a unidirectional structure. Only calculations by the FEM demonstrated higher radial tensile stresses in the cross-ply structure.

  2. Wall shear stresses remain elevated in mature arteriovenous fistulas: a case study.

    PubMed

    Carroll, G T; McGloughlin, T M; Burke, P E; Egan, M; Wallis, F; Walsh, M T

    2011-02-01

    Maintaining vascular access (VA) patency continues to be the greatest challenge for dialysis patients. VA dysfunction, primarily due to venous neointimal hyperplasia development and stenotic lesion formation, is mainly attributed to complex hemodynamics within the arteriovenous fistula (AVF). The effect of VA creation and the subsequent geometrical remodeling on the hemodynamics and shear forces within a mature patient-specific AVF is investigated. A 3D reconstructed geometry of a healthy vein and a fully mature patient-specific AVF was developed from a series of 2D magnetic resonance image scans. A previously validated thresholding technique for region segmentation and lumen cross section contour creation was conducted in MIMICS 10.01, allowing for the creation of a 3D reconstructed geometry. The healthy vein and AVF computational models were built, subdivided, and meshed in GAMBIT 2.3. The computational fluid dynamic (CFD) code FLUENT 6.3.2 (Fluent Inc., Lebanon, NH) was employed as the finite volume solver to determine the hemodynamics and shear forces within the healthy vein and patient-specific AVF. Geometrical alterations were evaluated and a CFD analysis was conducted. Substantial geometrical remodeling was observed, following VA creation with an increase in cross-sectional area, out of plane curvature (maximum angle of curvature in AVF=30 deg), and angle of blood flow entry. The mean flow velocity entering the vein of the AVF is dramatically increased. These factors result in complex three-dimensional hemodynamics within VA junction (VAJ) and efferent vein of the AVF. Complex flow patterns were observed and the maximum and mean wall shear stress (WSS) magnitudes are significantly elevated. Flow reversal was found within the VAJ and efferent vein. Extensive geometrical remodeling during AVF maturation does not restore physiological hemodynamics to the VAJ and venous conduit of the AVF, and high WSS and WSS gradients, and flow reversal persist. It is

  3. Remodeling of Afferent Arterioles From Mice With Oxidative Stress Does Not Account for Increased Contractility but Does Limit Excessive Wall Stress.

    PubMed

    Li, Lingli; Feng, Di; Luo, Zaiming; Welch, William J; Wilcox, Christopher S; Lai, En Yin

    2015-09-01

    Because superoxide dismutase (SOD) knockout enhances arteriolar remodeling and contractility, we hypothesized that remodeling enhances contractility. In the isolated and perfused renal afferent arterioles from SOD wild type (+/+) and gene-deleted mice, contractility was assessed from reductions in luminal diameter with perfusion pressure from 40 to 80 mm Hg (myogenic responses) or angiotensin II (10(-6) mol/L), remodeling from media:lumen area ratio, superoxide (O2 (·-)) and hydrogen peroxide (H2O2) from fluorescence microscopy, and wall stress from wall tension/wall thickness. Compared with +/+ strains, arterioles from SOD1-/-, SOD2+/-, and SOD3-/- mice developed significantly (P<0.05) more O2 (·-) with perfusion pressure and angiotensin II and significantly increased myogenic responses (SOD1-/-: -20.7±2.2% versus -12.7±1.6%; SOD2+/-: -7.4±1.3% versus -12.6±1.4%; and SOD3-/-: -9.1±1.9% versus -15.8±2.2%) and angiotensin II contractions and ≈2-fold increased media:lumen ratios. Media:lumen ratios correlated with myogenic responses (r(2) =0.23; P<0.01), angiotensin II contractions (r(2)=0.57; P<0.0001), and active wall tension (r(2) =0.19; P<0.01), but not with active wall stress (r(2)=0.08; NS). Differences in myogenic responses among SOD3 mice were abolished by bath addition of SOD and were increased 3 days after inducing SOD3 knockout (-26.9±1.7% versus -20.1±0.7%; P<0.05), despite unchanged media:lumen ratios (2.01±0.09 versus 2.02±0.03; NS). We conclude that cytosolic, mitochondrial, or extracellular O2 (·-) enhance afferent arteriolar contractility and remodeling. Although remodeling does not enhance contractility, it does prevent the potentially damaging effects of increased wall stress.

  4. The fission yeast cell wall stress sensor-like proteins Mtl2 and Wsc1 act by turning on the GTPase Rho1p but act independently of the cell wall integrity pathway.

    PubMed

    Cruz, Sandra; Muñoz, Sofía; Manjón, Elvira; García, Patricia; Sanchez, Yolanda

    2013-10-01

    Sensing stressful conditions that affect the cell wall reorganization is important for yeast survival. Here, we studied two proteins SpWsc1p and SpMtl2p with structural features indicative of plasma membrane-associated cell wall sensors. We found that Mtl2p and Wsc1p act by turning on the Rho1p GTPase. Each gene could be deleted individually without affecting viability, but the deletion of both was lethal and this phenotype was rescued by overexpression of the genes encoding either Rho1p or its GDP/GTP exchange factors (GEFs). In addition, wsc1Δ and mtl2Δ cells showed a low level of Rho1p-GTP under cell wall stress. Mtl2p-GFP (green fluorescent protein) localized to the cell periphery and was necessary for survival under different types of cell wall stress. Wsc1p-GFP was concentrated in patches at the cell tips, it interacted with the Rho-GEF Rgf2p, and its overexpression activated cell wall biosynthesis. Our results are consistent with the notion that cell wall assembly is regulated by two different networks involving Rho1p. One includes signaling from Mtl2p through Rho1p to Pck1p, while the second one implicates signaling from Wsc1p and Rgf2p through Rho1p to activate glucan synthase (GS). Finally, signaling through the mitogen-activated protein kinase (MAPK) Pmk1p remained active in mtl2Δ and wsc1Δ disruptants exposed to cell wall stress, suggesting that the cell wall stress-sensing spectrum of Schizosaccharomyces pombe sensor-like proteins differs from that of Saccharomyces cerevisiae.

  5. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.

    PubMed

    Soulis, Johannes V; Giannoglou, George D; Chatzizisis, Yiannis S; Seralidou, Kypriani V; Parcharidis, George E; Louridas, George E

    2008-01-01

    The capabilities and limitations of various molecular viscosity models, in the left coronary arterial tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, wall shear stress (WSS) and wall shear stress gradient (WSSG). The vessel geometry was acquired using geometrically correct 3D intravascular ultrasound (3D IVUS). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. The WSS distribution yielded a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS and low WSSG values occurred at the outer walls of the major bifurcation in proximal LCA regions. The Newtonian blood flow was found to be a good approximation at mid- and high-strain rates. The non-Newtonian Power Law, Generalized Power Law, Carreau and Casson and Modified Cross blood viscosity models gave comparable molecular viscosity, WSS and WSSG values. The Power Law and Walburn-Schneck models over-estimated the non-Newtonian global importance factor I(G) and under-estimated the area averaged WSS and WSSG values. The non-Newtonian Power Law and the Generalized Power Law blood viscosity models were found to approximate the molecular viscosity and WSS calculations in a more satisfactory way.

  6. Computational solution of the velocity and wall shear stress distribution inside a left carotid artery under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Arslan, Nurullah; Turmuş, Hakan

    2014-08-01

    Stroke is still one of the leading causes for death after heart diseases and cancer in all over the world. Strokes happen because an artery that carries blood uphill from the heart to the head is clogged. Most of the time, as with heart attacks, the problem is atherosclerosis, hardening of the arteries, calcified buildup of fatty deposits on the vessel wall. In this study, the fluid dynamic simulations were done in a left carotid bifurcation under the pulsatile flow conditions computationally. Pulsatile flow waveform is given in the paper. In vivo geometry and boundary conditions were obtained from a patient who has stenosis located at external carotid artery (ECA) and internal carotid artery (ICA) of his common carotid artery (CCA). The location of critical flow fields such as low wall shear stress (WSS), stagnation regions and separation regions were detected near the highly stenosed region and at branching region.

  7. A Multiscale Analysis of the Residual Stresses Occurring During Cooling of Thick-Walled Unidirectionally Filament-Wound Cylinders

    NASA Astrophysics Data System (ADS)

    Memarianfard, H.; Turusov, R. A.

    2016-09-01

    A numerical multiscale analysis to predict the residual thermal stresses occurring during cooling in thick-walled filament-wound cylinders made of a reinforced polymer at macro-and microscales is presented. Two types of contact — bonded and unbonded — between the mandrel and the composite are considered. The fields of microstresses are calculated in three different zones across the thickness of the cylinder by using the multiscale finite-element method. Results of the microscale analysis showed that the microstresses several times exceeded the macrostresses in these areas. The value and position of the maximum microstresses were found to depend on the type of contact between the mandrel and the thick-walled cylinder.

  8. Instrumented thick-walled tube method for measuring thermal pressure in fluids and isotropic stresses in thermosetting resins

    NASA Astrophysics Data System (ADS)

    Merzlyakov, Mikhail; Simon, Sindee L.; McKenna, Gregory B.

    2005-06-01

    We have developed a method for measuring the thermal pressure coefficient and cure-induced and thermally induced stresses based on an instrumented thick-walled tube vessel. The device has been demonstrated at pressures up to 330 MPa and temperatures to 300 °C. The method uses a sealed stainless steel thick-walled tube to impose three-dimensional isotropic constraints. The tube is instrumented with strain gauges in hoop and in axial directions and can be used in open or closed configurations. By making measurements of the isotropic stresses as a function of temperature, the method allows determination of the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. The method also can be used to measure isotropic stress development in thermosetting resins during cure and subsequent thermal cycling. Experimental results are presented for sucrose benzoate, di-2-ethylhexylsebacate, and an epoxy resin. The current report shows that the method provides reliable estimates for the thermal pressure coefficient. The thermal pressure coefficient is determined with resolution on the order of 10kPa/K. Among advantages of the method is that the tubes are reusable, even when measurements are made for cure response of thermosetting resins.

  9. Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory

    NASA Astrophysics Data System (ADS)

    Zeighampour, Hamid; Tadi Beni, Y.

    2014-07-01

    This work investigated vibrations and instability of double-walled carbon nanotube (DWCNT) conveying fluid by a modified couple stress theory. For this purpose, Donnell's shell model was developed and, using the modified couple stress theory, the equations of motion and corresponding classical and non-classical boundary conditions of DWCNT were obtained through Hamilton's principle. Then, DWCNT with simple-simple and clamped-clamped supports were investigated. The effect of the van der Waals (vdW) forces was considered between the two walls, and the DWCNT surroundings were modeled as a visco-Pasternak foundation. The governing equations of motion and corresponding boundary conditions were discretized through differential quadrature method (DQM), and the vibration problem was solved by using the boundary conditions. The results show that the effects of fluid velocity, stiffness and damping of the visco-Pasternak foundation, nanotube length, and size parameter in the modified couple stress theory are stronger than in the classical theory. Finally, the effect of vdW forces and presence of fluid in the DWCNT examined on the natural frequencies of DWCNT.

  10. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance.

    PubMed

    Ha, Young Im; Lim, Jong Min; Ko, Suk-Min; Liu, Jang Ryol; Choi, Dong-Woog

    2007-01-15

    Ginseng ESTs allowed us to identify an unknown transcript which is highly abundant in rhizomes and seeds. We called the cDNA ginseng-specific abundant protein (GSAP), and identified three homologues, GSAP1, GSAP2, and GSAP3. GSAP cDNAs encode a small polypeptide consisting of 121 or 117 amino acids, and GSAP3 shows 87.6% amino acid sequence homology with GSAP1. GSAP transcripts were detected in most plant tissues, but GSAP3 is highly expressed in seeds, and is up-regulated under stressed conditions, water deficit. GSAP3-GFP fusion protein is located in the cell wall when expressed in onion epidermis cells. The transgenic Arabidopsis seedlings which over-expressed GSAP3 grew faster than those of the wild-type plant on the medium containing 300 mM mannitol and 100 mM NaCl. GSAP3 may play a role in altering the characteristics of the cell wall to allow for more tolerance of water deficit stress under abiotic stress conditions.

  11. Simultaneous treatment of anterior vaginal wall prolapse and stress urinary incontinence by using transobturator four arms polypropylene mesh.

    PubMed

    Sharifiaghdas, Farzaneh; Daneshpajooh, Azar; Mirzaei, Mahboubeh

    2015-12-01

    To evaluate the medium-term efficacy and safety of transobturator four-arm polypropylene mesh in the treatment of high-stage anterior vaginal wall prolapse and concomitant stress urinary incontinence (SUI). Between September 2010 and August 2013, a prospective single-center trial was performed to evaluate women with stage≥3 anterior vaginal wall prolapse with or without SUI who presented to Labbafinejad Hospital, Teheran, Iran, and underwent anterior vaginal wall repair with polypropylene mesh. Pre- and postoperative evaluation included history; physical examination using the Pelvic Organ Prolapse Quantification system and cough stress test, both before and after reduction of prolapsed structures; Pelvic Floor Distress Inventory (PFDI) and Pelvic Floor Impact Questionnaire (PFIQ); urinalysis and culture; and a postvoid residual assessment. Complications were reported at a mean of 2 years of follow-up. A total of 71 patients underwent cystocele repair with the transobturator four-arm polypropylene mesh. Seven of the patients were lost to follow-up. There were no perioperative complications. The anatomical success rate was 87.5%. The subjective success rate was 92.1%. The PFDI and PFIQ were significantly improved after surgery (p<0.001). Among those with the simultaneous complaint of SUI, 82% were cured without any additional procedure. Three patients (4.6%) experienced vaginal mesh extrusion. Two patients (3.1%) reported worsening of dyspareunia after surgery. The four arms polypropylene mesh is an effective device for simultaneous correction of anterior vaginal wall prolapse and SUI with a low complication rate at a medium-term follow-up. The majority of the subgroup with concomitant SUI were cured without a second simultaneous procedure.

  12. Passive control of wall shear stress and mass transfer generated by submerged lobed impinging jet

    NASA Astrophysics Data System (ADS)

    Sodjavi, Kodjovi; Montagné, Brice; Meslem, Amina; Byrne, Paul; Serres, Laurent; Sobolik, Vaclav

    2016-05-01

    Particle image velocimetry was used to investigate the flow field in an impinging lobed daisy hemispherical nozzle jet in comparison to its counterpart round jet, at a Reynolds number of 5620 based on the exit velocity and the equivalent diameter D e of the nozzle. The limitations of the PIV technique in the vicinity of the target wall due to the laser scattering were addressed by using the electrodiffusion (ED) technique to determine the wall shear rate distribution. The distribution of the mass transfer coefficient is also obtained using the ED technique. The target wall is placed at a distance H = 2 D e from the plane tangent to the nozzle, at the center of the orifice. The entrainment of ambient fluid in the free jet region, which is larger in the lobed jet compared to the round jet, feeds in turn the wall jet region. The maximum wall shear rate was found significantly higher in the daisy jet, with an excess of 93 % compared to the reference round jet. The maximum mass transfer is 35 % higher in the former compared to the latter. Therefore, the hemispherical daisy nozzle is an excellent candidate in passive strategies to enhance local skin-friction and the subsequent local mass transfer at a constant exit Reynolds number.

  13. Poly(N-vinyl-2-pyrrolidone) elution from polysulfone dialysis membranes by varying solvent and wall shear stress.

    PubMed

    Namekawa, Koki; Matsuda, Masato; Fukuda, Makoto; Kaneko, Ami; Sakai, Kiyotaka

    2012-06-01

    Some dialysis patients are treated with post-hemodiafiltration (HDF); the blood viscosity of the patients who undergo post-HDF is higher than that of the patients who undergo conventional hemodialysis. This study aims to evaluate poly(N-vinyl-2-pyrrolidone) (PVP) elution from PSf dialysis membranes by varying solvents and high wall shear stress caused by blood viscosity. We tested three commercial membranes: APS-15SA (Asahi Kasei Kuraray), CX-1.6U (Toray) and FX140 (Fresenius). Dialysate and blood sides of the dialyzers were primed with reverse osmosis (RO) water and saline. RO water, saline and dextran solution (2.9 and 5.8 mPa s) were circulated in the blood side. The amount of eluted PVP was determined by 0.02 N iodometry. The hardness and adsorption force of human serum albumin (HSA) on the membrane surfaces were measured by the atomic force microscope. When wall shear stress was increased using dextran, the amount of PVP eluted by the 2.9 mPa s solution equaled that eluted by the 5.8 mPa s solution with APS-15SA and CX-1.6U sterilized by gamma rays. The amount of PVP eluted by the 5.8 mPa s solution was higher than that eluted by the 2.9 mPa s solution with FX140 sterilized by autoclaving. The wall shear stress increased the PVP elution from the surface, hardness and adsorption force of HSA. Sufficient gamma-ray irradiation is effective in decreasing PVP elution.

  14. Vasoprotective effect of vitamin E: rescue of ethanol-induced atherosclerosis and inflammatory stress in rat vascular wall.

    PubMed

    Shirpoor, Alireza; Norouzi, Leila; Khadem Ansari, Mohammad-Hasan; Ilkhanizadeh, Behrouz; Gharaaghaji, Rasool

    2013-08-01

    Chronic ethanol consumption increases the incidence of cardiovascular disease. The mechanisms underlying ethanol-induced susceptibility to cardiovascular disease continue to be defined. This study examines the hypothesis that chronic ethanol consumption plausibly induces vascular wall abnormalities via inflammatory reactions. In addition, it intends to find out whether vitamin E inhibits the abnormalities induced by ethanol in rats' vascular wall. Twenty four male Wistar rats were divided into three groups (n=8): Control ©, ethanol (E), and vitamin E treated ethanol (VETE) group. After 6weeks, the aortic and coronary wall changes, vascular endothelial growth factor (VEGF), alpha-1 glycoprotein and haptoglobin amounts in plasma, C-reactive protein levels(CRP), as well as the amount of aortic IL-6 were evaluated. The results revealed the elevation of polymorphonuclear (PMN) leukocyte in the vascular wall, disorganization of endothelium with ballooning of cells, proliferation of vasa-vasorum with an increase in the IL-6, CRP, as well as a decrease in VEGF and an increase in alpha-1 glycoprotein and haptoglobin in the ethanol group compared to the control group. Significant amelioration of aortic and coronary wall changes, along with the restoration of elevated level of IL6, CRP, and the decreased level of VEGF compared to that of the controls were found in vitamin E-treated animals. These findings strongly support the idea that heavy and chronic ethanol consumption initiates atherosclerosis by inflammatory stress, and that these effects can be alleviated by vitamin E as an anti-inflammatory agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Biaxial Stress-Induced Domain Wall Motion at Room Temperature in Polycrystalline Lead Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Zednik, Ricardo; McIntyre, Paul

    2007-03-01

    Wafer curvature methods can be used to impose pure biaxial tensile and compressive stresses on thin-films. This makes it possible to study the isolated effects of biaxial stress on the ferroelastic domains in ultra-fine grained PZT. Electrical measurements, such as capacitance-voltage and polarization-field hysteresis, were conducted as a function of applied stress and complemented with in-situ high resolution synchrotron X-ray diffraction measurements performed at the Stanford Synchrotron Radiation Laboratory. Systematic correlation of synchrotron scattering data with the electrical properties of the films shows that applied biaxial stress results in a marked change in the film's ferroelastic domain populations at room temperature. The large magnitude changes in ferroelectric and dielectric properties of thin film capacitors are consistent with the observed changes in relative volume fractions of the in-plane (a-axis) and out-of-plane (c-axis) oriented tetragonal PZT domains. This fully-reversible effect is symmetric in both tensile and compressive stress states. Our results, obtained from columnar-structure, fiber-textured PZT thin films, will be compared to reported data for ferroelastic domain wall motion in bulk and epitaxial specimens to assess the influence of PZT crystallite size and sample geometry on this phenomenon.

  16. New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Fellgett, Mark W.; Waters, Colin N.

    2016-04-01

    The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map. Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1°. These form a new and quality assured evidence base for both industry and its regulators. Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs). Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales. Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these

  17. Salinity Stress Inhibits Bean Leaf Expansion by Reducing Turgor, Not Wall Extensibility 1

    PubMed Central

    Neumann, Peter M.; Van Volkenburgh, Elizabeth; Cleland, Robert E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in the xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, longterm salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates. PMID:11537440

  18. A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.).

    PubMed

    Millar, D J; Slabas, A R; Sidebottom, C; Smith, C G; Allen, A K; Bolwell, G P

    1992-05-01

    A major wall protein of suspension-cultured cells of French bean has been isolated and characterised. It can be prepared from walls or the culture filtrate and in composition it is particularly rich in proline, valine and glutamic acid/glutamine and contains appreciable amounts of hydroxyproline. The N-terminus shows some glycosylation, while following chemical deglycosylation the first 38 residues were found to be identical to those of proline-rich proteins from soybean. However, the composition of the highly purified Mr-42000 bean protein differs considerably from the soybean proteins and must contain its own specific domains. An antibody was raised and used to demonstrate the inducibility of the Mr-42000 bean protein in response to elicitor action. The protein was found to be mainly localised in the intercellular spaces of the cortical cells of bean hypocotyls and at the wall-plasmalemma interface of xylem vessels, another potentially accessible compartment for pathogens. Following wounding, the protein was found to be generally distributed in the wall of epidermal and cortical cells of the hypocotyls. The Mr-42000 protein is cross reactive with antibodies raised to glycoproteins of the Rhizobium infection thread and the chitin-binding hydroxyproline-rich glycoprotein, potato lectin. These common epitopes together with the previously demonstrated chitin-binding properties of the bean protein indicate a role in host-microbial interactions. Furthermore, the Mr-42000 protein itself bound to the growing hyphal tips of the bean pathogen, Colletotrichum lindemuthianum.

  19. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

  20. Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility

    NASA Technical Reports Server (NTRS)

    Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.

    1988-01-01

    Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.

  1. Influence of non-Newtonian Properties of Blood on the Wall Shear Stress in Human Atherosclerotic Right Coronary Arteries

    PubMed Central

    Liu, Biyue; Tang, Dalin

    2011-01-01

    The objective of this work is to investigate the effect of non-Newtonian properties of blood on the wall shear stress (WSS) in atherosclerotic coronary arteries using both Newtonian and non-Newtonian models. Numerical simulations were performed to examine how the spatial and temporal WSS distributions are influenced by the stenosis size, blood viscosity, and flow rate. The computational results demonstrated that blood viscosity properties had considerable effect on the magnitude of the WSS, especially where disturbed flow was observed. The WSS distribution is highly non-uniform both temporally and spatially, especially in the stenotic region. The maximum WSS occurred at the proximal side of the stenosis, near the outer wall in the curved artery with no stenosis. The lumen area near the inner wall distal to the stenosis region experienced a lower WSS during the entire cardiac cycle. Among the factors of stenosis size, blood viscosity, and flow rate, the size of the stenosis has the most significant effect on the spatial and temporal WSS distributions qualitatively and quantitatively. PMID:21379375

  2. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.

    PubMed

    Sriram, Krishna; Tsai, Amy G; Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A; Tartakovsky, Daniel M; Intaglietta, Marcos

    2012-06-15

    We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in vessel walls. The modeling component consisted of an analysis of the distribution of wall shear stress (WSS) in the microvessels. Our experiments demonstrated that plasma expansion with PEG-Alb caused a state of supraperfusion with cardiac output 40% above baseline, significantly increased NO vessel wall bioavailability, and lowered peripheral vascular resistance. We attributed this behavior to the shear thinning nature of blood and PEG-Alb mixtures. To substantiate this hypothesis, we developed a mathematical model of non-Newtonian blood flow in a vessel. Our model used the Quemada rheological constitutive relationship to express blood viscosity in terms of both hematocrit and shear rate. The model revealed that the net effect of the hemodilution induced by relatively low-viscosity shear thinning PEG-Alb plasma expanders is to reduce overall blood viscosity and to increase the WSS, thus intensifying endothelial NO production. These changes act synergistically, significantly increasing cardiac output and perfusion due to lowered overall peripheral vascular resistance.

  3. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction

    SciTech Connect

    Fudo, T.; Kambara, H.; Hashimoto, T.; Hayashi, M.; Nohara, R.; Tamaki, N.; Yonekura, Y.; Senda, M.; Konishi, J.; Kawai, C.

    1988-06-01

    To evaluate myocardial blood flow and glucose utilization, N-13 ammonia (NH3) and F-18 deoxyglucose positron emission tomography scanning was performed in 22 patients with previous anterior wall myocardial infarction, using a high-resolution, multi-slice, whole-body scanner. The N-13 ammonia study was performed at rest and after exercise. The F-18 deoxyglucose study was performed at rest after fasting greater than 5 hours. The N-13 ammonia study revealed a hypoperfused area in 19 of the 22 patients (86%), that corresponded to the infarcted regions as diagnosed by electrocardiography, coronary arteriography and left ventriculography (21 patients). The hypoperfused areas expanded after exercise in 16 of 22 patients (73%). F-18 deoxyglucose uptake was observed in these hypoperfused areas, especially in patients with hypokinetic wall motion on left ventriculography and in exercise-induced hypoperfused areas. However, positron emission tomography demonstrated diffuse uptake of F-18 deoxyglucose in 3 of 8 patients with dyskinetic wall motion. Thus, metabolically active myocardium in infarcted areas or periinfarct ischemia can be visualized with F-18 deoxyglucose and stress N-13 ammonia studies.

  4. Effect of oscillation frequency on wall shear stress and pressure drop in a rectangular channel for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Blythman, R.; Persoons, T.; Jeffers, N.; Murray, DB

    2016-09-01

    The exploitation of flow unsteadiness in microchannels is a potentially useful technique for enhancing cooling of future photonics systems. Pulsation is thought to alter the thickness of the hydrodynamic and thermal boundary layers, and hence affect the overall thermal resistance of the heat sink. While the mechanical and thermal problems are inextricably linked, it is useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. The current work characterises the behaviour of the wall shear stress and pressure gradient with frequency, using experimental particle image velocimetry (PIV) measurements and the analytical solution for oscillatory flow in a two-dimensional rectangular channel. Both wall shear stress and pressure gradient are augmented with frequency compared to steady flow, though the pressure gradient increases more significantly as a result of growing inertial losses. The three distinct regimes of unsteadiness are shown to display unique relationships between the parameters pertinent to heat transfer and should therefore be considered independently with respect to thermal enhancement capability. To this end, the regime boundaries are estimated at Womersley number Wo = 1.6 and 28.4 in a rectangular channel, based on the contribution of viscous and inertial losses.

  5. Assessment of Influences of Stenoses in Right Carotid Artery on Left Carotid Artery Using Wall Stress Marker

    PubMed Central

    Ghagare, Dushali; Chattopadhyay, Himadri

    2017-01-01

    Purpose. Atherosclerosis is a diseased condition of blood vessel. It causes partial blockage in lumen of vessel and affects hemodynamic of localized flowing blood. Complex geometries like region of bifurcation also affects hemodynamic to a larger extent. Complexity further increases in presence of stenoses at region of bifurcation. Such morphological change in vessel largely affects parent as well as corresponding sister and daughter vessels. In this paper, complexity in hemodynamic of blood in pair of carotid arteries (left and right carotid arteries) is evaluated in presence of stenoses at basilar segment of right artery in three-dimensional domain using reconstructed tomographic images of patient. Methods. Transient information of blood flow is obtained using four-dimensional phase-contrast MRI technique. Haematocrit component of blood at diseased condition is considered using Power Law and Quemada model. Numerical techniques are used to solve pressure-coupled governing equations of flowing blood. Results. Dysfunctions of endothelial cells near the wall are characterised by evaluating shear stress markers. Wall shear stress and its gradient based and harmonic based descriptors are calculated over complete geometry during one cardiac cycle. Conclusion. Internal branch of left carotid artery and external branch of right carotid artery are found prone to secondary stenoses in presence of primary stenoses at basilar segment of right carotid artery. PMID:28191460

  6. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress.

    PubMed

    Osidak, M S; Osidak, E O; Akhmanova, M A; Domogatsky, S P; Domogatskaya, A S

    2015-01-01

    The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.

  7. Changes in the wall shear stresses (WSS) during the enlargement of Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven R.; Chomaz, Jean-Marc; Lasheras, Juan C.

    2004-11-01

    The changes in the evolution of the spatial and temporal distribution of the WSS and gradients of WSS at different stages of the enlargement of AAAs are important to understand the etiology and progression of this vascular disease, since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. PIV measurements were performed in aneurysm models, while changing systematically their geometric parameters. We show that, even at very early stages of the disease (dilatation > 30%), the flow separates from the wall and the formation of a large vortex ring followed by internal shear layers leads to the generation of WSS that drastically differ from the healthy vessel. Inside the AAA, the mean WSS decreases to zero and the magnitude of the WSS can be as low as 26% of the value in a healthy vessel. Two regions with distinct patterns of WSS were identified. The region of flow detachment, with oscillatory WSS of very low mean, and the region of flow reattachment, located distally, where large, negative WSS and sustained gradients of WSS are produced as a result of the impact of the vortex ring on the wall.

  8. Cell Wall Modifications in Maize Pulvini in Response to Gravitational Stress1[W][OA

    PubMed Central

    Zhang, Qisen; Pettolino, Filomena A.; Dhugga, Kanwarpal S.; Rafalski, J. Antoni; Tingey, Scott; Taylor, Jillian; Shirley, Neil J.; Hayes, Kevin; Beatty, Mary; Abrams, Suzanne R.; Zaharia, L. Irina; Burton, Rachel A.; Bacic, Antony; Fincher, Geoffrey B.

    2011-01-01

    Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus. PMID:21697508

  9. Development of in vivo PIV methods for measurement of wall shear stress in embryonic animal models

    NASA Astrophysics Data System (ADS)

    Kiger, K.; Vennemann, P.; Lindken, R.; Westerweel, J.; Hierck, B. P.; Groenendijk, B.; Poelmann, R. E.; Ursem, N. T. C.; Stekelenburg-de Vos, S.; Ten Hagen, T. M. L.

    2004-11-01

    Measuring the spatially and temporally resolved plasma velocity of whole blood in vivo is desirable in many areas of biomedical research. A nonintrusive velocity measurement technique is needed that can measure instantaneous flow fields at sub-millimeter scales. In the current work, we report on our efforts to adapt Micro Particle Image Velocimetry (μPIV) to measure the plasma velocity in the beating heart of a chicken embryo. In the majority of previous work applying μPIV to hemodynamic flows, erythrocytes are used to trace the fluid motion. Resolving near-wall phenomena using this technique is limited by the relatively large size of the erythrocytes and near-wall shear migration effects. In the current work, fluorescent liposomes (D ≈ 400 nm) are added to the flow as a tracer. Because of their small dimension, the liposomes are expected to closely follow the movement of the blood-plasma, as well as maintain their near-wall concentrations under high-shear conditions. The μPIV system is phase-locked to the heart beat using a pulsed Doppler ultrasound probe to allow for ensemble averaging of the flow field properties. The measurements quantitatively resolve the velocity distribution in the developing ventricle and atrium of the embryo at nine different phases within the cardiac cycle.

  10. Cell wall modifications in maize pulvini in response to gravitational stress.

    PubMed

    Zhang, Qisen; Pettolino, Filomena A; Dhugga, Kanwarpal S; Rafalski, J Antoni; Tingey, Scott; Taylor, Jillian; Shirley, Neil J; Hayes, Kevin; Beatty, Mary; Abrams, Suzanne R; Zaharia, L Irina; Burton, Rachel A; Bacic, Antony; Fincher, Geoffrey B

    2011-08-01

    Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus.

  11. Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize.

    PubMed

    Uddin, Md Nesar; Hanstein, Stefan; Faust, Franziska; Eitenmüller, Philipp T; Pitann, Britta; Schubert, Sven

    2014-06-01

    In the first phase of salt stress the elongation growth of maize shoots is severely affected. The fixation of shape at the end of the elongation phase in Poaceae leaves has frequently been attributed to the formation of phenolic cross-links in the cell wall. In the present work it was investigated whether this process is accelerated under salt stress in different maize hybrids. Plants were grown in nutrient solution in a growth chamber. Reduction of shoot fresh mass was 50% for two hybrids which have recently been developed for improved salt resistance (SR 03, SR 12) and 60% for their parental genotype (Pioneer 3906). For SR 12 and Pioneer 3906, the upper three leaves were divided into elongated and elongating tissue and cell walls were isolated from which phenolic substances and neutral sugars were determined. Furthermore, for the newly developed hybrids the activity of phenolic peroxidase in the cell wall was analysed in apoplastic washing fluids and after sequential extraction of cell-wall material with CaCl2 and LiCl. The concentration of ferulic acid, the predominant phenolic cross-linker in the grass cell wall, was about 5mgg(-1) dry cell wall in elongating and in elongated tissue. The concentration of diferulic acids (DFA) was 2-3mgg(-1) dry cell wall in both tissues. Salt stress increased the concentration of ferulic acid (FA) and DFA in the parental genotype Pioneer 3906, but not in SR 12. Both genotypes showed an increase in arabinose, which is the molecule at which FA and DFA are coupled to interlocking arabinoxylan polymers. In SR 12, the activity of phenolic peroxidase was not influenced by salt stress. However, in SR 03 salt stress clearly increased the phenolic peroxidase activity. Results are consistent with the hypothesis that accelerated oxidative fixation of shape contributes to growth suppression in the first phase of salt stress in a genotype-specific manner.

  12. Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls.

    PubMed

    Alméras, Tancrède; Gril, Joseph

    2007-11-01

    Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.

  13. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.

    PubMed

    Van Epps, J Scott; Vorp, David A

    2008-10-01

    The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretching due to their tethering to the epicardial surface. Spatial variations in stresses caused by these deformations could account for the heterogeneity of atherosclerotic plaques within the coronary tree. The goal of this work was to utilize previously reported shear moduli to calculate a shear strain parameter for a Fung-type exponential model of the arterial wall and determine if this single constant can account for the observed behavior of arterial segments under torsion. A Fung-type exponential strain-energy function was adapted to include a torsional shear strain term. The material parameter for this term was determined from previously published data describing the relationship between shear modulus and circumferential stress and longitudinal stretch ratio. Values for the shear strain parameter were determined for three geometries representing the mean porcine left anterior descending coronary artery dimensions plus or minus one standard deviation. Finite element simulation of triaxial biomechanical testing was then used to validate the model. The mean value calculated for the shear strain parameter was 0.0759+/-0.0009 (N=3 geometries). In silico triaxial experiments demonstrated that the shear modulus is directly proportional to the applied pressure at a constant longitudinal stretch ratio and to the stretch ratio at a constant pressure. Shear moduli determined from these simulations showed excellent agreement to shear moduli reported in literature. Previously published models describing the torsional shear behavior of porcine coronary arteries require a total of six independent constants. We have reduced that description into a single parameter in a Fung-type exponential strain-energy model. This model will aid in the estimation of wall stress distributions of vascular segments undergoing torsion, as such information

  14. Cross Sectional Constants and Stress Distributions of Thin-Walled Sections

    DTIC Science & Technology

    1992-03-01

    walls. The second term in this equation vanishes for an open section. By defining d2, = hrds and dQ 2 = J/(2At)ds, integrating equation (23) along the s...xp= 118.85; y, =-160.16 Xp= 269.85; Yp = 54.85 _(2) (3) (4) (5)(8) elearn t. n de Y Y L., A . Y,, y AS y S y 1+4 +1 Iv I Y I-€a, 1 0 , j0[d 1... languages unless the text is bilingual) The equivalent beam model is widely used for predicting strength and vibration of a ship hull in a preliminary

  15. Effect of type of load on stress analysis of thin-walled ducts

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Aggarwal, P. K.

    1992-01-01

    The standard procedure for qualifying the design of duct (pipe) systems in the Space Shuttle Main Engine (SSME) has been fairly well defined. However, since pipe elbows are quite common and important in the SSME duct systems, a clear understanding of the detailed stress profile of the components is necessary for accurate structural and life assessments. This study was initiated to predict the stress profile at/near the tangent point along the cross section of the duct under various types of loads. Also, this study was further extended to understand the stiffening effect on stresses due to pressure at the tangent point. The intention of this study was to identify the importance of selecting proper locations for mounting strain gauges and to utilize the obtained results to anchor dynamic models for accurate structural and life assessments of the SSME ducts under a dynamic environment. The finite element method was utilized in this study.

  16. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.

    PubMed

    Van der Does, Dieuwertje; Boutrot, Freddy; Engelsdorf, Timo; Rhodes, Jack; McKenna, Joseph F; Vernhettes, Samantha; Koevoets, Iko; Tintor, Nico; Veerabagu, Manikandan; Miedes, Eva; Segonzac, Cécile; Roux, Milena; Breda, Alice S; Hardtke, Christian S; Molina, Antonio; Rep, Martijn; Testerink, Christa; Mouille, Grégory; Höfte, Herman; Hamann, Thorsten; Zipfel, Cyril

    2017-06-01

    Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.

  17. Markers of inflammation collocate with increased wall stress in human coronary arterial plaque.

    PubMed

    Hallow, Karen Melissa; Taylor, W Robert; Rachev, Alexander; Vito, Raymond Peter

    2009-12-01

    In this study, we hypothesized that spatial relationships exist between the local mechanical environment and inflammatory marker expression in atherosclerotic plaques, and that these relationships are plaque-progression dependent. Histologic cross-sections were collected at regular intervals along the length of diseased human coronary arteries and classified as early, intermediate, advanced, or mature based on their morphological features. For each cross-section, the spatial distribution of stress was determined using a 2D heterogeneous finite element model, and the corresponding distribution of selected inflammatory markers (macrophages, matrix metalloproteinase-1 [MMP-1], and nuclear factor-kappa B [NF-κB]) were determined immunohistochemically. We found a monotonic spatial relationship between mechanical stress and activated NF-κB that was consistent in all stages of plaque progression. We also identified progression-dependent relationships between stress and both macrophage presence and MMP-1 expression. These findings add to our understanding of the role of mechanical stress in stimulating the inflammatory response, and help explain how mechanical factors may regulate complex biological changes in remodeling.

  18. Protection of vascular wall function in insulin-resistant rats from copper oxidative stress

    PubMed Central

    O'Brien, Sheila F; Davidge, Sandra T; Zhang, Yunlong; Russell, James C

    2001-01-01

    The effects of oxidative stress on vascular function in the insulin-resistant state were assessed in mesenteric resistance arteries of obese, insulin-resistant (cp/cp) and lean, normal (+/?) JCR : LA-cp rats.Nitric oxide-mediated relaxation of noradrenaline-contracted arteries in response to acetylcholine was impaired after 2 h of incubation with Cu2+ in both genotypes, with or without the continuing presence of Cu2+. Relaxation was enhanced on initial exposure to Cu2+, and post-incubation removal of the Cu2+ resulted in a greater impairment of relaxation. Arteries from cp/cp rats were less impaired in function by Cu2+ incubation than were those of +/? controls.Sodium nitroprusside-mediated relaxation was impaired by exposure to Cu2+, with an accompanying increase in EC50.The impairment in acetylcholine-mediated relaxation in the arteries from both cp/cp and +/? rats was completely inhibited by co-incubation with copper-zinc superoxide dismutase and catalase, confirming that the impairment associated with Cu2+ incubation was due to oxidative stress.The impairment appears to involve both smooth muscle and the endothelium.The cp/cp rats showed greater resistance to the effects of oxidative stress on arterial function, possibly due to an adaptation to oxidative stress on arterial function associated with the insulin-resistant state. PMID:11399664

  19. Release of bacterial spores from inner walls of a stainless steel cup subjected to thermal stress

    NASA Technical Reports Server (NTRS)

    Wolochow, H.; Chatigny, M. A.; Herbert, J.

    1974-01-01

    In an earlier report thermal stresses, simulating those expected on a Mars Lander, dislodged approximately 0.01% of an aerosol deposited surface burden, as did a landing shock of 8-10 G deceleration. This work confirms earlier results and demonstrates that release rate is not dependent on surface burden.

  20. Free and Cell Wall-Bound Polyamines under Long-Term Water Stress Applied at Different Growth Stages of ×Triticosecale Wittm

    PubMed Central

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2015-01-01

    Background Long-stemmed and semi-dwarf cultivars of triticale were exposed to water stress at tillering, heading and anthesis stage. Quantitative determination of free and cell wall-bound polyamines, i.e. agmatine, cadaverine, putrescine, spermidine and spermine, was supplemented with an analysis of quantitative relationships between free and cell wall-bound polyamines. Results The content of free and cell wall-bound polyamines varied depending on the development stage, both under optimal and water stress conditions. Drought-induced increase in free agmatine content was observed at all developmental stages in long-stemmed cultivar. A depletion of spermidine and putrescine was also reported in this cultivar, and spermidine was less abundant in semi-dwarf cultivar exposed to drought stress at the three analyzed developmental stages. Changes in the content of the other free polyamines did not follow a steady pattern reflecting the developmental stages. On the contrary, the content of cell wall-bound polyamines gradually increased from tillering, through heading and until anthesis period. Conclusion Water stress seemed to induce a progressive decrease in the content of free polyamines and an accumulation of cell wall-bound polyamines. PMID:26247474

  1. Left Ventricular Contraction Pattern in Chronic Aortic Regurgitation and Preserved Ejection Fraction: Simultaneous Stress-Strain Analysis by Three-Dimensional Echocardiography.

    PubMed

    Broch, Kaspar; de Marchi, Stefano F; Massey, Richard; Hisdal, Jonny; Aakhus, Svend; Gullestad, Lars; Urheim, Stig

    2017-04-01

    The role of speckle-tracking echocardiography in the assessment of chronic aortic regurgitation (AR) is not established. Load dependency may encumber the interpretation of strain measurements in the chronically overloaded left ventricle. The aim of this study was to investigate the mechanisms of left ventricular (LV) contraction patterns in asymptomatic patients with moderate to severe AR and preserved ejection fractions. In this prospective, cross-sectional study, 31 patients with moderate to severe AR, 15 elite endurance athletes, and 17 healthy control subjects were examined using three-dimensional speckle-tracking echocardiography. Global circumferential strain (GCS), global longitudinal strain (GLS), end-systolic circumferential wall stress (ESSc), end-systolic meridional wall stress (ESSm), and the wall stress ratio (ESSc/ESSm) were measured. LV end-diastolic volumes were similar in athletes and patients with AR and significantly larger than in healthy control subjects. Values of GLS in control subjects, athletes, and patients with AR were -18.8 ± 1.9%, -17.3 ± 2.0%, and -16.4± 2.0%, respectively (control subjects vs athletes and patients, P < .05), whereas values of GCS were -16.9 ± 2.0%, -15.5 ± 1.9%, and -17.9 ± 2.6%, respectively (athletes vs control subjects and patients, P < .01). The ESSc/ESSm ratio was lower in patients with AR (P < .01). When adjusted for ESSm, GLS remained impaired in patients compared with control subjects and athletes (P = .015). On the other hand, GCS was better in patients with AR when adjusted for ESSc (P = .003). In compensated AR, relatively high GCS compensates for reduced GLS in a manner consistent with the preserved ejection fractions observed in these patients. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  2. Diagnostic accuracy of supine and prone thallium-201 stress myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in inferior wall of left ventricle.

    PubMed

    Katayama, Takuji; Ogata, Nobuhiko; Tsuruya, Yoshio

    2008-05-01

    Prone thallium-201 ((201)Tl) myocardial perfusion single-photon emission computed tomography (SPECT) reduces false-positive rates when evaluating inferior wall abnormalities by minimizing diaphragmatic attenuation. The present study investigates the diagnostic validity of prone (201)Tl stress myocardial perfusion SPECT for detecting coronary artery disease in the inferior wall of the left ventricle in Japanese patients. Of the 104 consecutive patients who underwent (201)Tl stress myocardial perfusion SPECT to diagnose coronary artery disease, we evaluated 46 who underwent image acquisition in both the supine and prone positions, and coronary angiography within 3 months thereafter. Images were acquired in the routine supine position immediately following (201)Tl (111 MBq) injection and 4 h following early acquisition. Images were acquired in the prone position only during the early phase following supine acquisition. We evaluated the SPECT images of the inferior half segments of the left ventricle using a five-point defect scoring system. According to the coronary angiographic findings, we investigated the diagnostic accuracy of stress-rest supine, stress supine, stress prone, and combined supine-prone images. Reduced uptake in the stress supine image of the combined images was considered as attenuation when uptake was normal in the prone image. The sensitivity of the stress-rest supine, stress supine, stress prone, and stress-combined supine-prone images was 77%, 86%, 55%, and 55%, and the specificity was 71%, 54%, 79%, and 83%, respectively. Diagnostic accuracy was the highest in stress-rest supine images. Prone images tended to improve the specificity of detecting coronary artery disease in the inferior wall, but not diagnostic accuracy compared with stress-rest supine images because of decreased sensitivity.

  3. Lower limb pneumatic compression during dobutamine stress echocardiography in patients with normal resting wall motion: will it increase diagnostic accuracy?

    PubMed

    Abdel-Salam, Zainab; Allam, Lawra; Wadie, Bassem; Enany, Bassem; Nammas, Wail

    2015-01-01

    Pneumatic compression of the lower part of the body increases systemic vascular resistance and left ventricular afterload. We compared the diagnostic accuracy of dobutamine stress echocardiography (DSE) with pneumatic compression of the lower extremities, vs. standard DSE, for detection of angiographically significant coronary artery disease (CAD) in patients with normal baseline resting wall motion. We enrolled 70 consecutive patients with no resting wall motion abnormalities (WMA), who underwent DSE. DSE was repeated with pneumatic compression of the lower extremities three days after the initial standard DSE. A positive test was defined as the induction of WMA in at least two contiguous non-overlap segments at any stage of dobutamine infusion. Significant coronary stenosis was defined as ≥ 50% obstruction of ≥ 1 sizable artery by coronary angiography. The mean age of the study cohort was 54.7 ± 9.9 years; 55.7% were females. Thirty-eight (54.3%) patients had significant CAD. The mean test duration was 15.8 ± 5.1 min for standard DSE and 11.7 ± 4.1 min for DSE with pneumatic compression. Analysis of standard DSE revealed sensitivity, specificity, and positive and negative predictive values of 81.6%, 90.6%, 91.2%, and 80.6%, respectively; overall accuracy was 85.7%. Analysis of DSE with pneumatic compression revealed sensitivity, specificity, and positive and negative predictive values of 89.5%, 87.5%, 89.5%, and 87.5%, respectively; overall accuracy was 88.6%. In symptomatic patients with suspected CAD referred for evaluation by DSE, who have no resting wall motion abnormalities, pneumatic compression of the lower extremities during DSE improved the sensitivity but slightly reduced the specificity for detection of angiographically significant CAD, compared with standard DSE. Moreover, it reduced the test duration.

  4. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse.

    PubMed

    Yap, Choon Hwai; Liu, Xiaoqin; Pekkan, Kerem

    2014-01-01

    Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. In normal mouse fetuses between E14.5-18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels.

  5. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse

    PubMed Central

    Yap, Choon Hwai; Liu, Xiaoqin; Pekkan, Kerem

    2014-01-01

    Introduction Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Methods Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. Results In normal mouse fetuses between E14.5–18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Conclusion Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels. PMID:24475188

  6. Reduced First-Phase Ejection Fraction and Sustained Myocardial Wall Stress in Hypertensive Patients With Diastolic Dysfunction

    PubMed Central

    Gu, Haotian; Li, Ye; Fok, Henry; Simpson, John; Kentish, Jonathan C.; Shah, Ajay M.

    2017-01-01

    Impaired shortening deactivation of cardiac myocytes could sustain myocardial contraction, preserving ejection fraction at the expense of diastolic dysfunction. We examined the relationship between first-phase ejection fraction (EF1), the fraction of left ventricular volume ejected from the start of systole to the time of the first peak in left ventricular pressure (corresponding to the time of maximal ventricular shortening) to the duration of myocardial contraction and diastolic function in patients with hypertension (n=163), and varying degrees of diastolic dysfunction. Left ventricular systolic pressure was estimated by carotid tonometry; time-resolved left ventricular cavity and wall volume were obtained by echocardiography with speckle wall tracking. Measurements were repeated after nitroglycerin, a drug known to influence ventricular dynamics, in a subsample (n=18) of patients. EF1 and time of onset of ventricular relaxation (as determined from the temporal pattern of myocardial wall stress) were independently correlated with diastolic relaxation as measured by tissue Doppler early diastolic mitral annular velocity (E′, standardized regression coefficients 0.48 and −0.34 for EF1 and time of onset of ventricular relaxation, respectively, each P<0.001, irrespective of adjustment for age, sex, antihypertensive treatment, measures of afterload, and ventricular geometry) and with diastolic function measured by the ratio of transmitral Doppler early filling velocity (E) to E′ (E/E′, regression coefficients −0.34 and 0.34, respectively, each P<0.001). Nitroglycerin increased EF1, decreased time of onset of ventricular relaxation, and improved diastolic function (each P<0.05). Hypertensive patients with diastolic dysfunction exhibit reduced EF1 which may sustain myocardial contraction, preserving systolic ejection fraction at the expense of impaired diastolic function. PMID:28223475

  7. Wall Shear Stress Restoration in Dialysis Patient's Venous Stenosis: Elucidation via 3D CFD and Shape Optimization

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh Akherat, S. M. Javid; Cassel, Kevin; Hammes, Mary; Boghosian, Michael; Illinois Institute of Technology Team; University of Chicago Team

    2016-11-01

    Venous stenosis developed after the growth of excessive neointimal hyperplasia (NH) in chronic dialysis treatment is a major cause of mortality in renal failure patients. It has been hypothesized that the low wall shear stress (WSS) triggers an adaptive response in patients' venous system that through the growth of neointimal hyperplastic lesions restores WSS and transmural pressure, which also regulates the blood flow rate back to physiologically acceptable values which is violated by dialysis treatment. A strong coupling of three-dimensional CFD and shape optimization analyses were exploited to elucidate and forecast this adaptive response which correlates very well topographically with patient-specific clinical data. Based on the framework developed, a medical protocol is suggested to predict and prevent dialysis treatment failure in clinical practice. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  8. Mechanisms of Multi-walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells.

    PubMed

    Alarifi, Saud; Ali, Daoud

    2015-01-01

    The extensive production and wide application of carbon nanotubes have made investigations of its toxic potentials necessary. In the present study, we explored the underlying mechanism through which multi-walled carbon nanotubes (MWCNTs) induce toxicity in mouse fibroblast cells (L929). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and neutral red uptake viability assays were used to examine mechanisms of cytotoxicity. Dose and time-dependent cytotoxicity was observed in L929 cells. The MWCNTs significantly increased the generation of reactive oxygen species, lipid peroxidation, superoxide dismutase, and decreased glutathione. It was observed that the MWCNTs induced caspase 3 activity. The highest DNA strand breakage was detected by comet assay at 300 µg/mL of MWCNTs. Thus, the data indicate that MWCNTs induced cytotoxicity and apoptosis in L929 cells via oxidative stress.

  9. [Adaptogenic effects of furostanol glycosides of Dioscorea deltoidea wall on oxidative processes in tomato plants in biotic stress].

    PubMed

    Vasil'eva, I S; Vaniushkin, S A; Zinov'eva, S V; Udalova, Zh V; Volkova, L A; Nosov, A M; Paseshnichenko, V A

    2005-01-01

    The effect of furostanol glycosides of cell culture of Dioscorea deltoidea Wall on oxidative processes in tomato plants subjected to invasion with the gall nematode Meloidogyne incognita Kofoid et White was studied. We showed that furostanol glycosides induce a nonspecific defensive response in plants. Exposure of cell membranes to furostanol glycosides cause rearrangements in fatty acids resulting in the formation of conjugated dienes, which makes molecules thermodynamically more stable under stress conditions. The study of changes in the activity of peroxidases of intact plants and plants affected with the nematode, which were treated with furostanol glycosides, showed that the protective effect of the guaiacol-dependent peroxidase is more long-term than the effect of the benzidine-dependent peroxidase.

  10. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.

    PubMed

    Ye, Swe Soe; Ju, Meongkeun; Kim, Sangho

    2016-07-01

    Unequal RBC partitioning at arteriolar bifurcations contributes to dissimilar flow developments between daughter vessels in a bifurcation. Due to the importance of the cell-free layer (CFL) and the wall shear stress (WSS) to physiological processes such as vasoregulation and gas diffusion, we investigated the effects of a bifurcation disturbance on the development of the CFL width and WSS in bifurcation daughter branches. The analysis was performed on a two-dimensional (2-D) computational model of a transverse arteriole at three different flow rates corresponding to parent branch (PB) pseudoshear rates of 60, 170 and 470s(-1), while maintaining a 2-D hematocrit of about 55% in the PB. Flow symmetry was defined using the statistical similarity of the CFL and WSS distributions between the two walls of the vessel branch. In terms of the flow symmetry recovery, higher flow rates caused larger reductions in the flow symmetry indices in the MB and subsequently required longer vessel lengths for complete recovery. Lower tube hematocrits in the SB led to complete symmetry recovery for all flow rates despite the higher initial asymmetry in the SB than in the MB. Arteriolar bifurcations produce unavoidable local CFL asymmetry and the persistence of the asymmetry downstream may increase effective blood viscosity which is especially significant at higher physiological flow rates.

  11. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress.

    PubMed

    Charonko, John; Karri, Satyaprakash; Schmieg, Jaime; Prabhu, Santosh; Vlachos, Pavlos

    2009-07-01

    The effect of stent design on wall shear stress (WSS) and oscillatory shear index (OSI) was studied in vitro using time-resolved digital particle image velocimetry (DPIV). Four drug-eluting stents [XIENCE V (Abbott Vascular), TAXUS Liberté (Boston Scientific), Endeavor (Medtronic), and Cypher (J&J Cordis)] and a bare-metal stent [VISION (Abbott Vascular)] were implanted into compliant vessel models, and the flow was measured in physiologically accurate coronary conditions featuring reversal and realistic offsets between pressure and flowrate. DPIV measurements were made at three locations under two different flow rates (resting: Re = 160, f = 70 bpm and exercise: Re = 300, f = 120 bpm). It was observed that design substantially affected the WSS experienced at the vessel walls. Averaged values between struts ranged from 2.05 dynes/cm(2) (Cypher) to 8.52 dynes/cm(2) (XIENCE V) in resting conditions, and from 3.72 dynes/cm(2) (Cypher) to 14.66 dynes/cm(2) (VISION) for the exercise state. Within the stent, the WSS dropped and the OSI increased immediately distal to each strut. In addition, an inverse correlation between average WSS and OSI existed. Comparisons with recently published results from animal studies show strong correlation between the measured WSS and observed endothelial cell coverage. These results suggest the importance of stent design on the WSS experienced by endothelial cells in coronary arteries.

  12. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation.

    PubMed

    Spiegel, Martin; Redel, Thomas; Zhang, Y Jonathan; Struffert, Tobias; Hornegger, Joachim; Grossman, Robert G; Doerfler, Arnd; Karmonik, Christof

    2011-01-01

    Haemodynamic factors, in particular wall shear stresses (WSSs) may have significant impact on growth and rupture of cerebral aneurysms. Without a means to measure WSS reliably in vivo, computational fluid dynamic (CFD) simulations are frequently employed to visualise and quantify blood flow from patient-specific computational models. With increasing interest in integrating these CFD simulations into pretreatment planning, a better understanding of the validity of the calculations in respect to computation parameters such as volume element type, mesh size and mesh composition is needed. In this study, CFD results for the two most common aneurysm types (saccular and terminal) are compared for polyhedral- vs. tetrahedral-based meshes and discussed regarding future clinical applications. For this purpose, a set of models were constructed for each aneurysm with spatially varying surface and volume mesh configurations (mesh size range: 5119-258, 481 volume elements). WSS distribution on the model wall and point-based velocity measurements were compared for each configuration model. Our results indicate a benefit of polyhedral meshes in respect to convergence speed and more homogeneous WSS patterns. Computational variations of WSS values and blood velocities are between 0.84 and 6.3% from the most simple mesh (tetrahedral elements only) and the most advanced mesh design investigated (polyhedral mesh with boundary layer).

  13. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  14. Present-day stress states underneath the Kumano basin to 2 km below seafloor based on borehole wall failures at IODP site C0002, Nankai accretionary wedge

    NASA Astrophysics Data System (ADS)

    Chang, Chandong; Song, Insun

    2016-11-01

    We constrain the state of stress to 2 km below seafloor in the Nankai accretionary prism at the Integrated Ocean Drilling Program (IODP) site C0002F, southwest Japan, based on borehole wall failures and rock strengths. The logging-while-drilling resistivity images from 872.5 to 2005.5 m below seafloor show that drilling-mud control in riser drilling worked properly to minimize borehole wall failures. Available breakouts indicate a consistent maximum compression orientation subparallel to the subducting plate margin. Breakout analysis with drill logs suggests that breakouts occurred only when borehole pressure was slightly lowered and time lag between hole cutting and image logging was several hours. This indicates that the observed breakouts are not immediate stress-induced failure but brought up into shape gradually with time due to other mechanisms. Laboratory investigations on deformation and failure of the cores suggest that the time-delayed breakout might be a result of progressive rock spall-out in borehole wall damage zones that occur at a stress level close to failure condition. We constrain stress magnitudes assuming that the stress state is sufficient to bring about the damage zones at the borehole wall. An integrated method utilizing breakouts, drilling-induced tensile fractures, and a leak-off test suggests that the stress states are on the boundary between strike-slip faulting and normal faulting stress regimes, and somewhat variable depending on depth. The stress magnitudes in the accretionary wedge appear to be controlled by frictional strength of the rock, such that the differential stresses are constrained by the laboratory determined frictional coefficients.

  15. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    PubMed Central

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  16. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  17. Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development.

    PubMed

    Zhang, Zhiyong; Xin, Wanwan; Wang, Sufang; Zhang, Xin; Dai, Haifang; Sun, Runrun; Frazier, Taylor; Zhang, Baohong; Wang, Qinglian

    2015-01-01

    The xylem sap of a plant is primarily responsible for transporting molecules from the underground root system to the aboveground parts of the plant body. In order to understand the role that roots play in cotton growth and development, the components present in xylem sap must be elucidated. In this study, we used a shotgun HPLC-ESI-MS/MS proteomics approach to identify 455 peptides from the xylem sap of field-grown cotton plants at peak blooming stage. Of these peptides, 384 (84.4%) were found to be secreted proteins and 320 (70.3%) had special molecular functions. Based on Gene Ontology (GO) analysis, 348 peptides were annotated in terms of molecular function, biological process, and cellular localization, with 46.9 and 45.1% being related to catalytic activity and binding activity, respectively. Many xylem sap-containing proteins were predicted to be involved in different phases of xylem differentiation including cell wall metabolism, secondary cell wall development and patterning, and programmed cell death. The identification of starch and sucrose hydrolyzing enzymes implicated the interaction between roots and aboveground parts on the aspect of carbohydrate metabolism. Many of the proteins identified in this study are involved in defense mechanisms including pathogen-related proteins, such as peroxidases, chitinases, and germin-like proteins, proteases involved in disease resistance, and phytoalexin phenylpropanoid synthesis-related proteins. The majority of identified signaling proteins were fasciclin-like arabinogalactan proteins and kinases. The results of this study provide useful insight into the communication mechanisms between cotton roots and the rest of the cotton plant.

  18. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    PubMed Central

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  19. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    PubMed

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy.

  20. Extremal states of energy of a double-layered thick-walled tube - application to residually stressed arteries.

    PubMed

    Waffenschmidt, Tobias; Menzel, Andreas

    2014-01-01

    Various biological tissues are designed to optimally support external loads for complex geometries and mechanobiological structures. This results in complex microstructures of such materials. The design of, for instance, (healthy) arteries, which are in the focus of this work, is characterised by a residually stressed fibre-reinforced multi-layered composite with highly non-linear elastic response. The complex interaction of material properties with the geometry and residual stress effects enables the optimal support under different blood pressures, respectively blood flow, within the vessel. The fibres reinforcing the arterial wall, as well as residual stresses present in the vessel, strongly influence its overall behaviour and performance. Turn-over and remodelling processes of the collagenous fibres occurring in the respective layers - either resulting from natural growth phenomena or from artificially induced changes in loading condition such as stent deployment - support the optimisation of the multi-layered composite structure of arteries for the particular loading conditions present in the artery. Within this contribution, the overall energetic properties of an artery are discussed by means of the inflation, bending and extension of a double-layered cylindrical tube. Different states of residual stresses and different fibre orientations are considered so that, for instance, representative fibre angles that result in extremal states of the total potential energy can be identified. In view of turn-over and remodelling processes, these orientations are considered to constitute preferred directions of fibre alignment. In summary, the main goal of this work is to calculate optimal material, structural and loading parameters by concepts of energy-minimisation. Several numerical studies show that the obtained values - such as the fibre orientations, the residual axial stretch and the opening angle - are in good agreement with respective physiological parameters

  1. Thermal Gradient-Induced Deflection of a Thick-Walled Cylinder with Bending Residual Stresses

    DTIC Science & Technology

    1993-04-01

    associated tube bending. Results from the two approaches for a 200"C temperature gradient show a maximum angular displacement of 0.004 to 0.008 deg/m and...the displacement returning to zero as the thermal gradient diminishes with tune. 14. SUBJECT TERMS 15. NUMBER OF PAGES Thermal Gradient, Thermal Stress...cylinder and bar ......................... 10 5. Change in angular displacement for bar due to moving step thermal gradient ................. 11 6

  2. A wall shear stress sensor using a pair of sidewall doped cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Kazama, Ryohei; Takahashi, Hidetoshi; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2017-07-01

    In this paper, we report on a micro-electro mechanical system (MEMS)-based piezoresistive sensor for measuring shear stress induced by an airflow. The advantages of the proposed sensor include a simple sensing method and a high resonance frequency due to the small size of the sensing elements. Our sensor consists of a pair of 3 µm thick cantilevers with piezoresistors formed on the sidewall of their hinges to detect lateral deformation in the cantilevers induced by an airflow. Each cantilever has a 200 µm  ×  400 µm plate supported by two 150 µm long, 4 µm wide beams. The piezoresistors on the two cantilevers are designed to deform in opposite manners when a shear stress is applied and in the same manner when a pressure is applied. Therefore, the applied shear stress can be detected from the difference in the responses of the two cantilevers without becoming conflated with pressure. In this paper, the design, fabrication and evaluation of the proposed sensor are reported and compared to numerical simulation results. From the experimental results, the resolution of the sensor and its first resonance frequency are 1.3 Pa and 3.9 kHz, respectively. Moreover, we show that the effect of temperature on the readout of the sensor can be eliminated using a temperature-compensating piezoresistor fabricated on the same sensor chip. Finally, using the fabricated sensor, the measurement of the shear stress induced by an airflow with velocity between  -10 and 10 m s-1 is demonstrated.

  3. Bubbles breaking the wall: Two-dimensional stress and stability analysis

    NASA Astrophysics Data System (ADS)

    Eriksen, Jon Alm; Marks, Benjy; Sandnes, Bjørnar; Toussaint, Renaud

    2015-05-01

    Submerged granular material exhibits a wide range of behavior when the saturating fluid is slowly displaced by a gas phase. In confined systems, the moving interface between the invading gas and the fluid/grain mixture can cause beads to jam, and induce intermittency in the dynamics. Here, we study the stability of layers of saturated jammed beads around stuck air bubbles, and the deformation mechanism leading to air channel formations in these layers. We describe a two-dimensional extension of a previous model of the effective stress in the jammed packing. The effect of the tangential stress component on the yield stress is discussed, in particular how arching effects may impact the yield threshold. We further develop a linear stability analysis, to study undulations which develop under certain experimental conditions at the air-liquid interface. The linear analysis gives estimates for the most unstable wavelengths for the initial growth of the perturbations. The estimates correspond well with peak to peak length measurements of the experimentally observed undulations.

  4. Expression and significance of TIMP-3, PACAP and VIP in vaginal wall tissues of patients with stress urinary incontinence

    PubMed Central

    Fan, Bo; Jin, Xiaohua; Shi, Yi; Zhu, Hailiang; Zhou, Wenjun; Tu, Wenjian; Ding, Li

    2017-01-01

    The objective of the present study was to investigate whether tissue inhibitor of metalloproteinase-3 (TIMP-3), pituitary adenylate cyclase-activating polypeptide (PACAP), and vasoactive intestinal peptide (VIP) participate in the occurrence of female stress urinary incontinence (SUI) by measuring the expression levels of TIMP-3, PACAP, and VIP in the vaginal wall and analyzing their correlation to understand the pathogenesis of female SUI. Forty female patients who were admitted to our hospital for tension-free obturator tape surgery for treatment of SUI from April, 2012 to December, 2015 were selected as the study group. Forty patients who underwent vaginal or total abdominal hysterectomy for treatment of non-estrogen-related diseases during the same period were selected as the control group. Tissue samples from the anterior vaginal wall, located at twelve o'clock, were taken from both groups. The expression levels of TIMP-3, PACAP and VIP were detected by immunohistochemistry, and the correlation of integral optical density (IOD) among expressions of TIMP-3, PACAP, and VIP was investigated. The expression of TIMP-3 in vaginal wall tissues of the study group was lower than that of the control group (P<0.05). The expression of PACAP and VIP in vaginal tissues of the study group were lower than those of the control group (P<0.05). In the study group, the IOD of PACAP expression was significantly and positively correlated with that of VIP (r=0.873, P<0.05), the IOD of PACAP expression was significantly and positively correlated with that of TIMP-3 (r=0.802, P<0.05), and the IOD of VIP expression was significantly and positively correlated with that of TIMP-3 (r=0.716, P<0.05). In conclusion, TIMP-3, PACAP and VIP jointly participate in the occurrence of female SUI. Increasing the expression of TIMP-3, PACAP, and VIP, repairing neurons, and enhancing the elasticity of vaginal wall tissues may become a new way to treat female SUI. PMID:28352341

  5. Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets

    PubMed Central

    Yu, Lei; Martínez, Yordan

    2017-01-01

    This research aims to evaluate the effects of dietary supplementation with Saccharomyces cerevisiae cell wall extract (SCCWE) on growth performance, oxidative stress, intestinal morphology, and serum amino acid concentration in weaned piglets. Utilizing a completely randomized design, 40 healthy piglets weaned at 21 d were grouped into 4 experimental treatments with 10 pigs per treatment group. Treatments consisted of a basal diet (T0), a basal diet with a 0.05% SCCWE (T1), a basal diet with a 0.10% SCCWE (T2), and a basal diet with a 0.15% SCCWE (T3). SCCWE supplementation increased the average daily gain and final body weight compared with T0 (P < 0.05). SCCWE in T2 and T3 improved the average daily feed intake and decreased the feed/gain ratio compared with T1 and T2 (P < 0.05). SCCWE decreased serum malondialdehyde (MDA) and increased activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) significantly compared to T0 (P < 0.05). SCCWE increased the concentration of Ile compared to T0 (P < 0.05). Moreover, the concentrations of Leu, Phe, and Arg were higher in T2 and T3 (P < 0.05). These findings indicate beneficial effects of SCCWE supplementation on growth performance, the concentration of some essential amino acids, and alleviation of oxidative stress in weaned piglets. PMID:28386308

  6. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models.

    PubMed

    Castro, Marcelo A; Ahumada Olivares, María C; Putman, Christopher M; Cebral, Juan R

    2014-10-01

    The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.

  7. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity.

    PubMed

    Inthavong, Kiao; Shang, Yidan; Tu, Jiyuan

    2014-01-01

    Airflow analysis can assist in better understanding the physiology however the human nasal cavity is an extremely complicated geometry that is difficult to visualize in 3D space, let alone in 2D space. In this paper, an anatomically accurate 3D surface of the nasal passages derived from CT data was unwrapped and transformed into a 2D space, into a UV-domain (where u and v are the coordinates) to allow a complete view of the entire wrapped surface. This visualization technique allows surface flow parameters to be analyzed with greater precision. A UV-unwrapping tool is developed and a strategy is presented to allow deeper analysis to be performed. This includes (i) the ability to present instant comparisons of geometry and flow variables between any number of different nasal cavity models through normalization of the 2D unwrapped surface; (ii) visualization of an entire surface in one view and; (iii) a planar surface that allows direct 1D and 2D analytical solutions of diffusion of inhaled vapors and particles through the nasal walls. This work lays a foundation for future investigations that correlates adverse and therapeutic health responses to local inhalation of gases and particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Estimation of the surface stress near the eye wall of hurricanes using WSR-88D radar data

    NASA Astrophysics Data System (ADS)

    Businger, S.; Morrison, I.; Marks, F.; Dodge, P.; Businger, J. A.

    2003-04-01

    the secondary circulations are estimated with reference to mixing length theory. Estimates of the surface stress are obtained from the radar derived wind profiles using a modified momentum budget approach. The impact of secondary circulations on the magnitude of the surface stress in the hurricane eye wall will be discussed and contrasted with other approaches for estimating the stress.

  9. Cell Walls of Tobacco Cells and Changes in Composition Associated with Reduced Growth upon Adaptation to Water and Saline Stress 1

    PubMed Central

    Iraki, Naim M.; Singh, Narendra; Bressan, Ray A.; Carpita, Nicholas C.

    1989-01-01

    The relative mass of the cell walls of tobacco (Nicotiana tabacum L.) cells adapted to grow in medium containing 30% polyethylene glycol 8000 or 428 millimolar NaCl was reduced to about 50% of that of the walls of unadapted cells. Cellulose synthesis was inhibited substantially in adapted cells. The proportions of total pectin in walls of unadapted and adapted cells were about the same, but substantial amount of uronic acid-rich material from walls of cells adapted to either NaCl or polyethylene glycol was more easily extracted with cold sodium ethylenediamine tetraacetic acid solutions (NM Iraki et al. [1989] Plant Physiol. 91: 39-47). We examined the linkage composition of the pectic and hemicellulosic polysaccharides to ascertain chemical factors that may explain this difference in physical behavior. Adaptation to stress resulted in the formation of a loosely bound shell of polygalacturonic acid and rhamnogalacturonan. Pectins extracted from walls of adapted cells by either cold sodium ethylenediamine tetraacetic acid or hot ammonium oxalate were particularly enriched in rhamnose. Compared to pectins of unadapted cells, rhamnosyl units of the rhamnogalacturonans of adapted cells were more highly substituted with polymers containing arabinose and galactose, but the side groups were of greatly reduced molecular size. Possible functional roles of these modifications in cell wall metabolism related to adaptation to osmotic stress are discussed. PMID:16667041

  10. Marangoni stresses and drop breakup due to wall shear in a partially filled rotating cylinder

    NASA Astrophysics Data System (ADS)

    White, Andrew; Odesanya, Azeez; Ward, Thomas

    2015-11-01

    Drop deformation and breakup in a rotating cylinder partially filled with oil is studied. Experiments using a rotating cylinder are relatively new but we will demonstrate that they are analogous to studies involving tubes and other geometries. Surfactants are added to the drop phase in concentrations at and below the CMC while the rotation rate of the cylinder is varied. Of interest is the effect of interfacial surfactant transport on changes in oil film thickness, drop shape and the onset of tail streaming. Two Biot numbers comparing the importance of surfactant adsorption and desorption to convection of surfactant on the interface are estimated. As shown in previous work on drops and bubbles in tubes, the balance between surface convection, diffusion and adsorption can affect the placement of Marangoni stresses, resulting in thicker or thinner films than with clean surfaces. When surface convection is large, surfactant builds up at the tail and Marangoni stresses can lead to tail streaming when surface tensions are sufficiently small. Experimental results are compared to numerical simulations and to previous work on drops and bubbles in tubes. National Science Foundation (#1262718).

  11. CO{sub 2} corrosion model for carbon steel including a wall shear stress model for multiphase flow and limits for production rate to avoid mesa attack

    SciTech Connect

    Halvorsen, A.M.K.; Santvedt, T.

    1999-11-01

    A corrosion rate model is developed for carbon steel in water containing CO{sub 2} at different temperatures, pH`s, CO{sub 2} fugacities and wall shear stresses. The model is based on loop experiments at temperatures from 20--160 C. The data are taken from a database containing more than 2,400 data points at various temperatures, CO{sub 2} fugacities, pH`s and wall shear stresses. To find the best fit of the data, data for each temperature present in the data base was evaluated separately to find typical trends for the change in corrosion rate versus CO{sub 2} fugacity, wall shear stress and pH. To facilitate use of the corrosion model a simplified method for calculating wall shear stress in multiphase flow is included. This model includes a viscosity model for dispersions and is developed for oil wet and water wet flow. Criteria for the maximum production rate to avoid mesa attach in straight sections and behind welds is also included.

  12. Alteration of the Physical and Chemical Structure of the Primary Cell Wall of Growth-Limited Plant Cells Adapted to Osmotic Stress 1

    PubMed Central

    Iraki, Naim M.; Bressan, Ray A.; Hasegawa, P. M.; Carpita, Nicholas C.

    1989-01-01

    Cells of tobacco (Nicotiana tabacum L.) adapted to grow in severe osmotic stress of 428 millimolar NaCl (−23 bar) or 30% polyethylene glycol 8000 (−28 bar) exhibit a drastically altered growth physiology that results in slower cell expansion and fully expanded cells with volumes only one-fifth to one-eighth those of unadapted cells. This reduced cell volume occurs despite maintenance of turgor pressures sometimes severalfold higher than those of unadapted cells. This report and others (NM Iraki et al [1989] Plant Physiol 90: 000-000 and 000-000) document physical and biochemical alterations of the cell walls which might explain how adapted cells decrease the ability of the wall to expand despite diversion of carbon used for osmotic adjustment away from synthesis of cell wall polysaccharides. Tensile strength measured by a gas decompression technique showed empirically that walls of NaCl-adapted cells are much weaker than those of unadapted cells. Correlated with this weakening was a substantial decrease in the proportion of crystalline cellulose in the primary cell wall. Even though the amount of insoluble protein associated with the wall was increased relative to other wall components, the amount of hydroxyproline in the insoluble protein of the wall was only about 10% that of unadapted cells. These results indicate that a cellulosic-extensin framework is a primary determinant of absolute wall tensile strength, but complete formation of this framework apparently is sacrificed to divert carbon to substances needed for osmotic adjustment. We propose that the absolute mass of this framework is not a principal determinant of the ability of the cell wall to extend. PMID:16667031

  13. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects.

    PubMed

    Dhanapal, C; Kamalakkannan, J; Prakash, J; Kothandapani, M

    2016-01-01

    This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

  14. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

    PubMed Central

    Dhanapal, C.; Kamalakkannan, J.; Prakash, J.

    2016-01-01

    This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters. PMID:27688703

  15. Hemodynamic Analysis in an Idealized Artery Tree: Differences in Wall Shear Stress between Newtonian and Non-Newtonian Blood Models

    PubMed Central

    Weddell, Jared C.; Kwack, JaeHyuk; Imoukhuede, P. I.; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  16. COMPUTATIONAL SIMULATIONS DEMONSTRATE ALTERED WALL SHEAR STRESS IN AORTIC COARCTATION PATIENTS TREATED BY RESECTION WITH END-TO-END ANASTOMOSIS

    PubMed Central

    LaDisa, John F.; Dholakia, Ronak J.; Figueroa, C. Alberto; Vignon-Clementel, Irene E.; Chan, Frandics P.; Samyn, Margaret M.; Cava, Joseph R.; Taylor, Charles A.; Feinstein, Jeffrey A.

    2011-01-01

    Background Atherosclerotic plaque in the descending thoracic aorta (dAo) is related to altered wall shear stress (WSS) for normal patients. Resection with end-to-end anastomosis (RWEA) is the gold standard for coarctation of the aorta (CoA) repair, but may lead to altered WSS indices that contribute to morbidity. Methods Computational fluid dynamics (CFD) models were created from imaging and blood pressure data for control subjects and age- and gender-matched CoA patients treated by RWEA (4 male, 2 female, 15±8 years). CFD analysis incorporated downstream vascular resistance and compliance to generate blood flow velocity, time-averaged WSS (TAWSS) and oscillatory shear index (OSI) results. These indices were quantified longitudinally and circumferentially in the dAo, and several visualization methods were used to highlight regions of potential hemodynamic susceptibility. Results The total dAo area exposed to subnormal TAWSS and OSI was similar between groups, but several statistically significant local differences were revealed. Control subjects experienced left-handed rotating patterns of TAWSS and OSI down the dAo. TAWSS was elevated in CoA patients near the site of residual narrowings and OSI was elevated distally, particularly along the left dAo wall. Differences in WSS indices between groups were negligible more than 5 dAo diameters distal to the aortic arch. Conclusions Localized differences in WSS indices within the dAo of CoA patients treated by RWEA suggest that plaque may form in unique locations influenced by the surgical repair. These regions can be visualized in familiar and intuitive ways allowing clinicians to track their contribution to morbidity in longitudinal studies. PMID:21801315

  17. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli

    PubMed Central

    Delhaye, Antoine; Collet, Jean-François

    2016-01-01

    ABSTRACT The envelope of Gram-negative bacteria is an essential compartment that constitutes a protective and permeability barrier between the cell and its environment. The envelope also hosts the cell wall, a mesh-like structure made of peptidoglycan (PG) that determines cell shape and provides osmotic protection. Since the PG must grow and divide in a cell-cycle-synchronized manner, its synthesis and remodeling are tightly regulated. Here, we discovered that PG homeostasis is intimately linked to the levels of activation of the Cpx system, an envelope stress response system traditionally viewed as being involved in protein quality control in the envelope. We first show that Cpx is activated when PG integrity is challenged and that this activation provides protection to cells exposed to antibiotics inhibiting PG synthesis. By rerouting the outer membrane lipoprotein NlpE, a known Cpx activator, to a different envelope subcompartment, we managed to manipulate Cpx activation levels. We found that Cpx overactivation leads to aberrant cellular morphologies, to an increased sensitivity to β-lactams, and to dramatic division and growth defects, consistent with a loss of PG homeostasis. Remarkably, these phenotypes were largely abrogated by the deletion of ldtD, a Cpx-induced gene involved in noncanonical PG cross-linkage, suggesting that this transpeptidase is an important link between PG homeostasis and the Cpx system. Altogether our data show that fine-tuning of an envelope quality control system constitutes an important layer of regulation of the highly organized cell wall structure. PMID:26908573

  18. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    PubMed

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  19. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography

    PubMed Central

    Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I.

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates (β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery (p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice. PMID:28900625

  20. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography.

    PubMed

    Han, Kap-Soo; Lee, Sang Hyuk; Ryu, Han Uk; Park, Se-Hyoung; Chung, Gyung-Ho; Cho, Young I; Jeong, Seul-Ki

    2017-01-01

    The aim of the study was to calculate the arterial wall signal intensity gradient (SIG) from time-of-flight MR angiography (TOF-MRA) and represent arterial wall shear stress. We developed a new algorithm that uses signal intensity (SI) of a TOF-MRA to directly calculate the signal intensity gradient (SIG). The results from our phantom study showed that the TOF-MRA SIG could be used to distinguish the magnitude of blood flow rate as high (mean SIG ± SD, 2.2 ± 0.4 SI/mm for 12.5 ± 2.3 L/min) and low (0.9 ± 0.3 SI/mm for 8.5 ± 2.6 L/min) in vessels (p < 0.001). Additionally, we found that the TOF-MRA SIG values were highly correlated with various flow rates (β = 0.96, p < 0.001). Remarkably, the correlation coefficient between the WSS obtained from the computational fluid dynamics (CFD) analysis and the TOF-MRA SIG was greater than 0.8 in each section at the carotid artery (p < 0.001 for all β values). This new technique using TOF-MRA could enable the rapid calculation of the TOF-MRA SIG and thereby the WSS. Thus, the TOF-MRA SIG can provide clinicians with an accurate and efficient screening method for making rapid decisions on the risk of vascular disease for a patient in clinical practice.

  1. Time analysis of aneurysm wall shear stress for both Newtonian and Casson flows from image-based CFD models

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Ahumada Olivares, María. C.; Putman, Christopher M.; Cebral, Juan R.

    2014-03-01

    The optimal management of unruptured aneurysms is controversial, and current decision making is mainly based on aneurysm size and location. Incidentally detected unruptured aneurysms less than 5mm in diameter should be treated conservatively. However, small unruptured aneurysms also bleed. Risk factors based on the hemodynamic forces exerted over the arterial wall have been investigated using image-based computational fluid dynamic (CFD) methodologies during the last decade. Accurate estimation of wall shear stress (WSS) is required to properly study associations between flow features and aneurysm processes. Previous works showed that Newtonian and non-Newtonian (Casson) models produce similar WSS distributions and characterization, with no significant differences. Other authors showed that the WSS distribution computed from time-averaged velocity fields is significantly higher for the Newtonian model where WSS is low. In this work we reconstructed ten patient-specific CFD models from angiography images to investigate the time evolution of WSS at selected locations such as aneurysm blebs (low WSS), and the parent artery close to the aneurysm neck (high WSS). When averaging all cases it is seen that the estimation of the time-averaged WSS, the peak WSS and the minimum WSS value before the systolic peak were all higher when the Casson rheology was considered. However, none of them showed statistically significant differences. At the afferent artery Casson rheology systematically predicted higher WSS values. On the other hand, at the selected blebs either Newtonian or Casson WSS estimations are higher in some phases of the cardiac cycle. Those observations differ among individual cases.

  2. The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans† ‡

    PubMed Central

    Román, Elvira; Nombela, César; Pla, Jesús

    2005-01-01

    The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen. PMID:16287872

  3. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2017-02-01

    Hydrodynamic fields, macroscopic boundary conditions, and non-Newtonian rheology of the acceleration-driven Poiseuille flow of a dilute granular gas are probed using "direct simulation Monte Carlo" method for a range of Knudsen numbers (Kn, the ratio between the mean free path and the macroscopic length), spanning the rarefied regime of slip and transitional flows. It is shown that the "dissipation-induced clustering" (for 1 -en>0 , where en is the restitution coefficient), leading to inhomogeneous density profiles along the transverse direction, competes with "rarefaction-induced declustering" (for Kn>0 ) phenomenon, leaving seemingly "anomalous" footprints on several hydrodynamic and rheological quantities; one example is the well-known rarefaction-induced temperature bimodality, which could also result from inelastic dissipation that dominates in the continuum limit (Kn→0 ) as found recently [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523]. The simulation data on the slip velocity and the temperature slip are contrasted with well-established boundary conditions for molecular gases. A modified Maxwell-Navier-type boundary condition is found to hold in granular Poiseuille flow, with the velocity slip length following a power-law relation with Knudsen number Knδ, with δ ≈0.95 , for Kn≤0.1 . Transverse profiles of both first [N1(y ) ] and second [N2(y ) ] normal stress differences seem to correlate well with respective density profiles at small Kn; their centerline values [N1(0 ) and N2(0 ) ] can be of "odd" sign with respect to their counterparts in molecular gases. The phase diagrams are constructed in the (Kn,1 -en ) plane that demarcates the regions of influence of inelasticity and rarefaction, which compete with each other resulting in the sign change of both N1(0 ) and N2(0 ) . The results on normal stress differences are rationalized via a comparison with a Burnett-order theory [Sela and Goldhirsch, J. Fluid Mech. 361, 41 (1998), 10

  4. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.

    PubMed

    Gupta, Ronak; Alam, Meheboob

    2017-02-01

    Hydrodynamic fields, macroscopic boundary conditions, and non-Newtonian rheology of the acceleration-driven Poiseuille flow of a dilute granular gas are probed using "direct simulation Monte Carlo" method for a range of Knudsen numbers (Kn, the ratio between the mean free path and the macroscopic length), spanning the rarefied regime of slip and transitional flows. It is shown that the "dissipation-induced clustering" (for 1-e_{n}>0, where e_{n} is the restitution coefficient), leading to inhomogeneous density profiles along the transverse direction, competes with "rarefaction-induced declustering" (for Kn>0) phenomenon, leaving seemingly "anomalous" footprints on several hydrodynamic and rheological quantities; one example is the well-known rarefaction-induced temperature bimodality, which could also result from inelastic dissipation that dominates in the continuum limit (Kn→0) as found recently [Alam et al., J. Fluid Mech. 782, 99 (2015)JFLSA70022-112010.1017/jfm.2015.523]. The simulation data on the slip velocity and the temperature slip are contrasted with well-established boundary conditions for molecular gases. A modified Maxwell-Navier-type boundary condition is found to hold in granular Poiseuille flow, with the velocity slip length following a power-law relation with Knudsen number Kn^{δ}, with δ≈0.95, for Kn≤0.1. Transverse profiles of both first [N_{1}(y)] and second [N_{2}(y)] normal stress differences seem to correlate well with respective density profiles at small Kn; their centerline values [N_{1}(0) and N_{2}(0)] can be of "odd" sign with respect to their counterparts in molecular gases. The phase diagrams are constructed in the (Kn,1-e_{n}) plane that demarcates the regions of influence of inelasticity and rarefaction, which compete with each other resulting in the sign change of both N_{1}(0) and N_{2}(0). The results on normal stress differences are rationalized via a comparison with a Burnett-order theory [Sela and Goldhirsch,

  5. Effect of alpha lipoic acid on oxidative stress and vascular wall of diabetic rats.

    PubMed

    Balkis Budin, Siti; Othman, Faizah; Louis, S R; Abu Bakar, M; Radzi, M; Osman, K; Das, S; Mohamed, J

    2009-01-01

    PREMISES AND OBJECTIVES: Antioxidant plays an important role in preventing the progression of diabetes mellitus (DM) complications. The aim of the present study was to investigate the effect of alpha lipoic acid (ALA) supplementation on plasma lipid, oxidative stress and vascular changes in diabetic rats. Diabetes was induced by a single intravenous injection of streptozotocin (STZ) (50 mg/kg). The diabetic rats were divided into two groups: (i) supplemented group with ALA (100 mg/kg/day) and (ii) non-supplemented group without ALA. Non-diabetic rats (NDM) formed the control group, which received saline injection. Following eight weeks of supplementation, fasting blood glucose (FBG) and glycosylated hemoglobin (HBA1c) in ALA-supplemented rats was found to be significantly lower than the non-supplemented group. ALA-supplementation also improved dyslipidemia that occurred in diabetic rats. ALA-supplementation also significantly increased plasma superoxide dismutase (SOD) activity and vitamin C level as compared to the No Suppl group. The increase in plasma and aorta malondealdehyde + 4-hydroxynonenal (MDA + 4-HNE) levels were also inhibited and the levels of oxidative DNA damage of peripheral lymphocytes were significantly reduced. Electron microscopic examination of thoracic aorta revealed that normal tissue organization was disrupted in STZ-diabetic rats with ALA-supplementation reducing the changes in the vascular morphology. It is concluded that ALA has the potential in preventing the alteration of vascular morphology in diabetic rats probably through the improvement of glycemic status and dyslipidemia as well as its antioxidant activities.

  6. Stress echocardiography with smartphone: real-time remote reading for regional wall motion.

    PubMed

    Scali, Maria Chiara; de Azevedo Bellagamba, Clarissa Carmona; Ciampi, Quirino; Simova, Iana; de Castro E Silva Pretto, José Luis; Djordjevic-Dikic, Ana; Dodi, Claudio; Cortigiani, Lauro; Zagatina, Angela; Trambaiolo, Paolo; Torres, Marco R; Citro, Rodolfo; Colonna, Paolo; Paterni, Marco; Picano, Eugenio

    2017-05-26

    The diffusion of smart-phones offers access to the best remote expertise in stress echo (SE). To evaluate the reliability of SE based on smart-phone filming and reading. A set of 20 SE video-clips were read in random sequence with a multiple choice six-answer test by ten readers from five different countries (Italy, Brazil, Serbia, Bulgaria, Russia) of the "SE2020" study network. The gold standard to assess accuracy was a core-lab expert reader in agreement with angiographic verification (0 = wrong, 1 = right). The same set of 20 SE studies were read, in random order and >2 months apart, on desktop Workstation and via smartphones by ten remote readers. Image quality was graded from 1 = poor but readable, to 3 = excellent. Kappa (k) statistics was used to assess intra- and inter-observer agreement. The image quality was comparable in desktop workstation vs. smartphone (2.0 ± 0.5 vs. 2.4 ± 0.7, p = NS). The average reading time per case was similar for desktop versus smartphone (90 ± 39 vs. 82 ± 54 s, p = NS). The overall diagnostic accuracy of the ten readers was similar for desktop workstation vs. smartphone (84 vs. 91%, p = NS). Intra-observer agreement (desktop vs. smartphone) was good (k = 0.81 ± 0.14). Inter-observer agreement was good and similar via desktop or smartphone (k = 0.69 vs. k = 0.72, p = NS). The diagnostic accuracy and consistency of SE reading among certified readers was high and similar via desktop workstation or via smartphone.

  7. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DOE PAGES

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; ...

    2015-07-22

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of themore » leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. In conclusion, these results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.« less

  8. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    SciTech Connect

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo; Atwell, Susanna; Martens, Helle J.; Pedas, Pai R.; Hansen, Sara F.; Nawrath, Christiane; Scheller, Henrik V.; Kliebenstein, Daniel J.; Sakuragi, Yumiko

    2015-07-22

    Here we report that the epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.

  9. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.

    PubMed

    Lu, Shanfa; Li, Laigeng; Yi, Xiaoping; Joshi, Chandrashekhar P; Chiang, Vincent L

    2008-01-01

    Trees constitute the majority of lignocellulosic biomass existing on our planet. Trees also serve as important feedstock materials for various industrial products. However, little is known about the regulatory mechanisms of cellulose synthase (CesA) genes of trees. Here, the cloning and characterization of three CesA genes (EgraCesA1, EgraCesA2, and EgraCesA3) from an economically important tree species, Eucalyptus grandis, are reported. All three genes were specifically expressed in xylem cells of eucalyptus undergoing secondary cell wall biosynthesis. The GUS gene, expressed under the control of the EgraCesA2 or EgraCesA3 promoter, was also localized in the secondary xylem in transgenic tobacco stems. However, the EgraCesA1 promoter alone or along with its 5'-UTR introns was insufficient to direct appropriate GUS expression. EgraCesA2 and EgraCesA3 gene expression was up-regulated in tension-stressed eucalyptus xylem cells. Accordingly, GUS expression directed by the EgraCesA2 or EgraCesA3 promoter was also up-regulated. EgraCesA1 had no such response. Thus, it is most unlikely that EgraCesA1 is a subunit of the EgraCesA2-EgraCesA3 complex. The presence of at least two types of cellulose biosynthesis machinery in wood formation is an important clue in deciphering the underpinnings of the perennial growth of trees in various environmental conditions. By analysing GUS gene expression directed by the EgraCesA3 promoter or its deletions, several negative and positive regulatory regions controlling gene expression in xylem or phloem were identified. Also a region which is likely to contain mechanical stress-responsive elements was deduced. These results will guide further studies on identifying cis-regulatory elements directing CesA gene transcription and wood formation regulatory networks.

  10. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death1[OPEN

    PubMed Central

    2016-01-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS. Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. PMID:27462084

  11. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes

    PubMed Central

    Patlolla, Anita K.; Berry, Ashley; Tchounwou, Paul B.

    2013-01-01

    Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanisms behind the interaction of these particles with cells and their toxicity. The aim of this study was to assess the effects, after intraperitoneal injection, of functionalized multi walled carbon nanotubes (MWCNT) (carboxyl groups) on various hepatotoxicity and oxidative stress biomarkers (ROS, LHP, ALT, AST, ALP and morphology of liver) in the mouse model. The mice were dosed intraperitoneally at 0.25, 0.5 & 0.75 mg/kg/day for 5 days of purified/functionalized MWCNTs and two controls (negative; saline and positive; carbon black 0.75 mg/kg) as appropriate. Samples were collected 24 hours after the fifth day treatment following standard protocols. Exposure to carboxylated functionalized MWCNT; the body-weight gain of the mice decreased, induced reactive oxygen species (ROS), and enhanced the activities of serum amino-transferases (ALT/AST), alkaline phosphatases (ALP) and concentration of lipid hydro peroxide compared to control. Histopathology of exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared to controls. The cellular findings reported here do suggest that purified carboxylated functionalized MWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which warrant in vivo animal exposure studies. However, more studies of functionalization in the in vivo toxicity of MWCNTs are required and parallel comparison is preferred. PMID:21725842

  12. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes.

    PubMed

    Patlolla, Anita K; Berry, Ashley; Tchounwou, Paul B

    2011-12-01

    Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanisms behind the interaction of these particles with cells and their toxicity. The aim of this study was to assess the effects, after intraperitoneal (ip) injection, of functionalized multi-walled carbon nanotubes (MWCNT) (carboxyl groups) on various hepatotoxicity and oxidative stress biomarkers (ROS, LHP, ALT, AST, ALP, and morphology of liver) in the mouse model. The mice were dosed ip at 0.25, 0.5, and 0.75 mg/kg/day for 5 days of purified/functionalized MWCNTs and two controls (negative; saline and positive; carbon black 0.75 mg/kg) as appropriate. Samples were collected 24 h after the fifth day treatment following standard protocols. Exposure to carboxylated functionalized MWCNT; the body-weight gain of the mice decreased, induced reactive oxygen species (ROS), and enhanced the activities of serum amino-transferases (ALT/AST), alkaline phosphatases (ALP), and concentration of lipid hydro peroxide compared to control. Histopathology of exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared to controls. The cellular findings reported here do suggest that purified carboxylated functionalized MWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which warrant in vivo animal exposure studies. However, more studies of functionalization in the in vivo toxicity of MWCNTs are required and parallel comparison is preferred.

  13. Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids.

    PubMed

    Nandy, S; Tarbell, J M

    1987-01-01

    Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.

  14. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    PubMed

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  15. Regulation of the expression of cell wall stress stimulon member gene msrA1 in methicillin-susceptible or -resistant Staphylococcus aureus.

    PubMed

    Pechous, Roger; Ledala, Nagender; Wilkinson, Brian J; Jayaswal, Radheshyam K

    2004-08-01

    Genome-wide transcriptional profiling studies of the response of Staphylococcus aureus to cell wall-active antibiotics have led to the discovery of a cell wall stress stimulon of genes induced by these agents. msrA1, encoding methionine sulfoxide reductase, is a highly induced member gene of this stimulon. In the present study we show that msrA1 induction by oxacillin is common to all methicillin-susceptible strains studied but did not occur in two homogeneous and two heterogeneous methicillin-resistant strains. However, msrA1 was induced by vancomycin and/or D-cycloserine in methicillin-resistant strains. Lysozyme and lysostaphin treatment did not induce msrA1 expression. Oxacillin-induced msrA1 expression was enhanced by ca. 30% in a SigB+ derivative (SH1000) of the SigB-defective RN450 (NCTC 8325-4) strain. msrA1 expression was not affected in mutants in the global regulatory systems agr and sar. Glycerol monolaurate, an inhibitor of signal transduction, inhibited the oxacillin-induced transcription of msrA1 and other cell wall stress stimulon member genes, vraS and dnaK. These observations suggest that the cell wall stress stimulon is induced by inhibition of the process of peptidoglycan biosynthesis, and the inhibitory effects of glycerol monolaurate indicate that gene expression is dependent on a signal transduction pathway.

  16. Relation of midwall circumferential systolic stress to equatorial midwall fibre shortening in chronic aortic regurgitation. Value as a predictor of postoperative outcome.

    PubMed Central

    Almeida, P; Córdoba, M; Goicolea, J; Hernández Antolín, R; Rico, L A; Rey, M; Rábago, P; Rábago, G

    1984-01-01

    Nineteen patients with chronic aortic regurgitation and a large increase in heart size were studied before aortic valve replacement. By relating midwall circumferential systolic stress to midwall circumferential fibre shortening (Cs/Cd) before operation the patients could be divided into two well defined groups. Twelve patients (group 1) had a pronounced decrease in heart size as measured by the cardiothoracic ratio and an excellent clinical outcome six months after operation. Seven patients (group 2) had no significant decrease in heart size and a less good clinical outcome. The ratio of midwall circumferential systolic stress to end systolic volume index was significantly higher in group 1 than in group 2. Group 2 had more severe left ventricular hypertrophy determined by the ratio of the wall thickness to the minor internal radius of the left ventricle (h:r ratio), total left ventricular mass, and left ventricular mass to end diastolic volume ratio. There were no significant differences in any other haemodynamic or angiographic indices between the two groups. Thus the relation of midwall circumferential systolic stress to fibre shortening is useful in determining the prognosis in individual patients with chronic aortic regurgitation undergoing aortic valve replacement. PMID:6235830

  17. MRI-determined carotid artery flow velocities and wall shear stress in a mouse model of vulnerable and stable atherosclerotic plaque.

    PubMed

    van Bochove, Glenda S; Straathof, Roel; Krams, Rob; Nicolay, Klaas; Strijkers, Gustav J

    2010-04-01

    We report here on the pre-clinical MRI characterization of an apoE-/- mouse model of stable and vulnerable carotid artery atherosclerotic plaques, which were induced by a tapered restriction (cast) around the artery. Specific focus was on the quantification of the wall shear stress, which is considered a key player in the development of the plaque phenotype. In vivo MRI was performed at 9.4 T. The protocol consisted of time-of-flight angiography, high-resolution T1- and T2-weighted black-blood imaging and phase-contrast flow velocity imaging as function of time in the cardiac cycle. Wall shear stress was determined by fitting the flow profile to a quadratic polynomial. Time-of-flight angiography confirmed preservation of blood flow through the carotid arteries in all cases. T1- and T2-weighted MRI resulted in high-resolution images in which the position of the cast, luminal narrowing introduced by cast and plaque, as well as the arterial wall could be well identified. Laminar flow with low wall shear stress (11.2+/- 5.2 Pa) was measured upstream to the cast at the position of the vulnerable plaque. Downstream to the cast at the position of the stable plaque, the apparent velocities were low, which is consistent with vortices and an oscillatory nature of the flow. Flow velocities and wall shear stress were successfully measured in this mouse model of stable and unstable plaque. The presented tools can be used to provide valuable insights in the pathogenesis of atherosclerosis.

  18. Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation.

    PubMed

    El Zahab, Zaher; Divo, Eduardo; Kassab, Alain

    2010-02-01

    The wall shear stress (WSS) spatial and temporal gradients are two hemodynamics parameters correlated with endothelial damage. Those two gradients become well pronounced in a bypass graft anastomosis geometry where the blood flow patterns are quite disturbed. The WSS gradient minimisation on the host artery floor can be achieved by optimising the anastomosis shape and hence may lead to an improved long-term post-surgical performance of the graft. The anastomosis shape optimisation can be executed via an integrated computational tool comprised of a meshless computational fluid dynamics (CFD) solver and a genetic algorithm (GA) shape optimiser. The meshless CFD solver serves to evaluate the WSS gradients and the GA optimiser serves to search for the end-to-side distal anastomosis (ETSDA) optimal shape that best minimises those gradients. We utilise a meshless CFD method to resolve hemodynamics and a GA for the purpose of optimisation. We consider three different anastomotic models: the conventional ETSDA, the Miller Cuff ETSDA and the hood ETSDA. The results reported herein demonstrate that the graft calibre should always be maximised whether a conventional or Miller Cuff ETSDA model is utilised. Also, it was noted that the Miller Cuff height should be minimised. The choice of an optimal anastomotic angle should be optimised to achieve a compromise between the concurrent minimisations of both the spatial WSS gradient and the temporal WSS gradient.

  19. Wall Shear Stress in Aorta with Coarctation and Post-Stenotic Dilatation - Scale Resolved Simulation of Pulsatile Blood Flow

    NASA Astrophysics Data System (ADS)

    Gardhagen, Roland; Karlsson, Matts

    2012-11-01

    Large eddy simulations of pulsating blood flow in an idealized model of a human aorta with a coarctation and a post-stenotic dilatation were conducted before and after treatment of the stenosis using Ansys Fluent. The aim was to study wall shear stress (WSS), which influences the function of endothelial cells, and turbulence, which may play a role in thrombus formation. Phase average values of WSS before the treatment revealed high shear in the stenosis at peak systole, as expected, but also at the end of the dilatation. In the dilatation backflow causes a negative peak. Diastolic WSS is characterized by low amplitude oscillations, which promotes atherogenesis. Also noticeable is the asymmetric pattern between the inner and outer sides of the vessel caused by the arch upstream of the stenosis. Thus, large spatial, temporal, and probably asymmetric WSS gradients in the already diseased region suggest increased risk for further endothelial dysfunction. This reflects a complex, partly turbulent, flow pattern that may disturb the blood flow in the abdominal aorta. After treatment of the stenosis, but not the dilatation, fluctuations of velocity and WSS were still found, thus harmful flow conditions still exist.

  20. Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.

    PubMed

    Dolan, Jennifer M; Meng, Hui; Sim, Fraser J; Kolega, John

    2013-10-15

    Flow impingement at arterial bifurcations causes high frictional force [or wall shear stress (WSS)], and flow acceleration and deceleration in the branches create positive and negative streamwise gradients in WSS (WSSG), respectively. Intracranial aneurysms tend to form in regions with high WSS and positive WSSG. However, little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile gene expression in cultured ECs exposed to positive or negative WSSG for 24 h in a flow chamber where WSS varied between 3.5 and 28.4 Pa. Gene ontology and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of proinflammatory genes. To determine if similar responses occur in vivo, we examined EC proliferation and expression of the matrix metalloproteinase ADAMTS1 under high WSS and WSSG created at the basilar terminus of rabbits after bilateral carotid ligation. Precise hemodynamic conditions were determined by computational fluid dynamic simulations from three-dimensional angiography and mapped on immunofluorescence staining for the proliferation marker Ki-67 and ADAMTS1. Both proliferation and ADAMTS1 were significantly higher in ECs under positive WSSG than in adjacent regions of negative WSSG. Our results indicate that WSSG elicits distinct EC gene expression profiles and particular biological pathways including increased cell proliferation and matrix processing. Such EC responses may be important in understanding the mechanisms of intracranial aneurysm initiation at regions of high WSS and positive WSSG.

  1. Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients.

    PubMed

    Rouleau, Leonie; Copland, Ian B; Tardif, Jean-Claude; Mongrain, Rosaire; Leask, Richard L

    2010-09-01

    Leukocytes play a pivotal role in the progression of atherosclerosis. A novel three-dimensional in vitro asymmetric stenosis model was used to better investigate the role of local hemodynamics in the adhesion of leukocytes to an established plaque. The adhesion of a human promyelocytic cell line (NB4) on a human abdominal aortic endothelial cell (EC) monolayer was quantified. NB4 cells were circulated over TNF-alpha stimulated and nonstimulated ECs for 1 or 6 h at 1.25 or 6.25 dynes/cm(2) and compared to static conditions. Cytokine stimulation increased significantly EC expression of intercellular adhesion molecule and vascular cell adhesion molecule. Under static conditions, neutrophils adhered overall more than under flow, with decreased adhesion with increasing shear. Adhesion was significantly higher in the recirculation region distal to the stenosis than in the inlet. Preshearing the ECs decreased the expression of cell adhesion molecules in inflamed endothelium and significantly decreased adhesion. However, the ratio of adhesion between the recirculation zone and the inlet increased, hence exhibiting an increased regional difference. This work suggests an important role for neutrophil-EC interactions in the atherosclerotic process, especially in wall shear stress gradient regions. This is important clinically, potentially helping to explain plaque stability.

  2. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.

    PubMed

    Evju, Øyvind; Valen-Sendstad, Kristian; Mardal, Kent-André

    2013-11-15

    Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed. This study investigates the effects of 4 different viscosity models, 2 different inflow conditions and 2 different outflow conditions in 12 middle cerebral artery aneurysms. The differences are quantified in terms of 3 different wall shear stress (WSS) metrics, involving maximal WSS, average WSS, and proportion of aneurysm sac area with low WSS. The results were compared with common geometrical metrics such as volume, aspect ratio, size ratio and parent vessel diameter and classifications in terms of sex and aneurysm type. The results demonstrate strong correlations between the different viscosity models and boundary conditions. The correlation between the different WSS metrics range from weak to medium. No strong correlations were found between the different WSS metrics and the geometrical metrics or classifications.

  3. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI.

    PubMed

    Barker, Alex J; Lanning, Craig; Shandas, Robin

    2010-03-01

    Bicuspid aortic valve (BAV) is often concomitant with aortic dilatation, aneurysm, and dissection. This valve lesion and its complications may affect positional and temporal wall shear stress (WSS), a parameter reported to regulate transcriptional events in vascular remodeling. Thus, this pilot study seeks to determine if the WSS in the ascending aorta (AAo) of BAV patients differs from control patients. Phase-contrast magnetic resonance imaging (PC-MRI) was used to perform flow analysis at the level of the AAo in 15 BAV and 15 control patients. Measurement of the aorta dimensions, flow rates, regurgitant fraction (RF), flow reversal ratio (FRR), temporal and spatial WSS, and shear range indices (SRI) were performed. The BAV and control group showed a significant difference between the circumferentially averaged WSS (p=0.03) and positional WSS at systole (minimum p<0.001). Regressions found that SRI (r=0.77, p<0.001), RF (r=0.68, p<0.001), and WSS at systole (r=0.66, p<0.001) were correlated to AAo size. The spatial distribution and magnitude of systolic WSS in BAV patients (-6.7+/-4.3 dynes/cm2) differed significantly from control patients (-11.5+/-6.6 dynes/cm2, p=0.03). The SRI metric, a measure of shear symmetry along the lumen circumference, was also significantly different (p=0.006) and indicated a heterogenic pattern of dilatation in the BAV patients.

  4. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.

    PubMed

    Chang, Gary Han; Schirmer, Clemens M; Modarres-Sadeghi, Yahya

    2017-03-21

    In this paper, we introduce a method to construct a Reduced-Order Model (ROM) to study the physiological flow and the Wall Shear Stress (WSS) conditions in Abdominal Aortic Aneurysms (AAA). We start the process by running a training case using Computational Fluid Dynamics (CFD) simulations with time-varying flow parameters, such that these parameters cover the range of parameters that we would like to consider in our ROM. We use the inflow angle as the variable parameter in the current study. Then we use the snapshot Proper Orthogonal Decomposition (POD) to construct the reduced-order bases, which are subsequently enhanced using a QR-factorization technique to satisfy the relevant fluid boundary conditions. The resulting ROM enables us to study the flow pattern and the WSS distribution over a range of system parameters computationally very efficiently. We have used this method to show how the WSS varies significantly for an AAA with a simplified geometry, over a range of inflow angles usually considered mild in clinical terms. We have validated the ROM results with CFD results. This approach enables comprehensive analysis of the model system across a range of inflow angles and frequencies without the need to re-compute the simulation for small changes.

  5. A novel non-invasive ultrasonic method to assess total axial stress of the common carotid artery wall in healthy and atherosclerotic men.

    PubMed

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir

    2015-07-16

    In the present study, developing a new non-invasive method independent from blood flow, we estimated and compared the total axial stress of the common carotid artery wall in healthy and atherosclerotic subjects. Consecutive ultrasonic images of the common carotid artery of 48 male subjects including healthy, with less and more than 50% stenosis in carotid artery were recorded. Longitudinal displacement and acceleration was extracted from ultrasonic image processing using a block matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation. Statistical analysis results showed that with stenosis initiation and its progression, axial acceleration and stress increase significantly. According to the results of the present study, maximum axial stress of the arterial wall is 1.713±0.546, 1.993±0.731 and 2.610±0.603 (kPa) in normal, with less and more than 50% stenosis in carotid artery respectively. Whereas minimum axial stress is -1.714±0.676, -1.982±0.663 and -2.593±0.661 (kPa) in normal, with less and more than 50% stenosis in carotid artery respectively. Moreover, internal diameter and intima-media thickness of the artery also increase significantly with stenosis initiation and its progression. In this study, the feasibility of axial wall stress computation for human common carotid arteries based on non-invasive in vivo clinical data is concluded. We found a strong and graded association between axial stress and severity of carotid stenosis, which might be used to discriminate healthy from atherosclerotic arteries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.

    PubMed

    Singh, S D; Xu, X Y; Pepper, J R; Izgi, C; Treasure, T; Mohiaddin, R H

    2016-07-05

    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta.

  7. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models.

    PubMed

    Tang, Dalin; Yang, Chun; Mondal, Sayan; Liu, Fei; Canton, Gador; Hatsukami, Thomas S; Yuan, Chun

    2008-01-01

    It is well accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses (FSS). However, this mechanism cannot explain why advanced plaques continue to grow under elevated FSS conditions. In vivo magnetic resonance imaging (MRI)-based 2D/3D multi-component models with fluid-structure interactions (FSI, 3D only) for human carotid atherosclerotic plaques were introduced to quantify correlations between plaque progression measured by wall thickness increase (WTI) and plaque wall (structure) stress (PWS) conditions. A histologically validated multi-contrast MRI protocol was used to acquire multi-year in vivo MRI images. Our results using 2D models (200-700 data points/patient) indicated that 18 out of 21 patients studied showed significant negative correlation between WTI and PWS at time 2 (T2). The 95% confidence interval for the Pearson correlation coefficient is (-0.443,-0.246), p<0.0001. Our 3D FSI model supported the 2D correlation results and further indicated that combining both plaque structure stress and flow shear stress gave better approximation results (PWS, T2: R(2)=0.279; FSS, T1: R(2)=0.276; combining both: R(2)=0.637). These pilot studies suggest that both lower PWS and lower FSS may contribute to continued plaque progression and should be taken into consideration in future investigations of diseases related to atherosclerosis.

  8. A Negative Correlation between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models

    PubMed Central

    Tang, Dalin; Yang, Chun; Mondal, Sayan; Liu, Fei; Canton, Gador; Hatsukami, Thomas S.; Yuan, Chun

    2008-01-01

    It is well accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses (FSS). However, this mechanism cannot explain why advanced plaques continue to grow under elevated FSS conditions. In vivo magnetic resonance imaging (MRI)-based 2D/3D multi-component models with fluid-structure interactions (FSI, 3D only) for human carotid atherosclerotic plaques were introduced to quantify correlations between plaque progression measured by wall thickness increase (WTI) and plaque wall (structure) stress (PWS) conditions. A histologically validated multi-contrast MRI protocol was used to acquire multi-year in vivo MRI images. Our results using 2D models (200–700 data points/patient) indicated that 18 out of 21 patients studied showed significant negative correlation between WTI and PWS at time 2 (T2). The 95% confidence interval for the Pearson correlation coefficient is (−0.443, −0.246), p < 0.0001. Our 3D FSI model supported the 2D correlation results and further indicated that combining both plaque structure stress and flow shear stress gave better approximation results (PWS, T2: R2 = 0.279; FSS, T1: R2 = 0.276; Combining both: R2 = 0.637). These pilot studies suggest that both lower PWS and lower FSS may contribute to continued plaque progression and should be taken into consideration in future investigations of diseases related to atherosclerosis. PMID:18191138

  9. Quantifying effect of intraplaque hemorrhage on critical plaque wall stress in human atherosclerotic plaques using three-dimensional fluid-structure interaction models.

    PubMed

    Huang, Xueying; Yang, Chun; Canton, Gador; Ferguson, Marina; Yuan, Chun; Tang, Dalin

    2012-12-01

    Recent magnetic resonance studies have indicated that intraplaque hemorrhage (IPH) may accelerate plaque progression and play an important role in plaque destabilization. However, the impact of hemorrhage on critical plaque wall stress (CPWS) and strain (CPWSn) has yet to be determined. The objective of this study was to assess the effect of the presence and size of IPH on wall mechanics. The magnetic resonance image (MRI) of one patient with histology-confirmed IPH was used to build eight 3D fluid-structure interaction (FSI) models by altering the dimensions of the existing IPH. As a secondary end point, the combined effect of IPH and fibrous cap thickness (FCT) was assessed. A volume curve fitting method (VCFM) was applied to generate a mesh that would guarantee numerical convergence. Plaque wall stress (PWS), strain (PWSn), and flow shear stress (FSS) were extracted from all nodal points on the lumen surface for analysis. Keeping other conditions unchanged, the presence of intraplaque hemorrhage caused a significant increase (27.5%) in CPWS; reduced FCT caused an increase of 22.6% of CPWS. Similar results were found for CPWSn. Furthermore, combination of IPH presence, reduced FCT, and increased IPH volume caused an 85% and 75% increase in CPWS and CPWSn, respectively. These results show that intraplaque hemorrhage has considerable impact on plaque stress and strain conditions and accurate quantification of IPH could lead to more accurate assessment of plaque vulnerability. Large-scale studies are needed to further validate our findings.

  10. The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus.

    PubMed

    Jain, Radhika; Valiante, Vito; Remme, Nicole; Docimo, Teresa; Heinekamp, Thorsten; Hertweck, Christian; Gershenzon, Jonathan; Haas, Hubertus; Brakhage, Axel A

    2011-10-01

    The saprophytic fungus Aspergillus fumigatus is the most important air-borne fungal pathogen. The cell wall of A. fumigatus has been studied intensively as a potential target for development of effective antifungal agents. A major role in maintaining cell wall integrity is played by the mitogen-activated protein kinase (MAPK) MpkA. To gain a comprehensive insight into this central signal transduction pathway, we performed a transcriptome analysis of the ΔmpkA mutant under standard and cell wall stress conditions. Besides genes involved in cell wall remodelling, protection against ROS and secondary metabolism such as gliotoxin, pyomelanin and pseurotin A, also genes involved in siderophore biosynthesis were regulated by MpkA. Consistently, northern and western blot analyses indicated that iron starvation triggers phosphorylation and thus activation of MpkA. Furthermore, localization studies indicated that MpkA accumulates in the nucleus under iron depletion. Hence, we report the first connection between a MAPK pathway and siderophore biosynthesis. The measurement of amino acid pools and of the pools of polyamines indicated that arginine was continuously converted into ornithine to fuel the siderophore pool in the ΔmpkA mutant strain. Based on our data, we propose that MpkA fine-tunes the balance between stress response and energy consuming cellular processes.

  11. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla.

    PubMed

    Guo, Huiyan; Wang, Yucheng; Wang, Liuqiang; Hu, Ping; Wang, Yanmin; Jia, Yuanyuan; Zhang, Chunrui; Zhang, Yu; Zhang, Yiming; Wang, Chao; Yang, Chuanping

    2017-01-01

    Plant MYB transcription factors control diverse biological processes, such as differentiation, development and abiotic stress responses. In this study, we characterized BplMYB46, an MYB gene from Betula platyphylla (birch) that is involved in both abiotic stress tolerance and secondary wall biosynthesis. BplMYB46 can act as a transcriptional activator in yeast and tobacco. We generated transgenic birch plants with overexpressing or silencing of BplMYB46 and subjected them to gain- or loss-of-function analysis. The results suggest that BplMYB46 improves salt and osmotic tolerance by affecting the expression of genes including SOD, POD and P5CS to increase both reactive oxygen species scavenging and proline levels. In addition, BplMYB46 appears to be involved in controlling stomatal aperture to reduce water loss. Overexpression of BplMYB46 increases lignin deposition, secondary cell wall thickness and the expression of genes in secondary cell wall formation. Further analysis indicated that BplMYB46 binds to MYBCORE and AC-box motifs and may directly activate the expression of genes involved in abiotic stress responses and secondary cell wall biosynthesis whose promoters contain these motifs. The transgenic BplMYB46-overexpressing birch plants, which have improved salt and osmotic stress tolerance, higher lignin and cellulose content and lower hemicellulose content than the control, have potential applications in the forestry industry. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Computational Fluid Dynamic Simulations of Maternal Circulation: Wall Shear Stress in the Human Placenta and Its Biological Implications

    PubMed Central

    Lecarpentier, E.; Bhatt, M.; Bertin, G. I.; Deloison, B.; Salomon, L. J.; Deloron, P.; Fournier, T.; Barakat, A. I.; Tsatsaris, V.

    2016-01-01

    Introduction In the human placenta the maternal blood circulates in the intervillous space (IVS). The syncytiotrophoblast (STB) is in direct contact with maternal blood. The wall shear stress (WSS) exerted by the maternal blood flow on the STB has not been evaluated. Our objective was to determine the physiological WSS exerted on the surface of the STB during the third trimester of pregnancy. Material and Methods To gain insight into the shear stress levels that the STB is expected to experience in vivo, we have formulated three different computational models of varying levels of complexity that reflect different physical representations of the IVS. Computations of the flow fields in all models were performed using the CFD module of the finite element code COMSOL Multiphysics 4.4. The mean velocity of maternal blood in the IVS during the third trimester was measured in vivo with dynamic MRI (0.94±0.14 mm.s-1). To investigate if the in silico results are consistent with physiological observations, we studied the cytoadhesion of human parasitized (Plasmodium falciparum) erythrocytes to primary human STB cultures, in flow conditions with different WSS values. Results The WSS applied to the STB is highly heterogeneous in the IVS. The estimated average values are relatively low (0.5±0.2 to 2.3±1.1 dyn.cm-2). The increase of WSS from 0.15 to 5 dyn.cm-2 was associated with a significant decrease of infected erythrocyte cytoadhesion. No cytoadhesion of infected erythrocytes was observed above 5 dyn.cm-2 applied for one hour. Conclusion Our study provides for the first time a WSS estimation in the maternal placental circulation. In spite of high maternal blood flow rates, the average WSS applied at the surface of the chorionic villi is low (<5 dyn.cm-2). These results provide the basis for future physiologically-relevant in vitro studies of the biological effects of WSS on the STB. PMID:26815115

  13. Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery.

    PubMed

    Doutel, E; Pinto, S I S; Campos, J B L M; Miranda, J M

    2016-08-07

    Murray developed two laws for the geometry of bifurcations in the circulatory system. Based on the principle of energy minimization, Murray found restrictions for the relation between the diameters and also between the angles of the branches. It is known that bifurcations are prone to the development of atherosclerosis, in regions associated to low wall shear stresses (WSS) and high oscillatory shear index (OSI). These indicators (size of low WSS regions, size of high OSI regions and size of high helicity regions) were evaluated in this work. All of them were normalized by the size of the outflow branches. The relation between Murray's laws and the size of low WSS regions was analysed in detail. It was found that the main factor leading to large regions of low WSS is the so called expansion ratio, a relation between the cross section areas of the outflow branches and the cross section area of the main branch. Large regions of low WSS appear for high expansion ratios. Furthermore, the size of low WSS regions is independent of the ratio between the diameters of the outflow branches. Since the expansion ratio in bifurcations following Murray's law is kept in a small range (1 and 1.25), all of them have regions of low WSS with similar size. However, the expansion ratio is not small enough to completely prevent regions with low WSS values and, therefore, Murray's law does not lead to atherosclerosis minimization. A study on the effect of the angulation of the bifurcation suggests that the Murray's law for the angles does not minimize the size of low WSS regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress.

    PubMed

    Luo, Tao; Chen, Baihe; Wang, Xianbao

    2015-12-05

    Our previous study indicated that attenuation of endoplasmic reticulum (ER) stress by administration of 4-phenylbutyric acid (4-PBA) could prevent cardiac rupture and remodeling in a mouse model of myocardial infarction (MI). However, whether 4-PBA is protective in hypertrophic heart disease is unclear. Thus, we tested the therapeutic effect of 4-PBA on pressure-overload induced myocardial hypertrophy. Transverse aortic constriction (TAC) was used to create myocardial hypertrophy in C57BL/6 male mice for 4 weeks. Immediately after surgery, the mice were administrated either 4-PBA (20 mg/kg/day) or 0.9% NaCl by intraperitoneal injection. At the end of 4 weeks, the mice underwent high-resolution echocardiographic imaging. Our results showed that both the left ventricular posterior wall thickness at end systole (LVPWs) and diastole (LVPWd) were increased in the TAC group, compared to control. 4-PBA administration attenuated hypertrophy and decreased the heart weight over body weight ratio. Masson's trichrome staining showed that myocardial interstitial fibrosis and collagen deposition were also decreased by 4-PBA. We next detected the ER stress response in the heart tissues of TAC mice in different time points. Western blotting showed that the expression of ER stress marker, GRP78, CHOP and phosphor-PERK, were persistently increased 4 weeks after TAC. The treatment of 4-PBA inhibited the expression of ER stress markers. We also demonstrated that the 4-PBA at 20 mg/kg/day had no effect on histone 3 deacetylation inhibition, while attenuating ER stress and TAC-induced hypertrophy. These findings suggest that 4-PBA may be a therapeutic strategy to consider in preventing pressure-overload induced myocardial hypertrophy and interstitial fibrosis by selectively attenuating ER stress.

  15. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling

    PubMed Central

    2014-01-01

    Background Salt stress usually causes crop growth inhibition and yield decrease. Epigenetic regulation is involved in plant responses to environmental stimuli. The epigenetic regulation of the cell wall related genes associated with the salt-induced cellular response is still little known. This study aimed to analyze cell morphological alterations in maize roots as a consequence of excess salinity in relation to the transcriptional and epigenetic regulation of the cell wall related protein genes. Results In this study, maize seedling roots got shorter and displayed swelling after exposure to 200 mM NaCl for 48 h and 96 h. Cytological observation showed that the growth inhibition of maize roots was due to the reduction in meristematic zone cell division activity and elongation zone cell production. The enlargement of the stele tissue and cortex cells contributed to root swelling in the elongation zone. The cell wall is thought to be the major control point for cell enlargement. Cell wall related proteins include xyloglucan endotransglucosylase (XET), expansins (EXP), and the plasma membrane proton pump (MHA). RT-PCR results displayed an up-regulation of cell wall related ZmEXPA1, ZmEXPA3, ZmEXPA5, ZmEXPB1, ZmEXPB2 and ZmXET1 genes and the down-regulation of cell wall related ZmEXPB4 and ZmMHA genes as the duration of exposure was increased. Histone acetylation is regulated by HATs, which are often correlated with gene activation. The expression of histone acetyltransferase genes ZmHATB and ZmGCN5 was increased after 200 mM NaCl treatment, accompanied by an increase in the global acetylation levels of histones H3K9 and H4K5. ChIP experiment showed that the up-regulation of the ZmEXPB2 and ZmXET1 genes was associated with the elevated H3K9 acetylation levels on the promoter regions and coding regions of these two genes. Conclusions These data suggested that the up-regulation of some cell wall related genes mediated cell enlargement to possibly mitigate th