Science.gov

Sample records for end-to-end outage minimization

  1. Minimizing End-to-End Interference in I/O Stacks Spanning Shared Multi-Level Buffer Caches

    ERIC Educational Resources Information Center

    Patrick, Christina M.

    2011-01-01

    This thesis presents an end-to-end interference minimizing uniquely designed high performance I/O stack that spans multi-level shared buffer cache hierarchies accessing shared I/O servers to deliver a seamless high performance I/O stack. In this thesis, I show that I can build a superior I/O stack which minimizes the inter-application interference…

  2. Minimizing forced outage risk in generator bidding

    NASA Astrophysics Data System (ADS)

    Das, Dibyendu

    Competition in power markets has exposed the participating companies to physical and financial uncertainties. Generator companies bid to supply power in a day-ahead market. Once their bids are accepted by the ISO they are bound to supply power. A random outage after acceptance of bids forces a generator to buy power from the expensive real-time hourly spot market and sell to the ISO at the set day-ahead market clearing price, incurring losses. A risk management technique is developed to assess this financial risk associated with forced outages of generators and then minimize it. This work presents a risk assessment module which measures the financial risk of generators bidding in an open market for different bidding scenarios. The day-ahead power market auction is modeled using a Unit Commitment algorithm and a combination of Normal and Cauchy distributions generate the real time hourly spot market. Risk profiles are derived and VaRs are calculated at 98 percent confidence level as a measure of financial risk. Risk Profiles and VaRs help the generators to analyze the forced outage risk and different factors affecting it. The VaRs and the estimated total earning for different bidding scenarios are used to develop a risk minimization module. This module will develop a bidding strategy of the generator company such that its estimated total earning is maximized keeping the VaR below a tolerable limit. This general framework of a risk management technique for the generating companies bidding in competitive day-ahead market can also help them in decisions related to building new generators.

  3. End-to-End Commitment

    NASA Technical Reports Server (NTRS)

    Newcomb, John

    2004-01-01

    The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength.

  4. End-to-End Radiographic Systems Simulation

    SciTech Connect

    Mathews, A.; Kwan, T.; Buescher, K.; Snell, C.; Adams, K.

    1999-07-23

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop a validated end-to-end radiographic model that could be applied to both x-rays and protons. The specific objectives were to link hydrodynamic, transport, and magneto-hydrodynamic simulation software for purposes of modeling radiographic systems. In addition, optimization and analysis algorithms were to be developed to validate physical models and optimize the design of radiographic facilities.

  5. Measurements and analysis of end-to-end Internet dynamics

    SciTech Connect

    Paxson, V

    1997-04-01

    Accurately characterizing end-to-end Internet dynamics - the performance that a user actually obtains from the lengthy series of network links that comprise a path through the Internet - is exceptionally difficult, due to the network`s immense heterogeneity. At the heart of this work is a `measurement framework` in which a number of sites around the Internet host a specialized measurement service. By coordinating `probes` between pairs of these sites one can measure end-to-end behavior along O(N{sup 2}) paths for a framework consisting of N sites. Consequently, one obtains a superlinear scaling that allows measuring a rich cross-section of Internet behavior without requiring huge numbers of observation points. 37 sites participated in this study, allowing the author to measure more than 1,000 distinct Internet paths. The first part of this work looks at the behavior of end-to-end routing: the series of routers over which a connection`s packets travel. Based on 40,000 measurements made using this framework, the author analyzes: routing `pathologies` such as loops, outages, and flutter; the stability of routes over time; and the symmetry of routing along the two directions of an end-to-end path. The author finds that pathologies increased significantly over the course of 1995 and that Internet paths are heavily dominated by a single route. The second part of this work studies end-to-end Internet packet dynamics. The author analyzes 20,000 TCP transfers of 100 Kbyte each to investigate the performance of both the TCP endpoints and the Internet paths. The measurements used for this part of the study are much richer than those for the first part, but require a great degree of attention to issues of calibration, which are addressed by applying self-consistency checks to the measurements whenever possible. The author finds that packet filters are capable of a wide range of measurement errors, some of which, if undetected, can significantly taint subsequent analysis.

  6. Applying Trustworthy Computing to End-to-End Electronic Voting

    ERIC Educational Resources Information Center

    Fink, Russell A.

    2010-01-01

    "End-to-End (E2E)" voting systems provide cryptographic proof that the voter's intention is captured, cast, and tallied correctly. While E2E systems guarantee integrity independent of software, most E2E systems rely on software to provide confidentiality, availability, authentication, and access control; thus, end-to-end integrity is not…

  7. Standardizing an End-to-end Accounting Service

    NASA Technical Reports Server (NTRS)

    Greenberg, Edward; Kazz, Greg

    2006-01-01

    Currently there are no space system standards available for space agencies to accomplish end-to-end accounting. Such a standard does not exist for spacecraft operations nor for tracing the relationship between the mission planning activities, the command sequences designed to perform those activities, the commands formulated to initiate those activities and the mission data and specifically the mission data products created by those activities. In order for space agencies to cross-support one another for data accountability/data tracing and for inter agency spacecraft to interoperate with each other, an international CCSDS standard for end-to-end data accountability/tracing needs to be developed. We will first describe the end-to-end accounting service model and functionality that supports the service. This model will describe how science plans that are ultimately transformed into commands can be associated with the telemetry products generated as a result of their execution. Moreover, the interaction between end-to-end accounting and service management will be explored. Finally, we will show how the standard end-to-end accounting service can be applied to a real life flight project i.e., the Mars Reconnaissance Orbiter project.

  8. Combining Simulation Tools for End-to-End Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min

    2015-01-01

    Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.

  9. LWS/SET End-to-End Data System

    NASA Technical Reports Server (NTRS)

    Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)

    2002-01-01

    This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.

  10. End-to-end network/application performance troubleshooting methodology

    SciTech Connect

    Wu, Wenji; Bobyshev, Andrey; Bowden, Mark; Crawford, Matt; Demar, Phil; Grigaliunas, Vyto; Grigoriev, Maxim; Petravick, Don; /Fermilab

    2007-09-01

    The computing models for HEP experiments are globally distributed and grid-based. Obstacles to good network performance arise from many causes and can be a major impediment to the success of the computing models for HEP experiments. Factors that affect overall network/application performance exist on the hosts themselves (application software, operating system, hardware), in the local area networks that support the end systems, and within the wide area networks. Since the computer and network systems are globally distributed, it can be very difficult to locate and identify the factors that are hurting application performance. In this paper, we present an end-to-end network/application performance troubleshooting methodology developed and in use at Fermilab. The core of our approach is to narrow down the problem scope with a divide and conquer strategy. The overall complex problem is split into two distinct sub-problems: host diagnosis and tuning, and network path analysis. After satisfactorily evaluating, and if necessary resolving, each sub-problem, we conduct end-to-end performance analysis and diagnosis. The paper will discuss tools we use as part of the methodology. The long term objective of the effort is to enable site administrators and end users to conduct much of the troubleshooting themselves, before (or instead of) calling upon network and operating system 'wizards,' who are always in short supply.

  11. Miniature modular microwave end-to-end receiver

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)

    1993-01-01

    An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.

  12. Endovascular management of a late saccular aortic aneurysm after end-to-end repair of coarctation.

    PubMed

    Kotoulas, Christophoros; Tzilalis, Vasileios; Spyridakis, Emmanouil; Mamareli, Ioannis

    2011-12-01

    Post-coarctation surgical repair aneurysm formation is observed rarely with end-to-end anastomosis technique. The redo surgery is associated with high mortality and morbidity rate. Although the minimal invasive method with stented grafts has been reported in only small number of patients, this could represent a valid alternative treatment. We present a case of successful endovascular treatment of a patient with a late post-coarctation repair saccular aneurysm.

  13. Euclid end-to-end straylight performance assessment

    NASA Astrophysics Data System (ADS)

    Gaspar Venancio, Luis M.; Pachot, Charlotte; Carminati, Lionel; Lorenzo Alvarez, Jose; Amiaux, Jérôme; Prieto, Eric; Bonino, Luciana; Salvignol, Jean-Christophe; Short, Alex; Boenke, Tobias; Strada, Paulo; Laureijs, Rene

    2016-07-01

    In the Euclid mission the straylight has been identified at an early stage as the main driver for the final imaging quality of the telescope. The assessment by simulation of the final straylight in the focal plane of both instruments in Euclid's payload have required a complex workflow involving all stakeholders in the mission, from industry to the scientific community. The straylight is defined as a Normalized Detector Irradiance (NDI) which is a convenient definition tool to separate the contributions of the telescope and of the instruments. The end-to-end straylight of the payload is then simply the sum of the NDIs of the telescope and of each instrument. The NDIs for both instruments are presented in this paper for photometry and spectrometry.

  14. END-TO-END SIMULATIONS FOR THE EBIS PREINJECTOR.

    SciTech Connect

    RAPARIA,D.; ALESSI, J.; KPONOU, A.; PIKIN, A.; RITTER, J.; MINAEV, S.; RATZINGER, U.; SCHEMPP, A.; TIEDE, R.

    2007-06-25

    The EBIS Project at Brookhaven National Laboratory is in the second year of a four-year project. It will replace the Tandem Van de Graaff accelerators with an Electron Beam Ion Source, an RFQ, and one IH Linac cavity, as the heavy ion preinjector for the Relativistic Heavy Ion Collider (RHIC), and for the NASA Space Radiation Laboratory (NSRL). The preinjector will provide all ions species, He to U, (Q/m >0.16) at 2 MeV/amu at a repetition rate of 5 Hz, pulse length of 10-40 {micro}s, and intensities of {approx}2.0 mA. End-to-end simulations (from EBIS to the Booster injection) as well as error sensitivity studies will be presented and physics issues will be discussed.

  15. End-to end performance of the TESAR ATR system

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton S.

    2000-08-01

    The TESAR [Tactical Endurance Synthetic Aperture Radar (SAR)] system uses four algorithms in its three-stage algorithmic approach to the detection and identification of targets in continuous real-time, 1-ft-resolution, strip SAR image data. The first stage employs a multitarget detector with a built-in natural/cultural false-alarm mitigator. The second stage provides target hypotheses for the candidate targets and refines their angular pose. The third stage, consisting of two template-based algorithms, produces final target-identification decisions. This paper reviews the end- to-end ATR performance achieved by the TESAR system in preparation for a 1998 field demonstration at Aberdeen Proving Ground, Aberdeen, MD. The discussion includes an overview of the algorithm suite, the system's unique capabilities, and its overall performance against eight ground targets.

  16. Response to MRO's end-to-end data accountability challenges

    NASA Technical Reports Server (NTRS)

    Lee, Young H.

    2005-01-01

    (MRO) on August 12, 2005. It carries six science instruments and three engineering payloads. Because MRO will produce an unprecedented number of science products, it will transmit a much higher data volume via high data rate than any other deep space mission to date. Keeping track of MRO products as well as relay products would be a daunting, expensive task without a well-planned data-product tracking strategy. To respond to this challenge, the MRO project developed the End-to- End Data Accountability System by utilizing existing information available from both ground and flight elements. Therefore, a capability to perform first-order problem diagnosis is essential in order for MRO to answer the questions, where is my data? and when will my data be available? This paper details the approaches taken, design and implementation of the tools, procedures and teams that track data products from the time they are predicted until they arrive in the hands of the end users.

  17. Recirculating Linac Acceleration - End-to-End Simulation

    SciTech Connect

    Alex Bogacz

    2010-03-01

    A conceptual design of a high-pass-number Recirculating Linear Accelerator (RLA) for muons is presented. The scheme involves three superconducting linacs (201 MHz): a single pass linear Pre-accelerator followed by a pair multi-pass (4.5-pass) 'Dogbone' RLAs. Acceleration starts after ionization cooling at 220 MeV/c and proceeds to 12.6 GeV. The Pre-accelerator captures a large muon phase space and accelerates muons to relativistic energies, while adiabatically decreasing the phase-space volume, so that effective acceleration in the RLA is possible. The RLA further compresses and shapes up the longitudinal and transverse phase-spaces, while increasing the energy. Appropriate choice of multi-pass linac optics based on FODO focusing assures large number of passes in the RLA. The proposed 'Dogbone' configuration facilitates simultaneous acceleration of both mu± species through the requirement of mirror symmetric optics of the return 'droplet' arcs. Finally, presented end-to-end simulation validates the efficiency and acceptance of the accelerator system.

  18. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  19. OGC standards for end-to-end sensor network integration

    NASA Astrophysics Data System (ADS)

    Headley, K. L.; Broering, A.; O'Reilly, T. C.; Toma, D.; Del Rio, J.; Bermudez, L. E.; Zedlitz, J.; Johnson, G.; Edgington, D.

    2010-12-01

    technology, and can communicate with any sensor whose protocol can be described by a SID. The SID interpreter transfers retrieved sensor data to a Sensor Observation Service, and transforms tasks submitted to a Sensor Planning Service to actual sensor commands. The proposed SWE PUCK protocol complements SID by providing a standard way to associate a sensor with a SID, thereby completely automating the sensor integration process. PUCK protocol is implemented in sensor firmware, and provides a means to retrieve a universally unique identifer, metadata and other information from the device itself through its communication interface. Thus the SID interpreter can retrieve a SID directly from the sensor through PUCK protocol. Alternatively the interpreter can retrieve the sensor’s SID from an external source, based on the unique sensor ID provided by PUCK protocol. In this presentation, we describe the end-to-end integration of several commercial oceanographic instruments into a sensor network using PUCK, SID and SWE services. We also present a user-friendly, graphical tool to generate SIDs and tools to visualize sensor data.

  20. Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac C.; Horne, Peter J.; Levin, Phillip S.

    2012-09-01

    value. However, this cost was minimal when local conservation actions were part of a concerted coast-wide plan. The simulations demonstrate the utility of using the Atlantis end-to-end ecosystem model within NOAA’s Integrated Ecosystem Assessment, by illustrating an end-to-end modeling tool that allows consideration of multiple management alternatives that are relevant to numerous state, federal and private interests.

  1. End-to-end microvascular anastomoses with a 1.9-un diode laser

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Martinot, Veronique L.; Mitchell, Valerie A.

    1996-01-01

    This in-vivo study examines the interest of vessel anastomosis with a 1.9 micrometer diode laser. Ten end-to-end carotid anastomoses and 10 end-to-end jugular anastomoses are performed in Wistar rats. The technique requires brief applications (20 to 25 spots) with a diode laser (lambda equals 1.9 micrometer, (phi) equals 220 micrometer, P equals 60 mW, t equals 0.7 s, F equals 110 J/cm2) after placement of three equidistant stay sutures. The macroscopic aspect and patency are evaluated at different post-operative intervals. Vessel histology is performed at 15, 21, and 30 days after the procedure. These anastomoses reveal minimal thermal damage in the adventitial layer only at depth of 200 micrometer. No medial or intimal thermal damage is identified. No thrombosis is observed, giving a permeability of 100% for both arteries and veins. The mean clamping time is 9 plus or minus 3 min. For 1.9 micrometer, the water extinction length is 0.15 mm. The welded thickness is comparable to the extinction length of the wavelength giving consequently a weld strength of 4 multiplied by 106 dynes/cm2 comparable to the strength of suture repairs: 5 - 6 multiplied by 106 dynes/cm2. These findings suggest that a low-energy 1.9 micrometer diode laser has potential clinical application for anastomosis of small vessels.

  2. End-to-end assessment of a large aperture segmented ultraviolet optical infrared (UVOIR) telescope architecture

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Olivier; Stark, Chris; Arenberg, Jon

    2016-07-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield exo-earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an exo-earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and exo-earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling these missions.

  3. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  4. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  5. A Computer Program for the Distribution of End-to-End Distances in Polymer Molecules

    ERIC Educational Resources Information Center

    Doorne, William Van; And Others

    1976-01-01

    Describes a Fortran program that illustrates how the end-to-end distances in randomly coiled polymer molecules is affected by varying the number and lengths of chains and the angles between them. (MLH)

  6. An end-to-end command and control concept for NASA data systems

    NASA Technical Reports Server (NTRS)

    Desjardins, R.

    1979-01-01

    Spacecraft command and control are currently taking on the characteristics of general computer-to-computer interprocess communication. The evolution of these systems during the 1980s will give NASA a true general-purpose end-to-end data request capability for the first time. This concept is presented in outline, with consideration of many of the detailed analyses and subsystem tradeoffs being performed as part of the NEEDS (NASA End-to-End Data System) program.

  7. Engineered salt-insensitive alpha-defensins with end-to-end circularized structures.

    PubMed

    Yu, Q; Lehrer, R I; Tam, J P

    2000-02-11

    We designed a retro-isomer and seven circularized "beta-tile" peptide analogs of a typical rabbit alpha-defensin, NP-1. The analogs retained defensin-like architecture after the characteristic end-to-end, Cys(3,31) (C I:C VI), alpha-defensin disulfide bond was replaced by a backbone peptide bond. The retro-isomer of NP-1 was as active as the parent compound, suggesting that overall topology and amphipathicity governed its antimicrobial activity. A beta-tile design with or without a single cross-bracing disulfide bond sufficed for antimicrobial activity, and some of the analogs retained activity against Escherichia coli and Salmonella typhimurium in NaCl concentrations that rendered NP-1 inactive. The new molecules had clustered positive charges resembling those in protegrins and tachyplesins, but were less cytotoxic. Such simplified alpha-defensin analogs minimize problems encountered during the oxidative folding of three-disulfide defensins. In addition, they are readily accessible to a novel thia zip cyclization procedure applicable to large unprotected peptide precursors of 31 amino acids in aqueous solutions. Collectively, these findings provide new and improved methodology to create salt-insensitive defensin-like peptides for application against bacterial diseases. PMID:10660548

  8. An end-to-end communications architecture for condition-based maintenance applications

    NASA Astrophysics Data System (ADS)

    Kroculick, Joseph

    2014-06-01

    This paper explores challenges in implementing an end-to-end communications architecture for Condition-Based Maintenance Plus (CBM+) data transmission which aligns with the Army's Network Modernization Strategy. The Army's Network Modernization strategy is based on rolling out network capabilities which connect the smallest unit and Soldier level to enterprise systems. CBM+ is a continuous improvement initiative over the life cycle of a weapon system or equipment to improve the reliability and maintenance effectiveness of Department of Defense (DoD) systems. CBM+ depends on the collection, processing and transport of large volumes of data. An important capability that enables CBM+ is an end-to-end network architecture that enables data to be uploaded from the platform at the tactical level to enterprise data analysis tools. To connect end-to-end maintenance processes in the Army's supply chain, a CBM+ network capability can be developed from available network capabilities.

  9. Novel method for esophagojejunal anastomosis after laparoscopic total gastrectomy: Semi-end-to-end anastomosis

    PubMed Central

    Zhao, Yong-Liang; Su, Chong-Yu; Li, Teng-Fei; Qian, Feng; Luo, Hua-Xing; Yu, Pei-Wu

    2014-01-01

    AIM: To test a new safe and simple technique for circular-stapled esophagojejunostomy in laparoscopic total gastrectomy (LATG). METHODS: We selected 26 patients with gastric cancer who underwent LATG and Roux-en-Y gastrointestinal reconstruction with semi-end-to-end esophagojejunal anastomosis. RESULTS: LATG with semi-end-to-end esophagojejunal anastomosis was successfully performed in all 26 patients. The average operation time was 257 ± 36 min, with an average anastomosis time of 51 ± 17 min and an average intraoperative blood loss of 88 ± 46 mL. The average postoperative hospital stay was 8 ± 3 d. There were no complications and no mortality in this series. CONCLUSION: The application of semi-end-to-end esophagojejunal anastomosis after LATG is a safe and feasible procedure, which can be easily performed and has a short operation time in terms of anastomosis. PMID:25309086

  10. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  11. End-To-END Performance of the Future MOMA Instrument Aboard the ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Pinnick, V. T.; Buch, A.; Szopa, C.; Grand, N.; Danell, R.; Grubisic, A.; van Amerom, F. H. W.; Glavin, D. P.; Freissinet, C.; Coll, P. J.; Stalport, F.; Humeau, O.; Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.

    2015-12-01

    Following the SAM experiment aboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment aboard the 2018 ExoMars mission will be the continuation of the search for organic matter on the Mars surface. One advancement with the ExoMars mission is that the sample will be extracted as deep as 2 meters below the Martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatile compounds) of the Martian soil, MOMA is equipped with a dual ion source ion trap mass spectrometer utilizing UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC). In order to analyze refractory organic compounds and chiral molecules during GC-ITMS analysis, samples may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). Previous experimental reports have focused on coupling campaigns between the breadboard versions of the GC, provided by the French team (LISA, LATMOS, CentraleSupelec), and the MS, provided by the US team (NASA-GSFC). This work focuses on the performance verification and optimization of the GC-ITMS experiment using the Engineering Test Unit (ETU) models which are representative of the form, fit and function of the flight instrument including a flight-like pyrolysis oven and tapping station providing by the German team (MPS). The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. References: [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  12. Radio science requirements and the end-to-end ranging system

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1978-01-01

    Radio science ranging requirements negotiated between past and present flight projects and the DSN have generally focused on just the DSS and spacecraft hardware. All elements in the end-to-end system are analyzed and considered in terms of the error hierarchy. The end-to-end system is defined and examined as it applies to the generation of radio science ranging requirements. The variability of the performance levels of the system elements is emphasized with respect to the radio science experiment being performed and the DSN-spacecraft frequency band configuration.

  13. End-to-End Data System Architecture for the Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Mian, Arshad; Scimemi, Sam; Adeni, Kaiser; Picinich, Lou; Ramos, Rubin (Technical Monitor)

    1998-01-01

    The Space Station Biological Research Project (SSBRP) Is developing hardware referred to as the "facility" for providing life sciences research capability on the International Space Station. This hardware includes several biological specimen habitats, habitat holding racks, a centrifuge and a glovebox. An SSBRP end to end data system architecture has been developed to allow command and control of the facility from the ground, either with crew assistance or autonomously. The data system will be capable of handling commands, sensor data, and video from multiple cameras. The data will traverse through several onboard and ground networks and processing entities including the SSBRP and Space Station onboard and ground data systems. A large number of onboard and ground (,entities of the data system are being developed by the Space Station Program, other NASA centers and the International Partners. The SSBRP part of the system which includes the habitats, holding racks, and the ground operations center, User Operations Facility (UOF) will be developed by a multitude of geographically distributed development organizations. The SSBRP has the responsibility to define the end to end data and communications systems to make the interfaces manageable and verifiable with multiple contractors with widely varying development constraints and schedules. This paper provides an overview of the SSBRP end-to-end data system. Specifically, it describes the hardware, software and functional interactions of individual systems, and interface requirements among various entities of the end-to-end system.

  14. A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard

    2016-01-01

    End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.

  15. End-to-end RMS error testing on a constant bandwidth FM/FM system

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Salter, W. E.

    1972-01-01

    End-to-end root-mean-square (rms) tests performed on a constant bandwidth FM/FM system with various settings of system parameters are reported. The testing technique employed is that of sampling, digitizing, delaying, and comparing the analog input against the sampled and digitized corresponding output. Total system error is determined by fully loading all channels with band-limited noise and conducting end-to-end rms error tests on one channel. Tests are also conducted with and without a transmission link and plots of rms errors versus receiver signal-to-noise (S/N) values are obtained. The combined effects of intermodulation, adjacent channel crosstalk, and residual system noise are determined as well as the single channel distortion of the system.

  16. Sutureless end-to-end ureteral anastomosis using a new albumin stent and diode laser

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Shaffer, Brian S.; Prahl, Scott A.; Gregory, Kenton W.

    1999-09-01

    Sutureless end to end ureteral anastomoses was successfully constructed in acute and chronic experiments. A photothermal sensitive hydrolyzable (PSH) albumin stent played roles as solder and intraluminal supporter to adhesion and position the anastomosed ureter by end to end fashion. The anastomosis seam was lased with 810 nm diode laser energy supplied through hand- held 600 micrometers noncontact optical fiber. A continuous 1 watt wave of power was applied for laser anastomosis. Integrity, welding strength, bursting pressures of anastomosis and histological reaction, and radiological phenomena were compared to those of anastomoses constructed using a liquidity soldering technique. The acute results of two methods were equivalent at welding strengths, but the liquid soldering showed more energy consumption. At chronic study, the radiological and histological studies were performed to evaluate the complications of the anastomosis. Excellent heating and varied degrees of complications were observed. We conclude that PSH stent showed great promise for ureteral anastomosis using laser welding.

  17. Laser welding with an albumin stent: experimental ureteral end-to-end anastomosis

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Shaffer, Brian S.; Prahl, Scott A.; Gregory, Kenton W.

    2000-05-01

    Porcine ureters were anastomosed using an albumin stent and diode laser in vitro. The albumin stent provided precise apposition for an end to end anastomosis and enhanced welding strength. The anastomosis seam was lasered with an 810 nm diode laser using continuous wave and pulse light through a hand-held 600 micrometer noncontact optical fiber. Tensile strength, burst pressures, operative times, total energy and thermal damaged were measured in this study. The results demonstrated that using an albumin stent to laser weld ureteral anastomoses produces strong weld strengths. The liquid albumin solder also provided satisfactory welding strength. There were no significant differences of tissue thermal damage between the albumin stent alone, liquid solder alone and both combination groups. Thermal damage to tissue depended on laser setting and energy. This study determined the appropriate laser setting parameters to perform in vivo ureteral end to end anastomosis.

  18. End-to-end calculation of the radiation characteristics of VVER-1000 spent fuel assemblies

    NASA Astrophysics Data System (ADS)

    Linge, I. I.; Mitenkova, E. F.; Novikov, N. V.

    2012-12-01

    The results of end-to-end calculation of the radiation characteristics of VVER-1000 spent nuclear fuel are presented. Details of formation of neutron and gamma-radiation sources are analyzed. Distributed sources of different types of radiation are considered. A comparative analysis of calculated radiation characteristics is performed with the use of nuclear data from different ENDF/B and EAF files and ANSI/ANS and ICRP standards.

  19. NASA/DOD earth orbit shuttle traffic models based on end to end loading of payloads

    NASA Technical Reports Server (NTRS)

    Kincade, R. E.; Donahoo, M. E.; Pruett, W. R.

    1971-01-01

    An analysis of the spacecraft configurations and space missions for the Earth Orbit Shuttle traffic model based on an end-to-end loading of payloads is presented. Two possible reusable tugs are considered. The space missions are described with respect to the following: (1) number of earth orbit shuttle flights by inclination, (2) total payloads to orbit, (3) energy stages required, and (4) characteristics of reusable tug.

  20. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    NASA Astrophysics Data System (ADS)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  1. An end-to-end approach to developing biological and chemical detector requirements

    NASA Astrophysics Data System (ADS)

    Teclemariam, Nerayo P.; Purvis, Liston K.; Foltz, Greg W.; West, Todd; Edwards, Donna M.; Fruetel, Julia A.; Gleason, Nathaniel J.

    2009-05-01

    Effective defense against chemical and biological threats requires an "end-to-end" strategy that encompasses the entire problem space, from threat assessment and target hardening to response planning and recovery. A key element of the strategy is the definition of appropriate system requirements for surveillance and detection of threat agents. Our end-to-end approach to venue chem/bio defense is captured in the Facilities Weapons of Mass Destruction Decision Analysis Capability (FacDAC), an integrated system-of-systems toolset that can be used to generate requirements across all stages of detector development. For example, in the early stage of detector development the approach can be used to develop performance targets (e.g., sensitivity, selectivity, false positive rate) to provide guidance on what technologies to pursue. In the development phase, after a detector technology has been selected, the approach can aid in determining performance trade-offs and down-selection of competing technologies. During the application stage, the approach can be employed to design optimal defensive architectures that make the best use of available technology to maximize system performance. This presentation will discuss the end-to-end approach to defining detector requirements and demonstrate the capabilities of the FacDAC toolset using examples from a number of studies for the Department of Homeland Security.

  2. End-to-end planning and scheduling systems technology for space operations

    NASA Technical Reports Server (NTRS)

    Moe, Karen L.

    1992-01-01

    Consideration is given to planning and scheduling operations concepts from an end-to-end perspective, through both mission operations and institutional support functions. An operations concept is proposed which is based on a flexible request language used to state resource requirements and mission constraints to a scheduling system. The language has the potential to evolve into an international standard for exchanging service request information on international space networks. The key benefit of the flexible scheduling request concept is the shift of a significant conflict resolution effort from humans to computers, reducing the time for generating a week's worth of schedules to hours instead of days.

  3. Satellite/Terrestrial Networks: End-to-End Communication Interoperability Quality of Service Experiments

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1998-01-01

    Various issues associated with satellite/terrestrial end-to-end communication interoperability are presented in viewgraph form. Specific topics include: 1) Quality of service; 2) ATM performance characteristics; 3) MPEG-2 transport stream mapping to AAL-5; 4) Observation and discussion of compressed video tests over ATM; 5) Digital video over satellites status; 6) Satellite link configurations; 7) MPEG-2 over ATM with binomial errors; 8) MPEG-2 over ATM channel characteristics; 8) MPEG-2 over ATM over emulated satellites; 9) MPEG-2 transport stream with errors; and a 10) Dual decoder test.

  4. An End-To-End Test of A Simulated Nuclear Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  5. A Bottom-up Route to a Chemically End-to-End Assembly of Nanocellulose Fibers.

    PubMed

    Yang, Han; van de Ven, Theo G M

    2016-06-13

    In this work, we take advantage of the rod-like structure of electrosterically stabilized nanocrystalline cellulose (ENCC, with a width of about 7 nm and a length of about 130 nm), which has dicarboxylated cellulose (DCC) chains protruding from both ends, providing electrosterical stability for ENCC particles, to chemically end-to-end assemble these particles into nanocellulose fibers. ENCC with shorter DCC chains can be obtained by a mild hydrolysis of ENCC with HCl, and subsequently the hydrolyzed ENCC (HENCC, with a width of about 6 nm and a length of about 120 nm) is suitable to be assembled into high aspect ratio nanofibers by chemically cross-linking HENCC from one end to another. Two sets of HENCC were prepared by carbodiimide-mediated formation of an alkyne and an azide derivative, respectively. Cross-linking these two sets of HENCC was performed by a click reaction. HENCCs were also end-to-end cross-linked by a bioconjugation reaction, with a diamine. From atomic force microscopy (AFM) images, about ten HENCC nanoparticles were cross-linked and formed high aspect ratio nanofibers with a width of about 6 nm and a length of more than 1 μm. PMID:27211496

  6. The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds

    NASA Technical Reports Server (NTRS)

    Cooke, Brian; Thompson, Richard; Standley, Shaun

    2012-01-01

    Launched by NASA on 6 March 2009, the Kepler Mission has been observing more than 100,000 targets in a single patch of sky between the constellations Cygnus and Lyra almost continuously for the last two years looking for planetary systems using the transit method. As of October 2011, the Kepler spacecraft has collected and returned to Earth just over 290 GB of data, identifying 1235 planet candidates with 25 of these candidates confirmed as planets via ground observation. Extracting the telltale signature of a planetary system from stellar photometry where valid signal transients can be small as a 40 ppm is a difficult and exacting task. The end-to end processing of determining planetary candidates from noisy, raw photometric measurements is discussed.

  7. End-to-End Network Simulation Using a Site-Specific Radio Wave Propagation Model

    SciTech Connect

    Djouadi, Seddik M; Kuruganti, Phani Teja; Nutaro, James J

    2013-01-01

    The performance of systems that rely on a wireless network depends on the propagation environment in which that network operates. To predict how these systems and their supporting networks will perform, simulations must take into consideration the propagation environment and how this effects the performance of the wireless network. Network simulators typically use empirical models of the propagation environment. However, these models are not intended for, and cannot be used, to predict a wireless system will perform in a specific location, e.g., in the center of a particular city or the interior of a specific manufacturing facility. In this paper, we demonstrate how a site-specific propagation model and the NS3 simulator can be used to predict the end-to-end performance of a wireless network.

  8. Data analysis pipeline for EChO end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Waldmann, Ingo P.; Pascale, E.

    2015-12-01

    Atmospheric spectroscopy of extrasolar planets is an intricate business. Atmospheric signatures typically require a photometric precision of 1×10-4 in flux over several hours. Such precision demands high instrument stability as well as an understanding of stellar variability and an optimal data reduction and removal of systematic noise. In the context of the EChO mission concept, we here discuss the data reduction and analysis pipeline developed for the EChO end-to-end simulator EChOSim. We present and discuss the step by step procedures required in order to obtain the final exoplanetary spectrum from the EChOSim `raw data' using a simulated observation of the secondary eclipse of the hot-Neptune 55 Cnc e.

  9. End-to-end communication test on variable length packet structures utilizing AOS testbed

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu

    1994-01-01

    This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.

  10. End to end numerical simulations of the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.

    2014-08-01

    MAORY is the adaptive optics module of the E-ELT that will feed the MICADO imaging camera through a gravity invariant exit port. MAORY has been foreseen to implement MCAO correction through three high order deformable mirrors driven by the reference signals of six Laser Guide Stars (LGSs) feeding as many Shack- Hartmann Wavefront Sensors. A three Natural Guide Stars (NGSs) system will provide the low order correction. We develop a code for the end-to-end simulation of the MAORY adaptive optics (AO) system in order to obtain high-fidelity modeling of the system performance. It is based on the IDL language and makes extensively uses of the GPUs. Here we present the architecture of the simulation tool and its achieved and expected performance.

  11. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  12. End-to-end performance measurement of Internet based medical applications.

    PubMed Central

    Dev, P.; Harris, D.; Gutierrez, D.; Shah, A.; Senger, S.

    2002-01-01

    We present a method to obtain an end-to-end characterization of the performance of an application over a network. This method is not dependent on any specific application or type of network. The method requires characterization of network parameters, such as latency and packet loss, between the expected server or client endpoints, as well as characterization of the application's constraints on these parameters. A subjective metric is presented that integrates these characterizations and that operates over a wide range of applications and networks. We believe that this method may be of wide applicability as research and educational applications increasingly make use of computation and data servers that are distributed over the Internet. PMID:12463816

  13. Sutureless vascular end-to-end anastomosis. Final technical report Jan 82-Dec 83

    SciTech Connect

    Wozniak, J.J.

    1984-03-22

    The objective of this project was to develop a means of rejoining severed vessels (end-to-end anastomosis) without using sutures. Two essential elements in the concept, an instrument to evert the vessel and a biocompatible, low-temperature (130 F/54 C), heat-shrinkage sleeve were developed. The sleeve, which contracts to accomplish the anastomosis, was developed by crosslinking (with ionizing gamma radiation) synthetic trans-1,4 polyisoprene. The crosslinked polymer was subjected to an acute toxicity screening program and proved to be highly biocompatible. The sutureless anastomosis technique was tested in-vitro on freshly excised pig carotid arteries however, there was insufficient funding available to provide for an evaluation of the technique in laboratory animals.

  14. End-to-end interoperability and workflows from building architecture design to one or more simulations

    DOEpatents

    Chao, Tian-Jy; Kim, Younghun

    2015-02-10

    An end-to-end interoperability and workflows from building architecture design to one or more simulations, in one aspect, may comprise establishing a BIM enablement platform architecture. A data model defines data entities and entity relationships for enabling the interoperability and workflows. A data definition language may be implemented that defines and creates a table schema of a database associated with the data model. Data management services and/or application programming interfaces may be implemented for interacting with the data model. Web services may also be provided for interacting with the data model via the Web. A user interface may be implemented that communicates with users and uses the BIM enablement platform architecture, the data model, the data definition language, data management services and application programming interfaces to provide functions to the users to perform work related to building information management.

  15. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  16. End-to-end operations at the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  17. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE PAGESBeta

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina; Bi, Changhao; Elsbree, Nick; Jiao, Hong; Kim, Jungkyu; Mathies, Richard; Keasling, Jay D.; Hillson, Nathan J.

    2016-02-02

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  18. End-to-end system test for solid-state microdosemeters.

    PubMed

    Pisacane, V L; Dolecek, Q E; Malak, H; Dicello, J F

    2010-08-01

    The gold standard in microdosemeters has been the tissue equivalent proportional counter (TEPC) that utilises a gas cavity. An alternative is the solid-state microdosemeter that replaces the gas with a condensed phase (silicon) detector with microscopic sensitive volumes. Calibrations of gas and solid-state microdosemeters are generally carried out using radiation sources built into the detector that impose restrictions on their handling, transportation and licensing in accordance with the regulations from international, national and local nuclear regulatory bodies. Here a novel method is presented for carrying out a calibration and end-to-end system test of a microdosemeter using low-energy photons as the initiating energy source, thus obviating the need for a regulated ionising radiation source. This technique may be utilised to calibrate both a solid-state microdosemeter and, with modification, a TEPC with the higher average ionisation energy of a gas.

  19. The End-to-End Pipeline for HST Slitless Spectra PHLAG

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Micol, A.; Rosa, M. R.; Walsh, J. R.

    The Space Telescope-European Coordinating Facility (ST-ECF) is undertaking a joint project with the Canadian Astronomy Data Centre and the Space Telescope Science Institute to build a Hubble Legacy Archive (HLA) that contains science ready high level data products to be used in the Virtual Observatory (VO). The ST-ECF will provide extracted slitless spectra to the HLA, and for this purpose has developed the Pipeline for Hubble Legacy Archive Grism data (PHLAG). PHLAG is an end-to-end pipeline that performs an unsupervised reduction of slitless data taken with the Advanced Camera for Surveys (ACS) or the Near Infrared Camera and Multi Object Spectrometer (NICMOS) and ingests the VO compatible spectra into the HLA. PHLAG is a modular pipeline, and the various modules and their roles are discussed. In a pilot study, PHLAG is applied to NICMOS data taken with the G141 grism, and the first results of a run on all available data are shown.

  20. Establishing end-to-end security in a nationwide network for telecooperation.

    PubMed

    Staemmler, Martin; Walz, Michael; Weisser, Gerald; Engelmann, Uwe; Weininger, Robert; Ernstberger, Antonio; Sturm, Johannes

    2012-01-01

    Telecooperation is used to support care for trauma patients by facilitating a mutual exchange of treatment and image data in use-cases such as emergency consultation, second-opinion, transfer, rehabilitation and out-patient aftertreatment. To comply with data protection legislation a two-factor authentication using ownership and knowledge has been implemented to assure personalized access rights. End-to-end security is achieved by symmetric encryption in combination with external trusted services which provide the symmetric key solely at runtime. Telecooperation partners may be chosen at departmental level but only individuals of that department, as a result of checking the organizational assignments maintained by LDAP services, are granted access. Data protection officers of a federal state have accepted the data protection means. The telecooperation platform is in routine operation and designed to serve for up to 800 trauma centers in Germany, organized in more than 50 trauma networks.

  1. End-to-End QoS for Differentiated Services and ATM Internetworking

    NASA Technical Reports Server (NTRS)

    Su, Hongjun; Atiquzzaman, Mohammed

    2001-01-01

    The Internet was initially design for non real-time data communications and hence does not provide any Quality of Service (QoS). The next generation Internet will be characterized by high speed and QoS guarantee. The aim of this paper is to develop a prioritized early packet discard (PEPD) scheme for ATM switches to provide service differentiation and QoS guarantee to end applications running over next generation Internet. The proposed PEPD scheme differs from previous schemes by taking into account the priority of packets generated from different application. We develop a Markov chain model for the proposed scheme and verify the model with simulation. Numerical results show that the results from the model and computer simulation are in close agreement. Our PEPD scheme provides service differentiation to the end-to-end applications.

  2. Development of a Dynamic, End-to-End Free Piston Stirling Convertor Model

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Gerber, Scott S.; Roth, Mary Ellen

    2004-01-01

    A dynamic model for a free-piston Stirling convertor is being developed at the NASA Glenn Research Center. The model is an end-to-end system model that includes the cycle thermodynamics, the dynamics, and electrical aspects of the system. The subsystems of interest are the heat source, the springs, the moving masses, the linear alternator, the controller, and the end-user load. The envisioned use of the model will be in evaluating how changes in a subsystem could affect the operation of the convertor. The model under development will speed the evaluation of improvements to a subsystem and aid in determining areas in which most significant improvements may be found. One of the first uses of the end-toend model will be in the development of controller architectures. Another related area is in evaluating changes to details in the linear alternator.

  3. Portable end-to-end ground system for low-cost mission support

    NASA Astrophysics Data System (ADS)

    Lam, Barbara

    1996-11-01

    This paper presents a revolutionary architecture of the end-to-end ground system to reduce overall mission support costs. The present ground system of the Jet Propulsion Laboratory (JPL) is costly to operate, maintain, deploy, reproduce, and document. In the present climate of shrinking NASA budgets, this proposed architecture takes on added importance as it should dramatically reduce all of the above costs. Currently, the ground support functions (i.e., receiver, tracking, ranging, telemetry, command, monitor and control) are distributed among several subsystems that are housed in individual rack-mounted chassis. These subsystems can be integrated into one portable laptop system using established Multi Chip Module (MCM) packaging technology and object-based software libraries. The large scale integration of subsystems into a small portable system connected to the World Wide Web (WWW) will greatly reduce operations, maintenance and reproduction costs. Several of the subsystems can be implemented using Commercial Off-The-Shelf (COTS) products further decreasing non-recurring engineering costs. The inherent portability of the system will open up new ways for using the ground system at the "point-of-use" site as opposed to maintaining several large centralized stations. This eliminates the propagation delay of the data to the Principal Investigator (PI), enabling the capture of data in real-time and performing multiple tasks concurrently from any location in the world. Sample applications are to use the portable ground system in remote areas or mobile vessels for real-time correlation of satellite data with earth-bound instruments; thus, allowing near real-time feedback and control of scientific instruments. This end-to-end portable ground system will undoubtedly create opportunities for better scientific observation and data acquisition.

  4. Integrating end-to-end threads of control into object-oriented analysis and design

    NASA Technical Reports Server (NTRS)

    Mccandlish, Janet E.; Macdonald, James R.; Graves, Sara J.

    1993-01-01

    Current object-oriented analysis and design methodologies fall short in their use of mechanisms for identifying threads of control for the system being developed. The scenarios which typically describe a system are more global than looking at the individual objects and representing their behavior. Unlike conventional methodologies that use data flow and process-dependency diagrams, object-oriented methodologies do not provide a model for representing these global threads end-to-end. Tracing through threads of control is key to ensuring that a system is complete and timing constraints are addressed. The existence of multiple threads of control in a system necessitates a partitioning of the system into processes. This paper describes the application and representation of end-to-end threads of control to the object-oriented analysis and design process using object-oriented constructs. The issue of representation is viewed as a grouping problem, that is, how to group classes/objects at a higher level of abstraction so that the system may be viewed as a whole with both classes/objects and their associated dynamic behavior. Existing object-oriented development methodology techniques are extended by adding design-level constructs termed logical composite classes and process composite classes. Logical composite classes are design-level classes which group classes/objects both logically and by thread of control information. Process composite classes further refine the logical composite class groupings by using process partitioning criteria to produce optimum concurrent execution results. The goal of these design-level constructs is to ultimately provide the basis for a mechanism that can support the creation of process composite classes in an automated way. Using an automated mechanism makes it easier to partition a system into concurrently executing elements that can be run in parallel on multiple processors.

  5. Kinetics of end-to-end collision in short single-stranded nucleic acids.

    PubMed

    Wang, Xiaojuan; Nau, Werner M

    2004-01-28

    A novel fluorescence-based method, which entails contact quenching of the long-lived fluorescent state of 2,3-diazabicyclo[2.2.2]-oct-2-ene (DBO), was employed to measure the kinetics of end-to-end collision in short single-stranded oligodeoxyribonucleotides of the type 5'-DBO-(X)n-dG with X = dA, dC, dT, or dU and n = 2 or 4. The fluorophore was covalently attached to the 5' end and dG was introduced as an efficient intrinsic quencher at the 3' terminus. The end-to-end collision rates, which can be directly related to the efficiency of intramolecular fluorescence quenching, ranged from 0.1 to 9.0 x 10(6) s(-1). They were strongly dependent on the strand length, the base sequence, as well as the temperature. Oligonucleotides containing dA in the backbone displayed much slower collision rates and significantly higher positive activation energies than strands composed of pyrimidine bases, suggesting a higher intrinsic rigidity of oligoadenylate. Comparison of the measured collision rates in short single-stranded oligodeoxyribonucleotides with the previously reported kinetics of hairpin formation indicates that the intramolecular collision is significantly faster than the nucleation step of hairpin closing. This is consistent with the configurational diffusion model suggested by Ansari et al. (Ansari, A.; Kuznetsov, S. V.; Shen, Y. Proc.Natl. Acad. Sci. USA 2001, 98, 7771-7776), in which the formation of misfolded loops is thought to slow hairpin formation.

  6. Kinetics of end-to-end collision in short single-stranded nucleic acids.

    PubMed

    Wang, Xiaojuan; Nau, Werner M

    2004-01-28

    A novel fluorescence-based method, which entails contact quenching of the long-lived fluorescent state of 2,3-diazabicyclo[2.2.2]-oct-2-ene (DBO), was employed to measure the kinetics of end-to-end collision in short single-stranded oligodeoxyribonucleotides of the type 5'-DBO-(X)n-dG with X = dA, dC, dT, or dU and n = 2 or 4. The fluorophore was covalently attached to the 5' end and dG was introduced as an efficient intrinsic quencher at the 3' terminus. The end-to-end collision rates, which can be directly related to the efficiency of intramolecular fluorescence quenching, ranged from 0.1 to 9.0 x 10(6) s(-1). They were strongly dependent on the strand length, the base sequence, as well as the temperature. Oligonucleotides containing dA in the backbone displayed much slower collision rates and significantly higher positive activation energies than strands composed of pyrimidine bases, suggesting a higher intrinsic rigidity of oligoadenylate. Comparison of the measured collision rates in short single-stranded oligodeoxyribonucleotides with the previously reported kinetics of hairpin formation indicates that the intramolecular collision is significantly faster than the nucleation step of hairpin closing. This is consistent with the configurational diffusion model suggested by Ansari et al. (Ansari, A.; Kuznetsov, S. V.; Shen, Y. Proc.Natl. Acad. Sci. USA 2001, 98, 7771-7776), in which the formation of misfolded loops is thought to slow hairpin formation. PMID:14733555

  7. Verifying end-to-end system performance with the transformational information extraction model

    NASA Astrophysics Data System (ADS)

    Mauck, Alisha; Roszyk, Greg

    2006-05-01

    In the intelligence community, the volume of imagery data threatens to overwhelm the traditional process of information extraction. Satellite systems are capable of producing large quantities of imagery data every day. Traditionally, intelligence analysts have the arduous task of manually reviewing satellite imagery data and generating information products. In a time of increasing imagery data, this manual approach is not consistent with the goal of a timely and highly responsive system. These realities are key factors in Booz Allen Hamilton's transformational approach to information extraction. This approach employs information services and value added processes (VAP) to reduce the amount of data being manually reviewed. Booz Allen has utilized a specialization/generalization hierarchy to aggregate hundreds of thousands of imagery intelligence needs into sixteen information services. Information Services are automated by employing value added processes, which extract the information from the imagery data and generate information products. While the intelligence needs and information services remain relatively static in time, the VAP's have the ability to evolve rapidly with advancing technologies. The Booz Allen Transformational Information Extraction Model validates this automated approach by simulating realistic system parameters. The functional flow model includes image formation, three information services, six VAP's, and reduced manual intervention. Adjustable model variables for VAP time, VAP confidence, number of intelligence analyst, and time for analyst review provide a flexible framework for modeling different system cases. End-to-End system metrics such as intelligence need satisfaction, end-to-end timeliness, and sensitivity to number of analyst and VAP variables quantify the system performance.

  8. End-to-end test of spatial accuracy in Gamma Knife treatments for trigeminal neuralgia

    SciTech Connect

    Brezovich, Ivan A. Wu, Xingen; Duan, Jun; Popple, Richard A.; Shen, Sui; Benhabib, Sidi; Huang, Mi; Christian Dobelbower, M.; Fisher III, Winfield S.

    2014-11-01

    Purpose: Spatial accuracy is most crucial when small targets like the trigeminal nerve are treated. Although current quality assurance procedures typically verify that individual apparatus, like the MRI scanner, CT scanner, Gamma Knife, etc., are meeting specifications, the cumulative error of all equipment and procedures combined may exceed safe margins. This study uses an end-to-end approach to assess the overall targeting errors that may have occurred in individual patients previously treated for trigeminal neuralgia. Methods: The trigeminal nerve is simulated by a 3 mm long, 3.175 mm (1/8 in.) diameter MRI-contrast filled cavity embedded within a PMMA plastic capsule. The capsule is positioned within the head frame such that the location of the cavity matches the Gamma Knife coordinates of an arbitrarily chosen, previously treated patient. Gafchromic EBT2 film is placed at the center of the cavity in coronal and sagittal orientations. The films are marked with a pinprick to identify the cavity center. Treatments are planned for radiation delivery with 4 mm collimators according to MRI and CT scans using the clinical localizer boxes and acquisition protocols. Shots are planned so that the 50% isodose surface encompasses the cavity. Following irradiation, the films are scanned and analyzed. Targeting errors are defined as the distance between the pinprick, which represents the intended target, and the centroid of the 50% isodose line, which is the center of the radiation field that was actually delivered. Results: Averaged over ten patient simulations, targeting errors along the x, y, and z coordinates (patient’s left-to-right, posterior-to-anterior, and head-to-foot) were, respectively, −0.060 ± 0.363, −0.350 ± 0.253, and 0.348 ± 0.204 mm when MRI was used for treatment planning. Planning according to CT exhibited generally smaller errors, namely, 0.109 ± 0.167, −0.191 ± 0.144, and 0.211 ± 0.094 mm. The largest errors along individual axes in MRI

  9. Internet end-to-end performance monitoring for the High Energy Nuclear and Particle Physics community

    SciTech Connect

    Matthews, W.

    2000-02-22

    Modern High Energy Nuclear and Particle Physics (HENP) experiments at Laboratories around the world present a significant challenge to wide area networks. Petabytes (1015) or exabytes (1018) of data will be generated during the lifetime of the experiment. Much of this data will be distributed via the Internet to the experiment's collaborators at Universities and Institutes throughout the world for analysis. In order to assess the feasibility of the computing goals of these and future experiments, the HENP networking community is actively monitoring performance across a large part of the Internet used by its collaborators. Since 1995, the pingER project has been collecting data on ping packet loss and round trip times. In January 2000, there are 28 monitoring sites in 15 countries gathering data on over 2,000 end-to-end pairs. HENP labs such as SLAC, Fermi Lab and CERN are using Advanced Network's Surveyor project and monitoring performance from one-way delay of UDP packets. More recently several HENP sites have become involved with NLANR's active measurement program (AMP). In addition SLAC and CERN are part of the RIPE test-traffic project and SLAC is home for a NIMI machine. The large End-to-end performance monitoring infrastructure allows the HENP networking community to chart long term trends and closely examine short term glitches across a wide range of networks and connections. The different methodologies provide opportunities to compare results based on different protocols and statistical samples. Understanding agreement and discrepancies between results provides particular insight into the nature of the network. This paper will highlight the practical side of monitoring by reviewing the special needs of High Energy Nuclear and Particle Physics experiments and provide an overview of the experience of measuring performance across a large number of interconnected networks throughout the world with various methodologies. In particular, results from each project

  10. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  11. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  12. SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

    NASA Astrophysics Data System (ADS)

    Nord, B.; Amara, A.; Réfrégier, A.; Gamper, La.; Gamper, Lu.; Hambrecht, B.; Chang, C.; Forero-Romero, J. E.; Serrano, S.; Cunha, C.; Coles, O.; Nicola, A.; Busha, M.; Bauer, A.; Saunders, W.; Jouvel, S.; Kirk, D.; Wechsler, R.

    2016-04-01

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherent data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). We discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.

  13. Forming End-to-End Oligomers of Gold Nanorods Using Porphyrins and Phthalocyanines.

    PubMed

    Stewart, Alexander F; Gagnon, Brandon P; Walker, Gilbert C

    2015-06-23

    The illumination of aggregated metal nanospecies can create strong local electric fields to brighten Raman scattering. This study describes a procedure to self-assemble gold nanorods (NRs) through the use of porphyrin and phthalocyanine agents to create reproducibly stable and robust NR aggregates in the form of end-to-end oligomers. Narrow inter-rod gaps result, creating electric field "hot spots" between the NRs. The organic linker molecules themselves are potential Raman-based optical labels, and the result is significant numbers of Raman-active species located in the hot spots. NR polymerization was quenched by phospholipid encapsulation, which allows for control of the polydispersity of the aggregate solution, to optimize the surface-enhanced Raman scattering (SERS) enhancement and permitted the aqueous solubility of the aggregates. The increased presence of Raman-active species in the hot spots and the optimizing of solution polydispersity resulted in the observation of scattering enhancements by encapsulated porphyrins/phthalocyanines of up to 3500-fold over molecular chromophores lacking the NR oligomer host.

  14. Development of an End-to-End Model for Free-Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Hemmati, H.

    2005-05-01

    Through funding by NASA's Exploration Systems Research and Technology (ESR&T) Program and the Advanced Space Technology Program (ASTP), a team, including JPL, Boeing, NASA-Glenn, and the Georgia Institute of Technology, will develop an end-to-end modeling tool for rapid architecture trade-offs of high-data-rate laser communications from lunar, martian, and outer planetary ranges. An objective of the modeling tool is to reduce the inefficient reliance on modeling of discrete subsystems or sequential development of multiple expensive and time-consuming hardware units, thereby saving significant cost and time. This dynamic, time-domain modeling tool will accept measured component and subsystem data inputs and generate "difficult to measure" characteristics required for the performance evaluation of different designs and architectural choices. The planned modeling tool will incorporate actual subsystem performance data to reduce the develop-build-evaluate-refine production cycle. The list of high-level objectives of the program includes (1) development of a bidirectional global link analysis backbone software encompassing all optical communication subsystem parameters; (2) development of a bidirectional global link simulation model encompassing all optical communication parameters; (3) interoperability of the link analysis tool with all relevant detailed subsystem design models; and (4) a validated model that is validated against known experimental data at the subsystem and system levels.

  15. End-to-end differential contactless conductivity sensor for microchip capillary electrophoresis.

    PubMed

    Fercher, Georg; Haller, Anna; Smetana, Walter; Vellekoop, Michael J

    2010-04-15

    In this contribution, a novel measurement approach for miniaturized capillary electrophoresis (CE) devices is presented: End-to-end differential capacitively coupled contactless conductivity measurement. This measurement technique is applied to a miniaturized CE device fabricated in low-temperature cofired ceramics (LTCC) multilayer technology. The working principle is based on the placement of two distinct detector areas near both ends of the fluid inlet and outlet of the separation channel. Both output signals are subtracted from each other, and the resulting differential signal is amplified and measured. This measurement approach has several advantages over established, single-end detectors: The high baseline level resulting from parasitic stray capacitance and buffer conductivity is reduced, leading to better signal-to-noise ratio and hence higher measurement sensitivity. Furthermore, temperature and, thus, baseline drift effects are diminished owing to the differentiating nature of the system. By comparing the peak widths measured with both detectors, valuable information about zone dispersion effects arising during the separation is obtained. Additionally, the novel measurement scheme allows the determination of dispersion effects that occur at the time of sample injection. Optical means of dispersion evaluation are ineffective because of the opaque LTCC substrate. Electrophoretic separation experiments of inorganic ions show sensitivity enhancements by about a factor of 30-60 compared to the single-end measurement scheme. PMID:20337422

  16. Advanced end-to-end fiber optic sensing systems for demanding environments

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  17. The stapled functional end-to-end anastomosis following colonic resection.

    PubMed

    Kyzer, S; Gordon, P H

    1992-09-01

    To determine the results of our experience with the use of staples for construction of anastomoses following colonic resection, a series of 223 anastomoses performed in 205 patients was reviewed. Indications for operation included malignancy, benign neoplasms, inflammatory bowel disease, and several miscellaneous entities. A functional end-to-end anastomosis using the standard GIA cartridge and the TA 55 instruments was performed. The operative mortality was 1.5% with none of the deaths related to the anastomosis. Intraoperative complications encountered included bleeding (21), leak (1), tissue fracture (1), instrument failure (4), and technical error (3). Early postoperative complications related or potentially related to the anastomosis included bleeding (5), pelvic abscess (1), fistula (1), peritonitis (2), ischemia of anastomosis (1). Late complications included five patients with small bowel obstruction, two of whom required operation. Anastomotic recurrences developed in 5.9% of patients. Our experience gained with stapling instruments has shown them to be a reliable method for performing anastomoses in the colon in a safe and expeditious manner. PMID:1402308

  18. Telemetry Ranging: Laboratory Validation Tests and End-to-End Performance

    NASA Astrophysics Data System (ADS)

    Hamkins, J.; Kinman, P.; Xie, H.; Vilnrotter, V.; Dolinar, S.; Adams, N.; Sanchez, E.; Millard, W.

    2016-08-01

    This article reports on a set of laboratory tests of telemetry ranging conducted at Development Test Facility 21 (DTF-21) in Monrovia, California. An uplink pseudorandom noise (PN) ranging signal was generated by DTF-21, acquired by the Frontier Radio designed and built at the Johns Hopkins University Applied Physics Laboratory, and downlink telemetry frames from the radio were recorded by an open-loop receiver. In four of the tests, the data indicate that telemetry ranging can resolve the two-way time delay to a standard deviation of 2.1-3.4 ns, corresponding to about 30 to 51 cm in (one-way) range accuracy, when 30 s averaging of timing estimates is used. Other tests performed worse because of unsatisfactory receiver sampling rate, quantizer resolution, dc bias, improper configuration, or other reasons. The article also presents an analysis of the expected end-to-end performance of the telemetry ranging system. In one case considered, the theoretically-predicted performance matches the test results, within 10 percent, which provides a reasonable validation that the expected performance was achieved by the test. The analysis also shows that in one typical ranging scenario, one-way range accuracy of 1 m can be achieved with telemetry ranging when the data rate is above 2 kbps.

  19. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites

    PubMed Central

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G.

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845

  20. A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization

    SciTech Connect

    Zhu, Michelle M.; Wu, Chase Q.

    2013-11-07

    Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization for this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.

  1. End-to-end performance modeling of passive remote sensing systems

    SciTech Connect

    Smith, B.W.; Borel, C.C.; Clodius, W.B.; Theiler, J.; Laubscher, B.; Weber, P.G.

    1996-07-01

    The ultimate goal of end-to-end system modeling is to simulate all known physical effects which determine the content of the data, before flying an instrument system. In remote sensing, one begins with a scene, viewed either statistically or dynamically, computes the radiance in each spectral band, renders the scene, transfers it through representative atmospheres to create the radiance field at an aperture, and integrates over sensor pixels. We have simulated a comprehensive sequence of realistic instrument hardware elements and the transfer of simulated data to an analysis system. This analysis package is the same as that intended for use of data collections from the real system. By comparing the analyzed image to the original scene, the net effect of nonideal system components can be understood. Iteration yields the optimum values of system parameters to achieve performance targets. We have used simulation to develop and test improved multispectral algorithms for (1) the robust retrieval of water surface temperature, water vapor column, and other quantities; (2) the preservation of radiometric accuracy during atmospheric correction and pixel registration on the ground; and (3) exploitation of on-board multispectral measurements to assess the atmosphere between ground and aperture.

  2. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  3. Automated End-to-End Workflow for Precise and Geo-accurate Reconstructions using Fiducial Markers

    NASA Astrophysics Data System (ADS)

    Rumpler, M.; Daftry, S.; Tscharf, A.; Prettenthaler, R.; Hoppe, C.; Mayer, G.; Bischof, H.

    2014-08-01

    Photogrammetric computer vision systems have been well established in many scientific and commercial fields during the last decades. Recent developments in image-based 3D reconstruction systems in conjunction with the availability of affordable high quality digital consumer grade cameras have resulted in an easy way of creating visually appealing 3D models. However, many of these methods require manual steps in the processing chain and for many photogrammetric applications such as mapping, recurrent topographic surveys or architectural and archaeological 3D documentations, high accuracy in a geo-coordinate system is required which often cannot be guaranteed. Hence, in this paper we present and advocate a fully automated end-to-end workflow for precise and geoaccurate 3D reconstructions using fiducial markers. We integrate an automatic camera calibration and georeferencing method into our image-based reconstruction pipeline based on binary-coded fiducial markers as artificial, individually identifiable landmarks in the scene. Additionally, we facilitate the use of these markers in conjunction with known ground control points (GCP) in the bundle adjustment, and use an online feedback method that allows assessment of the final reconstruction quality in terms of image overlap, ground sampling distance (GSD) and completeness, and thus provides flexibility to adopt the image acquisition strategy already during image recording. An extensive set of experiments is presented which demonstrate the accuracy benefits to obtain a highly accurate and geographically aligned reconstruction with an absolute point position uncertainty of about 1.5 times the ground sampling distance.

  4. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites.

    PubMed

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845

  5. An end-to-end analysis of drought from smallholder farms in southwest Jamaica

    NASA Astrophysics Data System (ADS)

    Curtis, W. R. S., III; Gamble, D. W.; Popke, J.

    2015-12-01

    Drought can be defined in many ways: meteorological, hydrological, agricultural, and socio-economic. Another way to approach drought is from a "perception" perspective, where individuals whose livelihood is highly dependent on precipitation take adaptive actions. In this study we use two-years of data collected from twelve smallholder farms in southern St. Elizabeth, Jamaica to undertake an end-to-end analysis of drought. At each farm, 6-hour temperature and soil moisture, and tipping-bucket rainfall were recorded from June 2013 to June 2015, and twice-monthly farmers indicated whether they were experiencing drought and if they irrigated (hand-watering, drip irrigation, or pipe and sprinkler). In many cases half of the farmers considered themselves in a drought, while the others not, even though the largest separation among farms was about 20 km. This study will use analysis of variance to test the following hypotheses: Drought perception is related to a) absolute amounts of precipitation at the time, b) other environmental cues at the time (soil moisture, temperature), or c) relative amounts of precipitation as compared to the same time last year. Irrigation actions and water use following the perception of drought will also be examined.

  6. Optimization and automation of an end-to-end high throughput microscale transient protein production process.

    PubMed

    Bos, Aaron B; Luan, Peng; Duque, Joseph N; Reilly, Dorothea; Harms, Peter D; Wong, Athena W

    2015-09-01

    High throughput protein production from transient transfection of mammalian cells is used in multiple facets of research and development studies. Commonly used formats for these high number expressions are 12-, 24- and 96-well plates at various volumes. However there are no published examples of a 96-deep well plate microscale (1,000 μL) suspension process for mammalian transient expression. For this reason, we aimed to determine the optimal operating conditions for a high producing, microscale HEK293 transient system. We evaluated the hydrodynamic flow and measured the oxygen transfer rate (OTR) and transient protein expression for 96-deep well plates of different well geometries filled at 600-1,000 μL working volumes and agitated at various speeds and orbital diameters. Ultimately, a round well-round bottom (RR) 96-deep well plate with a working volume of 1,000 µL agitated at 1,000 RPM and a 3 mm orbital diameter yielded the highest and most consistent total transient protein production. As plate cultures are subject to evaporation, water loss from different plate seals was measured to identify an optimal plate sealing method. Finally, to enable higher capacity protein production, both expression and purification processes were automated. Functionality of this end-to-end automation workflow was demonstrated with the generation of high levels of human IgG1 antibodies (≥360 µg/mL) with reproducible productivity, product quality and ≥78% purification recovery.

  7. Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks

    PubMed Central

    Suhonen, Jukka; Hämäläinen, Timo D.; Hännikäinen, Marko

    2009-01-01

    A wireless sensor network (WSN) is an ad-hoc technology that may even consist of thousands of nodes, which necessitates autonomic, self-organizing and multihop operations. A typical WSN node is battery powered, which makes the network lifetime the primary concern. The highest energy efficiency is achieved with low duty cycle operation, however, this alone is not enough. WSNs are deployed for different uses, each requiring acceptable Quality of Service (QoS). Due to the unique characteristics of WSNs, such as dynamic wireless multihop routing and resource constraints, the legacy QoS metrics are not feasible as such. We give a new definition to measure and implement QoS in low duty cycle WSNs, namely availability and reliability. Then, we analyze the effect of duty cycling for reaching the availability and reliability. The results are obtained by simulations with ZigBee and proprietary TUTWSN protocols. Based on the results, we also propose a data forwarding algorithm suitable for resource constrained WSNs that guarantees end-to-end reliability while adding a small overhead that is relative to the packet error rate (PER). The forwarding algorithm guarantees reliability up to 30% PER. PMID:22574002

  8. Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques

    NASA Technical Reports Server (NTRS)

    Calanche, Bruno J.

    1994-01-01

    The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.

  9. Semantic Complex Event Processing over End-to-End Data Flows

    SciTech Connect

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    2012-04-01

    Emerging Complex Event Processing (CEP) applications in cyber physical systems like SmartPower Grids present novel challenges for end-to-end analysis over events, flowing from heterogeneous information sources to persistent knowledge repositories. CEP for these applications must support two distinctive features - easy specification patterns over diverse information streams, and integrated pattern detection over realtime and historical events. Existing work on CEP has been limited to relational query patterns, and engines that match events arriving after the query has been registered. We propose SCEPter, a semantic complex event processing framework which uniformly processes queries over continuous and archived events. SCEPteris built around an existing CEP engine with innovative support for semantic event pattern specification and allows their seamless detection over past, present and future events. Specifically, we describe a unified semantic query model that can operate over data flowing through event streams to event repositories. Compile-time and runtime semantic patterns are distinguished and addressed separately for efficiency. Query rewriting is examined and analyzed in the context of temporal boundaries that exist between event streams and their repository to avoid duplicate or missing results. The design and prototype implementation of SCEPterare analyzed using latency and throughput metrics for scenarios from the Smart Grid domain.

  10. End-to-end small bowel anastomosis by temperature controlled CO2 laser soldering and an albumin stent: a feasibility study

    NASA Astrophysics Data System (ADS)

    Simhon, David; Kopelman, Doron; Hashmonai, Moshe; Vasserman, Irena; Dror, Michael; Vasilyev, Tamar; Halpern, Marissa; Kariv, Naam; Katzir, Abraham

    2004-07-01

    Introduction: A feasibility study of small intestinal end to end anastomosis was performed in a rabbit model using temperature controlled CO2 laser system and an albumin stent. Compared with standard suturing or clipping, this method does not introduce foreign materials to the repaired wound and therefore, may lead to better and faster wound healing of the anastomotic site. Methods: Transected rabbits small intestines were either laser soldered using 47% bovine serum albumin and intraluminal albumin stent or served as controls in which conventional continuous two-layer end to end anastomosis was performed manually. The integrity of the anastomosis was investigated at the 14th postoperative day. Results: Postoperative course in both treatments was uneventful. The sutured group presented signs of partial bowel obstruction. Macroscopically, no signs of intraluminal fluid leakage were observed in both treatments. Yet, laser soldered intestinal anastomoses demonstrated significant superiority with respect to adhesions and narrowing of the intestinal lumen. Serial histological examinations revealed better wound healing characteristics of the laser soldered anastomotic site. Conclusion: Laser soldering of intestinal end to end anastomosis provide a faster surgical procedure, compared to standard suture technique, with better wound healing results. It is expected that this technique may be adopted in the future for minimal invasive surgeries.

  11. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  12. SME2EM: Smart mobile end-to-end monitoring architecture for life-long diseases.

    PubMed

    Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani

    2016-01-01

    Monitoring life-long diseases requires continuous measurements and recording of physical vital signs. Most of these diseases are manifested through unexpected and non-uniform occurrences and behaviors. It is impractical to keep patients in hospitals, health-care institutions, or even at home for long periods of time. Monitoring solutions based on smartphones combined with mobile sensors and wireless communication technologies are a potential candidate to support complete mobility-freedom, not only for patients, but also for physicians. However, existing monitoring architectures based on smartphones and modern communication technologies are not suitable to address some challenging issues, such as intensive and big data, resource constraints, data integration, and context awareness in an integrated framework. This manuscript provides a novel mobile-based end-to-end architecture for live monitoring and visualization of life-long diseases. The proposed architecture provides smartness features to cope with continuous monitoring, data explosion, dynamic adaptation, unlimited mobility, and constrained devices resources. The integration of the architecture׳s components provides information about diseases׳ recurrences as soon as they occur to expedite taking necessary actions, and thus prevent severe consequences. Our architecture system is formally model-checked to automatically verify its correctness against designers׳ desirable properties at design time. Its components are fully implemented as Web services with respect to the SOA architecture to be easy to deploy and integrate, and supported by Cloud infrastructure and services to allow high scalability, availability of processes and data being stored and exchanged. The architecture׳s applicability is evaluated through concrete experimental scenarios on monitoring and visualizing states of epileptic diseases. The obtained theoretical and experimental results are very promising and efficiently satisfy the proposed

  13. End-to-End Models for Effects of System Noise on LIMS Analysis of Igneous Rocks

    SciTech Connect

    Clegg, Samuel M; Bender, Steven; Wiens, R. C.; Carmosino, Marco L; Speicher, Elly A; Dyar, M. D.

    2010-12-23

    The ChemCam instrument on the Mars Science Laboratory will be the first extraterrestial deployment of laser-induced breakdown spectroscopy (UBS) for remote geochemical analysis. LIBS instruments are also being proposed for future NASA missions. In quantitative LIBS applications using multivariate analysis techniques, it is essential to understand the effects of key instrument parameters and their variability on the elemental predictions. Baseline experiments were run on a laboratory instrument in conditions reproducing ChemCam performance on Mars. These experiments employed Nd:YAG laser producing 17 mJ/pulse on target and an with a 200 {micro}m FWHM spot size on the surface of a sample. The emission is collected by a telescope, imaged on a fiber optic and then interfaced to a demultiplexer capable of >40% transmission into each spectrometer. We report here on an integrated end-to-end system performance model that simulates the effects of output signal degradation that might result from the input signal chain and the impact on multivariate model predictions. There are two approaches to modifying signal to noise (SNR): degrade the signal and/or increase the noise. Ishibashi used a much smaller data set to show that the addition of noise had significant impact while degradation of spectral resolution had much less impact on accuracy and precision. Here, we specifically focus on aspects of remote LIBS instrument performance as they relate to various types of signal degradation. To assess the sensitivity of LIBS analysis to signal-to-noise ratio (SNR) and spectral resolution, the signal in each spectrum from a suite of 50 laboratory spectra of igneous rocks was variably degraded by increasing the peak widths (simulating misalignment) and decreasing the spectral amplitude (simulating decreases in SNR).

  14. In vivo laser assisted end-to-end anastomosis with ICG-infused chitosan patches

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Matteini, Paolo; Esposito, Giuseppe; Scerrati, Alba; Albanese, Alessio; Puca, Alfredo; Maira, Giulio; Rossi, Giacomo; Pini, Roberto

    2011-07-01

    Laser assisted vascular repair is a new optimized technique based on the use of ICG-infused chitosan patch to close a vessel wound, with or even without few supporting single stitches. We present an in vivo experimental study on an innovative end-to-end laser assisted vascular anastomotic (LAVA) technique, performed with the application of ICGinfused chitosan patches. The photostability and the mechanical properties of ICG-infused chitosan films were preliminary measured. The in vivo study was performed in 10 New Zealand rabbits. After anesthesia, a 3-cm segment of the right common carotid artery was exposed, thus clamped proximally and distally. The artery was then interrupted by means of a full thickness cut. Three single microsutures were used to approximate the two vessel edges. The ICG-infused chitosan patch was rolled all over the anastomotic site and welded by the use of a diode laser emitting at 810 nm and equipped with a 300 μm diameter optical fiber. Welding was obtained by delivering single laser spots to induce local patch/tissue adhesion. The result was an immediate closure of the anastomosis, with no bleeding at clamps release. Thus animals underwent different follow-up periods, in order to evaluate the welded vessels over time. At follow-up examinations, all the anastomoses were patent and no bleeding signs were documented. Samples of welded vessels underwent histological examinations. Results showed that this technique offer several advantages over conventional suturing methods: simplification of the surgical procedure, shortening of the operative time, better re-endothelization and optimal vascular healing process.

  15. SME2EM: Smart mobile end-to-end monitoring architecture for life-long diseases.

    PubMed

    Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani

    2016-01-01

    Monitoring life-long diseases requires continuous measurements and recording of physical vital signs. Most of these diseases are manifested through unexpected and non-uniform occurrences and behaviors. It is impractical to keep patients in hospitals, health-care institutions, or even at home for long periods of time. Monitoring solutions based on smartphones combined with mobile sensors and wireless communication technologies are a potential candidate to support complete mobility-freedom, not only for patients, but also for physicians. However, existing monitoring architectures based on smartphones and modern communication technologies are not suitable to address some challenging issues, such as intensive and big data, resource constraints, data integration, and context awareness in an integrated framework. This manuscript provides a novel mobile-based end-to-end architecture for live monitoring and visualization of life-long diseases. The proposed architecture provides smartness features to cope with continuous monitoring, data explosion, dynamic adaptation, unlimited mobility, and constrained devices resources. The integration of the architecture׳s components provides information about diseases׳ recurrences as soon as they occur to expedite taking necessary actions, and thus prevent severe consequences. Our architecture system is formally model-checked to automatically verify its correctness against designers׳ desirable properties at design time. Its components are fully implemented as Web services with respect to the SOA architecture to be easy to deploy and integrate, and supported by Cloud infrastructure and services to allow high scalability, availability of processes and data being stored and exchanged. The architecture׳s applicability is evaluated through concrete experimental scenarios on monitoring and visualizing states of epileptic diseases. The obtained theoretical and experimental results are very promising and efficiently satisfy the proposed

  16. A NASA Climate Model Data Services (CDS) End-to-End System to Support Reanalysis Intercomparison

    NASA Astrophysics Data System (ADS)

    Carriere, L.; Potter, G. L.; McInerney, M.; Nadeau, D.; Shen, Y.; Duffy, D.; Schnase, J. L.; Maxwell, T. P.; Huffer, E.

    2014-12-01

    The NASA Climate Model Data Service (CDS) and the NASA Center for Climate Simulation (NCCS) are collaborating to provide an end-to-end system for the comparative study of the major Reanalysis projects, currently, ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, and JMA JRA25. Components of the system include the full spectrum of Climate Model Data Services; Data, Compute Services, Data Services, Analytic Services and Knowledge Services. The Data includes standard Reanalysis model output, and will be expanded to include gridded observations, and gridded Innovations (O-A and O-F). The NCCS High Performance Science Cloud provides the compute environment (storage, servers, and network). Data Services are provided through an Earth System Grid Federation (ESGF) data node complete with Live Access Server (LAS), Web Map Service (WMS) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) for visualization, as well as a collaborative interface through the Earth System CoG. Analytic Services include UV-CDAT for analysis and MERRA/AS, accessed via the CDS API, for computation services, both part of the CDS Climate Analytics as a Service (CAaaS). Knowledge Services include access to an Ontology browser, ODISEES, for metadata search and data retrieval. The result is a system that provides the ability for both reanalysis scientists and those scientists in need of reanalysis output to identify the data of interest, compare, compute, visualize, and research without the need for transferring large volumes of data, performing time consuming format conversions, and writing code for frequently run computations and visualizations.

  17. SU-E-T-150: End to End Tests On the First Clinical EDGETM

    SciTech Connect

    Scheib, S; Schmelzer, P; Vieira, S; Greco, C

    2014-06-01

    Purpose: To quantify the sub millimeter overall accuracy of EDGETM, the dedicated linac based SRS/SABR treatment platform from Varian, using a novel End-to-End (E2E) test phantom. Methods: The new E2E test phantom developed by Varian consists of a cube with an outer dimension of 15x15x15 cm3. The phantom is equipped with an exchangable inner cube (7×7×7 cm3) to hold radiochromic films or a tungsten ball (diameter = 5 mm) for Winston-Lutz tests. 16 ceramic balls (diameter = 5 mm) are embedded in the outer cube. Three embedded Calypso transponders allow for Calypso based monitoring. The outer surface of the phantom is tracked using the Optical Surface Monitoring System (OSMS). The phantom is positioned using kV, MV and CBCT images. A simCT of the phantom was acquired and SRS/SABR plans were treated using the new phantom on the first clinical installed EDGETM. As a first step a series of EPID based Winston-Lutz tests have been performed. As a second step the calculated dose distribution applied to the phantom was verified with radiochromic films in orthogonal planes. The measured dose distribution is compared with the calculated (Eclipse) one based on the known isocenter on both dose distributions. The geometrical shift needed to match both dose distributions is the overall accuracy and is determined using dose profiles, isodose lines or gamma pass rates (3%, 1 mm). Results: Winston-Lutz tests using the central tungsten BB demonstrated a targeting accuracy of 0.44±0.18mm for jaw (2cm × 2cm) defined 0.39±0.19mm for MLC (2cm × 2cm) defined and 0.37±0.15mm for cone (12.5 mm) defined fields. A treated patient plan (spinal metastases lesion with integrated boost) showed a dosimetric dose localization accuracy of 0.6mm. Conclusion: Geometric and dosimetric E2E tests on EDGETM, show sub-millimeter E2E targeting and dose localisation accuracy.

  18. An End-to-End System to Enable Quick, Easy and Inexpensive Deployment of Hydrometeorological Stations

    NASA Astrophysics Data System (ADS)

    Celicourt, P.; Piasecki, M.

    2014-12-01

    The high cost of hydro-meteorological data acquisition, communication and publication systems along with limited qualified human resources is considered as the main reason why hydro-meteorological data collection remains a challenge especially in developing countries. Despite significant advances in sensor network technologies which gave birth to open hardware and software, low-cost (less than $50) and low-power (in the order of a few miliWatts) sensor platforms in the last two decades, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome, and thus expensive task. These factors give rise for the need to develop a affordable, simple to deploy, scalable and self-organizing end-to-end (from sensor to publication) system suitable for deployment in such countries. The design of the envisioned system will consist of a few Sensed-And-Programmed Arduino-based sensor nodes with low-cost sensors measuring parameters relevant to hydrological processes and a Raspberry Pi micro-computer hosting the in-the-field back-end data management. This latter comprises the Python/Django model of the CUAHSI Observations Data Model (ODM) namely DjangODM backed by a PostgreSQL Database Server. We are also developing a Python-based data processing script which will be paired with the data autoloading capability of Django to populate the DjangODM database with the incoming data. To publish the data, the WOFpy (WaterOneFlow Web Services in Python) developed by the Texas Water Development Board for 'Water Data for Texas' which can produce WaterML web services from a variety of back-end database installations such as SQLite, MySQL, and PostgreSQL will be used. A step further would be the development of an appealing online visualization tool using Python statistics and analytics tools (Scipy, Numpy, Pandas) showing the spatial distribution of variables across an entire watershed as a time variant layer on top of a basemap.

  19. IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION

    SciTech Connect

    Nissanke, Samaya; Georgieva, Alexandra; Kasliwal, Mansi

    2013-04-20

    Combined gravitational wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. This decade, ground-based GW interferometers promise to routinely detect compact binary mergers. Unfortunately, networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts of GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: (1) GW sky localization, distance measures, and volume errors with two compact binary populations and four different GW networks; (2) subsequent EM detectability by a slew of multiwavelength telescopes; and (3) final identification of the merger counterpart amidst a sea of possible astrophysical false positives. First, we find that double neutron star binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks, respectively. Neutron-star-black-hole binary mergers can be detected a factor of 1.5 further out; their median to maximum sky localizations are 50-170 deg{sup 2} (or 6-65 deg{sup 2}) for a three (or five) detector GW network. Second, by optimizing depth, cadence, and sky area, we quantify relative fractions of optical counterparts that are detectable by a suite of different aperture-size telescopes across the globe. Third, we present five case studies to illustrate the diversity of scenarios in secure identification of the EM counterpart. We discuss the case of a typical binary, neither beamed nor nearby, and the challenges associated with identifying an EM counterpart at both low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives. We conclude with strategies

  20. Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques

    NASA Astrophysics Data System (ADS)

    Iess, Luciano; Di Benedetto, Mauro; James, Nick; Mercolino, Mattia; Simone, Lorenzo; Tortora, Paolo

    2014-02-01

    Navigation of deep-space probes is accomplished through a variety of different radio observables, namely Doppler, ranging and Delta-Differential One-Way Ranging (Delta-DOR). The particular mix of observations used for navigation mainly depends on the available on-board radio system, the mission phase and orbit determination requirements. The accuracy of current ESA and NASA tracking systems is at level of 0.1 mm/s at 60 s integration time for Doppler, 1-5 m for ranging and 6-15 nrad for Delta-DOR measurements in a wide range of operational conditions. The ASTRA study, funded under ESA's General Studies Programme (GSP), addresses the ways to improve the end-to-end accuracy of Doppler, ranging and Delta-DOR systems by roughly a factor of 10. The target accuracies were set to 0.01 mm/s at 60 s integration time for Doppler, 20 cm for ranging and 1 nrad for Delta-DOR. The companies and universities that took part in the study were the University of Rome Sapienza, ALMASpace, BAE Systems and Thales Alenia Space Italy. The analysis of an extensive data set of radio-metric observables and dedicated tests of the ground station allowed consolidating the error budget for each measurement technique. The radio-metric data set comprises X/X, X/Ka and Ka/Ka range and Doppler observables from the Cassini and Rosetta missions. It includes also measurements from the Advanced Media Calibration System (AMCS) developed by JPL for the radio science experiments of the Cassini mission. The error budget for the three radio-metric observables was consolidated by comparing the statistical properties of the data set with the expected error models. The analysis confirmed the contribution from some error sources, but revealed also some discrepancies and ultimately led to improved error models. The error budget reassessment provides adequate information for building guidelines and strategies to effectively improve the navigation accuracies of future deep space missions. We report both on updated

  1. Refinery Outages

    EIA Publications

    2015-01-01

    Semiannual reporting on refinery outages and their potential implications for available refinery capacity, petroleum product markets, and supply of gasoline, diesel fuel, and heating oil. Dissemination of such analyses can be beneficial to market participants who may otherwise be unable to access such information.

  2. Achieving End-to-End QoS in the Next Generation Internet: Integrated Services Over Differentiated Service Networks

    NASA Technical Reports Server (NTRS)

    Bai, Haowei; Atiquzzaman, Mohammed; Ivancic, William

    2001-01-01

    Currently there are two approaches to provide Quality of Service (QoS) in the next generation Internet: An early one is the Integrated Services (IntServ) with the goal of allowing end-to-end QoS to be provided to applications; the other one is the Differentiated Services (DiffServ) architecture providing QoS in the backbone. In this context, a DiffServ network may be viewed as a network element in the total end-to-end path. The objective of this paper is to investigate the possibility of providing end-to-end QoS when IntServ runs over DiffServ backbone in the next generation Internet. Our results show that the QoS requirements of IntServ applications can be successfully achieved when IntServ traffic is mapped to the DiffServ domain in next generation Internet.

  3. Achieving End-to-End QoS in the Next Generation Internet: Integrated Services over Differentiated Service Networks

    NASA Technical Reports Server (NTRS)

    Bai, Haowei; Atiquzzaman, Mohammed; Ivancic, William

    2001-01-01

    Currently there are two approaches to provide Quality of Service (QoS) in the next generation Internet: An early one is the Integrated Services (IntServ) with the goal of allowing end-to-end QoS to be provided to applications; the other one is the Differentiated Services (DiffServ) architecture providing QoS in the backbone. In this context, a DiffServ network may be viewed as a network element in the total end-to-end path. The objective of this paper is to investigate the possibility of providing end-to-end QoS when IntServ runs over DiffServ backbone in the next generation Internet. Our results show that the QoS requirements of IntServ applications can be successfully achieved when IntServ traffic is mapped to the DiffServ domain in next generation Internet.

  4. End-to-End Self-Assembly of Semiconductor Nanorods in Water by Using an Amphiphilic Surface Design.

    PubMed

    Taniguchi, Yuki; Takishita, Takao; Kawai, Tsuyoshi; Nakashima, Takuya

    2016-02-01

    One-dimensional (1D) self-assemblies of nanocrystals are of interest because of their vectorial and polymer-like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end-to-end self-assembly. Short-chained water-soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site-specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self-assembled to form elongated wires by end-to-end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end-to-end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure. PMID:26836341

  5. Common Patterns with End-to-end Interoperability for Data Access

    NASA Astrophysics Data System (ADS)

    Gallagher, J.; Potter, N.; Jones, M. B.

    2010-12-01

    At first glance, using common storage formats and open standards should be enough to ensure interoperability between data servers and client applications, but that is often not the case. In the REAP (Realtime Environment for Analytical Processing; NSF #0619060) project we integrated access to data from OPeNDAP servers into the Kepler workflow system and found that, as in previous cases, we spent the bulk of our effort addressing the twin issues of data model compatibility and integration strategies. Implementing seamless data access between a remote data source and a client application (data sink) can be broken down into two kinds of issues. First, the solution must address any differences in the data models used by the data source (OPeNDAP) and the data sink (the Kepler workflow system). If these models match completely, there is little work to be done. However, that is rarely the case. To map OPeNDAP's data model to Kepler's, we used two techniques (ignoring trivial conversions): On-the-fly type mapping and out-of-band communication. Type conversion takes place both for data and metadata because Kepler requires a priori knowledge of some aspects (e.g., syntactic metadata) of the data to build a workflow. In addition, OPeNDAP's constraint expression syntax was used to send out-of-band information to restrict the data requested from the server, facilitating changes in the returned data's type. This technique provides a way for users to exert fine-grained control over the data request, a potentially useful technique, at the cost of requiring that users understand a little about the data source's processing capabilities. The second set of issues for end-to-end data access are integration strategies. OPeNDAP provides several different tools for bringing data into an application: C++, C and Java libraries that provide functions for newly written software; The netCDF library which enables existing applications to read from servers using an older interface; and simple

  6. Unidata's Vision for Providing Comprehensive and End-to-end Data Services

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2009-05-01

    This paper presents Unidata's vision for providing comprehensive, well-integrated, and end-to-end data services for the geosciences. These include an array of functions for collecting, finding, and accessing data; data management tools for generating, cataloging, and exchanging metadata; and submitting or publishing, sharing, analyzing, visualizing, and integrating data. When this vision is realized, users no matter where they are or how they are connected to the Internetwill be able to find and access a plethora of geosciences data and use Unidata-provided tools and services both productively and creatively in their research and education. What that vision means for the Unidata community is elucidated by drawing a simple analogy. Most of users are familiar with Amazon and eBay e-commerce sites and content sharing sites like YouTube and Flickr. On the eBay marketplace, people can sell practically anything at any time and buyers can share their experience of purchasing a product or the reputation of a seller. Likewise, at Amazon, thousands of merchants sell their goods and millions of customers not only buy those goods, but provide a review or opinion of the products they buy and share their experiences as purchasers. Similarly, YouTube and Flickr are sites tailored to video- and photo-sharing, respectively, where users can upload their own content and share it with millions of other users, including family and friends. What all these sites, together with social-networking applications like MySpace and Facebook, have enabled is a sense of a virtual community in which users can search and browse products or content, comment and rate those products from anywhere, at any time, and via any Internet- enabled device like an iPhone, laptop, or a desktop computer. In essence, these enterprises have fundamentally altered people's buying modes and behavior toward purchases. Unidata believes that similar approaches, appropriately tailored to meet the needs of the scientific

  7. A vision for end-to-end data services to foster international partnerships through data sharing

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.; Yoksas, T.

    2009-04-01

    Increasingly, the conduct of science requires scientific partnerships and sharing of knowledge, information, and other assets. This is particularly true in our field where the highly-coupled Earth system and its many linkages have heightened the importance of collaborations across geographic, disciplinary, and organizational boundaries. The climate system, for example, is far too complex a puzzle to be unraveled by individual investigators or nations. As articulated in the NSF Strategic Plan: FY 2006-2011, "…discovery increasingly requires expertise of individuals from different disciplines, with diverse perspectives, and often from different nations, working together to accommodate the extraordinary complexity of today's science and engineering challenges." The Nobel Prize winning IPCC assessments are a prime example of such an effort. Earth science education is also uniquely suited to drawing connections between the dynamic Earth system and societal issues. Events like the 2004 Indian Ocean tsunami and Hurricane Katrina provide ample evidence of this relevance, as they underscore the importance of timely and interdisciplinary integration and synthesis of data. Our success in addressing such complex problems and advancing geosciences depends on the availability of a state-of-the-art and robust cyberinfrastructure, transparent and timely access to high-quality data from diverse sources, and requisite tools to integrate and use the data effectively, toward creating new knowledge. To that end, Unidata's vision calls for providing comprehensive, well-integrated, and end-to-end data services for the geosciences. These include an array of functions for collecting, finding, and accessing data; data management tools for generating, cataloging, and exchanging metadata; and submitting or publishing, sharing, analyzing, visualizing, and integrating data. When this vision is realized, users — no matter where they are, how they are connected to the Internet, or what

  8. SensorKit: An End-to-End Solution for Environmental Sensor Networking

    NASA Astrophysics Data System (ADS)

    Silva, F.; Graham, E.; Deschon, A.; Lam, Y.; Goldman, J.; Wroclawski, J.; Kaiser, W.; Benzel, T.

    2008-12-01

    Modern day sensor network technology has shown great promise to transform environmental data collection. However, despite the promise, these systems have remained the purview of the engineers and computer scientists who design them rather than a useful tool for the environmental scientists who need them. SensorKit is conceived of as a way to make wireless sensor networks accessible to The People: it is an advanced, powerful tool for sensor data collection that does not require advanced technological know-how. We are aiming to make wireless sensor networks for environmental science as simple as setting up a standard home computer network by providing simple, tested configurations of commercially-available hardware, free and easy-to-use software, and step-by-step tutorials. We designed and built SensorKit using a simplicity-through-sophistication approach, supplying users a powerful sensor to database end-to-end system with a simple and intuitive user interface. Our objective in building SensorKit was to make the prospect of using environmental sensor networks as simple as possible. We built SensorKit from off the shelf hardware components, using the Compact RIO platform from National Instruments for data acquisition due to its modular architecture and flexibility to support a large number of sensor types. In SensorKit, we support various types of analog, digital and networked sensors. Our modular software architecture allows us to abstract sensor details and provide users a common way to acquire data and to command different types of sensors. SensorKit is built on top of the Sensor Processing and Acquisition Network (SPAN), a modular framework for acquiring data in the field, moving it reliably to the scientist institution, and storing it in an easily-accessible database. SPAN allows real-time access to the data in the field by providing various options for long haul communication, such as cellular and satellite links. Our system also features reliable data storage

  9. Ocean Acidification Scientific Data Stewardship: An approach for end-to-end data management and integration

    NASA Astrophysics Data System (ADS)

    Arzayus, K. M.; Garcia, H. E.; Jiang, L.; Michael, P.

    2012-12-01

    As the designated Federal permanent oceanographic data center in the United States, NOAA's National Oceanographic Data Center (NODC) has been providing scientific stewardship for national and international marine environmental and ecosystem data for over 50 years. NODC is supporting NOAA's Ocean Acidification Program and the science community by providing end-to-end scientific data management of ocean acidification (OA) data, dedicated online data discovery, and user-friendly access to a diverse range of historical and modern OA and other chemical, physical, and biological oceanographic data. This effort is being catalyzed by the NOAA Ocean Acidification Program, but the intended reach is for the broader scientific ocean acidification community. The first three years of the project will be focused on infrastructure building. A complete ocean acidification data content standard is being developed to ensure that a full spectrum of ocean acidification data and metadata can be stored and utilized for optimal data discovery and access in usable data formats. We plan to develop a data access interface capable of allowing users to constrain their search based on real-time and delayed mode measured variables, scientific data quality, their observation types, the temporal coverage, methods, instruments, standards, collecting institutions, and the spatial coverage. In addition, NODC seeks to utilize the existing suite of international standards (including ISO 19115-2 and CF-compliant netCDF) to help our data producers use those standards for their data, and help our data consumers make use of the well-standardized metadata-rich data sets. These tools will be available through our NODC Ocean Acidification Scientific Data Stewardship (OADS) web page at http://www.nodc.noaa.gov/oceanacidification. NODC also has a goal to provide each archived dataset with a unique ID, to ensure a means of providing credit to the data provider. Working with partner institutions, such as the

  10. On the importance of risk knowledge for an end-to-end tsunami early warning system

    NASA Astrophysics Data System (ADS)

    Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal

    2010-05-01

    context has been worked out. The generated results contribute significantly in the fields of (1) warning decision and warning levels, (2) warning dissemination and warning message content, (3) early warning chain planning, (4) increasing response capabilities and protective systems, (5) emergency relief and (6) enhancing communities' awareness and preparedness towards tsunami threats. Additionally examples will be given on the potentials of an operational use of risk information in early warning systems as first experiences exist for the tsunami early warning center in Jakarta, Indonesia. Beside this the importance of linking national level early warning information with tsunami risk information available at the local level (e.g. linking warning message information on expected intensity with respective tsunami hazard zone maps at community level for effective evacuation) will be demonstrated through experiences gained in three pilot areas in Indonesia. The presentation seeks to provide new insights on benefits using risk information in early warning and will provide further evidence that practical use of risk information is an important and indispensable component of end-to-end early warning.

  11. End-to-end delay reduction in narrow bandwidth real-time multimedia tele-education applications

    NASA Astrophysics Data System (ADS)

    Algra, Theo

    1993-02-01

    The transmission of multimedia page sequences in real time tele-education presentations via narrowband links results in unacceptable end to end delays. A time shifting method referred to as pretransfer which transfers presentation data in background during the session, without user involvement is proposed. Point to point and multipoint protocols are discussed. For multicast situations an effective page scheduling method is developed.

  12. Integration proposal through standard-based design of an end-to-end platform for p-Health environments.

    PubMed

    Martíínez, I; Trigo, J D; Martínez-Espronceda, M; Escayola, J; Muñoz, P; Serrano, L; García, J

    2009-01-01

    Interoperability among medical devices and compute engines in the personal environment of the patient, and with healthcare information systems in the remote monitoring and management process is a key need that requires developments supported on standard-based design. Even though there have been some international initiatives to combine different standards, the vision of an entire end-to-end standard-based system is the next challenge. This paper presents the implementation guidelines of a ubiquitous platform for Personal Health (p-Health). It is standard-based using the two main medical norms in this context: ISO/IEEE11073 in the patient environment for medical device interoperability, and EN13606 to allow the interoperable communication of the Electronic Healthcare Record of the patient. Furthermore, the proposal of a new protocol for End-to-End Standard Harmonization (E2ESHP) is presented in order to make possible the end-to-end standard integration. The platform has been designed to comply with the last ISO/IEEE11073 and EN13606 available versions, and tested in a laboratory environment as a proof-of-concept to illustrate its feasibility as an end-to-end standard-based solution.

  13. A vision for end-to-end data services to foster international partnerships through data sharing

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.; Yoksas, T.

    2009-04-01

    Increasingly, the conduct of science requires scientific partnerships and sharing of knowledge, information, and other assets. This is particularly true in our field where the highly-coupled Earth system and its many linkages have heightened the importance of collaborations across geographic, disciplinary, and organizational boundaries. The climate system, for example, is far too complex a puzzle to be unraveled by individual investigators or nations. As articulated in the NSF Strategic Plan: FY 2006-2011, "…discovery increasingly requires expertise of individuals from different disciplines, with diverse perspectives, and often from different nations, working together to accommodate the extraordinary complexity of today's science and engineering challenges." The Nobel Prize winning IPCC assessments are a prime example of such an effort. Earth science education is also uniquely suited to drawing connections between the dynamic Earth system and societal issues. Events like the 2004 Indian Ocean tsunami and Hurricane Katrina provide ample evidence of this relevance, as they underscore the importance of timely and interdisciplinary integration and synthesis of data. Our success in addressing such complex problems and advancing geosciences depends on the availability of a state-of-the-art and robust cyberinfrastructure, transparent and timely access to high-quality data from diverse sources, and requisite tools to integrate and use the data effectively, toward creating new knowledge. To that end, Unidata's vision calls for providing comprehensive, well-integrated, and end-to-end data services for the geosciences. These include an array of functions for collecting, finding, and accessing data; data management tools for generating, cataloging, and exchanging metadata; and submitting or publishing, sharing, analyzing, visualizing, and integrating data. When this vision is realized, users — no matter where they are, how they are connected to the Internet, or what

  14. End-to-End Network QoS via Scheduling of Flexible Resource Reservation Requests

    SciTech Connect

    Sharma, S.; Katramatos, D.; Yu, D.

    2011-11-14

    Modern data-intensive applications move vast amounts of data between multiple locations around the world. To enable predictable and reliable data transfer, next generation networks allow such applications to reserve network resources for exclusive use. In this paper, we solve an important problem (called SMR3) to accommodate multiple and concurrent network reservation requests between a pair of end-sites. Given the varying availability of bandwidth within the network, our goal is to accommodate as many reservation requests as possible while minimizing the total time needed to complete the data transfers. We first prove that SMR3 is an NP-hard problem. Then we solve it by developing a polynomial-time heuristic, called RRA. The RRA algorithm hinges on an efficient mechanism to accommodate large number of requests by minimizing the bandwidth wastage. Finally, via numerical results, we show that RRA constructs schedules that accommodate significantly larger number of requests compared to other, seemingly efficient, heuristics.

  15. Wiener restoration of sampled image data - End-to-end analysis

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.; Mccormick, Judith A.; Park, Stephen K.

    1988-01-01

    The Wiener filter is formulated as a function of the basic image-gathering and image-reconstruction constraints, thereby providing a method for minimizing the mean-squared error between the (continuous-input) radiance field and its restored (continuous-output) representation. This formulation of the Wiener filter is further extended to the Wiener-characteristic filter, which provides a method for explicitly specifying the desired representation. Two specific examples of Wiener filters are presented.

  16. POST2 End-To-End Descent and Landing Simulation for the Autonomous Landing and Hazard Avoidance Technology Project

    NASA Technical Reports Server (NTRS)

    Fisher, Jody l.; Striepe, Scott A.

    2007-01-01

    The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.

  17. End-to-End Demonstrator of the Safe Affordable Fission Engine (SAFE) 30: Power Conversion and Ion Engine Operation

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)

    2001-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  18. End-to-end delay reduction in narrow bandwidth real-time multimedia tele-education applications

    NASA Astrophysics Data System (ADS)

    Algra, Theo

    1993-10-01

    The transmission of multimedia page sequences in real-time tele-education presentations via narrowband links results in unacceptable end-to-end delays. This paper proposes a time- shifting method referred to as pretransfer which transfers presentation data in background during the session, without user involvement. Point-to-point and multipoint protocols are discussed. For multicast situations an effective page-scheduling method is developed.

  19. End-to-end wireless TCP with noncongestion packet loss detection and handling

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Joon; Liu, Fang; Kuo, C.-C. Jay

    2003-07-01

    Traditional TCP performance degrades over lossy links, as the TCP sender assumes that packet loss is caused by congestion in the network path and thus reduces the sending rate by cutting the congestion window multiplicatively, and a mechanism to overcome this limitation is investigated in this research. Our scheme identifies the network path condition to differentiate whether congestion happens or not, and responds differently. The basic idea of separating congestion and non-congestion caused losses is to compare the estimated current available bandwidth and the average available bandwidth. To minimize the effect of temporary fluctuation of measurements, we estimate the available bandwidth with a higher weight on stable measurements and a lower weight on unstable fluctuations. In our scheme, packet loss due to congestion invokes the TCP Newreno procedure. In cases of random loss that is not related to congestion, the multiplicative decrease of the sending rate is avoided to achieve higher throughput. In addition, each duplicate acknowledgement after a fast retransmission will increase the congestion window to fully recover its sending rate. Extensive simulation results show that our differentiation algorithm achieves high accuracy. Accordingly, the TCP connection over lossy link with the proposed scheme provides higher throughput than TCP Newreno.

  20. An End-to-End Architecture for Science Goal Driven Observing

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Koratkar, Anuradha; Memarsadeghi, Nargess; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    New observatories will have greater on-board storage capacity and on-board processing capabilities. The new bottleneck will be download capacity. The cost of downlink time and limitations of bandwidth will end the era where all exposure data is downloaded and all data processing is performed on the ground. In addition, observing campaigns involving inherently variable targets will need scheduling flexibility to focus observing time and data download on exposures that are scientifically interesting. The ability to quickly recognize and react to such events by re-prioritizing the observing schedule will be an essential characteristic for maximizing scientific returns. It will also be a step towards increasing spacecraft autonomy, a major goal of NASA's strategic plan. The science goal monitoring (SGM) system is a proof-of-concept effort to address these challenges. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations. SGM is initially aimed towards time-tagged observing modes used frequently in spectroscopic studies of varying targets. In particular, the SGM is collaborating with the proposed MIDEX-class mission Kronos team. The variable targets that Kronos seeks to study make an adaptive system such as SGM particularly valuable for achieving mission goals. However, the architecture and interfaces will also be designed for easy adaptability to other observing platforms, including ground-based systems and to work with different scheduling and pipeline processing systems. This talk will focus on our strategy for developing SGM and the technical challenges that we have encountered. We will discuss the SGM architecture as it applies to the Kronos mission and explain how it is scalable to other missions.

  1. Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite.

    PubMed

    Arnon, Shlomi

    2009-07-01

    Various technologies for the implementation of a WiMAX (IEEE802.16) base station on board a high-altitude platform (HAP) are currently being researched. The network configuration under consideration includes a satellite, several HAPs, and subscribers on the ground. The WiMAX base station is positioned on the satellite and connects with the HAP via an analog RF over-laser communication (LC) link. The HAPs house a transparent transponder that converts the optic signal to a WiMAX RF signal and the reverse. The LC system consists of a laser transmitter and an optical receiver that need to be strictly aligned to achieve a line-of-sight link. However, mechanical vibration and electronic noise in the control system challenge the transmitter-receiver alignment and cause pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. In this paper, we derive the value of laser transmitter gain that can minimize the outage probability of the WiMAX link. The results indicate that the optimum value of the laser transmitter gain is not a function of the pointing error statistics. PMID:19568289

  2. Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite.

    PubMed

    Arnon, Shlomi

    2009-07-01

    Various technologies for the implementation of a WiMAX (IEEE802.16) base station on board a high-altitude platform (HAP) are currently being researched. The network configuration under consideration includes a satellite, several HAPs, and subscribers on the ground. The WiMAX base station is positioned on the satellite and connects with the HAP via an analog RF over-laser communication (LC) link. The HAPs house a transparent transponder that converts the optic signal to a WiMAX RF signal and the reverse. The LC system consists of a laser transmitter and an optical receiver that need to be strictly aligned to achieve a line-of-sight link. However, mechanical vibration and electronic noise in the control system challenge the transmitter-receiver alignment and cause pointing errors. The outcome of pointing errors is fading of the received signal, which leads to impaired link performance. In this paper, we derive the value of laser transmitter gain that can minimize the outage probability of the WiMAX link. The results indicate that the optimum value of the laser transmitter gain is not a function of the pointing error statistics.

  3. Coupling low and high trophic levels models: Towards a pathways-orientated approach for end-to-end models

    NASA Astrophysics Data System (ADS)

    Shin, Yunne-Jai; Travers, Morgane; Maury, Olivier

    2010-01-01

    Existing models of marine ecosystems address specific issues related to the bottom-up forcing of production or to the top-down effects of fishing on a limited range of the trophic spectrum. Very few existing models explicitly incorporate the dynamics from one end of the ecosystem to the other and thus allowing the exploration of interplay between exploitation and climate effects. The shift to an ecosystem approach to fisheries and concerns about the ecological effects of climate change require the assemblage of knowledge assembled from the respective marine disciplines with the view to build end-to-end models of marine ecosystems. Here, with a focus on plankton and fish models, we present some issues and recommendations for the integration of models between trophic levels (vertical integration) and within functional groups (horizontal integration within trophic levels). At present, vertical coupling of plankton and fish models is mainly realized through predation processes, generally represented as a functional response. In the absence of empirical evidence and quantification, the choice of the functional response term is often made by default, and is reduced to a parameterization problem. A strategy is proposed to overcome this arbitrary choice. In addition to the vertical coupling of trophic models, the structure of end-to-end models incorporates biodiversity via horizontal integration of trophic levels. For guiding the selection of key components to be included in end-to-end models, the idea that marine food webs are structured as alternative trophic pathways is highlighted and related to observed dynamics. We suggest that an important early step in model development is the identification of major trophic pathways and bottlenecks in an ecosystem using a historical perspective.

  4. End-to-end testing. [to verify electrical equipment failure due to carbon fibers released in aircraft-fuel fires

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1979-01-01

    The principle objective of the kinds of demonstration tests that are discussed is to try to verify whether or not carbon fibers that are released by burning composite parts in an aircraft-fuel fires can produce failures in electrical equipment. A secondary objective discussed is to experimentally validate the analytical models for some of the key elements in the risk analysis. The approach to this demonstration testing is twofold: limited end-to-end test are to be conducted in a shock tube; and planning for some large outdoor burn tests is being done.

  5. End-to-End Study of the Transfer of Energy from Magnetosheath Ion Precipitation to the Cusp

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Chandler, M. O.; Singh, Nagendra; Avanov, Levon

    2005-01-01

    This paper describes a study of the effects of unstable magnetosheath distributions on the cusp ionosphere. An end-to-end numerical model was used to study, first, the evolved distributions from precipitation due to reconnection and, secondly, the energy transfer into the high latitude ionosphere based on these solar wind/magnetosheath inputs. Using inputs of several representative examples of magnetosheath injections, waves were generated at the lower hybrid frequency and energy transferred to the ionospheric electrons and ions. The resulting wave spectra and ion and electron particle heating was analyzed. Keywords: Ion heating: Magnetosheath/Ionosphere coupling: Particle/Wave Interactions. Simulations

  6. The Kepler End-to-End Model: Creating High-Fidelity Simulations to Test Kepler Ground Processing

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Peters, Dan J.; Tenenbaum, Peter P.; Klaus, Todd C.; Gunter, Jay P.; Cote, Miles T.; Caldwell, Douglas A.

    2010-01-01

    The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing 100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include the rapid production of large amounts of simulated data, extensibility and maintainability.

  7. Effect of swirling flow on platelet concentration distribution in small-caliber artificial grafts and end-to-end anastomoses

    NASA Astrophysics Data System (ADS)

    Zhan, Fan; Fan, Yu-Bo; Deng, Xiao-Yan

    2011-10-01

    Platelet concentration near the blood vessel wall is one of the major factors in the adhesion of platelets to the wall. In our previous studies, it was found that swirling flows could suppress platelet adhesion in small-caliber artificial grafts and end-to-end anastomoses. In order to better understand the beneficial effect of the swirling flow, we numerically analyzed the near-wall concentration distribution of platelets in a straight tube and a sudden tubular expansion tube under both swirling flow and normal flow conditions. The numerical models were created based on our previous experimental studies. The simulation results revealed that when compared with the normal flow, the swirling flow could significantly reduce the near-wall concentration of platelets in both the straight tube and the expansion tube. The present numerical study therefore indicates that the reduction in platelet adhesion under swirling flow conditions in small-caliber arterial grafts, or in end-to-end anastomoses as observed in our previous experimental study, was possibly through a mechanism of platelet transport, in which the swirling flow reduced the near-wall concentration of platelets.

  8. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.

    PubMed

    Jain, Titoo; Westerlund, Fredrik; Johnson, Erik; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-04-28

    Gold nanorods (AuNRs) are of interest for a wide range of applications, ranging from imaging to molecular electronics, and they have been studied extensively for the past decade. An important issue in AuNR applications is the ability to self-assemble the rods in predictable structures on the nanoscale. We here present a new way to end-to-end link AuNRs with a single or few linker molecules. Whereas methods reported in the literature so far rely on modification of the AuNRs after the synthesis, we here dimerize gold nanoparticle seeds with a water-soluble dithiol-functionalized polyethylene glycol linker and expose the linked seeds to growth conditions identical to the synthesis of unlinked AuNRs. Doing so, we obtain a large fraction of end-to-end linked rods, and transmission electron microscopy provides evidence of a 1-2 nm wide gap between the AuNRs. Flow linear dichroism demonstrates that a large fraction of the rods are flexible around the hinging molecule in solution, as expected for a molecularly linked nanogap. By using excess of gold nanoparticles relative to the linking dithiol molecule, this method can provide a high probability that a single molecule is connecting the two rods. In essence, our methods hence demonstrate the fabrication of a nanostructure with a molecule connected to two nanoelectrodes by bottom-up chemical assembly.

  9. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  10. End-To-End Risk Assesment: From Genes and Protein to Acceptable Radiation Risks for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Schimmerling, Walter

    2000-01-01

    The human exploration of Mars will impose unavoidable health risks from galactic cosmic rays (GCR) and possibly solar particle events (SPE). It is the goal of NASA's Space Radiation Health Program to develop the capability to predict health risks with significant accuracy to ensure that risks are well below acceptable levels and to allow for mitigation approaches to be effective at reasonable costs. End-to-End risk assessment is the approach being followed to understand proton and heavy ion damage at the molecular, cellular, and tissue levels in order to predict the probability of the major health risk including cancer, neurological disorders, hereditary effects, cataracts, and acute radiation sickness and to develop countermeasures for mitigating risks.

  11. HITSZ_CDR: an end-to-end chemical and disease relation extraction system for BioCreative V

    PubMed Central

    Li, Haodi; Tang, Buzhou; Chen, Qingcai; Chen, Kai; Wang, Xiaolong; Wang, Baohua; Wang, Zhe

    2016-01-01

    In this article, an end-to-end system was proposed for the challenge task of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction in BioCreative V, where DNER includes disease mention recognition (DMR) and normalization (DN). Evaluation on the challenge corpus showed that our system achieved the highest F1-scores 86.93% on DMR, 84.11% on DN, 43.04% on CID relation extraction, respectively. The F1-score on DMR is higher than our previous one reported by the challenge organizers (86.76%), the highest F1-score of the challenge. Database URL: http://database.oxfordjournals.org/content/2016/baw077 PMID:27270713

  12. The MARS pathfinder end-to-end information system: A pathfinder for the development of future NASA planetary missions

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.; Kazz, Greg J.; Tai, Wallace S.

    1996-01-01

    The development of the Mars pathfinder is considered with emphasis on the End-to-End Information System (EEIS) development approach. The primary mission objective is to successfully develop and deliver a single flight system to the Martian surface, demonstrating entry, descent and landing. The EEIS is a set of functions distributed throughout the flight, ground and Mission Operation Systems (MOS) that inter-operate in order to control, collect, transport, process, store and analyze the uplink and downlink information flows of the mission. Coherence between the mission systems is achieved though the EEIS architecture. The key characteristics of the system are: a concurrent engineering approach for the development of flight, ground and mission operation systems; the fundamental EEIS architectural heuristics; a phased incremental EEIS development and test approach, and an EEIS design deploying flight, ground and MOS operability features, including integrated ground and flight based toolsets.

  13. End-To-End Risk Assesment: From Genes and Protein to Acceptable Radiation Risks for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Schimmerling, Walter

    2000-07-01

    The human exploration of Mars will impose unavoidable health risks from galactic cosmic rays (GCR) and possibly solar particle events (SPE). It is the goal of NASA's Space Radiation Health Program to develop the capability to predict health risks with significant accuracy to ensure that risks are well below acceptable levels and to allow for mitigation approaches to be effective at reasonable costs. End-to-End risk assessment is the approach being followed to understand proton and heavy ion damage at the molecular, cellular, and tissue levels in order to predict the probability of the major health risk including cancer, neurological disorders, hereditary effects, cataracts, and acute radiation sickness and to develop countermeasures for mitigating risks.

  14. NASA End-to-End Data System /NEEDS/ information adaptive system - Performing image processing onboard the spacecraft

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Howle, W. M.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onbaord image processing. Since the IAS is a data preprocessing system which is closely coupled to the sensor system, it serves as a first step in providing a 'Smart' imaging sensor. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner and provide the opportunity to design sensor systems which can be reconfigured in near real time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  15. High fundamental spatial frequencies and edges have different perceptual consequences in the 'group/end-to-end' movement phenomenon.

    PubMed

    Petersik, J T; Grassmuck, J

    1981-01-01

    A subject viewing two alternating frames, each containing, say, three vertical stripes in a horizontal row, displaced laterally by one cycle in one frame with respect to the others, perceives either the three stripes moving left-right-left in unison (group movement) or one stripe moving from one end of the display to the other and the two overlapping stripes stationary (end-to-end movement). At suitable temporal parameters of presentation (frame duration, interstimulus interval) the perception of the display is bistable. Experiments have shown that the relative strengths of these alternative movement sensations depend upon the fundamental spatial frequency of the display and upon stimulus waveform. Square-wave stimuli, which have energy at high spatial frequencies, had effects opposite to those produced by increases in fundamental spatial frequency. Amblyopes differed from normal viewers only in the perception of the square-wave stimuli. PMID:7335436

  16. End-to-End Trajectory for Conjunction Class Mars Missions Using Hybrid Solar-Electric/Chemical Transportation System

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.

  17. Development of the 4D Phantom for patient-specific, end-to-end radiation therapy QA

    NASA Astrophysics Data System (ADS)

    Malinowski, K.; Noel, C.; Lu, W.; Lechleiter, K.; Hubenschmidt, J.; Low, D.; Parikh, P.

    2007-03-01

    In many patients respiratory motion causes motion artifacts in CT images, thereby inhibiting precise treatment planning and lowering the ability to target radiation to tumors. The 4D Phantom, which includes a 3D stage and a 1D stage that each are capable of arbitrary motion and timing, was developed to serve as an end-to-end radiation therapy QA device that could be used throughout CT imaging, radiation therapy treatment planning, and radiation therapy delivery. The dynamic accuracy of the system was measured with a camera system. The positional error was found to be equally likely to occur in the positive and negative directions for each axis, and the stage was within 0.1 mm of the desired position 85% of the time. In an experiment designed to use the 4D Phantom's encoders to measure trial-to-trial precision of the system, the 4D Phantom reproduced the motion during variable bag ventilation of a transponder that had been bronchoscopically implanted in a canine lung. In this case, the encoder readout indicated that the stage was within 10 microns of the sent position 94% of the time and that the RMS error was 7 microns. Motion artifacts were clearly visible in 3D and respiratory-correlated (4D) CT scans of phantoms reproducing tissue motion. In 4D CT scans, apparent volume was found to be directly correlated to instantaneous velocity. The system is capable of reproducing individual patient-specific tissue trajectories with a high degree of accuracy and precision and will be useful for end-to-end radiation therapy QA.

  18. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    SciTech Connect

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; Grigoriev, Maxim; Haro, Felipe; Nazir, Fawad; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our detection

  19. End-to-End Information System design at the NASA Jet Propulsion Laboratory. [data transmission between user and space-based sensor

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    In recognition of a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote-space-based sensor, an end-to-end approach to the design of information systems has been adopted at the JPL. This paper reviews End-to-End Information System (EEIS) activity at the JPL, with attention given to the scope of the EEIS transfer function, and functional and physical elements of the EEIS. The relationship between the EEIS and the NASA End-to-End Data System program is discussed.

  20. Profiling wind and greenhouse gases by infrared-laser occultation: results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-07-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting. Here we use a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both stand-alone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from a wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s. wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to the decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in the case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  1. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Travers, M.; Shin, Y.-J.; Jennings, S.; Cury, P.

    2007-12-01

    End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus

  2. End-to-end Cyberinfrastructure and Data Services for Earth System Science Education and Research: Unidata's Plans and Directions

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.

    2005-12-01

    work together in a fundamentally different way. Likewise, the advent of digital libraries, grid computing platforms, interoperable frameworks, standards and protocols, open-source software, and community atmospheric models have been important drivers in shaping the use of a new generation of end-to-end cyberinfrastructure for solving some of the most challenging scientific and educational problems. In this talk, I will present an overview of the scientific, technological, and educational drivers and discuss recent developments in cyberinfrastructure and Unidata's role and directions in providing robust, end-to-end data services for solving geoscientific problems and advancing student learning.

  3. End-to-end Cyberinfrastructure and Data Services for Earth System Science Education and Research: A vision for the future

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2006-05-01

    yet revolutionary way of building applications and methods to connect and exchange information over the Web. This new approach, based on XML - a widely accepted format for exchanging data and corresponding semantics over the Internet - enables applications, computer systems, and information processes to work together in fundamentally different ways. Likewise, the advent of digital libraries, grid computing platforms, interoperable frameworks, standards and protocols, open-source software, and community atmospheric models have been important drivers in shaping the use of a new generation of end-to-end cyberinfrastructure for solving some of the most challenging scientific and educational problems. In this talk, I will present an overview of the scientific, technological, and educational landscape, discuss recent developments in cyberinfrastructure, and Unidata's role in and vision for providing easy-to use, robust, end-to-end data services for solving geoscientific problems and advancing student learning.

  4. Hardware and Methods of the Optical End-to-End Test of the Far Ultraviolet Spectroscopic Explorer (FUSE)

    NASA Technical Reports Server (NTRS)

    Conard, Steven J.; Redman, Kevin W.; Barkhouser, Robert H.; McGuffey, Doug B.; Smee, Stephen; Ohl, Raymond G.; Kushner, Gary

    1999-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE), currently being tested and scheduled for a 1999 launch, is an astrophysics satellite designed to provide high spectral resolving power (Lambda/(Delta)Lambda = 24,000-30,000) over the interval 90.5-118.7 nm. The FUSE optical path consists of four co-aligned, normal incidence, off-axis parabolic, primary mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographic gratings and delay line microchannel plate detectors. We describe the hardware and methods used for the optical end-to-end test of the FUSE instrument during satellite integration and test. Cost and schedule constraints forced us to devise a simplified version of the planned optical test which occurred in parallel with satellite thermal-vacuum testing. The optical test employed a collimator assembly which consisted of four co-aligned, 15" Cassegrain telescopes which were positioned above the FUSE instrument, providing a collimated beam for each optical channel. A windowed UV light source, remotely adjustable in three axes, was mounted at the focal plane of each collimator. Problems with the UV light sources, including high F-number and window failures, were the only major difficulties encountered during the test. The test succeeded in uncovering a significant problem with the secondary structure used for the instrument closeout cavity and, furthermore, showed that the mechanical solution was successful. The hardware was also used extensively for simulations of science observations, providing both UV light for spectra and visible light for the fine error sensor camera.

  5. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy.

    PubMed

    Gallas, Raya R; Hünemohr, Nora; Runz, Armin; Niebuhr, Nina I; Jäkel, Oliver; Greilich, Steffen

    2015-12-01

    With the increasing complexity of external beam therapy "end-to-end" tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification.

  6. WARP (workflow for automated and rapid production): a framework for end-to-end automated digital print workflows

    NASA Astrophysics Data System (ADS)

    Joshi, Parag

    2006-02-01

    Publishing industry is experiencing a major paradigm shift with the advent of digital publishing technologies. A large number of components in the publishing and print production workflow are transformed in this shift. However, the process as a whole requires a great deal of human intervention for decision making and for resolving exceptions during job execution. Furthermore, a majority of the best-of-breed applications for publishing and print production are intrinsically designed and developed to be driven by humans. Thus, the human-intensive nature of the current prepress process accounts for a very significant amount of the overhead costs in fulfillment of jobs on press. It is a challenge to automate the functionality of applications built with the model of human driven exectution. Another challenge is to orchestrate various components in the publishing and print production pipeline such that they work in a seamless manner to enable the system to perform automatic detection of potential failures and take corrective actions in a proactive manner. Thus, there is a great need for a coherent and unifying workflow architecture that streamlines the process and automates it as a whole in order to create an end-to-end digital automated print production workflow that does not involve any human intervention. This paper describes an architecture and building blocks that lay the foundation for a plurality of automated print production workflows.

  7. End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Hewasawam, Kuravi; Mendillo, Christopher B.; Cahoy, Kerri L.; Cook, Timothy A.; Finn, Susanna C.; Howe, Glenn A.; Kuchner, Marc J.; Lewis, Nikole K.; Marinan, Anne D.; Mawet, Dimitri; Chakrabarti, Supriya

    2015-09-01

    We describe a set of numerical approaches to modeling the performance of space flight high-contrast imaging payloads. Mission design for high-contrast imaging requires numerical wavefront error propagation to ensure accurate component specifications. For constructed instruments, wavelength and angle-dependent throughput and contrast models allow detailed simulations of science observations, allowing mission planners to select the most productive science targets. The PICTURE family of missions seek to quantify the optical brightness of scattered light from extrasolar debris disks via several high-contrast imaging techniques: sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment) and balloon flights of a visible nulling coronagraph, as well as a balloon flight of a vector vortex coronagraph (the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph, PICTURE-C). The rocket mission employs an on-axis 0.5m Gregorian telescope, while the balloon flights will share an unobstructed off-axis 0.6m Gregorian. This work details the flexible approach to polychromatic, end-to-end physical optics simulations used for both the balloon vector vortex coronagraph and rocket visible nulling coronagraph missions. We show the preliminary PICTURE-C telescope and vector vortex coronagraph design will achieve 10-8 contrast without post-processing as limited by realistic optics, but not considering polarization or low-order errors. Simulated science observations of the predicted warm ring around Epsilon Eridani illustrate the performance of both missions.

  8. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes.

    PubMed

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-11-01

    The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  9. A novel end-to-end fault detection and localization protocol for wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Zeng, Hongqing; Vukovic, Alex; Huang, Changcheng

    2005-09-01

    Recently the wavelength division multiplexing (WDM) networks are becoming prevalent for telecommunication networks. However, even a very short disruption of service caused by network faults may lead to high data loss in such networks due to the high date rates, increased wavelength numbers and density. Therefore, the network survivability is critical and has been intensively studied, where fault detection and localization is the vital part but has received disproportional attentions. In this paper we describe and analyze an end-to-end lightpath fault detection scheme in data plane with the fault notification in control plane. The endeavor is focused on reducing the fault detection time. In this protocol, the source node of each lightpath keeps sending hello packets to the destination node exactly following the path for data traffic. The destination node generates an alarm once a certain number of consecutive hello packets are missed within a given time period. Then the network management unit collects all alarms and locates the faulty source based on the network topology, as well as sends fault notification messages via control plane to either the source node or all upstream nodes along the lightpath. The performance evaluation shows such a protocol can achieve fast fault detection, and at the same time, the overhead brought to the user data by hello packets is negligible.

  10. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.

    PubMed

    Segl, Karl; Richter, Rudolf; Küster, Theres; Kaufmann, Hermann

    2012-02-01

    An end-to-end sensor simulation is a proper tool for the prediction of the sensor's performance over a range of conditions that cannot be easily measured. In this study, such a tool has been developed that enables the assessment of the optimum spectral resolution configuration of a sensor based on key applications. It employs the spectral molecular absorption and scattering properties of materials that are used for the identification and determination of the abundances of surface and atmospheric constituents and their interdependence on spatial resolution and signal-to-noise ratio as a basis for the detailed design and consolidation of spectral bands for the future Sentinel-2 sensor. The developed tools allow the computation of synthetic Sentinel-2 spectra that form the frame for the subsequent twofold analysis of bands in the atmospheric absorption and window regions. One part of the study comprises the assessment of optimal spatial and spectral resolution configurations for those bands used for atmospheric correction, optimized with regard to the retrieval of aerosols, water vapor, and the detection of cirrus clouds. The second part of the study presents the optimization of thematic bands, mainly driven by the spectral characteristics of vegetation constituents and minerals. The investigation is performed for different wavelength ranges because most remote sensing applications require the use of specific band combinations rather than single bands. The results from the important "red-edge" and the "short-wave infrared" domains are presented. The recommended optimum spectral design predominantly confirms the sensor parameters given by the European Space Agency. The system is capable of retrieving atmospheric and geobiophysical parameters with enhanced quality compared to existing multispectral sensors. Minor spectral changes of single bands are discussed in the context of typical remote sensing applications, supplemented by the recommendation of a few new bands for

  11. End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission.

    PubMed

    Segl, Karl; Richter, Rudolf; Küster, Theres; Kaufmann, Hermann

    2012-02-01

    An end-to-end sensor simulation is a proper tool for the prediction of the sensor's performance over a range of conditions that cannot be easily measured. In this study, such a tool has been developed that enables the assessment of the optimum spectral resolution configuration of a sensor based on key applications. It employs the spectral molecular absorption and scattering properties of materials that are used for the identification and determination of the abundances of surface and atmospheric constituents and their interdependence on spatial resolution and signal-to-noise ratio as a basis for the detailed design and consolidation of spectral bands for the future Sentinel-2 sensor. The developed tools allow the computation of synthetic Sentinel-2 spectra that form the frame for the subsequent twofold analysis of bands in the atmospheric absorption and window regions. One part of the study comprises the assessment of optimal spatial and spectral resolution configurations for those bands used for atmospheric correction, optimized with regard to the retrieval of aerosols, water vapor, and the detection of cirrus clouds. The second part of the study presents the optimization of thematic bands, mainly driven by the spectral characteristics of vegetation constituents and minerals. The investigation is performed for different wavelength ranges because most remote sensing applications require the use of specific band combinations rather than single bands. The results from the important "red-edge" and the "short-wave infrared" domains are presented. The recommended optimum spectral design predominantly confirms the sensor parameters given by the European Space Agency. The system is capable of retrieving atmospheric and geobiophysical parameters with enhanced quality compared to existing multispectral sensors. Minor spectral changes of single bands are discussed in the context of typical remote sensing applications, supplemented by the recommendation of a few new bands for

  12. Results from Solar Reflective Band End-to-End Testing for VIIRS F1 Sensor Using T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Moyer, David; McCarthy, James K.; DeLuccia, Frank; Xiong, Xiaoxiong; Butler, James J.; Guenther, Bruce

    2011-01-01

    Verification of the Visible Infrared Imager Radiometer Suite (VIIRS) End-to-End (E2E) sensor calibration is highly recommended before launch, to identify any anomalies and to improve our understanding of the sensor on-orbit calibration performance. E2E testing of the Reflective Solar Bands (RSB) calibration cycle was performed pre-launch for the VIIRS Fight 1 (F1) sensor at the Ball Aerospace facility in Boulder CO in March 2010. VIIRS reflective band calibration cycle is very similar to heritage sensor MODIS in that solar illumination, via a diffuser, is used to correct for temporal variations in the instrument responsivity. Monochromatic light from the NIST T-SIRCUS was used to illuminate both the Earth View (EV), via an integrating sphere, and the Solar Diffuser (SD) view, through a collimator. The collimator illumination was cycled through a series of angles intended to simulate the range of possible angles for which solar radiation will be incident on the solar attenuation screen on-orbit. Ideally, the measured instrument responsivity (defined here as the ratio of the detector response to the at-sensor radiance) should be the same whether the EV or SD view is illuminated. The ratio of the measured responsivities was determined at each collimator angle and wavelength. In addition, the Solar Diffuser Stability Monitor (SDSM), a ratioing radiometer designed to track the temporal variation in the SD BRF by direct comparison to solar radiation, was illuminated by the collimator. The measured SDSM ratio was compared to the predicted ratio. An uncertainty analysis was also performed on both the SD and SDSM calibrations.

  13. Computational simulation of flow in the end-to-end anastomosis of a rigid graft and a compliant artery.

    PubMed

    Qiu, Y; Tarbell, J M

    1996-01-01

    Implanted vascular grafts often fail because of the development of intimal hyperplasia in the anastomotic region, and compliance mismatch between the host artery and graft exacerbates the problem. This study focused on the effects of radial artery wall motion and phase angle between pressure and flow waves (impedance phase angle [IPA]) on the wall shear rate (WSR) behavior near end-to-end vascular graft anastomoses models connecting rigid grafts and compliant arteries. A finite element model with transient flow and moving boundaries was set up to simulate oscillatory flow through a 16% undersized (mean) diameter graft model. During the simulations, different artery diameter variations (DVs) over a cycle (DV) and IPAs were simulated in the physiologic range for an oscillatory flow (mean Re = 150, peak Re = 300, unsteadiness parameter alpha = 3.9). The results show that for normal physiologic conditions (DV = 6%, IPA = -45 degrees) in a 16% undersized graft, the minimum distal mean WSR is reduced by 60% compared to steady flow at the mean Re; the minimum distal WSR amplitude increases 50% when IPA changes from -5 degrees to -85 degrees, and increases 60% when DV changes from 2% to 10%. This indicates that compliance mismatch induces lower mean WSR and more oscillatory WSR in the distal anastomotic region, which may contribute to intimal hyperplasia. In addition, the convergent-divergent geometry of the 16% undersized graft model can significantly affect the force pattern applied to the local endothelial cell layer near the anastomosis by altering the local phase angle between the flow induced tangential force (synchronous with WSR) and the radial artery expansion induced cyclic hoop strain (synchronous with DV). This local phase angle is decreased by 65 degrees in the distal divergent geometry, while increased by 15 degrees in the proximal convergent geometry. PMID:8944971

  14. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    SciTech Connect

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Multifunctional enzymes offer an interesting approach for biomass degradation. Black-Right-Pointing-Pointer Size and conformation of separate constructs play a role in the effectiveness of chimeras. Black-Right-Pointing-Pointer A connecting linker allows for maximal flexibility and increased thermostability. Black-Right-Pointing-Pointer Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  15. WE-G-BRD-08: End-To-End Targeting Accuracy of the Gamma Knife for Trigeminal Neuralgia

    SciTech Connect

    Brezovich, I; Wu, X; Duan, J; Benhabib, S; Huang, M; Shen, S; Cardan, R; Popple, R

    2014-06-15

    Purpose: Current QA procedures verify accuracy of individual equipment parameters, but may not include CT and MRI localizers. This study uses an end-to-end approach to measure the overall targeting errors in individual patients previously treated for trigeminal neuralgia. Methods: The trigeminal nerve is simulated by a 3 mm long, 3.175 mm (1/8 inch) diameter MRI contrast-filled cavity embedded within a PMMA plastic capsule. The capsule is positioned within the head frame such that the cavity position matches the Gamma Knife coordinates of 10 previously treated patients. Gafchromic EBT2 film is placed at the center of the cavity in coronal and sagittal orientations. The films are marked with a pin prick to identify the cavity center. Treatments are planned for delivery with 4 mm collimators using MRI and CT scans acquired with the clinical localizer boxes and acquisition protocols. Coordinates of shots are chosen so that the cavity is centered within the 50% isodose volume. Following irradiation, the films are scanned and analyzed. Targeting errors are defined as the distance between the pin prick and the centroid of the 50% isodose line. Results: Averaged over 10 patient simulations, targeting errors along the x, y and z coordinates (patient left-to-right, posterior-anterior, head-to-foot) were, respectively, −0.060 +/− 0.363, −0.350 +/− 0.253, and 0.364 +/− 0.191 mm when MRI was used for treatment planning. Planning according to CT exhibited generally smaller errors, namely 0.109 +/− 0.167, −0.191 +/− 0.144, and 0.211 +/− 0.94 mm. The largest errors in MRI and CT planned treatments were, respectively, y = −0.761 and x = 0.428 mm. Conclusion: Unless patient motion or stronger MRI image distortion in actual treatments caused additional errors, all patients received the prescribed dose, i.e., the targeted section of the trig±eminal nerve was contained within the 50% isodose surface in all cases.

  16. SBSS Demonstrator: A design for efficient demonstration of Space-based Space Surveillance end-to-end capabilities

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Flohrer, Tim; Schildknecht, Thomas; Wagner, Axel; Silha, Jiri; Willemsen, Philip; Teston, Frederic

    This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of space debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in a SST system architecture has shown that both an operational SBSS and also already a well-designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. Also past and current missions by the US (SBV, SBSS) and Canada (Sapphire, NEOSSat) underline the advantages of space-based space surveillance. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirments for detection and characterisation of small-sized LEO debris are

  17. Volumetric-Modulated Arc Therapy: Effective and Efficient End-to-End Patient-Specific Quality Assurance

    SciTech Connect

    O'Daniel, Jennifer; Das, Shiva; Wu, Q. Jackie; Yin Fangfang

    2012-04-01

    Purpose: To explore an effective and efficient end-to-end patient-specific quality-assurance (QA) protocol for volumetric modulated arc radiotherapy (VMAT) and to evaluate the suitability of a stationary radiotherapy QA device (two-dimensional [2D] ion chamber array) for VMAT QA. Methods and Materials: Three methods were used to analyze 39 VMAT treatment plans for brain, spine, and prostate: ion chamber (one-dimensional absolute, n = 39), film (2D relative, coronal/sagittal, n = 8), and 2D ion chamber array (ICA, 2D absolute, coronal/sagittal, n = 39) measurements. All measurements were compared with the treatment planning system dose calculation either via gamma analysis (3%, 3- to 4-mm distance-to-agreement criteria) or absolute point dose comparison. The film and ion chamber results were similarly compared with the ICA measurements. Results: Absolute point dose measurements agreed well with treatment planning system computed doses (ion chamber: median deviation, 1.2%, range, -0.6% to 3.3%; ICA: median deviation, 0.6%, range, -1.8% to 2.9%). The relative 2D dose measurements also showed good agreement with computed doses (>93% of pixels in all films passing gamma, >90% of pixels in all ICA measurements passing gamma). The ICA relative dose results were highly similar to those of film (>90% of pixels passing gamma). The coronal and sagittal ICA measurements were statistically indistinguishable by the paired t test with a hypothesized mean difference of 0.1%. The ion chamber and ICA absolute dose measurements showed a similar trend but had disparities of 2-3% in 18% of plans. Conclusions: After validating the new VMAT implementation with ion chamber, film, and ICA, we were able to maintain an effective yet efficient patient-specific VMAT QA protocol by reducing from five (ion chamber, film, and ICA) to two measurements (ion chamber and single ICA) per plan. The ICA (Matrixx Registered-Sign , IBA Dosimetry) was validated for VMAT QA, but ion chamber measurements are

  18. Pre-Launch End-to-End Testing Plans for the SPAce Readiness Coherent Lidar Experiment (SPARCLE)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing. attitude information from lidar and non-lidar sensors, and pointing knowledge algorithms will

  19. Investigating end-to-end accuracy of image guided radiation treatment delivery using a micro-irradiator.

    PubMed

    Rankine, L J; Newton, J; Bache, S T; Das, S K; Adamovics, J; Kirsch, D G; Oldham, M

    2013-11-01

    the irradiator was verified to be within 0.5 mm (or 1.0 mm for the 5.0 mm cone) and the cone alignment was verified to be within 0.2 mm (or 0.4 mm for the 1.0 mm cone). The PRESAGE®/DMOS system proved valuable for end-to-end verification of small field IGRT capabilities.

  20. End-to-End System Test and Optical Performance Evaluation for the Solar and Heliosphere Observatory (SOHO) Ultraviolet Coronagraph Spectrometer (UVCS)

    NASA Technical Reports Server (NTRS)

    Carosso, Paolo A.; Gardner, Larry D.; Jhabvala, Marzy; Nicolosi, P.

    1997-01-01

    The UVCS is one of the instruments carried by the Solar and Heliospheric Observatory (SOHO), a joint NASA/ESA Spacecraft launched in November 1995. It is designed to perform ultraviolet spectroscopy and visible light polarimetry of the extended solar corona. The primary scientific objectives of the UVCS investigation are to study the physical processes occurring in the extended solar corona, such as: the mechanism of acceleration of the solar wind, the mechanism of coronal plasma heating, the identification of solar wind sources, and the investigation of the plasma properties of the solar wind. The UVCS End-to-End test activities included a comprehensive set of system level functional and optical tests. Although performed under severe schedule constraints, the End-to-End System Test was very successful and served to fully validate the UVCS optical design. All test results showed that the primary scientific objectives of the UVCS Mission were achievable.

  1. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    NASA Astrophysics Data System (ADS)

    Brewka, Lukasz; Gavler, Anders; Wessing, Henrik; Dittmann, Lars

    2012-04-01

    End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.

  2. Modelling and simulation of the mechanical response of a Dacron graft in the pressurization test and an end-to-end anastomosis.

    PubMed

    Bustos, Claudio A; García-Herrera, Claudio M; Celentano, Diego J

    2016-08-01

    This work presents the modeling and simulation of the mechanical response of a Dacron graft in the pressurization test and its clinical application in the analysis of an end-to-end anastomosis. Both problems are studied via an anisotropic constitutive model that was calibrated by means of previously reported uniaxial tensile tests. First, the simulation of the pressurization test allows the validation of the experimental material characterization that included tests carried out for different levels of axial stretching. Then, the analysis of an end-to-end anastomosis under an idealized geometry is proposed. This case consists in evaluating the mechanical performance of the graft together with the stresses and deformations in the neighborhood of the Dacron with the artery. This research contributes important data to understand the functioning of the graft and the possibility of extending the analysis to complex numerical cases like its insertion in the aortic arch. PMID:26826765

  3. Synthetic molecular machine based on reversible end-to-interior and end-to-end loop formation triggered by electrochemical stimuli.

    PubMed

    Lee, Jae Wook; Hwang, Ilha; Jeon, Woo Sung; Ko, Young Ho; Sakamoto, Shigeru; Yamaguchi, Kentaro; Kim, Kimoon

    2008-09-01

    We have designed and synthesized a novel [2]pseudorotaxane-based molecular machine in which the interconversion between end-to-interior and end-to-end loop structures is reversibly controlled by electrochemical stimuli. Cucurbit[8]uril (CB[8]) and the thread molecule 3(4+) with an electron-rich hydroxynaphthalene unit and two electron-deficient viologen units form the 1:1 complex 4(4+) with an end-to-interior loop structure, which is reversibly converted into an end-to-end structure upon reduction. Large changes in shape and size of the molecule accompany the reversible redox process. The key feature of the machine-like behavior is the reversible interconversion between an intramolecular charge-transfer complex and viologen cation radical dimer inside CB[8] triggered by electrochemical stimuli.

  4. Modelling and simulation of the mechanical response of a Dacron graft in the pressurization test and an end-to-end anastomosis.

    PubMed

    Bustos, Claudio A; García-Herrera, Claudio M; Celentano, Diego J

    2016-08-01

    This work presents the modeling and simulation of the mechanical response of a Dacron graft in the pressurization test and its clinical application in the analysis of an end-to-end anastomosis. Both problems are studied via an anisotropic constitutive model that was calibrated by means of previously reported uniaxial tensile tests. First, the simulation of the pressurization test allows the validation of the experimental material characterization that included tests carried out for different levels of axial stretching. Then, the analysis of an end-to-end anastomosis under an idealized geometry is proposed. This case consists in evaluating the mechanical performance of the graft together with the stresses and deformations in the neighborhood of the Dacron with the artery. This research contributes important data to understand the functioning of the graft and the possibility of extending the analysis to complex numerical cases like its insertion in the aortic arch.

  5. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    SciTech Connect

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  6. Primary and secondary structure dependence of peptide flexibility assessed by fluorescence-based measurement of end-to-end collision rates.

    PubMed

    Huang, Fang; Hudgins, Robert R; Nau, Werner M

    2004-12-22

    The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically

  7. Differentiated CW Policy and Strict Priority Policy for Location-Independent End-to-End Delay in Multi-Hop Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Bae, Yun Han; Kim, Kyung Jae; Park, Jin Soo; Choi, Bong Dae

    We investigate delay analysis of multi-hop wireless mesh network (WMN) where nodes have multi-channel and multiple transceivers to increase the network capacity. The functionality of the multi-channel and multiple transceivers allows the whole WMN to be decomposed into disjoint zones in such a way that i) nodes in a zone are within one-hop distance, and relay node and end nodes with different CWmins contend to access the channel based on IEEE 802.11e EDCA, ii) different channels are assigned to neighbor zones to prevent the hidden node problem, iii) relay nodes can transmit and receive the packets simultaneously by multi-channel and multiple transceivers. With this decomposition of the network, we focus on the delay at a single zone and then the end-to-end delay can be obtained as the sum of zone-delays. In order to have the location-independent end-to-end delay to the gateway regardless of source nodes' locations, we propose two packet management schemes, called the differentiated CW policy and the strict priority policy, at each relay node where relay packets with longer hop count are buffered in higher priority queues according to their experienced hop count. For the differentiated CW policy, a relay node adopts the functionality of IEEE 802.11e EDCA where a higher priority queue has a shorter minimum contention window. We model a typical zone as a one-hop IEEE 802.11e EDCA network under non-saturation condition where priority queues have different packet arrival rates and different minimum contention window sizes. First, we find the PGF (probability generating function) of the HoL-delay of packets at priority queues in a zone. Second, by modeling each queue as M/G/1 queue with the HoL-delay as a service time, we obtain the packet delay (the sum of the queueing delay and the HoL-delay) of each priority queue in a zone. Third, the average end-to-end delay of packet generated at end node in each zone is obtained by summing up the packet delays at each zone. For

  8. Outage management in Finland

    SciTech Connect

    Pernu, J.; Vuorenmaa, A.

    1987-01-01

    Of the electricity generated in Finland, approx. 40% is produced by nuclear power. There are two nuclear power stations in Finland: a boiling water reactor (BWR) station in Olkiluoto operated by TVO and a pressurized water reactor (PWR) station in Loviisa operated by IVO. The main technical information and the year that commercial operation of the nuclear units began are listed. Finland has long, cold, and dark winters. The summers are pleasant with several hours of daylight. The Finns like to have their holidays during July-August, which is why the major part of the energy-intensive base industries are shut down during this period. This means that the load on the Finnish grid may vary by a factor of 3 between a cold winter morning and a warm summer day. Because of these conditions, the utilities are trying to concentrate the annual reloading outages during late spring and summer. To be able to perform the outages of all four nuclear units in a short period of low marginal production cost, huge efforts had to be made to reduce the duration of outages. This reduction could not be done at the expense of availability during winter because the costs of replacement energy in winter are very high. Both utilities have succeeded in achieving their goals. The outage times have been reduced significantly and, at the same time, the average load factor in Finland has exceeded the 85% level.

  9. Clinical evaluation of a closed, one-stage, stapled, functional, end-to-end jejuno-ileal anastomosis in 5 horses

    PubMed Central

    Anderson, Stacy L.; Blackford, James T.; Kelmer, S. Gal

    2012-01-01

    This study describes the outcome and complications in horses that had a closed, one-stage, stapled, functional, end-to-end (COSFE) jejuno-ileal anastomosis (JIA) following resection of compromised small intestine. Medical records were reviewed to identify all horses that had a COSFE JIA performed during exploratory laparotomy and to determine post-operative complications and final outcome. All 5 horses that were identified had successful COSFE JIA with resection of various amounts of distal jejunum and proximal ileum. Post-operative ileus occurred in 1 of the 5 horses. All horses survived at least 1 year after surgery. The survival times and incidence of post-operative ileus compared favorably with published results for other types of small intestinal resection and anastomoses. A COSFE JIA is a viable surgical procedure to correct lesions of the distal jejunum and proximal ileum. PMID:23450864

  10. End-to-End Study of the Transfer of Energy from Magnetosheath Ion Precipitation to the Ionospheric Cusp and Resulting Ion Outflow to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra; Avanov, Levon

    2003-01-01

    We will show results from an end-to-end study of the energy transfer from injected magnetosheath plasmas to the near-Earth magnetospheric and ionospheric plasmas and the resulting ion outflow to the magnetosphere. This study includes modeling of the evolution of the magnetosheath precipitation in the cusp using a kinetic code with a realistic magnetic field configuration. These evolved, highly non-Maxwellian distributions are used as input to a 2D PIC code to analyze the resulting wave generation. The wave analysis is used in the kinetic code as input to the cold ionospheric ions to study the transfer of energy to these ions and their outflow to the magnetosphere. Observations from the Thermal Ion Dynamics Experiment (TIDE) and other instruments on the Polar Spacecraft will be compared to the modeling.

  11. End to end assembly of CaO and ZnO nanosheets to propeller-shaped architectures by orientation attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2015-06-01

    Inspired by the agitation effect of propellers, heterogeneous propeller- shaped CaO/ZnO architectures were assembled in aqueous solution. Preferred nucleation and growth of CaO and ZnO nuclei resulted in their hexagonal nanosheets, and they were end to end combined into propeller-shaped architectures by oriented rotation and attachment reactions. When propeller-shaped CaO/ZnO product was used as solid base catalyst to synthesize biodiesel, a high biodiesel yield of 97.5% was achieved. The predominant exposure of active O2- on CaO(0 0 2) and ZnO(0 0 0 2) planes in propeller-shaped CaO/ZnO, led to good catalytic activity and high yield of biodiesel.

  12. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  13. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current

    NASA Astrophysics Data System (ADS)

    Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera

    2015-11-01

    We describe and document an end-to-end model of anchovy and sardine population dynamics in the California Current as a proof of principle that such coupled models can be developed and implemented. The end-to-end model is 3-dimensional, time-varying, and multispecies, and consists of four coupled submodels: hydrodynamics, Eulerian nutrient-phytoplankton-zooplankton (NPZ), an individual-based full life cycle anchovy and sardine submodel, and an agent-based fishing fleet submodel. A predator roughly mimicking albacore was included as individuals that consumed anchovy and sardine. All submodels were coded within the ROMS open-source community model, and used the same resolution spatial grid and were all solved simultaneously to allow for possible feedbacks among the submodels. We used a super-individual approach and solved the coupled models on a distributed memory parallel computer, both of which created challenging but resolvable bookkeeping challenges. The anchovy and sardine growth, mortality, reproduction, and movement, and the fishing fleet submodel, were each calibrated using simplified grids before being inserted into the full end-to-end model. An historical simulation of 1959-2008 was performed, and the latter 45 years analyzed. Sea surface height (SSH) and sea surface temperature (SST) for the historical simulation showed strong horizontal gradients and multi-year scale temporal oscillations related to various climate indices (PDO, NPGO), and both showed responses to ENSO variability. Simulated total phytoplankton was lower during strong El Nino events and higher for the strong 1999 La Nina event. The three zooplankton groups generally corresponded to the spatial and temporal variation in simulated total phytoplankton. Simulated biomasses of anchovy and sardine were within the historical range of observed biomasses but predicted biomasses showed much less inter-annual variation. Anomalies of annual biomasses of anchovy and sardine showed a switch in the mid

  14. The role of environmental controls in determining sardine and anchovy population cycles in the California Current: Analysis of an end-to-end model

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Rose, Kenneth A.; Curchitser, Enrique N.; Hedstrom, Katherine S.

    2015-11-01

    Sardine and anchovy are two forage species of particular interest because of their low-frequency cycles in adult abundance in boundary current regions, combined with a commercially relevant contribution to the global marine food catch. While several hypotheses have been put forth to explain decadal shifts in sardine and anchovy populations, a mechanistic basis for how the physics, biogeochemistry, and biology combine to produce patterns of synchronous variability across widely separated systems has remained elusive. The present study uses a 50-year (1959-2008) simulation of a fully coupled end-to-end ecosystem model configured for sardine and anchovy in the California Current System to investigate how environmental processes control their population dynamics. The results illustrate that slightly different temperature and diet preferences can lead to significantly different responses to environmental variability. Simulated adult population fluctuations are associated with age-1 growth (via age-2 egg production) and prey availability for anchovy, while they depend primarily on age-0 survival and temperature for sardine. The analysis also hints at potential linkages to known modes of climate variability, whereby changes in adult abundance are related to ENSO for anchovy and to the PDO for sardine. The connection to the PDO and ENSO is consistent with modes of interannual and decadal variability that would alternatively favor anchovy during years of cooler temperatures and higher prey availability, and sardine during years of warmer temperatures and lower prey availability. While the end-to-end ecosystem model provides valuable insight on potential relationships between environmental conditions and sardine and anchovy population dynamics, understanding the complex interplay, and potential lags, between the full array of processes controlling their abundances in the California Current System remains an on-going challenge.

  15. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-01-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  16. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  17. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  18. Performances of the fractal iterative method with an internal model control law on the ESO end-to-end ELT adaptive optics simulator

    NASA Astrophysics Data System (ADS)

    Béchet, C.; Le Louarn, M.; Tallon, M.; Thiébaut, É.

    2008-07-01

    Adaptive Optics systems under study for the Extremely Large Telescopes gave rise to a new generation of algorithms for both wavefront reconstruction and the control law. In the first place, the large number of controlled actuators impose the use of computationally efficient methods. Secondly, the performance criterion is no longer solely based on nulling residual measurements. Priors on turbulence must be inserted. In order to satisfy these two requirements, we suggested to associate the Fractal Iterative Method for the estimation step with an Internal Model Control. This combination has now been tested on an end-to-end adaptive optics numerical simulator at ESO, named Octopus. Results are presented here and performance of our method is compared to the classical Matrix-Vector Multiplication combined with a pure integrator. In the light of a theoretical analysis of our control algorithm, we investigate the influence of several errors contributions on our simulations. The reconstruction error varies with the signal-to-noise ratio but is limited by the use of priors. The ratio between the system loop delay and the wavefront coherence time also impacts on the reachable Strehl ratio. Whereas no instabilities are observed, correction quality is obviously affected at low flux, when subapertures extinctions are frequent. Last but not least, the simulations have demonstrated the robustness of the method with respect to sensor modeling errors and actuators misalignments.

  19. [Incidence of painful neuroma after end-to-end nerve suture wrapped into a collagen conduit. A prospective study of 185 cases].

    PubMed

    Thomsen, L; Schlur, C

    2013-10-01

    Three to 5% of the nerves directly and correctly sutured evolve towards significant neuropathy pain. The psychological, social and economic impact of such a consequence is very important. The purpose of this retrospective study was to evaluate the incidence of the occurrence of a trigger zone or a neuroma, at 6months of maximum follow-up after direct nervous suture bushed in a type 1 collagen tube. Every patient taken care for a traumatic nervous injury from November 2008 to March 2012 was included in the study. The exclusion criteria were any replantation, nervous tissue defect and any distal nervous stump which could not technically be wrapped around. The only conduct used was made of collagen type 1 (Revolnerv(®), Orthomed™). All patients were examined after one, three and sixmonths for a clinical evaluation made by the same surgeon. The apparition of a trigger zone or a real neuroma was clinically assessed. One hundred and seventy-four patients for a total of 197 sutured nerves were included in the study. At the 6 months follow-up, 163 patients were evaluated for a total of 185 nerves. No patient suffered from a neuroma at this time. As the treatment of neuroma is very difficult, considering the cost and the results, wrapping direct end-to-end sutures by a collagen type 1 tube seems helping to prevent the appearance of a neuroma.

  20. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  1. Land Mobile Satellite Service (LMSS) channel simulator: An end-to-end hardware simulation and study of the LMSS communications links

    NASA Technical Reports Server (NTRS)

    Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.

    1984-01-01

    The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.

  2. Why Patencies of Femoropopliteal Bypass Grafts with Distal End-to-End Anastomosis are Comparable with End-to-Side Anastomosis

    PubMed Central

    Hoedt, Marco; How, Thien; Wittens, Cees

    2015-01-01

    Objective: Despite the theoretical favourable hemodynamic advantage of end-to-end anastomosis (ETE), femoropopliteal bypasses with distal ETE and end-to-side anastomosis (ETS) have comparable clinical patencies. We therefore studied the effects of different in vivo anastomotic configurations on hemodynamics in geometrically realistic ETE and ETS in vitro flow models to explain this phenomenon. Methods: Four ETE and two ETS models (30° and 60°) were constructed from in vivo computed tomography angiography data. With flow visualization physiological flow conditions were studied. Results: In ETS, a flow separation and recirculation zone was apparent at anastomotic edges with a shifting stagnation point between them during systole. Secondary flow patterns developed with flow deceleration and reversal. Slight out of axis geometry of all ETE resulted in flow separation and recirculation areas comparable to ETS. Vortical flow patterns were more stable in wider and longer bevelled ETE. Conclusion: Primary flow disturbances in ETE are comparable to ETS and are related to the typical sites where myointimal hyperplasia develops. In ETS, reduction of anastomosis angle will diminish flow disturbances. To reduce flow disturbances in ETE, the creation of a bulbous spatulation with resulting axial displacement of graft in relation to recipient artery should be prevented. PMID:25641036

  3. Ecosystem limits to food web fluxes and fisheries yields in the North Sea simulated with an end-to-end food web model

    NASA Astrophysics Data System (ADS)

    Heath, Michael R.

    2012-09-01

    Equilibrium yields from an exploited fish stock represent the surplus production remaining after accounting for losses due to predation. However, most estimates of maximum sustainable yield, upon which fisheries management targets are partly based, assume that productivity and predation rates are constant in time or at least stationary. This means that there is no recognition of the potential for interaction between different fishing sectors. Here, an end-to-end ecosystem model is developed to explore the possible scale and mechanisms of interactions between pelagic and demersal fishing in the North Sea. The model simulates fluxes of nitrogen between detritus, inorganic nutrient and guilds of taxa spanning phytoplankton to mammals. The structure strikes a balance between graininess in space, taxonomy and demography, and the need to constrain the parameter-count sufficiently to enable automatic parameter optimization. Simulated annealing is used to locate the maximum likelihood parameter set, given the model structure and a suite of observations of annual rates of production and fluxes between guilds. Simulations of the impact of fishery harvesting rates showed that equilibrium yields of pelagic and demersal fish were strongly interrelated due to a variety of top-down and bottom-up food web interactions. The results clearly show that management goals based on simultaneously achieving maximum sustainable biomass yields from all commercial fish stocks is simply unattainable. Trade-offs between, for example, pelagic and demersal fishery sectors and other properties of the ecosystem have to be considered in devising an overall harvesting strategy.

  4. An end-to-end examination of geometric accuracy of IGRT using a new digital accelerator equipped with onboard imaging system.

    PubMed

    Wang, Lei; Kielar, Kayla N; Mok, Ed; Hsu, Annie; Dieterich, Sonja; Xing, Lei

    2012-02-01

    The Varian's new digital linear accelerator (LINAC), TrueBeam STx, is equipped with a high dose rate flattening filter free (FFF) mode (6 MV and 10 MV), a high definition multileaf collimator (2.5 mm leaf width), as well as onboard imaging capabilities. A series of end-to-end phantom tests were performed, TrueBeam-based image guided radiation therapy (IGRT), to determine the geometric accuracy of the image-guided setup and dose delivery process for all beam modalities delivered using intensity modulated radiation therapy (IMRT) and RapidArc. In these tests, an anthropomorphic phantom with a Ball Cube II insert and the analysis software (FilmQA (3cognition)) were used to evaluate the accuracy of TrueBeam image-guided setup and dose delivery. Laser cut EBT2 films with 0.15 mm accuracy were embedded into the phantom. The phantom with the film inserted was first scanned with a GE Discovery-ST CT scanner, and the images were then imported to the planning system. Plans with steep dose fall off surrounding hypothetical targets of different sizes were created using RapidArc and IMRT with FFF and WFF (with flattening filter) beams. Four RapidArc plans (6 MV and 10 MV FFF) and five IMRT plans (6 MV and 10 MV FFF; 6 MV, 10 MV and 15 MV WFF) were studied. The RapidArc plans with 6 MV FFF were planned with target diameters of 1 cm (0.52 cc), 2 cm (4.2 cc) and 3 cm (14.1 cc), and all other plans with a target diameter of 3 cm. Both onboard planar and volumetric imaging procedures were used for phantom setup and target localization. The IMRT and RapidArc plans were then delivered, and the film measurements were compared with the original treatment plans using a gamma criteria of 3%/1 mm and 3%/2 mm. The shifts required in order to align the film measured dose with the calculated dose distributions was attributed to be the targeting error. Targeting accuracy of image-guided treatment using TrueBeam was found to be within 1 mm. For irradiation of the 3 cm target, the gammas (3%, 1

  5. Design of a satellite end-to-end mission performance simulator for imaging spectrometers and its application to the ESA's FLEX/Sentinel-3 tandem mission

    NASA Astrophysics Data System (ADS)

    Vicent, Jorge; Sabater, Neus; Tenjo, Carolina; Acarreta, Juan R.; Manzano, María.; Rivera, Juan P.; Jurado, Pedro; Franco, Raffaella; Alonso, Luis; Moreno, Jose

    2015-09-01

    The performance analysis of a satellite mission requires specific tools that can simulate the behavior of the platform; its payload; and the acquisition of scientific data from synthetic scenes. These software tools, called End-to-End Mission Performance Simulators (E2ES), are promoted by the European Space Agency (ESA) with the goal of consolidating the instrument and mission requirements as well as optimizing the implemented data processing algorithms. Nevertheless, most developed E2ES are designed for a specific satellite mission and can hardly be adapted to other satellite missions. In the frame of ESA's FLEX mission activities, an E2ES is being developed based on a generic architecture for passive optical missions. FLEX E2ES implements a state-of-the-art synthetic scene generator that is coupled with dedicated algorithms that model the platform and instrument characteristics. This work will describe the flexibility of the FLEX E2ES to simulate complex synthetic scenes with a variety of land cover classes, topography and cloud cover that are observed separately by each instrument (FLORIS, OLCI and SLSTR). The implemented algorithms allows modelling the sensor behavior, i.e. the spectral/spatial resampling of the input scene; the geometry of acquisition; the sensor noises and non-uniformity effects (e.g. stray-light, spectral smile and radiometric noise); and the full retrieval scheme up to Level-2 products. It is expected that the design methodology implemented in FLEX E2ES can be used as baseline for other imaging spectrometer missions and will be further expanded towards a generic E2ES software tool.

  6. Enzymatic reaction modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood.

    PubMed

    Lu, Linlin; Xia, Yunsheng

    2015-08-18

    We present herein the first reported self-assembly modulation of gold nanorods (AuNRs) by enzymatic reaction, which is further employed for colorimetric assays of cholinesterase (ChE) and organophosphate pesticides (OPs) in human blood. ChE catalyzes its substrate (acetylthiocholine) and produces thiocholine and acetate acid. The resulting thiols then react with the tips of the AuNRs by S-Au conjunction and prevent subsequent cysteine-induced AuNR end-to-end (EE) self-assembly. Correspondingly, the AuNR surface plasmon resonance is regulated, which results in a distinctly ratiometric signal output. Under optimal conditions, the linear range is 0.042 to 8.4 μU/mL, and the detection limit is as low as 0.018 μU/mL. As ChE is incubated with OPs, the enzymatic activity is inhibited. So, the cysteine-induced assembly is observed again. On the basis of this principle, OPs can be well determined ranging from 0.12 to 40 pM with a 0.039 pM detection limit. To our knowledge, the present quasi pU/mL level sensitivity for ChE and the quasi femtomolar level sensitivity for OPs are at least 500 and 7000 times lower than those of previous colorimetric methods, respectively. The ultrahigh sensitivity results from (1) the rational choice of anisotropic AuNRs as building blocks and reporters and (2) the specific structure of the enzymatic thiocholine. Because of ultrahigh sensitivity, serum samples are allowed to be extremely diluted in the assay. Accordingly, various nonspecific interactions, even from glutathione/cysteine, are well avoided. So, both ChE and OPs in human blood can be directly assayed without any prepurification, indicating the simplicity and practical promise of the proposed method.

  7. The Hurricane-Flood-Landslide Continuum: An Integrated, End-to-end Forecast and Warning System for Mountainous Islands in the Tropics

    NASA Astrophysics Data System (ADS)

    Golden, J.; Updike, R. G.; Verdin, J. P.; Larsen, M. C.; Negri, A. J.; McGinley, J. A.

    2004-12-01

    In the 10 days of 21-30 September 1998, Hurricane Georges left a trail of destruction in the Caribbean region and U.S. Gulf Coast. Subsequently, in the same year, Hurricane Mitch caused widespread destruction and loss of life in four Central American nations, and in December,1999 a tropical disturbance impacted the north coast of Venezuela causing hundreds of deaths and several million dollars of property loss. More recently, an off-season disturbance in the Central Caribbean dumped nearly 250 mm rainfall over Hispaniola during the 24-hr period on May 23, 2004. Resultant flash floods and debris flows in the Dominican Republic and Haiti killed at least 1400 people. In each instance, the tropical system served as the catalyst for major flooding and landslides at landfall. Our goal is to develop and transfer an end-to-end warning system for a prototype region in the Central Caribbean, specifically the islands of Puerto Rico and Hispaniola, which experience frequent tropical cyclones and other disturbances. The envisioned system would include satellite and surface-based observations to track and nowcast dangerous levels of precipitation, atmospheric and hydrological models to predict short-term runoff and streamflow changes, geological models to warn when and where landslides and debris flows are imminent, and the capability to communicate forecast guidance products via satellite to vital government offices in Puerto Rico, Haiti, and the Dominican Republic. In this paper, we shall present a preliminary proof-of-concept study for the May 21-24, 2004 floods and debris-flows over Hispaniola to show that the envisaged flow of data, models and graphical products can produce the desired warning outputs. The multidisciplinary research and technology transfer effort will require blending the talents of hydrometeorologists, geologists, remote sensing and GIS experts, and social scientists to ensure timely delivery of tailored graphical products to both weather offices and local

  8. Assessing the value of seasonal climate forecast information through an end-to-end forecasting framework: Application to U.S. 2012 drought in central Illinois

    NASA Astrophysics Data System (ADS)

    Shafiee-Jood, Majid; Cai, Ximing; Chen, Ligang; Liang, Xin-Zhong; Kumar, Praveen

    2014-08-01

    This study proposes an end-to-end forecasting framework to incorporate operational seasonal climate forecasts to help farmers improve their decisions prior to the crop growth season, which are vulnerable to unanticipated drought conditions. The framework couples a crop growth model with a decision-making model for rainfed agriculture and translates probabilistic seasonal forecasts into more user-related information that can be used to support farmers' decisions on crop type and some market choices (e.g., contracts with ethanol refinery). The regional Climate-Weather Research and Forecasting model (CWRF) driven by two operational general circulation models (GCMs) is used to provide the seasonal forecasts of weather parameters. To better assess the developed framework, CWRF is also driven by observational reanalysis data, which theoretically can be considered as the best seasonal forecast. The proposed framework is applied to the Salt Creek watershed in Illinois that experienced an extreme drought event during 2012 crop growth season. The results show that the forecasts cannot capture the 2012 drought condition in Salt Creek and therefore the suggested decisions can make farmers worse off if the suggestions are adopted. Alternatively, the optimal decisions based on reanalysis-based CWRF forecasts, which can capture the 2012 drought conditions, make farmers better off by suggesting "no-contract" with ethanol refineries. This study suggests that the conventional metric used for ex ante value assessment is not capable of providing meaningful information in the case of extreme drought. Also, it is observed that institutional interventions (e.g., crop insurance) highly influences farmers' decisions and, thereby, the assessment of forecast value.

  9. A novel PON based UMTS broadband wireless access network architecture with an algorithm to guarantee end to end QoS

    NASA Astrophysics Data System (ADS)

    Sana, Ajaz; Hussain, Shahab; Ali, Mohammed A.; Ahmed, Samir

    2007-09-01

    In this paper we proposes a novel Passive Optical Network (PON) based broadband wireless access network architecture to provide multimedia services (video telephony, video streaming, mobile TV, mobile emails etc) to mobile users. In the conventional wireless access networks, the base stations (Node B) and Radio Network Controllers (RNC) are connected by point to point T1/E1 lines (Iub interface). The T1/E1 lines are expensive and add up to operating costs. Also the resources (transceivers and T1/E1) are designed for peak hours traffic, so most of the time the dedicated resources are idle and wasted. Further more the T1/E1 lines are not capable of supporting bandwidth (BW) required by next generation wireless multimedia services proposed by High Speed Packet Access (HSPA, Rel.5) for Universal Mobile Telecommunications System (UMTS) and Evolution Data only (EV-DO) for Code Division Multiple Access 2000 (CDMA2000). The proposed PON based back haul can provide Giga bit data rates and Iub interface can be dynamically shared by Node Bs. The BW is dynamically allocated and the unused BW from lightly loaded Node Bs is assigned to heavily loaded Node Bs. We also propose a novel algorithm to provide end to end Quality of Service (QoS) (between RNC and user equipment).The algorithm provides QoS bounds in the wired domain as well as in wireless domain with compensation for wireless link errors. Because of the air interface there can be certain times when the user equipment (UE) is unable to communicate with Node B (usually referred to as link error). Since the link errors are bursty and location dependent. For a proposed approach, the scheduler at the Node B maps priorities and weights for QoS into wireless MAC. The compensations for errored links is provided by the swapping of services between the active users and the user data is divided into flows, with flows allowed to lag or lead. The algorithm guarantees (1)delay and throughput for error-free flows,(2)short term fairness

  10. RTEMP: Exploring an end-to-end, agnostic platform for multidisciplinary real-time analytics in the space physics community and beyond

    NASA Astrophysics Data System (ADS)

    Chaddock, D.; Donovan, E.; Spanswick, E.; Jackel, B. J.

    2014-12-01

    Large-scale, real-time, sensor-driven analytics are a highly effective set of tools in many research environments; however, the barrier to entry is expensive and the learning curve is steep. These systems need to operate efficiently from end to end, with the key aspects being data transmission, acquisition, management and organization, and retrieval. When building a generic multidisciplinary platform, acquisition and data management needs to be designed with scalability and flexibility as the primary focus. Additionally, in order to leverage current sensor web technologies, the integration of common sensor data standards (ie. SensorML and SWE Services) should be supported. Perhaps most important, researchers should be able to get started and integrate the platform into their set of research tools as easily and quickly as possible. The largest issue with current platforms is that the sensor data must be formed and described using the previously mentioned standards. As useful as these standards are for organizing data, they are cumbersome to adopt, often restrictive, and are required to be geospatially-driven. Our solution, RTEMP (Real-time Environment Monitoring Platform), is a real-time analytics platform with over ten years and an estimated two million dollars of investment. It has been developed for our continuously expanding requirements of operating and building remote sensors and supporting equipment for space physics research. A key benefit of our approach is RTEMP's ability to manage agnostic data. This allows data that flows through the system to be structured in any way that best addresses the needs of the sensor operators and data users, enabling extensive flexibility and streamlined development and research. Here we begin with an overview of RTEMP and how it is structured. Additionally, we will showcase the ways that we are using RTEMP and how it is being adopted by researchers in an increasingly broad range of other research fields. We will lay out a

  11. SU-E-J-194: Dynamic Tumor Tracking End-To-End Testing Using a 4D Thorax Phantom and EBT3 Films

    SciTech Connect

    Su, Z; Wu, J; Li, Z; Mamalui-Hunter, M

    2014-06-01

    Purpose: To quantify the Vero linac dosimetric accuracy of the tumor dynamic tracking treatment using EBT3 film embedded in a 4D thorax phantom. Methods: A dynamic thorax phantom with tissue equivalent materials and a film insert were used in this study. The thorax phantom was scanned in 4DCT mode with a viscoil embedded in its film insert composed of lung equivalent material. Dynamic tracking planning was performed using the 50% phase CT set with 5 conformal beams at gantry angles of 330, 15, 60, 105 and 150 degrees. Each field is a 3cm by 3cm square centered at viscoil since there was no solid mass target. Total 3 different 1–2cos4 motion profiles were used with varied motion magnitude and cycle frequency. Before treatment plan irradiation, a 4D motion model of the target was established using a series of acquired fluoroscopic images and infrared markers motion positions. During irradiation, fluoroscopic image monitoring viscoil motion was performed to verify model validity. The irradiated films were scanned and the dose maps were compared to the planned Monte Carlo dose distributions. Gamma analyses using 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria were performed and presented. Results: For each motion pattern, a 4D motion model was built successfully and the target tracking performance was verified with fluoroscopic monitoring of the viscoil motion and its model predicted locations. The film gamma analysis showed the average pass rates among the 3 motion profiles are 98.14%, 96.2%, 91.3% and 85.61% for 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria. Conclusion: Target dynamic tracking was performed using patient-like breathing patterns in a 4D thorax phantom with EBT3 film insert and a viscoil. There was excellent agreement between acquired and planned dose distributions for all three target motion patterns. This study performed end-to-end testing and verified the treatment accuracy of tumor dynamic tracking.

  12. SU-E-J-25: End-To-End (E2E) Testing On TomoHDA System Using a Real Pig Head for Intracranial Radiosurgery

    SciTech Connect

    Corradini, N; Leick, M; Bonetti, M; Negretti, L

    2015-06-15

    Purpose: To determine the MVCT imaging uncertainty on the TomoHDA system for intracranial radiosurgery treatments. To determine the end-to-end (E2E) overall accuracy of the TomoHDA system for intracranial radiosurgery. Methods: A pig head was obtained from the butcher, cut coronally through the brain, and preserved in formaldehyde. The base of the head was fixed to a positioning plate allowing precise movement, i.e. translation and rotation, in all 6 axes. A repeatability test was performed on the pig head to determine uncertainty in the image bone registration algorithm. Furthermore, the test studied images with MVCT slice thicknesses of 1 and 3 mm in unison with differing scan lengths. A sensitivity test was performed to determine the registration algorithm’s ability to find the absolute position of known translations/rotations of the pig head. The algorithm’s ability to determine absolute position was compared against that of manual operators, i.e. a radiation therapist and radiation oncologist. Finally, E2E tests for intracranial radiosurgery were performed by measuring the delivered dose distributions within the pig head using Gafchromic films. Results: The repeatability test uncertainty was lowest for the MVCTs of 1-mm slice thickness, which measured less than 0.10 mm and 0.12 deg for all axes. For the sensitivity tests, the bone registration algorithm performed better than human eyes and a maximum difference of 0.3 mm and 0.4 deg was observed for the axes. E2E test results in absolute position difference measured 0.03 ± 0.21 mm in x-axis and 0.28 ± 0.18 mm in y-axis. A maximum difference of 0.32 and 0.66 mm was observed in x and y, respectively. The average peak dose difference between measured and calculated dose was 2.7 cGy or 0.4%. Conclusion: Our tests using a pig head phantom estimate the TomoHDA system to have a submillimeter overall accuracy for intracranial radiosurgery.

  13. SU-E-T-19: A New End-To-End Test Method for ExacTrac for Radiation and Plan Isocenter Congruence

    SciTech Connect

    Lee, S; Nguyen, N; Liu, F; Huang, Y; Jung, J; Pyakuryal, A; Jang, S

    2014-06-01

    Purpose: To combine and integrate quality assurance (QA) of target localization and radiation isocenter End to End (E2E) test of BrainLAB ExacTrac system, a new QA approach was devised using anthropomorphic head and neck phantom. This test insures the target localization as well as radiation isocenter congruence which is one step ahead the current ExacTrac QA procedures. Methods: The head and neck phantom typically used for CyberKnife E2E test was irradiated to the sphere target that was visible in CT-sim images. The CT-sim was performed using 1 mm thickness slice with helical scanning technique. The size of the sphere was 3-cm diameter and contoured as a target volume using iPlan V.4.5.2. A conformal arc plan was generated using MLC-based with 7 fields, and five of them were include couch rotations. The prescription dose was 5 Gy and 95% coverage to the target volume. For the irradiation, two Gafchromic films were perpendicularly inserted into the cube that hold sphere inside. The linac used for the irradiation was TrueBeam STx equipped with HD120 MLC. In order to use ExacTrac, infra-red head–array was used to correlate orthogonal X-ray images. Results: Using orthogonal X-rays of ExacTrac the phantom was positioned. For each field, phantom was check again with X-rays and re-positioned if necessary. After each setup using ExacTrac, the target was irradiated. The films were analyzed to determine the deviation of the radiation isocenter in all three dimensions: superior-inferior, left-right and anterior-posterior. The total combining error was found to be 0.76 mm ± 0.05 mm which was within sub-millimeter accuracy. Conclusion: Until now, E2E test for ExacTrac was separately implemented to test image localization and radiation isocenter. This new method can be used for periodic QA procedures.

  14. Quantifying residual ionospheric errors in GNSS radio occultation bending angles based on ensembles of profiles from end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Kirchengast, G.; Zhang, K.; Norman, R.; Li, Y.; Zhang, S. C.; Fritzer, J.; Schwaerz, M.; Wu, S. Q.; Tan, Z. X.

    2015-01-01

    The radio occultation (RO) technique using signals from the Global Navigation Satellite System (GNSS), in particular from the Global Positioning System (GPS) so far, is meanwhile widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source in RO measurements at stratospheric altitudes and a linear ionospheric correction of dual-frequency RO bending angles is commonly used to remove the first-order ionospheric effect. However, the residual ionopheric error (RIE) can still be significant so that it needs to be further mitigated for high accuracy applications, especially above about 30 km altitude where the RIE is most relevant compared to the magnitude of the neutral atmospheric bending angle. Quantification and careful analyses for better understanding of the RIE is therefore important towards enabling benchmark-quality stratospheric RO retrievals. Here we present such an analysis of bending angle RIEs covering the stratosphere and mesosphere, using quasi-realistic end-to-end simulations for a full-day ensemble of RO events. Based on the ensemble simulations we assessed the variation of bending angle RIEs, both biases and SDs, with solar activity, latitudinal region, and with or without the assumption of ionospheric spherical symmetry and of co-existing observing system errors. We find that the bending angle RIE biases in the upper stratosphere and mesosphere, and in all latitudinal zones from low- to high-latitudes, have a clear negative tendency and a magnitude increasing with solar activity, in line with recent empirical studies based on real RO data. The maximum RIE biases are found at low latitudes during daytime, where they amount to with in -0.03 to -0.05 μrad, the smallest at high latitudes (0 to -0.01 μrad; quiet space weather and winter conditions). Ionospheric spherical symmetry or asymmetries about the RO event location have only a minor influence on

  15. Quantifying residual ionospheric errors in GNSS radio occultation bending angles based on ensembles of profiles from end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Liu, C. L.; Kirchengast, G.; Zhang, K.; Norman, R.; Li, Y.; Zhang, S. C.; Fritzer, J.; Schwaerz, M.; Wu, S. Q.; Tan, Z. X.

    2015-07-01

    The radio occultation (RO) technique using signals from the Global Navigation Satellite System (GNSS), in particular from the Global Positioning System (GPS) so far, is currently widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source in RO measurements at stratospheric altitudes, and a linear ionospheric correction of dual-frequency RO bending angles is commonly used to remove the first-order ionospheric effect. However, the residual ionospheric error (RIE) can still be significant so that it needs to be further mitigated for high-accuracy applications, especially above about 30 km altitude where the RIE is most relevant compared to the magnitude of the neutral atmospheric bending angle. Quantification and careful analyses for better understanding of the RIE is therefore important for enabling benchmark-quality stratospheric RO retrievals. Here we present such an analysis of bending angle RIEs covering the stratosphere and mesosphere, using quasi-realistic end-to-end simulations for a full-day ensemble of RO events. Based on the ensemble simulations we assessed the variation of bending angle RIEs, both biases and standard deviations, with solar activity, latitudinal region and with or without the assumption of ionospheric spherical symmetry and co-existing observing system errors. We find that the bending angle RIE biases in the upper stratosphere and mesosphere, and in all latitudinal zones from low to high latitudes, have a clear negative tendency and a magnitude increasing with solar activity, which is in line with recent empirical studies based on real RO data although we find smaller bias magnitudes, deserving further study in the future. The maximum RIE biases are found at low latitudes during daytime, where they amount to within -0.03 to -0.05 μrad, the smallest at high latitudes (0 to -0.01 μrad; quiet space weather and winter conditions

  16. Planning for Mars Sample Return: Results from the MEPAG Mars Sample Return End-to-End International Science Analysis Group (E2E-iSAG)

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Sephton, M.; Mepag E2E-Isag

    2011-12-01

    The National Research Council 2011 Planetary Decadal Survey (2013-2022) placed beginning a Mars sample return campaign (MSR) as the top priority for large Flagship missions in the coming decade. Recent developments in NASA-ESA collaborations and Decadal Survey recommendations indicate MSR likely will be an international effort. A joint ESA-NASA 2018 rover (combining the previously proposed ExoMars and MAX-C missions), designed, in part, to collect and cache samples, would thus represent the first of a 3-mission MSR campaign. The End-to-End International Science Analysis Group (E2E-iSAG) was chartered by MEPAG in August 2010 to develop and prioritize MSR science objectives and investigate implications of these objectives for defining the highest priority sample types, landing site selection criteria (and identification of reference landing sites to support engineering planning), requirements for in situ characterization on Mars to support sample selection, and priorities/strategies for returned sample analyses to determine sample sizes and numbers that would meet the objectives. MEPAG approved the E2E-iSAG report in June 2011. Science objectives, summarized in priority order, are: (1) critically assess any evidence for past life or its chemical precursors, and place constraints on past habitability and potential for preservation of signs of life, (2) quantitatively constrain age, context and processes of accretion, early differentiation and magmatic and magnetic history, (3) reconstruct history of surface and near-surface processes involving water, (4) constrain magnitude, nature, timing, and origin of past climate change, (5) assess potential environmental hazards to future human exploration, (6) assess history and significance of surface modifying processes, (7) constrain origin and evolution of the Martian atmosphere, (8) evaluate potential critical resources for future human explorers. All returned samples also would be fully evaluated for extant life as a

  17. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S

  18. Micro-ARES, an electric-field sensor for ExoMars 2016: Electric fields modelling, sensitivity evaluations and end-to-end tests.

    NASA Astrophysics Data System (ADS)

    Déprez, Grégoire; Montmessin, Franck; Witasse, Olivier; Lapauw, Laurent; Vivat, Francis; Abbaki, Sadok; Granier, Philippe; Moirin, David; Trautner, Roland; Hassen-Khodja, Rafik; d'Almeida, Éric; Chardenal, Laurent; Berthelier, Jean-Jacques; Esposito, Francesca; Debei, Stefano; Rafkin, Scott; Barth, Erika

    2014-05-01

    Earth and transposed to the Martian atmospheric parameters. Knowing the expected electric fields and simulating them, the next step in order to evaluate the performance of the instrument is to determine its sensitivity by modelling the response of the instrument. The last step is to confront the model of the instrument, and the expected results for a given signal with the effective outputs of the electric board with the same signal as an input. To achieve this end-to-end test, we use a signal generator followed by an electrical circuit reproducing the electrode behaviour in the Martian environment, in order to inject a realistic electric signal in the processing board and finally compare the produced formatted data with the expected ones.

  19. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASAs Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM

  20. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW

  1. SU-E-T-109: Development of An End-To-End Test for the Varian TrueBeamtm with a Novel Multiple-Dosimetric Modality H and N Phantom

    SciTech Connect

    Zakjevskii, V; Knill, C; Rakowski, J; Snyder, M

    2014-06-01

    Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Methods: The initial end-to-end test and custom H and N phantom were designed to yield maximum information in anatomical regions significant to H and N plans with respect to: i) geometric accuracy, ii) dosimetric accuracy, and iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. A CT image was taken with a 1mm slice thickness. The CT was imported into Varian's Eclipse treatment planning system, where OARs and the PTV were contoured. A clinical template was used to create an eight field static gantry angle IMRT plan. After optimization, dose was calculated using the Analytic Anisotropic Algorithm with inhomogeneity correction. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film and ion chambers. Ion chamber dose measurements were compared to the TPS. Films were analyzed with FilmQAPro using composite gamma index. Results: Film analysis for the initial end-to-end plan with a geometrically simple PTV showed average gamma pass rates >99% with a passing criterion of 3% / 3mm. Film analysis of a plan with a more realistic, ie. complex, PTV yielded pass rates >99% in clinically important regions containing the PTV, spinal cord and parotid glands. Ion chamber measurements were on average within 1.21% of calculated dose for both plans. Conclusion: trials have demonstrated that our end-to-end testing methods provide baseline values for the dosimetric and geometric accuracy of Varian's TrueBeam system.

  2. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T. ); Roberts, K.H. . Walter A. Haas School of Business)

    1992-01-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission's (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  3. Outage management: A case study

    SciTech Connect

    Haber, S.B.; Barriere, M.T.; Roberts, K.H.

    1992-09-01

    Outage management issues identified from a field study conducted at a two-unit commercial pressurized water reactor (PWR), when one unit was in a refueling outage and the other unit was at full power operation, are the focus of this paper. The study was conduced as part of the US Nuclear Regulatory Commission`s (NRC) organizational factors research program, and therefore the issues to be addressed are from an organizational perspective. Topics discussed refer to areas identified by the NRC as critical for safety during shutdown operations, including outage planning and control, personnel stress, and improvements in training and procedures. Specifically, issues in communication, management attention, involvement and oversight, administrative processes, organizational culture, and human resources relevant to each of the areas are highlighted by example from field data collection. Insights regarding future guidance in these areas are presented based upon additional data collection subsequent to the original study.

  4. FPL's Christmas 1991 transmission outages

    SciTech Connect

    Burnham, J.T.; Busch, D.W.; Renowden, J.D. . Transmission Line Dept.)

    1993-10-01

    A record number of contamination related outages occurred on FPL transmission lines during Christmas of 1991 and resulted in an investigation of inservice insulator performance. The field investigation process used was enhanced by recent improvements in outage data recording. Also used in the analysis were weather information, the results of recently completed accelerated aging tests of polymers, and specially conducted tests on the effects of weathering steel stain on porcelain insulators. Specific insulator problems were identified and actions taken to reduce the possibility of recurrence.

  5. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near

  6. Demonstration of end-to-end cloud-DSL with a PON-based fronthaul supporting 5.76-Gb/s throughput with 48 eCDMA-encoded 1024-QAM discrete multi-tone signals.

    PubMed

    Fang, Liming; Zhou, Lei; Liu, Xiang; Zhang, Xiaofeng; Sui, Meng; Effenberger, Frank; Zhou, Jun

    2015-05-18

    We experimentally demonstrate an end-to-end ultra-broadband cloud-DSL network using passive optical network (PON) based fronthaul with electronic code-division-multiple-access (eCDMA) encoding and decoding. Forty-eight signals that are compliant with the very-high-bit-rate digital subscriber line 2 (VDSL2) standard are transmitted with a record throughput of 5.76 Gb/s over a hybrid link consisting of a 20-km standard single-mode fiber and a 100-m twisted pair.

  7. End-to-end military pain management

    PubMed Central

    Aldington, D. J.; McQuay, H. J.; Moore, R. A.

    2011-01-01

    The last three years have seen significant changes in the Defence Medical Services approach to trauma pain management. This article seeks to outline these changes that have occurred at every level of the casualty's journey along the chain of evacuation, from the point of injury to rehabilitation and either continued employment in the Services or to medical discharge. Particular attention is paid to the evidence for the interventions used for both acute pain and chronic pain management. Also highlighted are possible differences in pain management techniques between civilian and military casualties. PMID:21149362

  8. End-to-end image quality assessment

    NASA Astrophysics Data System (ADS)

    Raventos, Joaquin

    2012-05-01

    An innovative computerized benchmarking approach (US Patent pending Sep 2011) based on extensive application of photometry, geometrical optics, and digital media using a randomized target, for a standard observer to assess the image quality of video imaging systems, at different day time, and low-light luminance levels. It takes into account, the target's contrast and color characteristics, as well as the observer's visual acuity and dynamic response. This includes human vision as part of the "extended video imaging system" (EVIS), and allows image quality assessment by several standard observers simultaneously.

  9. Pilot End-to-End Calibration Results

    NASA Astrophysics Data System (ADS)

    Misawa, R.; Bernard, J.-Ph.; Ade, P.; Andre, Y.; de Bernardis, P.; Bautista, L.; Boulade, O.; Bousquet, F.; Bouzit, M.; Bray, N.; Brysbaert, C.; Buttice, V.; Caillat, A.; Chaigneau, M.; Charra, M.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J. P.; Engel, C.; Etcheto, P.; Evrard, J.; Gelot, P.; Gomes, A.; Grabarnik, S.; Griffin, M.; Hargrave, P.; Jonathan, A.; Laureijs, R.; Laurens, A.; Lepennec, Y.; Leriche, B.; Longval, Y.; Martignac, J.; Marty, C.; Marty, W.; Maestre, S.; Masi, S.; Mirc, F.; Montel, J.; Motier, L.; Mot, B.; Narbonne, J.; Nicot, J. M.; Otrio, G.; Pajot, F.; Perot, E.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriquez, L.; Roudil, G.; Saccoccio, M.; Salatino, M.; Savini, G.; Simonella, O.; Tauber, J.; Tapie, P.; Tucker, C.; Versepuech, G.

    2015-09-01

    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne astronomy experiment designed to study the linear polarization of the Far Infra-Red emission, 240 ~im (1.2 THz) and 550 ~tm (545 GHz) with an angular resolution of a few minutes of arc, from dust grains present in the diffuse interstellar medium, in our Galaxy and nearby galaxies. The polarisation of light is measured using a half-wave plate (HWP). We performed the instrumental tests from 2012 to 2014 and are planning a first scientific flight in September 2015 from Timmins, Ontario, Canada. This paper describes the measurement principles of PILOT, the results of the laboratory tests and its sky coverage. These include defocus tests, transmission measurements using a Fourier Transform Spectrometer at various positions of the HWP, and identification of internal straylight.

  10. A comparative study of red and blue light-emitting diodes and low-level laser in regeneration of the transected sciatic nerve after an end to end neurorrhaphy in rabbits.

    PubMed

    Takhtfooladi, Mohammad Ashrafzadeh; Sharifi, Davood

    2015-12-01

    This study aimed at evaluating the effects of red and blue light-emitting diodes (LED) and low-level laser (LLL) on the regeneration of the transected sciatic nerve after an end-to-end neurorrhaphy in rabbits. Forty healthy mature male New Zealand rabbits were randomly assigned into four experimental groups: control, LLL (680 nm), red LED (650 nm), and blue LED (450 nm). All animals underwent the right sciatic nerve neurotmesis injury under general anesthesia and end-to-end anastomosis. The phototherapy was initiated on the first postoperative day and lasted for 14 consecutive days at the same time of the day. On the 30th day post-surgery, the animals whose sciatic nerves were harvested for histopathological analysis were euthanized. The nerves were analyzed and quantified the following findings: Schwann cells, large myelinic axons, and neurons. In the LLL group, as compared to other groups, an increase in the number of all analyzed aspects was observed with significance level (P < 0.05). This finding suggests that postoperative LLL irradiation was able to accelerate and potentialize the peripheral nerve regeneration process in rabbits within 14 days of irradiation.

  11. Efficacy and safety of a NiTi CAR 27 compression ring for end-to-end anastomosis compared with conventional staplers: A real-world analysis in Chinese colorectal cancer patients

    PubMed Central

    Lu, Zhenhai; Peng, Jianhong; Li, Cong; Wang, Fulong; Jiang, Wu; Fan, Wenhua; Lin, Junzhong; Wu, Xiaojun; Wan, Desen; Pan, Zhizhong

    2016-01-01

    OBJECTIVES: This study aimed to evaluate the safety and efficacy of a new nickel-titanium shape memory alloy compression anastomosis ring, NiTi CAR 27, in constructing an anastomosis for colorectal cancer resection compared with conventional staples. METHODS: In total, 234 consecutive patients diagnosed with colorectal cancer receiving sigmoidectomy and anterior resection for end-to-end anastomosis from May 2010 to June 2012 were retrospectively analyzed. The postoperative clinical parameters, postoperative complications and 3-year overall survival in 77 patients using a NiTi CAR 27 compression ring (CAR group) and 157 patients with conventional circular staplers (STA group) were compared. RESULTS: There were no statistically significant differences between the patients in the two groups in terms of general demographics and tumor features. A clinically apparent anastomotic leak occurred in 2 patients (2.6%) in the CAR group and in 5 patients (3.2%) in the STA group (p=0.804). These eight patients received a temporary diverting ileostomy. One patient (1.3%) in the CAR group was diagnosed with anastomotic stricture through an electronic colonoscopy after 3 months postoperatively. The incidence of postoperative intestinal obstruction was comparable between the two groups (p=0.192). With a median follow-up duration of 39.6 months, the 3-year overall survival rate was 83.1% in the CAR group and 89.0% in the STA group (p=0.152). CONCLUSIONS: NiTi CAR 27 is safe and effective for colorectal end-to-end anastomosis. Its use is equivalent to that of the conventional circular staplers. This study suggests that NiTi CAR 27 may be a beneficial alternative in colorectal anastomosis in Chinese colorectal cancer patients. PMID:27276395

  12. Contingency Analysis of Cascading Line Outage Events

    SciTech Connect

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  13. Outage management and health physics issue, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles/reports in this issue include: India: a potential commercial opportunity, a U.S. Department of Commerce Report, by Joe Neuhoff and Justin Rathke; The changing climate for nuclear energy, by Skip Bowman, Nuclear Energy Insitute; Selecting protective clothing, by J. Mark Price, Southern California Edison; and Succssful refurbishment outage, by Sudesh K. Gambhir, Omaha Public Power District. Industry innovation articles in this issue are: Containment radiation monitoring spiking, by Michael W. Lantz and Robert Routolo, Arizona Public Service Company; Improved outage performance, by Michael Powell and Troy Wilfong, Arizona Public Service Company, Palo Verde Nuclear Generating Station; Stop repacking valves and achieve leak-free performance, by Kenneth Hart, PPL Susquehanna LLC; and Head assembly upgrade package, by Timothy Petit, Dominion Nuclear.

  14. Outage managment and health physics issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2008-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include: Outage optimization initiatives, by George B. Beam, AREVA NP, Inc.; New plant based on excellent track records, by Jim Scarola, Progress Energy; Meeting customer needs and providing environmental benefits, by Peter S. Hastings, Duke Energy; Plants with 3-D design, by Jack A. Bailey, Tennessee Valley Authority; and Highest quality with exceptional planning, by Jason A. Walls, Duke Energy. Industry innovation articles include: Integrated exposure reduction plan, by Ed Wolfe, Exelon; Performance-based radiation worker training, by Joe Giuffre and Timothy Vriezerma, American Electric Power.

  15. Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management

    SciTech Connect

    St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.; Medema, Heather D.; Gertman, David I.

    2014-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear power plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

  16. Benchmark Report on Key Outage Attributes: An Analysis of Outage Improvement Opportunities and Priorities

    SciTech Connect

    Germain, Shawn St.; Farris, Ronald

    2014-09-01

    Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally do not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.

  17. Outage capacity of FSO link with pointing errors and link blockage.

    PubMed

    Djordjevic, Goran T; Petkovic, Milica I; Spasic, Miodrag; Antic, Dragan S

    2016-01-11

    In this paper, we analyze the outage capacity performance of free-space optical (FSO) systems. More precisely, taking the stochastic temporary blockage of the laser beam, atmospheric turbulence, misalignment between transmitter laser and receiver photodiode and path loss into account, we derive novel accurate analytical expressions for the outage capacity. The intensity fluctuations of the received signal are modeled by a Gamma-Gamma distribution with parameters directly related to the wide range of atmospheric conditions. The analytical results are validated by Monte Carlo simulations. Furthermore, when the intensity fluctuations are caused only by atmospheric turbulence, derived expressions are reduced to the simpler forms already presented in literature. The numerical and simulation results show that the link blockage causes appearance of the outage floor that is a significant energetic characteristic of an FSO system. The results also show that there exists an optimal value of the laser beam radius at the waist for minimizing outage probability in order to achieve the specified outage capacity. This optimal value depends on atmospheric turbulence strength and standard deviation of pointing errors, but it is also strongly dependent on the probability of link blockage.

  18. The Dosimetric Importance of Six Degree of Freedom Couch End to End Quality Assurance for SRS/SBRT Treatments when Comparing Intensity Modulated Radiation Therapy to Volumetric Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Ulizio, Vincent Michael

    With the advancement of technology there is an increasing ability for lesions to be treated with higher radiation doses each fraction. This also allows for low fractionated treatments. Because the patient is receiving a higher dose of radiation per fraction and because of the fast dose falloff in these targets there must be extreme accuracy in the delivery. The 6 DOF couch allows for extra rotational corrections and for a more accurate set-up. The movement of the couch needs to be verified to be accurate and because of this, end to end quality assurance tests for the couch have been made. After the set-up is known to be accurate then different treatment techniques can be studied. SBRT of the Spine has a very fast dose falloff near the spinal cord and was typically treated with IMRT. Treatment plans generated using this technique tend to have streaks of low dose radiation, so VMAT is being studied to determine if this treatment technique can reduce the low dose radiation volume as well as improve OAR sparing. For the 6 DOF couch QA, graph paper is placed on the anterior and right lateral sides of the VisionRT OSMS Cube Phantom. Each rotational shift is then applied individually, with a 3 degree shift in the positive and negative directions for pitch and roll. A mark is drawn on the paper to record each shift. A CBCT is then taken of the Cube and known shifts are applied and then an additional CBCT is taken to return the Cube to isocenter. The original IMRT plans for SBRT of the Spine are evaluated and then a plan is made utilizing VMAT. These plans are then compared for low dose radiation, OAR sparing, and conformity. If the original IMRT plan is determined to be an inferior treatment to what is acceptable, then this will be re-planned and compared to the VMAT plan. The 6 DOF couch QA tests have proven to be accurate and reproducible. The average deviations in the 3 degree and -3 degree pitch and roll directions were 0.197, 0.068, 0.091, and 0.110 degrees

  19. Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onbaord Venus Express: "From Science Operations Planning to Data Archiving and Higher Lever Processing"

    NASA Astrophysics Data System (ADS)

    Cardesín Moinelo, Alejandro

    2010-04-01

    This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment. This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data

  20. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    SciTech Connect

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak shear

  1. Power outages, power externalities, and baby booms.

    PubMed

    Burlando, Alfredo

    2014-08-01

    Determining whether power outages have significant fertility effects is an important policy question in developing countries, where blackouts are common and modern forms of family planning are scarce. Using birth records from Zanzibar, this study shows that a month-long blackout in 2008 caused a significant increase in the number of births 8 to 10 months later. The increase was similar across villages that had electricity, regardless of the level of electrification; villages with no electricity connections saw no changes in birth numbers. The large fertility increase in communities with very low levels of electricity suggests that the outage affected the fertility of households not connected to the grid through some spillover effect. Whether the baby boom is likely to translate to a permanent increase in the population remains unclear, but this article highlights an important hidden consequence of power instability in developing countries. It also suggests that electricity imposes significant externality effects on rural populations that have little exposure to it.

  2. Nuclear cost control focuses on refueling outages

    SciTech Connect

    Strauss, S.D.

    1995-12-01

    Extending operating cycles and shortening refueling outages are the mainstays of utility efforts to improve the economics of nuclear generation. Here are key management approaches that have contributed to recent successes. Improving operating efficiency remains the byword of nuclear power producers, as they intensify their drive to reduce operation and maintenance (O and M) costs and survive--even thrive--in a competitive environment. Because replacement-power and other costs can incur penalties of $0.5-million or more for each that a nuclear unit is inoperative--and almost $3-million/day, for one utility--refueling outages are an obvious focal point for such efforts, By the same token, the impact on the bottom line is greater and more dramatic here than for other cost-saving activities.

  3. Outage management and health physics issue, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles/reports in this issue include: A design with experience for the U.S., by Michael J. Wallace, Constellation Generation Group; Hope to be among the first, by Randy Hutchinson, Entergy Nuclear; Plans to file COLs in 2008, by Garry Miller, Progress Energy; Evolution of ICRP's recommendations, by Lars-Erik Holm, ICRP; European network on education and training in radiological protection, by Michele Coeck, SCK-CEN, Belgium; Outage managment: an important tool for improving nuclear power plant performance, by Thomas Mazour and Jiri Mandula, IAEA, Austria; and Plant profile: Exploring new paths to excellence, by Anne Thomas, Exelon Nuclear.

  4. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect

    Gregory Weatherby

    2012-05-01

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage

  5. How individual traces and interactive timelines could support outage execution - Toward an outage historian concept

    SciTech Connect

    Parfouru, S.; De-Beler, N.

    2012-07-01

    In the context of a project that is designing innovative ICT-based solutions for the organizational concept of outage management, we focus on the informational process of the OCR (Outage Control Room) underlying the execution of the outages. Informational process are based on structured and unstructured documents that have a key role in the collaborative processes and management of the outage. We especially track the structured and unstructured documents, electronically or not, from creation to sharing. Our analysis allows us to consider that the individual traces produced by an individual participant with a specific role could be multi-purpose and support sharing between participants without creating duplication of work. The ultimate goal is to be able to generate an outage historian, that is not just focused on highly structured information, which could be useful to improve the continuity of information between participants. We study the implementation of this approach through web technologies and social media tools to address this issue. We also investigate the issue of data access through interactive visualization timelines coupled with other modality's to assist users in the navigation and exploration of the proposed historian. (authors)

  6. Cycle 7 outage experience. [Fast Flux Test Facility (FFTF)

    SciTech Connect

    Gadeken, A.D.

    1986-03-01

    The scheduled 58-day refueling outage in preparation for the seventh operating cycle of the Fast Flux Test Facility (FFTF) was successfully completed three days ahead of schedule. The planning and execution of the outage was greatly aided by Project/2 automated scheduling capabilities. For example, the use of ''maintenance windows'' and resource loading capabilities was particularly effective. The value of the planning process was demonstrated by the smooth transition into the outage phase after an early shutdown and set the stage for our best outage to date.

  7. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  8. Improved outage management techniques for better plant availability

    SciTech Connect

    Bemer, J.P.

    1989-01-01

    To maintain high availability of nuclear generating units is one of the most important management objectives. The duration of outages-whether planned or unplanned-is the main parameter impacting on plant availability, but the planned outages, and essentially the refueling outages, are the most important in this respect, and they also have a heavy impact on the economics of plant operation. The following factors influence the duration of the outages: (1) modifications; (2) preventive maintenance operations; and (3) corrective maintenance operations of generic faults. In this paper, the authors examine how the outage management organization of Electricite de France (EdF) plants is tending to optimize the solutions to the above-mentioned points.

  9. Technology Integration Initiative In Support of Outage Management

    SciTech Connect

    Gregory Weatherby; David Gertman

    2012-07-01

    Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS) Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.

  10. End-to-End Performance Management for Large Distributed Storage

    SciTech Connect

    Almadena Chtchelkanova

    2012-03-18

    Storage systems for large distributed clusters of computer servers are themselves large and distributed. Their complexity and scale make it hard to ensure that applications using them get good, predictable performance. At the same time, shared access to the system from multiple applications, users, and internal system activities leads to a need for predictable performance. This research investigates mechanisms for improving storage system performance in large distributed storage systems through mechanisms that integrate the performance aspects of the path that I/O operations take through the system, from the application interface on the compute server, through the network, to the storate servers. The research focuses on five parts of the I/O path in a distributed storage system: I/O scheduling at the storage server, storage server cache management, client-to-server network flow control, client-to-server connection management, and client cache management.

  11. End-to-end experiment management in HPC

    SciTech Connect

    Bent, John M; Kroiss, Ryan R; Torrez, Alfred; Wingate, Meghan

    2010-01-01

    Experiment management in any domain is challenging. There is a perpetual feedback loop cycling through planning, execution, measurement, and analysis. The lifetime of a particular experiment can be limited to a single cycle although many require myriad more cycles before definite results can be obtained. Within each cycle, a large number of subexperiments may be executed in order to measure the effects of one or more independent variables. Experiment management in high performance computing (HPC) follows this general pattern but also has three unique characteristics. One, computational science applications running on large supercomputers must deal with frequent platform failures which can interrupt, perturb, or terminate running experiments. Two, these applications typically integrate in parallel using MPI as their communication medium. Three, there is typically a scheduling system (e.g. Condor, Moab, SGE, etc.) acting as a gate-keeper for the HPC resources. In this paper, we introduce LANL Experiment Management (LEM), an experimental management framework simplifying all four phases of experiment management. LEM simplifies experiment planning by allowing the user to describe their experimental goals without having to fully construct the individual parameters for each task. To simplify execution, LEM dispatches the subexperiments itself thereby freeing the user from remembering the often arcane methods for interacting with the various scheduling systems. LEM provides transducers for experiments that automatically measure and record important information about each subexperiment; these transducers can easily be extended to collect additional measurements specific to each experiment. Finally, experiment analysis is simplified by providing a general database visualization framework that allows users to quickly and easily interact with their measured data.

  12. On Estimating End-to-End Network Path Properties

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Paxson, Vern

    1999-01-01

    The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements per-formed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for are reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better.

  13. Going End to End to Deliver High-Speed Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.

  14. Kepler Mission: End-to-End System Demonstration

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.

  15. Indian Remote Sensing Satellite - End-to-end data systems

    NASA Astrophysics Data System (ADS)

    Jayaraman, V.; Rajangam, R. K.

    The first satellite (IRS-1A) of the Indian Remote Sensing Satellite program, which was established for the purpose of management of the renewable and nonrenewable resources in India, will be launched by the end of 1987 and placed in polar sun-synchronous orbit at an altitude of 904 km. The IRS-1A payload consists of a set of CCD cameras designed to produce imagery in the visible and near-IR bands; the data will be transmitted to ground both in X band and S band. The spececraft control; the reception, recording, and processing of data; and data-product dissemination and archiving will be achieved by the ground control system. This paper describes the overall IRS-1A system, with particular attention given to data systems, tracing the process of data flow from acquisition to distribution. Diagrams illustrating the make-up of the IRS-1A mission, and the procedures of data acquisition and processing are presented together with the encoding and decoding algorithms.

  16. Outages of electric power supply resulting from cable failures Boston Edison Company system

    SciTech Connect

    1980-07-01

    Factual data are provided regarding 5 electric power supply interruptions that occurred in the Boston Metropolitan area during April to June, 1979. Common to all of these outages was the failure of an underground cable as the initiating event, followed by multiple equipment failures. There was significant variation in the voltage ratings and types of cables which failed. The investigation was unable to delineate a single specific Boston Edison design operating or maintenance practice that could be cited as the cause of the outages. After reviewing the investigative report the following actions were recommended: the development and implementation of a plan to eliminate the direct current cable network; develop a network outage restoration plan; regroup primary feeder cables wherever possible to minimize the number of circuits in manholes, and to separate feeders to high load density areas; develop a program to detect incipient cable faults; evaluate the separation of the north and south sections of Back Bay network into separate networks; and, as a minimum, install the necessary facilities to make it possible to re-energize one section without interfering with the other; and re-evaluate the cathodic protection scheme where necessary. (LCL)

  17. Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels.

    PubMed

    García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2011-07-01

    Atmospheric turbulence produces fluctuations in the irradiance of the transmitted optical beam, which is known as atmospheric scintillation, severely degrading the performance over free-space optical (FSO) links. Additionally, since FSO systems are usually installed on high buildings, building sway causes vibrations in the transmitted beam, leading to an unsuitable alignment between transmitter and receiver and, hence, a greater deterioration in performance. In this paper, the outage probability as a performance measure for multiple-input/multiple-output (MIMO) FSO communication systems with intensity modulation and direct detection (IM/DD) over strong atmospheric turbulence channels with pointing errors is analyzed. Novel closed-form expressions for the outage probability as well as their corresponding asymptotic expressions are presented when the irradiance of the transmitted optical beam is susceptible to either strong turbulence conditions, following a negative exponential distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show that the diversity order is independent of the pointing error when the equivalent beam radius at the receiver is at least twice the value of the pointing error displacement standard deviation at the receiver. Simulation results are further demonstrated to confirm the analytical results. Additionally, since proper FSO transmission requires transmitters with accurate control of their beamwidth, asymptotic expressions here obtained for different diversity techniques are used to find the optimum beamwidth that minimizes the outage performance.

  18. Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models.

    PubMed

    Han, Seung-Ryong; Guikema, Seth D; Quiring, Steven M

    2009-10-01

    Electric power is a critical infrastructure service after hurricanes, and rapid restoration of electric power is important in order to minimize losses in the impacted areas. However, rapid restoration of electric power after a hurricane depends on obtaining the necessary resources, primarily repair crews and materials, before the hurricane makes landfall and then appropriately deploying these resources as soon as possible after the hurricane. This, in turn, depends on having sound estimates of both the overall severity of the storm and the relative risk of power outages in different areas. Past studies have developed statistical, regression-based approaches for estimating the number of power outages in advance of an approaching hurricane. However, these approaches have either not been applicable for future events or have had lower predictive accuracy than desired. This article shows that a different type of regression model, a generalized additive model (GAM), can outperform the types of models used previously. This is done by developing and validating a GAM based on power outage data during past hurricanes in the Gulf Coast region and comparing the results from this model to the previously used generalized linear models.

  19. Minimally Invasive Approach to Achilles Tendon Pathology.

    PubMed

    Hegewald, Kenneth W; Doyle, Matthew D; Todd, Nicholas W; Rush, Shannon M

    2016-01-01

    Many surgical procedures have been described for Achilles tendon pathology; however, no overwhelming consensus has been reached for surgical treatment. Open repair using a central or paramedian incision allows excellent visualization for end-to-end anastomosis in the case of a complete rupture and detachment and reattachment for insertional pathologies. Postoperative wound dehiscence and infection in the Achilles tendon have considerable deleterious effects on overall functional recovery and outcome and sometimes require plastic surgery techniques to achieve coverage. With the aim of avoiding such complications, foot and ankle surgeons have studied less invasive techniques for repair. We describe a percutaneous approach to Achilles tendinopathy using a modification of the Bunnell suture weave technique combined with the use of interference screws. No direct end-to-end repair of the tendon is performed, rather, the proximal stump is brought in direct proximity of the distal stump, preventing overlengthening and proximal stump retraction. This technique also reduces the suture creep often seen with end-to-end tendon repair by providing a direct, rigid suture to bone interface. We have used the new technique to minimize dissection and exposure while restoring function and accelerating recovery postoperatively. PMID:26385574

  20. Sample Results from MCU Solids Outage

    SciTech Connect

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate; An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or

  1. Vector computer implementation of power flow outage studies

    SciTech Connect

    Granelli, G.P.; Montagna, M.; Pasini, G.L. ); Marannino, P. )

    1992-05-01

    This paper presents an application of vector and parallel processing to power flow outage studies on large-scale networks. Standard sparsity programming is not well suited to the capabilities of vector and parallel computers because of the extremely short vectors processed in load flow studies. In order to improve computation efficiency, the operations required to perform both forward/backward solution and power residual calculation are gathered in the form of long FORTRAN DO loops. Two algorithms are proposed and compared with the results of a program written for scalar processing. Simulations for the outage studies on IEEE standard networks and some different configurations of the Italian and European (UCPTE) EHV systems are run on a CRAY Y-MP8/432 vector computer (and partially on a IBM 3090/200S VF). The multitasking facility of the CRAY computer is also exploited in order to shorten the wall clock time required by a complete outage simulation.

  2. Using Predictive Analytics to Predict Power Outages from Severe Weather

    NASA Astrophysics Data System (ADS)

    Wanik, D. W.; Anagnostou, E. N.; Hartman, B.; Frediani, M. E.; Astitha, M.

    2015-12-01

    The distribution of reliable power is essential to businesses, public services, and our daily lives. With the growing abundance of data being collected and created by industry (i.e. outage data), government agencies (i.e. land cover), and academia (i.e. weather forecasts), we can begin to tackle problems that previously seemed too complex to solve. In this session, we will present newly developed tools to aid decision-support challenges at electric distribution utilities that must mitigate, prepare for, respond to and recover from severe weather. We will show a performance evaluation of outage predictive models built for Eversource Energy (formerly Connecticut Light & Power) for storms of all types (i.e. blizzards, thunderstorms and hurricanes) and magnitudes (from 20 to >15,000 outages). High resolution weather simulations (simulated with the Weather and Research Forecast Model) were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This research has the potential to be used for other critical infrastructure systems (such as telecommunications, drinking water and gas distribution networks), and can be readily expanded to the entire New England region to facilitate better planning and coordination among decision-makers when severe weather strikes.

  3. Coordinate Update Algorithms for Robust Power Loading for the MU-MISO Downlink With Outage Constraints

    NASA Astrophysics Data System (ADS)

    Sohrabi, Foad; Davidson, Timothy N.

    2016-06-01

    We consider the problem of power allocation for the single-cell multi-user (MU) multiple-input single-output (MISO) downlink with quality-of-service (QoS) constraints. The base station acquires an estimate of the channels and, for a given beamforming structure, designs the power allocation so as to minimize the total transmission power required to ensure that target signal-to-interference-and-noise ratios at the receivers are met, subject to a specified outage probability. We consider scenarios in which the errors in the base station's channel estimates can be modelled as being zero-mean and Gaussian. Such a model is particularly suitable for time division duplex (TDD) systems with quasi-static channels, in which the base station estimates the channel during the uplink phase. Under that model, we employ a precise deterministic characterization of the outage probability to transform the chance-constrained formulation to a deterministic one. Although that deterministic formulation is not convex, we develop a coordinate descent algorithm that can be shown to converge to a globally optimal solution when the starting point is feasible. Insight into the structure of the deterministic formulation yields approximations that result in coordinate update algorithms with good performance and significantly lower computational cost. The proposed algorithms provide better performance than existing robust power loading algorithms that are based on tractable conservative approximations, and can even provide better performance than robust precoding algorithms based on such approximations.

  4. A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys

    SciTech Connect

    Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

    2003-11-01

    A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small

  5. Estimates of outage costs of electricity in Pakistan

    SciTech Connect

    Ashraf, J.; Sabih, F.

    1993-12-31

    This article estimates outage costs of electricity for each of the four provinces in Pakistan (Punjab, North-West Frontier Province, Baluchistan, and Sind). The term {open_quotes}power outage{close_quotes} refers to all problems associated with electricity supply, such as voltage drops (brownouts), power failures (blackouts), and load shedding. The most significant of these in Pakistan is load shedding when power supply to different consumers is shut off during different times of the day, especially during peak hours when the pressure on the system is the highest. Power shortages mainly arise during the low-water months when the effective capacity of hydropower plants drops significantly. This decline in power supplied by hydro plants cannot be made up by operating thermal power plants because of the limited availability of gas and the high cost of alternative fuels required for the operation of gas turbines.

  6. Risk Assessment of Cascading Outages: Methodologies and Challenges

    SciTech Connect

    Vaiman, Marianna; Bell, Keith; Chen, Yousu; Chowdhury, Badrul; Dobson, Ian; Hines, Paul; Papic, Milorad; Miller, Stephen; Zhang, Pei

    2012-05-31

    Abstract- This paper is a result of ongoing activity carried out by Understanding, Prediction, Mitigation and Restoration of Cascading Failures Task Force under IEEE Computer Analytical Methods Subcommittee (CAMS). The task force's previous papers are focused on general aspects of cascading outages such as understanding, prediction, prevention and restoration from cascading failures. This is the first of two new papers, which extend this previous work to summarize the state of the art in cascading failure risk analysis methodologies and modeling tools. This paper is intended to be a reference document to summarize the state of the art in the methodologies for performing risk assessment of cascading outages caused by some initiating event(s). A risk assessment should cover the entire potential chain of cascades starting with the initiating event(s) and ending with some final condition(s). However, this is a difficult task and heuristic approaches and approximations have been suggested. This paper discusses different approaches to this and suggests directions for future development of methodologies. The second paper summarizes the state of the art in modeling tools for risk assessment of cascading outages.

  7. Design Concepts for an Outage Control Center Information Dashboard

    SciTech Connect

    Hugo, Jacques Victor; St Germain, Shawn Walter; Thompson, Cheradan Jo; Whitesides, McKenzie Jo; Farris, Ronald Keith

    2015-12-01

    The nuclear industry, and the business world in general, is facing a rapidly increasing amount of data to be dealt with on a daily basis. In the last two decades, the steady improvement of data storage devices and means to create and collect data along the way influenced the manner in which we deal with information. Most data is still stored without filtering and refinement for later use. Many functions at a nuclear power plant generate vast amounts of data, with scheduled and unscheduled outages being a prime example of a source of some of the most complex data sets at the plant. To make matters worse, modern information and communications technology is making it possible to collect and store data faster than our ability to use it for making decisions. However, in most applications, especially outages, raw data has no value in itself; instead, managers, engineers and other specialists want to extract the information contained in it. The complexity and sheer volume of data could lead to information overload, resulting in getting lost in data that may be irrelevant to the task at hand, processed in an inappropriate way, or presented in an ineffective way. To prevent information overload, many data sources are ignored so production opportunities are lost because utilities lack the ability to deal with the enormous data volumes properly. Decision-makers are often confronted with large amounts of disparate, conflicting and dynamic information, which are available from multiple heterogeneous sources. Information and communication technologies alone will not solve this problem. Utilities need effective methods to exploit and use the hidden opportunities and knowledge residing in unexplored data resources. Superior performance before, during and after outages depends upon the right information being available at the right time to the right people. Acquisition of raw data is the easy part; instead, it is the ability to use advanced analytical, data processing and data

  8. Study, outlines why outages go long, short, or on-time

    SciTech Connect

    Not Available

    1993-09-01

    A recent report by a nuclear industry professional, based on a survey of outage managers at US nuclear power plants, declares that [open quotes]preplanned outage schedules appear to be grossly inaccurate, and the outage management planners and schedulers do not have a grasp of the requirements and/or the resources needed to complete the actual activities on schedule.[close quotes] It declares that [open quotes]the scheduled duration of a planned outage must be realistic.[close quotes] The study identifies personnel, planning and scheduling, and equipment/hardware as [open quotes]the primary reasons why refueling outages and outage activities finished ahead of, right on, or behind schedule.[close quotes

  9. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    SciTech Connect

    Smith, D.R.

    1997-07-01

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  10. 77 FR 25088 - Extension of the Commission's Rules Regarding Outage Reporting to Interconnected Voice Over...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... emergency response. 17. In these ways, the Commission's intervention has resulted in tangible improvements... information.'' Likewise, the Japanese government finds it necessary to require mandatory outage reporting...

  11. 76 FR 33686 - Proposed Extension of Part 4 of the Commission's Rules Regarding Outage Reporting to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... on February 27, 1992 and published in the Federal Register at 57 FR 7883, March 5, 1992, the... Outage Reporting Order, released on August 19, 2004 and published in the Federal Register at 69 FR 70316..., accurate reporting. 41. We note that Japan requires outage reporting from broadband...

  12. Use of collaboration software to improve nuclear power plant outage management

    SciTech Connect

    Germain, Shawn

    2015-02-01

    Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktop computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.

  13. Differentially Private Empirical Risk Minimization

    PubMed Central

    Chaudhuri, Kamalika; Monteleoni, Claire; Sarwate, Anand D.

    2011-01-01

    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance. PMID:21892342

  14. Estimating Power Outage Cost based on a Survey for Industrial Customers

    NASA Astrophysics Data System (ADS)

    Yoshida, Yoshikuni; Matsuhashi, Ryuji

    A survey was conducted on power outage cost for industrial customers. 5139 factories, which are designated energy management factories in Japan, answered their power consumption and the loss of production value due to the power outage in an hour in summer weekday. The median of unit cost of power outage of whole sectors is estimated as 672 yen/kWh. The sector of services for amusement and hobbies and the sector of manufacture of information and communication electronics equipment relatively have higher unit cost of power outage. Direct damage cost from power outage in whole sectors reaches 77 billion yen. Then utilizing input-output analysis, we estimated indirect damage cost that is caused by the repercussion of production halt. Indirect damage cost in whole sectors reaches 91 billion yen. The sector of wholesale and retail trade has the largest direct damage cost. The sector of manufacture of transportation equipment has the largest indirect damage cost.

  15. Power Outages, Extreme Events and Health: a Systematic Review of the Literature from 2011-2012

    PubMed Central

    Klinger, Chaamala; Landeg, Owen; Murray, Virginia

    2014-01-01

    Background Extreme events (e.g. flooding) threaten critical infrastructure including power supplies. Many interlinked systems in the modern world depend on a reliable power supply to function effectively. The health sector is no exception, but the impact of power outages on health is poorly understood. Greater understanding is essential so that adverse health impacts can be prevented and/or mitigated. Methods We searched Medline, CINAHL and Scopus for papers about the health impacts of power outages during extreme events published in 2011-2012. A thematic analysis was undertaken on the extracted information. The Public Health England Extreme Events Bulletins between 01/01/2013 - 31/03/2013 were used to identify extreme events that led to power outages during this three-month period. Results We identified 20 relevant articles. Power outages were found to impact health at many levels within diverse settings. Recurrent themes included the difficulties of accessing healthcare, maintaining frontline services and the challenges of community healthcare. We identified 52 power outages in 19 countries that were the direct consequence of extreme events during the first three months of 2013. Conclusions To our knowledge, this is the first review of the health impacts of power outages. We found the current evidence and knowledge base to be poor. With scientific consensus predicting an increase in the frequency and magnitude of extreme events due to climate change, the gaps in knowledge need to be addressed in order to mitigate the impact of power outages on global health. PMID:24459613

  16. Power outage estimation for tropical cyclones: improved accuracy with simpler models.

    PubMed

    Nateghi, Roshanak; Guikema, Seth; Quiring, Steven M

    2014-06-01

    In this article, we discuss an outage-forecasting model that we have developed. This model uses very few input variables to estimate hurricane-induced outages prior to landfall with great predictive accuracy. We also show the results for a series of simpler models that use only publicly available data and can still estimate outages with reasonable accuracy. The intended users of these models are emergency response planners within power utilities and related government agencies. We developed our models based on the method of random forest, using data from a power distribution system serving two states in the Gulf Coast region of the United States. We also show that estimates of system reliability based on wind speed alone are not sufficient for adequately capturing the reliability of system components. We demonstrate that a multivariate approach can produce more accurate power outage predictions.

  17. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy.

  18. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  19. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M; Reed, Jeffrey H

    2014-01-01

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  20. Evaluation of power outages in Connecticut during hypothetical future Hurricane Sandy scenarios

    NASA Astrophysics Data System (ADS)

    Wanik, D. W.; Anagnostou, E. N.; Astitha, M.; Frediani, M. E.; Yang, J.

    2015-12-01

    Reliable electric power is a staple of our modern society.The purpose of this work was to evaluate the occurrence of power outages under more intense, future Hurricane Sandy simulations in Connecticut. In addition, we also evaluated how many crews would be necessary to restore power in 7 days, and how different vegetation scenarios might contribute to a decrease in outages. We trained five pairwise models on each current Sandy runs (2012) as training using the random forest model (each validated using 10-fold cross-validation), and used each future Sandy run as an independent test. We predict that a future Sandy would have 2.5x as many outages as current Sandy, which would require 3.23x as many crews as current Sandy to restore power in 7 days. We also found that increased vegetation management might decrease outages, which has implications for both fair-weather and storm days of all types (i.e. blizzards, thunderstorms, ice storms). Although we have only evaluated outages for electric distribution networks, there are many other types (water supply, wastewater, telecommunications) that would likely benefit from an analysis of this type. In addition, given that we have the weather simulations already processed within our 2-km weather simulation domain, we would like to expand our vulnerability analyses to surrounding utilities in New Jersey, New York, Rhode Island, Massachusetts and New Hampshire to facilitate regional coordination among electric distribution networks.

  1. Distributed Power-Line Outage Detection Based on Wide Area Measurement System

    PubMed Central

    Zhao, Liang; Song, Wen-Zhan

    2014-01-01

    In modern power grids, the fast and reliable detection of power-line outages is an important functionality, which prevents cascading failures and facilitates an accurate state estimation to monitor the real-time conditions of the grids. However, most of the existing approaches for outage detection suffer from two drawbacks, namely: (i) high computational complexity; and (ii) relying on a centralized means of implementation. The high computational complexity limits the practical usage of outage detection only for the case of single-line or double-line outages. Meanwhile, the centralized means of implementation raises security and privacy issues. Considering these drawbacks, the present paper proposes a distributed framework, which carries out in-network information processing and only shares estimates on boundaries with the neighboring control areas. This novel framework relies on a convex-relaxed formulation of the line outage detection problem and leverages the alternating direction method of multipliers (ADMM) for its distributed solution. The proposed framework invokes a low computational complexity, requiring only linear and simple matrix-vector operations. We also extend this framework to incorporate the sparse property of the measurement matrix and employ the LSQRalgorithm to enable a warm start, which further accelerates the algorithm. Analysis and simulation tests validate the correctness and effectiveness of the proposed approaches. PMID:25051035

  2. Distributed power-line outage detection based on wide area measurement system.

    PubMed

    Zhao, Liang; Song, Wen-Zhan

    2014-01-01

    In modern power grids, the fast and reliable detection of power-line outages is an important functionality, which prevents cascading failures and facilitates an accurate state estimation to monitor the real-time conditions of the grids. However, most of the existing approaches for outage detection suffer from two drawbacks, namely: (i) high computational complexity; and (ii) relying on a centralized means of implementation. The high computational complexity limits the practical usage of outage detection only for the case of single-line or double-line outages. Meanwhile, the centralized means of implementation raises security and privacy issues. Considering these drawbacks, the present paper proposes a distributed framework, which carries out in-network information processing and only shares estimates on boundaries with the neighboring control areas. This novel framework relies on a convex-relaxed formulation of the line outage detection problem and leverages the alternating direction method of multipliers (ADMM) for its distributed solution. The proposed framework invokes a low computational complexity, requiring only linear and simple matrix-vector operations. We also extend this framework to incorporate the sparse property of the measurement matrix and employ the LSQRalgorithm to enable a warm start, which further accelerates the algorithm. Analysis and simulation tests validate the correctness and effectiveness of the proposed approaches.

  3. Detecting Power Outages with the VIIRS DNB Images - potentials and challenges

    NASA Astrophysics Data System (ADS)

    Cao, C.; Uprety, S.; Shao, X.

    2012-12-01

    Power outages after a major storm or hurricane affect millions of people. The launch of the Suomi NPP with the VIIRS significantly enhances our capability to monitor and detect power outages on a daily basis with the Day Night Band (DNB) which outperforms the traditional OSL on DMSP satellites in both spatial and radiometric resolutions. This study explores the use of the DNB for detecting power outages in the Washington DC metropolitan area in June 2012, which was the largest non-hurricane power outage in history for the region with millions of people lost power, and state of emergency declared in some states such as Virginia. The DNB data were analyzed for the period one week before and after the storm. The light loss is estimated through image differencing techniques for spatial patterns, as well as total radiance and irradiance changes as a time series. The effects of cloud absorption and scattering are evaluated using the cloud masks from VIIRS products, and the long wave thermal infrared images are also used to assist the assessment. The results show that the DNB data are very useful for both spatial and radiometric detection of light loss, but also with some challenges due to clouds and the known terminator straylight effect of the instrument for the region during summer solstice. It is expected that further refinements in the methodology will significantly reduce the uncertainties. A VIIRS Data Robotics system is also being developed which will allow the routine detection of power outages for any given location worldwide.

  4. Status Report on the Development of Micro-Scheduling Software for the Advanced Outage Control Center Project

    SciTech Connect

    Shawn St. Germain; Kenneth Thomas; Ronald Farris; Jeffrey Joe

    2014-09-01

    The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are

  5. Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.

    Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.

  6. The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds

    NASA Technical Reports Server (NTRS)

    Cooke, Brian; Thompson, Richard; Standley, Shaun

    2012-01-01

    The Kepler mission is described in overview and the Kepler technique for discovering exoplanets is discussed. The design and implementation of the Kepler spacecraft, tracing the data path from photons entering the telescope aperture through raw observation data transmitted to the ground operations team is described. The technical challenges of operating a large aperture photometer with an unprecedented 95 million pixel detector are addressed as well as the onboard technique for processing and reducing the large volume of data produced by the Kepler photometer. The technique and challenge of day-to-day mission operations that result in a very high percentage of time on target is discussed. This includes the day to day process for monitoring and managing the health of the spacecraft, the annual process for maintaining sun on the solar arrays while still keeping the telescope pointed at the fixed science target, the process for safely but rapidly returning to science operations after a spacecraft initiated safing event and the long term anomaly resolution process.The ground data processing pipeline, from the point that science data is received on the ground to the presentation of preliminary planetary candidates and supporting data to the science team for further evaluation is discussed. Ground management, control, exchange and storage of Kepler's large and growing data set is discussed as well as the process and techniques for removing noise sources and applying calibrations to intermediate data products.

  7. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells. PMID:23651286

  8. Moments of the End-to-End Vector of a Chain Molecule, Its Persistence and Distribution

    PubMed Central

    Flory, Paul J.

    1973-01-01

    The persistence vector a is defined as the configurational average of the chain vector r connecting the ends of the molecule and expressed in a reference frame fixed with respect to the first two skeletal bonds. Moments of second and higher orders in the components of r may readily be calculated for real chains in the rotational isomeric state approximation, and from them the corresponding moments of the vector ρ = r - a measured from the terminus of a. Development of the density distribution of ρ about a is proposed as an alternative to the customary treatment of the density distribution of r about r = 0 on the assumption that this latter distribution should be (approximately) symmetric. Past difficulties in the analysis of cyclization equilibria involving rings of moderate size, such as occur in single strands of polynucleotide chains, conceivably may be overcome by adoption of this alternative. PMID:16592094

  9. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    SciTech Connect

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  10. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    DOE PAGESBeta

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less

  11. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  12. Emergence of Laplace therapeutics: declaring an end to end-stage heart failure.

    PubMed

    Mehra, Mandeep R; Uber, Patricia A

    2002-01-01

    A large number of chronic heart failure patients escape from the benefits of neurohormonal blockade only to transit into a discouragingly miserable state of what the physician often refers to as end-stage heart failure. Conceptually, the designation of end-stage as a description of a clinical scenario implies pessimism concerning recourse to a therapeutic avenue. A variety of surgical therapeutic techniques that take advantage of the law of Laplace, designed to effectively restore the cardiac shape from a spherical, mechanically inefficient pump to a more elliptical, structurally sound organ are now being employed. Additionally, the field of mechanical device implantation is surging ahead at a rapid pace. The weight of evidence regarding mechanical unloading using assist devices suggests that hemodynamic restoration is accompanied by regression of cellular hypertrophy, normalization of the neuroendocrine axis, improved expression of contractile proteins, enhanced cellular respiratory control, and decreases in markers of apoptosis and cellular stress. Thus, these lines of data point toward discarding the notion of end-stage heart failure. We are at a new crossroad in our quest to tackle chronic heart failure. It is our contention that the use of antiremodeling strategies, including device approaches, will soon signal the end of end-stage heart failure.

  13. Assessing the Performance Limits of Internal Coronagraphs Through End-to-End Modeling

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Belikov, Ruslan; Pueyo, Laurent; Mawet, Dimitri P.; Moody, Dwight; Trauger, John T.; Shaklan, Stuart B.

    2013-01-01

    As part of the NASA ROSES Technology Demonstrations for Exoplanet Missions (TDEM) program, we conducted a numerical modeling study of three internal coronagraphs (PIAA, vector vortex, hybrid bandlimited) to understand their behaviors in realistically-aberrated systems with wavefront control (deformable mirrors). This investigation consisted of two milestones: (1) develop wavefront propagation codes appropriate for each coronagraph that are accurate to 1% or better (compared to a reference algorithm) but are also time and memory efficient, and (2) use these codes to determine the wavefront control limits of each architecture. We discuss here how the milestones were met and identify some of the behaviors particular to each coronagraph. The codes developed in this study are being made available for community use. We discuss here results for the HBLC and VVC systems, with PIAA having been discussed in a previous proceeding.

  14. SciBox, an end-to-end automated science planning and commanding system

    NASA Astrophysics Data System (ADS)

    Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott

    2014-01-01

    SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.

  15. Experiments with Memory-to-Memory Coupling for End-to-End fusion Simulation Workflows

    SciTech Connect

    Docan, Ciprian; Zhang, Fan; Parashar, Manish; Cummings, Julian; Podhorszki, Norbert; Klasky, Scott A

    2010-01-01

    Scientific applications are striving to accurately simulate multiple interacting physical processes that comprise complex phenomena being modeled. Efficient and scalable parallel implementations of these coupled simulations present challenging interaction and coordination requirements, especially when the coupled physical processes are computationally heterogeneous and progress at different speeds. In this paper, we present the design, implementation and evaluation of a memory-to-memory coupling framework for coupled scientific simulations on high-performance parallel computing platforms. The framework is driven by the coupling requirements of the Center for Plasma Edge Simulation, and it provides simple coupling abstractions as well as efficient asynchronous (RDMA-based) memory-to-memory data transport mechanisms that complement existing parallel programming systems and data sharing frameworks. The framework enables flexible coupling behaviors that are asynchronous in time and space, and it supports dynamic coupling between heterogeneous simulation processes without enforcing any synchronization constraints. We evaluate the performance and scalability of the coupling framework using a specific coupling scenario, on the Jaguar Cray XT5 system at Oak Ridge National Laboratory.

  16. End-to-end information system concept for the Mars Telecommunications Orbiter

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.

    2006-01-01

    The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return missions, and approaching spacecraft in the vicinity of Mars, to demostrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out its own science investigations.

  17. End-to-end information system concept for the Mars Telecommunications Orbiter

    NASA Technical Reports Server (NTRS)

    Bridenthal, Julian C.; Edwards, Charles D.; Greenberg, Edward; Kazz, Greg J.; Noreen, Gary K.

    2006-01-01

    The Mars Telecommunications Orbiter (MTO) was intended to provide high-performance deep space relay links to landers, orbiters, sample-return, missions, and approaching spacecraft in the vicinity of Mars, to demonstrate interplanetary laser communications, to demonstrate autonomous navigation, and to carry out is own science investigations.

  18. End-to-end Encryption for SMS Messages in the Health Care Domain.

    PubMed

    Hassinen, Marko; Laitinen, Pertti

    2005-01-01

    The health care domain has a high level of expectation on security and privacy of patient information. The security, privacy, and confidentiality issues are consistent all over the domain. Technical development and increasing use of mobile phones has led us to a situation in which SMS messages are used in the electronic interactions between health care professionals and patients. We will show that it is possible to send, receive and store text messages securely with a mobile phone with no additional hardware required. More importantly we will show that it is possible to obtain a reliable user authentication in systems using text message communication. Programming language Java is used for realization of our goals. This paper describes the general application structure, while details for the technical implementation and encryption methods are described in the referenced articles. We also propose some crucial areas where the implementation of encrypted SMS can solve previous lack of security.

  19. Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing

    PubMed Central

    Fredrikson, Matthew; Lantz, Eric; Jha, Somesh; Lin, Simon; Page, David; Ristenpart, Thomas

    2014-01-01

    We initiate the study of privacy in pharmacogenetics, wherein machine learning models are used to guide medical treatments based on a patient’s genotype and background. Performing an in-depth case study on privacy in personalized warfarin dosing, we show that suggested models carry privacy risks, in particular because attackers can perform what we call model inversion: an attacker, given the model and some demographic information about a patient, can predict the patient’s genetic markers. As differential privacy (DP) is an oft-proposed solution for medical settings such as this, we evaluate its effectiveness for building private versions of pharmacogenetic models. We show that DP mechanisms prevent our model inversion attacks when the privacy budget is carefully selected. We go on to analyze the impact on utility by performing simulated clinical trials with DP dosing models. We find that for privacy budgets effective at preventing attacks, patients would be exposed to increased risk of stroke, bleeding events, and mortality. We conclude that current DP mechanisms do not simultaneously improve genomic privacy while retaining desirable clinical efficacy, highlighting the need for new mechanisms that should be evaluated in situ using the general methodology introduced by our work. PMID:27077138

  20. End-to-end observatory software modeling using domain specific languages

    NASA Astrophysics Data System (ADS)

    Filgueira, José M.; Bec, Matthieu; Liu, Ning; Peng, Chien; Soto, José

    2014-07-01

    The Giant Magellan Telescope (GMT) is a 25-meter extremely large telescope that is being built by an international consortium of universities and research institutions. Its software and control system is being developed using a set of Domain Specific Languages (DSL) that supports a model driven development methodology integrated with an Agile management process. This approach promotes the use of standardized models that capture the component architecture of the system, that facilitate the construction of technical specifications in a uniform way, that facilitate communication between developers and domain experts and that provide a framework to ensure the successful integration of the software subsystems developed by the GMT partner institutions.

  1. End-to-end imaging information rate advantages of various alternative communication systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1982-01-01

    The efficiency of various deep space communication systems which are required to transmit both imaging and a typically error sensitive class of data called general science and engineering (gse) are compared. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an advanced imaging communication system (AICS) which exhibits the rather significant advantages of sophisticated data compression coupled with powerful yet practical channel coding. For example, under certain conditions the improved AICS efficiency could provide as much as two orders of magnitude increase in imaging information rate compared to a single channel uncoded, uncompressed system while maintaining the same gse data rate in both systems. Additional details describing AICS compression and coding concepts as well as efforts to apply them are provided in support of the system analysis.

  2. From End to End: tRNA Editing at 5'- and 3'-Terminal Positions

    PubMed Central

    Betat, Heike; Long, Yicheng; Jackman, Jane E.; Mörl, Mario

    2014-01-01

    During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems. PMID:25535083

  3. End-to-End Flow Control Using PI Controller for Servo Control over Networks

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Kubo, Ryogo; Yakoh, Takahiro; Ohnishi, Kouhei

    This paper presents a novel flow control method using a PI controller for servo control over networks. The UDP is known to be effective for motion control systems over networks such as bilateral teleoperation. However, UDP does not have a mechanism for congestion avoidance. The congestion, which causes large communication delay, jitter, and packet loss, deteriorates the performance and stability of control systems over networks. To avoid this congestion, a novel flow control method, which adjusts a packet-sending period in real time, is proposed. The validity of the proposed method is shown by simulation and experimental results.

  4. Science and Applications Space Platform (SASP) End-to-End Data System Study

    NASA Technical Reports Server (NTRS)

    Crawford, P. R.; Kasulka, L. H.

    1981-01-01

    The capability of present technology and the Tracking and Data Relay Satellite System (TDRSS) to accommodate Science and Applications Space Platforms (SASP) payload user's requirements, maximum service to the user through optimization of the SASP Onboard Command and Data Management System, and the ability and availability of new technology to accommodate the evolution of SASP payloads were assessed. Key technology items identified to accommodate payloads on a SASP were onboard storage devices, multiplexers, and onboard data processors. The primary driver is the limited access to TDRSS for single access channels due to sharing with all the low Earth orbit spacecraft plus shuttle. Advantages of onboard data processing include long term storage of processed data until TRDSS is accessible, thus reducing the loss of data, eliminating large data processing tasks at the ground stations, and providing a more timely access to the data.

  5. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  6. Telerobotics and orbital laboratories: an end-to-end analysis and demonstration.

    PubMed

    Konkel, C R; Miller, C F

    1989-10-01

    A preliminary analysis of the United States Laboratory (USL) module of the International Space Station has been completed. A major conclusion was that one of the most limited resources within the USL will be crew time. A laboratory robot would alleviate these constraints, improve safety, and reduce operational costs. A laboratory experiment manipulator system (LEMS) is proposed, made up of an on-board mobile manipulator and a computer-assisted operator control station. The on-board manipulator concept was tested with an Intelledex 660 industrial robot. Operator joystick command capability and delayed video feedback were added to simulate a Space Station Teleoperation system. The implementation of a unique predictive display was chosen for further evaluation because of its promise as a partial solution to the classical problem of robot remote control in the presence of time delay. The incorporation of various correction factors to calibrate the robot predictor model, including geometric distortion and spherical aberration caused by the video optics, is described.

  7. Assessing Natural Product-Drug Interactions: An End-to-End Safety Framework.

    PubMed

    Roe, Amy L; Paine, Mary F; Gurley, Bill J; Brouwer, Kenneth R; Jordan, Scott; Griffiths, James C

    2016-04-01

    The use of natural products (NPs), including herbal medicines and other dietary supplements, by North Americans continues to increase across all age groups. This population has access to conventional medications, with significant polypharmacy observed in older adults. Thus, the safety of the interactions between multi-ingredient NPs and drugs is a topic of paramount importance. Considerations such as history of safe use, literature data from animal toxicity and human clinical studies, and NP constituent characterization would provide guidance on whether to assess NP-drug interactions experimentally. The literature is replete with reports of various NP extracts and constituents as potent inhibitors of drug metabolizing enzymes, and transporters. However, without standard methods for NP characterization or in vitro testing, extrapolating these reports to clinically-relevant NP-drug interactions is difficult. This lack of a clear definition of risk precludes clinicians and consumers from making informed decisions about the safety of taking NPs with conventional medications. A framework is needed that describes an integrated robust approach for assessing NP-drug interactions; and, translation of the data into formulation alterations, dose adjustment, labelling, and/or post-marketing surveillance strategies. A session was held at the 41st Annual Summer Meeting of the Toxicology Forum in Colorado Springs, CO, to highlight the challenges and critical components that should be included in a framework approach.

  8. Impact of advanced onboard processing concepts on end-to-end data system

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1978-01-01

    An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.

  9. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.

  10. End-to-End Data Movement Using MPI-IO Over Routed Terabots Infrastructures

    SciTech Connect

    Vallee, Geoffroy R; Atchley, Scott; Kim, Youngjae; Shipman, Galen M

    2013-01-01

    Scientific discovery is nowadays driven by large-scale simulations running on massively parallel high-performance computing (HPC) systems. These applications each generate a large amount of data, which then needs to be post-processed for example for data mining or visualization. Unfortunately, the computing platform used for post processing might be different from the one on which the data is initially generated, introducing the challenge of moving large amount of data between computing platforms. This is especially challenging when these two platforms are geographically separated since the data needs to be moved between computing facilities. This is even more critical when scientists tightly couple their domain specific applications with a post processing application. The paper presents a solution for the data transfer between MPI applications using a dedicated wide area network (WAN) terabit infrastructure. The proposed solution is based on parallel access to data files and the Message Passing Interface (MPI) over the Common Communication Infrastructure (CCI) for the data transfer over a routed infrastructure. In the context of this research, the Energy Sciences Network (ESnet) of the U.S. Department of Energy (DOE) is targeted for the transfer of data between DOE national laboratories.

  11. Data compression: The end-to-end information systems perspective for NASA space science missions

    NASA Technical Reports Server (NTRS)

    Tai, Wallace

    1991-01-01

    The unique characteristics of compressed data have important implications to the design of space science data systems, science applications, and data compression techniques. The sequential nature or data dependence between each of the sample values within a block of compressed data introduces an error multiplication or propagation factor which compounds the effects of communication errors. The data communication characteristics of the onboard data acquisition, storage, and telecommunication channels may influence the size of the compressed blocks and the frequency of included re-initialization points. The organization of the compressed data are continually changing depending on the entropy of the input data. This also results in a variable output rate from the instrument which may require buffering to interface with the spacecraft data system. On the ground, there exist key tradeoff issues associated with the distribution and management of the science data products when data compression techniques are applied in order to alleviate the constraints imposed by ground communication bandwidth and data storage capacity.

  12. An end-to-end assessment of extreme weather impacts on food security

    NASA Astrophysics Data System (ADS)

    Chavez, Erik; Conway, Gordon; Ghil, Michael; Sadler, Marc

    2015-11-01

    Both governments and the private sector urgently require better estimates of the likely incidence of extreme weather events, their impacts on food crop production and the potential consequent social and economic losses. Current assessments of climate change impacts on agriculture mostly focus on average crop yield vulnerability to climate and adaptation scenarios. Also, although new-generation climate models have improved and there has been an exponential increase in available data, the uncertainties in their projections over years and decades, and at regional and local scale, have not decreased. We need to understand and quantify the non-stationary, annual and decadal climate impacts using simple and communicable risk metrics that will help public and private stakeholders manage the hazards to food security. Here we present an `end-to-end’ methodological construct based on weather indices and machine learning that integrates current understanding of the various interacting systems of climate, crops and the economy to determine short- to long-term risk estimates of crop production loss, in different climate and adaptation scenarios. For provinces north and south of the Yangtze River in China, we have found that risk profiles for crop yields that translate climate into economic variability follow marked regional patterns, shaped by drivers of continental-scale climate. We conclude that to be cost-effective, region-specific policies have to be tailored to optimally combine different categories of risk management instruments.

  13. Independent SCPS-TP development for fault-tolerant, end-to-end communication architectures

    NASA Astrophysics Data System (ADS)

    Edwards, E.; Lamorie, J.; Younghusband, D.; Brunet, C.; Hartman, L.

    2002-07-01

    A fully networked architecture provides for the distribution of computing elements, of all mission components, through the spacecraft. Each node is individually addressable through the network, and behaves as an independent entity. This level of communication also supports individualized Command and Data Handling (C&DH), as well as one-to-one transactions between spacecraft nodes and individual ground segment users. To be effective, fault-tolerance must be applied at the network data transport level, as well as the supporting layers below it. If the network provides fail-safe characteristics independent of the mission applications being executed, then developers need not build in their own systems to ensure network reliability. The Space Communications Protocol Standards (SCPS) were developed to provide robust communications in a space environment, while retaining compatibility with Internet data transport at the ground segment. Although SCPS is a standard of the Consultative Committee for Space Data Systems (CCSDS), the adoption of SCPS was initially delayed by US export regulations that prevented the distribution of reference code. This paper describes the development and test of a fully independent implementation of the SCSP Transport Protocol, SCPS-TP, which has been derived directly from the CCSDS specification. The performance of the protocol is described for a set of geostationary satellite tests, and these results will be compared with those derived from network simulation and laboratory emulation. The work is placed in the context of a comprehensive, fault-tolerant network that potentially surpasses the failsafe performance of a traditional spacecraft control system under similar circumstances.

  14. Implementation of an End-to-End Simulator for the BepiColombo Rotation Experiment

    NASA Astrophysics Data System (ADS)

    Palli, A.; Bevilacqua, A.; Genova, A.; Gherardi, A.; Iess, L.; Meriggiola, R.; Tortora, P.

    2012-09-01

    Fundamental information on the interior of Mercury can be inferred from its rotational state, in terms of obliquity and amplitude of physical libration in longitude. For this reason a dedicated Rotation Experiment will be performed by the ESA mission BepiColombo. A system-level experiment simulator has been developed in order to optimize the observation strategy and is here presented. In particular, this abstract will focus on the estimation process, the optimization algorithms and the selection of optimal pattern matching strategies.

  15. CernVM: Minimal maintenance approach to virtualization

    NASA Astrophysics Data System (ADS)

    Buncic, Predrag; Aguado-Sanchez, Carlos; Blomer, Jakob; Harutyunyan, Artem

    2011-12-01

    CernVM is a virtual software appliance designed to support the development cycle and provide a runtime environment for the LHC experiments. It consists of three key components that differentiate it from more traditional virtual machines: a minimal Linux Operating System (OS), a specially tuned file system designed to deliver application software on demand, and contextualization tools that provide a means to easily customize and configure CernVM instances for different tasks and user communities. In this contribution we briefly describe the most important use cases for virtualization in High Energy Physics (HEP), CernVM key components and discuss how end-to-end systems corresponding to these use cases can be realized using CernVM.

  16. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  17. 77 FR 63757 - Extension of the Commission's Rules Regarding Outage Reporting to Interconnected Voice Over...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ..., regarding Interconnected Voice over Internet Protocol (VoIP) outage reporting rules, published at 77 FR..., and 4.9 published at 77 FR 25088, April 27, 2012, are effective December 16, 2012. FOR FURTHER... Voice Over Internet Protocol Service Providers and Broadband Internet Service Providers AGENCY:...

  18. 47 CFR 4.9 - Outage reporting requirements-threshold criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...—threshold criteria. (a) Cable. All cable communications providers shall submit electronically a Notification..., any official who has been designated by the management of the affected 911 facility as the provider's... (d) and (e) of § 4.7.) Not later than 72 hours after discovering the outage, the provider...

  19. 47 CFR 4.9 - Outage reporting requirements-threshold criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...—threshold criteria. (a) Cable. All cable communications providers shall submit electronically a Notification..., any official who has been designated by the management of the affected 911 facility as the provider's... (d) and (e) of § 4.7.) Not later than 72 hours after discovering the outage, the provider...

  20. 47 CFR 4.9 - Outage reporting requirements-threshold criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...—threshold criteria. (a) Cable. All cable communications providers shall submit electronically a Notification..., any official who has been designated by the management of the affected 911 facility as the provider's... (d) and (e) of § 4.7.) Not later than 72 hours after discovering the outage, the provider...

  1. Application of Hybrid Geo-Spatially Granular Fragility Curves to Improve Power Outage Predictions

    SciTech Connect

    Fernandez, Steven J; Allen, Melissa R; Omitaomu, Olufemi A; Walker, Kimberly A

    2014-01-01

    Fragility curves depict the relationship between a weather variable (wind speed, gust speed, ice accumulation, precipitation rate) and the observed outages for a targeted infrastructure network. This paper describes an empirical study of the county by county distribution of power outages and one minute weather variables during Hurricane Irene with the objective of comparing 1) as built fragility curves (statistical approach) to engineering as designed (bottom up) fragility curves for skill in forecasting outages during future hurricanes; 2) county specific fragility curves to find examples of significant deviation from average behavior; and 3) the engineering practices of outlier counties to suggest future engineering studies of robustness. Outages in more than 90% of the impacted counties could be anticipated through an average or generic fragility curve. The remaining counties could be identified and handled as exceptions through geographic data sets. The counties with increased or decreased robustness were characterized by terrain more or less susceptible to persistent flooding in areas where above ground poles located their foundations. Land use characteristics of the area served by the power distribution system can suggest trends in the as built power grid vulnerabilities to extreme weather events that would be subjects for site specific studies.

  2. Effects of the April 1st, 2014 GLONASS Outage on GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.; Romero, I.; D'Anastasio, E.

    2014-12-01

    The use of multi-constellation GNSS receivers has been assumed as a way to increase system integrity both by increased coverage during normal operations and failover redundancy in the event of a constellation failure. At approximately 21:00 UTC on April 1st the entire GLONASS constellation was disrupted as illegal ephemeris uploaded to each satellite took effect simultaneously. The outage continued for more than 10 hours. While ephemeris were incorrect, pseudoranges were correctly broadcast on both L1 and L2 and carrier phases were not affected; in the best case, GNSS receivers could be expected to continue to track all signals including GLONASS and at the worst to continue to track GPS and other constellations. It became clear to operators of the GeoNet network in New Zealand that the majority of their 79 GLONASS-enabled receivers experienced total tracking failures. Further detailed analysis of data from these and 315 additional GLONASS-enabled stations worldwide showed that receiver tracking behavior was affected for most receiver brands and models, both for GLONASS and GPS. Findings regarding the impacts of the GLONASS outage on receiver behavior will be highlighted. We use data recorded by GLONASS enabled global sites for the days during, preceding and following the outage to evaluate the impact of the outage on tracking and positioning performance. We observe that for some receiver types the onboard receiver autonomous integrity monitoring (RAIM) failed to ignore the incorrect messages, resulting in degraded GLONASS and GPS tracking and in some cases complete tracking failures and significant data loss. In addition, many of the receivers with clock steering enabled showed outliers in their receiver clock bias estimates that also coincided with the outage. Our results show in detail how different brands, configurations, and distributions of receivers were affected to varying extents, but no common factors are apparent. This event shows that many manufacturers

  3. Outage performance of multihop free-space optical communication system over exponentiated Weibull fading channels with nonzero boresight pointing errors

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-xia; Wang, Ping; Cao, Tian

    2016-09-01

    The outage performance of the multihop free-space optical (FSO) communication system with decode-and-forward (DF) protocol is studied by considering the joint effects of nonzero boresight pointing errors and atmospheric turbulence modeled by exponentiated Weibull (EW) distribution. The closed-form analytical expression of outage probability is derived, and the results are validated through Monte Carlo simulation. Furthermore, the detailed analysis is provided to evaluate the impacts of turbulence strength, receiver aperture size, boresight displacement, beamwidth and number of relays on the outage performance for the studied system.

  4. Recent performance of and plasma outage studies with the SNS H- source

    NASA Astrophysics Data System (ADS)

    Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.

    2016-02-01

    Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ˜55-kW 2-MHz plasma pulses reflecting ˜90% of the continuous ˜300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H2 gas also increased the H- beam current to ˜55 mA and increased the RFQ transmission by ˜7% (relative).

  5. Method for estimating power outages and restoration during natural and man-made events

    DOEpatents

    Omitaomu, Olufemi A.; Fernandez, Steven J.

    2016-01-05

    A method of modeling electric supply and demand with a data processor in combination with a recordable medium, and for estimating spatial distribution of electric power outages and affected populations. A geographic area is divided into cells to form a matrix. Within the matrix, supply cells are identified as containing electric substations and demand cells are identified as including electricity customers. Demand cells of the matrix are associated with the supply cells as a function of the capacity of each of the supply cells and the proximity and/or electricity demand of each of the demand cells. The method includes estimating a power outage by applying disaster event prediction information to the matrix, and estimating power restoration using the supply and demand cell information of the matrix and standardized and historical restoration information.

  6. Recent Performance of and Plasma Outage Studies with the SNS H- Source

    SciTech Connect

    Stockli, Martin P; Han, Baoxi; Murray Jr, S N; Pennisi, Terry R; Piller, Chip; Santana, Manuel; Welton, Robert F

    2016-01-01

    SNS ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised RFQ, which requires higher RF power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ~55-kW 2-MHz plasma pulses reflecting ~90% of the continuous ~300W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly-detuned 13-MHz match. Lowering the H2 also increased the H- beam current to ~55 mA, and increased the transmission by ~7%.

  7. Noise Temperature Increase Effect on Total Outage Analysis of an Interfered Satellite Link

    NASA Astrophysics Data System (ADS)

    Sakarellos, Vassileios K.; Panagopoulos, Athanasios D.; Kanellopoulos, John D.

    2008-01-01

    The ever increasing demand for bandwidth and multimedia services has led to the employment of Ka and V band in modern satellite communication networks. In these frequency bands, rain attenuation is the most dominant fading mechanism deteriorating the performance of the Earth-space links. Moreover, interference due to propagation phenomena increases the outage time of the satellite links and should be taken into account for the reliable design of a satellite communication network. In this paper, a physical propagation model for the prediction of carrier-to-noise plus interference ratio statistics of a broadband satellite link incorporating the receiver noise temperature increase due to rain, is presented The obtained numerical results highlight the significance of the latter effect and investigate the impact of various operational, geometrical and climatic parameters in the total outage analysis. Some simple mathematical formulas for the prediction of the carrier-to-noise plus interference ratio, based on the above theoretical results, are also presented.

  8. Use of VIIRS DNB Data to Monitor Power Outages and Restoration for Significant Weather Events

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Molthan, Andrew

    2008-01-01

    NASA fs Short-term Prediction Research and Transition (SPoRT) project operates from NASA's Marshall Space Flight Center in Huntsville, Alabama. The team provides unique satellite data to the National Weather Service (NWS) and other agencies and organizations for weather analysis. While much of its work is focused on improving short-term weather forecasting, the SPoRT team supported damage assessment and response to Hurricane Superstorm Sandy by providing imagery that highlighted regions without power. The team used data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite. The VIIRS low-light sensor, known as the day-night-band (DNB), can detect nighttime light from wildfires, urban and rural communities, and other human activity which emits light. It can also detect moonlight reflected from clouds and surface features. Using real time VIIRS data collected by our collaborative partner at the Space Science and Engineering Center of the University of Wisconsin, the SPoRT team created composite imagery to help detect power outages and restoration. This blackout imagery allowed emergency response teams from a variety of agencies to better plan and marshal resources for recovery efforts. The blackout product identified large-scale outages, offering a comprehensive perspective beyond a patchwork GIS mapping of outages that utility companies provide based on customer complaints. To support the relief efforts, the team provided its imagery to the USGS data portal, which the Federal Emergency Management Agency (FEMA) and other agencies used in their relief efforts. The team fs product helped FEMA, the U.S. Army Corps of Engineers, and U.S. Army monitor regions without power as part of their disaster response activities. Disaster responders used the images to identify possible outages and effectively distribute relief resources. An enhanced product is being developed and integrated into a web

  9. Lights out: Impact of the August 2003 power outage on mortality in New York, NY

    PubMed Central

    Anderson, G. Brooke; Bell, Michelle L.

    2012-01-01

    Background Little is known about how power outages affect health. We investigated mortality effects of the largest US blackout to date, August 14–15, 2003 in New York, NY. Methods We estimated mortality risk in New York, NY, using a generalized linear model with data from 1987–2005. We incorporated possible confounders, including weather and long-term and seasonal mortality trends. Results During the blackout, mortality increased for accidental deaths (122% [95% confidence interval = 28%–287%]) and non-accidental (i.e., disease-related) deaths (25% [12%–41%]), resulting in approximately 90 excess deaths. Increased mortality was not from deaths being advanced by a few days; rather, mortality risk remained slightly elevated through August 2003. Discussion To our knowledge, this is the first analysis of power outages and non-accidental mortality. Understanding the impact of power outages on human health is relevant, given that increased energy demand and climate change are likely to put added strain on power grids. PMID:22252408

  10. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Li, Xu; Song, Xiang; Li, Bin; Song, Xianghui; Xu, Qimin

    2015-07-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages.

  11. Power Outages

    MedlinePlus

    ... surge protectors. If you are considering purchasing a generator for your home, consult an electrician or engineer before purchasing and installing. Only use generators away from your home and NEVER run a ...

  12. A Parallel Disintegrated Model for Uncertainty Analysis in Estimating Electrical Power Outage Areas

    NASA Astrophysics Data System (ADS)

    Omitaomu, O. A.

    2008-05-01

    The electrical infrastructure is central to national economy and security in view of the interdependencies that exist between it and other critical infrastructures. Recent studies show that the proportion of electric power outages attributed to weather-related events such as tornadoes, hurricanes, floods, and fires appears to be growing; this increase is attributed to the steady increase in the number of most severe weather events over the past few decades. Assessing the impacts of an actual extreme weather event on electrical infrastructure is usually not a difficult task; however, such an after-the-fact assessment is not useful for disaster preparedness. Therefore, the ability to estimate the possible power outage areas and affected population in case of an anticipated extreme weather event is a necessary tool for effective disaster preparedness and response management. Data for electrical substations are publicly available through the annual Federal Energy Regulatory Commission filings. However, the data do not include substations' service areas; therefore, the geographical area served by each substation critical for estimating outage areas is unknown. As a result, a Cellular Automata (CA) model was developed by the author for estimating substations' service areas using modified Moore neighborhood approach. The outputs of the CA model has recently been used for estimating power outage areas during the February 5/6, 2008 tornado outbreaks in Tennessee and for estimating the number of affected population during the February 26, 2008 substation failure in Florida. The estimation of these outage areas, like all assessments of impacts of extreme weather events, is subject to several sources of uncertainty. The uncertainty is due largely to events variability and incomplete knowledge about the events. Events variability (temporal and spatial variability) is attributed to inherent fluctuations or differences in the variable of concern; incomplete knowledge about

  13. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  14. Methodology to predict the number of forced outages due to creep failure

    SciTech Connect

    Palermo, J.V. Jr.

    1996-12-31

    All alloy metals at a temperature above 950 degrees Fahrenheit experience creep damage. Creep failures in boiler tubes usually begin after 25 to 40 years of operation. Since creep damage is irreversible, the only remedy is to replace the tube sections. By predicting the number of failures per year, the utility can make the best economic decision concerning tube replacement. This paper describes a methodology to calculate the number of forced outages per yea due to creep failures. This methodology is particularly useful to utilities that have boilers that have at least 25 years of operation.

  15. Feasibility Study for the K-Area Bingham Pump Outage Pit (643-1G)

    SciTech Connect

    Palmer, E.R.

    1997-05-01

    The K-Area Bingham Pump Outage Pit (KBPOP) is one of four BPOP areas at Savannah River Site (SRS), collectively referred to as the BPOP waste unit group. This Feasibility Study (FS) of Remedial Alternatives serves as the lead FS for the BPOP waste unit group. This section identifies the purpose and scope of the FS and presents site background information summarized from the Final Remedial Investigation Report with Baseline Risk Assessment (RI/BRA) WSRC-RP- 95-1555, Rev. 1.2 (WSRC 1997).

  16. Utah Governor blacks out data on state-wide energy outage

    SciTech Connect

    Not Available

    1981-03-01

    The Governor of Utah squelched information linking a six-hour blackout on January 8 to a trash fire and explosion at the Utah State Prison. Ionizing gases from the explosion allegedly caused a phase fault on the penitentiary grounds that triggered the nearly state-wide outage. The Attorney General recommended a freeze on public information on the grounds that further discussion would be detrimental in the event of lawsuits and evidence from an independent investigation would be more admissable. The Public Service Commission disagreed with efforts to prevent an internal investigation. (DCK)

  17. Economic costs of electrical system instability and power outages caused by snakes on the Island of Guam

    USGS Publications Warehouse

    Fritts, T.H.

    2002-01-01

    The Brown Tree Snake, Boiga irregularis, is an introduced species on Guam where it causes frequent electrical power outages. The snake's high abundance, its propensity for climbing, and use of disturbed habitats all contribute to interruption of Guam's electrical service and the activities that depend on electrical power. Snakes have caused more than 1600 power outages in the 20-yr period of 1978-1997 and most recently nearly 200 outages per year. Single outages spanning the entire island and lasting 8 or more hours are estimated to cost in excess of $3,000,000 in lost productivity, but the costs of outages that involve only parts of the island or those of shorter durations are more difficult to quantify. Costs to the island's economy have exceeded $4.5 M per year over a 7-yr period without considering repair costs, damage to electrical equipment, and lost revenues. Snakes pose the greatest problem on high voltage transmission lines, on transformers, and inside electrical substations.

  18. Recent performance of and plasma outage studies with the SNS H⁻ source.

    PubMed

    Stockli, M P; Han, B; Murray, S N; Pennisi, T R; Piller, C; Santana, M; Welton, R

    2016-02-01

    Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H(-) beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ∼55-kW 2-MHz plasma pulses reflecting ∼90% of the continuous ∼300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H2 gas also increased the H(-) beam current to ∼55 mA and increased the RFQ transmission by ∼7% (relative). PMID:26932022

  19. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks

    PubMed Central

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  20. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks.

    PubMed

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  1. Outage Performance of Cooperative Relay Selection with Multiple Source and Destination Antennas over Dissimilar Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Wooju; Yoon, Dongweon

    Cooperative relay selection, in which one of multiple relays is selected to retransmit the source signal to the destination, has received considerable attention in recent years, because it is a simple way to obtain cooperative diversity in wireless networks. The exact expression of outage probability for a decode-and-forward cooperative relay selection with multiple source and destination antennas over Rayleigh fading channels was recently derived in [9]. In this letter, we derive the exact expressions of outage probability and diversity-multiplexing tradeoff over independent and non-identically distributed Nakagami-m fading channels as an extension of [9]. We then analyze the effects of various parameters such as fading conditions, number of relays, and number of source and destination antennas on the outage probability.

  2. Outage Capacity of Spectrum Sharing Cognitive Radio with Channel Estimation Errors and Feedback Delay in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Feng, Z.; Zhang, P.

    2013-04-01

    This paper considers a spectrum sharing cognitive radio (CR) network consisting of one secondary user (SU) and one primary user (PU) in Rayleigh fading environments. The channel state information (CSI) between the secondary transmitter (STx) and the primary receiver (PRx) is assumed to be imperfect. Particularly, this CSI is assumed to be not only having channel estimation errors but also outdated due to feedback delay, which is different from existing work. We derive the closed-form expression for the outage capacity of the SU with this imperfect CSI under the average interference power constraint at the PU. Analytical results confirmed by simulations are presented to show the effect of the imperfect CSI. Particularly, it is shown that the outage capacity of the SU is robust to the channel estimation errors and feedback delay for low outage probability and high channel estimation errors and feedback delay.

  3. Minimal change disease

    MedlinePlus

    ... seen under a very powerful microscope called an electron microscope. Minimal change disease is the most common ... biopsy and examination of the tissue with an electron microscope can show signs of minimal change disease.

  4. Characteristics and trends in a National Study of Consumer Outage Costs

    SciTech Connect

    Lawton, Leora; Eto, Joseph H.; Katz, Aaron; Sullivan, Michael

    2003-04-01

    Ensuring reliability has and will continue to be a priority for electricity industry restructuring. Assessing the balance between public and private actions to ensure reliability should be guided in part by an understanding of the value of reliability to the nations' residential, commercial and industrial customers. Yet, there is no comprehensive body of information on this topic. This paper begins to address this information gap by analyzing studies conducted by electric utilities over the past 15 years to assess the value of electric service to their customers. Outage cost measurements prepared by 7 electric utilities through 20 studies are assembled and standardized into a national database of customer interruption costs. The database is used to describe trends in interruption costs, and regional (geographic) differences, differences in interruption costs by customer type. It can also be used to estimate customer damage functions. Results from the study are intended to contribute to an improved understanding of the importance of electricity reliability to the nation.

  5. A A field test for extremity dose assessment during outages at Korean nuclear power plants.

    PubMed

    Kim, Hee Geun; Kong, Tae Young

    2013-05-01

    During maintenance on the water chamber of a steam generator, the pressuriser heater and the pressure tube feeder in nuclear power plants, workers are likely to receive high radiation doses due to the severe workplace conditions. In particular, it is expected that workers' hands would receive the highest radiation doses because of their contact with the radioactive materials. In this study, field tests for extremity dose assessments in radiation workers undertaking contact tasks with high radiation doses were conducted during outages at pressurised water reactors and pressurised heavy water reactors in Korea. In the test, the radiation workers were required to wear additional thermoluminescent dosemeters (TLDs) on their backs and wrists and an extremity dosemeter on the finger, as well as a main TLD on the chest while performing the maintenance tasks. PMID:23091221

  6. A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages

    NASA Astrophysics Data System (ADS)

    Asouti, V. G.; Giannakoglou, K. C.

    2012-07-01

    This article presents a solution method to the unit commitment problem with probabilistic unit failures and repairs, which is based on evolutionary algorithms and Monte Carlo simulations. Regarding the latter, thousands of availability-unavailability trial time patterns along the scheduling horizon are generated. The objective function to be minimised is the expected total operating cost, computed after adapting any candidate solution, i.e. any series of generating/non-generating (ON/OFF) unit states, to the availability-unavailability patterns and performing evaluations by considering fuel, start-up and shutdown costs as well as the cost for buying electricity from external resources, if necessary. The proposed method introduces a new efficient chromosome representation: the decision variables are integer IDs corresponding to the binary-to-decimal converted ON/OFF (1/0) scenarios that cover the demand in each hour. In contrast to previous methods using binary strings as chromosomes, the new chromosome must be penalised only if any of the constraints regarding start-up, shutdown and ramp times cannot be met, chromosome repair is avoided and, consequently, the dispatch problems are solved once in the preparatory phase instead of during the evolution. For all these reasons, with or without probabilistic outages, the proposed algorithm has much lower CPU cost. In addition, if probabilistic outages are taken into account, a hierarchical evaluation scheme offers extra noticeable gain in CPU cost: the population members are approximately pre-evaluated using a small 'representative' set of the Monte Carlo simulations and only a few top population members undergo evaluations through the full Monte Carlo simulations. The hierarchical scheme makes the proposed method about one order of magnitude faster than its conventional counterpart.

  7. Are Older Adults Prepared to Ensure Food Safety during Extended Power Outages and Other Emergencies?: Findings from a National Survey

    ERIC Educational Resources Information Center

    Kosa, Katherine M.; Cates, Sheryl C.; Karns, Shawn; Godwin, Sandria L.; Coppings, Richard J.

    2012-01-01

    Natural disasters and other emergencies can cause an increased risk of foodborne illness. We conducted a nationally representative survey to understand consumers' knowledge and use of recommended practices during/after extended power outages and other emergencies. Because older adults are at an increased risk for foodborne illness, this paper…

  8. Emergency preparedness for power outages and wi-fi loss: tips for students and educators of online courses.

    PubMed

    Heithaus, Teresa

    2015-01-01

    Severe weather can impact online education due to a loss of power and Internet access that can last hours or weeks. Planning for such losses is essential to enable participation in the online classroom. This article discusses measures that can be used to maintain an online presence in the event of a power outage or loss of Wi-Fi.

  9. 47 CFR 4.11 - Notification and initial and final communications outage reports that must be filed by...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... description of the problem; service effects; the geographic area affected by the outage; and a contact name... Commission, The Office of Secretary, Attention: Chief, Public Safety & Homeland Security Bureau. Electronic... Commission. “Submitted electronically” refers to submission of the information using Commission-approved...

  10. 47 CFR 4.11 - Notification and initial and final communications outage reports that must be filed by...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... description of the problem; service effects; the geographic area affected by the outage; and a contact name... Commission, The Office of Secretary, Attention: Chief, Public Safety & Homeland Security Bureau. Electronic... Commission. “Submitted electronically” refers to submission of the information using Commission-approved...

  11. An integrated healthcare information system for end-to-end standardized exchange and homogeneous management of digital ECG formats.

    PubMed

    Trigo, Jesús Daniel; Martínez, Ignacio; Alesanco, Alvaro; Kollmann, Alexander; Escayola, Javier; Hayn, Dieter; Schreier, Günter; García, José

    2012-07-01

    This paper investigates the application of the enterprise information system (EIS) paradigm to standardized cardiovascular condition monitoring. There are many specifications in cardiology, particularly in the ECG standardization arena. The existence of ECG formats, however, does not guarantee the implementation of homogeneous, standardized solutions for ECG management. In fact, hospital management services need to cope with various ECG formats and, moreover, several different visualization applications. This heterogeneity hampers the normalization of integrated, standardized healthcare information systems, hence the need for finding an appropriate combination of ECG formats and a suitable EIS-based software architecture that enables standardized exchange and homogeneous management of ECG formats. Determining such a combination is one objective of this paper. The second aim is to design and develop the integrated healthcare information system that satisfies the requirements posed by the previous determination. The ECG formats selected include ISO/IEEE11073, Standard Communications Protocol for Computer-Assisted Electrocardiography, and an ECG ontology. The EIS-enabling techniques and technologies selected include web services, simple object access protocol, extensible markup language, or business process execution language. Such a selection ensures the standardized exchange of ECGs within, or across, healthcare information systems while providing modularity and accessibility.

  12. End-To-End Solution for Integrated Workload and Data Management using GlideinWMS and Globus Online

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Miller, Zachary; Kettimuthu, Rajkumar; Garzoglio, Gabriele; Holzman, Burt; Weiss, Cathrin; Duan, Xi; Lacinski, Lukasz

    2012-12-01

    Grid computing has enabled scientific communities to effectively share computing resources distributed over many independent sites. Several such communities, or Virtual Organizations (VO), in the Open Science Grid and the European Grid Infrastructure use the GlideinWMS system to run complex application work-flows. GlideinWMS is a pilot-based workload management system (WMS) that creates an on-demand, dynamically-sized overlay Condor batch system on Grid resources. While the WMS addresses the management of compute resources, however, data management in the Grid is still the responsibility of the VO. In general, large VOs have resources to develop complex custom solutions, while small VOs would rather push this responsibility to the infrastructure. The latter requires a tight integration of the WMS and the data management layers, an approach still not common in modern Grids. In this paper we describe a solution developed to address this shortcoming in the context of Center for Enabling Distributed Peta-scale Science (CEDPS) by integrating GlideinWMS with Globus Online (GO). Globus Online is a fast, reliable file transfer service that makes it easy for any user to move data. The solution eliminates the need for the users to provide custom data transfer solutions in the application by making this functionality part of the GlideinWMS infrastructure. To achieve this, GlideinWMS uses the file transfer plug-in architecture of Condor. The paper describes the system architecture and how this solution can be extended to support data transfer services other than Globus Online when used with Condor or GlideinWMS.

  13. Investigating end-to-end security in the fifth generation wireless capabilities and IoT extensions

    NASA Astrophysics Data System (ADS)

    Uher, J.; Harper, J.; Mennecke, R. G.; Patton, P.; Farroha, B.

    2016-05-01

    The emerging 5th generation wireless network will be architected and specified to meet the vision of allowing the billions of devices and millions of human users to share spectrum to communicate and deliver services. The expansion of wireless networks from its current role to serve these diverse communities of interest introduces new paradigms that require multi-tiered approaches. The introduction of inherently low security components, like IoT devices, necessitates that critical data be better secured to protect the networks and users. Moreover high-speed communications that are meant to enable the autonomous vehicles require ultra reliable and low latency paths. This research explores security within the proposed new architectures and the cross interconnection of the highly protected assets with low cost/low security components forming the overarching 5th generation wireless infrastructure.

  14. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    NASA Astrophysics Data System (ADS)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time and location. The end user can monitor the measured parameters through a smartphone application. The smartphone app implements a custom developed LCSP (Lightweight Client Server Protocol) protocol which is used to send requests to the VESNA-AQ unit and to exchange information. When the data is obtained from the VESNA-AQ unit, the mobile application visualizes the data. It also has an option to forward the data to the remote server in a custom JSON structure over a HTTP POST request. The server stores the data in the database and in parallel translates the data to WFS and forwards it to the main CITI-SENSE platform over WFS-T in a common XML format over HTTP POST request. From there data can be accessed through the Internet and visualised in different forms and web applications developed by the CITI-SENSE project. In the course of the project, the collected data will be made publicly available enabling the citizens to participate in environmental governance. Acknowledgements: CITI-SENSE is a Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement no 308524 (www.citi-sense.eu).

  15. Towards a Software Framework to Support Deployment of Low Cost End-to-End Hydroclimatological Sensor Network

    NASA Astrophysics Data System (ADS)

    Celicourt, P.; Piasecki, M.

    2015-12-01

    Deployment of environmental sensors assemblies based on cheap platforms such as Raspberry Pi and Arduino have gained much attention over the past few years. While they are more attractive due to their ability to be controlled with a few programming language choices, the configuration task can become quite complex due to the need of having to learn several different proprietary data formats and protocols which constitute a bottleneck for the expansion of sensor network. In response to this rising complexity the Institute of Electrical and Electronics Engineers (IEEE) has sponsored the development of the IEEE 1451 standard in an attempt to introduce a common standard. The most innovative concept of the standard is the Transducer Electronic Data Sheet (TEDS) which enables transducers to self-identify, self-describe, self-calibrate, to exhibit plug-and-play functionality, etc. We used Python to develop an IEEE 1451.0 platform-independent graphical user interface to generate and provide sufficient information about almost ANY sensor and sensor platforms for sensor programming purposes, automatic calibration of sensors data, incorporation of back-end demands on data management in TEDS for automatic standard-based data storage, search and discovery purposes. These features are paramount to make data management much less onerous in large scale sensor network. Along with the TEDS Creator, we developed a tool namely HydroUnits for three specific purposes: encoding of physical units in the TEDS, dimensional analysis, and on-the-fly conversion of time series allowing users to retrieve data in a desired equivalent unit while accommodating unforeseen and user-defined units. In addition, our back-end data management comprises the Python/Django equivalent of the CUAHSI Observations Data Model (ODM) namely DjangODM that will be hosted by a MongoDB Database Server which offers more convenience for our application. We are also developing a data which will be paired with the data autoloading capability of Django and a TEDS processing script to populate the database with the incoming data. The Python WaterOneFlow Web Services developed by the Texas Water Development Board will be used to publish the data. The software suite is being tested on the Raspberry Pi as end node and a laptop PC as the base station in a wireless setting.

  16. The NOAO Data Products Program: Developing an End-to-End Data Management System in Support of the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Smith, R. C.; Boroson, T.; Seaman, R.

    2007-10-01

    The NOAO Data Products Program (DPP) is responsible for the development and operation of the data management system for NOAO and affiliated observatories, and for the scientific support of users accessing our data holdings and using our tools and services. At the core of this mission is the capture of data from instruments at these observatories and the delivery of that content to both the Principle Investigators (PIs) who proposed for the observations and, after an appropriate proprietary period, to users worldwide who are interested in using the data for their own (often very different) scientific projects. However, delivery of raw and/or reduced images to users only scratches the surface of the extensive potential which the international Virtual Observatory (VO) initiative has to offer. By designing the whole NOAO/DPP program around not only VO standards, but more importantly around VO principles, the program becomes not an exercise in data management and NOAO user support, but rather a VO-centric program which serves the growing world-wide VO community. It is this more global aspect that drives NOAO/DPP planning, as well as more specifically the design, development, and operations of the various components of our system. In the following sections we discuss these components and how they work together to form our VO-centric program.

  17. Building the tree of life from scratch: an end-to-end work flow for phylogenomic studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome sequences are rich sources of information about organisms that are superbly useful for addressing a wide variety of evolutionary questions. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understan...

  18. Quasi-real-time end-to-end simulations of ELT-scale adaptive optics systems on GPUs

    NASA Astrophysics Data System (ADS)

    Gratadour, Damien

    2011-09-01

    Our team has started the development of a code dedicated to GPUs for the simulation of AO systems at the E-ELT scale. It uses the CUDA toolkit and an original binding to Yorick (an open source interpreted language) to provide the user with a comprehensive interface. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 70 Hz) for ELT-sized systems on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-apertures of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions.

  19. Parameterizations of truncated food web models from the perspective of an end-to-end model approach

    NASA Astrophysics Data System (ADS)

    Fennel, Wolfgang

    2009-02-01

    Modeling of marine ecosystems is broadly divided into two branches: biogeochemical processes and fish production. The biogeochemical models see the fish only implicitly by mortality rates, while fish production models see the lower food web basically through prescribed food, e.g., copepod biomass. The skill assessment of ecological models, which are usually truncated biogeochemical models, also involves the question of how the effects of the missing higher food web are parameterized. This paper contributes to the goal of bridging biogeochemical models and fish-production models by employing a recently developed coupled NPZDF-model, Fennel [Fennel, W., 2007. Towards bridging biogeochemical and fish production models. Journal of Marine Systems, doi:10.1016/j.jmarsys.2007.06.008]. Here we study parameterizations of truncated NPZD-models from the viewpoint of a complete model. The effects of the higher food web on the cycling of the state variables in a truncated NPZD-model cannot be unambiguously imitated. For example, one can mimic effects of fishery by export fluxes of one of the state variables. It is shown that the mass fluxes between the lower and upper part of the full model food web are significantly smaller than the fluxes within the NPZD-model. However, over longer time scales, relatively small changes can accumulate and eventually become important.

  20. End-to-end conformational communication through a synthetic purinergic receptor by ligand-induced helicity switching

    NASA Astrophysics Data System (ADS)

    Brown, Robert A.; Diemer, Vincent; Webb, Simon J.; Clayden, Jonathan

    2013-10-01

    The long-range communication of information, exemplified by signal transduction through membrane-bound receptors, is a central biochemical function. Reversible binding of a messenger ligand induces a local conformational change that is relayed through the receptor, inducing a chemical effect typically several nanometres from the binding site. We report a synthetic receptor mimic that transmits structural information from a boron-based ligand binding site to a spectroscopic reporter located more than 2 nm away. Reversible binding of a diol ligand to the N-terminal binding site induces a screw-sense preference in a helical oligo(aminoisobutyric acid) foldamer, which is relayed to a reporter group at the remote C-terminus, communicating information about the structure and stereochemistry of the ligand. The reversible nature of boronate esterification was exploited to switch the receptor sequentially between left- and right-handed helices, while the exquisite conformational sensitivity of the helical relay allowed the reporter to differentiate even between purine and pyrimidine nucleosides as ligands.

  1. End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects

    SciTech Connect

    Meot, F.; Meot, F.; Brooks, S.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2015-05-03

    This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project

  2. Scalability Analysis and Use of Compression at the Goddard DAAC and End-to-End MODIS Transfers

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.

    1998-01-01

    The goal of this task is to analyze the performance of single and multiple FTP transfer between SCF's and the Goddard DAAC. We developed an analytic model to compute the performance of FTP sessions as a function of various key parameters, implemented the model as a program called FTP Analyzer, and carried out validations with real data obtained by running single and multiple FTP transfer between GSFC and the Miami SCF. The input parameters to the model include the mix to FTP sessions (scenario), and for each FTP session, the file size. The network parameters include the round trip time, packet loss rate, the limiting bandwidth of the network connecting the SCF to a DAAC, TCP's basic timeout, TCP's Maximum Segment Size, and TCP's Maximum Receiver's Window Size. The modeling approach used consisted of modeling TCP's overall throughput, computing TCP's delay per FTP transfer, and then solving a queuing network model that includes the FTP clients and servers.

  3. SPAN: A Network Providing Integrated, End-to-End, Sensor-to-Database Solutions for Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Benzel, T.; Cho, Y. H.; Deschon, A.; Gullapalli, S.; Silva, F.

    2009-12-01

    In recent years, advances in sensor network technology have shown great promise to revolutionize environmental data collection. Still, wide spread adoption of these systems by domain experts has been lacking, and these have remained the purview of the engineers who design them. While there are many data logging options for basic data collection in the field currently, scientists are often required to visit the deployment sites to retrieve their data and manually import it into spreadsheets. Some advanced commercial software systems do allow scientists to collect data remotely, but most of these systems only allow point-to-point access, and require proprietary hardware. Furthermore, these commercial solutions preclude the use of sensors from other manufacturers or integration with internet based database repositories and compute engines. Therefore, scientists often must download and manually reformat their data before uploading it to the repositories if they wish to share their data. We present an open-source, low-cost, extensible, turnkey solution called Sensor Processing and Acquisition Network (SPAN) which provides a robust and flexible sensor network service. At the deployment site, SPAN leverages low-power generic embedded processors to integrate variety of commercially available sensor hardware to the network of environmental observation systems. By bringing intelligence close to the sensed phenomena, we can remotely control configuration and re-use, establish rules to trigger sensor activity, manage power requirements, and control the two-way flow of sensed data as well as control information to the sensors. Key features of our design include (1) adoption of a hardware agnostic architecture: our solutions are compatible with several programmable platforms, sensor systems, communication devices and protocols. (2) information standardization: our system supports several popular communication protocols and data formats, and (3) extensible data support: our system works with several existing data storage systems, data models and web based services as needed by the domain experts; examples include standard MySQL databases, Sensorbase (from UCLA), as well as SPAN Cloud, a system built using Google's Application Engine that allows scientists to use Google's cloud computing cyber-infrastructure. We provide a simple, yet flexible data access control mechanism that allows groups of researchers to share their data in SPAN Cloud. In this talk, we will describe the SPAN architecture, its components, our development plans, our vision for the future and results from current deployments that continue to drive the design of our system.

  4. End-to-End Design, Development and Testing of GOES-R Level 1 and 2 Algorithms

    NASA Astrophysics Data System (ADS)

    Zaccheo, T.; Copeland, A.; Steinfelt, E.; Van Rompay, P.; Werbos, A.

    2012-12-01

    GOES-R is the next generation of the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellite (GOES) System, and it represents a new technological era in operational geostationary environmental satellite systems. GOES-R will provide advanced products, based on government-supplied algorithms, which describe the state of the atmosphere, land, and oceans over the Western Hemisphere. The Harris GOES-R Core Ground Segment (GS) Team will provide the ground processing software and infrastructure needed to produce and distribute these data products. As part of this effort, new or updated Level 1b and Level 2+ algorithms will be deployed in the GOES-R Product Generation (PG) Element. In this work, we describe the general approach currently being employed to migrate these Level 1b (L1b) and Level 2+ (L2+) GOES-R PG algorithms from government-provided scientific descriptions to their implementation as integrated software, and provide an overview of how Product Generation software works with the other elements of the Ground Segment to produce Level 1/Level 2+ end-products. In general, GOES-R L1b algorithms ingest reformatted raw sensor data and ancillary information to produce geo-located GOES-R L1b data, and GOES-R L2+ algorithms ingest L1b data and other ancillary/auxiliary/intermediate information to produce L2+ products such as aerosol optical depth, rainfall rate, derived motion winds, and snow cover. In this presentation we provide an overview of the Algorithm development life cycle, the common Product Generation software architecture, and the common test strategies used to verify/validate the scientific implementation. This work will highlight the Software Integration and Test phase of the software life-cycle and the suite of automated test/analysis tools developed to insure the implemented algorithms meet desired reproducibility. As part of this discussion we will summarize the results of our algorithm testing to date, and provide illustrated examples from our ongoing algorithm implementation.

  5. METERON end-to-end Network for Robotic Experiments: Objectives and first operations at B.USOC.

    NASA Astrophysics Data System (ADS)

    This, N.; Michel, A.; Litefti, K.; Muller, C.; Moreau, D.

    2012-09-01

    METERON an international collaboration between ESA, NASA (University of Colorado), Roskosmos and DLR. It intends to use the ISS as a test bed to simulate an orbiter around another heavenly body (for example Mars), under directives from Mission Control on Earth. Astronauts on the orbiter will project their human initiative and instinct, in realtime, onto the surface of the heavenly body (simulated by an analog site on the Earth) through robotic device(s) to perform science or engineering tasks. This type of real-time control is not possible directly from Earth due to the One Way Light Time delay in communications. METERON operations are managed by B.USOC since December 2011 as Facility Reference Centre.

  6. End-to-end remote sensing at the Science and Technology Laboratory of John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick; Rickman, Douglas; Smith, Eric

    1991-01-01

    The Science and Technology Laboratory (STL) of Stennis Space Center (SSC) was developing an expertise in remote sensing for more than a decade. Capabilities at SSC/STL include all major areas of the field. STL includes the Sensor Development Laboratory (SDL), Image Processing Center, a Learjet 23 flight platform, and on-staff scientific investigators.

  7. SU-E-T-268: Proton Radiosurgery End-To-End Testing Using Lucy 3D QA Phantom

    SciTech Connect

    Choi, D; Gordon, I; Ghebremedhin, A; Wroe, A; Schulte, R; Bush, D; Slater, J; Patyal, B

    2014-06-01

    Purpose: To check the overall accuracy of proton radiosurgery treatment delivery using ready-made circular collimator inserts and fixed thickness compensating boluses. Methods: Lucy 3D QA phantom (Standard Imaging Inc. WI, USA) inserted with GaFchromicTM film was irradiated with laterally scattered and longitudinally spread-out 126.8 MeV proton beams. The tests followed every step in the proton radiosurgery treatment delivery process: CT scan (GE Lightspeed VCT), target contouring, treatment planning (Odyssey 5.0, Optivus, CA), portal calibration, target localization using robotic couch with image guidance and dose delivery at planned gantry angles. A 2 cm diameter collimator insert in a 4 cm diameter radiosurgery cone and a 1.2 cm thick compensating flat bolus were used for all beams. Film dosimetry (RIT114 v5.0, Radiological Imaging Technology, CO, USA) was used to evaluate the accuracy of target localization and relative dose distributions compared to those calculated by the treatment planning system. Results: The localization accuracy was estimated by analyzing the GaFchromic films irradiated at gantry 0, 90 and 270 degrees. We observed 0.5 mm shift in lateral direction (patient left), ±0.9 mm shift in AP direction and ±1.0 mm shift in vertical direction (gantry dependent). The isodose overlays showed good agreement (<2mm, 50% isodose lines) between measured and calculated doses. Conclusion: Localization accuracy depends on gantry sag, CT resolution and distortion, DRRs from treatment planning computer, localization accuracy of image guidance system, fabrication of ready-made aperture and cone housing. The total deviation from the isocenter was 1.4 mm. Dose distribution uncertainty comes from distal end error due to bolus and CT density, in addition to localization error. The planned dose distribution was well matched (>90%) to the measured values 2%/2mm criteria. Our test showed the robustness of our proton radiosurgery treatment delivery system using ready-made collimator inserts and fixed thickness compensating boluses.

  8. Risk-based evaluation of Allowed Outage Times (AOTs) considering risk of shutdown

    SciTech Connect

    Mankamo, T.; Kim, I.S.; Samanta, P.K.

    1992-12-31

    When safety systems fail during power operation, Technical Specifications (TS) usually limit the repair within Allowed Outage Time (AOT). If the repair cannot be completed within the AOT, or no AOT is allowed, the plant is required to be shut down for the repair. However, if the capability to remove decay heat is degraded, shutting down the plant with the need to operate the affected decay-heat removal systems may impose a substantial risk compared to continued power operation over a usual repair time. Thus, defining a proper AOT in such situations can be considered as a risk-comparison between the repair in frill power state with a temporarily increased level of risk, and the altemative of shutting down the plant for the repair in zero power state with a specific associated risk. The methodology of the risk-comparison approach, with a due consideration of the shutdown risk, has been further developed and applied to the AOT considerations of residual heat removal and standby service water systems of a boiling water reactor (BWR) plant. Based on the completed work, several improvements to the TS requirements for the systems studied can be suggested.

  9. Risk-based evaluation of Allowed Outage Times (AOTs) considering risk of shutdown

    SciTech Connect

    Mankamo, T. ); Kim, I.S.; Samanta, P.K. )

    1992-01-01

    When safety systems fail during power operation, Technical Specifications (TS) usually limit the repair within Allowed Outage Time (AOT). If the repair cannot be completed within the AOT, or no AOT is allowed, the plant is required to be shut down for the repair. However, if the capability to remove decay heat is degraded, shutting down the plant with the need to operate the affected decay-heat removal systems may impose a substantial risk compared to continued power operation over a usual repair time. Thus, defining a proper AOT in such situations can be considered as a risk-comparison between the repair in frill power state with a temporarily increased level of risk, and the altemative of shutting down the plant for the repair in zero power state with a specific associated risk. The methodology of the risk-comparison approach, with a due consideration of the shutdown risk, has been further developed and applied to the AOT considerations of residual heat removal and standby service water systems of a boiling water reactor (BWR) plant. Based on the completed work, several improvements to the TS requirements for the systems studied can be suggested.

  10. Plant Outage Time Savings Provided by Subcritical Physics Testing at Vogtle Unit 2

    SciTech Connect

    Cupp, Philip; Heibel, M.D.

    2006-07-01

    The most recent core reload design verification physics testing done at Southern Nuclear Company's (SNC) Vogtle Unit 2, performed prior to initial power operations in operating cycle 12, was successfully completed while the reactor was at least 1% {delta}K/K subcritical. The testing program used was the first application of the Subcritical Physics Testing (SPT) program developed by the Westinghouse Electric Company LLC. The SPT program centers on the application of the Westinghouse Subcritical Rod Worth Measurement (SRWM) methodology that was developed in cooperation with the Vogtle Reactor Engineering staff. The SRWM methodology received U. S. Nuclear Regulatory Commission (NRC) approval in August of 2005. The first application of the SPT program occurred at Vogtle Unit 2 in October of 2005. The results of the core design verification measurements obtained during the SPT program demonstrated excellent agreement with prediction, demonstrating that the predicted core characteristics were in excellent agreement with the actual operating characteristics of the core. This paper presents an overview of the SPT Program used at Vogtle Unit 2 during operating cycle 12, and a discussion of the critical path outage time savings the SPT program is capable of providing. (authors)

  11. Minimally Invasive Valve Surgery

    PubMed Central

    Pope, Nicolas H.; Ailawadi, Gorav

    2014-01-01

    Cardiac valve surgery is life saving for many patients. The advent of minimally invasive surgical techniques has historically allowed for improvement in both post-operative convalescence and important clinical outcomes. The development of minimally invasive cardiac valve repair and replacement surgery over the past decade is poised to revolutionize the care of cardiac valve patients. Here, we present a review of the history and current trends in minimally invasive aortic and mitral valve repair and replacement, including the development of sutureless bioprosthetic valves. PMID:24797148

  12. [Minimal Change Esophagitis].

    PubMed

    Ryu, Han Seung; Choi, Suck Chei

    2016-01-25

    Gastroesophageal reflux disease (GERD) is defined as a condition which develops when the reflux of gastric contents causes troublesome symptoms and long-term complications. GERD can be divided into erosive reflux disease and non-erosive reflux disease based on endoscopic findings defined by the presence of mucosal break. The Los Angeles classification excludes minimal changes as an evidence of reflux esophagitis because of poor interobserver agreement. In the Asian literature, minimal changes are considered as one of the endoscopic findings of reflux esophagitis, but the clinical significance is still controversial. Minimal change esophagitis is recognized quite frequently among patients with GERD and many endoscopists recognize such findings in their clinical practice. This review is intended to clarify the definition of minimal change esophagitis and their histology, interobserver agreement, and symptom association with GERD.

  13. Minimizing Shortness of Breath

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Minimizing Shortness of Breath ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  14. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  15. Automatic scheduling of outages of nuclear power plants with time windows. Final report, January-December 1995

    SciTech Connect

    Gomes, C.

    1996-10-01

    This report describes a successful project for transference of advanced AI technology into the domain of planning of outages of nuclear power plants as part of DOD`s dual-use program. ROMAN (Rome Lab Outage Manager) is the prototype system that was developed as a result of this project. ROMAN`s main innovation compared to the current state-of-the-art of outage management tools is its capability to automatically enforce safety constraints during the planning and scheduling phase. Another innovative aspect of ROMAN is the generation of more robust schedules that are feasible over time windows. In other words, ROMAN generates a family of schedules by assigning time intervals as start times to activities rather than single start times, without affecting the overall duration of the project. ROMAN uses a constraint satisfaction paradigm combining a global search tactic with constraint propagation. The derivation of very specialized representations for the constraints to perform efficient propagation is a key aspect for the generation of very fast schedules - constraints are compiled into the code, which is a novel aspect of our work using an automatic programming system, KIDS.

  16. Down-select ion specific media (ISM) utilization in upset and outage conditions

    SciTech Connect

    Denton, Mark S.; Bostick, William D.

    2007-07-01

    This paper presents a process that has been used to help nuclear power plant (NPP) clients resolve some of their more challenging waste water processing issues. These treatment issues may become even more evident during outage conditions, due (in part) to associated decontamination activities that may cause off-normal chemical conditions, which may subsequently change both the peak levels of activities for radionuclides introduced into the collected waste water and also the chemical forms in which they may exist (e.g., formation of colloids or soluble chelates). In one NPP waste processing example, a large proportion of soluble Co-58, which is normally present as a soluble cationic species or an uncharged colloidal solid, was found to behave like an anion; formation of an anionic chelation complex was implicated, possibly due to suspect EDTA, or similar additive, in a proprietary decontamination soap formulation. Antimony 125 (Sb{sup 125}), normally present as a weakly anionic (Sb(OH){sub 6}{sup -}) or even neutral (Sb(OH){sub 3}{sup 0}) species, was being displaced from previously-loaded media by other, more strongly bound species, causing an unacceptable peak activity in water intended for discharge. A quick resolution of the existing waste processing limitations was required, due to limited waste water holding capacity. Samples of the authentic NPP waste water containing the recalcitrant radionuclides were sent to our licensed off-site laboratory (MCLinc), where small-scale batch-equilibrium testing was used to down-select, from a large number (36) of candidate media (both commercially available and developed internally), those that were relatively effective and economical for use in achieving the required discharge criteria. Batch equilibrium testing is very efficient for use in screening the relative effectiveness of contaminant removal by candidate media in a select waste water composition, and can also provide an estimate of the ultimate contaminant loading

  17. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  18. Identifying industrial best practices for the waste minimization of low-level radioactive materials

    SciTech Connect

    Levin, V.

    1996-04-01

    In US DOE, changing circumstances are affecting the management and disposal of solid, low-level radioactive waste (LLW). From 1977 to 1991, the nuclear power industry achieved major reductions in solid waste disposal, and DOE is interested in applying those practices to reduce solid waste at DOE facilities. Project focus was to identify and document commercial nuclear industry best practices for radiological control programs supporting routine operations, outages, and decontamination and decommissioning activities. The project team (DOE facility and nuclear power industry representatives) defined a Work Control Process Model, collected nuclear power industry Best Practices, and made recommendations to minimize LLW at DOE facilities.

  19. Minimally invasive procedures

    PubMed Central

    Baltayiannis, Nikolaos; Michail, Chandrinos; Lazaridis, George; Anagnostopoulos, Dimitrios; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    Minimally invasive procedures, which include laparoscopic surgery, use state-of-the-art technology to reduce the damage to human tissue when performing surgery. Minimally invasive procedures require small “ports” from which the surgeon inserts thin tubes called trocars. Carbon dioxide gas may be used to inflate the area, creating a space between the internal organs and the skin. Then a miniature camera (usually a laparoscope or endoscope) is placed through one of the trocars so the surgical team can view the procedure as a magnified image on video monitors in the operating room. Specialized equipment is inserted through the trocars based on the type of surgery. There are some advanced minimally invasive surgical procedures that can be performed almost exclusively through a single point of entry—meaning only one small incision, like the “uniport” video-assisted thoracoscopic surgery (VATS). Not only do these procedures usually provide equivalent outcomes to traditional “open” surgery (which sometimes require a large incision), but minimally invasive procedures (using small incisions) may offer significant benefits as well: (I) faster recovery; (II) the patient remains for less days hospitalized; (III) less scarring and (IV) less pain. In our current mini review we will present the minimally invasive procedures for thoracic surgery. PMID:25861610

  20. Ways To Minimize Bullying.

    ERIC Educational Resources Information Center

    Mueller, Mary Ellen; Parisi, Mary Joy

    This report delineates a series of interventions aimed at minimizing incidences of bullying in a suburban elementary school. The social services staff was scheduled to initiate an anti-bullying incentive in fall 2001 due to the increased occurrences of bullying during the prior year. The target population consisted of third- and fourth-grade…

  1. Minimally invasive periodontal therapy.

    PubMed

    Dannan, Aous

    2011-10-01

    Minimally invasive dentistry is a concept that preserves dentition and supporting structures. However, minimally invasive procedures in periodontal treatment are supposed to be limited within periodontal surgery, the aim of which is to represent alternative approaches developed to allow less extensive manipulation of surrounding tissues than conventional procedures, while accomplishing the same objectives. In this review, the concept of minimally invasive periodontal surgery (MIPS) is firstly explained. An electronic search for all studies regarding efficacy and effectiveness of MIPS between 2001 and 2009 was conducted. For this purpose, suitable key words from Medical Subject Headings on PubMed were used to extract the required studies. All studies are demonstrated and important results are concluded. Preliminary data from case cohorts and from many studies reveal that the microsurgical access flap, in terms of MIPS, has a high potential to seal the healing wound from the contaminated oral environment by achieving and maintaining primary closure. Soft tissues are mostly preserved and minimal gingival recession is observed, an important feature to meet the demands of the patient and the clinician in the esthetic zone. However, although the potential efficacy of MIPS in the treatment of deep intrabony defects has been proved, larger studies are required to confirm and extend the reported positive preliminary outcomes.

  2. Minimizing Promotion Trauma.

    ERIC Educational Resources Information Center

    Darling, LuAnn W.; McGrath, Loraine

    1983-01-01

    Nursing administrators can minimize promotion trauma and its unnecessary cost by building awareness of the transition process, clarifying roles and expectations, and attending to the promoted employee's needs. This article will help nursing administrators develop a concept of manager care combined with programs for orientation of new managers,…

  3. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  4. Minimally invasive pancreatic surgery.

    PubMed

    Yiannakopoulou, E

    2015-12-01

    Minimally invasive pancreatic surgery is feasible and safe. Laparoscopic distal pancreatectomy should be widely adopted for benign lesions of the pancreas. Laparoscopic pancreaticoduodenectomy, although technically demanding, in the setting of pancreatic ductal adenocarcinoma has a number of advantages including shorter hospital stay, faster recovery, allowing patients to recover in a timelier manner and pursue adjuvant treatment options. Furthermore, it seems that progression-free survival is longer in patients undergoing laparoscopic pancreaticoduodenectomy in comparison with those undergoing open pancreaticoduodenectomy. Minimally invasive middle pancreatectomy seems appropriate for benign or borderline tumors of the neck of the pancreas. Technological advances including intraoperative ultrasound and intraoperative fluorescence imaging systems are expected to facilitate the wide adoption of minimally invasive pancreatic surgery. Although, the oncological outcome seems similar with that of open surgery, there are still concerns, as the majority of relevant evidence comes from retrospective studies. Large multicenter randomized studies comparing laparoscopic with open pancreatectomy as well as robotic assisted with both open and laparoscopic approaches are needed. Robotic approach could be possibly shown to be less invasive than conventional laparoscopic approach through the less traumatic intra-abdominal handling of tissues. In addition, robotic approach could enable the wide adoption of the technique by surgeon who is not that trained in advanced laparoscopic surgery. A putative clinical benefit of minimally invasive pancreatic surgery could be the attenuated surgical stress response leading to reduced morbidity and mortality as well as lack of the detrimental immunosuppressive effect especially for the oncological patients. PMID:26530291

  5. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  6. High-Rate Communications Outage Recorder Operations for Optimal Payload and Science Telemetry Management Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Shell, Michael T.; McElyea, Richard M. (Technical Monitor)

    2002-01-01

    All International Space Station (ISS) Ku-band telemetry transmits through the High-Rate Communications Outage Recorder (HCOR). The HCOR provides the recording and playback capability for all payload, science, and International Partner data streams transmitting through NASA's Ku-band antenna system. The HCOR is a solid-state memory recorder that provides recording capability to record all eight ISS high-rate data during ISS Loss-of-Signal periods. NASA payloads in the Destiny module are prime users of the HCOR; however, NASDA and ESA will also utilize the HCOR for data capture and playback of their high data rate links from the Kibo and Columbus modules. Marshall Space Flight Center's Payload Operations Integration Center manages the HCOR for nominal functions, including system configurations and playback operations. The purpose of this paper is to present the nominal operations plan for the HCOR and the plans for handling contingency operations affecting payload operations. In addition, the paper will address HCOR operation limitations and the expected effects on payload operations. The HCOR is manifested for ISS delivery on flight 9A with the HCOR backup manifested on flight 11A. The HCOR replaces the Medium-Rate Communications Outage Recorder (MCOR), which has supported payloads since flight 5A.1.

  7. Minimally invasive mediastinal surgery

    PubMed Central

    Melfi, Franca M. A.; Mussi, Alfredo

    2016-01-01

    In the past, mediastinal surgery was associated with the necessity of a maximum exposure, which was accomplished through various approaches. In the early 1990s, many surgical fields, including thoracic surgery, observed the development of minimally invasive techniques. These included video-assisted thoracic surgery (VATS), which confers clear advantages over an open approach, such as less trauma, short hospital stay, increased cosmetic results and preservation of lung function. However, VATS is associated with several disadvantages. For this reason, it is not routinely performed for resection of mediastinal mass lesions, especially those located in the anterior mediastinum, a tiny and remote space that contains vital structures at risk of injury. Robotic systems can overcome the limits of VATS, offering three-dimensional (3D) vision and wristed instrumentations, and are being increasingly used. With regards to thymectomy for myasthenia gravis (MG), unilateral and bilateral VATS approaches have demonstrated good long-term neurologic results with low complication rates. Nevertheless, some authors still advocate the necessity of maximum exposure, especially when considering the distribution of normal and ectopic thymic tissue. In recent studies, the robotic approach has shown to provide similar neurological outcomes when compared to transsternal and VATS approaches, and is associated with a low morbidity. Importantly, through a unilateral robotic technique, it is possible to dissect and remove at least the same amount of mediastinal fat tissue. Preliminary results on early-stage thymomatous disease indicated that minimally invasive approaches are safe and feasible, with a low rate of pleural recurrence, underlining the necessity of a “no-touch” technique. However, especially for thymomatous disease characterized by an indolent nature, further studies with long follow-up period are necessary in order to assess oncologic and neurologic results through minimally

  8. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  9. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  10. Minimal E6 unification

    NASA Astrophysics Data System (ADS)

    Susič, Vasja

    2016-06-01

    A realistic model in the class of renormalizable supersymmetric E6 Grand Unified Theories is constructed. Its matter sector consists of 3 × 27 representations, while the Higgs sector is 27 +27 ¯+35 1'+35 1' ¯+78 . An analytic solution for a Standard Model vacuum is found and the Yukawa sector analyzed. It is argued that if one considers the increased predictability due to only two symmetric Yukawa matrices in this model, it can be considered a minimal SUSY E6 model with this type of matter sector. This contribution is based on Ref. [1].

  11. Logarithmic superconformal minimal models

    NASA Astrophysics Data System (ADS)

    Pearce, Paul A.; Rasmussen, Jørgen; Tartaglia, Elena

    2014-05-01

    The higher fusion level logarithmic minimal models {\\cal LM}(P,P';n) have recently been constructed as the diagonal GKO cosets {(A_1^{(1)})_k\\oplus (A_1^ {(1)})_n}/ {(A_1^{(1)})_{k+n}} where n ≥ 1 is an integer fusion level and k = nP/(P‧- P) - 2 is a fractional level. For n = 1, these are the well-studied logarithmic minimal models {\\cal LM}(P,P')\\equiv {\\cal LM}(P,P';1). For n ≥ 2, we argue that these critical theories are realized on the lattice by n × n fusion of the n = 1 models. We study the critical fused lattice models {\\cal LM}(p,p')_{n\\times n} within a lattice approach and focus our study on the n = 2 models. We call these logarithmic superconformal minimal models {\\cal LSM}(p,p')\\equiv {\\cal LM}(P,P';2) where P = |2p - p‧|, P‧ = p‧ and p, p‧ are coprime. These models share the central charges c=c^{P,P';2}=\\frac {3}{2}\\big (1-{2(P'-P)^2}/{P P'}\\big ) of the rational superconformal minimal models {\\cal SM}(P,P'). Lattice realizations of these theories are constructed by fusing 2 × 2 blocks of the elementary face operators of the n = 1 logarithmic minimal models {\\cal LM}(p,p'). Algebraically, this entails the fused planar Temperley-Lieb algebra which is a spin-1 Birman-Murakami-Wenzl tangle algebra with loop fugacity β2 = [x]3 = x2 + 1 + x-2 and twist ω = x4 where x = eiλ and λ = (p‧- p)π/p‧. The first two members of this n = 2 series are superconformal dense polymers {\\cal LSM}(2,3) with c=-\\frac {5}{2}, β2 = 0 and superconformal percolation {\\cal LSM}(3,4) with c = 0, β2 = 1. We calculate the bulk and boundary free energies analytically. By numerically studying finite-size conformal spectra on the strip with appropriate boundary conditions, we argue that, in the continuum scaling limit, these lattice models are associated with the logarithmic superconformal models {\\cal LM}(P,P';2). For system size N, we propose finitized Kac character formulae of the form q^{-{c^{P,P';2}}/{24}+\\Delta ^{P,P';2} _{r

  12. Minimizing fan energy costs

    SciTech Connect

    Monroe, R.C.

    1985-05-27

    Minimizing fan energy costs and maximizing fan efficiency is the subject of this paper. Blade design itself can cause poor flow distribution and inefficiency. A basic design criterion is that a blade should produce uniform flow over the entire plane of the fan. Also an inherent problem with the axial fan is swirl -- the tangential deflection of exit-flow caused by the effect of torque. Swirl can be prevented with an inexpensive hub component. Basic efficiency can be checked by means of the fan's performance curve. Generally, fewer blades translate into higher axial-fan efficiency. A crowded inboard area creates hub turbulence which lessens efficiency. Whether the pitch of fan blades is fixed or variable also affects energy consumption. Power savings of 50% per year or more can be realized by replacing fixed-pitch, continuously operating fans with fans whose blade pitch or speed is automatically varied.

  13. Transanal Minimally Invasive Surgery

    PubMed Central

    deBeche-Adams, Teresa; Nassif, George

    2015-01-01

    Transanal minimally invasive surgery (TAMIS) was first described in 2010 as a crossover between single-incision laparoscopic surgery and transanal endoscopic microsurgery (TEM) to allow access to the proximal and mid-rectum for resection of benign and early-stage malignant rectal lesions. The TAMIS technique can also be used for noncurative intent surgery of more advanced lesions in patients who are not candidates for radical surgery. Proper workup and staging should be done before surgical decision-making. In addition to the TAMIS port, instrumentation and set up include readily available equipment found in most operating suites. TAMIS has proven its usefulness in a wide range of applications outside of local excision, including repair of rectourethral fistula, removal of rectal foreign body, control of rectal hemorrhage, and as an adjunct in total mesorectal excision for rectal cancer. TAMIS is an easily accessible, technically feasible, and cost-effective alternative to TEM. PMID:26491410

  14. [Minimal invasive implantology].

    PubMed

    Bruck, N; Zagury, A; Nahlieli, O

    2015-07-01

    Endoscopic surgery has changed the philosophy and practice of modern surgery in all aspects of medicine. It gave rise to minimally invasive surgery procedures based on the ability to visualize and to operate via small channels. In maxillofacial surgery, our ability to see clearly the surgical field opened an entirely new world of exploration, as conditions that were once almost impossible to control and whose outcome was uncertain can be now predictably managed. in this article we will descripe the advantage of using the oral endoscope during the dental implantology procedure, and we will describe a unique implant which enable us in combination with the oral endoscope to create a maxillary sinus lift with out the need of the major surgery with all of its risks and complication.

  15. [Minimally invasive breast surgery].

    PubMed

    Mátrai, Zoltán; Gulyás, Gusztáv; Kunos, Csaba; Sávolt, Akos; Farkas, Emil; Szollár, András; Kásler, Miklós

    2014-02-01

    Due to the development in medical science and industrial technology, minimally invasive procedures have appeared in the surgery of benign and malignant breast diseases. In general , such interventions result in significantly reduced breast and chest wall scars, shorter hospitalization and less pain, but they require specific, expensive devices, longer surgical time compared to open surgery. Furthermore, indications or oncological safety have not been established yet. It is quite likely, that minimally invasive surgical procedures with high-tech devices - similar to other surgical subspecialties -, will gradually become popular and it may form part of routine breast surgery even. Vacuum-assisted core biopsy with a therapeutic indication is suitable for the removal of benign fibroadenomas leaving behind an almost invisible scar, while endoscopically assisted skin-sparing and nipple-sparing mastectomy, axillary staging and reconstruction with latissimus dorsi muscle flap are all feasible through the same short axillary incision. Endoscopic techniques are also suitable for the diagnostics and treatment of intracapsular complications of implant-based breast reconstructions (intracapsular fluid, implant rupture, capsular contracture) and for the biopsy of intracapsular lesions with uncertain pathology. Perception of the role of radiofrequency ablation of breast tumors requires further hands-on experience, but it is likely that it can serve as a replacement of surgical removal in a portion of primary tumors in the future due to the development in functional imaging and anticancer drugs. With the reduction of the price of ductoscopes routine examination of the ductal branch system, guided microdochectomy and targeted surgical removal of terminal ducto-lobular units or a "sick lobe" as an anatomical unit may become feasible. The paper presents the experience of the authors and provides a literature review, for the first time in Hungarian language on the subject. Orv. Hetil

  16. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  17. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  18. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  19. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  20. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    PubMed

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS.

  1. A minimal lentivirus Tat.

    PubMed Central

    Derse, D; Carvalho, M; Carroll, R; Peterlin, B M

    1991-01-01

    Transcriptional regulatory mechanisms found in lentiviruses employ RNA enhancer elements called trans-activation responsive (TAR) elements. These nascent RNA stem-loops are cis-acting targets of virally encoded Tat effectors. Interactions between Tat and TAR increase the processivity of transcription complexes and lead to efficient copying of viral genomes. To study essential elements of this trans activation, peptide motifs from Tats of two distantly related lentiviruses, equine infectious anemia virus (EIAV) and human immunodeficiency virus type 1 (HIV-1), were fused to the coat protein of bacteriophage R17 and tested on the long terminal repeat of EIAV, where TAR was replaced by the R17 operator, the target of the coat protein. This independent RNA-tethering mechanism mapped activation domains of Tats from HIV-1 and EIAV to 47 and 15 amino acids and RNA-binding domains to 10 and 26 amino acids, respectively. Thus, a minimal lentivirus Tat consists of 25 amino acids, of which 15 modify viral transcription and 10 bind to the target RNA stem-loop. Images PMID:1658392

  2. Evaluation of the resilience of a full-scale down-flow hanging sponge reactor to long-term outages at a sewage treatment plant in India.

    PubMed

    Onodera, Takashi; Takayama, Daisuke; Ohashi, Akiyoshi; Yamaguchi, Takashi; Uemura, Shigeki; Harada, Hideki

    2016-10-01

    Resilience to process outages is an essential requirement for sustainable wastewater treatment systems in developing countries. In this study, we evaluated the ability of a full-scale down-flow hanging sponge (DHS) reactor to recover after a 10-day outage. The DHS tested in this study uses polyurethane sponge as packing material. This full-scale DHS reactor has been tested over a period of about 4 years in India with a flow rate of 500 m(3)/day. Water was not supplied to the DHS reactor that was subjected to the 10-day outage; however, the biomass did not dry out because the sponge was able to retain enough water. Soon after the reactor was restarted, a small quantity of biomass, amounting to only 0.1% of the total retained biomass, was eluted. The DHS effluent achieved satisfactory removal of suspended solids, chemical oxygen demand, and ammonium nitrogen within 90, 45, and 90 min, respectively. Conversely, fecal coliforms in the DHS effluent did not reach satisfactory levels within 540 min; instead, the normal levels of fecal coliforms were achieved within 3 days. Overall, the tests demonstrated that the DHS reactor was sufficiently robust to withstand long-term outages and achieved steady state soon after restart. This reinforces the suitability of this technology for developing countries. PMID:27450993

  3. Evaluation of the resilience of a full-scale down-flow hanging sponge reactor to long-term outages at a sewage treatment plant in India.

    PubMed

    Onodera, Takashi; Takayama, Daisuke; Ohashi, Akiyoshi; Yamaguchi, Takashi; Uemura, Shigeki; Harada, Hideki

    2016-10-01

    Resilience to process outages is an essential requirement for sustainable wastewater treatment systems in developing countries. In this study, we evaluated the ability of a full-scale down-flow hanging sponge (DHS) reactor to recover after a 10-day outage. The DHS tested in this study uses polyurethane sponge as packing material. This full-scale DHS reactor has been tested over a period of about 4 years in India with a flow rate of 500 m(3)/day. Water was not supplied to the DHS reactor that was subjected to the 10-day outage; however, the biomass did not dry out because the sponge was able to retain enough water. Soon after the reactor was restarted, a small quantity of biomass, amounting to only 0.1% of the total retained biomass, was eluted. The DHS effluent achieved satisfactory removal of suspended solids, chemical oxygen demand, and ammonium nitrogen within 90, 45, and 90 min, respectively. Conversely, fecal coliforms in the DHS effluent did not reach satisfactory levels within 540 min; instead, the normal levels of fecal coliforms were achieved within 3 days. Overall, the tests demonstrated that the DHS reactor was sufficiently robust to withstand long-term outages and achieved steady state soon after restart. This reinforces the suitability of this technology for developing countries.

  4. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  5. Influenza SIRS with Minimal Pneumonitis

    PubMed Central

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A.

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement.

  6. Waste minimization handbook, Volume 1

    SciTech Connect

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  7. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    PubMed

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS. PMID:23206077

  8. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  9. Exact outage analysis of the effect of co-channel interference on secured multi-hop relaying networks

    NASA Astrophysics Data System (ADS)

    Quang Nguyen, Sang; Kong, Hyung Yun

    2016-11-01

    In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.

  10. [Responding to patients with home mechanical ventilation after the Great East Japan Earthquake and during the planned power outages. How should we be prepared for a future disaster ?].

    PubMed

    Takechi, Yukako

    2011-12-01

    The unprecedented earthquake(magnitude-9 in the Japanese seismic intensity scale)hit off the east coast of Japan on March 11, 2011. Consequently, there were planned power outages in the area nearby Tokyo to avoid massive blackouts caused by a stoppage of Fukushima nuclear plants.Our clinic located in Kawasaki city was also hit by the earthquake(magnitude- 5).During the period of two months(March and April 2011), we had a total of 52 patients with home respiratory care (5-TPPV, 11-NPPV and 36-HOT)at that time.Two out of three 24 hour-TPPV users had no external battery.After the earthquake, there was a 7-hour electricity failure in some areas, and a patient with ASV(adaptive servo ventilator)was living there.Moreover, 3-hour/day power outages were carried out from March 14 to March 28, affecting people's everyday lives. However, the patient had no harmful influences from the power failure because a ventilation company lent us an external battery(4-9 hour life capacity)for the patients, and we were able to avoid an emergency situation caused by the power failure.In conclusion, we ought to be prepared for patients with home mechanical ventilation in the future toward unforeseen large scale power outages.

  11. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels †

    PubMed Central

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  12. Influenza SIRS with Minimal Pneumonitis

    PubMed Central

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A.

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement. PMID:27630988

  13. Influenza SIRS with Minimal Pneumonitis.

    PubMed

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement. PMID:27630988

  14. Minimal but non-minimal inflation and electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Marzola, Luca; Racioppi, Antonio

    2016-10-01

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r ≈ 10‑3, typical of Higgs-inflation models, but in contrast yields a scalar spectral index ns simeq 0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  15. Reduce power outages

    SciTech Connect

    Goyal, R.; Ramirez, R.

    1995-06-01

    A case history shows the cost-effectiveness of doing a reliability study on a new, grassroots refinery constructed in Venezuela. Constructing grassroots refineries in developing countries pose many challenges, especially when considering electrical power and steam supplies. Without dependable electrical and steam sources, the refinery will not operate according to design expectations. Consequently, utility systems are critical and expensive challenges that must be considered early in design. Because of tighter operating budgets, refiners are equally interested in cutting out system overdesign. Redundant backup systems are damaging in capital and operating expenditures. Using reliability analysis techniques, designers can evaluate the reliability, availability and maintainability of operating systems. In the following example, a Venezuelan operating company used a reliability analysis to: assess onstream factors for the refinery`s power plant; identify critical equipment that have the greatest impact on available electrical and steam sources; and achieve a cost-effective equipment configuration that eliminates redundant backup systems. Results from the study allowed decision-makers to initiate objective plans and created an equipment-failure database that will service the refinery for its useful life.

  16. [Nonsuture microvascular anastomosis--experimental arterial end-to-end anastomosis using plastic adhesive and a soluble PVA tube (author's transl)].

    PubMed

    Yamagata, S; Handa, H; Taki, W; Yonekawa, Y; Ikada, Y; Iwata, H

    1979-11-01

    Microvascular anastomosis is now widely applied and many improved methods of the nonsuture anastomosis have been developed instead of the suture anastomosis for the purpose of saving time and making the reconstruction easier. We introduced a new nonsuture method of microvascular anastomosis using plastic adhesive and a soluble tube made of polyvinylalcohol (PVA). PVA, which had been utilized as a plasma expander, is a water-soluble polymer and its solubility is changeable depending on the degree of polimerization and percent saponification. We have made two kinds of soluble PVA tubes, the one has monolayer wall and the other double layered wall. The inner wall of the latter is more soluble than the outer wall. As plastic adhesives, we employed ethyl 2--cyanoacrylate, isopropyl 2--cyanoacrylate, and isobutyl 2--cyanoacrylate which were much superior to methyl 2--cyanoacrylate. Common carotid arteries of rats of 1.0 to 1.3 mm external diameter range were reconstructed and re-exploration was carried out at intervals of more than 7 days after operation. The anastomotic technique was very easy and it took about five minutes to reconstruct. In our last series, approximately 98 percent patency rate was achieved. The advantage of our method is that the blood stream is regained in the small soluble at the anastomotic site immediately after the release of hemostatic clamps.

  17. EXSdetect: an end-to-end software for extended source detection in X-ray images: application to Swift-XRT data

    NASA Astrophysics Data System (ADS)

    Liu, T.; Tozzi, P.; Tundo, E.; Moretti, A.; Wang, J.-X.; Rosati, P.; Guglielmetti, F.

    2013-01-01

    Aims: We present a stand-alone software (named EXSdetect) for the detection of extended sources in X-ray images. Our goal is to provide a flexible tool capable of detecting extended sources down to the lowest flux levels attainable within instrumental limitations, while maintaining robust photometry, high completeness, and low contamination, regardless of source morphology. EXSdetect was developed mainly to exploit the ever-increasing wealth of archival X-ray data, but is also ideally suited to explore the scientific capabilities of future X-ray facilities, with a strong focus on investigations of distant groups and clusters of galaxies. Methods: EXSdetect combines a fast Voronoi tessellation code with a friends-of-friends algorithm and an automated deblending procedure. The values of key parameters are matched to fundamental telescope properties such as angular resolution and instrumental background. In addition, the software is designed to permit extensive tests of its performance via simulations of a wide range of observational scenarios. Results: We applied EXSdetect to simulated data fields modeled to realistically represent the Swift X-ray Cluster Survey (SXCS), which is based on archival data obtained by the X-ray telescope onboard the Swift satellite. We achieve more than 90% completeness for extended sources comprising at least 80 photons in the 0.5-2 keV band, a limit that corresponds to 10-14 erg cm-2 s-1 for the deepest SXCS fields. This detection limit is comparable to the one attained by the most sensitive cluster surveys conducted with much larger X-ray telescopes. While evaluating the performance of EXSdetect, we also explored the impact of improved angular resolution and discuss the ideal properties of the next generation of X-ray survey missions. The Phyton code EXSdetect is available on the SXCS website http://adlibitum.oats.inaf.it/sxcs

  18. From Ambient Sensing to IoT-based Context Computing: An Open Framework for End to End QoC Management †

    PubMed Central

    Marie, Pierrick; Desprats, Thierry; Chabridon, Sophie; Sibilla, Michelle; Taconet, Chantal

    2015-01-01

    Quality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing. At the time where the combination of the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms offer together new opportunities for managing richer context data, the next generation of Distributed Context Managers (DCM) is facing new challenges concerning QoC management. This paper presents our model-driven QoCIM framework. QoCIM is the acronym for Quality of Context Information Model. We show how it can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario. PMID:26087372

  19. End-to-End System Test of the Relative Precision and Stability of the Photometric Method for Detecting Earth-Size Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.

    2000-01-01

    We developed the CCD camera system for the laboratory test demonstration and designed the optical system for this test. The camera system was delivered to Ames in April, 1999 with continuing support mostly in the software area as the test progressed. The camera system has been operating successfully since delivery. The optical system performed well during the test. The laboratory demonstration activity is now nearly complete and is considered to be successful by the Technical Advisory Group, which met on 8 February, 2000 at the SETI Institute. A final report for the Technical Advisory Group and NASA Headquarters will be produced in the next few months. This report will be a comprehensive report on all facets of the test including those covered under this grant. A copy will be forwarded, if desired, when it is complete.

  20. 'End to end' planktonic trophic web and its implications for the mussel farms in the Mar Piccolo of Taranto (Ionian Sea, Italy).

    PubMed

    Karuza, Ana; Caroppo, Carmela; Monti, Marina; Camatti, Elisa; Di Poi, Elena; Stabili, Loredana; Auriemma, Rocco; Pansera, Marco; Cibic, Tamara; Del Negro, Paola

    2016-07-01

    The Mar Piccolo is a semi-enclosed basin subject to different natural and anthropogenic stressors. In order to better understand plankton dynamics and preferential carbon pathways within the planktonic trophic web, an integrated approach was adopted for the first time by examining all trophic levels (virioplankton, the heterotrophic and phototrophic fractions of pico-, nano- and microplankton, as well as mesozooplankton). Plankton abundance and biomass were investigated during four surveys in the period 2013-2014. Beside unveiling the dynamics of different plankton groups in the Mar Piccolo, the study revealed that high portion of the plankton carbon (C) pool was constituted by small-sized (<2 μm) planktonic fractions. The prevalence of small-sized species within micro- and mesozooplankton communities was observed as well. The succession of planktonic communities was clearly driven by the seasonality, i.e. by the nutrient availability and physical features of the water column. Our hypothesis is that beside the 'bottom-up' control and the grazing pressure, inferred from the C pools of different plankton groups, the presence of mussel farms in the Mar Piccolo exerts a profound impact on plankton communities, not only due to the important sequestration of the plankton biomass but also by strongly influencing its structure.

  1. From Ambient Sensing to IoT-based Context Computing: An Open Framework for End to End QoC Management.

    PubMed

    Marie, Pierrick; Desprats, Thierry; Chabridon, Sophie; Sibilla, Michelle; Taconet, Chantal

    2015-06-16

    Quality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing. At the time where the combination of the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms offer together new opportunities for managing richer context data, the next generation of Distributed Context Managers (DCM) is facing new challenges concerning QoC management. This paper presents our model-driven QoCIM framework. QoCIM is the acronym for Quality of Context Information Model. We show how it can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario.

  2. Robot-assisted segmental resection of tubal pregnancy followed by end-to-end reanastomosis for preserving tubal patency and fertility

    PubMed Central

    Park, Joo Hyun; Cho, SiHyun; Choi, Young Sik; Seo, Seok Kyo; Lee, Byung Seok

    2016-01-01

    Abstract The objective of this study was to evaluate whether robotic tubal reanastomosis after segmental resection of tubal pregnancy is a feasible means of preserving tubal integrity and natural fertility in those with compromised contralateral tubal condition. The study was performed at a university medical center in a retrospective manner where da Vinci robotic system-guided segmental resection of tubal ectopic mass followed by reanastomosis was performed to salvage tubal patency and fertility in those with a single viable fallopian tube. Of the 17 patients with tubal pregnancies that were selected, 14 patients with successful tubal segmental resection and reanastomosis were followed up. The reproducibility of anastomosis success and cumulative pregnancy rates of up to 24 months were analyzed. Patient mean age was 28.88 ± 4.74 years, mean amenorrheic period was 7.01 ± 1.57 weeks and mean human chorionic gonadotropin (hCG) level was 9289.00 ± 7510.00 mIU/mL. The overall intraoperative cancellation rate due to unfavorable positioning or size of the tubal mass was 17.65% (3/17), which was converted to either salpingectomy or milking of ectopic mass. Of the 14 attempted, anastomosis for all 14 cases was successful, with 1 anastomotic leakage. One patient wishing to postpone pregnancy and 2 patients where patency of the contralateral tube was confirmed during the operation, were excluded from the pregnancy outcome analysis. Cumulative pregnancy rate was 63.64% (7/11), with 3 (27.27%) ongoing pregnancies, 3 (27.27%) livebirths, and 1 missed abortion at 24 months. During the follow-up, hysterosalpingography (HSG) was performed at 6 months for those who consented, and all 10 fallopian tubes tested were patent. No subsequent tubal pregnancies occurred in the reananstomosed tube for up to a period 24 months. For patients with absent or defective contralateral tubal function, da Vinci-guided reanastomosis after segmental resection of tubal pregnancy is feasible for salvaging tubal patency and fertility. PMID:27741101

  3. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multi-phage structures

    PubMed Central

    Hess, Gaelen T.; Guimaraes, Carla P.; Spooner, Eric; Ploegh, Hidde L.; Belcher, Angela M.

    2014-01-01

    M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multi-phage devices requires precise control of interactions between the M13 capsid proteins. Towards this end, we engineered a loop structure onto the pIII capsid protein of M13 bacteriophage to enable sortase-mediated labeling reactions for C-terminal display. Combining this with N-terminal sortase-mediated labeling, we thus created a phage scaffold that can be labeled orthogonally on three capsid proteins: the body and both ends. We show that covalent attachment of different DNA oligonucleotides at the ends of the new phage structure enables formation of multi-phage particles oriented in a specific order. These have potential as nanoscale scaffolds for multi–material devices. PMID:23713956

  4. Pinnacle3 modeling and end-to-end dosimetric testing of a Versa HD linear accelerator with the Agility head and flattening filter-free modes.

    PubMed

    Saenz, Daniel L; Narayanasamy, Ganesh; Cruz, Wilbert; Papanikolaou, Nikos; Stathakis, Sotirios

    2016-01-01

    The Elekta Versa HD incorporates a variety of upgrades to the line of Elekta linear accelerators, primarily including the Agility head and flattening filter-free (FFF) photon beam delivery. The completely distinct dosimetric output of the head from its predecessors, combined with the FFF beams, requires a new investigation of modeling in treatment planning systems. A model was created in Pinnacle3 v9.8 with the commissioned beam data. A phantom consisting of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3, where beams of different field sizes, source-to-surface distances (SSDs), wedges, and gantry angles were devised. Beams included all of the available photon energies (6, 10, 18, 6FFF, and 10 FFF MV), as well as the four electron energies commissioned for clinical use (6, 9, 12, and 15 MeV). The plans were verified at calculation points by measurement with a calibrated ionization chamber. Homogeneous and hetero-geneous point-dose measurements agreed within 2% relative to maximum dose for all photon and electron beams. AP photon open field measurements along the central axis at 100 cm SSD passed within 1%. In addition, IMRT testing was also performed with three standard plans (step and shoot IMRT, as well as a small- and large-field VMAT plan). The IMRT plans were delivered on the Delta4 IMRT QA phantom, for which a gamma passing rate was > 99.5% for all plans with a 3% dose deviation, 3 mm distance-to-agreement, and 10% dose threshold. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4% ± 2.3%. Such testing ensures confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head. PMID:26894352

  5. SU-E-T-508: End to End Testing of a Prototype Eclipse Module for Planning Modulated Arc Therapy On the Siemens Platform

    SciTech Connect

    Huang, L; Sarkar, V; Spiessens, S; Rassiah-Szegedi, P; Huang, Y; Salter, B; Zhao, H; Szegedi, M

    2014-06-01

    Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-planned as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.

  6. Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Forster distance for fluorescence energy transfer.

    PubMed

    Gryczynski, I; Wiczk, W; Johnson, M L; Cheung, H C; Wang, C K; Lakowicz, J R

    1988-10-01

    We describe a new method to recover the distribution of donor-to-acceptor (D-A) distances in flexible molecules using steady-state measurements of the efficiency of fluorescence energy transfer. The method depends upon changes in the Forster distance (Ro) induced by collisional quenching of the donor emission. The Ro-dependent transfer efficiencies are analyzed using nonlinear least squares to recover the mean D-A distance and the width of the distribution. The method was developed and tested using three synthetic D-A pairs, in which the chromophores were separated by alkyl chains of varying lengths. As an example application we also recovered the distribution of distances from the single tryptophan residue in troponin I (trp 158) to acceptor-labeled cysteine 133. The half-width of the distribution increases from 12 A in the native state to 53 A when unfolded by guanidine hydrochloride. For both TnI and the three model compounds the distance distributions recovered from the steady-state transfer efficiencies were in excellent agreement with the distributions recovered using the more sophisticated frequency-domain method (Lakowicz, J.R., M.L. Johnson, W. Wiczk, A. Bhat, and R.F. Steiner. 1987. Chem. Phys. Lett. 138:587-593). The method was found to be reliable and should be generally useful for studies of conformational distributions of macromolecules. PMID:3224143

  7. From Ambient Sensing to IoT-based Context Computing: An Open Framework for End to End QoC Management.

    PubMed

    Marie, Pierrick; Desprats, Thierry; Chabridon, Sophie; Sibilla, Michelle; Taconet, Chantal

    2015-01-01

    Quality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing. At the time where the combination of the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms offer together new opportunities for managing richer context data, the next generation of Distributed Context Managers (DCM) is facing new challenges concerning QoC management. This paper presents our model-driven QoCIM framework. QoCIM is the acronym for Quality of Context Information Model. We show how it can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario. PMID:26087372

  8. End-to-end crosstalk within the hepatitis C virus genome mediates the conformational switch of the 3′X-tail region

    PubMed Central

    Romero-López, Cristina; Barroso-delJesus, Alicia; García-Sacristán, Ana; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-01-01

    The hepatitis C virus (HCV) RNA genome contains multiple structurally conserved domains that make long-distance RNA–RNA contacts important in the establishment of viral infection. Microarray antisense oligonucelotide assays, improved dimethyl sulfate probing methods and 2′ acylation chemistry (selective 2’-hydroxyl acylation and primer extension, SHAPE) showed the folding of the genomic RNA 3′ end to be regulated by the internal ribosome entry site (IRES) element via direct RNA–RNA interactions. The essential cis-acting replicating element (CRE) and the 3′X-tail region adopted different 3D conformations in the presence and absence of the genomic RNA 5′ terminus. Further, the structural transition in the 3′X-tail from the replication-competent conformer (consisting of three stem-loops) to the dimerizable form (with two stem-loops), was found to depend on the presence of both the IRES and the CRE elements. Complex interplay between the IRES, the CRE and the 3′X-tail region would therefore appear to occur. The preservation of this RNA–RNA interacting network, and the maintenance of the proper balance between different contacts, may play a crucial role in the switch between different steps of the HCV cycle. PMID:24049069

  9. New Tools to Discover the Physical Links From CME Eruptions to Radiation Effects in Deep Space: a First in Heliospheric End-to-End Coupling

    NASA Astrophysics Data System (ADS)

    Gorby, M. J.; Schwadron, N. A.; Linker, J. A.; Spence, H. E.; Townsend, L. W.; Cucinotta, F. A.

    2012-12-01

    We've taken fundamental new steps in physics based coupling; combining MHD simulation results with our fully 3D Lagrangian code has allowed us to attain flux and dosage rates out to 1AU. The Earth-Moon-Mars Radiation Environment Module (EMMREM) is a collection of tools based on the output of the Energetic Particle Radiation Environment Model (EPREM), which solves the focused transport equation to determine energetic particles fluxes [1]. We feed resulting flux from EPREM into the Baryon Transport (BRYNTRYN) code developed at NASA to calculate dose rates and accumulated dosages. Recently we have coupled EPREM to Magnetohydrodynamics Around a Sphere (MAS) developed at Predictive Science, Inc. [2]. The MAS / EPREM couplings allow us to accurately model the physics of evolving CMEs and their impact on the acceleration of SEPs. We detail physical regimes associated with strong and weak scattering of energetic particles near shocks, both by background magnetic field flux and self-excited waves. Results from both weak and severe SEP events will be presented, along with a comparison of the results with CRaTER and GOES data. Validation of the coupling and the implications for predicting dose rates at 1AU will also be discussed. This critical step in the evolution of code coupling enables us to explore, discover, and ultimately predict connections between SEP events and their effects on the space environment through the inner heliosphere. Thus, we present fundamental new modeling capabilities that provide critical insights into the physical causes and behavior of extreme solar events. [1] Schwadron, N. A. and A. L. Townsend, et al. (2010) Space Weather Journal, Vol. 8, S00E02. [2] Linker, J. A. and Z. Mikić, et al. (1999) J. Geophys. Res., 104(A5), 9808-9830.

  10. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    SciTech Connect

    Lin, M; Feigenberg, S

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures favorable day-to-day setup accuracy. DIBH setup appears to be more uncertain and this would be the patient group who will definitely benefit from the extra information of 3D surface setup.

  11. LLNL Waste Minimization Program Plan

    SciTech Connect

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  12. Minimally invasive aortic valve surgery

    PubMed Central

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-01-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  13. Minimally invasive aortic valve surgery.

    PubMed

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-09-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  14. What is minimally invasive dentistry?

    PubMed

    Ericson, Dan

    2004-01-01

    Minimally Invasive Dentistry is the application of "a systematic respect for the original tissue." This implies that the dental profession recognizes that an artifact is of less biological value than the original healthy tissue. Minimally invasive dentistry is a concept that can embrace all aspects of the profession. The common delineator is tissue preservation, preferably by preventing disease from occurring and intercepting its progress, but also removing and replacing with as little tissue loss as possible. It does not suggest that we make small fillings to restore incipient lesions or surgically remove impacted third molars without symptoms as routine procedures. The introduction of predictable adhesive technologies has led to a giant leap in interest in minimally invasive dentistry. The concept bridges the traditional gap between prevention and surgical procedures, which is just what dentistry needs today. The evidence-base for survival of restorations clearly indicates that restoring teeth is a temporary palliative measure that is doomed to fail if the disease that caused the condition is not addressed properly. Today, the means, motives and opportunities for minimally invasive dentistry are at hand, but incentives are definitely lacking. Patients and third parties seem to be convinced that the only things that count are replacements. Namely, they are prepared to pay for a filling but not for a procedure that can help avoid having one.

  15. A Defense of Semantic Minimalism

    ERIC Educational Resources Information Center

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  16. Assembly of a minimal protocell

    NASA Astrophysics Data System (ADS)

    Rasmussen, Steen

    2007-03-01

    What is minimal life, how can we make it, and how can it be useful? We present experimental and computational results towards bridging nonliving and living matter, which results in life that is different and much simpler than contemporary life. A simple yet tightly coupled catalytic cooperation between genes, metabolism, and container forms the design underpinnings of our protocell, which is a minimal self-replicating molecular machine. Experimentally, we have recently demonstrated this coupling by having an informational molecule (8-oxoguanine) catalytically control the light driven metabolic (Ru-bpy based) production of container materials (fatty acids). This is a significant milestone towards assembling a minimal self-replicating molecular machine. Recent theoretical investigations indicate that coordinated exponential component growth should naturally emerge as a result from such a catalytic coupling between the main protocellular components. A 3-D dissipative particle simulation (DPD) study of the full protocell life-cycle exposes a number of anticipated systemic issues associated with the remaining experimental challenges for the implementation of the minimal protocell. Finally we outline how more general self-replicating materials could be useful.

  17. Anaesthesia for minimally invasive surgery

    PubMed Central

    Dec, Marta

    2015-01-01

    Minimally invasive surgery (MIS) is rising in popularity. It offers well-known benefits to the patient. However, restricted access to the surgical site and gas insufflation into the body cavities may result in severe complications. From the anaesthetic point of view MIS poses unique challenges associated with creation of pneumoperitoneum, carbon dioxide absorption, specific positioning and monitoring a patient to whom the anaesthetist has often restricted access, in a poorly lit environment. Moreover, with refinement of surgical procedures and growing experience the anaesthetist is presented with patients from high-risk groups (obese, elderly, with advanced cardiac and respiratory disease) who once were deemed unsuitable for the laparoscopic technique. Anaesthetic management is aimed at getting the patient safely through the procedure, minimizing the specific risks arising from laparoscopy and the patient's coexisting medical problems, ensuring quick recovery and a relatively pain-free postoperative course with early return to normal function. PMID:26865885

  18. Minimal universal quantum heat machine.

    PubMed

    Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2013-01-01

    In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

  19. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  20. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  1. Minimally invasive surgery. Future developments.

    PubMed

    Wickham, J E

    1994-01-15

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introduced into body cavities to perform operations that are currently impossible. New materials will allow changes in instrument construction, such as use of memory metals to make heat activated scissors or forceps. With the reduced trauma associated with minimally invasive surgery, fewer operations will require long hospital stays. Traditional surgical wards will become largely redundant, and hospitals will need to cope with increased through-put of patients. Operating theatres will have to be equipped with complex high technology equipment, and hospital staff will need to be trained to manage it. Conventional nursing care will be carried out more in the community. Many traditional specialties will be merged, and surgical training will need fundamental revision to ensure that surgeons are competent to carry out the new procedures. PMID:8312776

  2. Minimal model for Brownian vortexes.

    PubMed

    Sun, Bo; Grier, David G; Grosberg, Alexander Y

    2010-08-01

    A Brownian vortex is a noise-driven machine that uses thermal fluctuations to extract a steady-state flow of work from a static force field. Its operation is characterized by loops in a probability current whose topology and direction can change with changes in temperature. We present discrete three- and four-state minimal models for Brownian vortexes that can be solved exactly with a master-equation formalism. These models elucidate conditions required for flux reversal in Brownian vortexes and provide insights into their thermodynamic efficiency through the rate of entropy production. PMID:20866791

  3. [Minimally invasive iridocorneal angle surgery].

    PubMed

    Jordan, J F

    2012-07-01

    The classical filtration surgery with trabeculectomy or drainage of chamber fluid with episcleral implants is the most effective method for permanent reduction of intraocular pressure to lower and normal levels. Even though both operative procedures are well-established the high efficiency of the method causes potentially dangerous intraoperative as well as interoperative complications with a frequency which cannot be ignored. In the past this led to a search for low complication alternatives with non-penetrating glaucoma surgery (NPGS) and the search is still continuing. Trabecular meshwork surgery in particular with continuous development of new operation techniques steered the focus to a complication-poor and minimally invasive, gonioscopic glaucoma surgery.

  4. The minimal scenario of leptogenesis

    NASA Astrophysics Data System (ADS)

    Blanchet, Steve; Di Bari, Pasquale

    2012-12-01

    We review the main features and results of thermal leptogenesis within the type I seesaw mechanism, the minimal extension of the Standard Model explaining neutrino masses and mixing. After presenting the simplest approach, the vanilla scenario, we discuss various important developments of recent years, such as the inclusion of lepton and heavy neutrino flavour effects, a description beyond a hierarchical heavy neutrino mass spectrum and an improved kinetic description within the density matrix and the closed-time-path formalisms. We also discuss how leptogenesis can ultimately represent an important phenomenological tool to test the seesaw mechanism and the underlying model of new physics.

  5. Radiometric calibration by rank minimization.

    PubMed

    Lee, Joon-Young; Matsushita, Yasuyuki; Shi, Boxin; Kweon, In So; Ikeuchi, Katsushi

    2013-01-01

    We present a robust radiometric calibration framework that capitalizes on the transform invariant low-rank structure in the various types of observations, such as sensor irradiances recorded from a static scene with different exposure times, or linear structure of irradiance color mixtures around edges. We show that various radiometric calibration problems can be treated in a principled framework that uses a rank minimization approach. This framework provides a principled way of solving radiometric calibration problems in various settings. The proposed approach is evaluated using both simulation and real-world datasets and shows superior performance to previous approaches.

  6. Minimizing medical litigation, part 2.

    PubMed

    Harold, Tan Keng Boon

    2006-01-01

    Provider-patient disputes are inevitable in the healthcare sector. Healthcare providers and regulators should recognize this and plan opportunities to enforce alternative dispute resolution (ADR) a early as possible in the care delivery process. Negotiation is often the main dispute resolution method used by local healthcare providers, failing which litigation would usually follow. The role of mediation in resolving malpractice disputes has been minimal. Healthcare providers, administrators, and regulators should therefore look toward a post-event communication-cum-mediation framework as the key national strategy to resolving malpractice disputes. PMID:16711089

  7. Minimizing travel claims cost with minimal-spanning tree model

    NASA Astrophysics Data System (ADS)

    Jamalluddin, Mohd Helmi; Jaafar, Mohd Azrul; Amran, Mohd Iskandar; Ainul, Mohd Sharizal; Hamid, Aqmar; Mansor, Zafirah Mohd; Nopiah, Zulkifli Mohd

    2014-06-01

    Travel demand necessitates a big expenditure in spending, as has been proven by the National Audit Department (NAD). Every year the auditing process is carried out throughout the country involving official travel claims. This study focuses on the use of the Spanning Tree model to determine the shortest path to minimize the cost of the NAD's official travel claims. The objective is to study the possibility of running a network based in the Kluang District Health Office to eight Rural Clinics in Johor state using the Spanning Tree model applications for optimizing travelling distances and make recommendations to the senior management of the Audit Department to analyze travelling details before an audit is conducted. Result of this study reveals that there were claims of savings of up to 47.4% of the original claims, over the course of the travel distance.

  8. Annual Waste Minimization Summary Report

    SciTech Connect

    Alfred J. Karns

    2007-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.

  9. Less minimal supersymmetric standard model

    SciTech Connect

    de Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-03-28

    Most of the phenomenological studies of supersymmetry have been carried out using the so-called minimal supergravity scenario, where one assumes a universal scalar mass, gaugino mass, and trilinear coupling at M{sub GUT}. Even though this is a useful simplifying assumption for phenomenological analyses, it is rather too restrictive to accommodate a large variety of phenomenological possibilities. It predicts, among other things, that the lightest supersymmetric particle (LSP) is an almost pure B-ino, and that the {mu}-parameter is larger than the masses of the SU(2){sub L} and U(1){sub Y} gauginos. We extend the minimal supergravity framework by introducing one extra parameter: the Fayet'Iliopoulos D-term for the hypercharge U(1), D{sub Y}. Allowing for this extra parameter, we find a much more diverse phenomenology, where the LSP is {tilde {nu}}{sub {tau}}, {tilde {tau}} or a neutralino with a large higgsino content. We discuss the relevance of the different possibilities to collider signatures. The same type of extension can be done to models with the gauge mediation of supersymmetry breaking. We argue that it is not wise to impose cosmological constraints on the parameter space.

  10. Next-to-minimal SOFTSUSY

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Athron, P.; Tunstall, Lewis C.; Voigt, A.; Williams, A. G.

    2014-09-01

    We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3 violating (denoted as =) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used. Catalogue identifier: ADPM_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154886 No. of bytes in distributed program, including test data, etc.: 1870890 Distribution format: tar.gz Programming language: C++, fortran. Computer: Personal computer. Operating system: Tested on Linux 3.x. Word size: 64 bits Classification: 11.1, 11.6. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPM_v3_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 785 Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal supersymmetric standard model. The solution to the

  11. [MINIMALLY INVASIVE AORTIC VALVE REPLACEMENT].

    PubMed

    Tabata, Minoru

    2016-03-01

    Minimally invasive aortic valve replacement (MIAVR) is defined as aortic valve replacement avoiding full sternotomy. Common approaches include a partial sternotomy right thoracotomy, and a parasternal approach. MIAVR has been shown to have advantages over conventional AVR such as shorter length of stay and smaller amount of blood transfusion and better cosmesis. However, it is also known to have disadvantages such as longer cardiopulmonary bypass and aortic cross-clamp times and potential complications related to peripheral cannulation. Appropriate patient selection is very important. Since the procedure is more complex than conventional AVR, more intensive teamwork in the operating room is essential. Additionally, a team approach during postoperative management is critical to maximize the benefits of MIAVR.

  12. Minimal unitary (covariant) scattering theory

    SciTech Connect

    Lindesay, J.V.; Markevich, A.

    1983-06-01

    In the minimal three particle equations developed by Lindesay the two body input amplitude was an on shell relativistic generalization of the non-relativistic scattering model characterized by a single mass parameter ..mu.. which in the two body (m + m) system looks like an s-channel bound state (..mu.. < 2m) or virtual state (..mu.. > 2m). Using this driving term in covariant Faddeev equations generates a rich covariant and unitary three particle dynamics. However, the simplest way of writing the relativisitic generalization of the Faddeev equations can take the on shell Mandelstam parameter s = 4(q/sup 2/ + m/sup 2/), in terms of which the two particle input is expressed, to negative values in the range of integration required by the dynamics. This problem was met in the original treatment by multiplying the two particle input amplitude by THETA(s). This paper provides what we hope to be a more direct way of meeting the problem.

  13. A minimally invasive smile enhancement.

    PubMed

    Peck, Fred H

    2014-01-01

    Minimally invasive dentistry refers to a wide variety of dental treatments. On the restorative aspect of dental procedures, direct resin bonding can be a very conservative treatment option for the patient. When tooth structure does not need to be removed, the patient benefits. Proper treatment planning is essential to determine how conservative the restorative treatment will be. This article describes the diagnosis, treatment options, and procedural techniques in the restoration of 4 maxillary anterior teeth with direct composite resin. The procedural steps are reviewed with regard to placing the composite and the variety of colors needed to ensure a natural result. Finishing and polishing of the composite are critical to ending with a natural looking dentition that the patient will be pleased with for many years.

  14. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  15. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  16. Waste minimization in chrome plating

    SciTech Connect

    Scheuer, J.; Walter, K.; Nastasi, M.

    1996-09-01

    This is the final report of a one year laboratory directed research and development project at the Los Alamos National Laboratory (LANL). Traditional wet chemical electroplating techniques utilize toxic materials and pose environmental hazards in the disposal of primary baths and waste waters. Pollutants include metals and nonmetals, such as oil, grease, phosphates, and toxic and organic compounds. This project is focused on development of plasma source ion implantation (PSII), a novel and cost-effective surface modification technique, to minimize and ultimately eliminate waste generated in chrome plating. We are collaborating with and industrial partner to design material systems, utilize the PSII processes in existing Los Alamos experimental facilities, and analyze both material and performance characteristics.

  17. Non-minimal Inflationary Attractors

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2013-10-01

    Recently we identified a new class of (super)conformally invariant theories which allow inflation even if the scalar potential is very steep in terms of the original conformal variables. Observational predictions of a broad class of such theories are nearly model-independent. In this paper we consider generalized versions of these models where the inflaton has a non-minimal coupling to gravity with a negative parameter ξ different from its conformal value -1/6. We show that these models exhibit attractor behavior. With even a slight increase of |ξ| from |ξ| = 0, predictions of these models for n{sub s} and r rapidly converge to their universal model-independent values corresponding to conformal coupling ξ = −1/6. These values of n{sub s} and r practically coincide with the corresponding values in the limit ξ → −∞.

  18. Waste minimization in analytical methods

    SciTech Connect

    Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S. Schilling, J.B.

    1995-05-01

    The US Department of Energy (DOE) will require a large number of waste characterizations over a multi-year period to accomplish the Department`s goals in environmental restoration and waste management. Estimates vary, but two million analyses annually are expected. The waste generated by the analytical procedures used for characterizations is a significant source of new DOE waste. Success in reducing the volume of secondary waste and the costs of handling this waste would significantly decrease the overall cost of this DOE program. Selection of appropriate analytical methods depends on the intended use of the resultant data. It is not always necessary to use a high-powered analytical method, typically at higher cost, to obtain data needed to make decisions about waste management. Indeed, for samples taken from some heterogeneous systems, the meaning of high accuracy becomes clouded if the data generated are intended to measure a property of this system. Among the factors to be considered in selecting the analytical method are the lower limit of detection, accuracy, turnaround time, cost, reproducibility (precision), interferences, and simplicity. Occasionally, there must be tradeoffs among these factors to achieve the multiple goals of a characterization program. The purpose of the work described here is to add waste minimization to the list of characteristics to be considered. In this paper the authors present results of modifying analytical methods for waste characterization to reduce both the cost of analysis and volume of secondary wastes. Although tradeoffs may be required to minimize waste while still generating data of acceptable quality for the decision-making process, they have data demonstrating that wastes can be reduced in some cases without sacrificing accuracy or precision.

  19. Mini-Med School Planning Guide

    ERIC Educational Resources Information Center

    National Institutes of Health, Office of Science Education, 2008

    2008-01-01

    Mini-Med Schools are public education programs now offered by more than 70 medical schools, universities, research institutions, and hospitals across the nation. There are even Mini-Med Schools in Ireland, Malta, and Canada! The program is typically a lecture series that meets once a week and provides "mini-med students" information on some of the…

  20. Closed locally minimal nets on tetrahedra

    SciTech Connect

    Strelkova, Nataliya P

    2011-01-31

    Closed locally minimal networks are in a sense a generalization of closed geodesics. A complete classification is known of closed locally minimal networks on regular (and generally any equihedral) tetrahedra. In the present paper certain necessary and certain sufficient conditions are given for at least one closed locally minimal network to exist on a given non-equihedral tetrahedron. Bibliography: 6 titles.

  1. Minimally Invasive Mitral Valve Surgery II

    PubMed Central

    Wolfe, J. Alan; Malaisrie, S. Chris; Farivar, R. Saeid; Khan, Junaid H.; Hargrove, W. Clark; Moront, Michael G.; Ryan, William H.; Ailawadi, Gorav; Agnihotri, Arvind K.; Hummel, Brian W.; Fayers, Trevor M.; Grossi, Eugene A.; Guy, T. Sloane; Lehr, Eric J.; Mehall, John R.; Murphy, Douglas A.; Rodriguez, Evelio; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Lewis, Clifton T. P.; Barnhart, Glenn R.; Goldman, Scott M.

    2016-01-01

    Abstract Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery. PMID:27654406

  2. Recursively minimally-deformed oscillators

    NASA Astrophysics Data System (ADS)

    Katriel, J.; Quesne, C.

    1996-04-01

    A recursive deformation of the boson commutation relation is introduced. Each step consists of a minimal deformation of a commutator [a,a°]=fk(... ;n̂) into [a,a°]qk+1=fk(... ;n̂), where ... stands for the set of deformation parameters that fk depends on, followed by a transformation into the commutator [a,a°]=fk+1(...,qk+1;n̂) to which the deformed commutator is equivalent within the Fock space. Starting from the harmonic oscillator commutation relation [a,a°]=1 we obtain the Arik-Coon and Macfarlane-Biedenharn oscillators at the first and second steps, respectively, followed by a sequence of multiparameter generalizations. Several other types of deformed commutation relations related to the treatment of integrable models and to parastatistics are also obtained. The ``generic'' form consists of a linear combination of exponentials of the number operator, and the various recursive families can be classified according to the number of free linear parameters involved, that depends on the form of the initial commutator.

  3. Against Explanatory Minimalism in Psychiatry.

    PubMed

    Thornton, Tim

    2015-01-01

    The idea that psychiatry contains, in principle, a series of levels of explanation has been criticized not only as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell's criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation, respectively, and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein's Zettel. But attention to the context of Wittgenstein's remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of levels of explanation. Only in a context broader than the one provided by interventionism is that the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation.

  4. Against Explanatory Minimalism in Psychiatry

    PubMed Central

    Thornton, Tim

    2015-01-01

    The idea that psychiatry contains, in principle, a series of levels of explanation has been criticized not only as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell’s criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation, respectively, and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein’s Zettel. But attention to the context of Wittgenstein’s remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of levels of explanation. Only in a context broader than the one provided by interventionism is that the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation. PMID:26696908

  5. LESSons in minimally invasive urology.

    PubMed

    Dev, Harveer; Sooriakumaran, Prasanna; Tewari, Ashutosh; Rane, Abhay

    2011-05-01

    Since the introduction of laparoscopic surgery, the promise of lower postoperative morbidity and improved cosmesis has been achieved. LaparoEndoscopic Single Site (LESS) surgery potentially takes this further. Following the first human urological LESS report in 2007, numerous case series have emerged, as well as comparative studies comparing LESS with standard laparoscopy. Technological developments in instrumentation, access and optics devices are overcoming some of the challenges that are raised when operating through a single site. Further advances in the technique have included the incorporation of robotics (R-LESS), which exploit the ergonomic benefits of ex vivo robotic platforms in an attempt to further improve the implementation of LESS procedures. In the future, urologists may be able to benefit from in vivo micro-robots that will allow the manipulation of tissue from internal repositionable platforms. The use of magnetic anchoring and guidance systems (MAGS) might allow the external manoeuvring of intra-corporeal instruments to reduce clashing and facilitate triangulation. However, the final promise in minimally invasive surgery is natural orifice transluminal endoscopic surgery (NOTES), with its scarless technique. It remains to be seen whether NOTES, LESS, or any of these future developments will prove their clinical utility over standard laparoscopic methods.

  6. Medical waste: a minimal hazard.

    PubMed

    Keene, J H

    1991-11-01

    Medical waste is a subset of municipal waste, and regulated medical waste comprises less than 1% of the total municipal waste volume in the United States. As part of the overall waste stream, medical waste does contribute in a relative way to the aesthetic damage of the environment. Likewise, some small portion of the total release of hazardous chemicals and radioactive materials is derived from medical wastes. These comments can be made about any generated waste, regulated or unregulated. Healthcare professionals, including infection control personnel, microbiologists, public health officials, and others, have unsuccessfully argued that there is no evidence that past methods of treatment and disposal of regulated medical waste constitute any public health hazard. Historically, discovery of environmental contamination by toxic chemical disposal has followed assurances that the material was being disposed of in a safe manner. Therefore, a cynical public and its elected officials have demanded proof that the treatment and disposal of medical waste (i.e., infectious waste) do not constitute a public health hazard. Existent studies on municipal waste provide that proof. In order to argue that the results of these municipal waste studies are demonstrative of the minimal potential infectious environmental impact and lack of public health hazard associated with medical waste, we must accept the following: that the pathogens are the same whether they come from the hospital or the community, and that the municipal waste studied contained waste materials we now define as regulated medical waste.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. [Minimally invasive percutaneous nephrolitholapaxy (MIP)].

    PubMed

    Nagele, U; Schilling, D; Anastasiadis, A G; Walcher, U; Sievert, K D; Merseburger, A S; Kuczyk, M; Stenzl, A

    2008-09-01

    Minimally invasive percutaneous nephrolithopaxy (MIP) was developed to combine the excellent stone-free rates of the conventional percutaneous nephrolithopaxy (PCNL) technique with the low morbidity of the miniaturized PCNL (Mini-Perc) and, at the same time, achieve a high level of patient comfort. The procedure is characterized not only by the diameter of the miniaturized 18-Fr Amplatz sheath that was adopted from the Mini-Perc but also by the following features: ultrasound-guided puncture of the kidney; single-step dilatation of the access tract; ballistic lithotripsy; a low-pressure irrigation system together with stone retraction by irrigation with a specially designed nephroscope sheath, for the so-called vacuum cleaner effect; and a sealed and tubeless access tract with primary closure of the channel independent of hemorrhage and without a second-look procedure.The results of the first 57 patients demonstrate primary stone-free rates of 92.9% with operating times averaging 62 (25-123) min. Severe complications, such as sepsis or bleeding requiring blood transfusion, did not occur. The high and predictable stone-free rate and a low morbidity comparable to that of ureteroscopy and extracorporeal shock-wave lithotripsy make MIP an attractive option for patients and urologists. The "vacuum cleaner effect" with quick removal of stone fragments reduces operating time and prevents new stone formation by avoiding residual fragments. The direct and primary closure of the access tract increases patient comfort and is justified by the reintervention rate of less than 8% in the presented cohort.The lack of a need for second-look nephroscopies, the vacuum cleaner effect, improved patient comfort without nephrostomy tubes, as well as surgery times comparable to that of traditional PCNL demonstrate a consequent evolution of the Mini-Perc. MIP therefore represents a promising and future-oriented module in modern stone therapy.

  8. Minimizing electrode contamination in an electrochemical cell

    DOEpatents

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  9. Is goal ascription possible in minimal mindreading?

    PubMed

    Butterfill, Stephen A; Apperly, Ian A

    2016-03-01

    In this response to the commentary by Michael and Christensen, we first explain how minimal mindreading is compatible with the development of increasingly sophisticated mindreading behaviors that involve both executive functions and general knowledge and then sketch 1 approach to a minimal account of goal ascription. PMID:26901746

  10. Minimally invasive surgery in neonates and infants

    PubMed Central

    Lin, Tiffany; Pimpalwar, Ashwin

    2010-01-01

    Minimally invasive surgery (MIS) has significantly improved the field of surgery, with benefits including shorter operating time, improved recovery time, minimizing stress and pain due to smaller incisions, and even improving mortality. MIS procedures, including their indications, impact, limitations, and possible future evolution in neonates and infants, are discussed in this article. PMID:21180496

  11. Minimally Invasive Mitral Valve Surgery I

    PubMed Central

    Ailawadi, Gorav; Agnihotri, Arvind K.; Mehall, John R.; Wolfe, J. Alan; Hummel, Brian W.; Fayers, Trevor M.; Farivar, R. Saeid; Grossi, Eugene A.; Guy, T. Sloane; Hargrove, W. Clark; Khan, Junaid H.; Lehr, Eric J.; Malaisrie, S. Chris; Murphy, Douglas A.; Rodriguez, Evelio; Ryan, William H.; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Goldman, Scott M.; Lewis, Clifton T. P.; Barnhart, Glenn R.

    2016-01-01

    Abstract Widespread adoption of minimally invasive mitral valve repair and replacement may be fostered by practice consensus and standardization. This expert opinion, first of a 3-part series, outlines current best practices in patient evaluation and selection for minimally invasive mitral valve procedures, and discusses preoperative planning for cannulation and myocardial protection. PMID:27654407

  12. Minimal change disease: a CD80 podocytopathy?

    PubMed

    Ishimoto, Takuji; Shimada, Michiko; Araya, Carlos E; Huskey, Janna; Garin, Eduardo H; Johnson, Richard J

    2011-07-01

    Minimal change disease is the most common nephrotic syndrome in children. Although the etiology of minimal change disease remains to be elucidated, it has been postulated that it is the result of a circulating T-cell factor that causes podocyte cytoskeleton disorganization leading to increased glomerular capillary permeability and/or changes in glomerular basement membrane heparan sulfate glycosaminoglycans resulting in proteinuria. Minimal change disease has been associated with allergies and Hodgkin disease. Consistent with these associations, a role for interleukin-13 with minimal change disease has been proposed. Furthermore, studies evaluating podocytes also have evolved. Recently, increased expression of CD80 (also termed B7-1) on podocytes was identified as a mechanism for proteinuria. CD80 is inhibited by binding to CTLA-4, which is expressed on regulatory T cells. Recently, we showed that urinary CD80 is increased in minimal change disease patients and limited studies have suggested that it is not commonly present in the urine of patients with other glomerular diseases. Interleukin-13 or microbial products via Toll-like receptors could be factors that induce CD80 expression on podocytes. CTLA-4 appears to regulate CD80 expression in podocytes, and to be altered in minimal change disease patients. These findings lead us to suggest that proteinuria in minimal change disease is caused by persistent CD80 expression in podocytes, possibly initiated by stimulation of these cells by antigens or cytokines.

  13. Peak power minimization in indoor CDMA communications using clusters of antennas

    NASA Astrophysics Data System (ADS)

    Abolhassani, Bahman

    objective is to minimize the cost under the constraints of handset peak transmit power, outage probability, and call blocking probability. As well, the reverse link of the CDMA system is analyzed and a closed form equation for the outage probability of the link is derived, and computer simulations are used to verify it. To reduce costs, transmit power control in the handsets is a necessity. In CDMA systems, all handsets use the same frequency bandwidth, which results in producing mutual interference. An open loop power control algorithm is proposed and its performance addressed. Simulation results show that the proposed power control algorithm is successful under the conditions specified. Optimal placement of the radioports can reduce the peak transmit power of handsets and/or the network cost. Two algorithms are proposed for the placement of radioports. The first is a modified version of the Sebestyen algorithm. The second is a hybrid of genetic and K-means algorithms. Simulation results show that the proposed hybrid algorithm can produce global or near global optimal solutions in most cases.

  14. Adopting a new philosophy: minimal invasion.

    PubMed

    Whitehouse, Joseph A

    2006-06-01

    Dentistry is a dynamic profession with new trends evolving. Minimally invasive dentistry is becoming not just a concept but a way of practicing. Creative people are finding ways, materials, and technology that enable patients to experience less hard-tissue or soft-tissue removal, improved prevention and maintenance, and increased attention to a philosophy of "less is more." The World Congress of Minimally Invasive Dentistry was formed to facilitate the sharing of these new concepts. The members embrace change, and dentistry offers the constant opportunity for such. As the standard of care moves toward minimally invasive dentistry, patients will benefit. PMID:16792118

  15. Technology applications for radioactive waste minimization

    SciTech Connect

    Devgun, J.S.

    1994-07-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry.

  16. Minimally Invasive Cardiovascular Surgery: Incisions and Approaches

    PubMed Central

    Langer, Nathaniel B.; Argenziano, Michael

    2016-01-01

    Throughout the modern era of cardiac surgery, most operations have been performed via median sternotomy with cardiopulmonary bypass. This paradigm is changing, however, as cardiovascular surgery is increasingly adopting minimally invasive techniques. Advances in patient evaluation, instrumentation, and operative technique have allowed surgeons to perform a wide variety of complex operations through smaller incisions and, in some cases, without cardiopulmonary bypass. With patients desiring less invasive operations and the literature supporting decreased blood loss, shorter hospital length of stay, improved postoperative pain, and better cosmesis, minimally invasive cardiac surgery should be widely practiced. Here, we review the incisions and approaches currently used in minimally invasive cardiovascular surgery. PMID:27127555

  17. Academic Achievement and Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Edwards, R. Philip; And Others

    1971-01-01

    The investigation provided no evidence that a diagnosis of minimal brain dysfunction based on a pediatric neurological evaluation and/or visual-motor impairment as measured by the Bender-Gestalt, is a useful predictor of academic achievement. (Author)

  18. Minimally Invasive Treatments for Breast Cancer

    MedlinePlus

    ... SIR login) Interventional Radiology Minimally Invasive Treatments for Breast Cancer Interventional Radiology Treatments Offer New Options and Hope ... have in the fight against breast cancer. About Breast Cancer When breast tissue divides and grows at an ...

  19. Waste minimization and pollution prevention awareness plan

    SciTech Connect

    Not Available

    1991-05-31

    The purpose of this plan is to document the Lawrence Livermore National Laboratory (LLNL) Waste Minimization and Pollution Prevention Awareness Program. The plan specifies those activities and methods that are or will be employed to reduce the quantity and toxicity of wastes generated at the site. The intent of this plan is to respond to and comply with (DOE's) policy and guidelines concerning the need for pollution prevention. The Plan is composed of a LLNL Waste Minimization and Pollution Prevention Awareness Program Plan and, as attachments, Program- and Department-specific waste minimization plans. This format reflects the fact that waste minimization is considered a line management responsibility and is to be addressed by each of the Programs and Departments. 14 refs.

  20. Genetic algorithms for minimal source reconstructions

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  1. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  2. Heart bypass surgery - minimally invasive - discharge

    MedlinePlus

    ... coronary artery bypass - discharge; RACAB - discharge; Keyhole heart surgery - discharge ... You had minimally invasive coronary artery bypass surgery on one ... an artery from your chest to create a detour, or bypass, around ...

  3. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  4. Sludge minimization technologies--an overview.

    PubMed

    Odegaard, H

    2004-01-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more than the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In this paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes).

  5. Analysis of lipid flow on minimal surfaces

    NASA Astrophysics Data System (ADS)

    Bahmani, Fatemeh; Christenson, Joel; Rangamani, Padmini

    2016-03-01

    Interaction between the bilayer shape and surface flow is important for capturing the flow of lipids in many biological membranes. Recent microscopy evidence has shown that minimal surfaces (planes, catenoids, and helicoids) occur often in cellular membranes. In this study, we explore lipid flow in these geometries using a `stream function' formulation for viscoelastic lipid bilayers. Using this formulation, we derive two-dimensional lipid flow equations for the commonly occurring minimal surfaces in lipid bilayers. We show that for three minimal surfaces (planes, catenoids, and helicoids), the surface flow equations satisfy Stokes flow equations. In helicoids and catenoids, we show that the tangential velocity field is a Killing vector field. Thus, our analysis provides fundamental insight into the flow patterns of lipids on intracellular organelle membranes that are characterized by fixed shapes reminiscent of minimal surfaces.

  6. Minimally Invasive Forefoot Surgery in France.

    PubMed

    Meusnier, Tristan; Mukish, Prikesht

    2016-06-01

    Study groups have been formed in France to advance the use of minimally invasive surgery. These techniques are becoming more frequently used and the technique nuances are continuing to evolve. The objective of this article was to advance the awareness of the current trends in minimally invasive surgery for common diseases of the forefoot. The percutaneous surgery at the forefoot is less developed at this time, but also will be discussed.

  7. The advantages of minimally invasive dentistry.

    PubMed

    Christensen, Gordon J

    2005-11-01

    Minimally invasive dentistry, in cases in which it is appropriate, is a concept that preserves dentitions and supporting structures. In this column, I have discussed several examples of minimally invasive dental techniques. This type of dentistry is gratifying for dentists and appreciated by patients. If more dentists would practice it, the dental profession could enhance the public's perception of its honesty and increase its professionalism as well.

  8. Current research in sonic-boom minimization

    NASA Technical Reports Server (NTRS)

    Darden, C. M.; Mack, R. J.

    1976-01-01

    A review is given of several questions as yet unanswered in the area of sonic-boom research. Efforts, both here at Langley and elsewhere, in the area of minimization, human response, design techniques and in developing higher order propagation methods are discussed. In addition, a wind-tunnel test program being conducted to assess the validity of minimization methods based on a forward spike in the F-function is described.

  9. Minimally invasive treatment of infected pancreatic necrosis

    PubMed Central

    Cebulski, Włodzimierz; Słodkowski, Maciej; Krasnodębski, Ireneusz W.

    2014-01-01

    Infected pancreatic necrosis is a challenging complication that worsens prognosis in acute pancreatitis. For years, open necrosectomy has been the mainstay treatment option in infected pancreatic necrosis, although surgical debridement still results in high morbidity and mortality rates. Recently, many reports on minimally invasive treatment in infected pancreatic necrosis have been published. This paper presents a review of minimally invasive techniques and attempts to define their role in the management of infected pancreatic necrosis. PMID:25653725

  10. Aortic Valve Surgery: Minimally Invasive Options

    PubMed Central

    Ramlawi, Basel; Bedeir, Kareem; Lamelas, Joseph

    2016-01-01

    Minimally invasive aortic valve surgery has not been adopted by a significant proportion of cardiac surgeons despite proven benefits. This may be related to a high learning curve and technical issues requiring retraining. In this review, we discuss the data for minimally invasive aortic valve surgery and describe our operative technique for both ministernotomy and anterior thoracotomy approaches. We also discuss the advent of novel sutureless valves and how these techniques compare to available transcatheter aortic valve procedures. PMID:27127559

  11. Minimally Invasive Osteotomies of the Calcaneus.

    PubMed

    Guyton, Gregory P

    2016-09-01

    Osteotomies of the calcaneus are powerful surgical tools, representing a critical component of the surgical reconstruction of pes planus and pes cavus deformity. Modern minimally invasive calcaneal osteotomies can be performed safely with a burr through a lateral incision. Although greater kerf is generated with the burr, the effect is modest, can be minimized, and is compatible with many fixation techniques. A hinged jig renders the procedure more reproducible and accessible.

  12. Future of Minimally Invasive Colorectal Surgery.

    PubMed

    Whealon, Matthew; Vinci, Alessio; Pigazzi, Alessio

    2016-09-01

    Minimally invasive surgery is slowly taking over as the preferred operative approach for colorectal diseases. However, many of the procedures remain technically difficult. This article will give an overview of the state of minimally invasive surgery and the many advances that have been made over the last two decades. Specifically, we discuss the introduction of the robotic platform and some of its benefits and limitations. We also describe some newer techniques related to robotics. PMID:27582647

  13. Minimally Invasive Surgery in Gynecologic Oncology

    PubMed Central

    Mori, Kristina M.; Neubauer, Nikki L.

    2013-01-01

    Minimally invasive surgery has been utilized in the field of obstetrics and gynecology as far back as the 1940s when culdoscopy was first introduced as a visualization tool. Gynecologists then began to employ minimally invasive surgery for adhesiolysis and obtaining biopsies but then expanded its use to include procedures such as tubal sterilization (Clyman (1963), L. E. Smale and M. L. Smale (1973), Thompson and Wheeless (1971), Peterson and Behrman (1971)). With advances in instrumentation, the first laparoscopic hysterectomy was successfully performed in 1989 by Reich et al. At the same time, minimally invasive surgery in gynecologic oncology was being developed alongside its benign counterpart. In the 1975s, Rosenoff et al. reported using peritoneoscopy for pretreatment evaluation in ovarian cancer, and Spinelli et al. reported on using laparoscopy for the staging of ovarian cancer. In 1993, Nichols used operative laparoscopy to perform pelvic lymphadenectomy in cervical cancer patients. The initial goals of minimally invasive surgery, not dissimilar to those of modern medicine, were to decrease the morbidity and mortality associated with surgery and therefore improve patient outcomes and patient satisfaction. This review will summarize the history and use of minimally invasive surgery in gynecologic oncology and also highlight new minimally invasive surgical approaches currently in development. PMID:23997959

  14. Economic impact of minimally invasive lumbar surgery

    PubMed Central

    Hofstetter, Christoph P; Hofer, Anna S; Wang, Michael Y

    2015-01-01

    Cost effectiveness has been demonstrated for traditional lumbar discectomy, lumbar laminectomy as well as for instrumented and noninstrumented arthrodesis. While emerging evidence suggests that minimally invasive spine surgery reduces morbidity, duration of hospitalization, and accelerates return to activites of daily living, data regarding cost effectiveness of these novel techniques is limited. The current study analyzes all available data on minimally invasive techniques for lumbar discectomy, decompression, short-segment fusion and deformity surgery. In general, minimally invasive spine procedures appear to hold promise in quicker patient recovery times and earlier return to work. Thus, minimally invasive lumbar spine surgery appears to have the potential to be a cost-effective intervention. Moreover, novel less invasive procedures are less destabilizing and may therefore be utilized in certain indications that traditionally required arthrodesis procedures. However, there is a lack of studies analyzing the economic impact of minimally invasive spine surgery. Future studies are necessary to confirm the durability and further define indications for minimally invasive lumbar spine procedures. PMID:25793159

  15. Multifunction minimization for programmable logic arrays

    SciTech Connect

    Campbell, J.A.

    1984-01-01

    The problem of minimizing two-level AND/OR Boolean algebraic functions of n inputs and m outputs for implementation on programmable logic arrays (PLA) is examined. The theory of multiple-output functions as well as the historically alternative approaches to reckoning the cost of an equation implementation are reviewed. The PLA is shown to be a realization of the least product gate equation cost criterion. The multi-function minimization is dealt with in the context of a directed tree search algorithm developed in previous research. The PLA oriented minimization is shown to alter the nature of each of the basic tenets of multiple-output minimization used in earlier work. The concept of a non-prime but selectable implicant is introduced. A new cost criterion, the quantum cost, is discussed, and an approximation algorithm utilizing this criterion is developed. A timing analysis of a cyclic resolution algorithm for PLA based functions is presented. Lastly, the question of efficiency in automated minimization algorithms is examined. The application of the PLA cost criterion is shown to exhibit intrinsic increases in computational efficiency. A minterm classification algorithm is suggested and a PLA minimization algorithm is implemented in the FORTRAN language.

  16. Sequential unconstrained minimization algorithms for constrained optimization

    NASA Astrophysics Data System (ADS)

    Byrne, Charles

    2008-02-01

    The problem of minimizing a function f(x):RJ → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G_k(x)=f(x)+g_k(x), to obtain xk. The auxiliary functions gk(x):D ⊆ RJ → R+ are nonnegative on the set D, each xk is assumed to lie within D, and the objective is to minimize the continuous function f:RJ → R over x in the set C=\\overline D , the closure of D. We assume that such minimizers exist, and denote one such by \\hat x . We assume that the functions gk(x) satisfy the inequalities 0\\leq g_k(x)\\leq G_{k-1}(x)-G_{k-1}(x^{k-1}), for k = 2, 3, .... Using this assumption, we show that the sequence {f(xk)} is decreasing and converges to f({\\hat x}) . If the restriction of f(x) to D has bounded level sets, which happens if \\hat x is unique and f(x) is closed, proper and convex, then the sequence {xk} is bounded, and f(x^*)=f({\\hat x}) , for any cluster point x*. Therefore, if \\hat x is unique, x^*={\\hat x} and \\{x^k\\}\\rightarrow {\\hat x} . When \\hat x is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton-Raphson method. The proof techniques used for SUMMA can be extended to obtain related results for the induced proximal

  17. Blackfolds, plane waves and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  18. Minimally invasive procedures on the lumbar spine

    PubMed Central

    Skovrlj, Branko; Gilligan, Jeffrey; Cutler, Holt S; Qureshi, Sheeraz A

    2015-01-01

    Degenerative disease of the lumbar spine is a common and increasingly prevalent condition that is often implicated as the primary reason for chronic low back pain and the leading cause of disability in the western world. Surgical management of lumbar degenerative disease has historically been approached by way of open surgical procedures aimed at decompressing and/or stabilizing the lumbar spine. Advances in technology and surgical instrumentation have led to minimally invasive surgical techniques being developed and increasingly used in the treatment of lumbar degenerative disease. Compared to the traditional open spine surgery, minimally invasive techniques require smaller incisions and decrease approach-related morbidity by avoiding muscle crush injury by self-retaining retractors, preventing the disruption of tendon attachment sites of important muscles at the spinous processes, using known anatomic neurovascular and muscle planes, and minimizing collateral soft-tissue injury by limiting the width of the surgical corridor. The theoretical benefits of minimally invasive surgery over traditional open surgery include reduced blood loss, decreased postoperative pain and narcotics use, shorter hospital length of stay, faster recover and quicker return to work and normal activity. This paper describes the different minimally invasive techniques that are currently available for the treatment of degenerative disease of the lumbar spine. PMID:25610845

  19. Minimal control power of the controlled teleportation

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Soojoon

    2016-03-01

    We generalize the control power of a perfect controlled teleportation of an entangled three-qubit pure state, suggested by Li and Ghose [Phys. Rev. A 90, 052305 (2014), 10.1103/PhysRevA.90.052305], to the control power of a general controlled teleportation of a multiqubit pure state. Thus, we define the minimal control power, and calculate the values of the minimal control power for a class of general three-qubit Greenberger-Horne-Zeilinger (GHZ) states and the three-qubit W class whose states have zero three-tangles. Moreover, we show that the standard three-qubit GHZ state and the standard three-qubit W state have the maximal values of the minimal control power for the two classes, respectively. This means that the minimal control power can be interpreted as not only an operational quantity of a three-qubit quantum communication but also a degree of three-qubit entanglement. In addition, we calculate the values of the minimal control power for general n -qubit GHZ states and the n -qubit W -type states.

  20. Genetic research on biospecimens poses minimal risk.

    PubMed

    Wendler, David S; Rid, Annette

    2015-01-01

    Genetic research on human biospecimens is increasingly common. However, debate continues over the level of risk that this research poses to sample donors. Some argue that genetic research on biospecimens poses minimal risk; others argue that it poses greater than minimal risk and therefore needs additional requirements and limitations. This debate raises concern that some donors are not receiving appropriate protection or, conversely, that valuable research is being subject to unnecessary requirements and limitations. The present paper attempts to resolve this debate using the widely-endorsed 'risks of daily life' standard. The three extant versions of this standard all suggest that, with proper measures in place to protect confidentiality, most genetic research on human biospecimens poses minimal risk to donors.

  1. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  2. Minimally invasive surgery for atrial fibrillation.

    PubMed

    Lancaster, Timothy S; Melby, Spencer J; Damiano, Ralph J

    2016-04-01

    The surgical treatment of atrial fibrillation (AF) has been revolutionized over the past two decades through surgical innovation and improvements in endoscopic imaging, ablation technology, and surgical instrumentation. These advances have prompted the development of the less complex and less morbid Cox-Maze IV procedure, and have allowed its adaptation to a minimally invasive right mini-thoracotomy approach that can be used in stand-alone AF ablation and in patients undergoing concomitant mitral and tricuspid valve surgery. Other minimally invasive ablation techniques have been developed for stand-alone AF ablation, including video-assisted pulmonary vein isolation, extended left atrial lesion sets, and a hybrid approach. This review will discuss the tools, techniques, and outcomes of minimally invasive surgical procedures currently being practiced for AF ablation.

  3. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  4. Robotically assisted minimally invasive mitral valve surgery

    PubMed Central

    Alwair, Hazaim; Nifong, Wiley L; Chitwood, W Randolph

    2013-01-01

    Increased recognition of advantages, over the last decade, of minimizing surgical trauma by operating through smaller incisions and its direct impact on reduced postoperative pain, quicker recovery, improved cosmesis and earlier return to work has spurred the minimally invasive cardiac surgical revolution. This transition began in the early 1990s with advancements in endoscopic instruments, video & fiberoptic technology and improvements in perfusion systems for establishing cardiopulmonary bypass (CPB) via peripheral cannulation. Society of Thoracic Surgeons data documents that 20% of all mitral valve surgeries are performed using minimally invasive techniques, with half being robotically assisted. This article reviews the current status of robotically assisted mitral valve surgery, its advantages and technical modifications for optimizing clinical outcomes. PMID:24251030

  5. [EVOLUTION OF MINIMALLY INVASIVE CARDIAC SURGERY].

    PubMed

    Fujita, Tomoyuki; Kobayashi, Junjiro

    2016-03-01

    Minimally invasive surgery is an attractive choice for patients undergoing major cardiac surgery. We review the history of minimally invasive valve surgery in this article. Due to many innovations in surgical tools, cardiopulmonary bypass systems, visualization systems, and robotic systems as well as surgical techniques, minimally invasive cardiac surgery has become standard care for valve lesion repair. In particular, aortic cross-clamp techniques and methods for cardioplegia using the Chitwood clamp and root cannula or endoballoon catheter in combination with femoro-femoral bypass systems have made such procedures safer and more practical. On the other hand, robotically assisted surgery has not become standard due to the cost and slow learning curve. However, along with the development of robotics, this less-invasive technique may provide another choice for patients in the near future. PMID:27295770

  6. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  7. Inverse Modeling Via Linearized Functional Minimization

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Wohlberg, B.; Vesselinov, V. V.; Tartakovsky, D. M.

    2014-12-01

    We present a novel parameter estimation methodology for transient models of geophysical systems with uncertain, spatially distributed, heterogeneous and piece-wise continuous parameters.The methodology employs a bayesian approach to propose an inverse modeling problem for the spatial configuration of the model parameters.The likelihood of the configuration is formulated using sparse measurements of both model parameters and transient states.We propose using total variation regularization (TV) as the prior reflecting the heterogeneous, piece-wise continuity assumption on the parameter distribution.The maximum a posteriori (MAP) estimator of the parameter configuration is then computed by minimizing the negative bayesian log-posterior using a linearized functional minimization approach. The computation of the MAP estimator is a large-dimensional nonlinear minimization problem with two sources of nonlinearity: (1) the TV operator, and (2) the nonlinear relation between states and parameters provided by the model's governing equations.We propose a a hybrid linearized functional minimization (LFM) algorithm in two stages to efficiently treat both sources of nonlinearity.The relation between states and parameters is linearized, resulting in a linear minimization sub-problem equipped with the TV operator; this sub-problem is then minimized using the Alternating Direction Method of Multipliers (ADMM). The methodology is illustrated with a transient saturated groundwater flow application in a synthetic domain, stimulated by external point-wise loadings representing aquifer pumping, together with an array of discrete measurements of hydraulic conductivity and transient measurements of hydraulic head.We show that our inversion strategy is able to recover the overall large-scale features of the parameter configuration, and that the reconstruction is improved by the addition of transient information of the state variable.

  8. Minimally invasive surgical techniques in periodontal regeneration.

    PubMed

    Cortellini, Pierpaolo

    2012-09-01

    A review of the current scientific literature was undertaken to evaluate the efficacy of minimally invasive periodontal regenerative surgery in the treatment of periodontal defects. The impact on clinical outcomes, surgical chair-time, side effects and patient morbidity were evaluated. An electronic search of PUBMED database from January 1987 to December 2011 was undertaken on dental journals using the key-word "minimally invasive surgery". Cohort studies, retrospective studies and randomized controlled clinical trials referring to treatment of periodontal defects with at least 6 months of follow-up were selected. Quality assessment of the selected studies was done through the Strength of Recommendation Taxonomy Grading (SORT) System. Ten studies (1 retrospective, 5 cohorts and 4 RCTs) were included. All the studies consistently support the efficacy of minimally invasive surgery in the treatment of periodontal defects in terms of clinical attachment level gain, probing pocket depth reduction and minimal gingival recession. Six studies reporting on side effects and patient morbidity consistently indicate very low levels of pain and discomfort during and after surgery resulting in a reduced intake of pain-killers and very limited interference with daily activities in the post-operative period. Minimally invasive surgery might be considered a true reality in the field of periodontal regeneration. The observed clinical improvements are consistently associated with very limited morbidity to the patient during the surgical procedure as well as in the post-operative period. Minimally invasive surgery, however, cannot be applied at all cases. A stepwise decisional algorithm should support clinicians in choosing the treatment approach.

  9. Minimally invasive transforaminal lumbosacral interbody fusion.

    PubMed

    Chang, Peng-Yuan; Wang, Michael Y

    2016-07-01

    In minimally invasive spinal fusion surgery, transforaminal lumbar (sacral) interbody fusion (TLIF) is one of the most common procedures that provides both anterior and posterior column support without retraction or violation to the neural structure. Direct and indirect decompression can be done through this single approach. Preoperative plain radiographs and MR scan should be carefully evaluated. This video demonstrates a standard approach for how to perform a minimally invasive transforaminal lumbosacral interbody fusion. The video can be found here: https://youtu.be/bhEeafKJ370 . PMID:27364426

  10. The Parisi Formula has a Unique Minimizer

    NASA Astrophysics Data System (ADS)

    Auffinger, Antonio; Chen, Wei-Kuo

    2015-05-01

    In 1979, Parisi (Phys Rev Lett 43:1754-1756, 1979) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221-263, 2006) and later generalized to the mixed p-spin models by Panchenko (Ann Probab 42(3):946-958, 2014). In this paper, we prove that the minimizer in Parisi's formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.

  11. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  12. The concept of minimally invasive dentistry.

    PubMed

    Ericson, Dan

    2007-01-01

    This paper reviews Minimally Invasive Dentistry (MID) from a day-to-day dentistry perspective, focusing mostly on cariology and restorative dentistry, even though it embraces many aspects of dentistry. The concept of MID supports a systematic respect for the original tissue, including diagnosis, risk assessment, preventive treatment, and minimal tissue removal upon restoration. The motivation for MID emerges from the fact that fillings are not permanent and that the main reasons for failure are secondary caries and filling fracture. To address these flaws, there is a need for economical re-routing so that practices can survive on maintaining dental health and not only by operative procedures.

  13. Minimally invasive restorative dentistry: a biomimetic approach.

    PubMed

    Malterud, Mark I

    2006-08-01

    When providing dental treatment for a given patient, the practitioner should use a minimally invasive technique that conserves sound tooth structure as a clinical imperative. Biomimetics is a tenet that guides the author's practice and is generally described as the mimicking of natural life. This can be accomplished in many cases using contemporary composite resins and adhesive dental procedures. Both provide clinical benefits and support the biomimetic philosophy for treatment. This article illustrates a minimally invasive approach for the restoration of carious cervical defects created by poor hygiene exacerbated by the presence of orthodontic brackets.

  14. Minimally invasive repair of meta-bones.

    PubMed

    Piras, Alessandro; Guerrero, Tomás G

    2012-09-01

    Metacarpal and metatarsal fractures are common injuries in small animals and, in most of the cases, can be treated by minimally invasive techniques. Bone plates applied through epi-periosteal tunnels can stabilize meta-bones. Meta-bones III and IV are stabilized by dorsally applied plates. Meta-bones II and V are stabilized using plates applied medially and laterally. The scarcity of soft tissue coverage and the simple anatomy of meta-bones make these fractures amenable to fixation by using minimally invasive techniques. This practice should reduce morbidity and enhance healing time.

  15. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation. PMID:27419593

  16. Minimal mass design of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Nagase, Kenji; Skelton, R. E.

    2014-03-01

    This paper provides a unified framework for minimal mass design of tensegrity systems. For any given configuration and any given set of external forces, we design force density (member force divided by length) and cross-section area to minimize the structural mass subject to an equilibrium condition and a maximum stress constraint. The answer is provided by a linear program. Stability is assured by a positive definite stiffness matrix. This condition is described by a linear matrix inequality. Numerical examples are shown to illustrate the proposed method.

  17. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  18. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  19. Minimal scales from an extended Hilbert space

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Nicolini, Piero

    2010-12-01

    We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.

  20. Pattern Search Methods for Linearly Constrained Minimization

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Torczon, Virginia

    1998-01-01

    We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a Karush-Kuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative. Key to the analysis of the algorithms is the way in which the local search patterns conform to the geometry of the boundary of the feasible region.