Sample records for endemic pathogen hypotheses

  1. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions

    PubMed Central

    Hoyt, Joseph R.; Langwig, Kate E.; Sun, Keping; Lu, Guanjun; Parise, Katy L.; Jiang, Tinglei; Foster, Jeffrey T.; Feng, Jiang; Kilpatrick, A. Marm

    2016-01-01

    Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution. PMID:26962138

  2. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions.

    PubMed

    Hoyt, Joseph R; Langwig, Kate E; Sun, Keping; Lu, Guanjun; Parise, Katy L; Jiang, Tinglei; Frick, Winifred F; Foster, Jeffrey T; Feng, Jiang; Kilpatrick, A Marm

    2016-03-16

    Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host-pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host-pathogen coevolution. © 2016 The Author(s).

  3. Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil

    Treesearch

    Rodrigo N. Graca; Amy L. Ross-Davis; Ned B. Klopfenstein; Mee-Sook Kim; Tobin L. Peever; Phil G. Cannon; Cristina P. Aun; Eduardo G. Mizubuti; Acelino C. Alfenas

    2013-01-01

    The rust fungus, Puccinia psidii, is a devastating pathogen of introduced eucalypts (Eucalyptus spp.) in Brazil where it was first observed in 1912. This pathogen is hypothesized to be endemic to South and Central America and to have first infected eucalypts via a host jump from native guava (Psidium guajava). Ten microsatellite markers were used to genotype 148 P....

  4. Bacterial genomics reveal the complex epidemiology of an emerging pathogen in arctic and boreal ungulates

    USGS Publications Warehouse

    Forde, Taya L.; Orsel, Karin; Zadoks, Ruth N.; Biek, Roman; Adams, Layne G.; Checkley, Sylvia L.; Davison, Tracy; De Buck, Jeroen; Dumond, Mathieu; Elkin, Brett T.; Finnegan, Laura; Macbeth, Bryan J.; Nelson, Cait; Niptanatiak, Amanda; Sather, Shane; Schwantje, Helen M.; van der Meer, Frank; Kutz, Susan J.

    2016-01-01

    Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host factors.

  5. Correlation between Tick Density and Pathogen Endemicity, New Hampshire

    PubMed Central

    Walk, Seth T.; Xu, Guang; Stull, Jason W.

    2009-01-01

    To assess the endemicity of tick-borne pathogens in New Hampshire, we surveyed adult tick vectors. Pathogens were more prevalent in areas of high tick density, suggesting a correlation between tick establishment and pathogen endemicity. Infection rates in ticks correlated with disease frequency in humans. PMID:19331738

  6. Dr Jekyll and Mrs Hyde: Risky hybrid sex by amphibian-parasitizing chytrids in the Brazilian Atlantic Forests.

    PubMed

    Ghosh, Pria; Fisher, Matthew C

    2016-07-01

    In their article in this issue of Molecular Ecology, Jenkinson et al. () and colleagues address a worrying question-how could arguably the most dangerous pathogen known to science, Batrachochytrium dendrobatidis (Bd), become even more virulent? The answer: start having sex. Jenkinson et al. present a case for how the introduction into Brazil of the globally invasive lineage of Bd, BdGPL, has disrupted the relationship between native amphibians and an endemic Bd lineage, BdBrazil. BdBrazil is hypothesized to be native to the Atlantic Forest and so have a long co-evolutionary history with biodiverse Atlantic Forest amphibian community. The authors suggest that this has resulted in a zone of hybrid Bd genotypes which are potentially more likely to cause fatal chytridiomycosis than either parent lineage. The endemic-nonendemic Bd hybrid genotypes described in this study, and the evidence for pathogen translocation via the global amphibian trade presented, highlights the danger of anthropogenic pathogen dispersal. This research emphasizes that biosecurity regulations may have to refocus on lineages within species if we are to mitigate against the danger of new, possibly hypervirulent genotypes of pathogens emerging as phylogeographic barriers are breached. © 2016 John Wiley & Sons Ltd.

  7. Molecular epidemiology of the endemic multiresistance plasmid pSI54/04 of Salmonella Infantis in broiler and human population in Hungary.

    PubMed

    Szmolka, Ama; Szabó, Móni; Kiss, János; Pászti, Judit; Adrián, Erzsébet; Olasz, Ferenc; Nagy, Béla

    2018-05-01

    Salmonella Infantis (SI) became endemic in Hungary where the PFGE cluster B, characterized by a large multiresistance (MDR) plasmid emerged among broilers leading to an increased occurrence in humans. We hypothesized that this plasmid (pSI54/04) assisted dissemination of SI. Indeed, Nal-Sul-Tet phenotypes carrying pSI54/04 occurred increasingly between 2011 and 2013 among SI isolates from broilers and humans. Characterization of pSI54/04 based on genome sequence data of the MDR strain SI54/04 indicated a size of ∼277 kb and a high sequence similarity with the megaplasmid pESI of SI predominant in Israel. Molecular characterization of 78 representative broiler and human isolates detected the prototype plasmid pSI54/04 and its variants together with novel plasmid associations within the emerging cluster B. To test in vitro and in vivo pathogenicity of pSI54/04 we produced plasmidic transconjugant of the plasmid-free pre-emergent strain SI69/94. This parental strain and its transconjugant have been tested on chicken embryo fibroblasts (CEFs) and in orally infected day old chicks. The uptake of pSI54/04 did not increase the pathogenicity of the strain SI69/94 in these systems. Thus, dissemination of SI in poultry could be assisted by antimicrobial resistance rather than by virulence modules of the endemic plasmid pSI54/04 in Hungary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Trichomonad infection in endemic and introduced columbids in the Seychelles.

    PubMed

    Bunbury, N

    2011-07-01

    Island endemic avifaunas face many threats, including the now well-documented impacts of pathogens. The impacts of pathogens on the endemic Seychelles avifauna, however, have been little studied. The protozoan parasite Trichomonas gallinae has been shown to reduce survival and reproductive success of the endemic Pink Pigeon Columba mayeri on the nearby island of Mauritius. I investigated trichomonad infection prevalence and pathogenicity in endemic Seychelles Blue Pigeons, Alectroenas pulcherrima, and two introduced species of columbid, the Madagascar Turtle-dove, Streptopelia picturata, and the Barred Ground Dove, Geopelia striata, on the Seychelles island of Mahé during September-October 2007. I asked whether: 1) trichomonad infections occur in these species; 2) prevalence varies among species; and 3) birds show any signs of pathogenicity consistent with tricho-monosis. I use the results to assess the potential threat of this pathogen to A. pulcherrima. All three species were infected with trichomonads, and the overall prevalence was 27.5%. Alectroenas pulcherrima had higher prevalence (47.1%) than the two introduced species combined (24.3%). No infected individuals showed any signs of disease. These findings suggest that trichomonad parasites should be considered as a potential disease threat to the A. pulcherrima population.

  9. Rift Valley fever virus-infected mosquito ova and associated pathology: possible implications for endemic maintenance

    USDA-ARS?s Scientific Manuscript database

    Background: Endemic/enzootic maintenance mechanisms like vertical transmission, pathogen passage from infected adults to their offspring, are central in the epidemiology of zoonotic pathogens. In Kenya, Rift Valley fever virus (RVFV) may be maintained by vertical transmission in ground-pool mosquit...

  10. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    PubMed

    Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.

  11. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk.

    PubMed

    Hosseini, Parviez R; Mills, James N; Prieur-Richard, Anne-Hélène; Ezenwa, Vanessa O; Bailly, Xavier; Rizzoli, Annapaola; Suzán, Gerardo; Vittecoq, Marion; García-Peña, Gabriel E; Daszak, Peter; Guégan, Jean-François; Roche, Benjamin

    2017-06-05

    Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Author(s).

  12. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk

    PubMed Central

    Hosseini, Parviez R.; Mills, James N.; Prieur-Richard, Anne-Hélène; Bailly, Xavier; Rizzoli, Annapaola; Suzán, Gerardo; Vittecoq, Marion; Daszak, Peter; Guégan, Jean-François

    2017-01-01

    Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438918

  13. Ocelots on Barro Colorado Island are infected with feline immunodeficiency virus but not other common feline and canine viruses.

    PubMed

    Franklin, Samuel P; Kays, Roland W; Moreno, Ricardo; TerWee, Julie A; Troyer, Jennifer L; VandeWoude, Sue

    2008-07-01

    Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population.

  14. Ocelots on Barro Colorado Island Are Infected with Feline Immunodeficiency Virus but Not Other Common Feline and Canine Viruses

    PubMed Central

    Franklin, Samuel P.; Kays, Roland W.; Moreno, Ricardo; TerWee, Julie A.; Troyer, Jennifer L.; VandeWoude, Sue

    2011-01-01

    Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population. PMID:18689668

  15. A framework for optimizing phytosanitary thresholds in seed systems

    USDA-ARS?s Scientific Manuscript database

    Seedborne pathogens and pests limit production in many agricultural systems. Quarantine programs help prevent the introduction of exotic pathogens into a country, but few regulations directly apply to reducing the reintroduction and spread of endemic pathogens. Use of phytosanitary thresholds helps ...

  16. Endemic cattle diseases: comparative epidemiology and governance

    PubMed Central

    Carslake, David; Grant, Wyn; Green, Laura E.; Cave, Jonathan; Greaves, Justin; Keeling, Matt; McEldowney, John; Weldegebriel, Habtu; Medley, Graham F.

    2011-01-01

    Cattle are infected by a community of endemic pathogens with different epidemiological properties that invoke different managerial and governmental responses. We present characteristics of pathogens that influence their ability to persist in the UK, and describe a qualitative framework of factors that influence the political response to a livestock disease. We develop simple transmission models for three pathogens (bovine viral diarrhoea virus, bovine herpesvirus and Mycobacterium avium spp. paratuberculosis) using observed cattle movements, and compare the outcomes to an extensive dataset. The results demonstrate that the epidemiology of the three pathogens is determined by different aspects of within- and between-farm processes, which has economic, legal and political implications for control. We consider how these pathogens, and Mycobacterium bovis (the agent of bovine tuberculosis), may be classified by the process by which they persist and by their political profile. We further consider the dynamic interaction of these classifications with pathogen prevalence and with the action taken by the government. PMID:21624918

  17. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  18. Prevalence of hand osteoarthritis and knee osteoarthritis in Kashin-Beck disease endemic areas and non Kashin-Beck disease endemic areas: A status survey

    PubMed Central

    Song, QuanQuan; Liu, Yun Qi; Sun, Li Yan; Deng, Qing; Wang, Shao Ping; Cao, Yan Hong; Zhang, Xue Ying; Jiang, Yuan Yuan; Lv, Hong Yan; Duan, Li Bin; Yu, Jun

    2018-01-01

    Osteoarthritis (OA) is a considerable health problem worldwide, and the prevalence of OA varies in different regions. In this study, the prevalence of OA in Kashin-Beck disease (KBD) and non-KBD endemic areas was examined, respectively. According to monitoring data, 4 types of regions (including none, mild, moderate and high KBD endemic areas) in Heilongjiang and Jilin provinces were selected. All local residents were eligible for inclusion criteria have undergone X-ray images of hands and anteroposterior image of knees. A total of 1673 cases were collected, 1446 cases were analyzed after removing the KBD patients (227). The overall hand OA and knee OA detection rates were 33.3% (481/1446) and 56.6% (818/1446), respectively. After being standardized by age, the detection rate of hand OA in the KBD endemic areas was significantly higher than that in the non-endemic endemic areas. Differently, there was no significant difference in the detection rates of knee OA between the KBD endemic areas and the non-endemic area. The correlation coefficient between the severity of OA and the severity of knee OA was 0.358 and 0.197 in the KBD and non-KBD endemic areas, respectively. Where the KBD historical prevalence level was higher, the severity of the residents’ hand OA was more serious. The detection rates of hand OA and knee OA increased with age. The detection rate of knee OA increased with the increase in body mass index. The prevalence of hand OA was closely related to the pathogenic factors of Kashin-Beck disease, and the prevalence of knee OA had no significant correlation with KBD pathogenic factors. PMID:29320581

  19. Whether the Weather Drives Patterns of Endemic Amphibian Chytridiomycosis: A Pathogen Proliferation Approach

    PubMed Central

    Murray, Kris A.; Skerratt, Lee F.; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline. PMID:23613783

  20. Legionella - (re-)awakening to the Amoeba-based Pathogens of Distribution System Biofilm

    EPA Science Inventory

    Fecal pathogens have long been the focus of concern in the distribution of drinking waters. Yet today, with distribution system ‘failures’ accounting for the majority of waterborne outbreaks in the USA, there is growing realization that pathogens endemic to aquatic biofilms may a...

  1. Rapid Analysis of Pharmacology for Infectious Diseases

    PubMed Central

    Hopkins, Andrew L; Bickerton, G. Richard; Carruthers, Ian M; Boyer, Stephen K; Rubin, Harvey; Overington, John P

    2011-01-01

    Pandemic, epidemic and endemic infectious diseases are united by a common problem: how do we rapidly and cost-effectively identify potential pharmacological interventions to treat infections? Given the large number of emerging and neglected infectious diseases and the fact that they disproportionately afflict the poorest members of the global society, new ways of thinking are required to develop high productivity discovery systems that can be applied to a large number of pathogens. The growing availability of parasite genome data provides the basis for developing methods to prioritize, a priori potential drug targets and analyze the pharmacological landscape of an infectious disease. Thus the overall objective of infectious disease informatics is to enable the rapid generation of plausible, novel medical hypotheses of test-able pharmacological experiments, by uncovering undiscovered relationships in the wealth of biomedical literature and databases that were collected for other purposes. In particular our goal is to identify potential drug targets present in a pathogen genome and prioritize which pharmacological experiments are most likely to discover drug-like lead compounds rapidly against a pathogen (i.e. which specific compounds and drug targets should be screened, in which assays and where they can be sourced). An integral part of the challenge is the development and integration of methods to predict druggability, essentiality, synthetic lethality and polypharmocology in pathogen genomes, while simultaneously integrating the inevitable issues of chemical tractability and the potential for acquired drug resistance from the start. PMID:21401504

  2. Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens.

    PubMed

    Zachow, Christin; Berg, Christian; Müller, Henry; Monk, Jana; Berg, Gabriele

    2016-10-10

    Trichoderma strains exhibit enormous potential for applications in biotechnology, in particular as biocontrol agents against pathogens. However, little is known about the diversity of plant-associated Trichoderma communities at a global scale and their antagonistic spectrum. In order to gather information about structure and function, we compared Trichoderma biomes of endemic (Aeonium, Diospyros, Hebe, Rhododendron) and cosmopolitan plants (Zea mays) in a global study encompassing the area Northwest Africa to New Zealand via the European Alps and Madagascar. At the quantitative level we found no differences between cosmopolitan and endemic plants. Statistically significant differences were detected at the qualitative level: Trichoderma populations of endemic plants were highly specific and diverse with hot spots appearing in Madagascar and New Zealand. By contrast, maize plants from all sites shared the majority of Trichoderma species (65.5%). Interestingly, the high above ground biodiversity in ecosystems containing endemic plants was confirmed by a high below ground Trichoderma diversity. Despite the differences, we found a global Trichoderma core community shared by all analysed plants, which was dominated by T. koningii and T. koningiopsis. Amplicon-based network analyses revealed a high similarity between maize Trichoderma grown world-wide and distinct populations of endemic plants. Furthermore, Trichoderma strains from endemic plants showed a higher antagonistic activity against fungal pathogens compared to maize-associated strains. Our results showed that endemic plants are associated with a specific Trichoderma microbiome which possesses a high antagonistic activity indicating that it has potential to be used for biocontrol purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Invasion of the lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity.

    PubMed

    Hamer, Sarah A; Tsao, Jean I; Walker, Edward D; Hickling, Graham J

    2010-08-01

    Lyme disease risk is increasing in the United States due in part to the spread of blacklegged ticks Ixodes scapularis, the principal vector of the spirochetal pathogen Borrelia burgdorferi. A 5-year study was undertaken to investigate hypothesized coinvasion of I. scapularis and B. burgdorferi in Lower Michigan. We tracked the spatial and temporal dynamics of the tick and spirochete using mammal, bird, and vegetation drag sampling at eight field sites along coastal and inland transects originating in a zone of recent I. scapularis establishment. We document northward invasion of these ticks along Michigan's west coast during the study period; this pattern was most evident in ticks removed from rodents. B. burgdorferi infection prevalences in I. scapularis sampled from vegetation in the invasion zone were 9.3% and 36.6% in nymphs and adults, respectively, with the majority of infection (95.1%) found at the most endemic site. There was no evidence of I. scapularis invasion along the inland transect; however, low-prevalence B. burgdorferi infection was detected in other tick species and in wildlife at inland sites, and at northern coastal sites in years before the arrival of I. scapularis. These infections suggest that cryptic B. burgdorferi transmission by other vector-competent tick species is occurring in the absence of I. scapularis. Other Borrelia spirochetes, including those that group with B. miyamotoi and B. andersonii, were present at a low prevalence within invading ticks and local wildlife. Reports of Lyme disease have increased significantly in the invasion zone in recent years. This rapid blacklegged tick invasion--measurable within 5 years--in combination with cryptic pathogen maintenance suggests a complex ecology of Lyme disease emergence in which wildlife sentinels can provide an early warning of disease emergence.

  4. Evolution of pathogen virulence across space during an epidemic

    USGS Publications Warehouse

    Osnas, Erik; Hurtado, Paul J.; Dobson, Andrew P.

    2015-01-01

    We explore pathogen virulence evolution during the spatial expansion of an infectious disease epidemic in the presence of a novel host movement trade-off, using a simple, spatially explicit mathematical model. This work is motivated by empirical observations of the Mycoplasma gallisepticum invasion into North American house finch (Haemorhous mexicanus) populations; however, our results likely have important applications to other emerging infectious diseases in mobile hosts. We assume that infection reduces host movement and survival and that across pathogen strains the severity of these reductions increases with pathogen infectiousness. Assuming these trade-offs between pathogen virulence (host mortality), pathogen transmission, and host movement, we find that pathogen virulence levels near the epidemic front (that maximize wave speed) are lower than those that have a short-term growth rate advantage or that ultimately prevail (i.e., are evolutionarily stable) near the epicenter and where infection becomes endemic (i.e., that maximize the pathogen basic reproductive ratio). We predict that, under these trade-offs, less virulent pathogen strains will dominate the periphery of an epidemic and that more virulent strains will increase in frequency after invasion where disease is endemic. These results have important implications for observing and interpreting spatiotemporal epidemic data and may help explain transient virulence dynamics of emerging infectious diseases.

  5. Field evaluations of topical arthropod repellents in North, Central, and South America

    USDA-ARS?s Scientific Manuscript database

    Recently, vector-borne diseases have been resurging in endemic areas and expanding their geographic range into non-endemic areas. This creates a major public health concern as naïve populations are exposed to pathogens that cause these diseases. Personal topical repellents, recommended by the CDC an...

  6. Development of blood transfusion product pathogen reduction treatments: a review of methods, current applications and demands.

    PubMed

    Salunkhe, Vishal; van der Meer, Pieter F; de Korte, Dirk; Seghatchian, Jerard; Gutiérrez, Laura

    2015-02-01

    Transfusion-transmitted infections (TTI) have been greatly reduced in numbers due to the strict donor selection and screening procedures, i.e. the availability of technologies to test donors for endemic infections, and routine vigilance of regulatory authorities in every step of the blood supply chain (collection, processing and storage). However, safety improvement is still a matter of concern because infection zero-risk in transfusion medicine is non-existent. Alternatives are required to assure the safety of the transfusion product and to provide a substitution to systematic blood screening tests, especially in less-developed countries or at the war-field. Furthermore, the increasing mobility of the population due to traveling poses a new challenge in the endemic screening tests routinely used, because non-endemic pathogens might emerge in a specific population. Pathogen reduction treatments sum a plethora of active approaches to eliminate or reduce potential threatening pathogen load from blood transfusion products. Despite the success of pathogen reduction treatments applied to plasma products, there is still a long way to develop and deploy pathogen reduction treatments to cellular transfusion products (such as platelets, RBCs or even to whole blood) and there is divergence on its acceptance worldwide. While the use of pathogen reduction treatments in platelets is performed routinely in a fair number of European blood banks, most of these treatments are not (or just) licensed in the USA or elsewhere in the world. The development of pathogen reduction treatments for RBC and whole blood is still in its infancy and under clinical trials. In this review, we discuss the available and emerging pathogen reduction treatments and their advantages and disadvantages. Furthermore, we highlight the importance of characterizing standard transfusion products with current and emerging approaches (OMICS) and clinical outcome, and integrating this information on a database, thinking on the benefits it might bring in the future toward personalized transfusion therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Role for Salivary Peptides in the Innate Defense Against Enterotoxigenic Escherichia coli.

    PubMed

    Brown, Jeffrey W; Badahdah, Arwa; Iticovici, Micah; Vickers, Tim J; Alvarado, David M; Helmerhorst, Eva J; Oppenheim, Frank G; Mills, Jason C; Ciorba, Matthew A; Fleckenstein, James M; Bullitt, Esther

    2018-04-11

    Diarrheal disease from enterotoxigenic Escherichia coli (ETEC) causes significant worldwide morbidity and mortality in young children residing in endemic countries and is the leading cause of traveler's diarrhea. As ETEC enters the body through the oral cavity and cotransits the digestive tract with salivary components, we hypothesized that the antimicrobial activity of salivary proteins might extend beyond the oropharynx into the proximal digestive tract. Here, we show that the salivary peptide histatin-5 binds colonization factor antigen I pili, thereby blocking adhesion of ETEC to intestinal epithelial cells. Mechanistically, we demonstrate that histatin-5 stiffens the typically dynamic pili, abolishing their ability to function as spring-like shock absorbers, thereby inhibiting colonization within the turbulent vortices of chyme in the gastrointestinal tract. Our data represent the first report of a salivary component exerting specific antimicrobial activity against an enteric pathogen and suggest that histatin-5 and related peptides might be exploited for prophylactic and/or therapeutic uses. Numerous viruses, bacteria, and fungi traverse the oropharynx to cause disease, so there is considerable opportunity for various salivary components to neutralize these pathogens prior to arrival at their target organ. Identification of additional salivary components with unexpectedly broad antimicrobial spectra should be a priority.

  8. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses

    PubMed Central

    Wang, Eryu; Ni, Haolin; Xu, Renling; Barrett, Alan D. T.; Watowich, Stanley J.; Gubler, Duane J.; Weaver, Scott C.

    2000-01-01

    Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested that the endemic/epidemic lineages of these three DEN serotypes evolved independently from sylvatic progenitors. Time estimates for evolution of the endemic/epidemic forms ranged from 100 to 1,500 years ago, and the evolution of endemic/epidemic forms represents relatively recent events in the history of DEN evolution. Analysis of envelope protein amino acid changes predicted to have accompanied endemic/epidemic emergence suggested a role for domain III in adaptation to new mosquito and/or human hosts. PMID:10708439

  9. Population collapse to extinction: the catastrophic combination of parasitism and Allee effect.

    PubMed

    Hilker, Frank M

    2010-01-01

    Infectious diseases are responsible for the extinction of a number of species. In conventional epidemic models, the transition from endemic population persistence to extirpation takes place gradually. However, if host demographics exhibits a strong Allee effect (AE) (population decline at low densities), extinction can occur abruptly in a catastrophic population crash. This might explain why species suddenly disappear even when they used to persist at high endemic population levels. Mathematically, the tipping point towards population collapse is associated with a saddle-node bifurcation. The underlying mechanism is the simultaneous population size depression and the increase of the extinction threshold due to parasite pathogenicity and Allee effect. Since highly pathogenic parasites cause their own extinction but not that of their host, there can be another saddle-node bifurcation with the re-emergence of two endemic equilibria. The implications for control interventions are discussed, suggesting that effective management may be possible for ℛ(0)≫1.

  10. Reassortant clade 2.3.4.4 of highly pathogenic avian influenza A (H5N6) virus, Taiwan, 2017

    USDA-ARS?s Scientific Manuscript database

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassor...

  11. Nitrogen species in drinking water indicate potential exposure pathway for Balkan Endemic Nephropathy.

    PubMed

    Niagolova, Nedialka; McElmurry, Shawn P; Voice, Thomas C; Long, David T; Petropoulos, Evangelos A; Havezov, Ivan; Chou, Karen; Ganev, Varban

    2005-03-01

    This study explored two hypotheses relating elevated concentrations of nitrogen species in drinking water and the disease Balkan Endemic Nephropathy (BEN). Drinking water samples were collected from a variety of water supplies in both endemic and non-endemic villages in the Vratza and Montana districts of Bulgaria. The majority of well water samples exceeded US drinking water standards for nitrate + nitrite. No statistically significant difference was observed for any of the nitrogen species between villages classified as endemic and non-endemic. Other constituents (sodium, potassium and chloride) known to be indicators of anthropogenic pollution were also found at elevated concentrations and all followed the order wells > springs > taps. This ordering coincides with the proximity of human influences to the water sources. Our results clearly establish an exposure pathway between anthropogenic activity and drinking water supplies, suggesting that the causative agent for BEN could result from surface contamination.

  12. Highly pathogenic avian influenza virus among wild birds in Mongolia

    USDA-ARS?s Scientific Manuscript database

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  13. Apes, lice and prehistory.

    PubMed

    Weiss, Robin A

    2009-01-01

    Although most epidemic human infectious diseases are caused by recently introduced pathogens, cospeciation of parasite and host is commonplace for endemic infections. Occasional host infidelity, however, provides the endemic parasite with an opportunity to survive the potential extinction of its host. Such infidelity may account for the survival of certain types of human lice, and it is currently exemplified by viruses such as HIV.

  14. Case Report: Disseminated Talaromyces (Penicillium) marneffei and Mycobacterium tuberculosis Coinfection in a Japanese Patient with Acquired Immunodeficiency Syndrome.

    PubMed

    Hatakeyama, Shuji; Yamashita, Takeshi; Sakai, Toshiyasu; Kamei, Katsuhiko

    2017-07-01

    Talaromyces marneffei is a dimorphic fungus endemic mainly in southeast and south Asia. It causes severe mycosis, usually in immunocompromised individuals, such as those with human immunodeficiency virus (HIV) infection. Concomitant infection with T. marneffei and other opportunistic pathogens is plausible because the majority of T. marneffei infections occur in patients with advanced HIV infection. Nonetheless, coinfection in the same site has rarely been reported, and poses a considerable diagnostic and therapeutic challenge. We report the case of an HIV-infected Japanese patient who had lived in Thailand for 6 years. The patient developed T. marneffei and Mycobacterium tuberculosis coinfection, and both pathogens were isolated from the same sites: a blood specimen and a lymph node aspirate. Clinicians should be aware of concomitant infection with T. marneffei and other pathogens in patients with advanced HIV disease who are living in or who have visited endemic areas.

  15. Changes in leptospirosis etiology in animals and humans.

    PubMed

    Vasylieva, Natalia; Andreychyn, Mykhaylo; Kravchuk, Yulia; Chervinska, Оlena; Iosyk, Iaryna

    2017-12-23

    Leptospirosis is endemic in Ternopil region. In Ukraine, the disease is registered in almost all regions, including the Ternopil region. The aim of the research is to study the regularities of epidemic and epizootic processes of leptospirosis, and the circulation of its pathogens among different sources (small mammals, animals) and humans. Etiologic spectrum of leptospirosis registered in Ternopil region in 1972-2016 among small mammals, farm animals and sick people was studied. Due to the analysis of pathogens circulation among different sources (small mammals, animals), as well as the annual morbidity in humans, it was proved that new leptospira serovars are endemic and brought into the regions mostly by farm animals. Farm animals introduce the infection to humans through the environment, sometimes within 3-5-years. The spread was observed of pathogen serovars, which are new in certain areas, among all types of mouse-like small mammals and rats. It was established that livestock and small mammals are parallel reservoirs. In the regions with endemic species, the structural modification in the etiology of leptospirosis in humans is caused by additional reservoirs among animals, as well as the circulation of other pathogen serovars that were absent in the main natural reservoir, i.e. mouse-like small mammals and rats. The constant monitoring of the population, contamination and carrier state of mouse-like small mammals, rats and farm animals, is required In order to predict the future epidemiological situation on leptospirosis among the population and to improve leptospirosis diagnosis.

  16. Reassortant Clade 2.3.4.4 of Highly Pathogenic Avian Influenza A(H5N6) Virus, Taiwan, 2017.

    PubMed

    Chen, Li-Hsuan; Lee, Dong-Hun; Liu, Yu-Pin; Li, Wan-Chen; Swayne, David E; Chang, Jen-Chieh; Chen, Yen-Ping; Lee, Fan; Tu, Wen-Jane; Lin, Yu-Ju

    2018-06-01

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassortment and a fifth wave of intercontinental spread.

  17. First report of an Armillaria root disease pathogen, Armillaria gallica, associated with several new hosts in Hawaii

    Treesearch

    M.-S. Kim; J. W. Hanna; N. B. Klopfenstein

    2010-01-01

    The loss and decline of native tree species caused by invasive plant pathogens is a major threat to the endangered endemic forests of the Hawaiian Islands (3). Thus, it is critical to characterize existing pathogens to evaluate potential invasiveness. In August 2005, rhizomorphs and mycelial bark fans of genet HI-4 were collected from dead/declining, mature trees of...

  18. A golden jackal (Canis aureus) from Austria bearing Hepatozoon canis--import due to immigration into a non-endemic area?

    PubMed

    Duscher, Georg Gerhard; Kübber-Heiss, Anna; Richter, Barbara; Suchentrunk, Franz

    2013-02-01

    The protozoan Hepatozoon canis, which is transmitted via ingestion of infected ticks by canine hosts, is not endemic to mid-latitude regions in Europe. Its distribution is supposed to be linked to the occurrence of its primary tick vector Rhipicephalus sanguineus. A young male golden jackal (Canis aureus) found as road kill close to Vienna, Austria, was infected by this pathogen. Cloning and sequencing of the PCR product revealed 6 different haplotypes of H. canis. Based on the sequences, no clear relationship to the origin of infection could be traced. This is the first report of H. canis for Austria, and wild canines such as the currently found jackal may provide a source of natural spread of this parasite into non-endemic areas. This natural immigration of wild animals represents a way of pathogen introduction, which has to be considered in disease prevention in addition to human-made introduction due to animal import and export. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Travel vaccination recommendations and endemic infection risks in solid organ transplantation recipients.

    PubMed

    Trubiano, Jason A; Johnson, Douglas; Sohail, Asma; Torresi, Joseph

    2016-06-01

    Solid organ transplant (SOT) recipients are often heavily immunosuppressed and consequently at risk of serious illness from vaccine preventable viral and bacterial infections or with endemic fungal and parasitic infections. We review the literature to provide guidance regarding the timing and appropriateness of vaccination and pathogen avoidance related to the immunological status of SOT recipients. A PUBMED search ([Vaccination OR vaccine] AND/OR ["specific vaccine"] AND/OR [immunology OR immune response OR cytokine OR T lymphocyte] AND transplant was performed. A review of the literature was performed in order to develop recommendations on vaccination for SOT recipients travelling to high-risk destinations. Whilst immunological failure of vaccination in SOT is primarily the result of impaired B-cell responses, the role of T-cells in vaccine failure and success remains unknown. Vaccination should be initiated at least 4 weeks prior to SOT or more than 6 months post-SOT. Avoidance of live vaccination is generally recommended, although some live vaccines may be considered in the specific situations (e.g. yellow fever). The practicing physician requires a detailed understanding of region-specific endemic pathogen risks. We provide a vaccination and endemic pathogen guide for physicians and travel clinics involved in the care of SOT recipients. In addition, recommendations based on timing of anticipated immunological recovery and available evidence regarding vaccine immunogenicity in SOT recipients are provided to help guide pre-travel consultations. © International Society of Travel Medicine, 2016. All rights reserved. Published by Oxford University Press. For permissions, please e-mail: journals.permissions@oup.com.

  20. Functional Diversity as a New Framework for Understanding the Ecology of an Emerging Generalist Pathogen.

    PubMed

    Morris, Aaron; Guégan, Jean-François; Benbow, M Eric; Williamson, Heather; Small, Pamela L C; Quaye, Charles; Boakye, Daniel; Merritt, Richard W; Gozlan, Rodolphe E

    2016-09-01

    Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen-host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower's dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium's hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium's presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.

  1. H9N2 low pathogenic avian influenza: Should we be afraid?

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  2. The origin of Ceratocystis fagacearum, the oak wilt fungus

    Treesearch

    Jennifer Juzwik; Thomas C. Harrington; William L. MacDonald; David N. Appel

    2008-01-01

    The oak wilt pathogen, Ceratocystis fagacearum, may be another example of a damaging, exotic species in forest ecosystems in the United States. Though C. fagacearum has received much research attention, the origin of the fungus is unknown. The pathogen may have been endemic at a low incidence until increased disturbances, changes...

  3. Use of a tick-borne disease manual increases accuracy of tick identification among primary care providers in Lyme disease endemic areas.

    PubMed

    Butler, Amber D; Carlson, Meredith L; Nelson, Christina A

    2017-02-01

    Given the high incidence of tick bites and tick-borne diseases in the United States, it is important for primary care providers to recognize common ticks and the pathogens they may transmit. If a patient has removed and saved an attached tick, identifying the tick helps guide clinical management and determine whether antibiotic prophylaxis for Lyme disease is appropriate. To investigate providers' ability to recognize common ticks and the pathogens they may transmit, we asked 76 primary care providers from Lyme disease endemic areas to identify the common name or genus of preserved ticks found in their area. At baseline, 10.5%, 46.1%, and 57.9% of participants correctly identified an adult female blacklegged tick (engorged), dog tick, and lone star tick, respectively. Less than half of participants identified the three pathogens most frequently transmitted by blacklegged ticks. Use of a reference manual with tick photographs and drawings substantially improved identification of ticks and associated pathogens and therefore should be encouraged in clinical practice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Genetic variation underlying resistance to infectious hematopoietic necrosis virus in a steelhead trout (Oncorhynchus mykiss) population

    USGS Publications Warehouse

    Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.

    2015-01-01

    Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.

  5. Phytohormone mediation of interactions between herbivores and plant pathogens.

    PubMed

    Lazebnik, Jenny; Frago, Enric; Dicke, Marcel; van Loon, Joop J A

    2014-07-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in sequential tri-partite interactions among plants, pathogenic microbes, and herbivorous insects, based on the most recent literature. We discuss the importance of pathogen trophic strategy in the interaction with herbivores that exhibit different feeding modes. Plant resistance mechanisms also affect plant quality in future interactions with attackers. We discuss exemplary evidence for the hypotheses that (i) biotrophic pathogens can facilitate chewing herbivores, unless plants exhibit effector-triggered immunity, but (ii) facilitate or inhibit phloem feeders. (iii) Necrotrophic pathogens, on the other hand, can inhibit both phloem feeders and chewers. We also propose herbivore feeding mode as predictor of effects on pathogens of different trophic strategies, providing evidence for the hypotheses that (iv) phloem feeders inhibit pathogen attack by increasing SA induction, whereas (v) chewing herbivores tend not to affect necrotrophic pathogens, while they may either inhibit or facilitate biotrophic pathogens. Putting these hypotheses to the test will increase our understanding of phytohormonal regulation of plant defense to sequential attack by plant pathogens and insect herbivores. This will provide valuable insight into plant-mediated ecological interactions among members of the plant-associated community.

  6. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  7. Animal-adapted members of the Mycobacterium tuberculosis complex endemic to the southern African subregion.

    PubMed

    Clarke, Charlene; Van Helden, Paul; Miller, Michele; Parsons, Sven

    2016-04-26

    Members of the Mycobacterium tuberculosis complex (MTC) cause tuberculosis (TB) in both animals and humans. In this article, three animal-adapted MTC strains that are endemic to the southern African subregion - that is, Mycobacterium suricattae, Mycobacterium mungi, and the dassie bacillus - are reviewed with a focus on clinical and pathological presentations, geographic distribution, genotyping methods, diagnostic tools and evolution. Moreover, factors influencing the transmission and establishment of TB pathogens in novel host populations, including ecological, immunological and genetic factors of both the host and pathogen, are discussed. The risks associated with these infections are currently unknown and further studies will be required for greater understanding of this disease in the context of the southern African ecosystem.

  8. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  9. Genetic modification of European winegrapes with genes from an American wild relative confers resistance to the major diseases powdery and downy mildew

    USDA-ARS?s Scientific Manuscript database

    The two most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete, downy mildew (Plasmopara viticola). These pathogens, endemic to North America, were introduced into Europe in t...

  10. Biosafety and Biosecurity: A Relative Risk-Based Framework for Safer, More Secure, and Sustainable Laboratory Capacity Building.

    PubMed

    Dickmann, Petra; Sheeley, Heather; Lightfoot, Nigel

    2015-01-01

    Laboratory capacity building is characterized by a paradox between endemicity and resources: countries with high endemicity of pathogenic agents often have low and intermittent resources (water, electricity) and capacities (laboratories, trained staff, adequate regulations). Meanwhile, countries with low endemicity of pathogenic agents often have high-containment facilities with costly infrastructure and maintenance governed by regulations. The common practice of exporting high biocontainment facilities and standards is not sustainable and concerns about biosafety and biosecurity require careful consideration. A group at Chatham House developed a draft conceptual framework for safer, more secure, and sustainable laboratory capacity building. The draft generic framework is guided by the phrase "LOCAL - PEOPLE - MAKE SENSE" that represents three major principles: capacity building according to local needs (local) with an emphasis on relationship and trust building (people) and continuous outcome and impact measurement (make sense). This draft generic framework can serve as a blueprint for international policy decision-making on improving biosafety and biosecurity in laboratory capacity building, but requires more testing and detailing development.

  11. Root diseases: primary agents and secondary consequences of disturbance

    Treesearch

    William J. Otrosina; George T. Ferrell

    1995-01-01

    The fact that endemic root disease causing pathogens have evolved with forest ecosystems does not necessarily mean they are inconsequential. A pathogen such as the P group of Heterobasidion annosum has become an intractable problem in many Sierra east side pine stands in California because the fungus is adapted to colonization of freshly cut stump surfaces. The S group...

  12. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    PubMed

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  13. Pathogens vectored by the tick, Dermacentor reticulatus, in endemic regions and zones of expansion in Poland.

    PubMed

    Mierzejewska, Ewa J; Pawełczyk, Agnieszka; Radkowski, Marek; Welc-Falęciak, Renata; Bajer, Anna

    2015-09-24

    Dermacentor reticulatus plays an important role in the maintenance of pathogens of medical and veterinary importance in the environment. Currently two isolated populations of D. reticulatus are present in Poland--Western and Eastern. The range of the Eastern population covers endemic areas in eastern Poland but this population is expanding westwards creating an expansion zone in the centre of the country. The expansion zone in western Poland is occupied by the recently discovered Western population, spreading eastwards. Questing adult ticks (n = 2585) were collected in 2012-2014 in endemic regions of north-eastern (Warmińsko-Mazurskie Voivodeship) and central Poland (Masovian Voivodeship) and in the expansion zones in central and western Poland, in the region between the Vistula River and the western border of the country. Amplification of Babesia, Rickettsia spp. and Borrelia burgdorferi sensu lato DNAs was performed using specific starters. RNA of the TBE virus was detected using RT-PCR and representative PCR products were sequenced and compared with sequences deposited in GenBank. Of the total 2585 examined ticks, 1197 (46.3 %) were infected with at least one pathogen. Overall prevalence of pathogens was 4.18 % (108/2585) for Babesia spp., 44.10 % (1140/2585) for Rickettsia spp., 0.09 % (1/1107) for Borrelia afzelii and 7.6 % (7/92) for TBEV. Sequence analysis of DNA showed 99.86 % similarity to R. raoulti and 99.81 % to B. canis. One male from north-eastern Poland was infected with B. microti. Prevalence of R. raoulti was highest in the Western population (52.03 %) and lowest in the Eastern population in north-eastern Poland (34.18 %). Babesia canis was not detected in 592 ticks collected in the Western population, while in the Eastern population overall prevalence was 5.42 %. There were significant differences in the prevalence of B. canis between tick samples from northern (0.68 %), central (1.18 %) and southern (14.8 %) areas of the expansion zone in central Poland. Our study found significant differences between the range and prevalence of vectored pathogens in D. reticulatus from the endemic areas and newly inhabited expansion zones. The differences were likely associated with the different time of settlement or 'source' of ticks populations, the Eastern and the Western one.

  14. Myalgic encephalomyelitis, chronic fatigue syndrome: An infectious disease.

    PubMed

    Underhill, R A

    2015-12-01

    The etiology of myalgic encephalomyelitis also known as chronic fatigue syndrome or ME/CFS has not been established. Controversies exist over whether it is an organic disease or a psychological disorder and even the existence of ME/CFS as a disease entity is sometimes denied. Suggested causal hypotheses have included psychosomatic disorders, infectious agents, immune dysfunctions, autoimmunity, metabolic disturbances, toxins and inherited genetic factors. Clinical, immunological and epidemiological evidence supports the hypothesis that: ME/CFS is an infectious disease; the causal pathogen persists in patients; the pathogen can be transmitted by casual contact; host factors determine susceptibility to the illness; and there is a population of healthy carriers, who may be able to shed the pathogen. ME/CFS is endemic globally as sporadic cases and occasional cluster outbreaks (epidemics). Cluster outbreaks imply an infectious agent. An abrupt flu-like onset resembling an infectious illness occurs in outbreak patients and many sporadic patients. Immune responses in sporadic patients resemble immune responses in other infectious diseases. Contagion is shown by finding secondary cases in outbreaks, and suggested by a higher prevalence of ME/CFS in sporadic patients' genetically unrelated close contacts (spouses/partners) than the community. Abortive cases, sub-clinical cases, and carrier state individuals were found in outbreaks. The chronic phase of ME/CFS does not appear to be particularly infective. Some healthy patient-contacts show immune responses similar to patients' immune responses, suggesting exposure to the same antigen (a pathogen). The chronicity of symptoms and of immune system changes and the occurrence of secondary cases suggest persistence of a causal pathogen. Risk factors which predispose to developing ME/CFS are: a close family member with ME/CFS; inherited genetic factors; female gender; age; rest/activity; previous exposure to stress or toxins; various infectious diseases preceding the onset of ME/CFS; and occupational exposure of health care professionals. The hypothesis implies that ME/CFS patients should not donate blood or tissue and usual precautions should be taken when handling patients' blood and tissue. No known pathogen has been shown to cause ME/CFS. Confirmation of the hypothesis requires identification of a causal pathogen. Research should focus on a search for unknown and known pathogens. Finding a causal pathogen could assist with diagnosis; help find a biomarker; enable the development of anti-microbial treatments; suggest preventive measures; explain pathophysiological findings; and reassure patients about the validity of their symptoms.

  15. Efficacy of water treatment processes and endemic gastrointestinal illness - A multi-city study in Sweden.

    PubMed

    Tornevi, Andreas; Simonsson, Magnus; Forsberg, Bertil; Säve-Söderbergh, Melle; Toljander, Jonas

    2016-10-01

    Outbreaks of acute gastrointestinal illnesses (AGI) have been linked to insufficient drinking water treatment on numerous occasions in the industrialized world, but it is largely unknown to what extent public drinking water influences the endemic level of AGI. This paper aimed to examine endemic AGI and the relationship with pathogen elimination efficacy in public drinking water treatment processes. For this reason, time series data of all telephone calls to the Swedish National Healthcare Guide between November 2007 and February 2014 from twenty Swedish cities were obtained. Calls concerning vomiting, diarrhea or abdominal pain (AGI calls) were separated from other concerns (non-AGI calls). Information on which type of microbial barriers each drinking water treatment plant in these cities have been used were obtained, together with the barriers' theoretical pathogen log reduction efficacy. The total log reduction in the drinking water plants varied between 0.0 and 6.1 units for viruses, 0.0-14.6 units for bacteria and 0.0-7.3 units regarding protozoans. To achieve one general efficacy parameter for each plant, a weighted mean value of the log reductions (WLR) was calculated, with the weights based on how commonly these pathogen groups cause AGI. The WLR in the plants varied between 0.0 and 6.4 units. The effect of different pathogen elimination efficacy on levels of AGI calls relative non-AGI calls was evaluated in regression models, controlling for long term trends, population size, age distribution, and climatological area. Populations receiving drinking water produced with higher total log reduction was associated with a lower relative number of AGI calls. In overall, AGI calls decreased by 4% (OR = 0.96, CI: 0.96-0.97) for each unit increase in the WLR. The findings apply to both groundwater and surface water study sites, but are particularly evident among surface water sites during seasons when viruses are the main cause of AGI. This study proposes that the endemic level of gastroenteritis can indeed be reduced with more advanced treatment processes at many municipal drinking water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Endemic Scrub Typhus in South America.

    PubMed

    Weitzel, Thomas; Dittrich, Sabine; López, Javier; Phuklia, Weerawat; Martinez-Valdebenito, Constanza; Velásquez, Katia; Blacksell, Stuart D; Paris, Daniel H; Abarca, Katia

    2016-09-08

    Scrub typhus is a life-threatening zoonosis caused by Orientia tsutsugamushi organisms that are transmitted by the larvae of trombiculid mites. Endemic scrub typhus was originally thought to be confined to the so called "tsutsugamushi triangle" within the Asia-Pacific region. In 2006, however, two individual cases were detected in the Middle East and South America, which suggested that the pathogen was present farther afield. Here, we report three autochthonous cases of scrub typhus caused by O. tsutsugamushi acquired on Chiloé Island in southern Chile, which suggests the existence of an endemic focus in South America. (Funded by the Chilean Comisión Nacional de Investigación Científica y Tecnológica and the Wellcome Trust.).

  17. Changing epidemiology of melioidosis? A case of acute pulmonary melioidosis with fatal outcome imported from Brazil.

    PubMed Central

    Aardema, H.; Luijnenburg, E. M.; Salm, E. F.; Bijlmer, H. A.; Visser, C. E.; Van't Wout, J. W.

    2005-01-01

    Melioidosis is an infectious disease caused by Burkholderia pseudomallei. It is endemic in South East Asia and tropical regions of Northern Australia. Sporadic cases have been described elsewhere. In this article we present a case of acute pulmonary melioidosis with fatal outcome imported from Brazil. The most common pathogen causing severe community-acquired pneumonia in Brazil is Streptococcus pneumoniae. Other possible pathogens include Legionella spp., Mycoplasma pneumonia, Gram-negative rods and viruses. There are few reports of melioidosis in the Americas. This article represents the second known human case of melioidosis from Brazil. Recognition of melioidosis as a possible cause of severe pneumonia, even if a patient has not been travelling in a highly endemic area, is important because of the therapeutic consequences. The epidemiology of melioidosis will be reviewed. PMID:16181507

  18. Aquatic macroinvertebrate assemblages of Ghana, West Africa: understanding the ecology of a neglected tropical disease.

    PubMed

    Eric Benbow, M; Kimbirauskas, Ryan; McIntosh, Mollie D; Williamson, Heather; Quaye, Charles; Boakye, Daniel; Small, Pamela L C; Merritt, Richard W

    2014-06-01

    Buruli ulcer (BU) is an emerging, but neglected tropical disease, where there has been a reported association with disturbed aquatic habitats and proposed aquatic macroinvertebrate vectors such as biting Hemiptera. An initial step in understanding the potential role of macroinvertebrates in the ecology of BU is to better understand the entire community, not just one or two taxa, in relation to the pathogen, Mycobacterium ulcerans, at a large spatial scale. For the first time at a country-wide scale this research documents that M. ulcerans was frequently detected from environmental samples taken from BU endemic regions, but was not present in 30 waterbodies of a non-endemic region. There were significant differences in macroinvertebrate community structure and identified potential indicator taxa in relation to pathogen presence. These results suggest that specific macroinvertebrate taxa or functional metrics may potentially be used as aquatic biological indicators of M. ulcerans. Developing ecological indicators of this pathogen is a first step for understanding the disease ecology of BU and should assist future studies of transmission.

  19. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem.

    PubMed

    Russo, Thomas A; Johnson, James R

    2003-04-01

    Escherichia coli is probably the best-known bacterial species and one of the most frequently isolated organisms from clinical specimens. Despite this, underappreciation and misunderstandings exist among medical professionals and the lay public alike regarding E. coli as an extraintestinal pathogen. Underappreciated features include (i) the wide variety of extraintestinal infections E. coli can cause, (ii) the high incidence and associated morbidity, mortality, and costs of these diverse clinical syndromes, (iii) the pathogenic potential of different groups of E. coli strains for causing intestinal versus extraintestinal disease, and (iv) increasing antimicrobial resistance. In this era in which health news often sensationalizes uncommon infection syndromes or pathogens, the strains of E. coli that cause extraintestinal infection are an increasingly important endemic problem and underappreciated "killers". Billions of health care dollars, millions of work days, and hundreds of thousands of lives are lost each year to extraintestinal infections due to E. coli. New treatments and prevention measures will be needed for improved outcomes and a diminished disease burden.

  20. [Clinical features of four atypical pediatric cases of endemic typhus with pneumonia].

    PubMed

    Liu, Jin-rong; Xu, Bao-ping; Li, Shao-gang; Liu, Jun; Tian, Bao-lin; Zhao, Shun-ying

    2013-10-01

    To analyze clinical manifestations, treatment and prognosis of 4 cases with endemic typhus. The clinical data of four endemic typhus patients in prognosis were retrospectively analyzed. These four atypical cases of endemic typhus with pneumonia were treated in our department from October 2011 to March 2012. They were all male, with an age range of 15 months to 7 years. The four patients had long history, mild respiratory symptom and no improvement was found after treatment with cephalosporins. There were no evidences of bacterial, viral, or fungal infections and we thought they might have infection with other pathogen. Three were from rural areas. Routine blood tests, Weil-Felix reaction, blood smear (Giemsa staining) , and indirect immunofluorescence assay were performed. Blood smear and IFA tests showed evidences for endemic typhus. The clinical presentations were atypical, the patients had no headache, but all had fever, rash, and pneumonia of varying severity. None of the patients had a severe cough, but bronchial casts were observed in one case. Recurrent fever was reported in three cases. Physical examinations showed no eschars, but one patient had a subconjunctival hemorrhage, and one had skin scratches, cervical lymphadenopathy, pleural effusion, pericardial effusion, and cardiac dilatation. Two patients had remarkably increased peripheral blood leukocyte counts; both these patients also had high alanine aminotransferase (ALT) levels and one had a high C-reactive protein (CRP) level. Weil-Felix testing was negative or the OX19 titer was low. The peripheral blood smear (Giemsa stain) showed intracellular pathogens in all four cases. After combined therapy with doxycycline and macrolide antibiotics, all four patients recovered well. The endemic typhus children often come from rural areas. The clinical presentations were atypical, they usually have no headache, but have fever (often Periodic fever) , rash, and pneumonia of varying severity in these four cases. Combined therapy with doxycycline and macrolide antibiotics was effective in all four patients.

  1. The malaria parasite Plasmodium relictum in the endemic avifauna of eastern Cuba.

    PubMed

    Soares, Letícia; Marra, Peter; Gray, Lindsey; Ricklefs, Robert E

    2017-12-01

    Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty-nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba. © 2017 Society for Conservation Biology.

  2. Evolutionary history of Indian Ocean nycteribiid bat flies mirroring the ecology of their hosts.

    PubMed

    Tortosa, Pablo; Dsouli, Najla; Gomard, Yann; Ramasindrazana, Beza; Dick, Carl W; Goodman, Steven M

    2013-01-01

    Bats and their parasites are increasingly investigated for their role in maintenance and transmission of potentially emerging pathogens. The islands of the western Indian Ocean hold nearly 50 bat species, mostly endemic and taxonomically well studied. However, investigation of associated viral, bacterial, and external parasites has lagged behind. In the case of their ectoparasites, more detailed information should provide insights into the evolutionary history of their hosts, as well as pathogen cycles in these wild animals. Here we investigate species of Nycteribiidae, a family of obligate hematophagous wingless flies parasitizing bats. Using morphological and molecular approaches, we describe fly species diversity sampled on Madagascar and the Comoros for two cave-roosting bat genera with contrasting ecologies: Miniopterus and Rousettus. Within the sampling area, 11 endemic species of insect-feeding Miniopterus occur, two of which are common to Madagascar and Comoros, while fruit-consuming Rousettus are represented by one species endemic to each of these zones. Morphological and molecular characterization of flies reveals that nycteribiids associated with Miniopterus bats comprise three species largely shared by most host species. Flies of M. griveaudi, one of the two bats found on Madagascar and certain islands in the Comoros, belong to the same taxon, which accords with continued over-water population exchange of this bat species and the lack of inter-island genetic structuring. Flies parasitizing Rousettus belong to two distinct species, each associated with a single host species, again in accordance with the distribution of each endemic bat species.

  3. Genome sequence of "Candidatus Mycoplasma haemolamae" strain purdue, a red blood cell pathogen of alpacas (Vicugna pacos) and llamas (Lama glama).

    PubMed

    Guimaraes, Ana M S; Toth, Balazs; Santos, Andrea P; do Nascimento, Naíla C; Kritchevsky, Janice E; Messick, Joanne B

    2012-11-01

    We report the complete genome sequence of "Candidatus Mycoplasma haemolamae," an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation.

  4. Single-Tube Multiplexed Molecular Detection of Endemic Porcine Viruses in Combination with Background Screening for Transboundary Diseases

    PubMed Central

    Wernike, Kerstin; Hoffmann, Bernd

    2013-01-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  5. Biological control of cattle fever ticks

    USDA-ARS?s Scientific Manuscript database

    Cattle fever ticks (CFT) Rhipicephalus microplus and Rhipicephalus annulatus are invasive livestock pests that are endemic to Mexico and invasive along the Texas – Mexico border. Acaricide resistance, alternate wildlife hosts, and pathogenic landscape forming weeds present challenges for sustainable...

  6. Brucellosis

    USDA-ARS?s Scientific Manuscript database

    Brucella suisis an intracellular pathogen that causes reproductive losses in swine and zoonotic infections in people. Althought an eradication program based on serologic detection and whole-herd depopulation has nearly eradicated the disease in the United States, it is endemic in feral swine. The b...

  7. Forest pathology in Hawaii

    USGS Publications Warehouse

    Gardner, D.E.

    2003-01-01

    Native Hawaiian forests are characterised by a high degree of endemism, including pathogens as well as their hosts. With the exceptions of koa (Acacia koa Gray), possibly maile (Alyxia oliviformis Gaud.), and, in the past, sandalwood (Santalum spp.), forest species are of little commercial value. On the other hand, these forests are immensely important from a cultural, ecological, and evolutionary standpoint. Forest disease research was lacking during the mid-twentieth century, but increased markedly with the recognition of ohia (Metrosideros polymorpha Gaud.) decline in the 1970s. Because many pathogens are themselves endemic, or are assumed to be, having evolved with their hosts, research emphasis in natural areas is on understanding host-parasite interactions and evolutionary influences, rather than disease control. Aside from management of native forests, attempts at establishing a commercial forest industry have included importation of several species of pine, Araucaria, and Eucalyptus as timber crops, and of numerous ornamentals. Diseases of these species have been introduced with their hosts. The attacking of native species by introduced pathogens is problematic - for example, Armillaria mellea (Vahl ex Fr.) Que??l. on koa and mamane (Sophora chrysophylla (Salisb.) Seem.). Much work remains to be done in both native and commercial aspects of Hawaiian forest pathology.

  8. Genome Sequence of “Candidatus Mycoplasma haemolamae” Strain Purdue, a Red Blood Cell Pathogen of Alpacas (Vicugna pacos) and Llamas (Lama glama)

    PubMed Central

    Toth, Balazs; Santos, Andrea P.; do Nascimento, Naíla C.; Kritchevsky, Janice E.

    2012-01-01

    We report the complete genome sequence of “Candidatus Mycoplasma haemolamae,” an endemic red-cell pathogen of camelids. The single, circular chromosome has 756,845 bp, a 39.3% G+C content, and 925 coding sequences (CDSs). A great proportion (49.1%) of these CDSs are organized into paralogous gene families, which can now be further explored with regard to antigenic variation. PMID:23105057

  9. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes

    PubMed Central

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée

    2017-01-01

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti. The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells. PMID:28777313

  10. Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes.

    PubMed

    Le Coupanec, Alain; Tchankouo-Nguetcheu, Stéphane; Roux, Pascal; Khun, Huot; Huerre, Michel; Morales-Vargas, Ronald; Enguehard, Margot; Lavillette, Dimitri; Missé, Dorothée; Choumet, Valérie

    2017-08-04

    Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti . The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells.

  11. PREDICT: A next generation platform for near real-time prediction of cholera

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Aziz, S.; Akanda, A. S.; Alam, M.; Ahsan, G. U.; Huq, A.; Colwell, R. R.

    2017-12-01

    Data on disease prevalence and infectious pathogens is sparingly collected/available in region(s) where climatic variability and extreme natural events intersect with population vulnerability (such as lack of access to water and sanitation infrastructure). Therefore, traditional time series modeling approach of calibration and validation of a model is inadequate. Hence, prediction of diarrheal infections (such as cholera, Shigella etc) remain a challenge even though disease causing pathogens are strongly associated with modalities of regional climate and weather system. Here we present an algorithm that integrates satellite derived data on several hydroclimatic and ecological processes into a framework that can determine high resolution cholera risk on global scales. Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Using data from multiple satellites (AVHRR, TRMM, GPM, MODIS, VIIRS, GRACE), we will show examples from Haiti, Yemen, Nepal and several other regions where our algorithm has been successful in capturing risk of outbreak of infection in human population. A spatial model validation algorithm will also be presented that has capabilities to self-calibrate as new hydroclimatic and disease data become available.

  12. Major emerging vector-borne zoonotic diseases of public health importance in Canada

    PubMed Central

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-01-01

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response. PMID:26954882

  13. Major emerging vector-borne zoonotic diseases of public health importance in Canada.

    PubMed

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-06-10

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.

  14. Peripatric speciation of an endemic species driven by Pleistocene climate change: The case of the Mexican prairie dog (Cynomys mexicanus).

    PubMed

    Castellanos-Morales, Gabriela; Gámez, Niza; Castillo-Gámez, Reyna A; Eguiarte, Luis E

    2016-01-01

    The hypothesis that endemic species could have originated by the isolation and divergence of peripheral populations of widespread species can be tested through the use of ecological niche models (ENMs) and statistical phylogeography. The joint use of these tools provides complementary perspectives on historical dynamics and allows testing hypotheses regarding the origin of endemic taxa. We used this approach to infer the historical processes that have influenced the origin of a species endemic to the Mexican Plateau (Cynomys mexicanus) and its divergence from a widespread ancestor (Cynomys ludovicianus), and to test whether this endemic species originated through peripatric speciation. We obtained genetic data for 295 individuals for two species of black-tailed prairie dogs (C. ludovicianus and C. mexicanus). Genetic data consisted of mitochondrial DNA sequences (cytochrome b and control region), and 10 nuclear microsatellite loci. We estimated dates of divergence between species and between lineages within each species and performed ecological niche modelling (Present, Last Glacial Maximum and Last Interglacial) to determine changes in the distribution range of both species during the Pleistocene. Finally, we used Bayesian inference methods (DIYABC) to test different hypotheses regarding the divergence and demographic history of these species. Data supported the hypothesis of the origin of C. mexicanus from a peripheral population isolated during the Pleistocene [∼230,000 years ago (0.1-0.43 Ma 95% HPD)], with a Pleistocene-Holocene (∼9,000-11,000 years ago) population expansion (∼10-fold increase in population size). We identified the presence of two possible refugia in the southern area of the distribution range of C. ludovicianus and another, consistent with the distribution range of C. mexicanus. Our analyses suggest that Pleistocene climate change had a strong impact in the distribution of these species, promoting peripatric speciation for the origin of C. mexicanus and lineage divergence within C. ludovicianus. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Reproduction and pathogenicity of endemic populations of Rotylenchulus reniformis on cotton

    USDA-ARS?s Scientific Manuscript database

    The reniform nematode (Rotylenchulus reniformis) is the predominant parasitic nematode of upland cotton (Gossypium hirsutum) in the southern United States. Little is known about variability in geographic isolates of reniform nematode. In order to evaluate the comparative reproduction and pathogenici...

  16. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau

    PubMed Central

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P.; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-01-01

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper. PMID:25977142

  17. Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population.

    PubMed

    Lau, Audrey O T; Cereceres, Karla; Palmer, Guy H; Fretwell, Debbie L; Pedroni, Monica J; Mosqueda, Juan; McElwain, Terry F

    2010-08-01

    Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.

  18. Burkholderia thailandensis: Genetic Manipulation.

    PubMed

    Garcia, Erin C

    2017-05-16

    Burkholderia thailandensis is a Gram-negative bacterium endemic to Southeast Asian and northern Australian soils. It is non-pathogenic; therefore, it is commonly used as a model organism for the related human pathogens Burkholderia mallei and Burkholderia pseudomallei. B. thailandensis is relatively easily genetically manipulated and a variety of robust genetic tools can be used in this organism. This unit describes protocols for conjugation, natural transformation, mini-Tn7 insertion, and allelic exchange in B. thailandensis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Tracking the establishment of local endemic populations of an emergent enteric pathogen

    PubMed Central

    Holt, Kathryn E.; Thieu Nga, Tran Vu; Thanh, Duy Pham; Vinh, Ha; Kim, Dong Wook; Vu Tra, My Phan; Campbell, James I.; Hoang, Nguyen Van Minh; Vinh, Nguyen Thanh; Minh, Pham Van; Thuy, Cao Thu; Nga, Tran Thi Thu; Thompson, Corinne; Dung, Tran Thi Ngoc; Nhu, Nguyen Thi Khanh; Vinh, Phat Voong; Tuyet, Pham Thi Ngoc; Phuc, Hoang Le; Lien, Nguyen Thi Nam; Phu, Bui Duc; Ai, Nguyen Thi Thuy; Tien, Nguyen Manh; Dong, Nguyen; Parry, Christopher M.; Hien, Tran Tinh; Farrar, Jeremy J.; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.; Baker, Stephen

    2013-01-01

    Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population. PMID:24082120

  20. Endemic pathogens may interfere with HLB

    USDA-ARS?s Scientific Manuscript database

    Since the first citrus tree was confirmed positive for Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB) in 2012, trees continue to be found in urban areas of southern California that are also positive for CLas, demonstrating a slow spread of this disease. However, C...

  1. Recent Advances in Our Understanding of the Environmental, Epidemiological, Immunological, and Clinical Dimensions of Coccidioidomycosis

    PubMed Central

    Nguyen, Chinh; Barker, Bridget Marie; Hoover, Susan; Nix, David E.; Ampel, Neil M.; Frelinger, Jeffrey A.; Orbach, Marc J.

    2013-01-01

    SUMMARY Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine. PMID:23824371

  2. Situated knowledge of pathogenic landscapes in Ghana: Understanding the emergence of Buruli ulcer through qualitative analysis.

    PubMed

    Tschakert, Petra; Ricciardi, Vincent; Smithwick, Erica; Machado, Mario; Ferring, David; Hausermann, Heidi; Bug, Leah

    2016-02-01

    Successfully addressing neglected tropical diseases requires nuanced understandings of pathogenic landscapes that incorporate situated, contexualized community knowledge. In the case of Buruli ulcer (BU), the role of social science is vital to investigate complex human-environment interactions and navigate different ways of knowing. We analyze a set of qualitative data from our interdisciplinary project on BU in Ghana, drawing from participatory mapping, focus group discussions, semi-structured interviews, and open-ended survey questions to explore how people in endemic and non-endemic areas see themselves embedded in changing environmental and social landscapes. We pay particular attention to landscape disturbance through logging and small-scale alluvial gold mining. The results from our participatory research underscore the holistic nature of BU emergence in landscapes, encapsulated in partial and incomplete local descriptions, the relevance of collective learning to distill complexity, and the potential of rich qualitative data to inform quantitative landscape-disease models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An investigation of Bartonella spp., Rickettsia typhi, and Seoul hantavirus in rats (Rattus spp.) from an inner-city neighborhood of Vancouver, Canada: is pathogen presence a reflection of global and local rat population structure?

    PubMed

    Himsworth, Chelsea G; Bai, Ying; Kosoy, Michael Y; Wood, Heidi; DiBernardo, Antonia; Lindsay, Robbin; Bidulka, Julie; Tang, Patrick; Jardine, Claire; Patrick, David

    2015-01-01

    Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are reservoirs for variety of zoonotic pathogens. Many of these pathogens, including Rickettsia typhi, Bartonella spp., and Seoul hantavirus (SEOV), are thought to be endemic in rat populations worldwide; however, past field research has found these organisms to be absent in certain rat populations. Rats (Rattus spp.) from an inner city neighborhood of Vancouver, Canada, were tested for exposure to and/or infection with SEOV and R. typhi (using serology and PCR), as well as Bartonella spp. (using culture and sequencing). Approximately 25% of 404 rats tested were infected with Bartonella tribocorum, which demonstrated significant geographic clustering within the study area. Infection was associated with both season and sexual maturity. Seroreactivity against R. typhi and SEOV was observed in 0.36% and 1.45% of 553 rats tested, respectively, although PCR screening results for these pathogens were negative, suggesting that they are not endemic in the study population. Overall, these results suggest that the geographic distribution of rat-associated zoonoses, including R. typhi, SEOV, and Bartonella spp., is less ubiquitous than previously appreciated, and is likely dependent on patterns of dispersion and establishment of the rat reservoir host. Further study on global and local Rattus spp. population structures may help to elucidate the ecology of zoonotic organisms in these species.

  5. Speciation and the Latitudinal Diversity Gradient: Insights from the Global Distribution of Endemic Fish.

    PubMed

    Hanly, Patrick J; Mittelbach, Gary G; Schemske, Douglas W

    2017-06-01

    The nearly universal pattern that species richness increases from the poles to the equator (the latitudinal diversity gradient [LDG]) has been of intense interest since its discovery by early natural-history explorers. Among the many hypotheses proposed to explain the LDG, latitudinal variation in (1) productivity, (2) time and area available for diversification, and (3) speciation and/or extinction rates have recently received the most attention. Because tropical regions are older and were formerly more widespread, these factors are often intertwined, hampering efforts to distinguish their relative contributions to the LDG. Here we examine the global distribution of endemic lake fishes to determine how lake age, area, and latitude each affect the probability of speciation and the extent of diversification occurring within a lake. We analyzed the distribution of endemic fishes worldwide (1,933 species and subspecies from 47 families in 2,746 lakes) and find that the probability of a lake containing an endemic species and the total number of endemics per lake increase with lake age and area and decrease with latitude. Moreover, the geographic locations of endemics in 34 of 41 families are found at lower latitudes than those of nonendemics. We propose that the greater diversification of fish at low latitudes may be driven in part by ecological opportunities promoted by tropical climates and by the coevolution of species interactions.

  6. MICROBES IN DRINKING WATER: RECENT EPIDEMIOLOGICAL RESEARCH TO ASSESS WATERBORNE RISKS

    EPA Science Inventory

    The waterborne transmission of enteric pathogens to humans causes illnesses that occur as an epidemic (a temporal excess of cases over some background level of disease), often called an outbreak, or as endemic disease (a background of ongoing disease prevalence that can be consta...

  7. Toscana meningoencephalitis: a comparison to other viral central nervous system infections

    PubMed Central

    Jaijakul, Siraya; Arias, Cesar A.; Hossein, Monir; Arduino, Roberto C.; Wootton, Susan H.; Hasbun, Rodrigo

    2012-01-01

    Background Toscana virus (TOSV) is an emerging pathogen causing central nervous system (CNS) infection in Mediterranean countries, mostly during summer season. Objectives To compare the clinical and laboratory characteristics of Toscana CNS infections to the most common viral pathogens seen in the United States. Study Design We performed a case series of patients with 41 TOSV infection and compared the clinical characteristics, laboratory findings, imaging results and clinical outcomes to the most commonly recognized viral causes of meningoencephalitis in the US (enterovirus (n=60), herpes simplex virus (n=48), and west nile virus (n=30) from our multi-center study of patients with aseptic meningoencephalitis syndromes in the Greater Houston area. Results TOSV infection occurs in different age groups compared to enterovirus, HSV, and WNV. All infections most frequently occur during summer-fall except HSV which distributes throughout the year. All patients with TOSV had history of travel to endemic areas. There are differences in clinical presentation and CSF findings comparing TOSV and enterovirus, HSV, and WNV infection. There are no significant differences in outcomes of each infection except WNV meningoencephalitis which had a poorer outcome compared to TOSV infection. Conclusions TOSV is an emerging pathogen that should be considered in the differential diagnosis of patients with CNS infections and a recent travel history to endemic areas. PMID:22867730

  8. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal.

    PubMed

    Axenov-Gribanov, Denis V; Bedulina, Daria S; Shatilina, Zhanna M; Lubyaga, Yulia A; Vereshchagina, Kseniya P; Timofeyev, Maxim A

    2014-01-01

    Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge. © 2013.

  9. Pathogens associated with native and exotic trout populations in Shenandoah National Park and the relationships to fish stocking practices

    USGS Publications Warehouse

    Panek, Frank M.; Atkinson, James; Coll, John

    2008-01-01

    Restrictive fish stocking policies in National Parks were developed as early as 1936 in order to preserve native fish assemblages and historic genetic diversity. Despite recent efforts to understand the effects of non-native or exotic fish introductions, park managers have limited information regarding the effects of these introductions on native fish communities. Shenandoah National Park was established in 1936 and brook trout (Salvelinus fontinalis) restoration within selected streams in the park began in 1937 in collaboration with the Virginia Department of Game and Inland Fisheries (VDGIF). An analysis of tissue samples from brook, brown (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) from 29 streams within the park from 1998–2002 revealed the presence of Renibacterium salmoninarum, Yersinia ruckeri, and infectious pancreatic necrosis virus (IPNv). In order to investigate the relationships of the occurrence of fish pathogens with stocking histories we classified the streams into three categories: 1) streams with no record of stocking, 2) streams that are known to have been stocked historically, and 3) streams that were historically stocked within the park and continue to be stocked downstream of the park boundary. The occurrences of pathogens were summarized relative to this stocking history. Renibacterium salmoninarum, the causative agent of bacterial kidney disease, was the most prevalent pathogen found, occurring in all three species and stream stocking categories, and appears to be endemic to the park. Two other pathogens, Yersinia ruckeri and infectious pancreatic necrosis virus were also described from brook trout populations within the park. IPNv was only found in brook trout populations in streams with prior stocking histories. Yersinia ruckeri was only found in brook trout in steams that have never been stocked and like R. salmoninarum, is likely endemic.

  10. Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.

    PubMed

    Boyce, Kylie J; Andrianopoulos, Alex

    2013-02-01

    Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.

  11. Avian Influenza: A growing threat to Africa

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  12. Chemical ecology of Xyleborus glabratus: Attractants for detection and monitoring

    USDA-ARS?s Scientific Manuscript database

    The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is endemic to Southeast Asia, but over the past decade it has become a serious invasive pest of both agriculture and forest ecosystems in the USA. Females of X. glabratus are the primary vector of a fungal pathogen (Raffaelea lauricola) that...

  13. Practical aspects of vaccination of poultry against avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  14. Molecular epidemiology and virulence assessment of Aspergillus fumigatus isolates from white stork chicks and their environment.

    PubMed

    Olias, Philipp; Gruber, Achim D; Hafez, Hafez M; Lierz, Michael; Slesiona, Silvia; Brock, Matthias; Jacobsen, Ilse D

    2011-03-24

    Aspergillus fumigatus is a common pathogen in poultry and captive wild birds and an emerging opportunistic fungal pathogen in immunocompromised humans. Although invasive aspergillosis is frequently reported in free-ranging wild birds, the incidence and epidemiology of the disease in a natural setting is unknown. We recently reported endemic outbreaks of invasive aspergillosis at white stork nesting sites close to human habitation in Germany with significant subsequent breeding losses. Therefore, we hypothesized that A. fumigatus strains with higher virulence in birds may have evolved in this environment and performed the first epidemiological analysis of invasive aspergillosis in free-ranging wild birds. Sixty-one clinical and environmental A. fumigatus isolates from six affected nesting sites were genotyped by microsatellite analysis using the STRAf-assay. The isolates showed a remarkable high genomic diversity and, contrary to the initial hypothesis, clinical and environmental isolates did not cluster significantly. Interestingly, storks were infected with two to four different genotypes and in most cases both mating types MAT-1.1 and MAT-1.2 were present within the same specimen. The majority of selected clinical and environmental strains exhibited similar virulence in an in vivo infection model using embryonated chicken eggs. Noteworthy, virulence was not associated with one distinct fungal mating type. These results further support the assumption that the majority of A. fumigatus strains have the potential to cause disease in susceptible hosts. In white storks, immaturity of the immune system during the first three weeks of age may enhance susceptibility to invasive aspergillosis. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting.

    PubMed

    Fukasawa, Keita; Miyashita, Tadashi; Hashimoto, Takuma; Tatara, Masaya; Abe, Shintaro

    2013-12-22

    Invasive species and anthropogenic habitat alteration are major drivers of biodiversity loss. When multiple invasive species occupy different trophic levels, removing an invasive predator might cause unexpected outcomes owing to complex interactions among native and non-native prey. Moreover, external factors such as habitat alteration and resource availability can affect such dynamics. We hypothesized that native and non-native prey respond differently to an invasive predator, habitat alteration and bottom-up effects. To test the hypothesis, we used Bayesian state-space modelling to analyse 8-year data on the spatio-temporal patterns of two endemic rat species and the non-native black rat in response to the continual removal of the invasive small Indian mongoose on Amami Island, Japan. Despite low reproductive potentials, the endemic rats recovered better after mongoose removal than did the black rat. The endemic species appeared to be vulnerable to predation by mongooses, whose eradication increased the abundances of the endemic rats, but not of the black rat. Habitat alteration increased the black rat's carrying capacity, but decreased those of the endemic species. We propose that spatio-temporal monitoring data from eradication programmes will clarify the underlying ecological impacts of land-use change and invasive species, and will be useful for future habitat management.

  16. Chronic kidney disease of uncertain etiology in Sri Lanka: Are leptospirosis and Hantaviral infection likely causes?

    PubMed

    Gamage, Chandika Damesh; Sarathkumara, Yomani Dilukshi

    2016-06-01

    Chronic kidney disease of uncertain etiology (CKDu) has been a severe burden and a public health crisis in Sri Lanka over the past two decades. Many studies have established hypotheses to identify potential risk factors although causative agents, risk factors and etiology of this disease are still uncertain. Several studies have postulated that fungal and bacterial nephrotoxins are a possible etiological factor; however, the precise link between hypothesized risk factors and the pathogenesis of chronic kidney disease has yet to be proven in prior studies. Leptospirosis and Hantavirus infections are important zoonotic diseases that are naturally maintained and transmitted via infected rodent populations and which present similar clinical and epidemiological features. Both infections are known to be a cause of acute kidney damage that can proceed into chronic renal failure. Several studies have reported presence of both infections in Sri Lanka. Therefore, we hypothesized that pathogenic Leptospira or Hantavirus are possible causative agents of acute kidney damage which eventually progresses to chronic kidney disease in Sri Lanka. The proposed hypothesis will be evaluated by means of an observational study design. Past infection will be assessed by a cross-sectional study to detect the presence of IgG antibodies with further confirmatory testing among chronic kidney disease patients and individuals from the community in selected endemic areas compared to low prevalence areas. Identification of possible risk factors for these infections will be followed by a case-control study and causality will be further determined with a cohort study. If the current hypothesis is true, affected communities will be subjected for medical interventions related to the disease for patient management while considering supportive therapies. Furthermore and possibly enhance their preventive and control measures to improve vector control to decrease the risk of infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil.

    PubMed

    Valdivia, Hugo O; Almeida, Laila V; Roatt, Bruno M; Reis-Cunha, João Luís; Pereira, Agnes Antônia Sampaio; Gontijo, Celia; Fujiwara, Ricardo Toshio; Reis, Alexandre B; Sanders, Mandy J; Cotton, James A; Bartholomeu, Daniella C

    2017-01-16

    Leishmaniasis is a highly diverse group of diseases caused by kinetoplastid of the genus Leishmania. These parasites are taxonomically diverse, with human pathogenic species separated into two subgenera according to their development site inside the alimentary tract of the sand fly insect vector. The disease encompasses a variable spectrum of clinical manifestations with tegumentary or visceral symptoms. Among the causative species in Brazil, Leishmania (Leishmania) amazonensis is an important etiological agent of human cutaneous leishmaniasis that accounts for more than 8% of all cases in endemic regions. L. (L.) amazonensis is generally found in the north and northeast regions of Brazil. Here, we report the first isolation of L. (L.) amazonensis from dogs with clinical manifestations of visceral leishmaniasis in Governador Valadares, an endemic focus in the southeastern Brazilian State of Minas Gerais where L. (L.) infantum is also endemic. These isolates were characterized in terms of SNPs, chromosome and gene copy number variations, confirming that they are closely related to a previously sequenced isolate obtained in 1973 from the typical Northern range of this species. The results presented in this article will increase our knowledge of L. (L.) amazonensis-specific adaptations to infection, parasite survival and the transmission of this Amazonian species in a new endemic area of Brazil.

  18. Treatment of blood with a pathogen reduction technology using ultraviolet light and riboflavin inactivates Ebola virus in vitro.

    PubMed

    Cap, Andrew P; Pidcoke, Heather F; Keil, Shawn D; Staples, Hilary M; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A; Frazer-Abel, Ashley; Taylor, Audra L; Gonzales, Richard; Patterson, Jean L; Goodrich, Raymond P

    2016-03-01

    Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated. © 2016 AABB.

  19. Treatment of blood with a pathogen reduction technology using UV light and riboflavin inactivates Ebola virus in vitro

    PubMed Central

    Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.

    2018-01-01

    BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363

  20. Molecular identification of tick-borne pathogens in asymptomatic individuals with human immunodeficiency virus type 1 (HIV-1) infection: a retrospective study.

    PubMed

    Welc-Falęciak, Renata; Kowalska, Justyna D; Bednarska, Małgorzata; Szatan, Magdalena; Pawełczyk, Agnieszka

    2018-05-18

    The studies on the occurrence and diversity of tick-borne infections in HIV-infected individuals have been few, and the subject has been relatively neglected when compared with other common infections associated with HIV. In HIV-positive patients in whom a serological diagnostics is complicated due to reduced positive predictive value, a method where the microorganism is detected directly is of great value. Therefore, we performed a molecular study to ascertain the prevalence and incidence of tick-borne infections in HIV-infected persons in Poland, an endemic area for Ixodes ricinus ticks. Genomic DNA was isolated from whole blood of tested patients. Detection of tick-borne pathogens was performed by amplification and sequencing of different loci. Molecular and phylogenetic analyses of obtained nucleotide sequences were performed. Serum samples were analyzed for antibodies against tick-borne pathogens by using commercial tests in all patients. Among 148 studied blood samples from HIV-infected patients, two cases (1.4%) of infection with tick-borne pathogen were reported. No symptoms of tick-borne infection were observed in these cases. In one case a patient was infected with Anaplasma phagocytophilum - the agent of human granulocytic anaplasmosis (HGA) and in the other with Borrelia garinii. Our study revealed the first case of HIV positive patient infected with A. phagocytophilum. Asymptomatic tick-borne infection can occur in HIV-positive patients. The detailed history of tick bites, especially in endemic tick areas, should be considered as part of anamnesis in routine clinical care of HIV-positive patients.

  1. Detection of a Potential New Bartonella Species “Candidatus Bartonella rondoniensis” in Human Biting Kissing Bugs (Reduviidae; Triatominae)

    PubMed Central

    Laroche, Maureen; Berenger, Jean-Michel; Mediannikov, Oleg; Raoult, Didier; Parola, Philippe

    2017-01-01

    Background Among the Reduviidae family, triatomines are giant blood-sucking bugs. They are well known in Central and South America where they transmit Trypanosoma cruzi to mammals, including humans, through their feces. This parasitic protozoan is the causative agent of Chagas disease, a major public health issue in endemic areas. Because of the medical and economic impact of Chagas disease, the presence of other arthropod-borne pathogens in triatomines was rarely investigated. Methodology/Principal findings In this study, seven triatomines species involved in the transmission of T. cruzi were molecularly screened for the presence of known pathogens generally associated with arthropods, such as Rickettsia, Bartonella, Anaplasmataceae, Borrelia species and Coxiella burnetii. Of all included triatomine species, only Eratyrus mucronatus specimens tested positive for Bartonella species for 56% of tested samples. A new genotype of Bartonella spp. was detected in 13/23 Eratyrus mucronatus specimens, an important vector of T. cruzi to humans. This bacterium was further characterized by sequencing fragments of the ftsZ, gltA and rpoB genes. Depending on the targeted gene, this agent shares 84% to 91% of identity with B. bacilliformis, the agent of Carrion’s disease, a deadly sandfly-borne infectious disease endemic in South America. It is also closely related to animal pathogens such as B. bovis and B. chomelii. Conclusions As E. mucronatus is an invasive species that occasionally feeds on humans, the presence of potentially pathogenic Bartonella-infected bugs could present another risk for human health, along with the T. cruzi issue. PMID:28095503

  2. Collateral damage: fire and Phytophthora ramorum interact to increase mortality in coast redwood

    Treesearch

    Margaret R. Metz; J. Morgan Varner; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Invading species can alter ecosystems by impacting the frequency, severity, and consequences of endemic disturbance regimes (Mack and D'Antonio 1998). Phytophthora ramorum, the causal agent of the emergent disease sudden oak death (SOD), is an invasive pathogen causing widespread tree mortality in coastal forests of California and Oregon. In...

  3. Coxiella burnetii, a hidden pathogen in interstitial lung disease?

    PubMed

    Melenotte, Cléa; Izaaryene, Jalal-Jean; Gomez, Carine; Delord, Marion; Prudent, Elsa; Lepidi, Hubert; Mediannikov, Oleg; Lacoste, Marion; Djossou, Felix; Mania, Alexandre; Bernard, Noelle; Huchot, Eric; Mège, Jean-Louis; Brégeon, Fabienne; Raoult, Didier

    2018-04-06

    We report 7 patients with interstitial lung disease (ILD) on CT-scan reviewing. C. burnetii was diagnosed in situ in one lung biopsy performed. All patients had advanced interstitial lung fibrosis and persistent C. burnetii infection. Q fever may be a cofactor of ILD, especially in endemic areas.

  4. Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by the bacterial pathogen Xanthomonas citri subsp. citri, Xcc) can cause severe damage to citrus. It is endemic in Florida, and occurs in other citrus growing regions. The bacterium is dispersed predominantly in rain splash. To simulate dispersal in splash, and to investigate t...

  5. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    ERIC Educational Resources Information Center

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  6. H9N2 avian influenza transmission and antigenicity

    USDA-ARS?s Scientific Manuscript database

    Low pathogenic H9N2 avian influenza has become endemic in parts of Asia, the Middle East and North Africa causing respiratory disease with occasional mortality. The use of vaccination has become common to try and control the clinical disease, but vaccination has not been shown to be an effective er...

  7. Genetic selection in coastal Douglas-fir for tolerance to Swiss needle cast disease

    Treesearch

    Keith J.S. Jayawickrama; David Shaw; Terrance Z. Ye

    2012-01-01

    Swiss needle cast (SNC) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), caused by the ascomycete fungus Phaeocryptopus gaeumannii, is associated with significant volume growth losses (20 to 50 percent) along the Oregon Coast. Although the pathogen is endemic, disease symptoms have intensified in coastal forests of Oregon...

  8. A Glycoprotein Subunit Vaccine Elicits a Strong Rift Valley Fever Virus Neutralizing Antibody Response in Sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the...

  9. Working with biolevel 3 agents that interface across human, livestock and wildlife boundaries

    USDA-ARS?s Scientific Manuscript database

    Brucellosis and tuberculosis are examples of zoonotic pathogens of economic importance that are endemic in domestic livestock and wildlife hosts in the U.S. Billions of dollars have been invested in regulatory programs over numerous decades in an effort to protect public health. In this paper, we d...

  10. Endemic Asian Chytrid Strain Infection in Threatened and Endemic Anurans of the Northern Western Ghats, India

    PubMed Central

    Dahanukar, Neelesh; Krutha, Keerthi; Paingankar, Mandar S.; Padhye, Anand D.; Modak, Nikhil; Molur, Sanjay

    2013-01-01

    The Western Ghats of India harbors a rich diversity of amphibians with more than 77% species endemic to this region. At least 42% of the endemic species are threatened due to several anthropogenic stressors. However, information on amphibian diseases and their impacts on amphibian populations in this region are scarce. We report the occurrence of Batrachochytridium dendrobatidis (Bd), an epidermal aquatic fungal pathogen that causes chytridiomycosis in amphibians, from the Western Ghats. In the current study we detected the occurrence of a native Asian Bd strain from three endemic and threatened species of anurans, Bombay Night Frog Nyctibatrachus humayuni, Leith's Leaping Frog Indirana leithii and Bombay Bubble Nest Frog Raorchestes bombayensis, for the first time from the northern Western Ghats of India based on diagnostic nested PCR, quantitative PCR, DNA sequencing and histopathology. While, the Bd infected I. leithii and R. bombayensis did not show any external symptoms, N. humayuni showed lesions on the skin, browning of skin and sloughing. Sequencing of Bd 5.8S ribosomal RNA gene, and the ITS1 and ITS2 regions, revealed that the current Bd strain is related to a haplotype endemic to Asia. Our findings confirm the presence of Bd in northern Western Ghats and the affected amphibians may or may not show detectable clinical symptoms. We suggest that the significance of diseases as potential threat to amphibian populations of the Western Ghats needs to be highlighted from the conservation point of view. PMID:24147018

  11. Vacated niches, competitive release and the community ecology of pathogen eradication

    PubMed Central

    Lloyd-Smith, James O.

    2013-01-01

    A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a ‘vacated niche’, which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy. PMID:23798698

  12. Superficial fungal infections.

    PubMed

    Schwartz, Robert A

    Superficial fungal infections arise from a pathogen that is restricted to the stratum corneum, with little or no tissue reaction. In this Seminar, three types of infection will be covered: tinea versicolor, piedra, and tinea nigra. Tinea versicolor is common worldwide and is caused by Malassezia spp, which are human saprophytes that sometimes switch from yeast to pathogenic mycelial form. Malassezia furfur, Malassezia globosa, and Malassezia sympodialis are most closely linked to tinea versicolor. White and black piedra are both common in tropical regions of the world; white piedra is also endemic in temperate climates. Black piedra is caused by Piedraia hortae; white piedra is due to pathogenic species of the Trichosporon genus. Tinea nigra is also common in tropical areas and has been confused with melanoma.

  13. Coinfection by the tick-borne pathogens Babesia microti and Borrelia burgdorferi: ecological, epidemiological and clinical consequences

    PubMed Central

    Diuk-Wasser, Maria A.; Vannier, Edouard

    2015-01-01

    Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These integrative studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity will help guide the design of effective curative and prevention strategies. PMID:26613664

  14. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland: Part 1: A population study on sled dogs during the racing season.

    PubMed

    Bajer, Anna; Mierzejewska, Ewa J; Rodo, Anna; Bednarska, Malgorzata; Kowalec, Maciej; Welc-Falęciak, Renata

    2014-05-28

    The achievements of sled dogs in competitions depend both on their training and on their health. Vector-borne infections may lead to anaemia, affect joints or heart muscle or even cause death. Between December 2009 and October 2010, one hundred and twenty six individual blood samples were collected from 26 sled dog kennels situated in different regions of Poland. The majority of samples were taken during the racing season (winter 2009/10). The prevalences of 3 vector-borne infections- including 2 'old pathogens' Anaplasma phagocytophilum and Babesia canis, and 'new pathogen' Hepatozoon canis-were estimated in sled dogs using PCR and nested PCR. Additionally, 25 serum samples originating from a subset of 3 kennels situated in a tick-borne encephalitis (TBE) endemic area (Mazowiecki region), were tested for antibodies against the tick-borne encephalitis virus (TBEV). Because of the recently reported occurrence of Dirofilaria repens in Central Poland and that of fatal cases of unknown aetiology in two of the kennels, blood samples collected from dogs at these kennels in 2010 and in February-May 2013 and from two unaffected kennels were checked for evidence of presence of this parasite. Babesia canis DNA was detected in 11 sled dogs (4 with clinical babesiosis, 7 asymptomatic; 8.7%) inhabiting mainly endemic regions of Poland (9/11 cases). Three serum samples originating from one location tested positive for TBEV antibodies (total seroprevalence: 3/25=12%, local seroprevalence: 3/12=25%). The risk of TBEV infection was associated with previous B. canis infections. Dirofilaria repens DNA was detected in 15 dogs (44%). Prevalence was especially high in two sled dog kennels situated near Grodzisk Mazowiecki (50-57%). No blood samples tested positive for A. phagocytophilum or H. canis DNA. The present study has established that the prevalence of vector-borne pathogens in working sled dogs is significant in the endemic regions and has justified the important role of surveillance of reservoir hosts in the epidemiology of TBE. Our results emphasize the need for regular monitoring for the presence of D. repens. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania.

    PubMed

    Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M

    2015-09-01

    Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Molecular evidence on the occurrence of co-infection with Pichia guilliermondii and Wuchereria bancrofti in two filarial endemic districts of India

    PubMed Central

    2014-01-01

    Background Lymphatic filariasis (LF), a vector-borne parasitic disease, is endemic in several parts of India and mostly affects the poor or those with a low-income. The disease results in huge numbers of morbidities, disabilities, and deaths every year. Association of co-infection with other pathogens makes the condition more severe. Although co-infection is becoming a growing area of research, it is yet to emerge as a frontier research topic in filarial research specifically. This study reports the occurrence of a fungal infection in a large number of patients suffering from bancroftian filariasis in two districts of West Bengal, India. Methods Nocturnal blood samples from filarial patients containing parasites and fungus were initially co-cultured, and further the fungus was isolated and characterized. Molecular identification of the isolate was carried out by PCR-based selective amplification and sequencing of highly-conserved D1/D2 region of 26S rDNA, whereas pathogenicity was determined by amplification of the RPS0 gene. A phylogenetic tree was constructed to study the relationship between the isolate and common pathogenic yeasts. The isolate was studied for antibiotic sensitivity, whereas morphological characterization was performed by microscopic techniques. Results The isolate was identified as Pichia guilliermondii and this fungus was found to exist in co-infection with Wuchereria bancrofti in filarial patients. The fungus showed resistance to azole antifungals, griseofulvin, and, amphotericin B, whereas significant susceptibility was evident in cases of nystatin and cycloheximide. A total of 197 out of 222 patients showed this co-infection. Conclusion This study revealed, for the first time, that P. guilliermondii exists as a co-infection in microfilaraemic individuals living in a filarial endemic zone. The findings are important and have relevance to human health, especially for filarial patients. PMID:24708881

  17. Hantavirus Reservoir Hosts Associated with Peridomestic Habitats in Argentina

    PubMed Central

    Pini, Noemí; Bolpe, Jorge; Levis, Silvana; Mills, James; Segura, Elsa; Guthmann, Nadia; Cantoni, Gustavo; Becker, José; Fonollat, Ana; Ripoll, Carlos; Bortman, Marcelo; Benedetti, Rosendo; Sabattini, Marta; Enria, Delia

    1999-01-01

    Five species of sigmodontine rodents have been identified in Argentina as the putative reservoirs of six circulating hantavirus genotypes. Two species of Oligoryzomys are associated with the genotypes causing hantavirus pulmonary syndrome, Oligoryzomys flavescens for Lechiguanas and O. longicaudatus for Andes and Oran genotypes. Reports of human cases of hantavirus pulmonary syndrome prompted rodent trapping (2,299 rodents of 32 species during 27,780 trap nights) at potential exposure sites in three disease-endemic areas. Antibody reactive to Sin Nombre virus was found in six species, including the known hantavirus reservoir species. Risk for peridomestic exposure to host species that carry recognized human pathogens was high in all three major disease-endemic areas. PMID:10603213

  18. Experimental evidence of a pathogen invasion threshold

    PubMed Central

    Krkošek, Martin

    2018-01-01

    Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876

  19. Phylogeographic analysis of the true lemurs (genus Eulemur) underlines the role of river catchments for the evolution of micro-endemism in Madagascar.

    PubMed

    Markolf, Matthias; Kappeler, Peter M

    2013-11-14

    Due to its remarkable species diversity and micro-endemism, Madagascar has recently been suggested to serve as a biogeographic model region. However, hypothesis-based tests of various diversification mechanisms that have been proposed for the evolution of the island's micro-endemic lineages are still limited. Here, we test the fit of several diversification hypotheses with new data on the broadly distributed genus Eulemur using coalescent-based phylogeographic analyses. Time-calibrated species tree analyses and population genetic clustering resolved the previously polytomic species relationships among eulemurs. The most recent common ancestor of eulemurs was estimated to have lived about 4.45 million years ago (mya). Divergence date estimates furthermore suggested a very recent diversification among the members of the "brown lemur complex", i.e. former subspecies of E. fulvus, during the Pleistocene (0.33-1.43 mya). Phylogeographic model comparisons of past migration rates showed significant levels of gene flow between lineages of neighboring river catchments as well as between eastern and western populations of the redfronted lemur (E. rufifrons). Together, our results are concordant with the centers of endemism hypothesis (Wilmé et al. 2006, Science 312:1063-1065), highlight the importance of river catchments for the evolution of Madagascar's micro-endemic biota, and they underline the usefulness of testing diversification mechanisms using coalescent-based phylogeographic methods.

  20. Genetic Fine Structure of a Salmonella enterica Serovar Typhi Strain Associated with the 2005 Outbreak of Typhoid Fever in Kelantan, Malaysia

    PubMed Central

    Baddam, Ramani; Kumar, Narender; Thong, Kwai-Lin; Ngoi, Soo-Tein; Teh, Cindy Shuan Ju; Yap, Kien-Pong; Chai, Lay-Ching; Avasthi, Tiruvayipati Suma

    2012-01-01

    Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere. PMID:22689247

  1. Simple model of epidemics with pathogen mutation.

    PubMed

    Girvan, Michelle; Callaway, Duncan S; Newman, M E J; Strogatz, Steven H

    2002-03-01

    We study how the interplay between the memory immune response and pathogen mutation affects epidemic dynamics in two related models. The first explicitly models pathogen mutation and individual memory immune responses, with contacted individuals becoming infected only if they are exposed to strains that are significantly different from other strains in their memory repertoire. The second model is a reduction of the first to a system of difference equations. In this case, individuals spend a fixed amount of time in a generalized immune class. In both models, we observe four fundamentally different types of behavior, depending on parameters: (1) pathogen extinction due to lack of contact between individuals; (2) endemic infection; (3) periodic epidemic outbreaks; and (4) one or more outbreaks followed by extinction of the epidemic due to extremely low minima in the oscillations. We analyze both models to determine the location of each transition. Our main result is that pathogens in highly connected populations must mutate rapidly in order to remain viable.

  2. Effects of landscape anthropization on mosquito community composition and abundance

    NASA Astrophysics Data System (ADS)

    Ferraguti, Martina; Martínez-de La Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-07-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.

  3. Effects of landscape anthropization on mosquito community composition and abundance

    PubMed Central

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-01-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control. PMID:27373794

  4. Free-living pathogens: life-history constraints and strain competition.

    PubMed

    Caraco, Thomas; Wang, Ing-Nang

    2008-02-07

    Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage.

  5. Pathogen webs in collapsing honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized symptoms of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new o...

  6. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil

    PubMed Central

    Valdivia, Hugo O.; Almeida, Laila V.; Roatt, Bruno M.; Reis-Cunha, João Luís; Pereira, Agnes Antônia Sampaio; Gontijo, Celia; Fujiwara, Ricardo Toshio; Reis, Alexandre B.; Sanders, Mandy J.; Cotton, James A.; Bartholomeu, Daniella C.

    2017-01-01

    Leishmaniasis is a highly diverse group of diseases caused by kinetoplastid of the genus Leishmania. These parasites are taxonomically diverse, with human pathogenic species separated into two subgenera according to their development site inside the alimentary tract of the sand fly insect vector. The disease encompasses a variable spectrum of clinical manifestations with tegumentary or visceral symptoms. Among the causative species in Brazil, Leishmania (Leishmania) amazonensis is an important etiological agent of human cutaneous leishmaniasis that accounts for more than 8% of all cases in endemic regions. L. (L.) amazonensis is generally found in the north and northeast regions of Brazil. Here, we report the first isolation of L. (L.) amazonensis from dogs with clinical manifestations of visceral leishmaniasis in Governador Valadares, an endemic focus in the southeastern Brazilian State of Minas Gerais where L. (L.) infantum is also endemic. These isolates were characterized in terms of SNPs, chromosome and gene copy number variations, confirming that they are closely related to a previously sequenced isolate obtained in 1973 from the typical Northern range of this species. The results presented in this article will increase our knowledge of L. (L.) amazonensis-specific adaptations to infection, parasite survival and the transmission of this Amazonian species in a new endemic area of Brazil. PMID:28091623

  7. Phytophthora ramorum early detection surveys for forests in the United States, 2003-2006

    Treesearch

    S.W. Oak; A.H. Elledge; E.K. Yockey; W.D. Smith; B.M. Tkacz

    2008-01-01

    Risk-based early detection surveys in U.S. forests were conducted between 2003 and 2006 using 100 m vegetation transects. Thirty-nine states surveyed 3,570 locations in states with endemic Phytophthora ramorum; states where the pathogen had been confirmed only in woody ornamental nurseries; and states that had received potentially infected stock but...

  8. A recombinant Rift Valley fever virus glycoprotein subunit vaccine confers full protection against Rift Valley fever challenge in sheep

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suita...

  9. Burkholderia pseudomallei infection in a cystic fibrosis patient from the Caribbean: A case report

    PubMed Central

    Corral, Dimas Mateos; Coates, Allan L; Yau, Yvonne CW; Tellier, Raymond; Glass, Mindy; Jones, Steven M; Waters, Valerie J

    2008-01-01

    Burkholderia pseudomallei is a pathogen identified with increasing frequency in the respiratory tracts of cystic fibrosis (CF) patients from endemic areas such as Southeast Asia and northern Australia. The following report describes the first known reported case in a CF patient from the Caribbean attending a North American CF clinic. PMID:18716683

  10. Diversification, Biogeographic Pattern, and Demographic History of Taiwanese Scutellaria Species Inferred from Nuclear and Chloroplast DNA

    PubMed Central

    Liao, Pei-Chun

    2012-01-01

    The ragged topography created by orogenesis generates diversified habitats for plants in Taiwan. In addition to colonization from nearby mainland China, high species diversity and endemism of plants is also present in Taiwan. Five of the seven Scutellaria species (Lamiaceae) in Taiwan, for example, are endemic to the island. Hypotheses of multiple sources or in situ radiation have arisen to explain the high endemism of Taiwanese species. In this study, phylogenetic analyses using both nuclear and chloroplast markers revealed the multiple sources of Taiwanese Scutellaria species and confirmed the rapid and recent speciation of endemic species, especially those of the “indica group” composed of S. indica, S. austrotaiwanensis, S. tashiroi, and S. playfairii. The common ancestors of the indica group colonized first in northern Taiwan and dispersed regionally southward and eastward. Climate changes during glacial/interglacial cycles led to gradual colonization and variance events in the ancestors of these species, resulting in the present distribution and genetic differentiation of extant populations. Population decline was also detected in S. indica, which might reflect a bottleneck effect from the glacials. In contrast, the recently speciated endemic members of the indica group have not had enough time to accumulate much genetic variation and are thus genetically insensitive to demographic fluctuations, but the extant lineages were spatially expanded in the coalescent process. This study integrated phylogenetic and population genetic analyses to illustrate the evolutionary history of Taiwanese Scutellaria of high endemism and may be indicative of the diversification mechanism of plants on continental islands. PMID:23226402

  11. Environmental transmission of Mycobacterium ulcerans drives dynamics of Buruli ulcer in endemic regions of Cameroon

    NASA Astrophysics Data System (ADS)

    Garchitorena, Andrés; Ngonghala, Calistus N.; Texier, Gaëtan; Landier, Jordi; Eyangoh, Sara; Bonds, Matthew H.; Guégan, Jean-François; Roche, Benjamin

    2015-12-01

    Buruli Ulcer is a devastating skin disease caused by the pathogen Mycobacterium ulcerans. Emergence and distribution of Buruli ulcer cases is clearly linked to aquatic ecosystems, but the specific route of transmission of M. ulcerans to humans remains unclear. Relying on the most detailed field data in space and time on M. ulcerans and Buruli ulcer available today, we assess the relative contribution of two potential transmission routes -environmental and water bug transmission- to the dynamics of Buruli ulcer in two endemic regions of Cameroon. The temporal dynamics of Buruli ulcer incidence are explained by estimating rates of different routes of transmission in mathematical models. Independently, we also estimate statistical models of the different transmission pathways on the spatial distribution of Buruli ulcer. The results of these two independent approaches are corroborative and suggest that environmental transmission pathways explain the temporal and spatial patterns of Buruli ulcer in our endemic areas better than the water bug transmission.

  12. Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?

    PubMed Central

    Poot, Pieter; Hopper, Stephen D.; van Diggelen, Josepha M.H.

    2012-01-01

    Background and Aims Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats. Previous research has shown that species endemic to ironstone communities in SW Australia have a specialized root morphology that enhances their chance to access fissures in the underlying rock. Here we test the generality of these findings for species that are confined to a shallow-soil habitat that is of much greater global significance: granite outcrops. Methods We compared temporal and spatial root growth and allocation of three endemic woody perennials of SW Australian granite outcrop communities with those of congeners occurring on nearby deeper soils. Seedlings of all species were grown in 1·2 m long custom-made containers with a transparent bottom that allowed monitoring of root growth over time. Key Results The granite outcrop endemics mostly differed in a predictable way from their congeners from deeper soils. They generally invested a larger portion of their biomass in roots, distributed their roots faster and more evenly over the container and had a lower specific root length. In different species pairs the outcrop endemics achieved their apparent advantage by a different combination of the aforementioned traits. Conclusions Our results are consistent with earlier work, indicating that species restricted to different types of drought-prone shallow-soil communities have undergone similar selection pressures. Although adaptive in their own habitat in terms of obtaining access to fissures in the underlying rock, these root system traits are likely to be maladaptive in deeper soil habitats. Therefore, our results may provide an explanation for the narrow endemism of many shallow-soil endemics. PMID:22238122

  13. Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?

    PubMed

    Poot, Pieter; Hopper, Stephen D; van Diggelen, Josepha M H

    2012-07-01

    Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats. Previous research has shown that species endemic to ironstone communities in SW Australia have a specialized root morphology that enhances their chance to access fissures in the underlying rock. Here we test the generality of these findings for species that are confined to a shallow-soil habitat that is of much greater global significance: granite outcrops. We compared temporal and spatial root growth and allocation of three endemic woody perennials of SW Australian granite outcrop communities with those of congeners occurring on nearby deeper soils. Seedlings of all species were grown in 1·2 m long custom-made containers with a transparent bottom that allowed monitoring of root growth over time. The granite outcrop endemics mostly differed in a predictable way from their congeners from deeper soils. They generally invested a larger portion of their biomass in roots, distributed their roots faster and more evenly over the container and had a lower specific root length. In different species pairs the outcrop endemics achieved their apparent advantage by a different combination of the aforementioned traits. Our results are consistent with earlier work, indicating that species restricted to different types of drought-prone shallow-soil communities have undergone similar selection pressures. Although adaptive in their own habitat in terms of obtaining access to fissures in the underlying rock, these root system traits are likely to be maladaptive in deeper soil habitats. Therefore, our results may provide an explanation for the narrow endemism of many shallow-soil endemics.

  14. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host

    PubMed Central

    Lê Van, Amandine; Gladieux, Pierre; Lemaire, Christophe; Cornille, Amandine; Giraud, Tatiana; Durel, Charles-Eric; Caffier, Valérie; Le Cam, Bruno

    2012-01-01

    Understanding how pathogens emerge is essential to bring disease-causing agents under durable human control. Here, we used cross-pathogenicity tests to investigate the changes in life-history traits of the fungal pathogen Venturia inaequalis associated with host-tracking during the domestication of apple and subsequent host-range expansion on the wild European crabapple (Malus sylvestris). Pathogenicity of 40 isolates collected in wild and domesticated ecosystems was assessed on the domesticated apple, its Central Asian main progenitor (M. sieversii) and M. sylvestris. Isolates from wild habitats in the centre of origin of the crop were not pathogenic on the domesticated apple and less aggressive than other isolates on their host of origin. Isolates from the agro-ecosystem in Central Asia infected a higher proportion of plants with higher aggressiveness, on both the domesticated host and its progenitor. Isolates from the European crabapple were still able to cause disease on other species but were less aggressive and less frequently virulent on these hosts than their endemic populations. Our results suggest that the domestication of apple was associated with the acquisition of virulence in the pathogen following host-tracking. The spread of the disease in the agro-ecosystem would also have been accompanied by an increase in overall pathogenicity. PMID:23144656

  15. Cellular and Molecular Defects Underlying Invasive Fungal Infections—Revelations from Endemic Mycoses

    PubMed Central

    Lee, Pamela P.; Lau, Yu-Lung

    2017-01-01

    The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV), hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs). Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium) marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS)-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique climatic and geographical regions. PMID:28702025

  16. Land Use, Water Quality, and Incidence of Buruli Ulcer in Gold-Mining Regions of Ghana

    NASA Astrophysics Data System (ADS)

    Hagarty, J.; Voegborlo, R.; Smithwick, E. A.; Singha, K.

    2011-12-01

    Buruli ulcer, an emerging bacterial disease caused by Mycobacterium ulcerans, affects populations in many equatorial countries, predominantly in western Africa. Occurring in over thirty countries worldwide, it is the third most common Mycobacterial disease after tuberculosis and leprosy. The disease causes ulcerative lesions and can lead to severe deformity if untreated. While methods of treatment for Buruli ulcer are well known and have a high rate of success, the mode of transmission of Buruli ulcer remains elusive. Multiple hypotheses have been put forward in the search for the vector for this disease. Studies of Buruli ulcer to date seem to conclude that water is, in some way, closely related to the transmission of this disease. In particular, changes in water quality due to changes in land use may contribute to the emergence of Buruli ulcer. We hypothesize that stagnant pools, especially those with low dissolved oxygen and high metals, nitrogen, and phosphorus concentrations, will provide a favorable environment for M. ulcerans growth and transmission. To explore how climate, land use, and soil and water quality interact to create a favorable environment for Buruli ulcer emergence, we explore seasonal and annual variability in rainfall and temperature, land use, and physical and chemical properties of soil and water at five sites within the country: four in the southern part of the country (three Buruli-endemic communities and one control) and one non-endemic community in the north. The southern control accounts for differences between endemic and non-endemic communities with similar land uses and geological setting. The northern community has experienced massive floods in recent years, and we suspect that, due to this, Buruli ulcer may start to appear in the community. Results from groundwater data indicate that aquifer rock type does not strongly correlate with groundwater chemistry and that groundwater chemistry does not relate to incidence of Buruli ulcer, thus highlighting that the problems are likely largely surface water based. Analyses of rainfall data collected from eleven stations throughout Ghana show that patterns of annual rainfall do not vary greatly between Buruli-endemic and non-endemic areas, suggesting that normal rainfall patterns do not affect incidence of disease, and that event-based precipitation may be a driving factor for the onset of Buruli ulcer. Analysis of localized soil and water chemistry is ongoing, with samples collected from mining pits, farms, rivers, ponds, swamps, and wells in our five communities within Ghana.

  17. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  18. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  19. Factors associated with Anaplasma spp. seroprevalence among dogs in the United States.

    PubMed

    McMahan, Christopher S; Wang, Dongmei; Beall, Melissa J; Bowman, Dwight D; Little, Susan E; Pithua, Patrick O; Sharp, Julia L; Stich, Roger W; Yabsley, Michael J; Lund, Robert B

    2016-03-22

    Dogs in the United States are hosts to a diverse range of ticks and tick-borne pathogens, including A. phagocytophilum, an important emerging canine and human pathogen. Previously, a Companion Animal Parasite Council (CAPC)-sponsored workshop proposed factors purported to be associated with the infection risk for tick-transmitted pathogens in dogs in the United States, including climate conditions, socioeconomic characteristics, local topography, and vector distribution. Approximately four million test results from routine veterinary diagnostic tests from 2011-2013, which were collected on a county level across the contiguous United States, are statistically analyzed with the proposed factors via logistic regression and generalized estimating equations. Spatial prevalence maps of baseline Anaplasma spp. prevalence are constructed from Kriging and head-banging smoothing methods. All of the examined factors, with the exception of surface water coverage, were significantly associated with Anaplasma spp. prevalence. Overall, Anaplasma spp. prevalence increases with increasing precipitation and forestation coverage and decreases with increasing temperature, population density, relative humidity, and elevation. Interestingly, socioeconomic status and deer/vehicle collisions were positively and negatively correlated with canine Anaplasma seroprevalence, respectively. A spatial map of the canine Anaplasma hazard is an auxiliary product of the analysis. Anaplasma spp. prevalence is highest in New England and the Upper Midwest. The results from the two posited statistical models (one that contains an endemic areas assumption and one that does not) are in general agreement, with the major difference being that the endemic areas model estimates a larger prevalence in Western Texas, New Mexico, and Colorado. As A. phagocytophilum is zoonotic, the results of this analysis could also help predict areas of high risk for human exposure to this pathogen.

  20. Cumulative impact of a clover cover crop on the persistance and efficancy of Beauveria bassiana in suppressing the pecan weevil (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Curculio caryae (Horn), is a key pest of pecans. Endemic levels of the entomopathogenic fungus Beauveria bassiana can occur in pecan orchards and contribute to natural control of C. caryae. Commercial formulations of the fungus can also be applied for suppression of C. caryae. We hypothesized tha...

  1. First Identification of Chlamydia psittaci in the Acute Illness and Death of Endemic and Endangered Psittacine Birds in Mexico.

    PubMed

    Ornelas-Eusebio, E; Sánchez-Godoy, F D; Chávez-Maya, F; De la Garza-García, J A; Hernández-Castro, R; García-Espinosa, G

    2016-06-01

    A mortality episode of endemic and endangered psittacine birds from the genera Ara and Amazona occurred during January 2015. The birds were housed in a management unit for wildlife conservation that receives wild-caught birds from illegal trade. In total, 11 (57%) adult birds of different origins that shared these accommodations died. Only four of them were sent for diagnosis. The main lesions found at necropsy were consistent with those described previously for avian chlamydiosis; the presence of Chlamydiaceae was confirmed through immunofluorescence and amplification with further sequencing of the 16S ribosomal RNA gene by using hepatic tissue. Due to the lack of specific diagnostic tools on primary psittacine diseases, the pathogenic effects of systemic, respiratory, or enteric infections with high mortality rates remain unknown in Mexico. In this study, specific molecular identification of avian chlamydiosis was performed using a nested PCR on liver tissues, as well as choanal and cloacal swab samples, confirming the presence of Chlamydia psittaci in all of them. In addition, it was possible to obtain the ompA gene sequence from processed clinical samples, thereby allowing us to determine that the A genotype was affecting these birds. Although this genotype is the most commonly found worldwide in psittacine birds, this case report describes the first avian chlamydiosis outbreak affecting critically endangered and endemic psittacines subjected to reintegration programs in Mexico. Consequently, this study demonstrates the necessity of more exhaustive biosecurity strategies because other pathogens may be present and should be assessed, especially in highly threatened birds, before releasing them into their habitats.

  2. Silencing Quorum Sensing through Extracts of Melicope lunu-ankenda

    PubMed Central

    Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing regulates bacterial virulence determinants, therefore making it an interesting target to attenuate pathogens. In this work, we screened edible, endemic plants in Malaysia for anti-quorum sensing properties. Extracts from Melicope lunu-ankenda (Gaertn.) T. G. Hartley, a Malay garden salad, inhibited response of Chromobacterium violaceum CV026 to N-hexanoylhomoserine lactone, thus interfering with violacein production; reduced bioluminescence expression of E. coli [pSB401], disrupted pyocyanin synthesis, swarming motility and expression of lecA::lux of Pseudomonas aeruginosa PAO1. Although the chemical nature of the anti-QS compounds from M. lunu-ankenda is currently unknown, this study proves that endemic Malaysian plants could serve as leads in the search for anti-quorum sensing compounds. PMID:22666033

  3. [Survival of Vibrio cholerae 01 in freshwater surface and endemic cholera: a geological hypothesis].

    PubMed

    Borroto, R J

    1998-12-01

    The danger that cholera is becoming endemic in Latin America makes it imperative to know the geographic location of aquatic environments where ecological conditions favor long-term survival of the toxigenic Vibrio cholerae O1 El Tor biotype, and such aquatic environments should be sampled to determine if they harbor this microorganism. For efficient and effective sampling, it would be useful to know what kinds of waters are ecologically suitable for the survival of this pathogen during periods between epidemics, and where these bodies of water are located. This paper presents the hypothesis that toxigenic V. cholerae O1's ability to survive in surface freshwaters tends to be inversely related to the altitude above sea level of these freshwaters.

  4. Free-living pathogens: life-history constraints and strain competition

    PubMed Central

    Caraco, Thomas; Wang, Ing-Nang

    2008-01-01

    Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage. PMID:18062992

  5. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis

    USGS Publications Warehouse

    Adams, Michael J.; Chelgren, Nathan; Reinitz, David M.; Cole, Rebecca A.; Rachowicz, L.J.; Galvan, Stephanie; Mccreary, Brome; Pearl, Christopher A.; Bailey, Larissa L.; Bettaso, Jamie B.; Bull, Evelyn L.; Leu, Matthias

    2010-01-01

    Batrachochytrium dendrobatidis is a fungal pathogen that is receiving attention around the world for its role in amphibian declines. Study of its occurrence patterns is hampered by false negatives: the failure to detect the pathogen when it is present. Occupancy models are a useful but currently underutilized tool for analyzing detection data when the probability of detecting a species is <1. We use occupancy models to evaluate hypotheses concerning the occurrence and prevalence of B. dendrobatidis and discuss how this application differs from a conventional occupancy approach. We found that the probability of detecting the pathogen, conditional on presence of the pathogen in the anuran population, was related to amphibian development stage, day of the year, elevation, and human activities. Batrachochytrium dendrobatidis was found throughout our study area but was only estimated to occur in 53.4% of 78 populations of native amphibians and 66.4% of 40 populations of nonnative Rana catesbeiana tested. We found little evidence to support any spatial hypotheses concerning the probability that the pathogen occurs in a population, but did find evidence of some taxonomic variation. We discuss the interpretation of occupancy model parameters, when, unlike a conventional occupancy application, the number of potential samples or observations is finite.

  6. Processess involved in the dispersal of Xanthomonas citri pv. citri from canker-infected citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida and elsewhere, where the pathogen occurs and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms with...

  7. Processes involved in the dispersal of Xanthomonas citri pv. citri from canker-infectd citrus canopies, and in the infection of citrus foliage

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (Xanthomonas citri subsp. citri, Xcc) is now considered endemic in Florida, and epidemics result in yield loss and market penalties both in Florida, and elsewhere where the pathogen occurs, and susceptible citrus is cultivated. The bacterium is dispersed in rain splash, and storms wit...

  8. Epidemicity thresholds for water-borne and water-related diseases.

    PubMed

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Detection of Batrachochytrium dendrobatidis in endemic salamander species from central Texas.

    PubMed

    Gaertner, James P; Forstner, Michael R J; O'Donnell, Lisa; Hahn, Dittmar

    2009-03-01

    A nested PCR protocol was used to analyze five endemic salamander species from Central Texas for the presence of the emerging pathogen, chytrid fungus (Batrachochytrium dendrobatidis). Chytrid fungus was detected from samples of each of the five species sampled: with low abundance, in the Texas salamander (Eurycea neotenes) (1 positive out of 16 individuals tested; 1/16), the Blanco River Springs salamander (E. pterophila) (1/20), the threatened San Marcos salamander (E. nana) (1/17), and the endangered Barton Springs salamander (E. sosorum) (1/7); much higher abundance was obtained for the Jollyville Plateau salamander (E. tonkawae) (6/14), which has recently been petitioned for addition to the USA endangered species list. With one exception, sequences of PCR products were identical to the 5.8S rRNA gene, and nearly so for the flanking internal transcribed spacer (ITS) regions of B. dendrobatidis which confirmed the detection of chytrid fungus, and thus demonstrated the presence of this pathogen in populations of endangered species in Central Texas. These confirmations were obtained from nonconsumptive tail clippings which confirms the applicability of historically collected samples from other studies in the examination of the fungus across time.

  10. Haemophilus ducreyi: from sexually transmitted infection to skin ulcer pathogen.

    PubMed

    Lewis, David A; Mitjà, Oriol

    2016-02-01

    This article provides an overview of the biology, epidemiology, clinical features, diagnostic tests, and treatment of Haemophilus ducreyi infection, with special reference to the decline of chancroid and the recent emergence of H. ducreyi as a pathogen responsible for chronic limb ulceration clinically similar to yaws. Chancroid has declined in importance as a sexually transmitted infection in most countries where it was previously endemic. Chancroid may be caused by either class I or class II H. ducreyi isolates; these two classes diverged from each other approximately 1.95 million years ago. H. ducreyi has recently emerged as a cause of chronic skin ulceration in the Pacific region and Africa. Based on sequencing of whole genomes and defined genetic loci, it appears that the cutaneous H. ducreyi strains diverged from the class I genital strains relatively recently. H. ducreyi should be considered as a major cause of chronic limb ulceration in both adults and children and appropriate molecular diagnostic assays are required to determine ulcer aetiology. The high prevalence of H. ducreyi-related cutaneous ulceration in yaws-endemic countries has challenged the validity of observational surveys to monitor the effectiveness of the WHO's yaws eradication campaign.

  11. Nodding syndrome since 2012: recent progress, challenges and recommendations for future research.

    PubMed

    Colebunders, R; Post, R; O'Neill, S; Haesaert, G; Opar, B; Lakwo, T; Laudisoit, A; Hendy, A

    2015-02-01

    We aim to review the current epidemiology of nodding syndrome (NS) and discuss relevant gaps in research. NS and convulsive epilepsy of unknown aetiology are clustered within the same villages and families in onchocerciasis-endemic areas. They are therefore potentially different clinical expressions of the same disease. It has been difficult to perform full autopsies on NS patients who die in remote villages. Adequate fixation of tissue immediately after death is critical for the examination of brain tissue. Therefore, post-mortem transsphenoidal brain biopsies, performed immediately after death by trained nurses, will provide the best option for obtaining tissue for analysis. We suspect that certain blackflies in onchocerciasis-endemic areas may transmit a novel pathogen that could cause NS and epilepsy. This is supported by a recent drop in the number of new NS cases coinciding with vector control activities aimed at reducing blackfly populations in northern Uganda. We propose that metagenomic studies of human samples, blackflies and microfilariae are conducted to screen for pathogens, and that a clinical trial is planned to evaluate the impact of larviciding against NS and epilepsy epidemics. © 2014 John Wiley & Sons Ltd.

  12. Arthropod-borne diseases in Italy: from a neglected matter to an emerging health problem.

    PubMed

    Romi, Roberto

    2010-01-01

    In medical entomology, "Arthropod Borne Diseases", or "Vector Borne Diseases" (VBD) are intended as a group of human and animal infections caused by different pathogen organisms (protozoa, helminths, bacteria and viruses) transmitted by the bite of a bloodsucking insect or arachnid. It is commonly known that the infectious diseases transmitted by Arthropods are mainly affecting tropical and subtropical countries, nevertheless some of them were or are still common also in the northern hemisphere, where they are usually maintained under control. VBD still represent some of the most important public health problems in the endemic areas but are becoming source of concern for developed countries too. Since the last decades of the past century, a number of VBD has been spreading geographically, being recorded for the first time in areas outside their original range. This phenomenon is strictly related to the peculiar epidemiological characteristics of these diseases, that are considered the most susceptible to climatic, environmental and socioeconomic changes. This article is a short overview of the VBD endemic and emerging in Italy. The possibility that some exotic vectors and/or pathogens could be introduced and become established in Italy is also discussed.

  13. Typing methods for the plague pathogen, Yersinia pestis.

    PubMed

    Lindler, Luther E

    2009-01-01

    Phenotypic and genotypic methodologies have been used to differentiate the etiological agent of plague, Yersinia pestis. Historically, phenotypic methods were used to place isolates into one of three biovars based on nitrate reduction and glycerol fermentation. Classification of Y. pestis into genetic subtypes is problematic due to the relative monomorphic nature of the pathogen. Resolution into groups is dependent on the number and types of loci used in the analysis. The last 5-10 years of research and analysis in the field of Y. pestis genotyping have resulted in a recognition by Western scientists that two basic types of Y. pestis exist. One type, considered to be classic strains that are able to cause human plague transmitted by the normal flea vector, is termed epidemic strains. The other type does not typically cause human infections by normal routes of infection, but is virulent for rodents and is termed endemic strains. Previous classification schemes used outside the Western hemisphere referred to these latter strains as Pestoides varieties of Y. pestis. Recent molecular analysis has definitely shown that both endemic and epidemic strains arose independently from a common Yersinia pseudotuberculosis ancestor. Currently, 11 major groups of Y. pestis are defined globally.

  14. Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi.

    PubMed

    Da Silveira, Alexandre Welzel; De Oliveira, Gustavo Gomes; Menezes Santos, Leandro; da Silva Azuaga, Lucas Bezerra; Macedo Coutinho, Claudia Regina; Echeverria, Jessica Teles; Antunes, Tamires Ramborger; do Nascimento Ramos, Carlos Alberto; Izabel de Souza, Alda

    2017-04-01

    Theileria equi is a tick-borne piroplasm considered endemic in equines in Brazil. The cohabitation of domestic and wild animals in areas of extensive cattle breeding favors the close contact between different species and the sharing of vectors and, consequently, pathogens. We report the natural infection of a young South American tapir ( Tapirus terrestris ) by T. equi in Mato Grosso do Sul, Brazil. Although it was not possible to associate the clinical and hematologic status of the animal with the infection by the protozoan parasite, our report represents an alert on the sharing of pathogens between domestic and wild animals.

  15. Different populations of blacklegged tick nymphs exhibit differences in questing behavior that have implications for human lyme disease risk.

    PubMed

    Arsnoe, Isis M; Hickling, Graham J; Ginsberg, Howard S; McElreath, Richard; Tsao, Jean I

    2015-01-01

    Animal behavior can have profound effects on pathogen transmission and disease incidence. We studied the questing (= host-seeking) behavior of blacklegged tick (Ixodes scapularis) nymphs, which are the primary vectors of Lyme disease in the eastern United States. Lyme disease is common in northern but not in southern regions, and prior ecological studies have found that standard methods used to collect host-seeking nymphs in northern regions are unsuccessful in the south. This led us to hypothesize that there are behavior differences between northern and southern nymphs that alter how readily they are collected, and how likely they are to transmit the etiological agent of Lyme disease to humans. To examine this question, we compared the questing behavior of I. scapularis nymphs originating from one northern (Lyme disease endemic) and two southern (non-endemic) US regions at field sites in Wisconsin, Rhode Island, Tennessee, and Florida. Laboratory-raised uninfected nymphs were monitored in circular 0.2 m2 arenas containing wooden dowels (mimicking stems of understory vegetation) for 10 (2011) and 19 (2012) weeks. The probability of observing nymphs questing on these stems (2011), and on stems, on top of leaf litter, and on arena walls (2012) was much greater for northern than for southern origin ticks in both years and at all field sites (19.5 times greater in 2011; 3.6-11.6 times greater in 2012). Our findings suggest that southern origin I. scapularis nymphs rarely emerge from the leaf litter, and consequently are unlikely to contact passing humans. We propose that this difference in questing behavior accounts for observed geographic differences in the efficacy of the standard sampling techniques used to collect questing nymphs. These findings also support our hypothesis that very low Lyme disease incidence in southern states is, in part, a consequence of the type of host-seeking behavior exhibited by southern populations of the key Lyme disease vector.

  16. Different populations of blacklegged tick nymphs exhibit differences in questing behavior that have implications for human lyme disease risk

    USGS Publications Warehouse

    Arsnoe, Isis M.; Hickling, Graham J.; Ginsberg, Howard S.; McElreath, Richard; Tsao, Jean I.

    2015-01-01

    Animal behavior can have profound effects on pathogen transmission and disease incidence. We studied the questing (= host-seeking) behavior of blacklegged tick (Ixodes scapularis) nymphs, which are the primary vectors of Lyme disease in the eastern United States. Lyme disease is common in northern but not in southern regions, and prior ecological studies have found that standard methods used to collect host-seeking nymphs in northern regions are unsuccessful in the south. This led us to hypothesize that there are behavior differences between northern and southern nymphs that alter how readily they are collected, and how likely they are to transmit the etiological agent of Lyme disease to humans. To examine this question, we compared the questing behavior of I. scapularis nymphs originating from one northern (Lyme disease endemic) and two southern (non-endemic) US regions at field sites in Wisconsin, Rhode Island, Tennessee, and Florida. Laboratory-raised uninfected nymphs were monitored in circular 0.2 m2 arenas containing wooden dowels (mimicking stems of understory vegetation) for 10 (2011) and 19 (2012) weeks. The probability of observing nymphs questing on these stems (2011), and on stems, on top of leaf litter, and on arena walls (2012) was much greater for northern than for southern origin ticks in both years and at all field sites (19.5 times greater in 2011; 3.6-11.6 times greater in 2012). Our findings suggest that southern origin I. scapularis nymphs rarely emerge from the leaf litter, and consequently are unlikely to contact passing humans. We propose that this difference in questing behavior accounts for observed geographic differences in the efficacy of the standard sampling techniques used to collect questing nymphs. These findings also support our hypothesis that very low Lyme disease incidence in southern states is, in part, a consequence of the type of host-seeking behavior exhibited by southern populations of the key Lyme disease vector.

  17. Coccidioidomycosis and other endemic mycoses in Mexico.

    PubMed

    Laniado-Laborín, Rafael

    2007-12-31

    The endemic mycoses traditionally include coccidioidomycosis, histoplasmosis, blastomycosis and paracoccidioidomycosis. Although sporotrichosis and chromomycosis are technically not included among the endemic mycoses, they are frequently diagnosed in Mexico. Most systemic endemic mycoses are a consequence of inhaling the fungi, while subcutaneous mycoses are acquired through the inoculation of vegetable matter or soil containing the organism. Coccidioidomycosis is caused by Coccidioides spp., a dimorphic pathogenic fungus. Approximately 60% of exposures result in asymptomatic infection; in the rest there are protean manifestations that range from a benign syndrome also known as "Valley Fever" to progressive pulmonary or extrapulmonary disease. Histoplasmosis, caused by the dimorphic fungus Histoplasma capsulatum, is endemic to the Americas. Pulmonary histoplasmosis manifestations are protean, ranging from a brief period of malaise to a severe, prolonged illness. The spectrum of illness in disseminated histoplasmosis ranges from a chronic, intermittent course to an acute and rapidly fatal infection. Paracoccidioidomycosis is a chronic, granulomatous systemic disease caused by Paracoccidioides brasiliensis that characteristically produces a primary pulmonary infection, often asymptomatic, and then disseminates to form ulcerative granulomata of the oral, nasal and occasionally the gastrointestinal mucosa. Sporotrichosis, caused by Sporothrix schenckii, has diverse clinical manifestations; the most frequent is the lymphocutaneous form. Generally, infection results from inoculation of the fungus through thorns, splinters, scratches and small traumas. Chromomycosis (Chromoblastomycosis) is a slowly progressive cutaneous and subcutaneous mycosis attributed to various saprophyte Hypomycetes fungi. The primary lesion is also thought to develop as a result of percutaneous traumatic inoculation.

  18. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica

    PubMed Central

    Godinho, Valéria M; Furbino, Laura E; Santiago, Iara F; Pellizzari, Franciane M; Yokoya, Nair S; Pupo, Diclá; Alves, Tânia MA; S Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Cantrell, Charles L; Rosa, Carlos A; Rosa, Luiz H

    2013-01-01

    We surveyed the distribution and diversity of fungi associated with eight macroalgae from Antarctica and their capability to produce bioactive compounds. The collections yielded 148 fungal isolates, which were identified using molecular methods as belonging to 21 genera and 50 taxa. The most frequent taxa were Geomyces species (sp.), Penicillium sp. and Metschnikowia australis. Seven fungal isolates associated with the endemic Antarctic macroalgae Monostroma hariotii (Chlorophyte) displayed high internal transcribed spacer sequences similarities with the psychrophilic pathogenic fungus Geomyces destructans. Thirty-three fungal singletons (66%) were identified, representing rare components of the fungal communities. The fungal communities displayed high diversity, richness and dominance indices; however, rarefaction curves indicated that not all of the fungal diversity present was recovered. Penicillium sp. UFMGCB 6034 and Penicillium sp. UFMGCB 6120, recovered from the endemic species Palmaria decipiens (Rhodophyte) and M. hariotii, respectively, yielded extracts with high and selective antifungal and/or trypanocidal activities, in which a preliminary spectral analysis using proton nuclear magnetic resonance spectroscopy indicated the presence of highly functionalised aromatic compounds. These results suggest that the endemic and cold-adapted macroalgae of Antarctica shelter a rich, diversity and complex fungal communities consisting of a few dominant indigenous or mesophilic cold-adapted species, and a large number of rare and/or endemic taxa, which may provide an interesting model of algal–fungal interactions under extreme conditions as well as a potential source of bioactive compounds. PMID:23702515

  19. Two clusters of ciguatera fish poisoning in Paris, France, related to tropical fish imported from the French Caribbean by travelers.

    PubMed

    Epelboin, Loïc; Pérignon, Alice; Hossen, Virginie; Vincent, Renaud; Krys, Sophie; Caumes, Eric

    2014-01-01

    Ciguatera fish poisoning (CFP) is a food-borne illness due to the consumption of reef fish containing pathogenic toxins. CFP is endemic to tropical areas and may be described in travelers in non-endemic areas. We describe two clusters of autochthonous cases of CFP in Paris, France. They were related to two fish caught in Guadeloupe (French West Indies) and consumed in Paris after being air-transported in a cooler. In both cases, fish flesh was analyzed and the presence of ciguatoxins by mouse bioassay (MBA) was confirmed. The first cluster involved eight individuals among whom five presented gastrointestinal symptoms and four presented neurological symptoms after consuming barracuda flesh (Sphyraena barracuda). The second cluster involved a couple who consumed a grey snapper (Lutjanus griseus). Most of them consulted at different emergency departments in the region of Paris. CFP may be seen in non-traveler patients outside endemic countries resulting from imported species of fish. Thus, CFP may be undiagnosed as physicians are not aware of this tropical disease outside endemic countries. The detection of ciguatoxins by MBA in the French National Reference Laboratory is useful in the confirmation of the diagnosis. © 2014 International Society of Travel Medicine.

  20. Host-pathogen dynamics under sterilizing pathogens and fecundity-longevity trade-off in hosts.

    PubMed

    Janoušková, Eva; Berec, Luděk

    2018-08-07

    Infectious diseases are known to regulate population dynamics, an observation that underlies the use of pathogens as control agents of unwanted populations. Sterilizing rather than lethal pathogens are often suggested so as to avoid unnecessary suffering of the infected hosts. Until recently, models used to assess plausibility of pathogens as potential pest control agents have not included a possibility that reduced fecundity of the infected individuals may save their energy expenditure on reproduction and thus increase their longevity relative to the susceptible ones. Here, we develop a model of host-pathogen interaction that builds on this idea. We analyze the model for a variety of infection transmission functions, revealing that the indirect effect of sterilizing pathogens on mortality of the infected hosts, mediated by a fecundity-longevity trade-off, may cause hosts at endemic equilibria to attain densities higher than when there is no effect of pathogens on host mortality. On the other hand, an opposite outcome occurs when the fecundity-longevity trade-off is concave or when the degree of fecundity reduction by the pathogen is high enough. This points to a possibility that using sterilizing pathogens as agents of pest control may actually be less effective than previously thought, the more so since we also suggest that if sexual selection acts on the host species then the presence of sterilizing pathogens may even enhance host densities above the levels achieved without infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot

    PubMed Central

    Molina-Venegas, Rafael; Aparicio, Abelardo; Lavergne, Sébastien; Arroyo, Juan

    2017-01-01

    Background and Aims Understanding the evolutionary and ecological forces contributing to the emergence of biodiversity hotspots is of outstanding importance to elucidate how they may withstand current climate changes. Here we explored patterns of phylogenetic and non-phylogenetic plant endemism in a Mediterranean biodiversity hotspot. We hypothesized that areas with wet and equable climatic conditions would be prone to long-term persistence of endemic lineages (palaeoendemism), whilst areas of recent local speciation (neoendemism) would be more related to harsher environmental conditions and to high topographical relief promoting speciation. Methods We focused on the Baetic–Rifan biodiversity hotspot (southern Iberian Peninsula and northern Morocco) in combination with molecular phylogenetic information and relative phylogenetic endemism (RPE), a recent phylogenetic measure of endemism, allowing us to discern centres of palaeo- from those of neoendemism. Using eco-geographical regions as study units, we explored correlations between both RPE and endemic species richness with precipitation- and temperature-related variables and with elevation range. Key Results Centres of neoendemism were concentrated towards the easternmost part of the hotspot, while centres of palaeoendemism were clustered in the vicinity of the Strait of Gibraltar. The RPE index, indicating more palaeoendemism, was positively correlated with total annual precipitation, while endemic species richness showed a poor correlation. In contrast, elevation range and mean annual temperature were poor predictors of RPE, despite elevation range showing a strong correlation with endemic species richness. Conclusions The Baetic–Rifan biodiversity hotspot shows clearly differentiated centres of neo- and palaeoendemism. Topographical relief may have driven evolutionary diversification of newly evolved species, while water availability seems more critical for the long-term persistence of ancient lineages in refuge areas of smoother topography. Given climatic trends towards increasing aridification, conservation planners should pay particular attention to preserve areas retaining older phylogenetic lineages, as these areas act as ‘natural museums’ of biodiversity within the Baetic–Rifan biodiversity hotspot. PMID:27288510

  2. The non-pathogenic Australian rabbit calicivirus RCV-A1 provides temporal and partial cross protection to lethal Rabbit Haemorrhagic Disease Virus infection which is not dependent on antibody titres

    PubMed Central

    2013-01-01

    The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses. PMID:23834204

  3. Issues encountered in development of enzyme-linked immunosorbent assay for use in detecting influenza A virus subtype H5N1 exposure in swine

    USDA-ARS?s Scientific Manuscript database

    A potential mechanism by which highly pathogenic avian influenza H5N1 viruses could become established in humans is through the infection of and adaptation in pigs. To detect the occurrence of such adaptation, monitoring of the pig populations in endemic H5N1 areas through serological screening woul...

  4. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association.

    PubMed

    Zhan, Jiasui; Ericson, Lars; Burdon, Jeremy J

    2018-02-27

    Pathogens are a significant component of all plant communities. In recent years, the potential for existing and emerging pathogens of agricultural crops to cause increased yield losses as a consequence of changing climatic patterns has raised considerable concern. In contrast, the response of naturally occurring, endemic pathogens to a warming climate has received little attention. Here, we report on the impact of a signature variable of global climate change - increasing temperature - on the long-term epidemiology of a natural host-pathogen association involving the rust pathogen Triphragmium ulmariae and its host plant Filipendula ulmaria. In a host-pathogen metapopulation involving approximately 230 host populations growing on an archipelago of islands in the Gulf of Bothnia we assessed changes in host population size and pathogen epidemiological measures over a 25-year period. We show how the incidence of disease and its severity declines over that period and most importantly demonstrate a positive association between a long-term trend of increasing extinction rates in individual pathogen populations of the metapopulation and increasing temperature. Our results are highly suggestive that changing climatic patterns, particularly mean monthly growing season (April-November) temperature, are markedly influencing the epidemiology of plant disease in this host-pathogen association. Given the important role plant pathogens have in shaping the structure of communities, changes in the epidemiology of pathogens have potentially far-reaching impacts on ecological and evolutionary processes. For these reasons, it is essential to increase understanding of pathogen epidemiology, its response to warming, and to invoke these responses in forecasts for the future. © 2018 John Wiley & Sons Ltd.

  5. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance. PMID:25540372

  6. Parallel Evolution of Two Clades of an Atlantic-Endemic Pathogenic Lineage of Vibrio parahaemolyticus by Independent Acquisition of Related Pathogenicity Islands

    PubMed Central

    Xu, Feng; Drees, Kevin P.; Sebra, Robert P.; Jones, Stephen H.

    2017-01-01

    ABSTRACT Shellfish-transmitted Vibrio parahaemolyticus infections have recently increased from locations with historically low disease incidence, such as the Northeast United States. This change coincided with a bacterial population shift toward human-pathogenic variants occurring in part through the introduction of several Pacific native lineages (ST36, ST43, and ST636) to nearshore areas off the Atlantic coast of the Northeast United States. Concomitantly, ST631 emerged as a major endemic pathogen. Phylogenetic trees of clinical and environmental isolates indicated that two clades diverged from a common ST631 ancestor, and in each of these clades, a human-pathogenic variant evolved independently through acquisition of distinct Vibrio pathogenicity islands (VPaI). These VPaI differ from each other and bear little resemblance to hemolysin-containing VPaI from isolates of the pandemic clonal complex. Clade I ST631 isolates either harbored no hemolysins or contained a chromosome I-inserted island we call VPaIβ that encodes a type 3 secretion system (T3SS2β) typical of Trh hemolysin producers. The more clinically prevalent and clonal ST631 clade II had an island we call VPaIγ that encodes both tdh and trh and that was inserted in chromosome II. VPaIγ was derived from VPaIβ but with some additional acquired elements in common with VPaI carried by pandemic isolates, exemplifying the mosaic nature of pathogenicity islands. Genomics comparisons and amplicon assays identified VPaIγ-type islands containing tdh inserted adjacent to the ure cluster in the three introduced Pacific and most other emergent lineages that collectively cause 67% of infections in the Northeast United States as of 2016. IMPORTANCE The availability of three different hemolysin genotypes in the ST631 lineage provided a unique opportunity to employ genome comparisons to further our understanding of the processes underlying pathogen evolution. The fact that two different pathogenic clades arose in parallel from the same potentially benign lineage by independent VPaI acquisition is surprising considering the historically low prevalence of community members harboring VPaI in waters along the Northeast U.S. coast that could serve as the source of this material. This illustrates a possible predisposition of some lineages to not only acquire foreign DNA but also become human pathogens. Whereas the underlying cause for the expansion of V. parahaemolyticus lineages harboring VPaIγ along the U.S. Atlantic coast and spread of this element to multiple lineages that underlies disease emergence is not known, this work underscores the need to define the environment factors that favor bacteria harboring VPaI in locations of emergent disease. PMID:28687650

  7. Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types.

    PubMed

    Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L

    2016-01-01

    Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  8. Are Poultry or Wild Birds the Main Reservoirs for Avian Influenza in Bangladesh?

    PubMed

    Hassan, Mohammad Mahmudul; Hoque, Md Ahasanul; Debnath, Nitish Chandra; Yamage, Mat; Klaassen, Marcel

    2017-09-01

    Avian influenza viruses (AIV) are of great socioeconomic and health concern, notably in Southeast Asia where highly pathogenic strains, such as highly pathogenic avian influenza (HPAI) H5N1 and other H5 and H7 AIVs, continue to occur. Wild bird migrants are often implicated in the maintenance and spread of AIV. However, little systematic surveillance of wild birds has been conducted in Southeast Asia to evaluate whether the prevalence of AIV in wild birds is higher than in other parts of the world where HPAI outbreaks occur less frequently. Across Bangladesh, we randomly sampled a total of 3585 wild and domestic birds to assess the prevalence of AIV and antibodies against AIV and compared these with prevalence levels found in other endemic and non-endemic countries. Our study showed that both resident and migratory wild birds in Bangladesh do not have a particularly elevated AIV prevalence and AIV sero-prevalence compared to wild birds from regions in the world where H5N1 is not endemic and fewer AIV outbreaks in poultry occur. Like elsewhere, notably wild birds of the orders Anseriformes were identified as the main wild bird reservoir, although we found exceptionally high sero-prevalence in one representative of the order Passeriformes, the house crow (Corvus splendens), importantly living on offal from live bird markets. This finding, together with high sero- and viral prevalence levels of AIV in domestic birds, suggests that wild birds are not at the base of the perpetuation of AIV problems in the local poultry sector, but may easily become victim to AIV spill back from poultry into some species of wild birds, potentially assisting in further spread of the virus.

  9. Evaluating the risk of pathogen transmission from wild animals to domestic pigs in Australia.

    PubMed

    Pearson, Hayley E; Toribio, Jenny-Ann L M L; Lapidge, Steven J; Hernández-Jover, Marta

    2016-01-01

    Wild animals contribute to endemic infection in livestock as well as the introduction, reintroduction and maintenance of pathogens. The source of introduction of endemic diseases to a piggery is often unknown and the extent of wildlife contribution to such local spread is largely unexplored. The aim of the current study was to quantitatively assess the probability of domestic pigs being exposed to different pathogens from wild animals commonly found around commercial piggeries in Australia. Specifically, this study aims to quantify the probability of exposure to the pathogens Escherichia coli, Salmonella spp. and Campylobacter spp. from European starlings (Sturnus vulgarus); Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella spp. from rats (Rattus rattus and Rattus norvegicus); and Mycoplasma hyopneumoniae, Leptospira spp., Brucella suis and L. intracellularis from feral pigs (Sus scrofa). Exposure assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and calculate the probabilities of these pathways occurring. Input parameters were estimated from a national postal survey of commercial pork producers and from disease detection studies conducted for European starlings, rats and feral pigs in close proximity to commercial piggeries in Australia. Based on the results of the exposure assessments, rats presented the highest probability of exposure of pathogens to domestic pigs at any point in time, and L. intracellularis (median 0.13, 5% and 95%, 0.05-0.23) and B. hyodysenteriae (median 0.10, 0.05-0.19) were the most likely pathogens to be transmitted. Regarding European starlings, the median probability of exposure of domestic pigs to pathogenic E. coli at any point in time was estimated to be 0.03 (0.02-0.04). The highest probability of domestic pig exposure to feral pig pathogens at any point in time was found to be for M. hyopneumoniae (median 0.013, 0.007-0.022) and L. intracellularis (median 0.006, 0.003-0.011) for pigs in free-range piggeries. The sensitivity analysis indicates that the presence and number of wild animals around piggeries, their access to piggeries and pig food and water, and, in the case of feral pigs, their proximity to piggeries, are the most influential parameters on the probability of exposure. Findings from this study support identification of mitigation strategies that could be implemented at on-farm and industry level to minimize the exposure risk from European starlings, rats and feral pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species.

    PubMed

    Khasnatinov, Maxim Anatolyevich; Liapunov, Alexander Valeryevich; Manzarova, Ellina Lopsonovna; Kulakova, Nina Viktorovna; Petrova, Irina Viktorovna; Danchinova, Galina Anatolyevna

    2016-02-01

    Hard ticks are the vectors of many pathogens including tick-borne encephalitis virus and the Lyme disease agent Borrelia burgdorferi sensu lato. In Eastern Siberia, Ixodes persulcatus, Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna are regarded as aggressive to humans. Recently, significant changes in world tick fauna have been reported and this affects the spread of tick-borne pathogens. We studied the current species diversity, population structure and prevalence of tick-borne pathogens of hard ticks (Acari: Ixodidae) that attacked humans in Eastern Siberia (Irkutsk region, Russia). In total, 31,892 individual ticks were identified and analysed during the years 2007-2014. The majority (85.4%) of victims was bitten by I. persulcatus, 14.55% of attacks on humans were caused by D. nuttalli and D. silvarum, whereas H. concinna was documented only in 15 cases (0.05%). The seasonal activity and the age/gender structure of the tick population were studied as well. Among all the studied ticks, three unconventional species, i.e. Rhipicephalus sanguineus, Dermacentor reticulatus and Amblyomma americanum, were identified. Analysis of tick bite histories indicates at least three events of invasion of non-endemic ticks into the ecosystems of northern Eurasia with harsh continental climates. Invading ticks are able to reach the adult life stage and are aggressive to the local human population. Phylogenetic analysis of mt 16S rRNA gene fragments suggests multiple independent routes of tick migration to Eastern Siberia. Possible implications to human health and epidemiology of tick-borne infections are discussed.

  11. Novel real-time PCR-based patho- and phylotyping of potentially zoonotic avian influenza A subtype H5 viruses at risk of incursion into Europe in 2017

    PubMed Central

    Naguib, Mahmoud M; Graaf, Annika; Fortin, Andrea; Luttermann, Christine; Wernery, Ulrich; Amarin, Nadim; Hussein, Hussein A; Sultan, Hesham; Al Adhadh, Basem; Hassan, Mohamed K; Beer, Martin; Monne, Isabella; Harder, Timm C

    2017-01-01

    Since November 2016, Europe witnesses another wave of incursion of highly pathogenic avian influenza (HPAI) A(H5) viruses of the Asian origin goose/Guangdong (gs/GD) lineage. Infections with H5 viruses of clade 2.3.4.4b affect wild bird and poultry populations. H5 viruses of clades 2.2, 2.3.1.2c and 2.3.4.4a were detected previously in Europe in 2006, 2010 and 2014. Clades 2.2.1.2 and 2.3.2.1.c are endemic in Egypt and Western Africa, respectively and have caused human fatalities. Evidence exists of their co-circulation in the Middle East. Subtype H5 viruses of low pathogenicity (LPAI) are endemic in migratory wild bird populations. They potentially mutate into highly pathogenic phenotypes following transmission into poultry holdings. However, to date only the gs/GD H5 lineage had an impact on human health. Rapid and specific diagnosis marks the cornerstone for control and eradication of HPAI virus incursions. We present the development and validation of five real-time RT-PCR assays (RT-qPCR) that allow sequencing-independent pathotype and clade-specific distinction of major gs/GD HPAI H5 virus clades and of Eurasian LPAI viruses currently circulating. Together with an influenza A virus-generic RT-qPCR, the assays significantly speed up time-to-diagnosis and reduce reaction times in a OneHealth approach of curbing the spread of gs/GD HPAI viruses. PMID:28084214

  12. Re-Emergence of the Apicomplexan Theileria equi in the United States: Elimination of Persistent Infection and Transmission Risk

    PubMed Central

    Ueti, Massaro W.; Mealey, Robert H.; Kappmeyer, Lowell S.; White, Stephen N.; Kumpula-McWhirter, Nancy; Pelzel, Angela M.; Grause, Juanita F.; Bunn, Thomas O.; Schwartz, Andy; Traub-Dargatz, Josie L.; Hendrickson, Amy; Espy, Benjamin; Guthrie, Alan J.; Fowler, W. Kent; Knowles, Donald P.

    2012-01-01

    Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 104.9 organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions. PMID:22970295

  13. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years

    PubMed Central

    Ribas, Camila C.; Aleixo, Alexandre; Nogueira, Afonso C. R.; Miyaki, Cristina Y.; Cracraft, Joel

    2012-01-01

    Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen ‘complete’ time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0–2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia. PMID:21795268

  14. Sin Nombre Virus and Rodent Species Diversity: A Test of the Dilution and Amplification Hypotheses

    PubMed Central

    Clay, Christine A.; Lehmer, Erin M.; Jeor, Stephen St.; Dearing, M. Denise

    2009-01-01

    Background Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the “Dilution Effect” and the “Amplification Effect”, predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined. Methodology/Principal Findings We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003–2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior. Conclusions/Significance While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics. PMID:19649283

  15. Inferences on the phylogeography of the fungal pathogen Heterobasidion annosum, including evidence of interspecific horizontal genetic transfer and of human-mediated, long-range dispersal

    Treesearch

    R.E. Linzer; W.J. Otrosina; P. Gonthier; J. Bruhn; G. Laflamme; G. Bussieres; M. Garbelotto

    2008-01-01

    Fungi in the basidiomycete species complex Heterobasidion annosum are significant root-rot pathogens of conifers throughout the northern hemisphere. We utilize a multilocus phylogenetic approach to examine hypotheses regarding the evolution and divergence of two Heterobasidion taxa associated with pines: the Eurasian H. ...

  16. Exosome-Mediated Pathogen Transmission by Arthropod Vectors.

    PubMed

    Hackenberg, Michael; Kotsyfakis, Michail

    2018-04-24

    Recent molecular and cellular studies have highlighted a potentially important role for tick exosomes in parasite transmission. Here we summarize evolving hypotheses about the largely unknown cellular events that may take place at the tick-host-pathogen interface, focusing on a potential role for arthropod exosomes in this tripartite interaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. [Human coronavirus infections: importance and diagnosis].

    PubMed

    Vabret, A; Brouard, J; Petitjean, J; Eugene-Ruellan, G; Freymuth, F

    1998-11-14

    POORLY-KNOWN VIRUS: Coronaviruses, so named because of their sun-ray-like aspect, were discovered in the sixties. The biology of these RNA viruses is complex and poorly understood. KNOWN PATHOGENS: Coronaviruses are known pathogens in veterinary medicine, causing disease states in several domestic species. In human medicine, they can cause benign respiratory infections, but few laboratories include coronaviruses in their routine diagnostic tests. SUSPECTED PATHOGENS: There is some data in the literature suggesting coronaviruses might be implicated in more severe diseases including multiple sclerosis, necrotizing enterocolitis, and lower respiratory tract infections, particularly in infants. IMPROVING DIAGNOSTIC METHODS: Due to the lack of reliable and sensitive diagnostic techniques, it is impossible to date to correctly assess the medical impact of these ubiquitous and endemic viruses. Molecular biology techniques enabling detection of human coronavirus infections should be applied to verifying the suspected implication of these viruses in diverse disease states.

  18. Host mating system and the spread of a disease-resistant allele in a population

    USGS Publications Warehouse

    DeAngelis, D.L.; Koslow, Jennifer M.; Jiang, J.; Ruan, S.

    2008-01-01

    The model presented here modifies a susceptible-infected (SI) host-pathogen model to determine the influence of mating system on the outcome of a host-pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.

  19. Confronting inconsistencies in the amphibian-chytridiomycosis system: implications for disease management.

    PubMed

    Venesky, Matthew D; Raffel, Thomas R; McMahon, Taegan A; Rohr, Jason R

    2014-05-01

    Chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is one of the largest threats to wildlife and is putatively linked to the extirpation of numerous amphibians. Despite over a decade of research on Bd, conflicting results from a number of studies make it difficult to forecast where future epizootics will occur and how to manage this pathogen effectively. Here, we emphasize how resolving these conflicts will advance Bd management and amphibian conservation efforts. We synthesize current knowledge on whether Bd is novel or endemic, whether amphibians exhibit acquired resistance to Bd, the importance of host resistance versus tolerance to Bd, and how biotic (e.g. species richness) and abiotic factors (e.g. climate change) affect Bd abundance. Advances in our knowledge of amphibian-chytrid interactions might inform the management of fungal pathogens in general, which are becoming more common and problematic globally. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  20. Seroconversion for infectious pathogens among UK military personnel deployed to Afghanistan, 2008-2011.

    PubMed

    Newman, Edmund N C; Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-12-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008-2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments.

  1. The mammalian faunas endemic to the Cerrado and the Caatinga.

    PubMed

    Gutiérrez, Eliécer E; Marinho-Filho, Jader

    2017-01-01

    We undertook a comprehensive, critical review of literature concerning the distribution, conservation status, and taxonomy of species of mammals endemic to the Cerrado and the Caatinga, the two largest biomes of the South American Dry-Diagonal. We present species accounts and lists of species, which we built with criteria that, in our opinion, yielded results with increased scientific rigor relative to previously published lists - e.g., excluding nominal taxa whose statuses as species have been claimed only on the basis of unpublished data, incomplete taxonomic work, or weak evidence. For various taxa, we provided arguments regarding species distributions, conservation and taxonomic statuses previously lacking in the literature. Two major findings are worth highlighting. First, we unveil the existence of a group of species endemic to both the Cerrado and the Caatinga (i.e., present in both biomes and absent in all other biomes). From the biogeographic point of view, this group, herein referred to as Caatinga-Cerrado endemics, deserves attention as a unit - just as in case of the Caatinga-only and the Cerrado-only endemics. We present preliminary hypotheses on the origin of these three endemic faunas (Cerrado-only, Caatinga-only, and Caatinga-Cerrado endemics). Secondly, we discovered that a substantial portion of the endemic mammalian faunas of the Caatinga and the Cerrado faces risks of extinction that are unrecognized in the highly influential Red List of Threatened Species published by the International Union for Conservation of Nature (IUCN). "Data deficient" is a category that misrepresents the real risks of extinction of these species considering that (a) some of these species are known only from a handful of specimens collected in a single or a few localities long ago; (b) the Cerrado and the Caatinga have been sufficiently sampled to guarantee collection of additional specimens of these species if they were abundant; (c) natural habitats of the Cerrado and the Caatinga have been substantially altered or lost in recent decades. Failures either in the design of the IUCN criteria or in their application to assign categories of extinction risks represent an additional important threat to these endemic faunas because their real risks of extinctions become hidden. It is imperative to correct this situation, particularly considering that these species are associated to habitats that are experiencing fast transformation into areas for agriculture, at an unbearable cost for biodiversity.

  2. The mammalian faunas endemic to the Cerrado and the Caatinga

    PubMed Central

    Gutiérrez, Eliécer E.; Marinho-Filho, Jader

    2017-01-01

    Abstract We undertook a comprehensive, critical review of literature concerning the distribution, conservation status, and taxonomy of species of mammals endemic to the Cerrado and the Caatinga, the two largest biomes of the South American Dry-Diagonal. We present species accounts and lists of species, which we built with criteria that, in our opinion, yielded results with increased scientific rigor relative to previously published lists – e.g., excluding nominal taxa whose statuses as species have been claimed only on the basis of unpublished data, incomplete taxonomic work, or weak evidence. For various taxa, we provided arguments regarding species distributions, conservation and taxonomic statuses previously lacking in the literature. Two major findings are worth highlighting. First, we unveil the existence of a group of species endemic to both the Cerrado and the Caatinga (i.e., present in both biomes and absent in all other biomes). From the biogeographic point of view, this group, herein referred to as Caatinga-Cerrado endemics, deserves attention as a unit – just as in case of the Caatinga-only and the Cerrado-only endemics. We present preliminary hypotheses on the origin of these three endemic faunas (Cerrado-only, Caatinga-only, and Caatinga-Cerrado endemics). Secondly, we discovered that a substantial portion of the endemic mammalian faunas of the Caatinga and the Cerrado faces risks of extinction that are unrecognized in the highly influential Red List of Threatened Species published by the International Union for Conservation of Nature (IUCN). “Data deficient” is a category that misrepresents the real risks of extinction of these species considering that (a) some of these species are known only from a handful of specimens collected in a single or a few localities long ago; (b) the Cerrado and the Caatinga have been sufficiently sampled to guarantee collection of additional specimens of these species if they were abundant; (c) natural habitats of the Cerrado and the Caatinga have been substantially altered or lost in recent decades. Failures either in the design of the IUCN criteria or in their application to assign categories of extinction risks represent an additional important threat to these endemic faunas because their real risks of extinctions become hidden. It is imperative to correct this situation, particularly considering that these species are associated to habitats that are experiencing fast transformation into areas for agriculture, at an unbearable cost for biodiversity. PMID:28144187

  3. Characterize Respiratory Pathogens Endemic to Pakistan

    DTIC Science & Technology

    2017-10-25

    Impact of respiratory illnesses during pregnancy on newborn’s weight - A community based longitudinal study at an urban slum in Pakistan. Asad Ali1...Although maternal health is widely believed to impact the birth weight of the baby, the exact factors during pregnancy that influence the birth... pregnancies have concluded as live deliveries, 12 as still births and 31 as spontaneous abortions. We analyzed the data of 243 pregnant     5

  4. Biophysical characteristics influencing growth and abundance of western white pine (Pinus monticola) across spatial scales in the Coeur d'Alene River Basin, Idaho

    Treesearch

    Theresa Jain

    2001-01-01

    During the past 50 years the moist forests of northern Idaho changed from being dominated by western white pine (Pinus monticola), an early sera! species, to ones dominated by late serial species, grand fir (Abies grandis) and western hemlock (Tsuga heterophylla). Variable fire regimes, successional processes and endemic insects and pathogens worked in concert to...

  5. Association between Opisthorchis viverrini and Leptospira spp. infection in endemic Northeast Thailand.

    PubMed

    Van, Chinh Dang; Doungchawee, Galayanee; Suttiprapa, Sutas; Arimatsu, Yuji; Kaewkes, Sasithorn; Sripa, Banchob

    2017-08-01

    Opisthorchiasis caused by Opisthorchis viverrini is an important foodborne trematodiasis in Thailand, Laos and Cambodia. Interestingly, the opisthorchiasis endemic region overlaps with an area of leptospirosis emergence. Here we report an association between opisthorchiasis and leptospirosis in Thailand. Of 280 sera collected from villagers living around the Lawa wetland complex in Khon Kaen province, 199 (71%) were seropositive for leptospirosis by immunochromatography. Individuals with O. viverrini infection had a significantly higher rate of leptospirosis than those without (P=0.001). Significant higher leptospirosis prevalence was found in males than females (P=0.002). However, females but not males with O. viverrini infection showed a significantly higher seroprevalence of leptospirosis. Twenty-one of 35 environmental samples from the lake (water, mud and fish skin mucus) were positive for Leptospira spp. DNA sequencing, sequence alignment, and phylogenetic analysis of some positive nested PCR products revealed both pathogenic and intermediate pathogenic strains of Leptospira in the samples. Strikingly, O. viverrini metacercariae from the fish were positive for L. interrogans. These results suggest a close association between opisthorchiasis and leptospirosis. Contact with water, mud or eating raw fish harboring liver fluke metacercariae may be risk factors for Leptospira infection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific region

    USGS Publications Warehouse

    LaPointe, Dennis

    2007-01-01

    Mosquitoes and the pathogens they transmit are ubiquitous throughout most of the temperate and tropical regions of the world. The natural and pre-European distribution and diversity of mosquitoes and mosquito-borne diseases throughout much of the Pacific region, however, depicts a depauperate and relatively benign fauna reinforcing the dream of “paradise regained”. In the central and South Pacific few mosquito species were able to colonize the remotest islands and atolls. Native mosquitoes are limited to a few far-ranging species and island endemics are typically restricted to the genera of Aedes and Culex. Only lymphatic filariasis appears to have been present as an endemic mosquito-borne disease before European contact. In nearby Australia, however, some 242 species of mosquitoes are known to occur and more than 70 arboviruses have been identified (Mackenzie 1999). In this regard Australia is more similar to the rest of the tropic and subtropical world than the smaller islands of Oceania. In our ever-shrinking world of global commerce, military activity and travel, the nature of mosquito-borne disease in the Pacific was bound to change. This paper is a brief summary of introduced mosquitoes in the Pacific and their potential impacts on human and wildlife health.

  7. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders

    PubMed Central

    Laking, Alexandra E.; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-01-01

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir. PMID:28287614

  8. Salmonella Typhimurium DT193 and DT99 are present in great and blue tits in Flanders, Belgium

    PubMed Central

    Verbrugghe, E.; Dekeukeleire, D.; De Beelde, R.; Rouffaer, L. O.; Haesendonck, R.; Strubbe, D.; Mattheus, W.; Bertrand, S.; Pasmans, F.; Bonte, D.; Verheyen, K.; Lens, L.; Martel, A.

    2017-01-01

    Endemic infections with the common avian pathogen Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) may incur a significant cost on the host population. In this study, we determined the potential of endemic Salmonella infections to reduce the reproductive success of blue (Cyanistes caeruleus) and great (Parus major) tits by correlating eggshell infection with reproductive parameters. The fifth egg of each clutch was collected from nest boxes in 19 deciduous forest fragments. Out of the 101 sampled eggs, 7 Salmonella Typhimurium isolates were recovered. The low bacterial prevalence was reflected by a similarly low serological prevalence in the fledglings. In this study with a relatively small sample size, presence of Salmonella did not affect reproductive parameters (egg volume, clutch size, number of nestlings and number of fledglings), nor the health status of the fledglings. However, in order to clarify the impact on health and reproduction a larger number of samples have to be analyzed. Phage typing showed that the isolates belonged to the definitive phage types (DT) 193 and 99, and multi-locus variable number tandem repeat analysis (MLVA) demonstrated a high similarity among the tit isolates, but distinction to human isolates. These findings suggest the presence of passerine-adapted Salmonella strains in free-ranging tit populations with host pathogen co-existence. PMID:29112955

  9. Global Distribution of Alveolar and Cystic Echinococcosis.

    PubMed

    Deplazes, P; Rinaldi, L; Alvarez Rojas, C A; Torgerson, P R; Harandi, M F; Romig, T; Antolova, D; Schurer, J M; Lahmar, S; Cringoli, G; Magambo, J; Thompson, R C A; Jenkins, E J

    2017-01-01

    Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Helminth parasites of native Hawaiian freshwater fishes: an example of extreme ecological isolation.

    PubMed

    Font, W F; Tate, D C

    1994-10-01

    The Hawaiian Islands harbor a depauperate native freshwater fish fauna comprised of 4 endemic gobies (Gobiidae) and 1 endemic sleeper (Eleotridae). We hypothesized that the natural helminth parasite community of these stream fishes would be depauperate because of colonizing constraints. In the absence of exotic fishes, native fishes in streams of Hanakapi'ai and Nu'alolo valleys harbored no adult helminth parasites. In Hakalau Stream on Hawai'i and Wainiha River on Kaua'i, we found introduced swordtails and guppies (Poeciliidae); here, the native gobioid fishes shared species of helminths with poeciliids. They were the nematode Camallanus cotti, the Asian tapeworm Bothriocephalus acheilognathi, and the leech Myzobdella lugubris. Such parasitological data should be incorporated into management plans for the conservation of native Hawaiian stream fishes as these parasites have been previously demonstrated to cause disease.

  11. Prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV 1), Leptospirosis and Neosporosis, and associated risk factors in 161 Irish beef herds.

    PubMed

    Barrett, Damien; Parr, Mervyn; Fagan, John; Johnson, Alan; Tratalos, Jamie; Lively, Francis; Diskin, Michael; Kenny, David

    2018-01-06

    There are limited data available, in Ireland or elsewhere, to determine the extent of exposure to various endemic diseases among beef cows and factors associated with exposure to causative pathogens. The objectives of this study were to determine the herd and within herd prevalence of Bovine Viral Diarrhoea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Leptospirosis and Neosporosis in a large scale study of commercial beef herds on the island of Ireland, and to examine herd level factors associated with exposure to these pathogens in these herds. The average number of cows tested per herd was 35.5 (median 30). Herd level seroprevalence to Bovine Herpesvirus-1(BHV-1), Bovine Viral-Diarrhoea Virus (BVDV), Leptospirosis and Neosporosis was 90%, 100%, 91% and 67%, respectively, while the mean within herd prevalence for the these pathogens was 40%, 77.7%, 65.7% and 5.7%, respectively. The study confirms that the level of seroconversion for the four pathogens of interest increases with herd size. There was also evidence that exposure to one pathogen may increase the risk of exposure to another pathogen. Herd level seroprevalences were in excess of 90% for BVDV, BHV-1 and Leptosporosis. Larger herds were subject to increased exposure to disease pathogens. This study suggests that exposure to several pathogens may be associated with the further exposure to other pathogens.

  12. An Exploration of Hypotheses that Explain Herbivore and Pathogen Attack in Restored Plant Communities

    PubMed Central

    Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.

    2015-01-01

    Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672

  13. Mapping internal connectivity through human migration in malaria endemic countries.

    PubMed

    Sorichetta, Alessandro; Bird, Tom J; Ruktanonchai, Nick W; Zu Erbach-Schoenberg, Elisabeth; Pezzulo, Carla; Tejedor, Natalia; Waldock, Ian C; Sadler, Jason D; Garcia, Andres J; Sedda, Luigi; Tatem, Andrew J

    2016-08-16

    Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository.

  14. Mapping internal connectivity through human migration in malaria endemic countries

    PubMed Central

    Sorichetta, Alessandro; Bird, Tom J.; Ruktanonchai, Nick W.; zu Erbach-Schoenberg, Elisabeth; Pezzulo, Carla; Tejedor, Natalia; Waldock, Ian C.; Sadler, Jason D.; Garcia, Andres J.; Sedda, Luigi; Tatem, Andrew J.

    2016-01-01

    Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository. PMID:27529469

  15. A Framework for Optimizing Phytosanitary Thresholds in Seed Systems.

    PubMed

    Choudhury, Robin Alan; Garrett, Karen A; Klosterman, Steven J; Subbarao, Krishna V; McRoberts, Neil

    2017-10-01

    Seedborne pathogens and pests limit production in many agricultural systems. Quarantine programs help prevent the introduction of exotic pathogens into a country, but few regulations directly apply to reducing the reintroduction and spread of endemic pathogens. Use of phytosanitary thresholds helps limit the movement of pathogen inoculum through seed, but the costs associated with rejected seed lots can be prohibitive for voluntary implementation of phytosanitary thresholds. In this paper, we outline a framework to optimize thresholds for seedborne pathogens, balancing the cost of rejected seed lots and benefit of reduced inoculum levels. The method requires relatively small amounts of data, and the accuracy and robustness of the analysis improves over time as data accumulate from seed testing. We demonstrate the method first and illustrate it with a case study of seedborne oospores of Peronospora effusa, the causal agent of spinach downy mildew. A seed lot threshold of 0.23 oospores per seed could reduce the overall number of oospores entering the production system by 90% while removing 8% of seed lots destined for distribution. Alternative mitigation strategies may result in lower economic losses to seed producers, but have uncertain efficacy. We discuss future challenges and prospects for implementing this approach.

  16. Phytophthora Species, New Threats to the Plant Health in Korea

    PubMed Central

    Hyun, Ik-Hwa; Choi, Woobong

    2014-01-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues. PMID:25506298

  17. Population Density, Poor Sanitation, and Enteric Infections in Nueva Santa Rosa, Guatemala.

    PubMed

    Jarquin, Claudia; Arnold, Benjamin F; Muñoz, Fredy; Lopez, Beatriz; Cuéllar, Victoria M; Thornton, Andrew; Patel, Jaymin; Reyes, Lisette; Roy, Sharon L; Bryan, Joe P; McCracken, John P; Colford, John M

    2016-04-01

    Poor sanitation could pose greater risk for enteric pathogen transmission at higher human population densities because of greater potential for pathogens to infect new hosts through environmentally mediated and person-to-person transmission. We hypothesized that incidence and prevalence of diarrhea, enteric protozoans, and soil-transmitted helminth infections would be higher in high-population-density areas compared with low-population-density areas, and that poor sanitation would pose greater risk for these enteric infections at high density compared with low density. We tested our hypotheses using 6 years of clinic-based diarrhea surveillance (2007-2013) including 4,360 geolocated diarrhea cases tested for 13 pathogens and a 2010 cross-sectional survey that measured environmental exposures from 204 households (920 people) and tested 701 stool specimens for enteric parasites. We found that population density was not a key determinant of enteric infection nor a strong effect modifier of risk posed by poor household sanitation in this setting. © The American Society of Tropical Medicine and Hygiene.

  18. Population Density, Poor Sanitation, and Enteric Infections in Nueva Santa Rosa, Guatemala

    PubMed Central

    Jarquin, Claudia; Arnold, Benjamin F.; Muñoz, Fredy; Lopez, Beatriz; Cuéllar, Victoria M.; Thornton, Andrew; Patel, Jaymin; Reyes, Lisette; Roy, Sharon L.; Bryan, Joe P.; McCracken, John P.; Colford, John M.

    2016-01-01

    Poor sanitation could pose greater risk for enteric pathogen transmission at higher human population densities because of greater potential for pathogens to infect new hosts through environmentally mediated and person-to-person transmission. We hypothesized that incidence and prevalence of diarrhea, enteric protozoans, and soil-transmitted helminth infections would be higher in high-population-density areas compared with low-population-density areas, and that poor sanitation would pose greater risk for these enteric infections at high density compared with low density. We tested our hypotheses using 6 years of clinic-based diarrhea surveillance (2007–2013) including 4,360 geolocated diarrhea cases tested for 13 pathogens and a 2010 cross-sectional survey that measured environmental exposures from 204 households (920 people) and tested 701 stool specimens for enteric parasites. We found that population density was not a key determinant of enteric infection nor a strong effect modifier of risk posed by poor household sanitation in this setting. PMID:26856919

  19. Predicting pathogen introduction: West Nile virus spread to Galáipagos.

    PubMed

    Kilpatrick, A Marm; Daszak, Peter; Goodman, Simon J; Rogg, Helmuth; Kramer, Laura D; Cedeño, Virna; Cunningham, Andrew A

    2006-08-01

    Emerging infectious diseases are a key threat to conservation and public health, yet predicting and preventing their emergence is notoriously difficult. We devised a predictive model for the introduction of a zoonotic vector-borne pathogen by considering each of the pathways by which it may be introduced to a new area and comparing the relative risk of each pathway. This framework is an adaptation of pest introduction models and estimates the number of infectious individuals arriving in a location and the duration of their infectivity. We used it to determine the most likely route for the introduction of West Nile virus to Galápagos and measures that can be taken to reduce the risk of introduction. The introduction of this highly pathogenic virus to this unique World Heritage Site could have devastating consequences, similar to those seen following introductions of pathogens into other endemic island faunas. Our model identified the transport of mosquitoes on airplanes as the highest risk for West Nile virus introduction. Pathogen dissemination through avian migration and the transportation of day-old chickens appeared to be less important pathways. Infected humans and mosquitoes transported in sea containers, in tires, or by wind all represented much lower risk. Our risk-assessment framework has broad applicability to other pathogens and other regions and depends only on the availability of data on the transport of goods and animals and the epidemiology of the pathogen.

  20. Vector-borne diseases in cats in Germany.

    PubMed

    Bergmann, Michèle; Hartmann, Katrin

    2017-10-17

    Vector-borne diseases (VBDs) are caused by a wide range of pathogens, which are transmitted by a variety of vectors, such as ticks and fleas. As a result of climate changes, more vector-borne diseases are becoming endemic in Germany, not only in dogs, but also in cats. For some of the pathogens prevalence data still need to be investigated in Germany. However, natural infections with Bartonella, Anaplasma, haemotropic Mycoplasma and Borrelia species have already been described in German cats. Clinical relevance of these pathogens is not fully understood, and it is still unknown, why most infected cats stay asymptomatic and which predisposing factors contribute to the development of clinical signs in cats. Moreover, there is a risk of zoonotic transmission for some of the pathogens, e.  g., for some Bartonella spp. infections that are associated with cat scratch disease in humans. Due to the increasing number of VBDs in cats in Germany, preventive measures, such as the use of acaricides and insecticides, should be performed on a regular base in order to reduce the risk of these infections.

  1. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J

    2013-02-14

    Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  2. A Complex System of Glacial Sub-Refugia Drives Endemic Freshwater Biodiversity on the Tibetan Plateau.

    PubMed

    Clewing, Catharina; Albrecht, Christian; Wilke, Thomas

    2016-01-01

    Although only relatively few freshwater invertebrate families are reported from the Tibetan Plateau, the degree of endemism may be high. Many endemic lineages occur within permafrost areas, raising questions about the existence of isolated intra-plateau glacial refugia. Moreover, if such refugia existed, it might be instructive to learn whether they were associated with lakes or with more dynamic ecosystems such as ponds, wetlands, or springs. To study these hypotheses, we used pulmonate snails of the plateau-wide distributed genus Radix as model group and the Lake Donggi Cona drainage system, located in the north-eastern part of the plateau, as model site. First, we performed plateau-wide phylogenetic analyses using mtDNA data to assess the overall relationships of Radix populations inhabiting the Lake Donggi Cona system for revealing refugial lineages. We then conducted regional phylogeographical analyses applying a combination of mtDNA and nuclear AFLP markers to infer the local structure and demographic history of the most abundant endemic Radix clade for identifying location and type of (sub-)refugia within the drainage system. Our phylogenetic analysis showed a high diversity of Radix lineages in the Lake Donggi Cona system. Subsequent phylogeographical analyses of the most abundant endemic clade indicated a habitat-related clustering of genotypes and several Late Pleistocene spatial/demographic expansion events. The most parsimonious explanation for these patterns would be a scenario of an intra-plateau glacial refugium in the Lake Donggi Cona drainage system, which might have consisted of isolated sub-refugia. Though the underlying processes remain unknown, an initial separation of lake and watershed populations could have been triggered by lake-level fluctuations before and during the Last Glacial Maximum. This study inferred the first intra-plateau refugium for freshwater animals on the Tibetan Plateau. It thus sheds new light on the evolutionary history of its endemic taxa and provides important insights into the complex refugial history of a high-altitude ecosystem.

  3. Rapid evolution of introduced tree pathogens via episodic selection and horizontal gene transfer

    Treesearch

    Clive Brasier

    2012-01-01

    Routine selection is simply defined as “the ecological constraints experienced by an endemic organism that favor a relatively stable but fluctuating population structure over time.” Its antithesis is episodic selection, defined as “any sudden ecological disturbance likely to lead to a significant alteration in a species’ population structure” (Brasier 1986, 1995). In...

  4. Effects of Animal Feeding Operations on Water Resources and the Environment

    DTIC Science & Technology

    2000-01-01

    and others tested swine feed and feed ingredients (grain, soybean meal, milk /whey, fats/oils, and protein products). The most frequent serotype...Swine Hepatitis E Virus (sHEV) is a recently discovered virus endemic to Midwest hog herds. The proposed zoonotic nature of Asian strains of human HEV...ground and surface water proximal to large-scale swine operations. We identified chemical pollutants and zoonotic pathogens in the environment on

  5. The re-emergency and persistence of vaccine preventable diseases.

    PubMed

    Borba, Rodrigo C N; Vidal, Vinícius M; Moreira, Lilian O

    2015-08-01

    The introduction of vaccination worldwide dramatically reduced the incidence of pathogenic bacterial and viral diseases. Despite the highly successful vaccination strategies, the number of cases among vaccine preventable diseases has increased in the last decade and several of those diseases are still endemic in different countries. Here we discuss some epidemiological aspects and possible arguments that may explain why ancient diseases such as, measles, polio, pertussis, diphtheria and tuberculosis are still with us.

  6. Survival of enteric pathogens in common beverages: an in vitro study.

    PubMed

    Sheth, N K; Wisniewski, T R; Franson, T R

    1988-06-01

    This in vitro study was undertaken to determine the potential for survival of enteric pathogens in common drinking beverages. Three carbonated soft drinks, two alcoholic beverages, skim milk, and water were inoculated with Salmonella, Shigella, and enterotoxigenic Escherichia coli, and quantitative counts were performed over 2 days. Our studies showed poorest survival of all three organisms in wine, and greatest growth in milk and water. Beer and cola allowed survival of small numbers of Salmonella and E. coli at 48 h, whereas sour mix and diet cola were sterile by 48 h. Survival features may correlate with pH of the beverages. These observations may be useful in guiding travellers for appropriate beverage consumption while visiting areas endemic for "traveller's diarrhea."

  7. Detection of Intestinal Protozoa in the Clinical Laboratory

    PubMed Central

    McHardy, Ian H.; Wu, Max; Shimizu-Cohen, Robyn; Couturier, Marc Roger

    2014-01-01

    Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa. PMID:24197877

  8. Detection of intestinal protozoa in the clinical laboratory.

    PubMed

    McHardy, Ian H; Wu, Max; Shimizu-Cohen, Robyn; Couturier, Marc Roger; Humphries, Romney M

    2014-03-01

    Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa.

  9. Molecular epidemiology of viral hemorrhagic septicemia virus in the Great Lakes region

    USGS Publications Warehouse

    Winton, James; Kurath, Gael; Batts, William

    2008-01-01

    Viral hemorrhagic septicemia virus (VHSV) is considered by many nations and international organizations to be one of the most important viral pathogens of finfish (Office International des Epizooties 2007). For several decades following its initial characterization in the 1950s, VHSV was thought to be limited to Europe where it was regarded as an endemic pathogen of freshwater fish that was especially problematic for farmed rainbow trout, an introduced species (Wolf 1988; Smail 1999). Subsequently, it was shown that VHSV was present among many species of marine and anadromous fishes in both the Pacific and Atlantic Oceans where it has been associated with substantial mortality among both wild and cultured fish (Meyers and Winton 1995; Skall et al. 2005).

  10. Climatic and topographical correlates of plant palaeo- and neoendemism in a Mediterranean biodiversity hotspot.

    PubMed

    Molina-Venegas, Rafael; Aparicio, Abelardo; Lavergne, Sébastien; Arroyo, Juan

    2017-01-01

    Understanding the evolutionary and ecological forces contributing to the emergence of biodiversity hotspots is of outstanding importance to elucidate how they may withstand current climate changes. Here we explored patterns of phylogenetic and non-phylogenetic plant endemism in a Mediterranean biodiversity hotspot. We hypothesized that areas with wet and equable climatic conditions would be prone to long-term persistence of endemic lineages (palaeoendemism), whilst areas of recent local speciation (neoendemism) would be more related to harsher environmental conditions and to high topographical relief promoting speciation. We focused on the Baetic-Rifan biodiversity hotspot (southern Iberian Peninsula and northern Morocco) in combination with molecular phylogenetic information and relative phylogenetic endemism (RPE), a recent phylogenetic measure of endemism, allowing us to discern centres of palaeo- from those of neoendemism. Using eco-geographical regions as study units, we explored correlations between both RPE and endemic species richness with precipitation- and temperature-related variables and with elevation range. Centres of neoendemism were concentrated towards the easternmost part of the hotspot, while centres of palaeoendemism were clustered in the vicinity of the Strait of Gibraltar. The RPE index, indicating more palaeoendemism, was positively correlated with total annual precipitation, while endemic species richness showed a poor correlation. In contrast, elevation range and mean annual temperature were poor predictors of RPE, despite elevation range showing a strong correlation with endemic species richness. The Baetic-Rifan biodiversity hotspot shows clearly differentiated centres of neo- and palaeoendemism. Topographical relief may have driven evolutionary diversification of newly evolved species, while water availability seems more critical for the long-term persistence of ancient lineages in refuge areas of smoother topography. Given climatic trends towards increasing aridification, conservation planners should pay particular attention to preserve areas retaining older phylogenetic lineages, as these areas act as 'natural museums' of biodiversity within the Baetic-Rifan biodiversity hotspot. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter?

    PubMed Central

    2014-01-01

    In southwestern Alberta, interactions between beef cattle and free-ranging elk (Cervus elaphus) may provide opportunities for pathogen transmission. To assess the importance of the transmission route on the potential for interspecies transmission, we conducted a cross-sectional study on four endemic livestock pathogens with three different transmission routes: Bovine Viral Diarrhea Virus and Bovine Herpesvirus 1 (predominantly direct transmission), Mycobacterium avium subsp. paratuberculosis (MAP) (indirect fecal-oral transmission), Neospora caninum (indirect transmission with definitive host). We assessed the occurrence of these pathogens in 28 cow-calf operations exposed or non-exposed to elk, and in 10 elk herds exposed or not to cattle. We characterized the effect of species commingling as a risk factor of pathogen exposure and documented the perceived risk of pathogen transmission at this wildlife-livestock interface in the rural community. Herpesviruses found in elk were elk-specific gamma-herpesviruses unrelated to cattle viruses. Pestivirus exposure in elk could not be ascertained to be of livestock origin. Evidence of MAP circulation was found in both elk and cattle, but there was no statistical effect of the species commingling. Finally, N. caninum was more frequently detected in elk exposed to cattle and this association was still significant after adjustment for herd and sampling year clustering, and individual elk age and sex. Only indirectly transmitted pathogens co-occurred in cattle and elk, indicating the potential importance of the transmission route in assessing the risk of pathogen transmission in multi-species grazing systems. PMID:24517283

  12. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  13. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  14. Detection of Rickettsia Species in Fleas Collected from Cats in Regions Endemic and Nonendemic for Flea-Borne Rickettsioses in California.

    PubMed

    Billeter, Sarah A; Diniz, Pedro Paulo Vissotto de Paiva; Jett, Lindsey A; Wournell, Andrea L; Kjemtrup, Anne M; Padgett, Kerry A; Yoshimizu, Melissa Hardstone; Metzger, Marco E; Barr, Margaret C

    2016-03-01

    Rickettsia typhi, transmitted by rat fleas, causes most human flea-borne rickettsioses worldwide. Another rickettsia, Rickettsia felis, found in cat fleas, Ctenocephalides felis, has also been implicated as a potential human pathogen. In the continental United States, human cases of flea-borne rickettsioses are reported primarily from the southern regions of Texas and California where the cat flea is considered the principal vector. In California, more than 90% of locally acquired human cases are reported from suburban communities within Los Angeles and Orange counties despite the almost ubiquitous presence of cat fleas and their hosts throughout the state. The objective of this study is to assess the presence and infection rate of Rickettsia species in cat fleas from selected endemic and nonendemic regions of California. Cat fleas were collected from cats in Los Angeles County (endemic region) and Sacramento and Contra Costa counties (nonendemic region). Sequencing of 17 amplicons confirmed the presence of R. felis in both the endemic and non-endemic regions with a calculated maximum likelihood estimation of 131 and 234 per 1000 fleas, respectively. R. typhi was not detected in any flea pools. Two R. felis-like genotypes were also detected in fleas from Los Angeles County; Genotype 1 was detected in 1 flea pool and Genotype 2 was found in 10 flea pools. Genotype 1 was also detected in a single flea pool from Sacramento County. Results from this study show that R. felis is widespread in cat flea populations in both flea-borne rickettsioses endemic and nonendemic regions of California, suggesting that a high prevalence of this bacterium in cat fleas does not predispose to increased risk of human infection. Further studies are needed to elucidate the role of R. felis and the two R. felis-like organisms as etiologic agents of human flea-borne rickettsioses in California.

  15. Poultry food products--a source of avian influenza virus transmission to humans?

    PubMed

    Harder, T C; Buda, S; Hengel, H; Beer, M; Mettenleiter, T C

    2016-02-01

    Global human mobility and intercontinental connectivity, expansion of livestock production and encroachment of wildlife habitats by invasive agricultural land use contribute to shape the complexity of influenza epidemiology. The OneHealth approach integrates these and further elements into considerations to improve disease control and prevention. Food of animal origin for human consumption is another integral aspect; if produced from infected livestock such items may act as vehicles of spread of animal pathogens, and, in case of zoonotic agents, as a potential human health hazard. Notifiable zoonotic avian influenza viruses (AIV) have become entrenched in poultry populations in several Asian and northern African countries since 2003. Highly pathogenic (HP) AIV (e.g. H5N1) cause extensive poultry mortality and severe economic losses. HPAIV and low pathogenic AIV (e.g. H7N9) with zoonotic propensities pose risks for human health. More than 1500 human cases of AIV infection have been reported, mainly from regions with endemically infected poultry. Intense human exposure to AIV-infected poultry, e.g. during rearing, slaughtering or processing of poultry, is a major risk factor for acquiring AIV infection. In contrast, human infections through consumption of AIV-contaminated food have not been substantiated. Heating poultry products according to kitchen standards (core temperatures ≥70°C, ≥10 s) rapidly inactivates AIV infectivity and renders fully cooked products safe. Nevertheless, concerted efforts must ensure that poultry products potentially contaminated with zoonotic AIV do not reach the food chain. Stringent and sustained OneHealth measures are required to better control and eventually eradicate, HPAIV from endemic regions. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Sporotrichosis: an update.

    PubMed

    Bonifaz, A; Vázquez-González, D

    2010-10-01

    Sporotrichosis is the most frequent and worldwide distributed subcutaneous mycoses. The aim of this article is to review the most recent aspects of sporotrichosis about its epidemiology, etiologic agents, mycologic characteristics, clinical features, diagnosis and treatment. The causative agents of sporotrichosis belong to five well defined species of dimorphic fungi of the called Sporothrix schenckii complex. Sporotrichosis and its etiologic agents have specific endemic areas, but it is possible to find epidemics of the disease in practically every continent, the entrance via is cutaneous due to the inoculation of the fungi into the skin after a traumatism and less frequent due to respiratory way. Clinical manifestations are widely variable, with important involvement of the skin and the superficial lymphatic system, but also with affection of the mucosa and some organs like lungs, bones and joints. Nowadays sporotrichosis is considered a true zoonosis with important changes related to the endemic areas and the ecologic features of the causative pathogens. The therapy of choice is the potassium iodide (KI), but other alternatives are itraconazole, terbinafine, thermotherapy and in severe cases amphotericin B. The importance of the recognition of the clinical manifestations of the disease in some non-endemic areas helps to challenge the diagnosis and give an accurate therapy.

  17. Transmission Dynamics of Rift Valley Fever Virus: Effects of Live and Killed Vaccines on Epizootic Outbreaks and Enzootic Maintenance

    PubMed Central

    Chamchod, Farida; Cosner, Chris; Cantrell, R. Stephen; Beier, John C.; Ruan, Shigui

    2016-01-01

    Rift Valley fever virus (RVFV) is an arthropod-borne viral pathogen that causes significant morbidity and mortality in small ruminants throughout Africa and the Middle East. Due to the sporadic and explosive nature of RVF outbreaks, vaccination has proved challenging to reduce RVFV infection in the ruminant population. Currently, there are two available types of vaccines, live and killed, in endemic areas. In this study, two mathematical models have been developed to explore the impact of live and killed vaccines on the transmission dynamics of RVFV. We demonstrate in general that vaccination helps reduce the severity of RVF outbreaks and that less delay in implementation and more vaccination attempts and effective vaccines can reduce the outbreak magnitude and the endemic number of RVFV. However, an introduction of a number of ruminants vaccinated by live vaccines in RVFV-free areas may cause an outbreak and RVFV may become endemic if there is sustained use of live vaccines. Other factors that are the important determinants of RVF outbreaks include: unsustained vaccination programs, recruitment of susceptible ruminants, and the seasonal abundance of mosquitoes. PMID:26869999

  18. Parallel independent evolution of pathogenicity within the genus Yersinia

    PubMed Central

    Reuter, Sandra; Connor, Thomas R.; Barquist, Lars; Walker, Danielle; Feltwell, Theresa; Harris, Simon R.; Fookes, Maria; Hall, Miquette E.; Petty, Nicola K.; Fuchs, Thilo M.; Corander, Jukka; Dufour, Muriel; Ringwood, Tamara; Savin, Cyril; Bouchier, Christiane; Martin, Liliane; Miettinen, Minna; Shubin, Mikhail; Riehm, Julia M.; Laukkanen-Ninios, Riikka; Sihvonen, Leila M.; Siitonen, Anja; Skurnik, Mikael; Falcão, Juliana Pfrimer; Fukushima, Hiroshi; Scholz, Holger C.; Prentice, Michael B.; Wren, Brendan W.; Parkhill, Julian; Carniel, Elisabeth; Achtman, Mark; McNally, Alan; Thomson, Nicholas R.

    2014-01-01

    The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens. PMID:24753568

  19. Middle Eocene paleocirculation of the southwestern Atlantic Ocean, the anteroom to an ice-house world: evidence from dinoflagellates

    NASA Astrophysics Data System (ADS)

    Raquel Guerstein, G.; Daners, Gloria; Palma, Elbio; Ferreira, Elizabete P.; Premaor, Eduardo; Amenábar, Cecilia R.; Belgaburo, Alexandra

    2016-04-01

    Middle Eocene dinoflagellate cyst organic walled assemblages from sections located in the Antarctic Peninsula, Tierra del Fuego, Santa Cruz province and south of Chile are mainly represented by endemic taxa, which are also dominant in several circum - Antarctic sites located southern 45° S. Some members of this endemic Antarctic assemblage, including especies of Enneadocysta, Deflandrea, Vozzhennikovia, and Spinidinium, have been recognised in sites along the Southwest Atlantic Ocean Shelf at Colorado (˜38° S), Punta del Este (˜36° S) and Pelotas (˜30° S) basins. Northern 30° S, at Jequitinhonha (˜17oS) and Sergipe (˜11° S) basins, there is no evidence of the endemic Antarctic members, except for Enneadocysta dictyostila, recorded in very low proportion. Based on its positive correlation with CaCO3 percentages we assume that this species is the unique member of the endemic assemblage apparently tolerant to warm surface waters. Previous research developed in the Tasman area has related the presence of endemic taxa at mid- latitudes to a strong clockwise subpolar gyre favoured by the partial continental blockage of the Tasmanian Gateways and the Drake Passage. In this work we propose that the dinoflagellate cyst distribution along the South Atlantic Ocean Shelf can be explained by a similar dynamical mechanism induced by a cyclonic subpolar gyre on the South Atlantic Ocean. The western boundary current of this gyre, starting on the west Antarctic continental slope, would follow a similar path to the present Malvinas Current on the Patagonian slope. Modelling and observational studies at the Patagonian shelf-break have shown that a cyclonic western boundary current promotes upwelling and intrusion of cold oceanic waters to the shelf and intensifies the northward shelf transport. In a similar way we hypothesize that during the Middle Eocene the western boundary current of a proto-Weddell Gyre transported the circum-antarctic waters and the endemic components northward along the Southwestern Atlantic Shelf. During the Late Eocene, the endemic component is replaced by more diverse assemblages with bipolar markers of cooler, typical oceanic species and an increased number of heterotrophic protoperidiniaceans. The opening and deepening of the Tasmanian Gateway and Drake Passage and the subsequent development of an incipient Antarctic Circumpolar Current during the Oligocene disrupted the subpolar gyres and promote the extinction of the endemic species.

  20. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    PubMed

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating spatial proximity analyses into other pathogenicity prediction tools may improve accuracy for other genes and genetic diseases.

  1. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  2. A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates.

    PubMed

    Bech, Claus; Chappell, Mark A; Astheimer, Lee B; Londoño, Gustavo A; Buttemer, William A

    2016-05-01

    Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species.

  3. Going coastal: shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (Canis lupus).

    PubMed

    Weckworth, Byron V; Dawson, Natalie G; Talbot, Sandra L; Flamme, Melanie J; Cook, Joseph A

    2011-05-04

    Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.

  4. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation.

    PubMed

    García-Gil, Alejandro; Gasco-Cavero, Samanta; Garrido, Eduardo; Mejías, Miguel; Epting, Jannis; Navarro-Elipe, Mercedes; Alejandre, Carmen; Sevilla-Alcaine, Elena

    2018-08-15

    The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed. Mean differences of pathogenic bacteria contents between impacted and non-impacted monitoring points were assessed with a two-tailed independent Student's t-test or Mann-Whitney U and correlation coefficients were also calculated. Surprisingly, the results obtained revealed a significant and generalized decrease in waterborne pathogen contents in thermally impacted piezometers compared to that of non-impacted piezometers. This decrease is hypothesized to be caused by a heat shock to bacteria within the heat exchangers. The statistically significant negative correlations obtained between waterborne pathogen counts and temperature could be explained by the spatial distribution of the bacteria, finding that bacteria start to recover with increasing distance from the injection point. Also, different behavior groups fitting exponential regression models were found for the bacteria species studied, justified by the different presence and influence of several aquifer parameters and major, minor and trace elements studied, as well as the coexistence with other bacteria species. The results obtained from this work reinforce the concept of shallow geothermal resources as a clean energy source, as they could also provide the basis to control the pathogenic bacteria contents in groundwater bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Global stability of a multiple infected compartments model for waterborne diseases

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Cao, Jinde

    2014-10-01

    In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0⩽1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.

  6. Flaviviruses, an expanding threat in public health: focus on Dengue, West Nile, and Japanese encephalitis virus

    PubMed Central

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L.; Eugenin, Eliseo Alberto

    2014-01-01

    The flaviviruses Dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex sp), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses. PMID:25287260

  7. Pneumonic Plague Outbreak, Northern Madagascar, 2011

    PubMed Central

    Richard, Vincent; Herindrainy, Perlinot; Soanandrasana, Rahelinirina; Ratsitoharina, Maherisoa; Rakotomanana, Fanjasoa; Andrianalimanana, Samuel; Scholz, Holger C.; Rajerison, Minoarisoa

    2015-01-01

    Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies. PMID:25530466

  8. Diagnostic approach in leptospirosis patients

    NASA Astrophysics Data System (ADS)

    Sembiring, E.

    2018-03-01

    Leptospirosis is as a worldwide zoonotic disease, spread by pathogenic species of the bacterial genus Leptospira that occurs most commonly in tropical and subtropical regions which are one of endemic diseases in some places in Indonesia. The leptospira serovars are naturally carried in the renal tubules of rodents, wild and domestic animals. Human can be infected either through direct contact with urine of infected animals or indirect contact through with contaminated water and soil. Clinical manifestation is highly variable. The most cases are with a mild flu-like illness which may mimic many other diseases. Weil’s disease is the name given to severe illness and is characterized by a severe febrile illness with bleeding, jaundice and renal failure with high mortality rate. Leptospirosis has been frequently underdiagnosed and underreported. The diagnosis of leptospirosis is difficult to confirm and laboratory test is rarely available even in endemic areas.

  9. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus.

    PubMed

    Daep, Carlo Amorin; Muñoz-Jordán, Jorge L; Eugenin, Eliseo Alberto

    2014-12-01

    The flaviviruses dengue, West Nile, and Japanese encephalitis represent three major mosquito-borne viruses worldwide. These pathogens impact the lives of millions of individuals and potentially could affect non-endemic areas already colonized by mosquito vectors. Unintentional transport of infected vectors (Aedes and Culex spp.), traveling within endemic areas, rapid adaptation of the insects into new geographic locations, climate change, and lack of medical surveillance have greatly contributed to the increase in flaviviral infections worldwide. The mechanisms by which flaviviruses alter the immune and the central nervous system have only recently been examined despite the alarming number of infections, related deaths, and increasing global distribution. In this review, we will discuss the expansion of the geographic areas affected by flaviviruses, the potential threats to previously unaffected countries, the mechanisms of pathogenesis, and the potential therapeutic interventions to limit the devastating consequences of these viruses.

  10. Update on Cyclospora cayetanensis, a Food-Borne and Waterborne Parasite

    PubMed Central

    Ortega, Ynés R.; Sanchez, Roxana

    2010-01-01

    Summary: The coccidian parasite Cyclospora cayetanensis is recognized as an emerging pathogen that causes protracted diarrhea in humans. The first cases of Cyclospora infection were reported in the late 1970s and were observed among expatriates and travelers in regions where infections are endemic. Since then, Cyclospora has been considered a cause of traveler's diarrhea. Epidemiological investigations were reported and examined in areas of endemicity even before the true identity of Cyclospora was elucidated. Cyclospora was fully characterized in the early 1990s, but it was not until the 1995 Cyclospora outbreak in the United States and Canada that it caught the attention of the public and physicians. The biology, clinical presentation, epidemiology, diagnosis, treatment, and control of cyclosporiasis are reviewed, with a focus on diagnostic assays currently being used for clinical and environmental samples. Challenges and limitations in working with Cyclospora are also discussed. PMID:20065331

  11. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  12. Reproductive losses caused by bovine viral diarrhea virus and leptospirosis.

    PubMed

    Grooms, Daniel L

    2006-08-01

    Bovine viral diarrhea virus and Leptospira spp. are two of the common pathogenic organisms responsible for reproductive losses in cattle worldwide. Both can be come endemic in herds resulting in chronic low-grade reproductive losses or they can be introduced into relatively naïve herds, resulting in substantial reproductive losses over a short period of time. Both organisms are a differential diagnoses for common reproductive losses that veterinarians investigate, including low conception rates and abortions.

  13. Cryptococcus gattii as an important fungal pathogen of western North America

    PubMed Central

    Marr, Kieren A

    2012-01-01

    Cryptococcus gattii, a pathogenic fungus historically appreciated to be endemic to tropical regions, was recognized to emerge in a more temperate zone of North America in the 1990s. Early reports focused on an outbreak that was first apparent on Vancouver Island (BC, Canada), involving both the veterinary and human population. More recently, it has been recognized that this organism is endemic to a wider geography in western North America, with recognized disease caused by unique molecular subtypes in both healthy and immunosuppressed human hosts and a variety of domestic and wild animals. A number of cases of disease caused by C. gattii isolates that are unrelated to the Vancouver Island–Pacific Northwest outbreak strains have also been recognized in different parts of the USA. As microbiology laboratories have historically not identified these organisms to the species level, our current understanding of the scope of this infection is probably an underestimate. Ongoing public health epidemiologic efforts will be facilitated by increased attention towards culture-confirmed diagnosis and species identification in clinical microbiology laboratories. Early experience presents a strong rationale for increasing diagnostic attention, with multiple clinical features that are unique to this infection, including variability in antifungal susceptibilities and a heightened need for aggressive management of inflammatory responses. Larger prospective studies to evaluate and optimize clinical management are needed. PMID:22734955

  14. Introduction and Establishment of Raccoon Rabies on Islands: Jekyll Island, Georgia, USA as a Case Study.

    PubMed

    Ortiz, Sebastian; Hernandez, Sonia M; Yabsley, Michael J; Becker, Trista I; Carswell, Benjamin; Moore, Yank; Fenton, Heather; Bahnson, Charlie S; Niedringhaus, Kevin; Elsmo, Elizabeth; Orciari, Lillian; Yager, Pamela; Stedman, Nancy L; Nelson, Steven E; Norton, Terry M

    2018-04-01

    The introduction of rabies virus (RABV) to barrier islands, which are often popular tourist destinations with resource-rich habitats and connectivity and proximity to the mainland, is especially concerning because it can easily become endemic due to factors like dense rabies-vector populations (e.g., raccoons [ Procyon lotor]), high inter- and intraspecies contact rates, and anthropogenic activities such as supplemental feeding of feral cats ( Felis catus). In January 2013, a neurologic raccoon found on the Jekyll Island (JI), Georgia, US causeway tested positive for rabies. Mortality investigations of 29 raccoons have been conducted between December 2012-May 2017. The two most common diagnoses were RABV ( n=11) and canine distemper virus (CDV; n=8). Parvoviral enteritis was diagnosed in four raccoons but no coinfections were diagnosed. There was no apparent seasonality for rabies cases, but all CDV cases occurred in spring-fall. Most (64%) rabies submissions came from residential or recreational use areas located near feral cat feeding stations. Jekyll Island is a popular destination where tourists engage in numerous outdoor activities which facilitate human-wildlife interactions. Concerns regarding public and animal health highlight the importance of rabies surveillance, prevention, and control on islands. This is the first report of rabies on JI and emphasizes the importance of disease investigations because the assumption that neurologic raccoons have CDV, an endemic pathogen, can miss the establishment of novel pathogens such as RABV.

  15. Human parvovirus 4 ‘PARV4’ remains elusive despite a decade of study

    PubMed Central

    Matthews, Philippa C.; Sharp, Colin; Simmonds, Peter; Klenerman, Paul

    2017-01-01

    Human parvovirus 4 (‘PARV4’) is a small DNA tetraparvovirus, first reported in 2005. In some populations, PARV4 infection is uncommon, and evidence of exposure is found only in individuals with risk factors for parenteral infection who are infected with other blood-borne viruses. In other settings, seroprevalence studies suggest an endemic, age-associated transmission pattern, independent of any specific risk factors. The clinical impact of PARV4 infection remains uncertain, but reported disease associations include an influenza-like syndrome, encephalitis, acceleration of HIV disease, and foetal hydrops. In this review, we set out to report progress updates from the recent literature, focusing on the investigation of cohorts in different geographical settings, now including insights from Asia, the Middle East, and South America, and discussing whether attributes of viral or host populations underpin the striking differences in epidemiology. We review progress in understanding viral phylogeny and biology, approaches to diagnostics, and insights that might be gained from studies of closely related animal pathogens. Crucial questions about pathogenicity remain unanswered, but we highlight new evidence supporting a possible link between PARV4 and an encephalitis syndrome. The unequivocal evidence that PARV4 is endemic in certain populations should drive ongoing research efforts to understand risk factors and routes of transmission and to gain new insights into the impact of this virus on human health. PMID:28184291

  16. Antibacterial activity of endemic Satureja Khuzistanica Jamzad essential oil against oral pathogens

    PubMed Central

    Seghatoleslami, Sogol; Samadi, Nasrin; Salehnia, Ali; Azimi, Shahram

    2009-01-01

    INTRODUCTION: To assess the antibacterial effects of an Iranian endemic essential oil, Satureja Khuzistanica Jamzad (SKJ) when used as an intracanal antiseptic and interappointment medicament. MATERIALS AND METHODS: Antimicrobial activity and minimum inhibition concentrations (MICs) of SKJ essential oil with and without calcium hydroxide (CH) against eleven aerobic, microaerophilic and anaerobic bacteria were assessed. The evaluation was carried out by agar dilution and well diffusion methods. The results were measured and recorded by an independent observer. Data were analyzed statistically using student t-test. RESULTS: The MIC for eight species was recorded in 0.31 mg/mL of essential oil. Pseudomonas aeruginosa with a MIC value of 1.25 mg/mL appeared to be the most resistant bacterium; while only 0.16 mg/mL of essential oil was sufficient to inhibit the growth of Bacillus subtilis and Staphylococcus aureus. The inhibition zone of the antiseptic oil (at 0.31 mg/mL) with E. faecalis in the well diffusion method was 13 mm; this was comparable with 12.5 mm inhibition zone value of the tetracycline disc (30 µg). No synergistic effect was found in combination of essential oil and CH powder. CONCLUSION: SKJ essential oil with the concentration of 0.31 mg/mL is effective against most of oral pathogens including E. faecalis. PMID:23864870

  17. Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases

    PubMed Central

    Björnsdóttir, Sigríður; Harris, Simon R.; Svansson, Vilhjálmur; Gunnarsson, Eggert; Sigurðardóttir, Ólöf G.; Gammeljord, Kristina; Steward, Karen F.; Newton, J. Richard; Robinson, Carl; Charbonneau, Amelia R. L.

    2017-01-01

    ABSTRACT Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country’s native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans. PMID:28765219

  18. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    PubMed

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef.

    PubMed

    Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A

    2008-09-01

    The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.

  20. Filamentous Fungi.

    PubMed

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  1. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Global distribution and epidemiologic associations of Escherichia coli clonal group A, 1998-2007.

    PubMed

    Johnson, James R; Menard, Megan E; Lauderdale, Tsai-Ling; Kosmidis, Chris; Gordon, David; Collignon, Peter; Maslow, Joel N; Andrasević, Arjana Tambić; Kuskowski, Michael A

    2011-11-01

    Escherichia coli clonal group A (CGA) was first reported in 2001 as an emerging multidrug-resistant extraintestinal pathogen. Because CGA has considerable implications for public health, we examined the trends of its global distribution, clinical associations, and temporal prevalence for the years 1998-2007. We characterized 2,210 E. coli extraintestinal clinical isolates from 32 centers on 6 continents by CGA status for comparison with trimethoprim/sulfamethoxazole (TMP/SMZ) phenotype, specimen type, inpatient/outpatient source, and adult/child host; we adjusted for clustering by center. CGA prevalence varied greatly by center and continent, was strongly associated with TMP/SMZ resistance but not with other epidemiologic variables, and exhibited no temporal prevalence trend. Our findings indicate that CGA is a prominent, primarily TMP/SMZ-resistant extraintestinal pathogen concentrated within the Western world, with considerable pathogenic versatility. The stable prevalence of CGA over time suggests full emergence by the late 1990s, followed by variable endemicity worldwide as an antimicrobial drug-resistant public health threat.

  3. Comparison of competitive exclusion with classical cleaning and disinfection on bacterial load in pig nursery units.

    PubMed

    Luyckx, K; Millet, S; Van Weyenberg, S; Herman, L; Heyndrickx, M; Dewulf, J; De Reu, K

    2016-09-06

    Colonisation of the environment of nursery units by pathogenic micro-organisms is an important factor in the persistence and spread of endemic diseases in pigs and zoonotic pathogens. These pathogens are generally controlled by the use of antibiotics and disinfectants. Since an increasing resistance against these measures has been reported in recent years, methods such as competitive exclusion (CE) are promoted as promising alternatives. This study showed that the infection pressure in CE units after microbial cleaning was not reduced to the same degree as in control units. Despite sufficient administration of probiotic-type spores, the analysed bacteria did not decrease in number after 3 production rounds in CE units, indicating no competitive exclusion. In addition, no differences in feed conversion were found between piglets raised in CE and control units in our study. Also, no differences in faecal consistency (indicator for enteric diseases) was noticed. These results indicate that the CE protocol is not a valuable alternative for classical C&D.

  4. Avoiding Pandemic Fears in the Subway and Conquering the Platypus.

    PubMed

    Gonzalez, A; Vázquez-Baeza, Y; Pettengill, J B; Ottesen, A; McDonald, D; Knight, R

    2016-01-01

    Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the "normal subway microbiome." In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue.

  5. Animal models of highly pathogenic RNA viral infections: encephalitis viruses.

    PubMed

    Holbrook, Michael R; Gowen, Brian B

    2008-04-01

    The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.

  6. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  7. Deer as a potential wildlife reservoir for Parachlamydia species.

    PubMed

    Regenscheit, Nadine; Holzwarth, Nathalie; Greub, Gilbert; Aeby, Sébastien; Pospischil, Andreas; Borel, Nicole

    2012-08-01

    Wildlife populations represent an important reservoir for emerging pathogens and trans-boundary livestock diseases. However, detailed information relating to the occurrence of endemic pathogens such as those of the order Chlamydiales in such populations is lacking. During the hunting season of 2008, 863 samples (including blood, conjunctival swabs, internal organs and faeces) were collected in the Eastern Swiss Alps from 99 free-living red deer (Cervus elaphus) and 64 free-living roe deer (Capreolus capreolus) and tested using ELISA, PCR and immunohistochemistry for members of the family Chlamydiaceae and the genus Parachlamydia. Parachlamydia spp. were detected in the conjunctival swabs, faeces and internal organs of both species of deer (2.4% positive, with a further 29.5% inconclusive). The very low occurrence of Chlamydiaceae (2.5%) was in line with serological data (0.7% seroprevalence for Chlamydia abortus). Further investigations are required to elucidate the zoonotic potential, pathogenicity, and distribution of Parachlamydia spp. in wild ruminants. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Seroconversion for Infectious Pathogens among UK Military Personnel Deployed to Afghanistan, 2008–2011

    PubMed Central

    Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S.; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-01-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008–2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments. PMID:25418685

  9. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia

    Treesearch

    Thomas C. Harrington; Hye Young Yun; Sheng-Shan Lu; Hideaki Goto; Dilzara N. Aghayeva; Stephen W. Fraedrich

    2011-01-01

    The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal...

  10. Characterization of Bacteria in Nigerian Yogurt as Promising Alternative to Antibiotics in Gastrointestinal Infections.

    PubMed

    Ayeni, Anthony Opeyemi; Ruppitsch, Werner; Ayeni, Funmilola Abidemi

    2018-03-14

    Gastrointestinal infections are endemic in Nigeria and several factors contribute to their continual survival, including bacterial resistance to commonly used antibiotics. Nigerian yogurts do not include probiotics, and limited information is available about the antimicrobial properties of the fermenters in the yogurt against gastrointestinal pathogens. Therefore, the antimicrobial potentials of bacteria in Nigeria-produced yogurts against intestinal pathogens were investigated in this study. Viable counts of lactic acid bacteria (LAB) in 15 brands of yogurt were enumerated and the bacteria identified by partial sequencing of 16S rRNA gene. Susceptibility of the gastrointestinal pathogens (Salmonella, Shigella and E. coli ) to antibiotics by disc diffusion method, to viable LAB by the agar overlay method, and to the cell-free culture supernatant (CFCS) of the LAB were investigated. Co-culture analysis of LAB and pathogens were also done. Viable counts of 1.5 × 10 11 cfu/ml were observed in some yogurt samples. Two genera were identified: Lactobacillus (70.7%) and Acetobacter (29.3%). The Lactobacillus species reduced multidrug-resistant gastrointestinal pathogens by 4 to 5 log while the zones of inhibition ranged between 11 and 23. The Lactobacillus and Acetobacter strains examined displayed good activities against the multidrug-resistant tested pathogens. This is the first report of antimicrobial activities of acetic acid bacteria isolated from yogurt in Nigeria.

  11. Post-infectious autoimmune disorders: Sydenham's chorea, PANDAS and beyond.

    PubMed

    Williams, Kyle A; Swedo, Susan E

    2015-08-18

    Infections, and the resulting immune response to these infections, have recently received increased recognition as pathogenic mechanisms for neuropsychiatric disorders. Sydenham's chorea (SC), a widely recognized post-streptococcal autoimmune disorder, represents a model for this proposed pathogenesis. In SC, a dysregulated immune response to a streptococcal infection is hypothesized to result in inflammation of neuronal networks, particularly the basal ganglia nuclei. The resulting dysfunction in the basal ganglia nuclei are hypothesized to lead to a constellation of adventitious movements and psychiatric symptoms, which investigations have shown are amenable to immunomodulatory therapies. PANDAS (Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infections) has been proposed as a variant of SC, and is hypothesized to share a pathogenic mechanism, despite a unique symptom profile of predominantly psychiatric symptoms. In this review, we present the clinical aspects of both disorders, the data for potential shared etiopathogenesis between them, and the evidence for the therapeutic use of immunomodulatory therapies for the symptoms of SC and PANDAS. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection.

    PubMed

    Díaz, Fabián E; Abarca, Katia; Kalergis, Alexis M

    2018-04-01

    The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi , including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models. Copyright © 2018 American Society for Microbiology.

  13. Cattle movements and trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda

    PubMed Central

    2013-01-01

    Background The northwards spread of acute T. b. rhodesiense sleeping sickness in Uganda has been linked to cattle movements associated with restocking following the end to military conflict in 2006. This study examined the number of cattle traded from T. b. rhodesiense endemic districts, the prevalence of the parasite in cattle being traded and the level of trypanocidal treatment at livestock markets. Methods Between 2008 and 2009 interviews were carried out with government veterinarians from 20 districts in Uganda, 18 restocking organisations and numerous livestock traders and veterinarians. Direct observations, a review of movement permit records (2006 to 2008) and blood sampling of cattle (n = 1758) for detection of parasites were also conducted at 10 livestock markets in T. b. rhodesiense endemic districts. Results Records available from 8 out of 47 identified markets showed that 39.5% (5,238/13,267) of the inter-district cattle trade between mid-2006 and mid-2008 involved movement from endemic areas to pathogen-free districts. PCR analysis showed a prevalence of 17.5% T. brucei s.l. (n = 307/1758 [95% CI: 15.7-19.2]) and 1.5% T. b. rhodesiense (n = 26/1758 [95% CI: 0.9-2.0]) from these same markets. In a two-year period, between late-2006 to late-2008, an estimated 72,321 to 86,785 cattle (57, 857 by 18 restocking organisations and 10,214 to 24,679 by private traders) were imported into seven pathogen-free northern districts, including districts that were endemic for T. b. gambiense. Between 281 and 1,302 of these cattle were likely to have carried T. b. rhodesiense. While governmental organisations predominantly adhered to trypanocidal treatment, most Non-Governmental Organisations (NGOs) and private traders did not. Inadequate market infrastructure, poor awareness, the need for payment for drug treatments, and the difficulty in enforcing a policy of treatment at point of sale contributed to non-compliance. Conclusion With increasing private trade, preventing the spread of Rhodesian sleeping sickness in Uganda requires government support to ensure mandatory trypanocidal treatment at livestock markets, investment in market infrastructure and possible drug subsidy. Mapping the northern reaches of T. b. rhodesiense in livestock and preparation of risk assessments for cattle trading could mitigate future outbreaks. PMID:24289452

  14. Cattle movements and trypanosomes: restocking efforts and the spread of Trypanosoma brucei rhodesiense sleeping sickness in post-conflict Uganda.

    PubMed

    Selby, Richard; Bardosh, Kevin; Picozzi, Kim; Waiswa, Charles; Welburn, Susan C

    2013-09-27

    The northwards spread of acute T. b. rhodesiense sleeping sickness in Uganda has been linked to cattle movements associated with restocking following the end to military conflict in 2006. This study examined the number of cattle traded from T. b. rhodesiense endemic districts, the prevalence of the parasite in cattle being traded and the level of trypanocidal treatment at livestock markets. Between 2008 and 2009 interviews were carried out with government veterinarians from 20 districts in Uganda, 18 restocking organisations and numerous livestock traders and veterinarians. Direct observations, a review of movement permit records (2006 to 2008) and blood sampling of cattle (n = 1758) for detection of parasites were also conducted at 10 livestock markets in T. b. rhodesiense endemic districts. Records available from 8 out of 47 identified markets showed that 39.5% (5,238/13,267) of the inter-district cattle trade between mid-2006 and mid-2008 involved movement from endemic areas to pathogen-free districts. PCR analysis showed a prevalence of 17.5% T. brucei s.l. (n = 307/1758 [95% CI: 15.7-19.2]) and 1.5% T. b. rhodesiense (n = 26/1758 [95% CI: 0.9-2.0]) from these same markets. In a two-year period, between late-2006 to late-2008, an estimated 72,321 to 86,785 cattle (57, 857 by 18 restocking organisations and 10,214 to 24,679 by private traders) were imported into seven pathogen-free northern districts, including districts that were endemic for T. b. gambiense. Between 281 and 1,302 of these cattle were likely to have carried T. b. rhodesiense. While governmental organisations predominantly adhered to trypanocidal treatment, most Non-Governmental Organisations (NGOs) and private traders did not. Inadequate market infrastructure, poor awareness, the need for payment for drug treatments, and the difficulty in enforcing a policy of treatment at point of sale contributed to non-compliance. With increasing private trade, preventing the spread of Rhodesian sleeping sickness in Uganda requires government support to ensure mandatory trypanocidal treatment at livestock markets, investment in market infrastructure and possible drug subsidy. Mapping the northern reaches of T. b. rhodesiense in livestock and preparation of risk assessments for cattle trading could mitigate future outbreaks.

  15. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep.

    PubMed

    Faburay, Bonto; McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37-38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31-32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3-6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas.

  16. A glycosylated recombinant subunit candidate vaccine consisting of Ehrlichia ruminantium major antigenic protein1 induces specific humoral and Th1 type cell responses in sheep

    PubMed Central

    McGill, Jodi; Jongejan, Frans

    2017-01-01

    Heartwater, or cowdriosis, is a tick-borne disease of domestic and wild ruminants that is endemic in the Caribbean and sub-Saharan Africa. The disease is caused by an intracellular pathogen, Ehrlichia ruminantium and may be fatal within days of the onset of clinical signs with mortality rates of up to 90% in susceptible hosts. Due to the presence of competent tick vectors in North America, there is substantial risk of introduction of heartwater with potentially devastating consequences to the domestic livestock industry. There is currently no reliable or safe vaccine for use globally. To develop a protective DIVA (differentiate infected from vaccinated animals) subunit vaccine for heartwater, we targeted the E. ruminantium immunodominant major antigenic protein1 (MAP1) with the hypothesis that MAP1 is a glycosylated protein and glycans contained in the antigenic protein are important epitope determinants. Using a eukaryotic recombinant baculovirus expression system, we expressed and characterized, for the first time, a glycoform profile of MAP1 of two Caribbean E. ruminantium isolates, Antigua and Gardel. We have shown that the 37–38 kDa protein corresponded to a glycosylated form of the MAP1 protein, whereas the 31–32 kDa molecular weight band represented the non-glycosylated form of the protein frequently reported in scientific literature. Three groups of sheep (n = 3–6) were vaccinated with increasing doses of a bivalent (Antigua and Gardel MAP1) rMAP1 vaccine cocktail formulation with montanide ISA25 as an adjuvant. The glycosylated recombinant subunit vaccine induced E. ruminantium-specific humoral and Th1 type T cell responses, which are critical for controlling intracellular pathogens, including E. ruminantium, in infected hosts. These results provide an important basis for development of a subunit vaccine as a novel strategy to protect susceptible livestock against heartwater in non-endemic and endemic areas. PMID:28957443

  17. Development of a genotype-by-sequencing immunogenetic assay as exemplified by screening for variation in red fox with and without endemic rabies exposure.

    PubMed

    Donaldson, Michael E; Rico, Yessica; Hueffer, Karsten; Rando, Halie M; Kukekova, Anna V; Kyle, Christopher J

    2018-01-01

    Pathogens are recognized as major drivers of local adaptation in wildlife systems. By determining which gene variants are favored in local interactions among populations with and without disease, spatially explicit adaptive responses to pathogens can be elucidated. Much of our current understanding of host responses to disease comes from a small number of genes associated with an immune response. High-throughput sequencing (HTS) technologies, such as genotype-by-sequencing (GBS), facilitate expanded explorations of genomic variation among populations. Hybridization-based GBS techniques can be leveraged in systems not well characterized for specific variants associated with disease outcome to "capture" specific genes and regulatory regions known to influence expression and disease outcome. We developed a multiplexed, sequence capture assay for red foxes to simultaneously assess ~300-kbp of genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of predicted adaptive significance and their putative upstream regulatory regions along with 23 neutral microsatellite regions to control for demographic effects. The assay was applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geographically restricted and endemic to coastal tundra regions, yet absent from the boreal interior. The assay provided 61.5% on-target enrichment with relatively even sequence coverage across all targeted loci and samples (mean = 50×), which allowed us to elucidate genetic variation across introns, exons, and potential regulatory regions (4,819 SNPs). Challenges remained in accurately describing microsatellite variation using this technique; however, longer-read HTS technologies should overcome these issues. We used these data to conduct preliminary analyses and detected genetic structure in a subset of red fox immune-related genes between regions with and without endemic arctic rabies. This assay provides a template to assess immunogenetic variation in wildlife disease systems.

  18. Plague.

    PubMed

    Prentice, Michael B; Rahalison, Lila

    2007-04-07

    Bubonic plague is an often fulminant systemic zoonosis, caused by Yersinia pestis. Conventional microbiology, bacterial population genetics, and genome sequence data, all suggest that Y pestis is a recently evolved clone of the enteric pathogen Yersinia pseudotuberculosis. The genetic basis of this organism's rapid adaptation to its insect vector (the flea) with transmission between mammalian hosts by novel subcutaneous and pneumonic routes of infection is becoming clearer. This transition provides a paradigm for the way in which new pathogens could emerge. Plague in humans is controlled by suppression of rodent reservoir hosts and their fleas and by early detection and treatment of cases of disease. Detection systems for plague in non-endemic regions might now be needed because of a bioterrorism threat. Rapid diagnostic tests are available and a subunit vaccine is in clinical trials.

  19. Mapping the evolutionary trajectories of morbilliviruses: what, where and whither.

    PubMed

    Nambulli, Sham; Sharp, Claire R; Acciardo, Andrew S; Drexler, J Felix; Duprex, W Paul

    2016-02-01

    Morbilliviruses are pathogens of humans and other animals. Live attenuated morbillivirus vaccines have been used to end endemic transmission of measles virus (MV) in many parts of the developed world and to eradicate rinderpest virus. Entry is mediated by two different receptors which govern virus lymphotropism and epitheliotropism. Morbillivirus transmissibility is unparalleled and MV represents the most infectious human pathogen on earth. Their evolutionary origins remain obscure and their potential for adaption to new hosts is poorly understood. It has been suggested that MV could be eradicated. Therefore it is imperative to dissect barriers which restrict cross species infections. This is important as ecological studies identify novel morbilliviruses in a vast number of small mammals and carnivorous predators. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Epidemiology, clinical features, diagnosis and treatment of Haemophilus ducreyi - a disappearing pathogen?

    PubMed

    Lewis, David A

    2014-06-01

    Chancroid, caused by Haemophilus ducreyi, has declined in importance as a sexually transmitted pathogen in most countries where it was previously endemic. The global prevalence of chancroid is unknown as most countries lack the required laboratory diagnostic capacity and surveillance systems to determine this. H. ducreyi has recently emerged as a cause of chronic skin ulceration in some South Pacific islands. Although no antimicrobial susceptibility data for H. ducreyi have been published for two decades, it is still assumed that the infection will respond successfully to treatment with recommended cephalosporin, macrolide or fluoroquinolone-based regimens. HIV-1-infected patients require careful follow-up due to reports of treatment failure with single dose regimens. Buboes may need additional treatment with either aspiration or excision and drainage.

  1. Enteric bacterial pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with coastal urbanization and freshwater runoff

    PubMed Central

    Miller, Melissa A.; Byrne, Barbara A.; Jang, Spencer S.; Dodd, Erin M.; Dorfmeier, Elene; Harris, Michael D.; Ames, Jack; Paradies, David; Worcester, Karen; Jessup, David A.; Miller, Woutrina A.

    2009-01-01

    Although protected for nearly a century, California’s sea otters have been slow to recover, in part due to exposure to fecally-associated protozoal pathogens like Toxoplasma gondii and Sarcocystis neurona. However, potential impacts from exposure to fecal bacteria have not been systematically explored. Using selective media, we examined feces from live and dead sea otters from California for specific enteric bacterial pathogens (Campylobacter, Salmonella, Clostridium perfringens, C. difficile and Escherichia coli O157:H7), and pathogens endemic to the marine environment (Vibrio cholerae, V. parahaemolyticus and Plesiomonas shigelloides). We evaluated statistical associations between detection of these pathogens in otter feces and demographic or environmental risk factors for otter exposure, and found that dead otters were more likely to test positive for C. perfringens, Campylobacter and V. parahaemolyticus than were live otters. Otters from more urbanized coastlines and areas with high freshwater runoff (near outflows of rivers or streams) were more likely to test positive for one or more of these bacterial pathogens. Other risk factors for bacterial detection in otters included male gender and fecal samples collected during the rainy season when surface runoff is maximal. Similar risk factors were reported in prior studies of pathogen exposure for California otters and their invertebrate prey, suggesting that land-sea transfer and/or facilitation of pathogen survival in degraded coastal marine habitat may be impacting sea otter recovery. Because otters and humans share many of the same foods, our findings may also have implications for human health. PMID:19720009

  2. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera).

    PubMed

    Giblot-Ducray, Danièle; Marefat, Alireza; Gillings, Michael R; Parkinson, Neil M; Bowman, John P; Ophel-Keller, Kathy; Taylor, Cathy; Facelli, Evelina; Scott, Eileen S

    2009-12-01

    Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.

  3. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals.

    PubMed

    Jordana, Xavier; Marín-Moratalla, Nekane; DeMiguel, Daniel; Kaiser, Thomas M; Köhler, Meike

    2012-08-22

    Here, we test whether the increase in tooth height in insular endemics results from the expansion of the dietary niche under resource limitation, as widely considered, or whether it represents an investment in dental durability in response to the selection for extended longevity under low levels of extrinsic mortality. We tested these hypotheses in the extremely hypsodont fossil bovid Myotragus balearicus from the Balearic Islands, an ideal model to study the evolutionary trends on islands. Dental abrasion was significantly lower in the insular bovid than in highly hypsodont continental artiodactyls, suggesting that feeding habits are not the sole driving force behind increased crown height. However, the estimated longevity for M. balearicus based on dental durability was two times that predicted from body mass. Survivorship curves confirm that an extraordinarily large number of individuals approached the longevity of the species. Our results, hence, provide evidence that hypsodonty in insular endemics is the outcome of selection for increased durability of the permanent dentition in association with an extended lifespan. In the context of insularity, our results lend additional support to the disposable soma theory of ageing confirming the dependency of somatic maintenance and repair on lifespan, and its control by resource availability and extrinsic mortality.

  4. Ecological stability during the LGM and the mid-Holocene in the Alpine Steppes of Tibet?

    NASA Astrophysics Data System (ADS)

    Miehe, Georg; Miehe, Sabine; Bach, Kerstin; Kluge, Jürgen; Wesche, Karsten; Yongping, Yang; Jianquan, Liu

    2011-09-01

    Arid and Alpine ecosystems are known for extreme environmental changes during the Late Quaternary. We hypothesize that the world's largest Alpine arid ecosystem however, the Alpine Steppes of the Tibetan highlands, remained ecologically stable during the LGM and the mid-Holocene. This hypothesis is tested by distributional range of plant species, plant life forms and rate of endemism. The set of character species has a precipitation gradient between 50 and 350 mm/a, testifying for resilience to precipitation changes. 83% of the species have a wider vertical range than 1000 m used as a proxy for resilience to temperature changes. 30% of the species are endemic with 10 endemic genera, including plate-shaped cushions as a unique plant life form. These findings are in line with palaeo-ecological proxies (δ 18O, pollen) allowing the assumption that Alpine Steppes persisted during the LGM with 3 to 4 K lower summer temperatures. During the mid-Holocene, forests could have replaced Alpine Steppes in the upper catchments of the Huang He, Yangtze, Mekong, Salween and Yarlung Zhangbo, but not in the interior basins of the north-western highlands, because the basins were then flooded, suppressing forests and supporting the environmental stability of this arid Alpine grassland biome.

  5. Exploring Phylogeographic Congruence in a Continental Island System.

    PubMed

    Goldberg, Julia; Trewick, Steven A

    2011-08-03

    A prediction in phylogeographic studies is that patterns of lineage diversity and timing will be similar within the same landscape under the assumption that these lineages have responded to past environmental changes in comparable ways. Eight invertebrate taxa from four different orders were included in this study of mainland New Zealand and Chatham Islands lineages to explore outcomes of island colonization. These comprised two orthopteran genera, one an endemic forest-dwelling genus of cave weta (Rhaphidophoridae, Talitropsis) and the other a grasshopper (Acrididae, Phaulacridum) that inhabits open grassland; four genera of Coleoptera including carabid beetles (Mecodema), stag beetles (Geodorcus), weevils (Hadramphus) and clickbeetles (Amychus); the widespread earwig genus Anisolabis (Dermaptera) that is common on beaches in New Zealand and the Chatham Islands, and an endemic and widespread cockroach genus Celatoblatta (Blattodea). Mitochondrial DNA data were used to reconstruct phylogeographic hypotheses to compare among these taxa. Strikingly, despite a maximum age of the Chathams of ~4 million years there is no concordance among these taxa, in the extent of genetic divergence and partitioning between Chatham and Mainland populations. Some Chatham lineages are represented by insular endemics and others by haplotypes shared with mainland populations. These diverse patterns suggest that combinations of intrinsic (taxon ecology) and extrinsic (extinction and dispersal) factors can result in apparently very different biogeographic outcomes.

  6. Exploring Phylogeographic Congruence in a Continental Island System

    PubMed Central

    Goldberg, Julia; Trewick, Steven A.

    2011-01-01

    A prediction in phylogeographic studies is that patterns of lineage diversity and timing will be similar within the same landscape under the assumption that these lineages have responded to past environmental changes in comparable ways. Eight invertebrate taxa from four different orders were included in this study of mainland New Zealand and Chatham Islands lineages to explore outcomes of island colonization. These comprised two orthopteran genera, one an endemic forest-dwelling genus of cave weta (Rhaphidophoridae, Talitropsis) and the other a grasshopper (Acrididae, Phaulacridum) that inhabits open grassland; four genera of Coleoptera including carabid beetles (Mecodema), stag beetles (Geodorcus), weevils (Hadramphus) and clickbeetles (Amychus); the widespread earwig genus Anisolabis (Dermaptera) that is common on beaches in New Zealand and the Chatham Islands, and an endemic and widespread cockroach genus Celatoblatta (Blattodea). Mitochondrial DNA data were used to reconstruct phylogeographic hypotheses to compare among these taxa. Strikingly, despite a maximum age of the Chathams of ∼4 million years there is no concordance among these taxa, in the extent of genetic divergence and partitioning between Chatham and Mainland populations. Some Chatham lineages are represented by insular endemics and others by haplotypes shared with mainland populations. These diverse patterns suggest that combinations of intrinsic (taxon ecology) and extrinsic (extinction and dispersal) factors can result in apparently very different biogeographic outcomes. PMID:26467734

  7. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals

    PubMed Central

    Jordana, Xavier; Marín-Moratalla, Nekane; DeMiguel, Daniel; Kaiser, Thomas M.; Köhler, Meike

    2012-01-01

    Here, we test whether the increase in tooth height in insular endemics results from the expansion of the dietary niche under resource limitation, as widely considered, or whether it represents an investment in dental durability in response to the selection for extended longevity under low levels of extrinsic mortality. We tested these hypotheses in the extremely hypsodont fossil bovid Myotragus balearicus from the Balearic Islands, an ideal model to study the evolutionary trends on islands. Dental abrasion was significantly lower in the insular bovid than in highly hypsodont continental artiodactyls, suggesting that feeding habits are not the sole driving force behind increased crown height. However, the estimated longevity for M. balearicus based on dental durability was two times that predicted from body mass. Survivorship curves confirm that an extraordinarily large number of individuals approached the longevity of the species. Our results, hence, provide evidence that hypsodonty in insular endemics is the outcome of selection for increased durability of the permanent dentition in association with an extended lifespan. In the context of insularity, our results lend additional support to the disposable soma theory of ageing confirming the dependency of somatic maintenance and repair on lifespan, and its control by resource availability and extrinsic mortality. PMID:22535784

  8. [Septic arthritis caused by Streptococcus suis].

    PubMed

    Hedegaard, Sofie Sommer; Zaccarin, Matthias; Lindberg, Jens

    2013-05-27

    Streptococcus suis is a global endemic swine pathogen. S. suis can cause meningitis, endocarditis and severe sepsis in humans, who are exposed to swine. Human infection with S. suis was first reported in 1968, since then, human infections have been sporadic although an outbreak in China counted 215 cases. In a rare case of disseminated arthritis we found that correct clinical diagnosis was difficult due to unspecific symptomatology and slow growing bacterial culture. However, conducting thorough examinations is crucial, and if treated correctly the outcome is favourable.

  9. Habitat, wildlife and one health: Arcanobacterium pyogenes in Maryland and Upper Eastern Shore white-tailed deer populations

    USGS Publications Warehouse

    Turner, Melissa M.; DePerno, Christopher S.; Conner, Mark C.; Eyler, T. Brian; Lancia, Richard A.; Klaver, Robert W.; Stoskopf, Michael K.

    2013-01-01

    Conclusion: Our study indicates A. pyogenes may be carried widely among white-tailed deer regardless of sex or age class, but we found no evidence the pathogen is acquired in utero. The distribution of A. pyogenes across regions and concentration in a region with low livestock levels suggests the potential for localized endemicity of the organism and the possibility that deer may serve as a maintenance reservoir for an emerging one health concern.

  10. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011

    USDA-ARS?s Scientific Manuscript database

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in U.S. since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the U.S. was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotype...

  11. Coinfections acquired from ixodes ticks.

    PubMed

    Swanson, Stephen J; Neitzel, David; Reed, Kurt D; Belongia, Edward A

    2006-10-01

    The pathogens that cause Lyme disease (LD), human anaplasmosis, and babesiosis can coexist in Ixodes ticks and cause human coinfections. Although the risk of human coinfection differs by geographic location, the true prevalence of coinfecting pathogens among Ixodes ticks remains largely unknown for the majority of geographic locations. The prevalence of dually infected Ixodes ticks appears highest among ticks from regions of North America and Europe where LD is endemic, with reported prevalences of < or =28%. In North America and Europe, the majority of tick-borne coinfections occur among humans with diagnosed LD. Humans coinfected with LD and babesiosis appear to have more intense, prolonged symptoms than those with LD alone. Coinfected persons can also manifest diverse, influenza-like symptoms, and abnormal laboratory test results are frequently observed. Coinfecting pathogens might alter the efficiency of transmission, cause cooperative or competitive pathogen interactions, and alter disease severity among hosts. No prospective studies to assess the immunologic effects of coinfection among humans have been conducted, but animal models demonstrate that certain coinfections can modulate the immune response. Clinicians should consider the likelihood of coinfection when pursuing laboratory testing or selecting therapy for patients with tick-borne illness.

  12. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley.

    PubMed

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-06-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant-pathogen co-evolution in wild systems.

  14. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains.

    PubMed

    Pretzer, Carina; Druzhinina, Irina S; Amaro, Carmen; Benediktsdóttir, Eva; Hedenström, Ingela; Hervio-Heath, Dominique; Huhulescu, Steliana; Schets, Franciska M; Farnleitner, Andreas H; Kirschner, Alexander K T

    2017-01-01

    Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Quantifying the impact of expanded age group campaigns for polio eradication.

    PubMed

    Wagner, Bradley G; Behrend, Matthew R; Klein, Daniel J; Upfill-Brown, Alexander M; Eckhoff, Philip A; Hu, Hao

    2014-01-01

    A priority of the Global Polio Eradication Initiative (GPEI) 2013-2018 strategic plan is to evaluate the potential impact on polio eradication resulting from expanding one or more Supplementary Immunization Activities (SIAs) to children beyond age five-years in polio endemic countries. It has been hypothesized that such expanded age group (EAG) campaigns could accelerate polio eradication by eliminating immunity gaps in older children that may have resulted from past periods of low vaccination coverage. Using an individual-based mathematical model, we quantified the impact of EAG campaigns in terms of probability of elimination, reduction in polio transmission and age stratified immunity levels. The model was specifically calibrated to seroprevalence data from a polio-endemic region: Zaria, Nigeria. We compared the impact of EAG campaigns, which depend only on age, to more targeted interventions which focus on reaching missed populations. We found that EAG campaigns would not significantly improve prospects for polio eradication; the probability of elimination increased by 8% (from 24% at baseline to 32%) when expanding three annual SIAs to 5-14 year old children and by 18% when expanding all six annual SIAs. In contrast, expanding only two of the annual SIAs to target hard-to-reach populations at modest vaccination coverage-representing less than one tenth of additional vaccinations required for the six SIA EAG scenario-increased the probability of elimination by 55%. Implementation of EAG campaigns in polio endemic regions would not improve prospects for eradication. In endemic areas, vaccination campaigns which do not target missed populations will not benefit polio eradication efforts.

  16. Leishmania infection and host-blood feeding preferences of phlebotomine sandflies and canine leishmaniasis in an endemic European area, the Algarve Region in Portugal

    PubMed Central

    Maia, Carla; Dionísio, Lídia; Afonso, Maria Odete; Neto, Luís; Cristóvão, José Manuel; Campino, Lenea

    2013-01-01

    The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection. PMID:23827997

  17. Bank vole immunoheterogeneity may limit Nephropatia Epidemica emergence in a French non-endemic region.

    PubMed

    Dubois, A; Castel, G; Murri, S; Pulido, C; Pons, J-B; Benoit, L; Loiseau, A; Lakhdar, L; Galan, M; Marianneau, P; Charbonnel, N

    2018-03-01

    Ecoevolutionary processes affecting hosts, vectors and pathogens are important drivers of zoonotic disease emergence. In this study, we focused on nephropathia epidemica (NE), which is caused by Puumala hantavirus (PUUV) whose natural reservoir is the bank vole, Myodes glareolus. We questioned the possibility of NE emergence in a French region that is considered to be NE-free but that is adjacent to a NE-endemic region. We first confirmed the epidemiology of these two regions and we demonstrated the absence of spatial barriers that could have limited dispersal, and consequently, the spread of PUUV into the NE-free region. We next tested whether regional immunoheterogeneity could impact PUUV chances to circulate and persist in the NE-free region. We showed that bank voles from the NE-free region were sensitive to experimental PUUV infection. We observed high levels of immunoheterogeneity between individuals and also between regions. Antiviral gene expression (Tnf and Mx2) reached higher levels in bank voles from the NE-free region. During experimental infections, anti-PUUV antibody production was higher in bank voles from the NE-endemic region. These results indicated a lower susceptibility to PUUV for bank voles from this NE-free region, which might limit PUUV persistence and therefore, the risk of NE.

  18. Association between arsenic exposure and soluble thrombomodulin: A cross sectional study in Bangladesh

    PubMed Central

    Islam, Md. Shofikul; Rahman, Atiqur; Anjum, Adiba; Hossain, Faruk; Mohanto, Nayan Chandra; Karim, Md. Rezaul; Hoque, Md. Mominul; Saud, Zahangir Alam; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2017-01-01

    Chronic exposure to arsenic is associated with increased morbidity and mortality from cardiovascular disease (CVD); however, plausible biomarker for early prediction and the underlying mechanism of arsenic-related CVD have not yet been clearly understood. Endothelial dysfunction plays a central role in the development of CVD. We hypothesized that endothelial damage or dysfunction is an important aspect and may be an early event of arsenic-related CVD. Soluble thrombomodulin (sTM) in serum is thought to be a specific and stable marker for endothelial damage or dysfunction. This study was designed to evaluate the association between chronic exposure to arsenic and sTM among human subjects in arsenic-endemic and non-endemic rural areas in Bangladesh. A total of 321 study subjects (217 from arsenic-endemic areas and 104 from a non-endemic area) were recruited. Subjects’ arsenic exposure levels (i.e., drinking water, hair and nail arsenic concentrations) were measured by Inductively Coupled Plasma Mass Spectroscopy. The subjects’ serum sTM levels were quantified by immunoassay kit. The average sTM levels of the subjects in arsenic-endemic and non-endemic areas were 4.58 ± 2.20 and 2.84 ± 1.29 (ng mL-1) respectively, and the difference was significant (p<0.001). Arsenic exposure levels showed a significant (water arsenic: rs = 0.339, p<0.001, hair arsenic: rs = 0.352, p<0.001 and nail arsenic: rs = 0.308, p<0.001) positive associations with sTM levels. Soluble TM levels were higher in the higher exposure gradients if we stratified the subjects into tertile groups (low, medium and high) based on the arsenic concentrations of the subjects’ drinking water, hair and nails. Finally, increased levels of sTM were negatively correlated with high density lipoprotein cholesterol (HDL-C), and positively correlated with intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Results of this study show that chronic exposure to arsenic has mild to moderate association with sTM levels. PMID:28399171

  19. Why do different oceanic archipelagos harbour contrasting levels of species diversity? The macaronesian endemic genus Pericallis (Asteraceae) provides insight into explaining the 'Azores diversity Enigma'.

    PubMed

    Jones, K E; Pérez-Espona, S; Reyes-Betancort, J A; Pattinson, D; Caujapé-Castells, J; Hiscock, S J; Carine, M A

    2016-10-08

    Oceanic archipelagos typically harbour extensive radiations of flowering plants and a high proportion of endemics, many of which are restricted to a single island (Single Island Endemics; SIEs). The Azores represents an anomaly as overall levels of endemism are low; there are few SIEs and few documented cases of intra-archipelago radiations. The distinctiveness of the flora was first recognized by Darwin and has been referred to as the 'Azores Diversity Enigma' (ADE). Diversity patterns in the Macaronesian endemic genus Pericallis (Asteraceae) exemplify the ADE. In this study we used morphometric, Amplified Length Polymorphisms, and bioclimatic data for herbaceous Pericallis lineages endemic to the Azores and the Canaries, to test two key hypotheses proposed to explain the ADE: i) that it is a taxonomic artefact or Linnean shortfall, ie. the under description of taxa in the Azores or the over-splitting of taxa in the Canaries and (ii) that it reflects the greater ecological homogeneity of the Azores, which results in limited opportunity for ecological diversification compared to the Canaries. In both the Azores and the Canaries, morphological patterns were generally consistent with current taxonomic classifications. However, the AFLP data showed no genetic differentiation between the two currently recognized Azorean subspecies that are ecologically differentiated. Instead, genetic diversity in the Azores was structured geographically across the archipelago. In contrast, in the Canaries genetic differentiation was mostly consistent with morphology and current taxonomic treatments. Both Azorean and Canarian lineages exhibited ecological differentiation between currently recognized taxa. Neither a Linnean shortfall nor the perceived ecological homogeneity of the Azores fully explained the ADE-like pattern observed in Pericallis. Whilst variation in genetic data and morphological data in the Canaries were largely congruent, this was not the case in the Azores, where genetic patterns reflected inter-island geographical isolation, and morphology reflected intra-island bioclimatic variation. The combined effects of differences in (i) the extent of geographical isolation, (ii) population sizes and (iii) geographical occupancy of bioclimatic niche space, coupled with the morphological plasticity of Pericallis, may all have contributed to generating the contrasting patterns observed in the archipelagos.

  20. Late Quaternary climate stability and the origins and future of global grass endemism.

    PubMed

    Sandel, Brody; Monnet, Anne-Christine; Govaerts, Rafaël; Vorontsova, Maria

    2017-01-01

    Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year -1 ), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year -1 ). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Infection by Mycoplasma spp., feline immunodeficiency virus and feline leukemia virus in cats from an area endemic for visceral leishmaniasis.

    PubMed

    Marcondes, Mary; Hirata, Karina Y; Vides, Juliana P; Sobrinho, Ludmila S V; Azevedo, Jaqueline S; Vieira, Thállitha S W J; Vieira, Rafael F C

    2018-03-20

    Visceral leishmaniasis (VL) has been increasingly recognized in cats living in areas endemic for the disease. Co-infection with Leishmania infantum and other infectious agents is well established in dogs. However, for cats, data on co-infections with L. infantum and other infectious agents are still sparse. The aim of this study was to identify the prevalence of vector-borne pathogens, Mycoplasma spp., feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) in cats from an area endemic for VL in southeastern Brazil. Of the 90 cats, eight (8.9%) were infected with Mycoplasma spp., five (5.5%) were FIV- positive and one (1.1%) was FeLV-positive. Co-infection with L. infantum and at least one other infectious agent was found in 9/50 (18.0%; CI: 8.6-31.4%) cats. In Group 1 (cats infected naturally by L. infantum), 4/50 (8.0%) cats were positive for FIV, 4/50 (8%) for Mycoplasma spp. and 1/50 (2.0%) was co-infected with FeLV and Mycoplasma spp. In Group 2 (cats non-infected with L. infantum), 2/40 (5.0%) cats were infected with Mycoplasma spp. and 1/40 (2.5%) was co-infected with FIV and Mycoplasma spp. All cats were negative for Ehrlichia spp., Babesia spp. and Anaplasma platys. A low prevalence of co-infection in Leishmania-infected and non-infected cats was found. Co-infections with Leishmania and vector-borne diseases in cats are not common in this area endemic for VL in Brazil.

  2. Widespread co-endemicity of human cystic and alveolar echinococcosis on the eastern Tibetan Plateau, northwest Sichuan/southeast Qinghai, China.

    PubMed

    Li, Tiaoying; Chen, Xingwang; Zhen, Ren; Qiu, Jiamin; Qiu, Dongchuan; Xiao, Ning; Ito, Akira; Wang, Hu; Giraudoux, Patrick; Sako, Yasuhito; Nakao, Minoru; Craig, Philip S

    2010-03-01

    Cystic echinococcosis (CE) or hydatid disease is known to be cosmopolitan in its global distribution, while alveolar echinococcosis (AE) is a much rarer though more pathogenic hepatic parasitic disease restricted to the northern hemisphere. Both forms of human echinococcosis are known to occur on the Tibetan Plateau, but the epidemiological characteristics remain poorly understood. In our current study, abdominal ultrasound screening programs for echinococcosis were conducted in 31 Tibetan townships in Ganze and Aba Tibetan Autonomous Prefectures of northwest Sichuan Province during 2001-2008. Hospital records (1992-2006) in a major regional treatment centre for echinococcosis in Sichuan Province were also reviewed. Of 10,186 local residents examined by portable ultrasound scan, 645 (6.3%) were diagnosed with echinococcosis: a prevalence of 3.2% for CE, 3.1% for AE and 0.04% for dual infection (both CE and AE). Human cystic and alveolar echinococcosis in pastoral areas was highly co-endemic, in comparison to much lower prevalences in semi-pastoral or farming regions. The high ultrasound prevalence in these co-endemic areas in northwest Sichuan Province was also reflected in the hospital study, and hospital records furthermore indicated another possible highly co-endemic focus in Guoluo Prefecture of Qinghai Province, located at the border of northwest Sichuan. These chronic cestode zoonoses constitute an unparalleled major public health problem for pastoral Tibetan communities, and pose great difficulties for adequate treatment access and effective transmission control in such remote regions. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    PubMed

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  4. Going coastal: Shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (canis lupus)

    USGS Publications Warehouse

    Weckworth, B.V.; Dawson, N.G.; Talbot, S.L.; Flamme, M.J.; Cook, J.A.

    2011-01-01

    Background: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. Methodology/Principal Findings: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. Conclusions/Significance: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species. ?? 2011 This is an open-access article.

  5. Socio-demographic factors influencing knowledge, attitude and practice (KAP) regarding malaria in Bangladesh.

    PubMed

    Bashar, Kabirul; Al-Amin, H M; Reza, Md Selim; Islam, Muzahidul; Asaduzzaman; Ahmed, Touhid Uddin

    2012-12-18

    A clear understanding of the social and behavioral risk factors, and knowledge gaps, related to exposure to malaria are essential when developing guidelines and recommendations for more effective disease prevention in many malaria endemic areas of the world including Bangladesh and elsewhere in the South East Asia. To-date, the level of knowledge that human populations, residing in moderate to high malaria risk zones, have with respect to the basic pathogen transmission dynamics, risk factors for malaria or disease preventative strategies, has not been assessed in Bangladesh. The purpose of this study was to address this gap by conducting surveys of the knowledge, attitudes and practices (KAP) of people, from variable socio-demographic backgrounds, residing in selected rural malaria endemic areas in Bangladesh. The KAP survey was conducted in portions of six different malaria endemic districts in Bangladesh from July to October 2011. The survey consisted of interviewing residence of these malaria endemic districts using a structured questionnaire and interviewers also completed observational checklists at each household where people were interviewed. The study area was further divided into two zones (1 and 2) based on differences in the physical geography and level of malaria endemicity in the two zones. Data from the questionnaires and observational checklists were analysised using Statistical Package for Social Sciences 16.0 (SPSS, Inc., Chicago, IL, USA). A total of 468 individuals from individual households were interviewed, and most respondents were female. Monthly incomes varied within and among the zones. It was found that 46.4% and 41% of respondents' family had malaria within the past one year in zones 1 and 2, respectively. Nearly 86% of the respondents did not know the exact cause of malaria or the role of Anopheles mosquitoes in the pathogen's transmission. Knowledge on malaria transmission and symptoms of the respondents of zones 1 and 2 were significantly (p<0.01) different. The majority of respondents from both zones believed that bed nets were the main protective measure against malaria, but a significant relationship was not found between the use of bed net and prevalence of malaria. A significant relationship (p<0.05) between level of education with malaria prevalence was found in zone 1. There was a positive correlation between the number of family members and the prevalence of malaria. Houses with walls had a strong positive association with malaria. Approximately 50% of the households of zones 1 and 2 maintained that they suffered from malaria within the last year. A significant association (p<0.01) between malaria and the possession of domestic animals in their houses was found in both zones. People who spent time outside in the evening were more likely to contract malaria than those who did not. To address the shortcomings in local knowledge about malaria, health personnel working in malaria endemic areas should be trained to give more appropriate counseling in an effort to change certain deeply entrenched traditional behaviors such as spending time outdoors in the evening, improper use of bed nets and irregular use of insecticides during sleep.

  6. Secondary metabolites and other small molecules as intercellular pathogenic signals.

    PubMed

    Dufour, Nicholas; Rao, Reeta Prusty

    2011-01-01

    Microorganisms often use small chemicals or secondary metabolites as informational cues to regulate gene expression. It is hypothesized that microorganisms exploit these signals to gain a competitive advantage. Here, we present examples of pathogens that use this strategy to exclude other microorganisms from the site of infection. An emerging theme is that inhibiting these systems presents a novel approach to antimicrobial therapies. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Parvovirus B19 Infection in Children With Arterial Ischemic Stroke.

    PubMed

    Fullerton, Heather J; Luna, Jorge M; Wintermark, Max; Hills, Nancy K; Tokarz, Rafal; Li, Ying; Glaser, Carol; DeVeber, Gabrielle A; Lipkin, W Ian; Elkind, Mitchell S V

    2017-10-01

    Case-control studies suggest that acute infection transiently increases the risk of childhood arterial ischemic stroke. We hypothesized that an unbiased pathogen discovery approach utilizing MassTag-polymerase chain reaction would identify pathogens in the blood of childhood arterial ischemic stroke cases. The multicenter international VIPS study (Vascular Effects of Infection in Pediatric Stroke) enrolled arterial ischemic stroke cases, and stroke-free controls, aged 29 days through 18 years. Parental interview included questions on recent infections. In this pilot study, we used MassTag-polymerase chain reaction to test the plasma of the first 161 cases and 34 controls enrolled for a panel of 28 common bacterial and viral pathogens. Pathogen DNA was detected in no controls and 14 cases (8.7%): parvovirus B19 (n=10), herpesvirus 6 (n=2), adenovirus (n=1), and rhinovirus 6C (n=1). Parvovirus B19 infection was confirmed by serologies in all 10; infection was subclinical in 8. Four cases with parvovirus B19 had underlying congenital heart disease, whereas another 5 had a distinct arteriopathy involving a long-segment stenosis of the distal internal carotid and proximal middle cerebral arteries. Using MassTag-polymerase chain reaction, we detected parvovirus B19-a virus known to infect erythrocytes and endothelial cells-in some cases of childhood arterial ischemic stroke. This approach can generate new, testable hypotheses about childhood stroke pathogenesis. © 2017 American Heart Association, Inc.

  8. Colliding fragment islands transport independent lineages of endemic rock-crawlers (Grylloblattodea: Grylloblattidae) in the Japanese archipelago.

    PubMed

    Schoville, Sean D; Uchifune, Toshiki; Machida, Ryuichiro

    2013-03-01

    Fragment islands, viewed from the paradigm of island biogeographic theory, depend on continual immigration from continental sources to maintain levels of species diversity, or otherwise undergo a period of relaxation where species diversity declines to a lower equilibrium. Japan is a recently derived fragment island with a rich endemic flora and fauna. These endemic species have been described as paleoendemics, and conversely as recently derived Pleistocene colonists. Geological events in the Miocene period, notably the fragmentation and collision of islands, and the subsequent uplift of mountains in central Japan, provided opportunities for genetic isolation. More recently, cyclical climatic change during the Pliocene and Pleistocene periods led to intermittent land bridge connections to continental Asia. Here we investigate the pattern and timing of diversification in a diverse endemic lineage in order to test whether ongoing migration has sustained species diversity, whether there is evidence of relaxation, and how geological and climatic events are associated with lineage diversification. Using multi-locus genetic data, we test these hypotheses in a poorly dispersing, cold-adapted terrestrial insect lineage (Grylloblattodea: Grylloblattidae) sampled from Japan, Korea, and Russia. In phylogenetic analyses of concatenated data and a species tree approach, we find evidence of three deeply divergent lineages of rock-crawlers in Japan consistent with the pattern of island fragmentation from continental Asia. Tests of lineage diversification rates suggest that relaxation has not occurred and instead endemism has increased in the Japanese Grylloblattidae following mountain-building events in the Miocene. Although the importance of climate change in generating species diversity is a commonly held paradigm in Japanese biogeography, our analyses, including analyses of demographic change and phylogeographic range shifts in putative species, suggests that Pleistocene climatic change has had a limited effect on the diversification of rock-crawlers. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. [Prevalence of intestinal parasitosis in Reggio Emilia (Italy) during 2009].

    PubMed

    Guidetti, Carlotta; Ricci, Lidia; Vecchia, Luigi

    2010-09-01

    The purpose of this survey is to assess the prevalence of intestinal parasites in Reggio Emilia during 2009. We analyzed 1961 samples from 1503 subjects: a copro-parasitological standard examination was performed in 1416 of the subjects and the scotch-test in the remaining 87. Of the 1503 subjects examined, 111 (7.4%) were positive for one or more parasites. Pathogenic parasites were found in 44 subjects (39.6% of all positive subjects) and non-pathogenic protozoa were found in 67 subjects (60.4% of all positive subjects). The most commonly found species were, of the protozoa, Blastocystis hominis, Dientamoeba fragilis and Giardia intestinalis and, of the helminths, Enterobius vermicularis and Taenia Spp. This epidemiological survey shows the need to pay more attention to immigrants and travellers to endemic areas as potential carriers of major parasitic infections in the community.

  10. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife

    PubMed Central

    Bataille, Arnaud; Cunningham, Andrew A.; Cedeño, Virna; Patiño, Leandro; Constantinou, Andreas; Kramer, Laura D.; Goodman, Simon J.

    2009-01-01

    Emerging infectious diseases of wildlife have been recognized as a major threat to global biodiversity. Endemic species on isolated oceanic islands, such as the Galápagos, are particularly at risk in the face of introduced pathogens and disease vectors. The black salt-marsh mosquito (Aedes taeniorhynchus) is the only mosquito widely distributed across the Galápagos Archipelago. Here we show that this mosquito naturally colonized the Galápagos before the arrival of man, and since then it has evolved to represent a distinct evolutionary unit and has adapted to habitats unusual for its coastal progenitor. We also present evidence that A. taeniorhynchus feeds on reptiles in Galápagos in addition to previously reported mammal and bird hosts, highlighting the important role this mosquito might play as a bridge-vector in the transmission and spread of extant and newly introduced diseases in the Galápagos Islands. These findings are particularly pertinent for West Nile virus, which can cause significant morbidity and mortality in mammals (including humans), birds, and reptiles, and which recently has spread from an introductory focus in New York to much of the North and South American mainland and could soon reach the Galápagos Islands. Unlike Hawaii, there are likely to be no highland refugia free from invading mosquito-borne diseases in Galápagos, suggesting bleak outcomes to possible future pathogen introduction events. PMID:19502421

  11. A Systematic Review of the Time Series Studies Addressing the Endemic Risk of Acute Gastroenteritis According to Drinking Water Operation Conditions in Urban Areas of Developed Countries

    PubMed Central

    Beaudeau, Pascal

    2018-01-01

    Time series studies (TSS) can be viewed as an inexpensive way to tackle the non-epidemic health risk from fecal pathogens in tap water in urban areas. Following the PRISMA recommendations, I reviewed TSS addressing the endemic risk of acute gastroenteritis risk according to drinking water operation conditions in urban areas of developed countries. Eighteen studies were included, covering 17 urban sites (seven in North-America and 10 in Europe) with study populations ranging from 50,000 to 9 million people. Most studies used general practitioner consultations or visits to hospitals for acute gastroenteritis (AGE) as health outcomes. In 11 of the 17 sites, a significant and plausible association was found between turbidity (or particle count) in finished water and the AGE indicator. When provided and significant, the interquartile excess of relative risk estimates ranged from 3–13%. When examined, water temperature, river flow, and produced flow were strongly associated with the AGE indicator. The potential of TSS for the study of the health risk from fecal pathogens in tap water is limited by the lack of specificity of turbidity and its site-sensitive value as an exposure proxy. Nevertheless, at the DWS level, TSS could help water operators to identify operational conditions most at risk, almost if considering other water operation indicators, in addition to turbidity, as possible relevant proxies for exposure. PMID:29701701

  12. [The spread of the wild Poliovirus in the rural environment, the case of the Adzopé health district, Côte d'Ivoire].

    PubMed

    Akoua-Koffi, C G; Nekouressi, G; Tieoulou, L; Guillot, S; Faye-Kette, H; Ehouman, A

    2004-05-01

    Wild Poliovirus spreading in rural environment in Adzopé, Côte d'Ivoire In order to determine the level of wild Poliovirus spreading among rural children in an endemic poliomyelitis country 469 stools samples, from children aged between three weeks and twelve years old were processed according to WHO procedures for transportation, conservation, isolation and identification of Poliovirus. Intratypic differenciation was performed by an antigenic method using monoclonal antibodies and a genomic RFLP (Restriction Fragment Length Polymorphism). 50 Poliovirus strains (10.7%) were isolated and analyzed: 15 vaccine-like Poliovirus type 1 (30%), 30 vaccine-like Poliovirus type 2 (60%), 4 vaccine-like Poliovirus type 3 (8%) and one wild Poliovirus type 3 (2%). As expected, in the major cases the duration of post-vaccinal viral excretion did not exceed two months. However, in 14% of cases, it varied between 3 and 9 months after the third OPV dose. This long excretion could be due to an inefficient local intestinal immunity or no local immunity at all, in spite of the three OPV doses. These results argue in favor of an increase of the number of OPV doses in such endemic zones. Moreover, OPV strains are well-known to revert to pathogenicity in vaccinees, therefore, the long term excretion of pathogenic OPV derived strains by a certain amount of vaccinees needs to be considered quite seriously.

  13. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen

    PubMed Central

    2018-01-01

    The cereal pathogen Fusarium graminearum is the primary cause of Fusarium head blight (FHB) and a significant threat to food safety and crop production. To elucidate population structure and identify genomic targets of selection within major FHB pathogen populations in North America we sequenced the genomes of 60 diverse F. graminearum isolates. We also assembled the first pan-genome for F. graminearum to clarify population-level differences in gene content potentially contributing to pathogen diversity. Bayesian and phylogenomic analyses revealed genetic structure associated with isolates that produce the novel NX-2 mycotoxin, suggesting a North American population that has remained genetically distinct from other endemic and introduced cereal-infecting populations. Genome scans uncovered distinct signatures of selection within populations, focused in high diversity, frequently recombining regions. These patterns suggested selection for genomic divergence at the trichothecene toxin gene cluster and thirteen additional regions containing genes potentially involved in pathogen specialization. Gene content differences further distinguished populations, in that 121 genes showed population-specific patterns of conservation. Genes that differentiated populations had predicted functions related to pathogenesis, secondary metabolism and antagonistic interactions, though a subset had unique roles in temperature and light sensitivity. Our results indicated that F. graminearum populations are distinguished by dozens of genes with signatures of selection and an array of dispensable accessory genes, suggesting that FHB pathogen populations may be equipped with different traits to exploit the agroecosystem. These findings provide insights into the evolutionary processes and genomic features contributing to population divergence in plant pathogens, and highlight candidate genes for future functional studies of pathogen specialization across evolutionarily and ecologically diverse fungi. PMID:29584736

  14. Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa

    PubMed Central

    Beadell, Jon S.; Atkins, Colm; Cashion, Erin; Jonker, Michelle; Fleischer, Robert C.

    2007-01-01

    Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge. PMID:17878931

  15. Global Warming Will Bring New Fungal Diseases for Mammals

    PubMed Central

    Garcia-Solache, Monica A.; Casadevall, Arturo

    2010-01-01

    ABSTRACT Fungi are major pathogens of plants, other fungi, rotifers, insects, and amphibians, but relatively few cause disease in mammals. Fungi became important human pathogens only in the late 20th century, primarily in hosts with impaired immunity as a consequence of medical interventions or HIV infection. The relatively high resistance of mammals has been attributed to a combination of a complex immune system and endothermy. Mammals maintain high body temperatures relative to environmental temperatures, creating a thermally restrictive ambient for the majority of fungi. According to this view, protection given by endothermy requires a temperature gradient between those of mammals and the environment. We hypothesize that global warming will increase the prevalence of fungal diseases in mammals by two mechanisms: (i) increasing the geographic range of currently pathogenic species and (ii) selecting for adaptive thermotolerance for species with significant pathogenic potential but currently not pathogenic by virtue of being restricted by mammalian temperatures. PMID:20689745

  16. Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli through activation of genes that regulate lifespan and innate immunity

    PubMed Central

    Anyanful, Akwasi; Easley, Kirk A.; Benian, Guy M.; Kalman, Daniel

    2010-01-01

    SUMMARY Caenorhabditis elegans exhibit avoidance behavior when presented with diverse bacterial pathogens. We hypothesized that exposure to pathogens might not only cause worms to move away but also simultaneously activate pathways that promote resistance to the pathogen. We show that brief exposure to the virulent or avirulent strains of the bacterial pathogen enteropathogenic E. coli (EPEC) “conditions” or “immunizes” C. elegans to survive a subsequent exposure that would otherwise prove lethal. Conditioning requires dopaminergic neurons. Conditioning also requires the p38 MAP Kinase pathway, which regulates innate immunity, and the insulin/IGFR pathway, which regulates lifespan. Our findings suggest that the molecular pathways that regulate innate immunity and lifespan and provide protection may, in nature, be regulated or “conditioned” by exposure to pathogens, and perhaps allow survival in noxious environments. PMID:19454349

  17. Insights From Genomics Into Spatial and Temporal Variation in Batrachochytrium dendrobatidis.

    PubMed

    Byrne, A Q; Voyles, J; Rios-Sotelo, G; Rosenblum, E B

    2016-01-01

    Advances in genetics and genomics have provided new tools for the study of emerging infectious diseases. Researchers can now move quickly from simple hypotheses to complex explanations for pathogen origin, spread, and mechanisms of virulence. Here we focus on the application of genomics to understanding the biology of the fungal pathogen Batrachochytrium dendrobatidis (Bd), a novel and deadly pathogen of amphibians. We provide a brief history of the system, then focus on key insights into Bd variation garnered from genomics approaches, and finally, highlight new frontiers for future discoveries. Genomic tools have revealed unexpected complexity and variation in the Bd system suggesting that the history and biology of emerging pathogens may not be as simple as they initially seem. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    PubMed Central

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  19. Dendropsophin 1, a novel antimicrobial peptide from the skin secretion of the endemic Colombian frog Dendropsophus columbianus.

    PubMed

    Triana-Vidal, Luz Elena; Castro, Mariana Souza; Pires Júnior, Osmindo Rodrigues; Álvares, Alice Cunha Morales; de Freitas, Sonia Maria; Fontes, Wagner; Vargas, Jimmy Alexander Guerrero; Zúñiga-Baos, Jorge Alberto; Correia Batista, Isabel de Fátima; Grellier, Philippe; Charneau, Sébastien

    2018-06-01

    In efforts to find new antimicrobial peptides (AMPs), we studied the skin secretion of the endemic Colombian frog Dendropsophus columbianus belonging to a genus that has not been investigated previously. From HPLC-fractionated secretion, we identified one peptide with slightly antibacterial activity. Its peptide sequence showed no sequence similarity to current annotated peptides. We named this novel peptide dendropsophin 1 (Dc1). Afterward, two analogues were designed (Dc1.1 and Dc1.2) to improve the cationic and amphipathic features. Then, their antiproliferative and cytotoxic properties were evaluated against several pathogens including bacteria, fungi, protozoa and also mammalian cells. Dc1 and its two analogues exhibited moderate antibacterial activities and no hemolytic and cytotoxic effects on mammalian cells. Analogue Dc1.2 showed slightly improved antibacterial properties. Their secondary structures were characterised using CD spectroscopy and Dc1.2 displayed a higher α-helix content and thermal stability compared to Dc1 and Dc1.1 in hydrophobic experimental conditions.

  20. [Endemic and epidemic bovine neosporosis: description of two events in beef cattle].

    PubMed

    Calandra, Patricio M; Di Matía, José M; Cano, Dora B; Odriozola, Ernesto R; García, Juan A; Späth, Ernesto J A; Odeón, Anselmo C; Paolicchi, Fernando A; Morrell, Eleonora L; Campero, Carlos M; Moore, Dadín P

    2014-01-01

    The aim of this study was to describe two events in which Neospora caninum was involved in bovine abortions in beef cattle. In the first event, 11 abortions in 57 heifers were recorded in 45 days. One aborted heifer was 5 times more likely to be seropositive than a non-aborted heifer (OR=4.9; IC 1.2-19.9) (p<0.05). In the second event, no association between serological results and abortions were observed (OR=0,69; 0,06-7,31) (p>0.05). Neither antibodies nor isolation of other pathogens were achieved in any case. On the contrary, antibodies and pathognomonic histopathological lesions were observed in the four fetuses from both cases. Interestingly, the findings in the first event suggest the epidemic behavior of the disease. In contrast, in the second event it appears that few abortions were due to N. caninum, suggesting the presence of endemic neosporosis. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  1. Infectious Diseases and Immunizations in International Adoption.

    PubMed

    Obringer, Emily; Walsh, Linda

    2017-02-01

    Children who are adopted internationally have an increased risk of infectious diseases due to endemic conditions and variable access to preventive health care, such as vaccines, in their country of origin. Pediatricians and other providers who care for children should be familiar with the recommended screening for newly arrived international adoptees. Testing for gastrointestinal pathogens, tuberculosis, hepatitis, syphilis, and HIV should be routinely performed. Other endemic diseases and common skin infections may need to be assessed. Evaluation of the child's immunization record is also important, as nearly all international adoptees will require catch-up vaccines. The provider may also be asked to review medical records prior to adoption, provide travel advice, and ensure that parents and other close contacts are up-to-date on immunizations prior to the arrival of the newest family member. The pediatrician serves a unique role in facilitating the evaluation, treatment, and prevention of infectious diseases in international adoptees. [Pediatr Ann. 2017;46(2):e56-e60.]. Copyright 2017, SLACK Incorporated.

  2. Strain-specific estimation of epidemic success provides insights into the transmission dynamics of tuberculosis

    PubMed Central

    Rasigade, Jean-Philippe; Barbier, Maxime; Dumitrescu, Oana; Pichat, Catherine; Carret, Gérard; Ronnaux-Baron, Anne-Sophie; Blasquez, Ghislaine; Godin-Benhaim, Christine; Boisset, Sandrine; Carricajo, Anne; Jacomo, Véronique; Fredenucci, Isabelle; Pérouse de Montclos, Michèle; Flandrois, Jean-Pierre; Ader, Florence; Supply, Philip; Lina, Gérard; Wirth, Thierry

    2017-01-01

    The transmission dynamics of tuberculosis involves complex interactions of socio-economic and, possibly, microbiological factors. We describe an analytical framework to infer factors of epidemic success based on the joint analysis of epidemiological, clinical and pathogen genetic data. We derive isolate-specific, genetic distance-based estimates of epidemic success, and we represent success-related time-dependent concepts, namely epidemicity and endemicity, by restricting analysis to specific time scales. The method is applied to analyze a surveillance-based cohort of 1,641 tuberculosis patients with minisatellite-based isolate genotypes. Known predictors of isolate endemicity (older age, native status) and epidemicity (younger age, sputum smear positivity) were identified with high confidence (P < 0.001). Long-term epidemic success also correlated with the ability of Euro-American and Beijing MTBC lineages to cause active pulmonary infection, independent of patient age and country of origin. Our results demonstrate how important insights into the transmission dynamics of tuberculosis can be gained from active surveillance data. PMID:28349973

  3. Biological and phylogenetic characteristics of West African lineages of West Nile virus.

    PubMed

    Fall, Gamou; Di Paola, Nicholas; Faye, Martin; Dia, Moussa; Freire, Caio César de Melo; Loucoubar, Cheikh; Zanotto, Paolo Marinho de Andrade; Faye, Ousmane; Sall, Amadou Alpha

    2017-11-01

    The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus' biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation.

  4. Biological and phylogenetic characteristics of West African lineages of West Nile virus

    PubMed Central

    Faye, Martin; Dia, Moussa; Freire, Caio César de Melo; Loucoubar, Cheikh; Zanotto, Paolo Marinho de Andrade; Faye, Ousmane; Sall, Amadou Alpha

    2017-01-01

    The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. PMID:29117195

  5. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    PubMed Central

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  6. Human meningitis due to Streptococcus suis in Lomé, Togo: a case report.

    PubMed

    Prince-David, Mireille; Salou, Mounerou; Marois-Créhan, Corinne; Assogba, Komi; Plainvert, Céline; Balogou, Koffi A; Poyart, Claire; Tazi, Asmaa

    2016-11-08

    Streptococcus suis is a zoonotic pathogen which represents the leading cause of meningitis in Southeast Asia and an emerging pathogen in the Western world, the main risk factor for infection being contact with pigs. In Africa, the prevalence of S. suis infections in swine and humans is largely unrecognized, with only one recent report of a limited case series. We describe a human case of meningitis due to S. suis in a 32-year-old man living in Togo. The patient had no particular medical history and no risk factors for immunodeficiency but reported regular contact with pork products. Using specific immunological and molecular methods, we characterized the isolate as S. suis serotype 2, ST1, one the most prevalent and virulent clone worldwide. The outcome was favorable after one week of adapted antibiotic therapy but the patient was left with severe hearing disorders. This work highlights the emergence of this pathogen in Africa and reinforces the need for accurate epidemiological and surveillance studies of S. suis infections and for educating clinicians and exposed groups in non-endemic countries.

  7. Avoiding Pandemic Fears in the Subway and Conquering the Platypus

    PubMed Central

    Vázquez-Baeza, Y.; Pettengill, J. B.; Ottesen, A.; McDonald, D.; Knight, R.

    2016-01-01

    ABSTRACT Metagenomics is increasingly used not just to show patterns of microbial diversity but also as a culture-independent method to detect individual organisms of intense clinical, epidemiological, conservation, forensic, or regulatory interest. A widely reported metagenomic study of the New York subway suggested that the pathogens Yersinia pestis and Bacillus anthracis were part of the “normal subway microbiome.” In their article in mSystems, Hsu and collaborators (mSystems 1(3):e00018-16, 2016, http://dx.doi.org/10.1128/mSystems.00018-16) showed that microbial communities on transit surfaces in the Boston subway system are maintained from a metapopulation of human skin commensals and environmental generalists and that reanalysis of the New York subway data with appropriate methods did not detect the pathogens. We note that commonly used software pipelines can produce results that lack prima facie validity (e.g., reporting widespread distribution of notorious endemic species such as the platypus or the presence of pathogens) but that appropriate use of inclusion and exclusion sets can avoid this issue. PMID:27832215

  8. Trachoma and Ocular Chlamydial Infection in the Era of Genomics

    PubMed Central

    Derrick, Tamsyn; Roberts, Chrissy h.; Last, Anna R.; Burr, Sarah E.; Holland, Martin J.

    2015-01-01

    Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma. PMID:26424969

  9. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    PubMed

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  10. A Review of Hypothesized Determinants Associated with Bighorn Sheep (Ovis canadensis) Die-Offs

    PubMed Central

    Miller, David S.; Hoberg, Eric; Weiser, Glen; Aune, Keith; Atkinson, Mark; Kimberling, Cleon

    2012-01-01

    Multiple determinants have been hypothesized to cause or favor disease outbreaks among free-ranging bighorn sheep (Ovis canadensis) populations. This paper considered direct and indirect causes of mortality, as well as potential interactions among proposed environmental, host, and agent determinants of disease. A clear, invariant relationship between a single agent and field outbreaks has not yet been documented, in part due to methodological limitations and practical challenges associated with developing rigorous study designs. Therefore, although there is a need to develop predictive models for outbreaks and validated mitigation strategies, uncertainty remains as to whether outbreaks are due to endemic or recently introduced agents. Consequently, absence of established and universal explanations for outbreaks contributes to conflict among wildlife and livestock stakeholders over land use and management practices. This example illustrates the challenge of developing comprehensive models for understanding and managing wildlife diseases in complex biological and sociological environments. PMID:22567546

  11. Phylogeography of the endemic grasshopper genus Betiscoides (Lentulidae) in the South African Cape Floristic Region.

    PubMed

    Matenaar, Daniela; Fingerle, Marcus; Heym, Eva; Wirtz, Sarah; Hochkirch, Axel

    2018-01-01

    Vicariance and dispersal are two important processes shaping biodiversity patterns. The South African Cape Floristic Region (CFR) is known for its high biotic diversity and endemism. However, studies on the phylogeography of endemic invertebrates in this biodiversity hotspot are still scarce. Here, we present a phylogenetic study of the flightless grasshopper genus Betiscoides, which is endemic to the CFR and strongly associated with restio plants (Restionaceae). We hypothesized that the genus originated in the southwestern part of the CFR, that differentiation within the genus is mainly an effect of vicariance and that the three known species only represent a minor fraction of the real genetic diversity of the genus. We inferred the phylogeny based on sequences of three mitochondrial and two nuclear genes from 99 Betiscoides specimens collected across the CFR. Furthermore, we conducted a SDIVA analysis to detect distributions of ancestral nodes and the possible spatial origin of these lineages. Strong differentiation among genetic lineages was shown. The ancestor of this genus was most likely distributed in the southwestern CFR. Five major lineages were detected, three of which were ancestrally distributed in the southwestern CFR. The ancestors of the two other lineages were distributed in the northern and eastern margins of the CFR. A total of 24 divergent evolutionary lineages were found, reflecting the geographical isolation of restio-dominated fynbos habitats. Dispersal played a more prominent role than expected in differentiation of Betiscoides. While the five main lineages were separated during a first phase via dispersal, differentiation occurred later and on smaller spatial scale, predominantly driven by isolation in montane refugia (i.e. vicariance). Our study also suggests that flightless insect taxa likely show high levels of differentiation in biodiversity hotspots with their taxonomy often being incomplete. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Opening a Can of Worms: Leprosy Reactions and Complicit Soil-Transmitted Helminths.

    PubMed

    Hagge, Deanna A; Parajuli, Pawan; Kunwar, Chhatra B; Rana, Divya R S J B; Thapa, Ruby; Neupane, Kapil D; Nicholls, Peter; Adams, Linda B; Geluk, Annemieke; Shah, Mahesh; Napit, Indra B

    2017-09-01

    >94% of new annual leprosy cases are diagnosed in populations co-endemic for soil-transmitted helminths (STH). STH can profoundly dysregulate host immune responses towards Th2 bias, which can be restored over time after deworming. We hypothesize that STH co-infection is associated with leprosy reaction (denoted as simply "reaction" herein) occurrence within a co-endemic population. A cohort study was performed on a cohort of Nepalese leprosy patients across treatment and diagnostic classifications who were screened by routine fecal smear microscopy and multiplex quantitative PCR (qPCR) for Ascaris lumbricoides (Al), Strongyloides stercoralis (Ss), Ancyclostoma duodenale (Ad) and Necator americanus (Na). Among 145 patients, 55% were positive for ≥1 STH (STH+): 34% Al+, 18% Ss+, 17% Ad+and 5% Na+. Significant inverse STH and reaction relationships were evidenced by the bulk of cases: 63% reaction-negative were STH+ of total cases (p=0.030) while 65% reaction-positive were STH- in new cases (96; p=0.023). Strikingly, the majority of STH+ were reaction-negative, even when considering each species: 59% Al+, 60% Ss+, 62% Ad+and 67% Na+of new leprosy cases. Absence of STH co-infection is associated with leprosy reaction at diagnosis within a co-endemic population. This is likely due to immune reconstitution effects after deworming or interruption of chronic STH-mediated immune dysregulation. Copyright © 2017. Published by Elsevier B.V.

  13. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley

    PubMed Central

    Jensen, Helen R; Dreiseitl, Antonín; Sadiki, Mohammed; Schoen, Daniel J

    2012-01-01

    Plant geneticists have proposed that the dynamic conservation of crop plants in farm environments (in situ conservation) is complementary to static conservation in seed banks (ex situ conservation) because it may help to ensure adaptation to changing conditions. Here, we test whether collections of a traditional variety of Moroccan barley (Hordeum vulgare ssp. vulgare) conserved ex situ showed differences in qualitative and quantitative resistance to the endemic fungal pathogen, Blumeria graminis f.sp. hordei, compared to collections that were continuously cultivated in situ. In detached-leaf assays for qualitative resistance, there were some significant differences between in situ and ex situ conserved collections from the same localities. Some ex situ conserved collections showed lower resistance levels, while others showed higher resistance levels than their in situ conserved counterparts. In field trials for quantitative resistance, similar results were observed, with the highest resistance observed in situ. Overall, this study identifies some cases where the Red Queen appears to drive the evolution of increased resistance in situ. However, in situ conservation does not always result in improved adaptation to pathogen virulence, suggesting a more complex evolutionary scenario, consistent with several published examples of plant–pathogen co-evolution in wild systems. PMID:25568056

  14. Giardia: a pathogen or commensal for children in high prevalence settings?

    PubMed Central

    Bartelt, Luther A.

    2016-01-01

    Purpose of review Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. Recent findings Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. Summary The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite. PMID:27479025

  15. Giardia: a pathogen or commensal for children in high-prevalence settings?

    PubMed

    Bartelt, Luther A; Platts-Mills, James A

    2016-10-01

    Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.

  16. Filariasis in Travelers Presenting to the GeoSentinel Surveillance Network

    PubMed Central

    Lipner, Ettie M.; Law, Melissa A.; Barnett, Elizabeth; Keystone, Jay S.; von Sonnenburg, Frank; Loutan, Louis; Prevots, D. Rebecca; Klion, Amy D.; Nutman, Thomas B.

    2007-01-01

    Background As international travel increases, there is rising exposure to many pathogens not traditionally encountered in the resource-rich countries of the world. Filarial infections, a great problem throughout the tropics and subtropics, are relatively rare among travelers even to filaria-endemic regions of the world. The GeoSentinel Surveillance Network, a global network of medicine/travel clinics, was established in 1995 to detect morbidity trends among travelers. Principal Findings We examined data from the GeoSentinel database to determine demographic and travel characteristics associated with filaria acquisition and to understand the differences in clinical presentation between nonendemic visitors and those born in filaria-endemic regions of the world. Filarial infections comprised 0.62% (n = 271) of all medical conditions reported to the GeoSentinel Network from travelers; 37% of patients were diagnosed with Onchocerca volvulus, 25% were infected with Loa loa, and another 25% were diagnosed with Wuchereria bancrofti. Most infections were reported from immigrants and from those immigrants returning to their county of origin (those visiting friends and relatives); the majority of filarial infections were acquired in sub-Saharan Africa. Among the patients who were natives of filaria-nonendemic regions, 70.6% acquired their filarial infection with exposure greater than 1 month. Moreover, nonendemic visitors to filaria-endemic regions were more likely to present to GeoSentinel sites with clinically symptomatic conditions compared with those who had lifelong exposure. Significance Codifying the filarial infections presenting to the GeoSentinel Surveillance Network has provided insights into the clinical differences seen among filaria-infected expatriates and those from endemic regions and demonstrated that O. volvulus infection can be acquired with short-term travel. PMID:18160987

  17. Stochastic dynamics for reinfection by transmitted diseases

    NASA Astrophysics Data System (ADS)

    Barros, Alessandro S.; Pinho, Suani T. R.

    2017-06-01

    The use of stochastic models to study the dynamics of infectious diseases is an important tool to understand the epidemiological process. For several directly transmitted diseases, reinfection is a relevant process, which can be expressed by endogenous reactivation of the pathogen or by exogenous reinfection due to direct contact with an infected individual (with smaller reinfection rate σ β than infection rate β ). In this paper, we examine the stochastic susceptible, infected, recovered, infected (SIRI) model simulating the endogenous reactivation by a spontaneous reaction, while exogenous reinfection by a catalytic reaction. Analyzing the mean-field approximations of a site and pairs of sites, and Monte Carlo (MC) simulations for the particular case of exogenous reinfection, we obtained continuous phase transitions involving endemic, epidemic, and no transmission phases for the simple approach; the approach of pairs is better to describe the phase transition from endemic phase (susceptible, infected, susceptible (SIS)-like model) to epidemic phase (susceptible, infected, and removed or recovered (SIR)-like model) considering the comparison with MC results; the reinfection increases the peaks of outbreaks until the system reaches endemic phase. For the particular case of endogenous reactivation, the approach of pairs leads to a continuous phase transition from endemic phase (SIS-like model) to no transmission phase. Finally, there is no phase transition when both effects are taken into account. We hope the results of this study can be generalized for the susceptible, exposed, infected, and removed or recovered (SEIRIE) model, for which the state exposed (infected but not infectious), describing more realistically transmitted diseases such as tuberculosis. In future work, we also intend to investigate the effect of network topology on phase transitions when the SIRI model describes both transmitted diseases (σ <1 ) and social contagions (σ >1 ).

  18. 2,000 Year old β-thalassemia case in Sardinia suggests malaria was endemic by the Roman period.

    PubMed

    Viganó, Claudia; Haas, Cordula; Rühli, Frank J; Bouwman, Abigail

    2017-10-01

    The island of Sardinia has one of the highest incidence rates of β-thalassemia in Europe due to its long history of endemic malaria, which, according to historical records, was introduced around 2,600 years ago by the Punics and only became endemic around the Middle Ages. In particular, the cod39 mutation is responsible for more than 95% of all β-thalassemia cases observed on the island. Debates surround the origin of the mutation. Some argue that its presence in the Western Mediterranean reflects the migration of people away from Sardinia, others that it reflects the colonization of the island by the Punics who might have carried the disease allele. The aim of this study was to investigate β-globin mutations, including cod39, using ancient DNA (aDNA) analysis, to better understand the history and origin of β-thalassemia and malaria in Sardinia. PCR analysis followed by sequencing were used to investigate the presence of β-thalassemia mutations in 19 individuals from three different Roman and Punic necropolises in Sardinia. The cod39 mutation was identified in one male individual buried in a necropolis from the Punic/Roman period. Further analyses have shown that his mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were U5a and I2a1a1, respectively, indicating the individual was probably of Sardinian origin. This is the earliest documented case of β-thalassemia in Sardinia to date. The presence of such a pathogenic mutation and its persistence until present day indicates that malaria was likely endemic on the island by the Roman period, earlier than the historical sources suggest. © 2017 Wiley Periodicals, Inc.

  19. Intestinal parasitoses in a tertiary-care hospital located in a non-endemic setting during 2006–2010

    PubMed Central

    2014-01-01

    Background The aim of this study was to assess the epidemiology of intestinal parasitoses during a 5-year period in patients attending a tertiary-care hospital in a non-endemic setting. Methods In the period 2006–2010, 15,752 samples from 8,886 patients with clinically suspected parasitosis were subjected to macroscopic and microscopic examination, to parasitic antigen detection assays, and to cultures for protozoa and nematodes. Real-time PCR assays for the differentiation of Entamoeba histolytica and E. dispar and for the detection of Dientamoeba fragilis were also used. A statistical analysis evaluating the demographic data of the patients with intestinal parasitic infections was performed. Results Intestinal parasitic infections were diagnosed in 1,477 patients (16.6% prevalence), mainly adults and immigrants from endemic areas for faecal-oral infections; protozoa were detected in 93.4% and helminths in 6.6% of the cases, the latter especially in immigrants. Blastocystis hominis was the most common intestinal protozoan, and G. intestinalis was the most frequently detected among pathogenic protozoa, prevalent in immigrants, males, and pediatric patients. Both single (77.9%) and mixed (22.1%) parasitic infections were observed, the latter prevalent in immigrants. Conclusions Despite the importance of the knowledge about the epidemiology of intestinal parasitoses in order to adopt appropriate control measures and adequate patient care all over the world, data regarding industrialized countries are rarely reported in the literature. The data presented in this study indicate that intestinal parasitic infections are frequently diagnosed in our laboratory and could make a contribution to stimulate the attention by physicians working in non-endemic areas on the importance of suspecting intestinal parasitoses. PMID:24886502

  20. Intestinal parasitoses in a tertiary-care hospital located in a non-endemic setting during 2006-2010.

    PubMed

    Calderaro, Adriana; Montecchini, Sara; Rossi, Sabina; Gorrini, Chiara; De Conto, Flora; Medici, Maria Cristina; Chezzi, Carlo; Arcangeletti, Maria Cristina

    2014-05-16

    The aim of this study was to assess the epidemiology of intestinal parasitoses during a 5-year period in patients attending a tertiary-care hospital in a non-endemic setting. In the period 2006-2010, 15,752 samples from 8,886 patients with clinically suspected parasitosis were subjected to macroscopic and microscopic examination, to parasitic antigen detection assays, and to cultures for protozoa and nematodes. Real-time PCR assays for the differentiation of Entamoeba histolytica and E. dispar and for the detection of Dientamoeba fragilis were also used.A statistical analysis evaluating the demographic data of the patients with intestinal parasitic infections was performed. Intestinal parasitic infections were diagnosed in 1,477 patients (16.6% prevalence), mainly adults and immigrants from endemic areas for faecal-oral infections; protozoa were detected in 93.4% and helminths in 6.6% of the cases, the latter especially in immigrants. Blastocystis hominis was the most common intestinal protozoan, and G. intestinalis was the most frequently detected among pathogenic protozoa, prevalent in immigrants, males, and pediatric patients. Both single (77.9%) and mixed (22.1%) parasitic infections were observed, the latter prevalent in immigrants. Despite the importance of the knowledge about the epidemiology of intestinal parasitoses in order to adopt appropriate control measures and adequate patient care all over the world, data regarding industrialized countries are rarely reported in the literature. The data presented in this study indicate that intestinal parasitic infections are frequently diagnosed in our laboratory and could make a contribution to stimulate the attention by physicians working in non-endemic areas on the importance of suspecting intestinal parasitoses.

  1. Importance of a Rapid and Accurate Diagnosis in Strongyloides Stercoralis and Human T-Lymphotropic Virus 1 Co-infection: A Case Report and Review of the Literature.

    PubMed

    Quintero, Olga; Berini, Carolina A; Waldbaum, Carlos; Avagnina, Alejandra; Juarez, María; Repetto, Silvia; Sorda, Juan; Biglione, Mirna

    2017-01-01

    Strongyloides (S.) stercoralis and Human T-Lymphotropic Virus 1 (HTLV-1) share some endemic regions such as Japan, Jamaica, and South America and are mostly diagnosed elsewhere in immigrants from endemic areas. This co-infection has not been documented in Argentina although both pathogens are endemic in the Northwest. We present a case of S. stercoralis and HTLV-1 co-infection with an initial presentation due to gastrointestinal symptoms which presented neither eosinophilia nor the presence of larvae in stool samples in a non-endemic area for these infections. A young Peruvian woman living in Buenos Aires attended several emergency rooms and finally ended up admitted in a gastroenterology ward due to incoercible vomiting, diarrhea, abdominal pain, fever, and weight loss. Gastrointestinal symptoms started 3 months before she returned to Argentina from a trip to Peru. She presented malnutrition and abdominal distension parameters. HIV-1 and other immunodeficiencies were discarded. The serial coproparasitological test was negative. Computed tomography showed diffuse thickening of duodenal and jejunal walls. At the beginning, vasculitis was suspected and corticosteroid therapy was initiated. The patient worsened rapidly. Skin, new enteral biopsies, and a new set of coproparasitological samples revealed S. stercoralis . Then, HTLV-1 was suspected and infection was confirmed. Ivermectin and albendazole were administrated, until the stool sample remained negative for 2 weeks. Larvae were not observed in fresh stool, Ritchie method, and agar culture 1 week post-treatment. Although she required initial support with parenteral nutrition due to oral intolerance she slowly progressed favorably. It has been highly recommended to include a rapid and sensitive PCR strategy in the algorithm to confirm Strongyloides infection, which has demonstrated to improve early diagnosis in patients at-risk of disseminated strongyloidiasis.

  2. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas

    PubMed Central

    Kim, Gwanghun; Ha, Na-Young; Min, Chan-Ki; Kim, Hong-Il; Yen, Nguyen Thi Hai; Lee, Keun-Hwa; Oh, Inbo; Kang, Jae-Seung; Choi, Myung-Sik; Kim, Ik-Sang

    2017-01-01

    Background Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine. Methodology/Principal findings To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes. Conclusions/Significance Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus. PMID:28248956

  3. An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya.

    PubMed

    Fèvre, Eric M; de Glanville, William A; Thomas, Lian F; Cook, Elizabeth A J; Kariuki, Samuel; Wamae, Claire N

    2017-06-30

    The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8-39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5-32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8-32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7-22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2-0.9); Coxiella burnetii, 2.2% (95% CI 1.5-2.9); Rift Valley fever, 0.5% (95% CI 0.2-0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0-0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5-2.22)) and C. burnetii (10.0% (95% CI 7.7-12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7-58.3) in cattle and 17.2% (95% CI 9.1-25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3-3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8-9.6) in people. Zoonotic infections in people and animals occur in the context of a wide range of co-endemic pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.

  4. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade

    PubMed Central

    El-Shesheny, Rabeh; Kandeil, Ahmed; Bagato, Ola; Maatouq, Asmaa M.; Moatasim, Yassmin; Rubrum, Adam; Song, Min-Suk; Webby, Richard J.

    2014-01-01

    Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and 2.2.1.1. Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006–2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained. PMID:24722680

  5. Novel Antigens for enterotoxigenic Escherichia coli (ETEC) Vaccines

    PubMed Central

    Fleckenstein, James M.; Sheikh, Alaullah; Qadri, Firdausi

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common bacterial pathogens-causing diarrhea in developing countries where they cause hundreds of thousands of deaths, mostly in children. These organisms are leading cause of diarrheal illness in travelers to endemic countries. ETEC pathogenesis, and consequently vaccine approaches, have largely focused on plasmid-encoded enterotoxins or fimbrial colonization factors. To date these approaches have not yielded a broadly protective vaccine. However, recent studies suggest that ETEC pathogenesis is more complex than previously appreciated and involves additional plasmid and chromosomally-encoded virulence molecules that can be targeted in vaccines. Here, we review recent novel antigen discovery efforts, potential contribution of these proteins to the molecular pathogenesis of ETEC and protective immunity, and the potential implications for development of next generation vaccines for important pathogens. These proteins may help to improve the effectiveness of future vaccines by making simpler and possibly broadly protective because of their conserved nature. PMID:24702311

  6. Screening for antibacterial activity of some Turkish plants against fish pathogens: a possible alternative in the treatment of bacterial infections

    PubMed Central

    Turker, Hakan; Yıldırım, Arzu Birinci

    2015-01-01

    The antibacterial activity of ethanolic and aqueous crude extracts from 36 plants in Turkey, including seven endemic species, against fish pathogens was studied using the disc diffusion assay. The extract that was most active against all microbial strains, except Aeromonas salmonicida, was that of Dorycnium pentaphyllum. Some of the extracts also showed a very broad spectrum of potent antimicrobial activity. The extract of Anemone nemorosa showed the highest antimicrobial activity against Vibrio anguillarum. V. anguillarum, a Gram-negative bacterium, appeared to be the most susceptible to the plant extracts used in this experiment. To the best of our knowledge, this is the first report on the antimicrobial activity of 11 of the studied plants. The preliminary screening assay indicated that some of the Turkish plants with antibacterial properties may offer alternative therapeutic agents against bacterial infections in aquaculture industry. PMID:26019642

  7. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China.

    PubMed

    Zhuang, Lu; Du, Juan; Cui, Xiao-Ming; Li, Hao; Tang, Fang; Zhang, Pan-He; Hu, Jian-Gong; Tong, Yi-Gang; Feng, Zhi-Chun; Liu, Wei

    2018-05-07

    A wide variety of pathogens could be maintained and transmitted by Haemaphysalis longicornis. The aim of this study is to systematically examine the variety of pathogens carried by Haemaphysalis longicornis, an importnatn vector, in tick-borne diseases epidemic area, and to estimate the risk of human infection imposed by tick bites. Adult questing ticks were collected in Xinyang, central China. Genomic DNA and RNA were extracted from 144 H. longicornis ticks individually, and sequenced respectively as the templates for high-throughput sequencing. Clean reads were compared against the database of NCBI nucleotide collection and specific PCR was performed to confirm the presence of pathogen. Phylogenetic analysis was performed to explore the evolutionary status of pathogens. The assignment of reads to taxa based on BLASTN results revealed the existence of several potential pathogens, including Anaplasma spp., Rickettsia spp., Babesia sp., as well as severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Comfirmantory PCR assays revealed the existence of Anaplasma bovis (13/144, 9.03%), Anaplasma centrale (2/144, 1.39%), Rickettsia heilongjiangensis (3/144, 2.08%), Rickettsia sp. LON-13 (1/144, 0.69%), Rickettsia raoultii (5/144, 3.47%), Babesia sp. (1/144, 0.69%). SFTSV accounted for the highest detected pathogen with a positive rate of 18.75% (27/144). Three of the ticks (2.08%) were co-infected with SFTSV and A. bovis. Our study provided a broadened list of microorganism that harbored by H. longicornis. In previously unrecognized endemic regions, prokaryotic and eukaryotic infection including Anaplasma spp., Rickettsiae spp., and Babesia spp. should be considered, along with the well-known SFTSV for patients with tick bites history. A novel Babesia species was identified in local natural foci, which needs further investigation in the future.

  8. Co-evolutionary interactions between host resistance and pathogen avirulence genes in rice-Magnaporthe oryzae pathosystem.

    PubMed

    Singh, Pankaj Kumar; Ray, Soham; Thakur, Shallu; Rathour, Rajeev; Sharma, Vinay; Sharma, Tilak Raj

    2018-06-01

    Rice and Magnaporthe oryzae constitutes an ideal pathosystem for studying host-pathogen interaction in cereals crops. There are two alternative hypotheses, viz. Arms race and Trench warfare, which explain the co-evolutionary dynamics of hosts and pathogens which are under continuous confrontation. Arms race proposes that both R- and Avr- genes of host and pathogen, respectively, undergo positive selection. Alternatively, trench warfare suggests that either R- or Avr- gene in the pathosystem is under balanced selection intending to stabilize the genetic advantage gained over the opposition. Here, we made an attempt to test the above-stated hypotheses in rice-M. oryzae pathosystem at loci of three R-Avr gene pairs, Piz-t-AvrPiz-t, Pi54-AvrPi54 and Pita-AvrPita using allele mining approach. Allele mining is an efficient way to capture allelic variants existing in the population and to study the selective forces imposed on the variants during evolution. Results of nucleotide diversity, neutrality statistics and phylogenetic analyses reveal that Piz-t, Pi54 and AvrPita are diversified and under positive selection at their corresponding loci, while their counterparts, AvrPiz-t, AvrPi54 and Pita are conserved and under balancing selection, in nature. These results imply that rice-M. oryzae populations are engaged in a trench warfare at least at the three R/Avr loci studied. It is a maiden attempt to study the co-evolution of three R-Avr gene pairs in this pathosystem. Knowledge gained from this study will help in understanding the evolutionary dynamics of host-pathogen interaction in a better way and will also aid in developing new durable blast resistant rice varieties in future. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an endangered tree species from rocky savannas, suggests bidirectional expansion due to climate cooling in the Pleistocene

    PubMed Central

    Collevatti, Rosane Garcia; de Castro, Thaís Guimarães; de Souza Lima, Jacqueline; de Campos Telles, Mariana Pires

    2012-01-01

    Many endemic species present disjunct geographical distribution; therefore, they are suitable models to test hypotheses about the ecological and evolutionary mechanisms involved in the origin of disjunct distributions in these habitats. We studied the genetic structure and phylogeography of Tibouchina papyrus (Melastomataceae), endemic to rocky savannas in Central Brazil, to test hypothesis of vicariance and dispersal in the origin of the disjunct geographical distribution. We sampled 474 individuals from the three localities where the species is reported: Serra dos Pirineus, Serra Dourada, and Serra de Natividade. Analyses were based on the polymorphisms at cpDNA and on nuclear microsatellite loci. To test for vicariance and dispersal we constructed a median-joining network and performed an analysis of molecular variance (AMOVA). We also tested population bottleneck and estimated demographic parameters and time to most recent common ancestor (TMRCA) using coalescent analyses. A remarkable differentiation among populations was found. No significant effect of population expansion was detected and coalescent analyses showed a negligible gene flow among populations and an ancient coalescence time for chloroplast genome. Our results support that the disjunct distribution of T. papyrus may represent a climatic relict. With an estimated TMRCA dated from ∼836.491 ± 107.515 kyr BP (before present), we hypothesized that the disjunct distribution may be the outcome of bidirectional expansion of the geographical distribution favored by the drier and colder conditions that prevailed in much of Brazil during the Pre-Illinoian glaciation, followed by the retraction as the climate became warmer and moister. PMID:22837846

  10. Integrating environmental, molecular, and morphological data to unravel an ice-age radiation of arctic-alpine Campanula in western North America

    PubMed Central

    DeChaine, Eric G; Wendling, Barry M; Forester, Brenna R

    2014-01-01

    Many arctic-alpine plant genera have undergone speciation during the Quaternary. The bases for these radiations have been ascribed to geographic isolation, abiotic and biotic differences between populations, and/or hybridization and polyploidization. The Cordilleran Campanula L. (Campanulaceae Juss.), a monophyletic clade of mostly endemic arctic-alpine taxa from western North America, experienced a recent and rapid radiation. We set out to unravel the factors that likely influenced speciation in this group. To do so, we integrated environmental, genetic, and morphological datasets, tested biogeographic hypotheses, and analyzed the potential consequences of the various factors on the evolutionary history of the clade. We created paleodistribution models to identify potential Pleistocene refugia for the clade and estimated niche space for individual taxa using geographic and climatic data. Using 11 nuclear loci, we reconstructed a species tree and tested biogeographic hypotheses derived from the paleodistribution models. Finally, we tested 28 morphological characters, including floral, vegetative, and seed characteristics, for their capacity to differentiate taxa. Our results show that the combined effect of Quaternary climatic variation, isolation among differing environments in the mountains in western North America, and biotic factors influencing floral morphology contributed to speciation in this group during the mid-Pleistocene. Furthermore, our biogeographic analyses uncovered asynchronous consequences of interglacial and glacial periods for the timing of refugial isolation within the southern and northwestern mountains, respectively. These findings have broad implications for understanding the processes promoting speciation in arctic-alpine plants and the rise of numerous endemic taxa across the region. PMID:25505522

  11. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  12. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans.

    PubMed

    Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J

    2017-09-01

    Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust characterization of genetic responses to exposure in various hosts and the pathogen should precede any attempts to use particular bat species as generalizable "model hosts."

  13. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

    PubMed

    Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey

    2018-05-01

    Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.

  14. Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of Burkholderia pseudomallei.

    PubMed

    Pumirat, Pornpan; Vanaporn, Muthita; Boonyuen, Usa; Indrawattana, Nitaya; Rungruengkitkun, Amporn; Chantratita, Narisara

    2017-08-01

    Burkholderia pseudomallei is an environmental saprophyte and the causative agent of melioidosis, a severe infectious disease prevalent in tropical areas, including southeast Asia and northern Australia. In Thailand, the highest incidence of melioidosis is in the northeast region, where saline soil and water are abundant. We hypothesized that B. pseudomallei develops an ability to thrive in saline conditions and gains a selective ecological advantage over other soil-dwelling microorganisms. However, little is known about how an elevated NaCl concentration affects survival and adaptive changes in this pathogen. In this study, we examined the adaptive changes in six isolates of B. pseudomallei after growth in Luria-Bertani medium containing different concentrations of NaCl at 37°C for 6 hr. The bacteria were then investigated for resistance to heat at 50°C and killing by hydrogen peroxide (H 2 O 2 ). In addition, flagellar production, biofilm formation, and the plaque formation efficiency of B. pseudomallei after culture in saline conditions were observed. In response to exposure to 150 and 300 mmol L -1 NaCl, all B. pseudomallei isolates showed significantly increased thermal tolerance, oxidative resistance, and plaque-forming efficiency. However, NaCl exposure notably decreased the number of B. pseudomallei flagella. Taken together, these results provide insight into the adaptations of B. pseudomallei that might be crucial for survival and persistence in the host and/or endemic environments with high salinity. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  15. Environmental Controls of Oyster-Pathogenic Vibrio spp. in Oregon Estuaries and a Shellfish Hatchery

    PubMed Central

    Crump, Byron C.; Häse, Claudia C.; White, Angelicque E.

    2018-01-01

    ABSTRACT Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio-specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus. Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119–134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success. PMID:29475863

  16. Environmental Controls of Oyster-Pathogenic Vibrio spp. in Oregon Estuaries and a Shellfish Hatchery.

    PubMed

    Gradoville, Mary R; Crump, Byron C; Häse, Claudia C; White, Angelicque E

    2018-05-01

    Vibrio spp. have been a persistent concern for coastal bivalve hatcheries, which are vulnerable to environmental pathogens in the seawater used for rearing larvae, yet the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state are poorly understood. Here, we present data tracking oyster-pathogenic Vibrio bacteria in Netarts Bay and Yaquina Bay in Oregon, USA, as well as in adjacent coastal waters and a local shellfish hatchery, through the 2015 upwelling season. Vibrio populations were quantified using a culture-independent approach of high-throughput Vibrio- specific 16S rRNA gene sequencing paired with droplet digital PCR, and abundances were analyzed in the context of local biogeochemistry. The most abundant putative pathogen in our samples was Vibrio coralliilyticus Environmental concentrations of total Vibrio spp. and V. coralliilyticus were highest in Netarts Bay sediment samples and higher in seawater from Netarts Bay than from nearshore coastal waters or Yaquina Bay. In Netarts Bay, the highest V. coralliilyticus concentrations were observed during low tide, and abundances increased throughout the summer. We hypothesize that the warm shallow waters in estuarine mudflats facilitate the local growth of the V. coralliilyticus pathogen. Samples from larval oyster tanks in Whiskey Creek Shellfish Hatchery, which uses seawater pumped directly from Netarts Bay, contained significantly lower total Vibrio species concentrations, but roughly similar V. coralliilyticus concentrations, than did the bay water, resulting in a 30-fold increase in the relative abundance of the V. coralliilyticus pathogen in hatchery tanks. This suggests that the V. coralliilyticus pathogen is able to grow or persist under hatchery conditions. IMPORTANCE It has been argued that oyster-pathogenic Vibrio spp. have contributed to recent mortality events in U.S. shellfish hatcheries (R. A. Elston, H. Hasegawa, K. L. Humphrey, I. K. Polyak, and C. Häse, Dis Aquat Organ 82:119-134, 2008, https://doi.org/10.3354/dao01982); however, these events are often sporadic and unpredictable. The success of hatcheries is critically linked to the chemical and biological composition of inflowing seawater resources; thus, it is pertinent to understand the biogeochemical drivers of oyster-pathogenic Vibrio spp. in their planktonic state. Here, we show that Netarts Bay, the location of a local hatchery, is enriched in oyster-pathogenic V. coralliilyticus compared to coastal seawater, and we hypothesize that conditions in tidal flats promote the local growth of this pathogen. Furthermore, V. coralliilyticus appears to persist in seawater pumped into the local hatchery. These results improve our understanding of the ecology and environmental controls of the V. coralliilyticus pathogen and could be used to improve future aquaculture efforts, as multiple stressors impact hatchery success. Copyright © 2018 Gradoville et al.

  17. Quantitative Real-time Polymerase Chain Reaction for Enteropathogenic Escherichia coli: A Tool for Investigation of Asymptomatic Versus Symptomatic Infections

    PubMed Central

    Barletta, Francesca; Mercado, Erik; Ruiz, Joaquim; Ecker, Lucie; Lopez, Giovanni; Mispireta, Monica; Gil, Ana I.; Lanata, Claudio F.; Cleary, Thomas G.

    2011-01-01

    Background. Enteropathogenic Escherichia coli (EPEC) strains are pediatric pathogens commonly isolated from both healthy and sick children with diarrhea in areas of endemicity. The aim of this study was to compare the bacterial load of EPEC isolated from stool samples from children with and without diarrhea to determine whether bacterial load might be a useful tool for further study of this phenomenon. Methods. EPEC was detected by polymerase chain reaction (PCR) of colonies isolated on MacConkey plates from 53 diarrheal and 90 healthy children aged <2 years. DNA was isolated from stool samples by cetyltrimethylammonium bromide extraction. To standardize quantification by quantitative real-time PCR (qRT-PCR), the correlation between fluorescence threshold cycle and copy number of the intimin gene of EPEC E2348/69 was determined. Results. The detection limit of qRT-PCR was 5 bacteria/mg stool. The geometric mean load in diarrhea was 299 bacteria/mg (95% confidence interval [CI], 77–1164 bacteria/mg), compared with 29 bacteria/mg (95% CI, 10–87 bacteria/mg) in control subjects (P = .016). Bacterial load was significantly higher in children with diarrhea than in control subjects among children <12 months of age (178 vs 5 bacteria/mg; P = .006) and among children with EPEC as the sole pathogen (463 vs 24 bacteria/mg; P = .006). Conclusions. EPEC load measured by qRT-PCR is higher in diarrheal than in healthy children. qRT-PCR may be useful to study the relationship between disease and colonization in settings of endemicity. PMID:22028433

  18. A nationwide survey of pathogenic leptospires in urine of cattle and buffaloes by Loop-mediated isothermal amplification (LAMP) method in Thailand, 2011–2013

    PubMed Central

    SUWANCHAROEN, Duangjai; LIMLERTVATEE, Supaluck; CHETIYAWAN, Philaiphon; TONGPAN, Phichet; SANGKAEW, Nongluck; SAWADDEE, Yaowarat; INTHAKAN, Kanya; WIRATSUDAKUL, Anuwat

    2016-01-01

    Leptospirosis is a worldwide distributed zoonosis which has long been endemic in Thailand. Cattle and buffaloes are important livestock species that live in close contact with humans, especially in rural areas. These animals may, therefore, act as long-term carriers of leptospirosis for humans and other livestock species. The present study employed loop-mediated isothermal amplification (LAMP) method to detect pathogenic leptospiral 16S rDNA in the urine of cattle and buffaloes for assessing associations between uroprevalence and species, sex, age and spatial distribution. A total of 3,657 urine samples were collected for laboratory diagnosis, and 312 of which turned positive to the test (true prevalence 5.90%; 95% CI 4.98–6.91). The highest true uroprevalence was found in lower northern region at 19.80% (95% CI 15.83–24.32) followed by upper and lower northeastern regions at 15.22% and 6.25%, respectively. However, the highest true uroprevalence in beef cattle, the majority of cattle in Thailand, was recorded in northeastern region which is the endemic area of human leptospirosis. The uroprevalence was not statistically different among species and types of examined animals. Male animals were over twice more likely to be infected compared to females. Excluding animals younger than one year of age due to small sample size, the uroprevalence upraised with increasing age. A collaborative investigation between veterinary and public health sectors is required to holistically explore the link between leptospirosis in humans and livestock, especially in high prevalent areas. PMID:27302016

  19. Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds.

    PubMed

    Levin, I I; Zwiers, P; Deem, S L; Geest, E A; Higashiguchi, J M; Iezhova, T A; Jiménez-Uzcátegui, G; Kim, D H; Morton, J P; Perlut, N G; Renfrew, R B; Sari, E H R; Valkiunas, G; Parker, P G

    2013-12-01

    Haemosporidian parasites in the genus Plasmodium were recently detected through molecular screening in the Galapagos Penguin (Spheniscus mendiculus). We summarized results of an archipelago-wide screen of 3726 endemic birds representing 22 species for Plasmodium spp. through a combination of molecular and microscopy techniques. Three additional Plasmodium lineages were present in Galapagos. Lineage A-infected penguins, Yellow Warblers (Setophaga petechia aureola), and one Medium Ground Finch (Geospiza fortis) and was detected at multiple sites in multiple years [corrected]. The other 3 lineages were each detected at one site and at one time; apparently, they were transient infections of parasites not established on the archipelago. No gametocytes were found in blood smears of infected individuals; thus, endemic Galapagos birds may be dead-end hosts for these Plasmodium lineages. Determining when and how parasites and pathogens arrive in Galapagos is key to developing conservation strategies to prevent and mitigate the effects of introduced diseases. To assess the potential for Plasmodium parasites to arrive via migratory birds, we analyzed blood samples from 438 North American breeding Bobolinks (Dolichonyx oryzivorus), the only songbird that regularly migrates through Galapagos. Two of the ephemeral Plasmodium lineages (B and C) found in Galapagos birds matched parasite sequences from Bobolinks. Although this is not confirmation that Bobolinks are responsible for introducing these lineages, evidence points to higher potential arrival rates of avian pathogens than previously thought. Linajes Múltiples de Parásitos de Malaria Aviar (Plasmodium) en las Islas Galápagos y Evidencia de su Arribo por Medio de Aves Migratorias. © 2013 Society for Conservation Biology.

  20. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Management of Citrus Canker in Argentina, a Success Story.

    PubMed

    Canteros, B I; Gochez, A M; Moschini, R C

    2017-10-01

    Citrus canker is an important bacterial disease of citrus in several regions of the world. Strains of Xanthomonas citri type-A (Xc-A) group are the primary pathogen where citrus canker occurs. After Xc-A entered the Northeast of Argentina in 1974, the disease spread rapidly from 1977 to 1980 and then slowed down and remained moving at slow pace until 1990 when it became endemic. Citrus canker was detected in Northwest Argentina in 2002. This paper presents the main steps in the fight of the disease and the management strategies that have been used to control citrus canker at this time. We think the process might be usefull to other countries with the same situation. Results from more than 40 years of research in Northeast (NE) Argentina indicate that we are at the limit of favorable environment for the disease. The severity of citrus canker is greatly affected by the environment and El Niño Southern Oscillation (ENSO) phenomenon which causes cyclic fluctuations on the disease intensity in the NE region. Weather-based logistic regression models adjusted to quantify disease levels in field conditions showed that the environmental effect was strongly modulated by the distance from a windbreak. Production of healthy fruits in citrus canker endemic areas is possible knowing the dynamics of the disease. A voluntary Integrated Plan to Reduce the Risk of Canker has been in place since 1994 and it allows growers to export unsymptomatic, uninfested fresh fruit to countries which are free of the disease and require healthy, pathogen free fruits. The experience from Argentina can be replicated in other countries after appropriate trials.

  2. A nationwide survey of pathogenic leptospires in urine of cattle and buffaloes by Loop-mediated isothermal amplification (LAMP) method in Thailand, 2011-2013.

    PubMed

    Suwancharoen, Duangjai; Limlertvatee, Supaluck; Chetiyawan, Philaiphon; Tongpan, Phichet; Sangkaew, Nongluck; Sawaddee, Yaowarat; Inthakan, Kanya; Wiratsudakul, Anuwat

    2016-10-01

    Leptospirosis is a worldwide distributed zoonosis which has long been endemic in Thailand. Cattle and buffaloes are important livestock species that live in close contact with humans, especially in rural areas. These animals may, therefore, act as long-term carriers of leptospirosis for humans and other livestock species. The present study employed loop-mediated isothermal amplification (LAMP) method to detect pathogenic leptospiral 16S rDNA in the urine of cattle and buffaloes for assessing associations between uroprevalence and species, sex, age and spatial distribution. A total of 3,657 urine samples were collected for laboratory diagnosis, and 312 of which turned positive to the test (true prevalence 5.90%; 95% CI 4.98-6.91). The highest true uroprevalence was found in lower northern region at 19.80% (95% CI 15.83-24.32) followed by upper and lower northeastern regions at 15.22% and 6.25%, respectively. However, the highest true uroprevalence in beef cattle, the majority of cattle in Thailand, was recorded in northeastern region which is the endemic area of human leptospirosis. The uroprevalence was not statistically different among species and types of examined animals. Male animals were over twice more likely to be infected compared to females. Excluding animals younger than one year of age due to small sample size, the uroprevalence upraised with increasing age. A collaborative investigation between veterinary and public health sectors is required to holistically explore the link between leptospirosis in humans and livestock, especially in high prevalent areas.

  3. Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya.

    PubMed

    Adjou Moumouni, Paul Franck; Aboge, Gabriel Oluga; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Cao, Shinuo; Kamyingkird, Ketsarin; Jirapattharasate, Charoonluk; Zhou, Mo; Wang, Guanbo; Liu, Mingming; Iguchi, Aiko; Vudriko, Patrick; Ybanez, Adrian Patalinghug; Inokuma, Hisashi; Shirafuji-Umemiya, Rika; Suzuki, Hiroshi; Xuan, Xuenan

    2015-09-30

    Infections with Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale are endemic in Kenya yet there is a lack of adequate information on their genotypes. This study established the genetic diversities of the above tick-borne hemoparasites infecting cattle in Kenya. Nested PCR and sequencing were used to determine the prevalence and genetic diversity of the above parasites in 192 cattle blood samples collected from Ngong and Machakos farms. B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes. B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm. Co-infections were observed in more than 50 % of positive samples in both farms. Babesia parasites and A. marginale sequences were highly conserved while T. parva and T. orientalis were polymorphic. Cattle-derived T. parva was detected in Machakos farm. However, cattle and buffalo-derived Theileria were detected in Ngong farm suggesting interactions between cattle and wild buffaloes. Generally, the pathogens detected in Kenya were genetically related to the other African isolates but different from the isolates in other continents. The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

  4. Mosquitoes on a plane: Disinsection will not stop the spread of vector-borne pathogens, a simulation study

    PubMed Central

    Mier-y-Teran-Romero, Luis; Tatem, Andrew J.

    2017-01-01

    Mosquito-borne diseases are increasingly being recognized as global threats, with increased air travel accelerating their occurrence in travelers and their spread to new locations. Since the early days of aviation, concern over the possible transportation of infected mosquitoes has led to recommendations to disinsect aircraft. Despite rare reports of mosquitoes, most likely transported on aircraft, infecting people far from endemics areas, it is unclear how important the role of incidentally transported mosquitoes is compared to the role of traveling humans. We used data for Plasmodium falciparum and dengue viruses to estimate the probability of introduction of these pathogens by mosquitoes and by humans via aircraft under ideal conditions. The probability of introduction of either pathogen by mosquitoes is low due to few mosquitoes being found on aircraft, low infection prevalence among mosquitoes, and high mortality. Even without disinsection, introduction via infected human travelers was far more likely than introduction by infected mosquitoes; more than 1000 times more likely for P. falciparum and more than 200 times more likely for dengue viruses. Even in the absence of disinsection and under the most favorable conditions, introduction of mosquito-borne pathogens via air travel is far more likely to occur as a result of an infected human travelling rather than the incidental transportation of infected mosquitoes. Thus, while disinsection may serve a role in preventing the spread of vector species and other invasive insects, it is unlikely to impact the spread of mosquito-borne pathogens. PMID:28672006

  5. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    PubMed

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  6. Feline and canine leishmaniosis and other vector-borne diseases in the Aeolian Islands: Pathogen and vector circulation in a confined environment.

    PubMed

    Otranto, Domenico; Napoli, Ettore; Latrofa, Maria Stefania; Annoscia, Giada; Tarallo, Viviana Domenica; Greco, Grazia; Lorusso, Eleonora; Gulotta, Laura; Falsone, Luigi; Basano, Fabrizio Solari; Pennisi, Maria Grazia; Deuster, Katrin; Capelli, Gioia; Dantas-Torres, Filipe; Brianti, Emanuele

    2017-03-15

    Vector-borne diseases (VBDs) are prevalently investigated in dogs. Studies on feline VBDs are scant, though feline leishmaniosis (FeL) is increasingly recognised as a disease of cats in endemic areas. Comprehensive investigations on the distribution of VBDs in populations of cats and dogs living in relatively small geographical areas, such as islands, are currently lacking. In this study the prevalence of Leishmania infantum and other VBD pathogens was assessed in cohorts of cats and dogs living in the Aeolian Islands. Autochthonous animals (330 cats and 263 dogs) of different age and sex were sampled. Blood and conjunctival samples were collected from cats and dogs for serological and molecular testing. Eighty-five (25.8%) cats were positive for L. infantum, 13 (3.9%) for Bartonella spp. and 1 (0.3%) for Hepatozoon felis. One-hundred and ten dogs (41.8%) were positive for L. infantum and three (1.1%) for Hepatozoon canis. The incidence of L. infantum infection in cats positive after one season of exposure to sand fly was 14.7%. Leishmania infantum prevalence and year incidence were higher in dogs than in cats (p=0.0001 and p=0.0003, respectively). Thirty-four cats (10.3%) scored positive for ticks (mean intensity rate of infestation, 2.03±1.4), which were identified to the species level as Ixodes ventalloi and Rhipicephalus pusillus. Conversely, Rhipicephalus sanguineus sensu lato (s.l.) was the only species identified in dogs (10.6%). A larger prevalence of infestation by Ctenocephalides felis was recorded in cats (n=91; 27.6%) than in dogs (n=33; 12.5%) (p=0.0001). In addition, one female Nosopsyllus fasciatus (syn. Ceratophyllus fasciatus) and one male Spilopsyllus cuniculi were also identified in flea-infected cats. VBDs are endemic in the Aeolian Islands being L. infantum the most prevalent vector-borne pathogen circulating between cats and dogs. The overall seroprevalence of FeL herein recorded is higher than that assessed, only by IFAT, in populations of cats in Greece and in Spain. Because L. infantum and VBDs are more commonly associated with dogs, the recognition of cats as hosts of different vector-borne pathogens is of paramount importance towards a better management of these diseases in both animals and humans. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria

    PubMed Central

    Rosengarten, Jamila F.; de Graaf, Rob M.; Jetten, Mike S. M.

    2016-01-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  8. Institutions, Parasites and the Persistence of In-group Preferences

    PubMed Central

    Hruschka, Daniel J.; Henrich, Joseph

    2013-01-01

    Much research has established reliable cross-population differences in motivations to invest in one’s in-group. We compare two current historical-evolutionary hypotheses for this variation based on (1) effective large-scale institutions and (2) pathogen threats by analyzing cross-national differences (N = 122) in in-group preferences measured in three ways. We find that the effectiveness of government institutions correlates with favoring in-group members, even when controlling for pathogen stress and world region, assessing reverse causality, and providing a check on endogeneity with an instrumental variable analysis. Conversely, pathogen stress shows inconsistent associations with in-group favoritism when controlling for government effectiveness. Moreover, pathogen stress shows little to no association with in-group favoritism within major world regions whereas government effectiveness does. These results suggest that variation in in-group preferences across contemporary nation-states is more consistent with a generalized response to institutions that meet basic needs rather than an evolved response dedicated to pathogens. PMID:23704926

  9. To Be Cytosolic or Vacuolar: The Double Life of Listeria monocytogenes.

    PubMed

    Bierne, Hélène; Milohanic, Eliane; Kortebi, Mounia

    2018-01-01

    Intracellular bacterial pathogens are generally classified into two types: those that exploit host membrane trafficking to construct specific niches in vacuoles (i.e., "vacuolar pathogens"), and those that escape from vacuoles into the cytosol, where they proliferate and often spread to neighboring cells (i.e., "cytosolic pathogens"). However, the boundary between these distinct intracellular phenotypes is tenuous and may depend on the timing of infection and on the host cell type. Here, we discuss recent progress highlighting this phenotypic duality in Listeria monocytogenes , which has long been a model for cytosolic pathogens, but now emerges as a bacterium also capable of residing in vacuoles, in a slow/non-growing state. The ability of L. monocytogenes to enter a persistence stage in vacuoles might play a role during the asymptomatic incubation period of listeriosis and/or the carriage of this pathogen in asymptomatic hosts. Moreover, persistent vacuolar Listeria could be less susceptible to antibiotics and more difficult to detect by routine techniques of clinical biology. These hypotheses deserve to be explored in order to better manage the risks related to this food-borne pathogen.

  10. Viroid Pathogenicity: One Process, Many Faces

    PubMed Central

    Owens, Robert A.; Hammond, Rosemarie W.

    2009-01-01

    Despite the non-coding nature of their small RNA genomes, the visible symptoms of viroid infection resemble those associated with many plant virus diseases. Recent evidence indicates that viroid-derived small RNAs acting through host RNA silencing pathways play a key role in viroid pathogenicity. Host responses to viroid infection are complex, involving signaling cascades containing host-encoded protein kinases and crosstalk between hormonal and defense-signaling pathways. Studies of viroid-host interaction in the context of entire biochemical or developmental pathways are just beginning, and many working hypotheses have yet to be critically tested. PMID:21994551

  11. Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation

    PubMed Central

    Glidden, Caroline K.; Beechler, Brianna; Buss, Peter Erik; Charleston, Bryan; de Klerk-Lorist, Lin-Mari; Maree, Francois Frederick; Muller, Timothy; Pérez-Martin, Eva; Scott, Katherine Anne; van Schalkwyk, Ockert Louis; Jolles, Anna

    2018-01-01

    Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimental study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI remain elevated after viral clearance and; (3) how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was indicative of recent exposure to two respiratory pathogens assessed in the longitudinal study. We hope this work motivates studies investigating suites of NSMI as indicators for pathogen exposure in a broader range of both pathogen and host species, potentially transforming how we track disease burden in natural populations. PMID:29375568

  12. Winter cover crop effect on corn seedling pathogens

    USDA-ARS?s Scientific Manuscript database

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  13. Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ.

    PubMed Central

    Reinhardt, Klaus; Naylor, Richard; Siva-Jothy, Michael T

    2003-01-01

    The frequent wounding of female bedbugs (Cimex lectularius: Cimicidae) during copulation has been shown to decrease their fitness, but how females have responded to this cost in evolutionary terms is unclear. The evolution of a unique anatomical structure found in female bedbugs, the spermalege, into which the male's intromittent organ passes during traumatic insemination, is a possible counteradaptation to harmful male traits. Several functions have been proposed for this organ, and we test two hypotheses related to its role in sexual conflict. We examine the hypotheses that the spermalege functions to (i) defend against pathogens introduced during traumatic insemination; and (ii) reduce the costs of wound healing during traumatic insemination. Our results support the 'defence against pathogens' hypothesis, suggesting that the evolution of this unique cimicid organ resulted, at least partly, from selection to reduce the costs of mating-associated infection. We found no evidence that the spermalege reduces the costs of wound healing. PMID:14667353

  14. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus , and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins.

  15. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions.

    PubMed

    Kidane, Yared H; Lawrence, Christopher; Murali, T M

    2013-10-07

    Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host's tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host's tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc.

  16. Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions

    PubMed Central

    2013-01-01

    Background Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants. Results In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans. Conclusions Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc PMID:24099000

  17. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    PubMed Central

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits package microbes with significant disease-suppression potential. As seeds can act as vectors for genetic transmission of endophytes across host generations, it is interesting to hypothesize whether humans, when selecting seeds of healthy hosts, may have inadvertently selected for disease-suppressing seed endophytes. As the majority of pathogen-suppressing endophytes belong to Bacillus and Paenibacillus, and since Bacilli are widely used as commercial biocontrol agents of vegetables, we propose that these agents are mimicking the ecological niche established by their endophytic cousins. PMID:29459850

  18. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism

    PubMed Central

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-01-01

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996

  19. Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island".

    PubMed

    Hao, Xiuli; Lüthje, Freja L; Qin, Yanan; McDevitt, Sylvia Franke; Lutay, Nataliya; Hobman, Jon L; Asiani, Karishma; Soncini, Fernando C; German, Nadezhda; Zhang, Siyu; Zhu, Yong-Guan; Rensing, Christopher

    2015-07-01

    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.

  20. The proportional lack of archaeal pathogens: Do viruses/phages hold the key?

    PubMed Central

    Gill, Erin E; Brinkman, Fiona S L

    2011-01-01

    Although Archaea inhabit the human body and possess some characteristics of pathogens, there is a notable lack of pathogenic archaeal species identified to date. We hypothesize that the scarcity of disease-causing Archaea is due, in part, to mutually-exclusive phage and virus populations infecting Bacteria and Archaea, coupled with an association of bacterial virulence factors with phages or mobile elements. The ability of bacterial phages to infect Bacteria and then use them as a vehicle to infect eukaryotes may be difficult for archaeal viruses to evolve independently. Differences in extracellular structures between Bacteria and Archaea would make adsorption of bacterial phage particles onto Archaea (i.e. horizontal transfer of virulence) exceedingly hard. If phage and virus populations are indeed exclusive to their respective host Domains, this has important implications for both the evolution of pathogens and approaches to infectious disease control. PMID:21328413

  1. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    PubMed

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  2. Sexually transmitted infection and the evolution of serial monogamy

    PubMed Central

    McLeod, David V.; Day, Troy

    2014-01-01

    The selective forces shaping mating systems have long been of interest to biologists. One particular selective pressure that has received comparatively little attention is sexually transmitted infections (STIs). While it has been hypothesized that STIs could drive the evolutionary emergence of monogamy, there is little theoretical support. Here we use an evolutionary invasion analysis to determine what aspects of pathogen virulence and transmission are necessary for serial monogamy to evolve in a promiscuous population. We derive a biologically intuitive invasion condition in terms of population-specific quantities. From this condition, we obtain two main results. First, when pathogen virulence causes mortality rather than sterility, monogamy is more likely to evolve. Second, we find that at intermediate pathogen transmission rates, monogamy is the most selectively advantageous, whereas at high- and low-transmission rates, monogamy is generally selected against. As a result, it is possible for a pathogen to be highly virulent, yet for promiscuity to persist. PMID:25320174

  3. DNA profiling of Tilapia guinasana, a species endemic to a single sinkhole, to determine the genetic divergence between color forms.

    PubMed

    Nxomani, C; Ribbink, A J; Kirby, R

    1999-06-01

    Northwestern South Africa and Namibia contain a number of sinkholes in the dolomitic rock formations found in this area. These contain isolated populations of Tilapia. Most contain Tilapia sparmanii, but the one in Namibia, Guinas, is of particular interest as it contains the endemic species, Tilapia guinasana, which exhibits none sex-limited polychromatisms, which is unique for Tilapia. This sinkhole is under environmental threat, particularly as a result of being a recreational diving site. This study, using randomly amplified polymorphic DNA sequences (RAPDs), when analyzed using analysis of variance (ANOVA), shows that the colour forms of Tilapia guinasana are genetically distinct. This confirms previous evidence that assortative mating between color forms takes place. The various possible hypotheses for the occurrence and genetic stability of the color polymorphism are discussed. Further, a new hypothesis is put forward based on a need to maximize outbreeding in fully isolated population with no possibility of increase in size above the maximum and limited carrying capacity of the sinkhole.

  4. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  5. Influenza type A virus: an outstandingly protean pathogen and a potent modular weapon.

    PubMed

    Shoham, Dany

    2013-05-01

    A remarkable debate recently arose on a global scale, about bioethics, biohazard, bioweaponry and bioterrorism issues related to scientific research concerning the induced transition of the highly lethal H5N1 avian flu virus from a non-pandemic to a tentatively pandemic strain, which might fall into malevolent hands. Appreciable ecogenetic complexity marks the main attributes of influenza type A viruses, namely infectivity, virulence, antigenicity, transmissibility, host range, endemicity, and epidemicity. They all shape, conjunctively, the outstanding protean nature of this pathogen, hence the modularity of the latter as a potent weapon. The present analysis inquires into those attributes, so as to profile and gauge threat, usability, impact and coping, particularly that the dimension of genetic engineering of this virus largely amplifies its potential. Within that context, various human interventions and misuses, including human experimental infections, undesirable vaccinations, as well as unauthorized and unskillful operations, led to bad corollaries and are also discussed in the present study. Altogether, a variety of interrelated properties underlying the complicatedness of and menaces posed by influenza A virus as a grave medical challenge, a dually explorable pathogen, and a modular biological warfare agent, are thereby illuminated, alongside with their scientific, strategic and practical implications.

  6. Molecular epidemiology of pathogenic Leptospira spp. among large ruminants in the Philippines.

    PubMed

    Villanueva, Marvin A; Mingala, Claro N; Balbin, Michelle M; Nakajima, Chie; Isoda, Norikazu; Suzuki, Yasuhiko; Koizumi, Nobuo

    2016-12-01

    The extent of Leptospira infection in large ruminants resulting to economic problems in livestock industry in a leptospirosis-endemic country like the Philippines has not been extensively explored. Therefore, we determined the prevalence and carrier status of leptospirosis in large ruminants using molecular techniques and assessed the risk factors of acquiring leptospirosis in these animals. Water buffalo and cattle urine samples (n=831) collected from 21 farms during 2013-2015 were subjected to flaB-nested PCR to detect pathogenic Leptospira spp. Leptospiral flaB was detected in both species with a detection rate of 16.1%. Leptospiral DNA was detected only in samples from animals managed in communal farms. Sequence analysis of Leptospira flaB in large ruminants revealed the formation of three major clusters with L. borgpetersenii or L. kirschneri. One farm contained Leptospira flaB sequences from all clusters identified in this study, suggesting this farm was the main source of leptospires for other farms. This study suggested that these large ruminants are infected with various pathogenic Leptospira species causing possible major economic loss in the livestock industry as well as potential Leptospira reservoirs that can transmit infection to humans and other animals in the Philippines.

  7. Vector-borne diseases on Fire Island, New York (Fire Island National Seashore Science Synthesis Paper)

    USGS Publications Warehouse

    Ginsberg, H.S.

    2005-01-01

    This paper discusses eleven tick-borne and five mosquito-borne pathogens that are known to occur at FIlS, or could potentially occur. The potential for future occurrence, and ecological factors that influence occurrence, are assessed for each disease. Lyme disease is the most common vector-borne disease on Fire Island. The Lyme spirochete, Borrelia burgdorferi, is endemic in local tick and wildlife populations. Public education, personal precautions against tick bite, and prompt treatment of early-stage infections can help manage the risk of Lyme disease on Fire Island. The pathogens that cause Human Monocytic Ehrlichiosis and Tularemia have been isolated from ticks or wildlife on Fire Island, and conditions suggest that other tickborne diseases (including Babesiosis, Rocky Mountain Spotted Fever, and Human Granulocytic Ehrlichiosis) might also occur, but these are far less common than Lyme disease, if present. West Nile Virus (WNV) is the primary mosquito- borne human pathogen that is known to occur on Fire Island. Ecological conditions and recent epizootiological events suggest that WNV occurs in foci that can shift from year to year. Therefore, a surveillance program with appropriate responses to increasing epizootic activity can help manage the risk of WNV transmission on Fire Island.

  8. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    PubMed Central

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  9. Complete genome sequence of Burkholderia phenoliruptrix BR3459a (CLA1), a heat-tolerant, nitrogen-fixing symbiont of Mimosa flocculosa.

    PubMed

    de Oliveira Cunha, Cláudio; Goda Zuleta, Luiz Fernando; Paula de Almeida, Luiz Gonzaga; Prioli Ciapina, Luciane; Lustrino Borges, Wardsson; Pitard, Rosa Maria; Baldani, José Ivo; Straliotto, Rosangela; de Faria, Sérgio Miana; Hungria, Mariangela; Sousa Cavada, Benildo; Mercante, Fábio Martins; Ribeiro de Vasconcelos, Ana Tereza

    2012-12-01

    The genus Burkholderia represents a challenge to the fields of taxonomy and phylogeny and, especially, to the understanding of the contrasting roles as either opportunistic pathogens or bacteria with biotechnological potential. Few genomes of nonpathogenic strains, especially of diazotrophic symbiotic bacteria, have been sequenced to improve understanding of the genus. Here, we contribute with the complete genome sequence of Burkholderia phenoliruptrix strain BR3459a (CLA1), an effective diazotrophic symbiont of the leguminous tree Mimosa flocculosa Burkart, which is endemic to South America.

  10. Complete Genome Sequence of Burkholderia phenoliruptrix BR3459a (CLA1), a Heat-Tolerant, Nitrogen-Fixing Symbiont of Mimosa flocculosa

    PubMed Central

    de Oliveira Cunha, Cláudio; Goda Zuleta, Luiz Fernando; Paula de Almeida, Luiz Gonzaga; Prioli Ciapina, Luciane; Lustrino Borges, Wardsson; Pitard, Rosa Maria; Baldani, José Ivo; Straliotto, Rosangela; de Faria, Sérgio Miana; Hungria, Mariangela; Sousa Cavada, Benildo; Mercante, Fábio Martins

    2012-01-01

    The genus Burkholderia represents a challenge to the fields of taxonomy and phylogeny and, especially, to the understanding of the contrasting roles as either opportunistic pathogens or bacteria with biotechnological potential. Few genomes of nonpathogenic strains, especially of diazotrophic symbiotic bacteria, have been sequenced to improve understanding of the genus. Here, we contribute with the complete genome sequence of Burkholderia phenoliruptrix strain BR3459a (CLA1), an effective diazotrophic symbiont of the leguminous tree Mimosa flocculosa Burkart, which is endemic to South America. PMID:23144415

  11. Successful Treatment of Chromobacterium violaceum Sepsis in a South Indian Adult.

    PubMed

    Madi, Deepak R; Vidyalakshmi, K; Ramapuram, John; Shetty, Avinash K

    2015-11-01

    Infection due to Chromobacterium violaceum is rare. Diagnosis may be delayed since Chromobacterium sepsis may mimic melioidosis, especially in melioidosis-endemic areas. Management of Chromobacterium infection is challenging given the propensity of this pathogen to cause visceral abscesses, drug resistance, and relapse. Mortality rates are high despite treatment. We report a case of C. violaceum septicemia in an immunocompetent adult from south India, who was successfully treated with combination antibiotic therapy. Physicians in tropical and subtropical regions must be aware of C. violaceum infection as it can mimic melioidosis. © The American Society of Tropical Medicine and Hygiene.

  12. Impacts of biodiversity on the emergence and transmission of infectious diseases.

    PubMed

    Keesing, Felicia; Belden, Lisa K; Daszak, Peter; Dobson, Andrew; Harvell, C Drew; Holt, Robert D; Hudson, Peter; Jolles, Anna; Jones, Kate E; Mitchell, Charles E; Myers, Samuel S; Bogich, Tiffany; Ostfeld, Richard S

    2010-12-02

    Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.

  13. Pathogenicity and transmission of the novel A (H3N2v) influenza virus isolated from humans in experimentally inoculated pigs

    USDA-ARS?s Scientific Manuscript database

    Human cases with H3N2 (H3N2v) viruses closely related to swine H3N2 viruses were detected in 2011 and increased to >320 cases by the end of 2012. H3N2-TRIG was the H3N2 genotype endemically circulating in the U.S. swine population prior to the emergence of H1N1pdm09, and rH3N2p are novel H1N1pdm09/H...

  14. Resistance of closely-mown fine fescue and bentgrass species to snow mold pathogens

    USDA-ARS?s Scientific Manuscript database

    Creeping bentgrass (Agrostis stolonifera) is the primary species used on golf courses in temperate regions but requires prophylactic fungicide treatment to prevent snow mold diseases. We hypothesized that fine fescues (Festuca spp.) and colonial bentgrass (A. capillaris) have superior resistance to...

  15. The effects of galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex on Eimeria acervulina infection in broiler chicks

    USDA-ARS?s Scientific Manuscript database

    Fermentable carbohydrates may enhance the ability of the gastrointestinal tract to defend against pathogenic infection. We hypothesized that a mannose-rich, galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex would positively impact immune status and prevent weight loss resulting from...

  16. North American populations of Entoleuca mammata are genetically more variable than populations in Europe

    Treesearch

    Risto Kasanen; Jarkko Hantula; Michael Ostry; Jean Pinon; Timo Kurkela

    2004-01-01

    Entoleuca mammata (syn. Hypoxylon mammatum) is a damaging pathogen of Populus tremuloides and P. grandidentata in North America and P. tremula in Europe, where the fungus occurs only sporadically in alpine regions and Scandinavia. It has been hypothesized that E....

  17. Vector-borne pathogens in dogs and red foxes from the federal state of Brandenburg, Germany.

    PubMed

    Liesner, Jana M; Krücken, Jürgen; Schaper, Roland; Pachnicke, Stefan; Kohn, Barbara; Müller, Elisabeth; Schulze, Christoph; von Samson-Himmelstjerna, Georg

    2016-07-15

    Dirofilaria repens is endemic in eastern and southern European regions but was recently found in Germany in dogs, mosquitoes and one human patient. Since some of the positive dog and mosquito samples were collected in Brandenburg, it was aimed to systematically assess the prevalence of D. repens and other canine vector-borne pathogens in Brandenburg. Dog owners also received a questionnaire and were asked to provide more information about the dogs including travel history. In total, 1023 dog blood samples as well as 195 fox spleen and 179 fox blood samples were collected. DNA was analysed by PCR for the presence of filariae, piroplasms, anaplasmataceae and Rickettsia spp. Filariae were detected in six dogs (0.6%), two were positive for DNA from D. repens, two from Dirofilaria immitis and two from Acanthocheilonema reconditum. One of the D. repens positive dogs originated from an animal shelter in Brandenburg, but the origin of the other one remained unknown. Interestingly, both D. repens ITS-1 sequences showed 100% identity to a D. repens sample obtained from a Japanese woman that travelled in Europe and were 97% identical to a newly proposed species Dirofilaria sp. 'hongkongensis' described from Hong Kong. However, identity to other D. repens sequences from Thailand was considerably lower (81%). Identity of 12S rRNA and cytochrome oxidase I to D. repens samples from southern Europe was 99%. Due to the low number of Dirofilaria spp. positive dogs and since the origin of these was unknown, endemic occurrence of Dirofilaria in Brandenburg could not be confirmed. Anaplasma phagocytophilum was found in 15 dogs (1.5%), Candidatus Neoehrlichia mikurensis in three dogs (0.3%) and E. canis in one dog (0.1%), which was co-infected with D. repens. Rickettsia spp. were detected in 8 dogs (0.8%), seven were Rickettsia raoultii and one was Rickettsia felis. To the author's knowledge, R. raoultii DNA was detected for the first time in dogs in Germany in this study and Candidatus N. mikurensis for the second time. In spleen samples of red foxes with 47.5% a high prevalence of piroplasms was found. Sequencing of 11 samples identified 10 as Theileria annae. Despite the high prevalence of this pathogen in its reservoir host, it was absent in dog samples. In one dog (0.1%), Babesia canis was detected but there was no further information about the dog's origin. Evaluation of the questionnaire identified a high proportion of dogs (74.2%, n=233) which was not protected by ectoparasiticides. Moreover, 21.2% (n=236) of the dogs originated from inland or abroad shelters, and therefore might potentially come from areas endemic for dirofilariosis or babesiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Geographical patterns of cholera in Mexico, 1991-1996.

    PubMed

    Borroto, R J; Martinez-Piedra, R

    2000-08-01

    The seventh cholera pandemic has been ongoing in Mexico since 1991 and threatens to become endemic. This paper aims to determine the geographical pattern of cholera in Mexico to define areas at high risk of endemic cholera. Ecologic research was conducted based upon the cartography of disease incidence. The 32 Mexican states were grouped into five strata according to the value of the 1991-1996 cumulative incidence rate of cholera. Rate ratios were computed for strata of states classified by geographical situation, urbanization, and poverty level. Cholera incidence was 2.47 times higher in coastal states than in the interior (95% CI : 2.42-2.52). The disease was negatively associated with urbanization. Incidence in the least urbanized stratum was four times as high as in the most urban stratum (95% CI : 3.9-4.12). The poorest stratum showed the most remarkable incidence, i.e. 5.9 times higher than the rate in the least poor stratum (95% CI : 5.73-6.04). This ecologic research suggests that high poverty level, low urbanization, and southern location are the most important predictors of endemic cholera in Mexican states. It is hypothesized that the natural environment of the coastal plains in southern states may also play a significant role in cholera incidence. Poor communities residing in the southern, predominantly rural, coastal states should be prioritized when it comes to investing in safe water supply facilities, adequate excreta disposal systems and cholera surveillance.

  19. Stop and Go - Waves of Tarsier Dispersal Mirror the Genesis of Sulawesi Island.

    PubMed

    Driller, Christine; Merker, Stefan; Perwitasari-Farajallah, Dyah; Sinaga, Walberto; Anggraeni, Novita; Zischler, Hans

    2015-01-01

    The Indonesian island of Sulawesi harbors a highly endemic and diverse fauna sparking fascination since long before Wallace's contemplation of biogeographical patterns in the region. Allopatric diversification driven by geological or climatic processes has been identified as the main mechanism shaping present faunal distribution on the island. There is both consensus and conflict among range patterns of terrestrial species pointing to the different effects of vicariant events on once co-distributed taxa. Tarsiers, small nocturnal primates with possible evidence of an Eocene fossil record on the Asian mainland, are at present exclusively found in insular Southeast Asia. Sulawesi is hotspot of tarsier diversity, whereby island colonization and subsequent radiation of this old endemic primate lineage remained largely enigmatic. To resolve the phylogeographic history of Sulawesi tarsiers we analyzed an island-wide sample for a set of five approved autosomal phylogenetic markers (ABCA1, ADORA3, AXIN1, RAG1, and TTR) and the paternally inherited SRY gene. We constructed ML and Bayesian phylogenetic trees and estimated divergence times between tarsier populations. We found that their arrival at the Proto-Sulawesi archipelago coincided with initial Miocene tectonic uplift and hypothesize that tarsiers dispersed over the region in distinct waves. Intra-island diversification was spurred by land emergence and a rapid succession of glacial cycles during the Plio-Pleistocene. Some tarsier range boundaries concur with spatial limits in other taxa backing the notion of centers of faunal endemism on Sulawesi. This congruence, however, has partially been superimposed by taxon-specific dispersal patterns.

  20. Study on the occurrence of tick-borne encephalitis virus RNA in European bison (Bison bonasus) eliminated at Białowieza Primeval Forest (north-eastern Poland) in 2005-2009.

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz

    2014-01-01

    Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is an arthropod-borne virus, an etiologic agent of tick-borne encephalitis (TBE), an infection involving the central nervous system. The disease is endemic in a large region in Eurasia where it is transmitted mainly by Ixodes ricinus in Europe and I. persulcatus ticks in Asia. This is the most important tick-transmitted arbovirus of human pathogenicity in Europe. The Białowieza Primeval Forest is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tickborne encephalitis virus (TBEV) in European bison, the important hosts of ticks in the Białowieza Primeval Forest. In the years 2005-2009, 95 blood samples were collected from European bison and examined for the presence of TBEV using nRT-PCR method. No positive results were obtained. For better understanding of TBEV vertebrate reservoir hosts in Poland, further investigations are needed.

  1. Epidemiology of infections caused by carbapenemase-producing Enterobacteriaceae: reservoirs and transmission mechanisms.

    PubMed

    López-Cerero, Lorena; Almirante, Benito

    2014-12-01

    The dissemination of carbapenemase-producing Enterobacteriaceae has occurred very quickly and has crossed borders rapidly between countries and continents. In some areas, it has exceeded the holding capacity of health systems, reaching epidemic proportions. This form of dissemination has not been the same for all enzymes, with KPC, NDM and OXA-48 genes having a greater ability to spread. These enzymes have primarily been spread clonally in the case of KPC-producing Klebsiella pneumoniae from the initial epicenter located in New York, with a very small number of strains causing outbreaks. For NDM and OXA- 48, these resistance determinants have been vehiculized by clones with a high transmission capacity; however, simultaneous horizontal transmission is also playing an important role. The most important identified reservoirs are colonized or infected individuals from endemic areas or centers with outbreaks, but the contaminated goods from these endemic areas also play a part. An international effort is needed to control the spread of these multiresistant pathogens. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  2. Anti-leptospiral activities of an endemic plant Glyptopetalum calocarpum (Kurz.) Prain used as a medicinal plant by Nicobarese of Andaman and Nicobar Islands.

    PubMed

    Chander, M Punnam; Kumar, K Vinod; Shriram, A N; Vijayachari, P

    2015-01-01

    Leaves of an endemic plant Glyptopetalum calocarpum are used by Nicobarese tribes of Andaman and Nicobar Islands, India, to prepare traditional medicine for treating fever. In the present investigation, pharmacologically active compounds were isolated from this plant and their antimicrobial efficacy was evaluated against the leptospiral strains. The anti-leptospiral activity of six plant-derived compounds was determined by both microdilution and macrodilution methods. Two out of six compounds, namely lupenone and stigmasterol, showed anti-leptospiral activity. The minimum inhibitory concentrations of the two compounds tested against pathogenic leptospiral strains belonging to 10 serovars were in the range of 100-200 μg/mL. The range of minimum bactericidal concentrations was 400-800 μg/mL. Compounds lupenone, stigmasterol, lupeol, β-amyrin and β-amyrin acetate had negligible or no haemolytic activity, exhibiting IC50 values of greater than 5 mg/mL. Further in vivo studies are needed to investigate the pharmacological and toxicological properties of G. calocarpum before it can be considered as a new anti-leptospiral agent.

  3. Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions.

    PubMed

    Guo, Yaqiong; Li, Na; Ortega, Ynes R; Zhang, Longxian; Roellig, Dawn M; Feng, Yaoyu; Xiao, Lihua

    2018-01-01

    Cyclospora cayetanensis is an emerging pathogen that is endemic in developing countries and responsible for many large foodborne cyclosporiasis outbreaks in North America since 1990s. Because of the lack of typing targets, the genetic diversity and population genetics of C. cayetanensis have not been investigated. In this study, we undertook a population genetic analysis of multilocus sequence typing data we recently collected from 64 C. cayetanensis specimens. Despite the extensive genetic heterogeneity in the overall C. cayetanensis population, there were significant intra- and inter-genic linkage disequilibria (LD). A disappearance of LD was observed when only multilocus genotypes were included in the population genetic analysis, indicative of an epidemic nature of C. cayetanensis. Geographical segregation-associated sub-structuring was observed between specimens from China and those from Peru and the United States. The two subpopulations had reduced LD, indicating the likely occurrence of genetic exchange among isolates in endemic areas. Further analyses of specimens from other geographical regions are necessary to fully understand the population genetics of C. cayetanensis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neglected endemic mycoses.

    PubMed

    Queiroz-Telles, Flavio; Fahal, Ahmed Hassan; Falci, Diego R; Caceres, Diego H; Chiller, Tom; Pasqualotto, Alessandro C

    2017-11-01

    Fungi often infect mammalian hosts via the respiratory route, but traumatic transcutaneous implantation is also an important source of infections. Environmental exposure to spores of pathogenic fungi can result in subclinical and unrecognised syndromes, allergic manifestations, and even overt disease. After traumatic cutaneous inoculation, several fungi can cause neglected mycoses such as sporotrichosis, chromoblastomycosis, mycetoma, entomophthoramycosis, and lacaziosis. Most of these diseases have a subacute to chronic course and they can become recalcitrant to therapy and lead to physical disabilities, including inability to work, physical deformities, and amputations. For many years, paracoccidioidomycosis was considered the most prevalent endemic systemic mycosis in the Americas, but this situation might be changing with recognition of the worldwide presence of Histoplasma capsulatum. Both paracoccidioidomycosis and histoplasmosis can mimic several infectious and non-infectious medical conditions and lead to death if not recognised early and treated. Cutaneous implantation and systemic mycoses are neglected diseases that affect millions of individuals worldwide, especially in low-income countries where their management is suboptimum because challenges in diagnosis and therapeutic options are substantial issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phytochemical screening and in vitro antimicrobial activity of Thymus lanceolatus Desf. from Algeria

    PubMed Central

    Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad

    2013-01-01

    Objective To investigate the antimicrobial activity of an endemic Thyme, Thymus lanceolatus (T. lanceolatus), against a large number of pathogens. Methods Four solvent extracts were evaluated for antimicrobial activity using disc diffusion method and MIC determination on twenty-one strains. Results T. lanceolatus extracts showed a broad-spectrum antimicrobial activity, especially ethanol extract with inhibition zone diameters ranging from 14 to 32 mm, and MIC values from 0.052 to 0.500 mg/mL. Chloroform extract was more active against Gram-positive bacteria, since it has an inhibitory potency on Staphylococcus aureus and Enterococcus faecalis at only 31 µg/mL. While, hexane and water extracts were less effective since they were inactive against several strains. Conclusions The findings of this study indicate that T. lanceolatus has a strong antimicrobial potential, which justifies its use in folk medicine for treatment of infectious diseases. Since this species is poorly investigated, further refined studies on it pure secondary metabolites are needed and very important, in the perspective to identify new antimicrobial molecules from this endemic plant.

  6. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli

    PubMed Central

    Bartelt, Luther A.; Bolick, David T.; Zaenker, Edna I.; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M.; Swann, Jonathan R.; Guerrant, Richard L.

    2017-01-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host. PMID:28750066

  7. Population Genetic Structure of Apple Scab (Venturia inaequalis (Cooke) G. Winter) in Iran

    PubMed Central

    Ebrahimi, Leila; Fotuhifar, Khalil-Berdi; Javan Nikkhah, Mohammad; Naghavi, Mohammad-Reza; Baisakh, Niranjan

    2016-01-01

    The population genetic structure of 278 Venturia inaequalis isolates, collected from different apple cultivars of eighteen different provinces in Iran, was investigated using 22 polymorphic microsatellite markers. Analysis of molecular variation, Bayesian clustering and Nei's genetic distance analyses based on 88 microsatellite alleles indicated substantial levels of gene flow among the collection sites. Ninety three percent of the variation was observed among the individuals within the populations and only 7% variation was observed among the populations. Structure analysis grouped the isolates into two populations. Maximum number of pathogen genotypes (44) was observed in the North of Iran that grows various different apple cultivars. Investigation on the variation of the pathogen on different cultivars in the North of Iran suggested a significant differentiation of the pathogen populations between wild apple and commercial cultivars. During sampling, varying ranges of scab infection were observed on various apple cultivars in forests, monoculture and mix orchards. Wild type apple (Malus orientalis) along the Caspian Sea Coast had the most infection in comparison with the Iranian endemic and commercial cultivars. Based on the genetic analysis and host tracking scenario of the pathogen, it was presumed that Iran could potentially be the center of origin of V. inaequalis, which requires further detailed studies with isolates collected from different parts of central Asia and world for confirmation. PMID:27631622

  8. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli.

    PubMed

    Bartelt, Luther A; Bolick, David T; Mayneris-Perxachs, Jordi; Kolling, Glynis L; Medlock, Gregory L; Zaenker, Edna I; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M; Singer, Steven M; Papin, Jason; Swann, Jonathan R; Guerrant, Richard L

    2017-07-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host.

  9. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  10. Experimental biology and pathogenesis of Junin virus infection in animals and man*

    PubMed Central

    Weissenbacher, M. C.; De Guerrero, L. B.; Boxaca, M. C.

    1975-01-01

    A fatal disease resembling Argentine haemorrhagic fever of man has been produced in guinea-pigs and mice by inoculation with Junin virus. Infected guinea-pigs show macroscopic and microscopic haemorrhagic lesions, marked bone marrow changes, decreased leukocytes and platelets in the peripheral blood, and impairment of immunological response. This response permits differentiation between pathogenic (XJ) and attenuated (XJ Cl3) strains. Guinea-pigs inoculated with the XJ Cl3 strain develop an inapparent infection accompanied by slight haematological changes, the appearance of antibody, and protection against challenge with the pathogenic strain. The attenuated strain has been used successfully as an immunizing antigen in 636 human volunteers. Guinea-pigs infected with Tacaribe virus show cross-protection against Junin virus, with the presence of heterologous neutralizing antibodies. Suckling mice infected with Junin virus develop a typical viral encephalitis; the pathogenicity of the virus decreases with increasing age of the mice. Experiments with thymectomized mice and with mice treated with antithymocyte serum suggest that the pathogenicity of Junin virus in this host is related to the integrity of the thymus-dependent immune system. There is evidence that humoral antibodies do not play any role in the development of the encephalitic lesions but rather protect mice against Junin virus infection. A recent serological survey among laboratory workers and inhabitants of the endemic area has demonstrated the presence of inapparent infection with Junin virus. PMID:182401

  11. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    PubMed

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A retrospective survey into the presence of Plasmodium spp. and Toxoplasma gondii in archived tissue samples from New Zealand raptors: New Zealand falcons (Falco novaeseelandiae), Australasian harriers (Circus approximans) and moreporks (Ninox novaeseelandiae).

    PubMed

    Mirza, V; Burrows, E B; Gils, S; Hunter, S; Gartrell, B D; Howe, L

    2017-08-01

    Human colonisation of New Zealand has resulted in the introduction of emerging diseases, such as avian malaria and toxoplasmosis, which arrived with their exotic avian and mammalian hosts. Plasmodium spp. and Toxoplasma gondii have a wide host range, and several species of endemic New Zealand birds have developed a fatal disease following infection with either pathogen. However, no reports of either toxoplasmosis or avian malaria in New Zealand raptors, namely, the New Zealand falcons (Falco novaeseelandiae), Australasian harriers (Circus approximans) and moreporks (Ninox novaeseelandiae) exist in the literature. Therefore, this study was designed to determine if these two pathogens are present in these raptors through a retrospective analysis of archived tissue samples. Detection and isolate identification of these pathogens was determined using established histological and molecular techniques. All three species of New Zealand raptors tested positive for the presence of Plasmodium spp. (10/117; 8.5%) and an atypical genotype of T. gondii (9/117; 7.7%). Plasmodium lineages identified include P. elongatum GRW6, P. relictum SGS1, P. relictum PADOM02 and Plasmodium sp. LINN1. Two Australasian harriers and one morepork tested positive for the presence of both Plasmodium spp. and T. gondii. However, the pathogenicity of these organisms to the raptors is unclear as none of the tissues showed histological evidence of clinical disease associated with Plasmodium spp. and T. gondii infections. Thus, these results demonstrate for the first time that these two potential pathogens are present in New Zealand's raptors; however, further research is required to determine the prevalence and pathogenicity of these organisms among the living populations of these birds in the country.

  13. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics

    PubMed Central

    Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607

  14. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  15. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    PubMed

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J

    2016-02-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.

  16. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Kleinerman, Gabriela; Rojas, Alicia; Petrović, Aleksandra; Baneth, Gad; Harrus, Shimon

    2016-02-01

    Ticks play an important role in disease transmission globally due to their capability to serve as vectors for human and animal pathogens. The Republic of Serbia is an endemic area for a large number of tick-borne diseases. However, current knowledge on these diseases in Serbia is limited. The aim of this study was to investigate the presence of new emerging tick-borne pathogens in ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 187 ticks, including 124 Rhipicephalus sanguineus, 45 Ixodes ricinus and 18 Dermacentor reticulatus were collected from dogs. In addition, 26 questing I. ricinus ticks were collected from the vegetation, using the flagging method, from 4 different localities in Vojvodina, Serbia. DNA was extracted from each tick individually and samples were tested by either conventional or real-time PCR assays for the presence of Rickettsia spp.-DNA (gltA and ompA gene fragments), Ehrlichia/Anaplasma spp.-DNA (16S rRNA gene fragment) and Hepatozoon spp./Babesia spp.-DNA (18S rRNA gene fragment). In addition, all I. ricinus DNA samples were tested for Bartonella spp.-DNA (ITS locus) by real-time PCR. In this study, the presence of novel emerging tick-borne pathogens including Rickettsia raoultii, Rickettsia massiliae, Babesia venatorum, Babesia microti, Hepatozoon canis and Candidatus Neoehrlichia mikurensis was identified for the first time in Serbia. Our findings also confirmed the presence of Rickettsia monacensis, Babesia canis and Anaplasma phagocytophilum in ticks from Serbia. The findings of the current study highlight the great diversity of tick-borne pathogens of human and animal importance in Serbia. Physicians, public health workers and veterinarians should increase alertness to the presence of these tick-borne pathogens in this country. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. A Spatiotemporal Database to Track Human Scrub Typhus Using the VectorMap Application

    PubMed Central

    Kelly, Daryl J.; Foley, Desmond H.; Richards, Allen L.

    2015-01-01

    Scrub typhus is a potentially fatal mite-borne febrile illness, primarily of the Asia-Pacific Rim. With an endemic area greater than 13 million km2 and millions of people at risk, scrub typhus remains an underreported, often misdiagnosed febrile illness. A comprehensive, updatable map of the true distribution of cases has been lacking, and therefore the true risk of disease within the very large endemic area remains unknown. The purpose of this study was to establish a database and map to track human scrub typhus. An online search using PubMed and the United States Armed Forces Pest Management Board Literature Retrieval System was performed to identify articles describing human scrub typhus cases both within and outside the traditionally accepted endemic regions. Using World Health Organization guidelines, stringent criteria were used to establish diagnoses for inclusion in the database. The preliminary screening of 181 scrub typhus publications yielded 145 publications that met the case criterion, 267 case records, and 13 serosurvey records that could be georeferenced, describing 13,739 probable or confirmed human cases in 28 countries. A map service has been established within VectorMap (www.vectormap.org) to explore the role that relative location of vectors, hosts, and the pathogen play in the transmission of mite-borne scrub typhus. The online display of scrub typhus cases in VectorMap illustrates their presence and provides an up-to-date geographic distribution of proven scrub typhus cases. PMID:26678263

  18. A Spatiotemporal Database to Track Human Scrub Typhus Using the VectorMap Application.

    PubMed

    Kelly, Daryl J; Foley, Desmond H; Richards, Allen L

    2015-12-01

    Scrub typhus is a potentially fatal mite-borne febrile illness, primarily of the Asia-Pacific Rim. With an endemic area greater than 13 million km2 and millions of people at risk, scrub typhus remains an underreported, often misdiagnosed febrile illness. A comprehensive, updatable map of the true distribution of cases has been lacking, and therefore the true risk of disease within the very large endemic area remains unknown. The purpose of this study was to establish a database and map to track human scrub typhus. An online search using PubMed and the United States Armed Forces Pest Management Board Literature Retrieval System was performed to identify articles describing human scrub typhus cases both within and outside the traditionally accepted endemic regions. Using World Health Organization guidelines, stringent criteria were used to establish diagnoses for inclusion in the database. The preliminary screening of 181 scrub typhus publications yielded 145 publications that met the case criterion, 267 case records, and 13 serosurvey records that could be georeferenced, describing 13,739 probable or confirmed human cases in 28 countries. A map service has been established within VectorMap (www.vectormap.org) to explore the role that relative location of vectors, hosts, and the pathogen play in the transmission of mite-borne scrub typhus. The online display of scrub typhus cases in VectorMap illustrates their presence and provides an up-to-date geographic distribution of proven scrub typhus cases.

  19. Environmental waters and blaNDM-1 in Belgrade, Serbia: endemicity questioned.

    PubMed

    Novovic, K; Filipic, B; Veljovic, K; Begovic, J; Mirkovic, N; Jovcic, B

    2015-04-01

    New Delhi metallo-beta-lactamase-1 (NDM-1) will soon become the most commonly isolated and distributed metallo-beta-lactamase worldwide due to its rapid international dissemination and its ability to be expressed by numerous Gram-negative pathogens. NDM-positive bacteria pose a significant public health threat in the Indian subcontinent and the Balkans, which have been designated as endemic regions. Our study was focused on urban rivers, a lake and springheads as a potential source of NDM-1-producing strains in Serbia, but also as a source of other metallo-beta-lactamases and extended-spectrum beta-lactamase (ESBL) producing bacteria. A total of 69 beta-lactam resistant isolates, belonging to 12 bacterial genera, were collected from 8 out of 10 different locations in Belgrade, of which the most were from a popular recreational site, Ada Ciganlija Lake. Phenotypic tests revealed 7 (10.14%) ESBL-producing isolates and 39 (56.52%) isolates resistant to imipenem, of which 32 were positive for metallo-beta-lactamase (MBL) production. PCR and sequencing revealed the presence of genetic determinants for SHV (3 isolates), DHA-1 (1 isolate) and CMY-2 (1 isolate) beta-lactamases. However, we did not detect any NDM-1-producing strains (previously described cases of NDM-1 from Serbia were limited to Belgrade), so we propose that Serbian NDM-1 is in fact a transplant and a nosocomial, rather than an environmental, issue and that Serbia is not an endemic region for NDM-1. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fungicide seed treatments for evaluating the corn seedling disease complex following a winter rye cover crop

    USDA-ARS?s Scientific Manuscript database

    Seed treatments have been used to manage corn seedling diseases since the 1970’s and they contain a combination of active ingredients with specificity towards different pathogens. We hypothesized that using different seed treatment combinations and assessing seedling disease incidence and severity ...

  1. Retention of Enteric Viruses by the Hemocytes of the Eastern Oyster (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    Shellfish are an important vector for transmission of enteric pathogens. Interventions, such as depuration, do not adequately clear enteric viruses, while fecal bacteria levels are significantly reduced. Why viruses are retained in the bivalve flesh is not well understood. We hypothesize that phagoc...

  2. Dead or alive: Deformed Wing Virus and Varroa destructor reduce the life span of winter honey bees

    USDA-ARS?s Scientific Manuscript database

    Elevated winter losses of managed honey bee colonies are a major concern, but the underlying mechanisms remain controversial. Among suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae and associated viruses. Here, we hypothesize that pathogens reduce the life expecta...

  3. Morphometrics of the Southern Green Stink Bug [Nezara viridula (L.) (Hemiptera: Pentatomidae)] Stylet Bundle

    USDA-ARS?s Scientific Manuscript database

    The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a cosmopolitan pest of high-value cash crops, including cotton (Gossypium hirsutum L.; Malvales: Malvaceae). The pest can ingest and transmit disease-causing bacterial and fungal pathogens of cotton. We hypothesized t...

  4. Effects of oligosaccharides in a soybean meal-based diet on fermentative and immune responses in broiler chicks challenged with Eimeria acervulina

    USDA-ARS?s Scientific Manuscript database

    Fermentable oligosaccharides, particularly those found in soybean meal (SBM), may modulate fermentation in the ceca, thus affecting intestinal immune responses to intestinal pathogens. We hypothesized that fermentable oligosaccharides found in SBM would positively impact cecal fermentation and inte...

  5. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar.

    PubMed

    Brown, Jason L; Cameron, Alison; Yoder, Anne D; Vences, Miguel

    2014-10-09

    Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A 'one-size-fits-all' model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar's biota.

  6. Pathogen webs in collapsing honey bee colonies.

    PubMed

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  7. The effectiveness of riboflavin and ultraviolet light pathogen reduction technology in eliminating Trypanosoma cruzi from leukoreduced whole blood.

    PubMed

    Jimenez-Marco, Teresa; Cancino-Faure, Beatriz; Girona-Llobera, Enrique; Alcover, M Magdalena; Riera, Cristina; Fisa, Roser

    2017-06-01

    The parasitic Chagas disease is caused by the protozoan Trypanosoma cruzi, which is mainly transmitted by insect vectors. Other infection routes, both in endemic and in nonendemic areas, include organ and marrow transplantation, congenital transmission, and blood transfusion. Asymptomatic chronic chagasic individuals may have a low and transient parasitemia in peripheral blood and, consequently, they can unknowingly transmit the disease via blood transfusion. Riboflavin and ultraviolet (UV) light pathogen reduction is a method to reduce pathogen transfusion transmission risk based on damage to the pathogen nucleic acids. In this study, we tested the effectiveness of this technology for the elimination of T. cruzi parasites in artificially contaminated whole blood units (WBUs) and thus for decreasing the risk of T. cruzi transfusion transmission. The contaminated WBUs were leukoreduced by filtration and treated with riboflavin and UV light. The level of pathogen reduction was quantified by a real-time polymerase chain reaction (qPCR) and a real-time reverse transcription-polymerase chain reaction (RT-qPCR) as a viability assay. The RNA (cDNA) quantification of the parasites showed a more than 99% reduction of viable T. cruzi parasites after leukoreduction and a complete reduction (100%) after the riboflavin and UV light treatment. Riboflavin and UV light treatment and leukoreduction used in conjunction appears to eliminate significant amounts of viable T. cruzi in whole blood. Both strategies could complement other blood bank measures already implemented to prevent the transmission of T. cruzi via blood transfusion. © 2017 AABB.

  8. A Nonautochthonous U.S. Strain of Vibrio parahaemolyticus Isolated from Chesapeake Bay Oysters Caused the Outbreak in Maryland in 2010

    PubMed Central

    Haendiges, Julie; Jones, Jessica; Myers, Robert A.; Mitchell, Clifford S.; Butler, Erin

    2016-01-01

    ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. PMID:26994080

  9. A Nonautochthonous U.S. Strain of Vibrio parahaemolyticus Isolated from Chesapeake Bay Oysters Caused the Outbreak in Maryland in 2010.

    PubMed

    Haendiges, Julie; Jones, Jessica; Myers, Robert A; Mitchell, Clifford S; Butler, Erin; Toro, Magaly; Gonzalez-Escalona, Narjol

    2016-06-01

    In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    PubMed

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  11. Medicated early weaning to obtain pigs free from pathogens endemic in the herd of origin.

    PubMed

    Alexander, T J; Thornton, K; Boon, G; Lysons, R J; Gush, A F

    1980-02-09

    A field trial was conducted to assess the value of medicated early weaning for obtaining pigs free from some of the pathogens endemic in their herd of origin. The trial comprised 51 sows from a closed herd, which were farrowed in an isolated farrowing house in seven separate groups. The sows in each group were bred at the same time and induced to farrow on the same day. Their thriftiest piglets were weaned at five days of age and moved to an isolated early-weaning unit. At about six weeks of age they were moved to one of three isolated grow-out units where they were held to slaughter weight. Sows in five of the groups were dosed with high levels of tiamulin and trimethoprim-sulphonamide preparations from their entry into the farrowing house until their biggest piglets were weaned. Their piglets were dosed with similar drugs from birth until 10 days of age. The first and seventh groups of sows and their litters were not medicated. Tests were carried out on pigs aged five to 11 weeks, on slaughter pigs, and on pigs which died or were killed at different ages, for Mycoplasma hyopneumoniae, Bordetella bronchiseptica and colonic treponemes, which were readily detectable in the herd of origin. No evidence could be found of mycoplasma or bordetella. Colonic treponemes were recovered from some of the pigs at slaughter, but not from younger pigs. Thirty-seven boars and gilts from the medicated groups were introduced into 11 herds thought to be free of enzootic pneumonia and 13 were introduced into three herds which had enzootic pneumonia. No subsequent signs of enzootic pneumonia were noted in 10 of the enzootic pneumonia-free herds.

  12. Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt.

    PubMed

    Kandeil, Ahmed; El-Shesheny, Rabeh; Maatouq, Asmaa; Moatasim, Yassmin; Cai, Zhipeng; McKenzie, Pamela; Webby, Richard; Kayali, Ghazi; Ali, Mohamed A

    2017-04-01

    The endemicity of avian influenza viruses (AIVs) among Egyptian poultry represents a public health risk. Co-circulation of low pathogenic AIV H9N2 subtype with highly pathogenic AIV H5N1 subtype in Egyptian farms provides a possibility to generate novel reassortant viruses. Here, the genetic characteristics of surface glycoproteins of 59 Egyptian H9N2 viruses, isolated between 2013 and 2015, were analysed. To elucidate the potential of genetic reassortment, 10 H9N2 isolates were selected based on different avian hosts (chickens, ducks, pigeons and quails) and phylogenetic analyses of their full genome sequences were conducted. Additionally, we performed antigenic analysis to further investigate the antigenic evolution of H9N2 viruses isolated during 2011-2015. Different viral characteristics including receptor-binding affinity and drug resistance of representative Egyptian H9N2 viruses were further investigated. The surface glycoproteins of current Egyptian H9N2 viruses were closely related to viruses of the G1-like lineage isolated from Egypt. Several genetic markers that enhance virulence in poultry and transmission to humans were detected. Analysis of the full genome of 10 H9N2 isolates indicated that two pigeon isolates inherited five internal genes from Eurasian AIVs circulating in wild birds. Antigenic conservation of different Egyptian H9N2 isolates from chickens, pigeons and ducks was observed, whereas quail isolates showed antigenic drift. The Egyptian H9N2 viruses preferentially bound to the human-like receptor rather than to the avian-like receptor. Our results suggest that the endemic H9N2 viruses in Egypt contain elements that may favour avian-to-human transmission and thus represent a public health risk.

  13. Management of Citrus Canker in Argentina, a Success Story

    PubMed Central

    Canteros, B. I.; Gochez, A. M.; Moschini, R. C.

    2017-01-01

    Citrus canker is an important bacterial disease of citrus in several regions of the world. Strains of Xanthomonas citri type-A (Xc-A) group are the primary pathogen where citrus canker occurs. After Xc-A entered the Northeast of Argentina in 1974, the disease spread rapidly from 1977 to 1980 and then slowed down and remained moving at slow pace until 1990 when it became endemic. Citrus canker was detected in Northwest Argentina in 2002. This paper presents the main steps in the fight of the disease and the management strategies that have been used to control citrus canker at this time. We think the process might be usefull to other countries with the same situation. Results from more than 40 years of research in Northeast (NE) Argentina indicate that we are at the limit of favorable environment for the disease. The severity of citrus canker is greatly affected by the environment and El Niño Southern Oscillation (ENSO) phenomenon which causes cyclic fluctuations on the disease intensity in the NE region. Weather-based logistic regression models adjusted to quantify disease levels in field conditions showed that the environmental effect was strongly modulated by the distance from a windbreak. Production of healthy fruits in citrus canker endemic areas is possible knowing the dynamics of the disease. A voluntary Integrated Plan to Reduce the Risk of Canker has been in place since 1994 and it allows growers to export unsymptomatic, uninfested fresh fruit to countries which are free of the disease and require healthy, pathogen free fruits. The experience from Argentina can be replicated in other countries after appropriate trials. PMID:29018307

  14. Development of an enzyme immunoassay for detection of antibodies against Coccidioides in dogs and other mammalian species.

    PubMed

    Chow, Nancy A; Lindsley, Mark D; McCotter, Orion Z; Kangiser, Dave; Wohrle, Ron D; Clifford, Wayne R; Yaglom, Hayley D; Adams, Laura E; Komatsu, Kenneth; Durkin, Michelle M; Baker, Rocky J; Shubitz, Lisa F; Derado, Gordana; Chiller, Tom M; Litvintseva, Anastasia P

    2017-01-01

    Coccidioides is a soil-dwelling fungus that causes coccidioidomycosis, a disease also known as Valley fever, which affects humans and a variety of animal species. Recent findings of Coccidioides in new, unexpected areas of the United States have demonstrated the need for a better understanding of its geographic distribution. Large serological studies on animals could provide important information on the geographic distribution of this pathogen. To facilitate such studies, we used protein A/G, a recombinant protein that binds IgG antibodies from a variety of mammalian species, to develop an enzyme immunoassay (EIA) that detects IgG antibodies against Coccidioides in a highly sensitive and high-throughput manner. We showed the potential of this assay to be adapted to multiple animal species by testing a collection of serum and/or plasma samples from dogs, mice, and humans with or without confirmed coccidioidomycosis. We then evaluated the performance of the assay in dogs, using sera from dogs residing in a highly endemic area, and found seropositivity rates significantly higher than those in dogs of non-endemic areas. We further evaluated the specificity of the assay in dogs infected with other fungal pathogens known to cross-react with Coccidioides. Finally, we used the assay to perform a cross-sectional serosurvey investigating dogs from Washington, a state in which infection with Coccidioides has recently been documented. In summary, we have developed a Coccidioides EIA for the detection of antibodies in canines that is more sensitive and has higher throughput than currently available methods, and by testing this assay in mice and humans, we have shown a proof of principle of its adaptability for other animal species.

  15. Development of an enzyme immunoassay for detection of antibodies against Coccidioides in dogs and other mammalian species

    PubMed Central

    Lindsley, Mark D.; McCotter, Orion Z.; Kangiser, Dave; Wohrle, Ron D.; Clifford, Wayne R.; Yaglom, Hayley D.; Adams, Laura E.; Komatsu, Kenneth; Durkin, Michelle M.; Baker, Rocky J.; Shubitz, Lisa F.; Derado, Gordana; Chiller, Tom M.; Litvintseva, Anastasia P.

    2017-01-01

    Coccidioides is a soil-dwelling fungus that causes coccidioidomycosis, a disease also known as Valley fever, which affects humans and a variety of animal species. Recent findings of Coccidioides in new, unexpected areas of the United States have demonstrated the need for a better understanding of its geographic distribution. Large serological studies on animals could provide important information on the geographic distribution of this pathogen. To facilitate such studies, we used protein A/G, a recombinant protein that binds IgG antibodies from a variety of mammalian species, to develop an enzyme immunoassay (EIA) that detects IgG antibodies against Coccidioides in a highly sensitive and high-throughput manner. We showed the potential of this assay to be adapted to multiple animal species by testing a collection of serum and/or plasma samples from dogs, mice, and humans with or without confirmed coccidioidomycosis. We then evaluated the performance of the assay in dogs, using sera from dogs residing in a highly endemic area, and found seropositivity rates significantly higher than those in dogs of non-endemic areas. We further evaluated the specificity of the assay in dogs infected with other fungal pathogens known to cross-react with Coccidioides. Finally, we used the assay to perform a cross-sectional serosurvey investigating dogs from Washington, a state in which infection with Coccidioides has recently been documented. In summary, we have developed a Coccidioides EIA for the detection of antibodies in canines that is more sensitive and has higher throughput than currently available methods, and by testing this assay in mice and humans, we have shown a proof of principle of its adaptability for other animal species. PMID:28380017

  16. Seroprevalence and risk factor analysis for exposure to equine encephalosis virus in Israel, Palestine and Jordan.

    PubMed

    Tirosh-Levy, Sharon; Gelman, Boris; Zivotofsky, Doni; Quraan, Lara; Khinich, Evgeny; Nasereddin, Abdelmajeed; Abdeen, Ziad; Steinman, Amir

    2017-05-01

    Equine encephalosis virus (EEV) is an orbivirus transmitted by Culicoides species. Most infected horses show mild clinical signs and mortality is usually very low. EEV is closely related and similarly transmitted to other, more pathogenic and economically important, orbiviruses such as African horse sickness virus (AHSV), bluetongue virus (BTV) and epizootic haemorrhagic disease viruses (EHDV), and may serve as an indicator for possible transmission of the latter. Israel has been reported to be endemic for EEV since 2001. This study was initiated to re-evaluate the current seroprevalence and risk factors for EEV exposure in Israel, and to assess, for the first time, the seroprevalence of EEV in Palestine and Jordan. Three hundred and sixteen serum samples were collected from apparently healthy horses at 21 farms in Israel, 66 horses at nine farms in Palestine and 100 horses at three farms in Jordan. The presence of EEV antibodies was detected by a serum neutralization assay. Seroprevalence of EEV was 58.2% (184/316 horses) in Israel, 48.5% (32/66 horses) in Palestine and 2% (2/100 horses) in Jordan. Seroprevalence in Jordan was significantly lower than in Israel and Palestine ( P  < 0.001). The farm ( P  < 0.001) and horse age ( P  = 0.003) were found as significant risk factors for EEV exposure in Israel in multivariable statistical analysis. The results of this study further demonstrate that EEV is no longer limited to South Africa and is endemic in both Israel and Palestine and horses in Jordan were also exposed to this virus emphasizing the potential of pathogens to invade new ecological niches.

  17. A cellular backline: specialization of host membranes for defence.

    PubMed

    Faulkner, Christine

    2015-03-01

    In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater

    PubMed Central

    Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua

    2017-01-01

    ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310

  19. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  20. First molecular detection of Leishmania tarentolae-like DNA in Sergentomyia minuta in Spain.

    PubMed

    Bravo-Barriga, Daniel; Parreira, Ricardo; Maia, Carla; Blanco-Ciudad, Juan; Afonso, Maria Odete; Frontera, Eva; Campino, Lenea; Pérez-Martín, Juan Enrique; Serrano Aguilera, Francisco Javier; Reina, David

    2016-03-01

    Phlebotomine sand flies (Diptera, Psychodidae) are vectors of multiple Leishmania species, among which Leishmania infantum stands out as a being frequently pathogenic to humans and dogs in Mediterranean countries. In this study, Sergentomyia minuta sand flies were collected using CDC miniature light traps in different 431 biotopes from Southwest Spain. A total of 114 females were tested for the presence of Leishmania DNA by targeting ITS-1 and cyt-B sequences by PCR. Leishmania DNA was detected in one S. minuta. Characterization of the obtained DNA sequences by phylogenetic analyses revealed close relatedness with Leishmania tarentolae Wenyon, 1921 as well as with both human and canine pathogenic strains of Asian origin (China), previously described as Leishmania sp. To our knowledge, this is the first report of phlebotomine sand flies naturally infected with L. tarentolae-like in Spain. The possible infection of sand flies with novel Leishmania species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniosis is endemic.

  1. Data on morphological features of mycosis induced by Colletotrichum nymphaeae and Lecanicillium longisporum on citrus orthezia scale.

    PubMed

    Mascarin, Gabriel Moura; Guarín-Molina, Juan Humberto; Arthurs, Steven Paul; Humber, Richard Alan; de Andrade Moral, Rafael; Demétrio, Clarice Garcia Borges; Delalibera, Ítalo

    2016-09-01

    We describe symptoms of mycosis induced by two native fungal entomopathogens of the citrus orthezia scale, Praelongorthezia praelonga (Hemiptera: Ortheziidae), an important pest of citrus orchards. The data presented in this article are related to the article entitled "Seasonal prevalence of the insect pathogenic fungus Colletotrichum nymphaeae in Brazilian citrus groves under different chemical pesticide regimes" [1]. The endemic fungal pathogen, C. nymphaeae, emerges through the thin cuticular intersegmental regions of the citrus orthezia scale body revealing orange salmon-pigmented conidiophores bearing conidial masses, as well as producing rhizoid-like hyphae that extend over the citrus leaf. By contrast, nymphs or adult females of this scale insect infected with Lecanicillium longisporum exhibit profuse outgrowth of bright white-pigmented conidiophores with clusters of conidia emerging from the insect intersegmental membranes, and mycosed cadavers are commonly observed attached to the leaf surface by hyphal extensions. These morphological differences are important features to discriminate these fungal entomopathogens in citrus orthezia scales.

  2. Progress on plague vaccine development.

    PubMed

    Rosenzweig, Jason A; Jejelowo, Olufisayo; Sha, Jian; Erova, Tatiana E; Brackman, Sheri M; Kirtley, Michelle L; van Lier, Cristina J; Chopra, Ashok K

    2011-07-01

    Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.

  3. Factors precipitating acute ulcerative colitis.

    PubMed

    Puri, A S; Chaubal, C C; Midha, Vandana

    2014-08-01

    Ulcerative colitis is characterized by mucosal inflammation of a variable length of the colon starting from the rectum. The precise etiopathogenesis is unknown but it occurs in genetically susceptible individuals who manifest an abnormal immunological response against gut commensal bacteria. The disease course is-characterized by multiple spontaneous relapses and remissions. Two pathogens namely CMV and C. difficile have been associated with disease exacerbation in specific clinical situations. Whereas C. difficile may produce worsening of the disease in those exposed to broad spectrum antibiotics, CMV reactivation is seen only in patients with moderate to severe steroid refractory disease. The importance of these two super-infections can be gauged by the fact that both the ACG and the ECCO recommend testing for these two pathogens in appropriate clinical situations. The applicability of these guidelines in the Indian scenario has yet to be determined in view of the bacterial and parasitic infections endemic in tropical countries. The guidelines for diagnosis and management of these two super-infections in the presence of ulcerative colitis are discussed in this review.

  4. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure

    PubMed Central

    2018-01-01

    Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations. PMID:29399575

  5. Microbial Contamination of Drinking Water and Human Health from Community Water Systems.

    PubMed

    Ashbolt, Nicholas J

    2015-03-01

    A relatively short list of reference viral, bacterial and protozoan pathogens appears adequate to assess microbial risks and inform a system-based management of drinking waters. Nonetheless, there are data gaps, e.g. human enteric viruses resulting in endemic infection levels if poorly performing disinfection and/or distribution systems are used, and the risks from fungi. Where disinfection is the only treatment and/or filtration is poor, cryptosporidiosis is the most likely enteric disease to be identified during waterborne outbreaks, but generally non-human-infectious genotypes are present in the absence of human or calf fecal contamination. Enteric bacteria may dominate risks during major fecal contamination events that are ineffectively managed. Reliance on culture-based methods exaggerates treatment efficacy and reduces our ability to identify pathogens/indicators; however, next-generation sequencing and polymerase chain reaction approaches are on the cusp of changing that. Overall, water-based Legionella and non-tuberculous mycobacteria probably dominate health burden at exposure points following the various societal uses of drinking water.

  6. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products.

    PubMed

    MacDonald, E; Møller, K E; Wester, A L; Dahle, U R; Hermansen, N O; Jenum, P A; Thoresen, L; Vold, L

    2015-02-01

    We investigated an outbreak of gastroenteritis following a Christmas buffet served on 4-9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20-15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.

  7. Leptospirosis among Hospitalized Febrile Patients in Northern Tanzania

    PubMed Central

    Biggs, Holly M.; Bui, Duy M.; Galloway, Renee L.; Stoddard, Robyn A.; Shadomy, Sean V.; Morrissey, Anne B.; Bartlett, John A.; Onyango, Jecinta J.; Maro, Venance P.; Kinabo, Grace D.; Saganda, Wilbrod; Crump, John A.

    2011-01-01

    We enrolled consecutive febrile admissions to two hospitals in Moshi, Tanzania. Confirmed leptospirosis was defined as a ≥ 4-fold increase in microscopic agglutination test (MAT) titer; probable leptospirosis as reciprocal MAT titer ≥ 800; and exposure to pathogenic leptospires as titer ≥ 100. Among 870 patients enrolled in the study, 453 (52.1%) had paired sera available, and 40 (8.8%) of these met the definition for confirmed leptospirosis. Of 832 patients with ≥ 1 serum sample available, 30 (3.6%) had probable leptospirosis and an additional 277 (33.3%) had evidence of exposure to pathogenic leptospires. Among those with leptospirosis the most common clinical diagnoses were malaria in 31 (44.3%) and pneumonia in 18 (25.7%). Leptospirosis was associated with living in a rural area (odds ratio [OR] 3.4, P < 0.001). Among those with confirmed leptospirosis, the predominant reactive serogroups were Mini and Australis. Leptospirosis is a major yet underdiagnosed cause of febrile illness in northern Tanzania, where it appears to be endemic. PMID:21813847

  8. Chemical composition of the essential oil from carnation coniferous (Dianthus acicularis Fisch. ex Ledeb) growing wild in Northern Kazakhstan.

    PubMed

    Kirillov, Vitaliy; Stikhareva, Tamara; Suleimen, Yerlan; Serafimovich, Mariya; Kabanova, Svetlana; Mukanov, Bolat

    2017-01-01

    The aim of the study was to investigate volatile compounds from the aerial parts of Dianthus acicularis of the genus Dianthus of the family Caryophyllaceae grown wild in Northern Kazakhstan for the first time. D. acicularis is a typical Trans-Volga-Kazakhstani endemic. D. acicularis has high resistance to the bacterial wilt, a serious disease caused by Burkholderia caryophylli. The qualitative and quantitative compositions of the specimens of the essential oils were analysed by the method of GC-MS. The main constituents of D. acicularis essential oil were methyl ketones - 2-pentadecanone (26.9-32.2%) and 2-tridecanone (4.7-17.7%), identified for the first time in the Dianthus genus. The methyl ketone activity provides protection of the plants from herbivores and fungal pathogens. One can suppose that the presence of 2-pentadecanone and 2-tridecanone in the essential oil of carnation coniferous provides its resistance to different insects and pathogens, including the resistance to the bacterial wilt.

  9. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  10. Selective decontamination of the digestive tract.

    PubMed

    Krueger, Wolfgang A; Unertl, Klaus E

    2002-04-01

    Ventilator-associated pneumonia usually originates from the patient's oropharyngeal microflora. In selective digestive decontamination, topical antibiotics are applied to the oropharynx and stomach for prevention of pneumonia and other infections, possibly reducing infection-related mortality. Selective digestive decontamination is also used for the prevention of gut-derived infections in acute necrotizing pancreatitis and liver transplantation. Despite numerous clinical trials, selective digestive decontamination remains controversial. Reduction of the incidence of pneumonia is accepted, but the extent of reduction is debated. Mortality was not reduced in most individual trials, but this finding was calculated in meta-analyses, especially for combined use of topical and systemic antibiotics in surgical ICU patients. Some investigators reported increased resistance and a shift to Gram-positive pathogens. Today, it appears that selective means not only selective suppression of pathogenic bacteria but also selection of appropriate groups of patients for underlying diseases and severity of illness, and selection of ICUs, where the endemic resistance patterns might allow the use of selective digestive decontamination at a relatively low risk for increased selection pressure.

  11. Vector-borne diseases in Haiti: a review.

    PubMed

    Ben-Chetrit, Eli; Schwartz, Eli

    2015-01-01

    Haiti lies on the western third of the island of Hispaniola in the Caribbean, and is one of the poorest nations in the Western hemisphere. Haiti attracts a lot of medical attention and support due to severe natural disasters followed by disastrous health consequences. Vector-borne infections are still prevalent there with some unique aspects comparing it to Latin American countries and other Caribbean islands. Although vector-borne viral diseases such as dengue and recently chikungunya can be found in many of the Caribbean islands, including Haiti, there is an apparent distinction of the vector-borne parasitic diseases. Contrary to neighboring Carribbean islands, Haiti is highly endemic for malaria, lymphatic filariasis and mansonellosis. Affected by repeat natural disasters, poverty and lack of adequate infrastructure, control of transmission within Haiti and prevention of dissemination of vector-borne pathogens to other regions is challenging. In this review we summarize some aspects concerning diseases caused by vector-borne pathogens in Haiti. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genetic and virulence characterization of classical swine fever viruses isolated in Mongolia from 2007 to 2015.

    PubMed

    Enkhbold, Bazarragchaa; Shatar, Munkhduuren; Wakamori, Shiho; Tamura, Tomokazu; Hiono, Takahiro; Matsuno, Keita; Okamatsu, Masatoshi; Umemura, Takashi; Damdinjav, Batchuluun; Sakoda, Yoshihiro

    2017-06-01

    Classical swine fever (CSF), a highly contagious viral disease affecting domestic and wild pigs in many developing countries, is now considered endemic in Mongolia, with 14 recent outbreaks in 2007, 2008, 2011, 2012, 2014, and 2015. For the first time, CSF viruses isolated from these 14 outbreaks were analyzed to assess their molecular epidemiology and pathogenicity in pigs. Based on the nucleotide sequences of their 5'-untranslated region, isolates were phylogenetically classified as either sub-genotypes 2.1b or 2.2, and the 2014 and 2015 isolates, which were classified as 2.1b, were closely related to isolates from China and Korea. In addition, at least three different viruses classified as 2.1b circulated in Mongolia. Experimental infection of the representative isolate in 2014 demonstrated moderate pathogenicity in 4-week-old pigs, with relatively mild clinical signs. Understanding the diversity of circulating CSF viruses gleans insight into disease dynamics and evolution, and may inform the design of effective CSF control strategies in Mongolia.

  13. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  14. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus.

    PubMed

    Kim, Shin-Hee; Paldurai, Anandan; Samal, Siba K

    2017-03-01

    Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira.

    PubMed

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A

    2014-05-08

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning.

  16. Development of a Recombinase Polymerase Amplification Assay for the Detection of Pathogenic Leptospira

    PubMed Central

    Ahmed, Ahmed; van der Linden, Hans; Hartskeerl, Rudy A.

    2014-01-01

    Detection of leptospires based on DNA amplification techniques is essential for the early diagnosis of leptospirosis when anti-Leptospira antibodies are below the detection limit of most serological tests. In middle and low income countries where leptospirosis is endemic, routine implementation of real-time PCR is financially and technically challenging due to the requirement of expensive thermocycler equipment. In this study we report the development and evaluation of a novel isothermal recombinase polymerase amplification assay (RPA) for detection of pathogenic Leptospira based on TwistAmp chemistry. RPA enabled the detection of less than two genome copies per reaction. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity and specificity of 94.7% and 97.7%, respectively) compared to culturing as the reference standard. RPA presents a powerful tool for the early diagnosis of leptospirosis in humans and in animals. Furthermore, it enables the detection of the causative agent in reservoirs and environment, and as such is a valuable adjunct to current tools for surveillance and early outbreak warning. PMID:24814943

  17. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Experimental evolution of insect immune memory versus pathogen resistance.

    PubMed

    Khan, Imroze; Prakash, Arun; Agashe, Deepa

    2017-12-20

    Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (immune priming), whereby sublethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle ( Tribolium castaneum ) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt evolved high basal resistance against multiple Bt strains. By contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance versus specific immune memory) with potentially distinct mechanisms. © 2017 The Author(s).

  19. Odor Aversion and Pathogen-Removal Efficiency in Grooming Behavior of the Termite Coptotermes formosanus

    PubMed Central

    Yanagawa, Aya; Fujiwara-Tsujii, Nao; Akino, Toshiharu; Yoshimura, Tsuyoshi; Yanagawa, Takashi; Shimizu, Susumu

    2012-01-01

    The results of biocontrol with entomopathogens in termites have been discouraging because of the strong social hygiene behavior for removing pathogens from termite colonies. However, the mechanism of pathogen detection is still unclear. For the successful application of biopesticides to termites in nature, it would be beneficial to identify substances that could disrupt the termite’s ability to perceive pathogens. We hypothesized that termites can perceive pathogens and this ability plays an important role in effective hygiene behavior. In this study, pathogen-detection in the subterranean termite Coptotermes formosanus was investigated. We performed quantitative assays on conidia removal by grooming behavior using epifluoresence microscopy and Y-maze tests to examine the perception of fungal odor by termites. Three species each of high- and low-virulence entomopathogenic fungi were used in each test. The results demonstrated that termites removed conidia more effectively from a nestmate’s cuticle if its odor elicited stronger aversion. Highly virulent pathogens showed higher attachment rates to termite surfaces and their odors were more strongly avoided than those of low-virulence isolates in the same species. Moreover, termites appeared to groom each other more persistently when they had more conidia on their bodies. In brief, insect perception of pathogen-related odor seems to play a role in the mechanism of their hygiene behavior. PMID:23077609

  20. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti.

    PubMed

    Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2013-12-20

    The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner.

  1. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti

    PubMed Central

    2013-01-01

    Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study can detect three tick-borne pathogens simultaneously in an accurate manner. PMID:24359556

  2. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    PubMed

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  3. A Community Based Study on the Mode of Transmission, Prevention and Treatment of Buruli Ulcers in Southwest Cameroon: Knowledge, Attitude and Practices.

    PubMed

    Akoachere, Jane-Francis K T; Nsai, Frankline S; Ndip, Roland N

    2016-01-01

    Buruli ulcer (BU) is a neglected tropical disease affecting the skin, tissues and in some cases the bones, caused by the environmental pathogen Mycobacterium ulcerans (M. ulcerans). Its mode of transmission is still elusive. Delayed treatment may cause irreversible disabilities with consequent social and economic impacts on the victim. Socio-cultural beliefs, practices and attitudes in endemic communities have been shown to influence timely treatment causing disease management, prevention and control a great challenge. An assessment of these factors in endemic localities is important in designing successful intervention strategies. Considering this, we assessed the knowledge, attitude and practices regarding BU in three endemic localities in the South West region, Cameroon to highlight existing misconceptions that need to be addressed to enhance prompt treatment and facilitate effective prevention and control. A cross-sectional study was executed in three BU endemic health districts. Using qualitative and quantitative approaches we surveyed 320 randomly selected household heads, interviewed BU patients and conducted three focus group discussions (FGDs) to obtain information on awareness, beliefs, treatment, and attitudes towards victims. The influence of socio-demographic factors on these variables was investigated. Respondents (84.4%) had a good knowledge of BU though only 65% considered it a health problem while 49.4% believed it is contagious. Socio-demographic factors significantly (P<0.05) influenced awareness of BU, knowledge and practice on treatment and attitudes towards victims. Although the majority of respondents stated the hospital as the place for appropriate treatment, FGDs and some BU victims preferred witchdoctors/herbalists and prayers, and considered the hospital as the last option. We documented beliefs about the disease which could delay treatment. Though we are reporting a high level of knowledge of BU, there exist fallacies about BU and negative attitudes towards victims in communities studied. Efforts towards disease eradication must first of all target these misconceptions.

  4. A Community Based Study on the Mode of Transmission, Prevention and Treatment of Buruli Ulcers in Southwest Cameroon: Knowledge, Attitude and Practices

    PubMed Central

    Akoachere, Jane-Francis K. T.; Nsai, Frankline S.; Ndip, Roland N.

    2016-01-01

    Background Buruli ulcer (BU) is a neglected tropical disease affecting the skin, tissues and in some cases the bones, caused by the environmental pathogen Mycobacterium ulcerans (M. ulcerans). Its mode of transmission is still elusive. Delayed treatment may cause irreversible disabilities with consequent social and economic impacts on the victim. Socio-cultural beliefs, practices and attitudes in endemic communities have been shown to influence timely treatment causing disease management, prevention and control a great challenge. An assessment of these factors in endemic localities is important in designing successful intervention strategies. Considering this, we assessed the knowledge, attitude and practices regarding BU in three endemic localities in the South West region, Cameroon to highlight existing misconceptions that need to be addressed to enhance prompt treatment and facilitate effective prevention and control. Methods and Findings A cross-sectional study was executed in three BU endemic health districts. Using qualitative and quantitative approaches we surveyed 320 randomly selected household heads, interviewed BU patients and conducted three focus group discussions (FGDs) to obtain information on awareness, beliefs, treatment, and attitudes towards victims. The influence of socio-demographic factors on these variables was investigated. Results Respondents (84.4%) had a good knowledge of BU though only 65% considered it a health problem while 49.4% believed it is contagious. Socio-demographic factors significantly (P<0.05) influenced awareness of BU, knowledge and practice on treatment and attitudes towards victims. Although the majority of respondents stated the hospital as the place for appropriate treatment, FGDs and some BU victims preferred witchdoctors/herbalists and prayers, and considered the hospital as the last option. We documented beliefs about the disease which could delay treatment. Conclusion Though we are reporting a high level of knowledge of BU, there exist fallacies about BU and negative attitudes towards victims in communities studied. Efforts towards disease eradication must first of all target these misconceptions. PMID:27227429

  5. Importance of a Rapid and Accurate Diagnosis in Strongyloides Stercoralis and Human T-Lymphotropic Virus 1 Co-infection: A Case Report and Review of the Literature

    PubMed Central

    Quintero, Olga; Berini, Carolina A.; Waldbaum, Carlos; Avagnina, Alejandra; Juarez, María; Repetto, Silvia; Sorda, Juan; Biglione, Mirna

    2017-01-01

    Strongyloides (S.) stercoralis and Human T-Lymphotropic Virus 1 (HTLV-1) share some endemic regions such as Japan, Jamaica, and South America and are mostly diagnosed elsewhere in immigrants from endemic areas. This co-infection has not been documented in Argentina although both pathogens are endemic in the Northwest. We present a case of S. stercoralis and HTLV-1 co-infection with an initial presentation due to gastrointestinal symptoms which presented neither eosinophilia nor the presence of larvae in stool samples in a non-endemic area for these infections. A young Peruvian woman living in Buenos Aires attended several emergency rooms and finally ended up admitted in a gastroenterology ward due to incoercible vomiting, diarrhea, abdominal pain, fever, and weight loss. Gastrointestinal symptoms started 3 months before she returned to Argentina from a trip to Peru. She presented malnutrition and abdominal distension parameters. HIV-1 and other immunodeficiencies were discarded. The serial coproparasitological test was negative. Computed tomography showed diffuse thickening of duodenal and jejunal walls. At the beginning, vasculitis was suspected and corticosteroid therapy was initiated. The patient worsened rapidly. Skin, new enteral biopsies, and a new set of coproparasitological samples revealed S. stercoralis. Then, HTLV-1 was suspected and infection was confirmed. Ivermectin and albendazole were administrated, until the stool sample remained negative for 2 weeks. Larvae were not observed in fresh stool, Ritchie method, and agar culture 1 week post-treatment. Although she required initial support with parenteral nutrition due to oral intolerance she slowly progressed favorably. It has been highly recommended to include a rapid and sensitive PCR strategy in the algorithm to confirm Strongyloides infection, which has demonstrated to improve early diagnosis in patients at-risk of disseminated strongyloidiasis. PMID:29270152

  6. Dicharax (?) candrakirana n. sp. (Gastropoda: Cyclophoridae) from Sempu Island, Indonesia.

    PubMed

    Nurinsiyah, Ayu Savitri; Hausdorf, Bernhard

    2017-12-12

    The Alycaeinae Blanford, 1864 (Gastropoda: Cyclophoridae) is a species-rich group of caenogastropod land snails distributed mainly in Southeast Asia (Kobelt 1902). The Madagascan endemic Boucardicus Fischer-Piette & Bedoucha, 1965 has also been classified in the Alycaeinae (Emberton 2002). The Asian species of Alycaeinae are characterized by a sutural tube on the last whorl that is closed at its posterior end, but is connected to the outside by radial microtunnels opening near the umbilicus. This device is hypothesized to allow gas exchange when the animal is retracted and the operculum seals the shell aperture (Páll-Gergely et al. 2016).

  7. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa.

    PubMed

    Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren

    2010-12-01

    Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.

  8. Potential for Nezara virdula (Hemiptera: Pentatomidae) to Transmit Bacterial and Fungal Pathogens into Cotton Bolls

    USDA-ARS?s Scientific Manuscript database

    Recently, we described the vectoring of an opportunistic Pantoea agglomerans strain into green cotton bolls by the southern green stink bug (Nezara viridula L.) (SGSB) that resulted in disease. We hypothesized that our established experimental disease model could be used to determine whether SGSB s...

  9. Abundance and accumulation of Escherichia coli and Salmonella Typhimurium procured by male and female house flies (Diptera: Muscidae) exposed to cattle manure

    USDA-ARS?s Scientific Manuscript database

    House flies, Musca domestica L. develop within and feed upon microbe-rich substrates such as manure, acquiring and potentially disseminating pathogenic bacteria. Because adult female flies frequent manure due to oviposition or nutrition requirements, we hypothesized females would contact manure more...

  10. White-nose syndrome pathology grading in Nearctic and Palearctic bats

    Treesearch

    Jiri Pikula; Sybill K. Amelon; Hana Bandouchova; Tomáš Bartonička; Hana Berkova; Jiri Brichta; Sarah Hooper; Tomasz Kokurewicz; Miroslav Kolarik; Bernd Köllner; Veronika Kovacova; Petr Linhart; Vladimir Piacek; Gregory G. Turner; Jan Zukal; Natália Martínková; Sharon Swartz

    2017-01-01

    While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we...

  11. Habitat preference and the evolution of sympatric intersterility groups in the Heterbasidion annosum species complex

    Treesearch

    M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns

    1998-01-01

    Populations of the basidiomycete Heterobasidion annosum display varying degrees, of intersterility and differential host specialization. At least three intersterility groups have been formally described, each characterized by a range of "preferred" hosts. It has been hypothesized that processes of host-pathogen compatibility may have been...

  12. Ingestion of a novel galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex affected growth performance and fermentative and immunological characteristics of broiler chicks challenged with Salmonella typhimurium

    USDA-ARS?s Scientific Manuscript database

    Fermentable carbohydrates may enhance the ability of the gastrointestinal tract to defend against a pathogenic infection. We hypothesized that a galactoglucomannan oligosaccharide-arabinoxylan (GGMO-AX) complex would positively impact immune status and prevent colonization and shedding in Salmonell...

  13. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever.

    PubMed

    Engelthaler, David M; Roe, Chandler C; Hepp, Crystal M; Teixeira, Marcus; Driebe, Elizabeth M; Schupp, James M; Gade, Lalitha; Waddell, Victor; Komatsu, Kenneth; Arathoon, Eduardo; Logemann, Heidi; Thompson, George R; Chiller, Tom; Barker, Bridget; Keim, Paul; Litvintseva, Anastasia P

    2016-04-26

    Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. Coccidioidomycosis, or valley fever, is caused by the pathogenic fungi Coccidioides posadasii and C. immitis The fungal species and disease are primarily found in the American desert southwest, with spotted distribution throughout the Western Hemisphere. Initial molecular studies suggested a likely anthropogenic movement of C. posadasii from North America to South America. Here we comparatively analyze eighty-six genomes of the two Coccidioides species and establish local and species-wide population structures to not only clarify the earlier dispersal hypothesis but also provide evidence of likely ancestral populations and patterns of dispersal for the known subpopulations of C. posadasii. Copyright © 2016 Engelthaler et al.

  14. [Tropical and travel-related dermatomycoses : Part 2: cutaneous infections due to yeasts, moulds, and dimorphic fungi].

    PubMed

    Nenoff, P; Reinel, D; Krüger, C; Grob, H; Mugisha, P; Süß, A; Mayser, P

    2015-07-01

    Besides dermatophytoses, a broad range of cutaneous infections due to yeasts and moulds may occur in subtropical and tropical countries where they can affect travellers. Not to be forgotten are endemic occurring dimorphic or biphasic fungi in countries with hot climate, which cause systemic and secondary cutaneous infections in immunosuppressed and immunocompetent people. In the tropics, the prevalence of pityriasis versicolor, caused by the lipophilic yeast Malassezia spp., is about 30-40 %, in distinct areas even 50 %. Increased hyperhidrosis under tropical conditions and simultaneously humidity congestion have to be considered as significant disposing factors for pityriasis versicolor. In tropical countries, therefore, an exacerbation of a preexisting pityriasis versicolor in travellers is not rare. Today, mostly genital yeast infections due to the new species Candida africana can be found worldwide. Due to migration from Africa this yeast pathogen has reached Germany and Europe. Eumycetomas due to mould fungi are rarely diagnosed in Europe. These deep cutaneous mould infections are only found in immigrants from African countries. The therapy of eumycetoma is protracted and often not successful. Cutaneous cryptococcoses due to the yeast species Cryptococcus neoformans and Cryptococcus gattii occur worldwide; however, they are found more frequently in the tropics. Immunosuppressed patients, especially those with HIV/AIDS, are affected by cryptococcoses. Furthermore, Cryptococcus gattii also causes infections in immunocompetent hosts in Central Africa, Australia, California, and Central America.Rarely found are infections due to dimorphic fungi after travel to countries where these fungal pathogens are endemic. In individual cases, cutaneous or lymphogenic transferred sporotrichosis due to Sporothrix schenkii can occur. Furthermore, scarcely known is secondary cutaneous coccidioidomycosis due to Coccidioides immitis after travelling to desert-like endemic regions in southwestern states of the United States and in Latin America, where primary respiratory infection due to this biphasic fungus can be acquired. The antifungal agent itraconazole is the treatment of choice for sporotrichosis and coccidioidomycosis. Talaromyces marneffei-until recently known as Penicillium marneffei-is only found in Southeastern Asia. Mycosis due to this dimorphic fungus has to be considered as an AIDS-defining opportunistic infection. After hematogeneous spread, Talaromyces marneffei affects the skin and mucous membranes of the mouth. Amphotericin B and itraconazole can be used for therapy.

  15. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex.

    PubMed

    Gershwin, Laurel J; Van Eenennaam, Alison L; Anderson, Mark L; McEligot, Heather A; Shao, Matt X; Toaff-Rosenstein, Rachel; Taylor, Jeremy F; Neibergs, Holly L; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.

  16. Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex

    PubMed Central

    Gershwin, Laurel J.; Van Eenennaam, Alison L.; Anderson, Mark L.; McEligot, Heather A.; Toaff-Rosenstein, Rachel; Taylor, Jeremy F.; Neibergs, Holly L.; Womack, James

    2015-01-01

    Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described. PMID:26571015

  17. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    PubMed

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods

    PubMed Central

    Xu, Zhen; Takizawa, Fumio; Parra, David; Gómez, Daniela; von Gersdorff Jørgensen, Louise; LaPatra, Scott E.; Sunyer, J. Oriol

    2016-01-01

    Gas-exchange structures are critical for acquiring oxygen, but they also represent portals for pathogen entry. Local mucosal immunoglobulin responses against pathogens in specialized respiratory organs have only been described in tetrapods. Since fish gills are considered a mucosal surface, we hypothesized that a dedicated mucosal immunoglobulin response would be generated within its mucosa on microbial exposure. Supporting this hypothesis, here we demonstrate that following pathogen exposure, IgT+ B cells proliferate and generate pathogen-specific IgT within the gills of fish, thus providing the first example of locally induced immunoglobulin in the mucosa of a cold-blooded species. Moreover, we demonstrate that gill microbiota is predominantly coated with IgT, thus providing previously unappreciated evidence that the microbiota present at a respiratory surface of a vertebrate is recognized by a mucosal immunoglobulin. Our findings indicate that respiratory surfaces and mucosal immunoglobulins are part of an ancient association that predates the emergence of tetrapods. PMID:26869478

  19. Sexually transmitted infection and the evolution of serial monogamy.

    PubMed

    McLeod, David V; Day, Troy

    2014-12-07

    The selective forces shaping mating systems have long been of interest to biologists. One particular selective pressure that has received comparatively little attention is sexually transmitted infections (STIs). While it has been hypothesized that STIs could drive the evolutionary emergence of monogamy, there is little theoretical support. Here we use an evolutionary invasion analysis to determine what aspects of pathogen virulence and transmission are necessary for serial monogamy to evolve in a promiscuous population. We derive a biologically intuitive invasion condition in terms of population-specific quantities. From this condition, we obtain two main results. First, when pathogen virulence causes mortality rather than sterility, monogamy is more likely to evolve. Second, we find that at intermediate pathogen transmission rates, monogamy is the most selectively advantageous, whereas at high- and low-transmission rates, monogamy is generally selected against. As a result, it is possible for a pathogen to be highly virulent, yet for promiscuity to persist. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Prevalence and Diversity of Leptospires in Different Ecological Niches of Urban and Rural Areas of South Andaman Island.

    PubMed

    Lall, Chandan; Kumar, K Vinod; Raj, R Vimal; Vedhagiri, K; Vijayachari, P

    2016-01-01

    Leptospirosis is an emerging disease around the globe. South Andaman Island is an endemic region for leptospirosis. We herein compared the prevalence of leptospires in urban and rural areas of South Andaman Island. The PCR detection and isolation of Leptospira revealed that pathogenic leptospires were prevalent in sewage water and household drainage water in urban areas and in paddy fields, vegetable field water, and stream water in rural areas. These results demonstrate that intermediates are ubiquitously present in the environment and may be responsible for asymptomatic infections, and also provide an insight into disease ecology.

  1. Leptospirosis in humans.

    PubMed

    Haake, David A; Levett, Paul N

    2015-01-01

    Leptospirosis is a widespread and potentially fatal zoonosis that is endemic in many tropical regions and causes large epidemics after heavy rainfall and flooding. Infection results from direct or indirect exposure to infected reservoir host animals that carry the pathogen in their renal tubules and shed pathogenic leptospires in their urine. Although many wild and domestic animals can serve as reservoir hosts, the brown rat (Rattus norvegicus) is the most important source of human infections. Individuals living in urban slum environments characterized by inadequate sanitation and poor housing are at high risk of rat exposure and leptospirosis. The global burden of leptospirosis is expected to rise with demographic shifts that favor increases in the number of urban poor in tropical regions subject to worsening storms and urban flooding due to climate change. Data emerging from prospective surveillance studies suggest that most human leptospiral infections in endemic areas are mild or asymptomatic. Development of more severe outcomes likely depends on three factors: epidemiological conditions, host susceptibility, and pathogen virulence (Fig. 1). Mortality increases with age, particularly in patients older than 60 years of age. High levels of bacteremia are associated with poor clinical outcomes and, based on animal model and in vitro studies, are related in part to poor recognition of leptospiral LPS by human TLR4. Patients with severe leptospirosis experience a cytokine storm characterized by high levels of IL-6, TNF-alpha, and IL-10. Patients with the HLA DQ6 allele are at higher risk of disease, suggesting a role for lymphocyte stimulation by a leptospiral superantigen. Leptospirosis typically presents as a nonspecific, acute febrile illness characterized by fever, myalgia, and headache and may be confused with other entities such as influenza and dengue fever. Newer diagnostic methods facilitate early diagnosis and antibiotic treatment. Patients progressing to multisystem organ failure have widespread hematogenous dissemination of pathogens. Nonoliguric (high output) renal dysfunction should be supported with fluids and electrolytes. When oliguric renal failure occurs, prompt initiation of dialysis can be life saving. Elevated bilirubin levels are due to hepatocellular damage and disruption of intercellular junctions between hepatocytes, resulting in leaking of bilirubin out of bile caniliculi. Hemorrhagic complications are common and are associated with coagulation abnormalities. Severe pulmonary hemorrhage syndrome due to extensive alveolar hemorrhage has a fatality rate of >50 %. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña-Moctezuma 2010; Bharti et al. 2003; Hartskeerl et al. 2011; Ko et al. 2009; Levett 2001; McBride et al. 2005).

  2. Leptospirosis in Humans

    PubMed Central

    Levett, Paul N.

    2015-01-01

    Leptospirosis is a widespread and potentially fatal zoonosis that is endemic in many tropical regions and causes large epidemics after heavy rainfall and flooding. Infection results from direct or indirect exposure to infected reservoir host animals that carry the pathogen in their renal tubules and shed pathogenic leptospires in their urine. Although many wild and domestic animals can serve as reservoir hosts, the brown rat (Rattus norvegicus) is the most important source of human infections. Individuals living in urban slum environments characterized by inadequate sanitation and poor housing are at high risk of rat exposure and leptospirosis. The global burden of leptospirosis is expected to rise with demographic shifts that favor increases in the number of urban poor in tropical regions subject to worsening storms and urban flooding due to climate change. Data emerging from prospective surveillance studies suggest that most human leptospiral infections in endemic areas are mild or asymptomatic. Development of more severe outcomes likely depends on three factors: epidemiological conditions, host susceptibility, and pathogen virulence (Fig. 1). Mortality increases with age, particularly in patients older than 60 years of age. High levels of bacteremia are associated with poor clinical outcomes and, based on animal model and in vitro studies, are related in part to poor recognition of leptospiral LPS by human TLR4. Patients with severe leptospirosis experience a cytokine storm characterized by high levels of IL-6, TNF-alpha, and IL-10. Patients with the HLA DQ6 allele are at higher risk of disease, suggesting a role for lymphocyte stimulation by a leptospiral superantigen. Leptospirosis typically presents as a nonspecific, acute febrile illness characterized by fever, myalgia, and headache and may be confused with other entities such as influenza and dengue fever. Newer diagnostic methods facilitate early diagnosis and antibiotic treatment. Patients progressing to multisystem organ failure have widespread hematogenous dissemination of pathogens. Nonoliguric (high output) renal dysfunction should be supported with fluids and electrolytes. When oliguric renal failure occurs, prompt initiation of dialysis can be life saving. Elevated bilirubin levels are due to hepatocellular damage and disruption of intercellular junctions between hepatocytes, resulting in leaking of bilirubin out of bile caniliculi. Hemorrhagic complications are common and are associated with coagulation abnormalities. Severe pulmonary hemorrhage syndrome due to extensive alveolar hemorrhage has a fatality rate of >50 %. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña-Moctezuma 2010; Bharti et al. 2003; Hartskeerl et al. 2011; Ko et al. 2009; Levett 2001; McBride et al. 2005). PMID:25388133

  3. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    PubMed

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    PubMed Central

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance. PMID:25762737

  5. Stop and Go – Waves of Tarsier Dispersal Mirror the Genesis of Sulawesi Island

    PubMed Central

    Driller, Christine; Merker, Stefan; Perwitasari-Farajallah, Dyah; Sinaga, Walberto; Anggraeni, Novita; Zischler, Hans

    2015-01-01

    The Indonesian island of Sulawesi harbors a highly endemic and diverse fauna sparking fascination since long before Wallace’s contemplation of biogeographical patterns in the region. Allopatric diversification driven by geological or climatic processes has been identified as the main mechanism shaping present faunal distribution on the island. There is both consensus and conflict among range patterns of terrestrial species pointing to the different effects of vicariant events on once co-distributed taxa. Tarsiers, small nocturnal primates with possible evidence of an Eocene fossil record on the Asian mainland, are at present exclusively found in insular Southeast Asia. Sulawesi is hotspot of tarsier diversity, whereby island colonization and subsequent radiation of this old endemic primate lineage remained largely enigmatic. To resolve the phylogeographic history of Sulawesi tarsiers we analyzed an island-wide sample for a set of five approved autosomal phylogenetic markers (ABCA1, ADORA3, AXIN1, RAG1, and TTR) and the paternally inherited SRY gene. We constructed ML and Bayesian phylogenetic trees and estimated divergence times between tarsier populations. We found that their arrival at the Proto-Sulawesi archipelago coincided with initial Miocene tectonic uplift and hypothesize that tarsiers dispersed over the region in distinct waves. Intra-island diversification was spurred by land emergence and a rapid succession of glacial cycles during the Plio-Pleistocene. Some tarsier range boundaries concur with spatial limits in other taxa backing the notion of centers of faunal endemism on Sulawesi. This congruence, however, has partially been superimposed by taxon-specific dispersal patterns. PMID:26559527

  6. The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea

    PubMed Central

    Smith, Matthew E.; Henkel, Terry W.; Uehling, Jessie K.; Fremier, Alexander K.; Clarke, H. David; Vilgalys, Rytas

    2013-01-01

    Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. dipterocarpacea would harbor unique ECM fungi not found on the roots of D. jenmanii. Although statistical tests suggested that several ECM fungal species did exhibit host preferences for either P. dipterocarpacea or D. jenmanii, most of the ECM fungi were multi-host generalists. We also detected several ECM fungi that have never been found in long-term studies of nearby rainforests dominated by other Dicymbe species. One particular mushroom-forming fungus appears to be unique and may represent a new ECM lineage of Agaricales that is endemic to the Neotropics. PMID:23383090

  7. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  8. Sexual reproduction and gene flow in the pine pathogen Dothistroma septosporum in British Columbia.

    PubMed

    Dale, A L; Lewis, K J; Murray, B W

    2011-01-01

    Dothistroma septosporum has caused a serious needle blight epidemic in the lodgepole pine forests in northwest British Columbia over the past several years. Although ascocarps had been observed in British Columbia, nothing was known about the contribution of sexual reproduction, gene flow and long-distance dispersal to the epidemic. Amplified fragment length polymorphism and mating-type markers in 19 sites were used to generate population and reproductive data. Overall, evidence suggests a mixed mode of reproduction. Haplotypic diversity was high, with 79 unique and 56 shared haplotypes (possible clones) identified from 192 fungal isolates. Overall, mating-type segregation did not differ significantly from 1:1; however, random mating was rejected in most populations in the index of association and parsimony tree-length permutation analyses using the full data set and, when using clone-corrected data sets, more of the smaller populations showed random mating. Two of the smaller populations consistently showed random mating for both tests using both clone-corrected and noncorrected data. High gene flow is suggested by no differentiation between 14 of the 19 sites, several of which came from young plantations where the pathogen was not likely present prior to the current outbreak. The remaining five sites showed some level of divergence, possibly due to historic separation and endemic pathogen populations. Results indicate a high evolutionary potential and long-distance dispersal in this pathogen, important to consider in future forest management.

  9. Pathogen Webs in Collapsing Honey Bee Colonies

    PubMed Central

    Cornman, R. Scott; Tarpy, David R.; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S.; vanEngelsdorp, Dennis; Evans, Jay D.

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees. PMID:22927991

  10. Diversification rates have declined in the Malagasy herpetofauna.

    PubMed

    Scantlebury, Daniel P

    2013-09-07

    The evolutionary origins of Madagascar's biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island's accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives.

  11. Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).

    PubMed

    Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal

    2015-10-01

    We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Hybridization of two megacephalic map turtles (testudines: emydidae: Graptemys) in the Choctawhatchee River drainage of Alabama and Florida

    USGS Publications Warehouse

    Godwin, James; Lovich, Jeffrey E.; Ennen, Joshua R.; Kreiser, Brian R.; Folt, Brian; Lechowicz, Chris

    2014-01-01

    Map turtles of the genus Graptemys are highly aquatic and rarely undergo terrestrial movements, and limited dispersal among drainages has been hypothesized to drive drainage-specific endemism and high species richness of this group in the southeastern United States. Until recently, two members of the megacephalic “pulchra clade,” Graptemys barbouri andGraptemys ernsti, were presumed to be allopatric with a gap in both species' ranges in the Choctawhatchee River drainage. In this paper, we analyzed variation in morphology (head and shell patterns) and genetics (mitochondrial DNA and microsatellite loci) from G. barbouri, G. ernsti, and Graptemys sp. collected from the Choctawhatchee River drainage, and we document the syntopic occurrence of those species and back-crossed individuals of mixed ancestry in the Choctawhatchee River drainage. Our results provide a first counter-example to the pattern of drainage-specific endemism in megacephalic Graptemys. Geologic events associated with Pliocene and Pleistocene sea level fluctuations and the existence of paleo-river systems appear to have allowed the invasion of the Choctawhatchee system by these species, and the subsequent introgression likely predates any potential human-mediated introduction.

  13. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies.

    PubMed

    Streicker, Daniel G; Winternitz, Jamie C; Satterfield, Dara A; Condori-Condori, Rene Edgar; Broos, Alice; Tello, Carlos; Recuenco, Sergio; Velasco-Villa, Andrés; Altizer, Sonia; Valderrama, William

    2016-09-27

    Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared completely isolated. In contrast, greater population connectivity in biparentally inherited nuclear microsatellites explained the historical limits of invasions, suggesting that dispersing male bats spread VBRV between genetically isolated female populations. Host nuclear DNA further indicated unanticipated gene flow through the Andes mountains connecting the VBRV-free Pacific coast to the VBRV-endemic Amazon rainforest. By combining Bayesian phylogeography with landscape resistance models, we projected invasion routes through northern Peru that were validated by real-time livestock rabies mortality data. The first outbreaks of VBRV on the Pacific coast of South America could occur by June 2020, which would have serious implications for agriculture, wildlife conservation, and human health. Our results show that combining host and pathogen genetic data can identify sex biases in pathogen spatial spread, which may be a widespread but underappreciated phenomenon, and demonstrate that genetic forecasting can aid preparedness for impending viral invasions.

  14. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Komiya, Toshiyuki; Ratnatunga, Neelakanthi; Senevirathna, S T M L D; Harada, Kouji H; Hitomi, Toshiaki; Gobe, Glenda; Muso, Eri; Abeysekera, Tilak; Koizumi, Akio

    2012-05-01

    Chronic kidney disease of uncertain etiology (CKDu) in North Central Province of Sri Lanka has become a key public health concern in the agricultural sector due to the dramatic rise in its prevalence and mortality among young farmers. Although cadmium has been suspected as a causative pathogen, there have been controversies. To date, the pathological characteristics of the disease have not been reported. Histopathological observations of 64 renal biopsies obtained at Anuradhapura General Hospital from October 2008 to July 2009 were scored according to Banff 97 Working Classification of Renal Allograft pathology. The correlations between the histological observations and clinical parameters were statistically analyzed. Interstitial fibrosis and tubular atrophy with or without nonspecific interstitial mononuclear cell infiltration was the dominant histopathological observation. Glomerular sclerosis, glomerular collapse, and features of vascular pathology such as fibrous intimal thickening and arteriolar hyalinosis were also common. Although hypertension was identified as one of the common clinical features among the cases, it did not influence the histopathological lesions in all the cases. This study concludes that tubulointerstitial damage is the major pathological lesion in CKDu. Exposure(s) to an environmental pathogen(s) should be systematically investigated to elucidate such tubulointerstitial damage in CKDu.

  15. Experimental infection of H5N1 HPAI in BALB/c mice.

    PubMed

    Evseenko, Vasily A; Bukin, Eugeny K; Zaykovskaya, Anna V; Sharshov, Kirill A; Ternovoi, Vladimir A; Ignatyev, George M; Shestopalov, Alexander M

    2007-07-27

    In 2005 huge epizooty of H5N1 HPAI occurred in Russia. It had been clear that territory of Russia becoming endemic for H5N1 HPAI. In 2006 several outbreaks have occurred. To develop new vaccines and antiviral therapies, animal models had to be investigated. We choose highly pathogenic strain for these studies. A/duck/Tuva/01/06 belongs to Quinghai-like group viruses. Molecular markers-cleavage site, K627 in PB2 characterize this virus as highly pathogenic. This data was confirmed by direct pathogenic tests: IVPI = 3.0, MLD50 = 1,4Log10EID50. Also molecular analysis showed sensitivity of the virus to adamantanes and neuraminidase inhibitors. Serological analysis showed wide cross-reactivity of this virus with sera produced to H5N1 HPAI viruses isolated earlier in South-East Asia. Mean time to death of infected animals was 8,19+/-0,18 days. First time acute delayed hemorrhagic syndrome was observed in mice lethal model. Hypercytokinemia was determined by elevated sera levels of IFN-gamma, IL-6, IL-10. Assuming all obtained data we can conclude that basic model parameters were characterized and virus A/duck/Tuva/01/06 can be used to evaluate anti-influenza vaccines and therapeutics.

  16. Host–pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies

    PubMed Central

    Streicker, Daniel G.; Winternitz, Jamie C.; Satterfield, Dara A.; Condori-Condori, Rene Edgar; Broos, Alice; Tello, Carlos; Recuenco, Sergio; Velasco-Villa, Andrés; Altizer, Sonia; Valderrama, William

    2016-01-01

    Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared completely isolated. In contrast, greater population connectivity in biparentally inherited nuclear microsatellites explained the historical limits of invasions, suggesting that dispersing male bats spread VBRV between genetically isolated female populations. Host nuclear DNA further indicated unanticipated gene flow through the Andes mountains connecting the VBRV-free Pacific coast to the VBRV-endemic Amazon rainforest. By combining Bayesian phylogeography with landscape resistance models, we projected invasion routes through northern Peru that were validated by real-time livestock rabies mortality data. The first outbreaks of VBRV on the Pacific coast of South America could occur by June 2020, which would have serious implications for agriculture, wildlife conservation, and human health. Our results show that combining host and pathogen genetic data can identify sex biases in pathogen spatial spread, which may be a widespread but underappreciated phenomenon, and demonstrate that genetic forecasting can aid preparedness for impending viral invasions. PMID:27621441

  17. Oroya Fever and Verruga Peruana: Bartonelloses Unique to South America

    PubMed Central

    Minnick, Michael F.; Anderson, Burt E.; Lima, Amorce; Battisti, James M.; Lawyer, Phillip G.; Birtles, Richard J.

    2014-01-01

    Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelialcell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control. PMID:25032975

  18. Crimean-Congo hemorrhagic fever virus in ticks collected from livestock in Albania.

    PubMed

    Papa, Anna; Velo, Enkeleda; Kadiaj, Perparim; Tsioka, Katerina; Kontana, Anastasia; Kota, Majlinda; Bino, Silvia

    2017-10-01

    Albania is a Balkan country endemic for Crimean-Congo hemorrhagic fever (CCHF). It was shown previously that CCHF virus (CCHFV) sequences from Albanian patients cluster into Europe 1 clade. Aim of the present study was to test for CCHFV ticks collected in several regions of Albania, and to determine the genetic lineage(s) of the CCHFV strains in relation with their geographic distribution. A total of 726 ticks (366 Hyalomma marginatum, 349 Rhipicephalus bursa and 11 Rhipicephalus sanguineus) collected from livestock during 2007-2014 were included in the study. Thirty of 215 (13.9%) tick pools were positive for CCHFV. Lineage Europe 1 was detected in H. marginatum ticks collected in the endemic region of Albania, while lineage Europe 2 was detected mainly in R. bursa ticks in various regions of the country. Both genetic lineages were detected in the CCHF endemic area (northeastern Albania), while only Europe 2 lineage was detected in the south of the country. A higher genetic diversity was seen among Europe 2 than Europe 1 Albanian sequences (mean distance 3.7% versus 1%), suggesting a longer evolution of AP92-like strains (Europe 2) in their tick hosts. The present study shows that besides CCHFV lineage Europe 1, lineage Europe 2 is also present in Albania. Combined with results from recent studies, it is concluded that lineage Europe 2 is widely spread in the Balkans and Turkey, and is associated mainly with R. bursa ticks (at least in this region). Its pathogenicity and impact to the public health remain to be elucidated. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sequence variation of functional HTLV-II tax alleles among isolates from an endemic population: lack of evidence for oncogenic determinant in tax.

    PubMed

    Hjelle, B; Chaney, R

    1992-02-01

    Human T-cell leukemia-lymphoma virus type II (HTLV-II) has been isolated from patients with hairy cell leukemia (HCL). We previously described a population with longstanding endemic HTLV-II infection, and showed that there is no increased risk for HCL in the affected groups. We thus have direct evidence that the endemic form(s) of HTLV-II cause HCL infrequently, if at all. By comparison, there is reason to suspect that the viruses isolated from patients with HCL had an etiologic role in the disease in those patients. One way to reconcile these conflicting observations is to consider that isolates of HTLV-II might differ in oncogenic potential. To determine whether the structure of the putative oncogenic determinant of HTLV-II, tax2, might differ in the new isolates compared to the tax of the prototype HCL isolate, MO, four new functional tax cDNAs were cloned from new isolates. Sequence analysis showed only minor (0.9-2.0%) amino acid variation compared to the published sequence of MO tax2. Some codons were consistently different from published sequences of the MO virus, but in most cases, such variations were also found in each of two tax2 clones we isolated from the MO T-cell line. These variations rendered the new clones more similar to the tax1 of the pathogenic virus HTLV-I. Thus we find no evidence that pathologic determinants of HTLV-II can be assigned to the tax gene.

  20. Task force on management and prevention of Acinetobacter baumannii infections in the ICU.

    PubMed

    Garnacho-Montero, José; Dimopoulos, George; Poulakou, Garyphallia; Akova, Murat; Cisneros, José Miguel; De Waele, Jan; Petrosillo, Nicola; Seifert, Harald; Timsit, Jean François; Vila, Jordi; Zahar, Jean-Ralph; Bassetti, Matteo

    2015-12-01

    Acinetobacter baumannii constitutes a dreadful problem in many ICUs worldwide. The very limited therapeutic options available for these organisms are a matter of great concern. No specific guidelines exist addressing the prevention and management of A. baumannii infections in the critical care setting. Clinical microbiologists, infectious disease specialists and intensive care physicians were invited by the Chair of the Infection Section of the ESICM to participate in a multidisciplinary expert panel. After the selection of clinically relevant questions, this document provides recommendations about the use of microbiological techniques for identification of A. baumannii in clinical laboratories, antibiotic therapy for severe infections and recommendations to control this pathogen in outbreaks and endemic situations. Evidence supporting each statement was graded according to the European Society of Clinical Microbiology and Infection Diseases (ESCMID) grading system. Empirical coverage of A. baumannii is recommended in severe infections (severe sepsis or septic shock) occurring during an A. baumannii outbreak, in an endemic setting, or in a previously colonized patient. For these cases, a polymyxin is suggested as part of the empirical treatment in cases of a high suspicion of a carbapenem-resistant (CR) A. baumannii strain. An institutional program including staff education, promotion of hand hygiene, strict contact and isolation precautions, environmental cleaning, targeted active surveillance, and antimicrobial stewardship should be instituted and maintained to combat outbreaks and endemic situations. Specific recommendations about prevention and management of A. baumannii infections in the ICU were elaborated by this multidisciplinary panel. The paucity of randomized controlled trials is noteworthy, so these recommendations are mainly based on observational studies and pharmacodynamics modeling.

  1. Whole Genome Sequence Analysis of Salmonella Typhi Isolated in Thailand before and after the Introduction of a National Immunization Program

    PubMed Central

    Thanh, Duy Pham; Bodhidatta, Ladaporn; Mason, Carl Jeffries; Srijan, Apichai; Rabaa, Maia A.; Vinh, Phat Voong; Thanh, Tuyen Ha; Thwaites, Guy E.; Baker, Stephen; Holt, Kathryn E.

    2017-01-01

    Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly used by travellers, however, there are few examples of national immunization programs in endemic areas. There is therefore a paucity of data on the impact of typhoid immunization programs on localised populations of S. Typhi. Here we have used whole genome sequencing (WGS) to characterise 44 historical bacterial isolates collected before and after a national typhoid immunization program that was implemented in Thailand in 1977 in response to a large outbreak; the program was highly effective in reducing typhoid case numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or genotypes. Novel prophage and plasmids were also detected, including examples that were previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi genotypes observed prior to the immunization program were not observed following it. Post-vaccine era isolates were more closely related to S. Typhi isolated from neighbouring countries than to earlier Thai isolates, providing no evidence for the local persistence of endemic S. Typhi following the national immunization program. Rather, later cases of typhoid appeared to be caused by the occasional importation of common genotypes from neighbouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understanding the impacts of vaccination on pathogen populations and provide support for the proposal that large-scale typhoid immunization programs in endemic areas could result in lasting local disease elimination, although larger prospective studies are needed to test this directly. PMID:28060810

  2. Local Population Structure and Patterns of Western Hemisphere Dispersal for Coccidioides spp., the Fungal Cause of Valley Fever

    PubMed Central

    Roe, Chandler C.; Hepp, Crystal M.; Teixeira, Marcus; Driebe, Elizabeth M.; Schupp, James M.; Gade, Lalitha; Waddell, Victor; Komatsu, Kenneth; Arathoon, Eduardo; Logemann, Heidi; Thompson, George R.; Chiller, Tom; Keim, Paul; Litvintseva, Anastasia P.

    2016-01-01

    ABSTRACT Coccidioidomycosis (or valley fever) is a fungal disease with high morbidity and mortality that affects tens of thousands of people each year. This infection is caused by two sibling species, Coccidioides immitis and C. posadasii, which are endemic to specific arid locales throughout the Western Hemisphere, particularly the desert southwest of the United States. Recent epidemiological and population genetic data suggest that the geographic range of coccidioidomycosis is expanding, as new endemic clusters have been identified in the state of Washington, well outside the established endemic range. The genetic mechanisms and epidemiological consequences of this expansion are unknown and require better understanding of the population structure and evolutionary history of these pathogens. Here we performed multiple phylogenetic inference and population genomics analyses of 68 new and 18 previously published genomes. The results provide evidence of substantial population structure in C. posadasii and demonstrate the presence of distinct geographic clades in central and southern Arizona as well as dispersed populations in Texas, Mexico, South America, and Central America. Although a smaller number of C. immitis strains were included in the analyses, some evidence of phylogeographic structure was also detected in this species, which has been historically limited to California and Baja, Mexico. Bayesian analyses indicated that C. posadasii is the more ancient of the two species and that Arizona contains the most diverse subpopulations. We propose a southern Arizona-northern Mexico origin for C. posadasii and describe a pathway for dispersal and distribution out of this region. PMID:27118594

  3. Two cases of sporotrichosis of the right upper extremity in right-handed patients with diabetes mellitus.

    PubMed

    Zhang, Yu; Hagen, Ferry; Wan, Zhe; Liu, Yufu; Liu, Yahong; Wang, Qingwen; de Hoog, Gert Sybren; Li, Ruoyu; Zhang, Junling

    2016-01-01

    Sporothrix species have proved to show high degrees of endemicity. Sporothrix globosa is the only pathogenic Sporothrix species that has till date been reported from China, where it is endemic in the northeastern provinces. We report two cases of lymphocutaneous sporotrichosis with diabetes mellitus as underlying disease in patients from the non-endemic area of China. A 59-year-old farmer and a 60-year-old gardener were admitted in February and June 2014, respectively. Both patients were right-handed men and presented with progressive plaques and nodules, which they had for several years, involving the right upper extremity. Skin biopsy from the granuloma was taken and cultured on Sabouraud medium, and molecular identification based on the calmodulin region was performed. Antifungal susceptibility testing was also performed with the microdilution method. Biopsy of the lesions showed the presence of infectious granuloma. The fungal cultures were identified as Sporothrix globosa by conventional methods, and confirmed by molecular identification. A subsequent course of oral antifungal therapy with low dosage of itraconazole was well tolerated and resolved the infection. Identification of fungal species and antifungal susceptibility testing are mandatory for epidemiological and therapeutic reasons. Early diagnosis of sporotrichosis is essential to prevent those sequelae when the disease progresses and provides highly effective methods for treating this emerging disease. Avoiding the exposure to plant material potentially contaminated with fungal spores should be recommended, especially in immunocompromised patients. Copyright © 2015 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  4. The red pigment prodigiosin is not an essential virulence factor in entomopathogenic Serratia marcescens.

    PubMed

    Zhou, Wei; Li, JingHua; Chen, Jie; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Although pigments produced by pathogenic microbes are generally hypothesized as essential virulence factors, the role of red pigment prodigiosin in the pathogenesis of entomopathogenic Serratia marcescens is not clear. In this study, we analyzed the pathogenicity of different pigmented S. marcescens strains and their non-pigmented mutants in silkworms. Each pigmented strain and the corresponding non-pigmented mutants showed very similar LD50 value (statistically no difference), but caused very different symptom (color of the dead larva). Our results clearly indicated that the red pigment prodigiosin is not an essential virulence factor in entomopathogenic S. marcescens. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments

    PubMed Central

    Hill, Terence E.; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Slack, Olga A. L.; Ly, Hoai J.; Lokugamage, Nandadeva; Freiberg, Alexander N.

    2015-01-01

    ABSTRACT Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine. PMID:25948740

  6. Rift Valley Fever Virus MP-12 Vaccine Is Fully Attenuated by a Combination of Partial Attenuations in the S, M, and L Segments.

    PubMed

    Ikegami, Tetsuro; Hill, Terence E; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Slack, Olga A L; Ly, Hoai J; Lokugamage, Nandadeva; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Pathogen reduction and blood transfusion safety in Africa: strengths, limitations and challenges of implementation in low-resource settings.

    PubMed

    Ware, A D; Jacquot, C; Tobian, A A R; Gehrie, E A; Ness, P M; Bloch, E M

    2018-01-01

    Transfusion-transmitted infection risk remains an enduring challenge to blood safety in Africa. A high background incidence and prevalence of the major transfusion-transmitted infections (TTIs), dependence on high-risk donors to meet demand, suboptimal testing and quality assurance collectively contribute to the increased risk. With few exceptions, donor testing is confined to serological evaluation of human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV) and syphilis. Barriers to implementation of broader molecular methods include cost, limited infrastructure and lack of technical expertise. Pathogen reduction (PR), a term used to describe a variety of methods (e.g. solvent detergent treatment or photochemical activation) that may be applied to blood following collection, offers the means to diminish the infectious potential of multiple pathogens simultaneously. This is effective against different classes of pathogen, including the major TTIs where laboratory screening is already implemented (e.g. HIV, HBV and HCV) as well pathogens that are widely endemic yet remain unaddressed (e.g. malaria, bacterial contamination). We sought to review the available and emerging PR techniques and their potential application to resource-constrained parts of Africa, focusing on the advantages and disadvantages of such technologies. PR has been slow to be adopted even in high-income countries, primarily given the high costs of use. Logistical considerations, particularly in low-resourced parts of Africa, also raise concerns about practicality. Nonetheless, PR offers a rational, innovative strategy to contend with TTIs; technologies in development may well present a viable complement or even alternative to targeted screening in the future. © 2017 International Society of Blood Transfusion.

  8. β-lactam resistance in gram-negative pathogens isolated from animals.

    PubMed

    Trott, Darren

    2013-01-01

    Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.

  9. Trypanosoma cruzi discrete typing units in Chagas disease patients from endemic and non-endemic regions of Argentina.

    PubMed

    Cura, C I; Lucero, R H; Bisio, M; Oshiro, E; Formichelli, L B; Burgos, J M; Lejona, S; Brusés, B L; Hernández, D O; Severini, G V; Velazquez, E; Duffy, T; Anchart, E; Lattes, R; Altcheh, J; Freilij, H; Diez, M; Nagel, C; Vigliano, C; Favaloro, L; Favaloro, R R; Merino, D E; Sosa-Estani, S; Schijman, A G

    2012-04-01

    Genetic diversity of Trypanosoma cruzi may play a role in pathogenesis of Chagas disease forms. Natural populations are classified into 6 Discrete Typing Units (DTUs) Tc I-VI with taxonomical status. This study aimed to identify T. cruzi DTUs in bloodstream and tissue samples of Argentinean patients with Chagas disease. PCR-based strategies allowed DTU identification in 256 clinical samples from 239 Argentinean patients. Tc V prevailed in blood from both asymptomatic and symptomatic cases and Tc I was more frequent in bloodstream, cardiac tissues and chagoma samples from immunosuppressed patients. Tc II and VI were identified in a minority of cases, while Tc III and Tc IV were not detected in the studied population. Interestingly, Tc I and Tc II/VI sequences were amplified from the same skin biopsy slice from a kidney transplant patient suffering Chagas disease reactivation. Further data also revealed the occurrence of mixed DTU populations in the human chronic infection. In conclusion, our findings provide evidence of the complexity of the dynamics of T. cruzi diversity in the natural history of human Chagas disease and allege the pathogenic role of DTUs I, II, V and VI in the studied population.

  10. Altered cord blood γδ T cell repertoire in Nigeria: possible impacts of environmental factors on neonatal immunity

    PubMed Central

    Cairo, Cristiana; Propp, Nadia; Auricchio, Giovanni; Armstrong, Cheryl L.; Abimiku, Alash’le; Mancino, Giorgio; Colizzi, Vittorio; Blattner, William; Pauza, C. David

    2008-01-01

    Infectious diseases during pregnancy can impact the development of fetal immunity, leading to reduced neonatal resistance to infection and decreased responses to pediatric vaccines. P. falciparum causes placental infection in low parity pregnant women and is among the pathogens that affect fetal immunity. Recognizing the relationship between malaria and γδ T lymphocytes in adults, we asked whether neonatal γδ T cells would be altered in malaria-endemic regions as a marker for changes in fetal immunity. Our initial studies compared cord blood γδ T cells from deliveries to HIV- mothers in Jos (Nigeria) where malaria is endemic, or in Rome (Italy). We noted substantial differences in the Vγ2 repertoire for cord blood collected in Jos or Rome; differences were consistent with a negative selection mechanism operating on the fetal Vγ2 chain repertoire in neonates from Jos. A specific disruption affected the fraction of γδ T cells that we expect will respond to Bacille Calmette-Guerin (BCG). Fetal γδ T cell depletion might be a mechanism for impaired neonatal immunity and lowered responses to pediatric vaccines. PMID:18440637

  11. Analysis of a Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) for yellow fever diagnostic.

    PubMed

    Nunes, Marcio R T; Vianez, João Lídio; Nunes, Keley N B; da Silva, Sandro Patroca; Lima, Clayton P S; Guzman, Hilda; Martins, Lívia C; Carvalho, Valéria L; Tesh, Robert B; Vasconcelos, Pedro F C

    2015-12-15

    Yellow Fever virus (YFV) is an important human pathogen in tropical areas of Africa and South America. Although an efficient vaccine is available and has been used since the early 1940s, sylvatic YFV transmission still occurs in forested areas where anthropogenic actions are present, such as mineral extraction, rearing livestock and agriculture, and ecological tourism. In this context, two distinct techniques based on the RT-PCR derived method have been previously developed, however both methods are expensive due to the use of thermo cyclers and labeled probes. We developed isothermal genome amplification, which is a rapid, sensitive, specific and low cost molecular approach for YFV genome detection. This assay used a set of degenerate primers designed for the NS1 gene and was able to amplify, within 30 min in isothermal conditions, the YFV 17D vaccine strain derived from an African wild prototype strain (Asibi), as well as field strains from Brazil, other endemic countries from South and Central America, and the Caribbean. The generic RT-LAMP assay could be helpful for YFV surveillance in field and rapid response during outbreaks in endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Typhoid fever.

    PubMed

    Wain, John; Hendriksen, Rene S; Mikoleit, Matthew L; Keddy, Karen H; Ochiai, R Leon

    2015-03-21

    Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands

    PubMed Central

    Bataille, Arnaud; Cunningham, Andrew A.; Cedeño, Virna; Cruz, Marilyn; Eastwood, Gillian; Fonseca, Dina M.; Causton, Charlotte E.; Azuero, Ronal; Loayza, Jose; Martinez, Jose D. Cruz; Goodman, Simon J.

    2009-01-01

    Wildlife on isolated oceanic islands is highly susceptible to the introduction of pathogens. The recent establishment in the Galápagos Islands of the mosquito Culex quinquefasciatus, a vector for diseases such as avian malaria and West Nile fever, is considered a serious risk factor for the archipelago's endemic fauna. Here we present evidence from the monitoring of aeroplanes and genetic analysis that C. quinquefasciatus is regularly introduced via aircraft into the Galápagos Archipelago. Genetic population structure and admixture analysis demonstrates that these mosquitoes breed with, and integrate successfully into, already-established populations of C. quinquefasciatus in the Galápagos, and that there is ongoing movement of mosquitoes between islands. Tourist cruise boats and inter-island boat services are the most likely mechanism for transporting Culex mosquitoes between islands. Such anthropogenic mosquito movements increase the risk of the introduction of mosquito-borne diseases novel to Galápagos and their subsequent widespread dissemination across the archipelago. Failure to implement and maintain measures to prevent the human-assisted transport of mosquitoes to and among the islands could have catastrophic consequences for the endemic wildlife of Galápagos. PMID:19675009

  14. Global epidemiology of sporotrichosis.

    PubMed

    Chakrabarti, Arunaloke; Bonifaz, Alexandro; Gutierrez-Galhardo, Maria Clara; Mochizuki, Takashi; Li, Shanshan

    2015-01-01

    Sporotrichosis is an endemic mycosis caused by the dimorphic fungus Sporothrix schenckii sensu lato. It has gained importance in recent years due to its worldwide prevalence, recognition of multiple cryptic species within the originally described species, and its distinctive ecology, distribution, and epidemiology across the globe. In this review, we describe the current knowledge of the taxonomy, ecology, prevalence, molecular epidemiology, and outbreaks due to S. schenckii sensu lato. Despite its omnipresence in the environment, this fungus has remarkably diverse modes of infection and distribution patterns across the world. We have delved into the nuances of how sporotrichosis is intimately linked to different forms of human activities, habitats, lifestyles, and environmental and zoonotic interactions. The purpose of this review is to stimulate discussion about the peculiarities of this unique fungal pathogen and increase the awareness of clinicians and microbiologists, especially in regions of high endemicity, to its emergence and evolving presentations and to kindle further research into understanding the unorthodox mechanisms by which this fungus afflicts different human populations. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Utility of Japanese encephalitis virus subgenomic replicon-based single-round infectious particles as antigens in neutralization tests for Zika virus and three other flaviviruses.

    PubMed

    Yamanaka, Atsushi; Moi, Meng Ling; Takasaki, Tomohiko; Kurane, Ichiro; Matsuda, Mami; Suzuki, Ryosuke; Konishi, Eiji

    2017-05-01

    The introduction of a foreign virus into an area may cause an outbreak, as with the Zika virus (ZIKV) outbreak in the Americas. Preparedness for handling a viral outbreak involves the development of tests for the serodiagnosis of foreign virus infections. We previously established a gene-based technology to generate some flaviviral antigens useful for functional antibody assays. The technology utilizes a Japanese encephalitis virus subgenomic replicon to generate single-round infectious particles (SRIPs) that possess designed surface antigens. In the present study, we successfully expanded the capacity of SRIPs to four human-pathogenic mosquito-borne flaviviruses that could potentially be introduced from endemic to non-endemic countries: ZIKV, Sepik virus, Wesselsbron virus, and Usutu virus. Flavivirus-crossreactive monoclonal antibodies dose-dependently neutralized these SRIPs. ZIKV-SRIPs also produced antibody-dose-dependent neutralization curves equivalent to those shown by authentic ZIKV particles using sera from a Zika fever patient. The faithful expression of designed surface antigens on SRIPs will allow their use in neutralization tests to diagnose foreign flaviviral infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep.

    PubMed

    Faburay, Bonto; Wilson, William C; Gaudreault, Natasha N; Davis, A Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-06-14

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.

  17. A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William C.; Gaudreault, Natasha N.; Davis, A. Sally; Shivanna, Vinay; Bawa, Bhupinder; Sunwoo, Sun Young; Ma, Wenjun; Drolet, Barbara S.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts. PMID:27296136

  18. Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae).

    PubMed

    Haloi, Kishor; Kalita, Moni Kankana; Nath, Ramesh; Devi, Dipali

    2016-07-01

    Antheraea assamensis Helfer (muga silkworm) is an economically important endemic insect species of North Eastern Region of India. The silkworm is often susceptible to infection by pathogenic bacteria, leads to a disease commonly known as flacherie which causes 40% loss per annum to the silk industry. In this study, we have reported isolation, characterization and pathogenicity assessment of gut-associated bacteria of healthy and diseased muga silkworms. Thirty five bacterial isolates were screened from the gut of healthy and diseased silkworms by morphological observation and biochemical tests. 11 and 5 strains from healthy and diseased silkworm respectively were identified by 16S rRNA gene sequencing and analyzed. Pseudomonas aeruginosa (DRK1), Ornithinibacillus bavariensis (DRK2), Achromobacter xylosoxidans (KH3) and Staphylococcus aureus (FLG1) strains were commonly found in healthy as well as diseased larvae whereas, Bacillus thuringiensis (MK1) was found only in diseased larvae. Survivability analysis was performed with the identified strains by injection and oral administration (10(4)CFU/ml). The immune response of the silkworm against the pathogen was also studied by phenoloxidase and lysozyme enzyme activity assay, total and differential hemocyte count and phagocytic activity of hemocytes. It was observed that S. aureus, P. aeruginosa and B. thuringiensis significantly reduced the survivability of silkworm (p<0.001) hence found highly pathogenic. The lethal concentrations (LC50) values of the pathogenic strains were calculated at different time intervals (24, 48, 72 and 96h) within the range from 1.38×10(2) to 3.63×10(7)CFU/ml. The pathogenic groups demonstrated inhibition of phenoloxidase activity and decreased in total hemocyte count after 48h of infection. However, the lysozyme activity increased significantly in the pathogenic groups compared to the control (p<0.05). Granulocytes and plasmatocytes showed phagocytosis whereas; other types of cells did not show any phagocytic activity. Increasing granulocytes and plasmatocytes counts corroborates the results of phagocytic activity. The present study might be helpful in understanding the disease prognosis and colonization of bacteria causing the disease in muga silkworm. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evolution of Drosophila resistance against different pathogens and infection routes entails no detectable maintenance costs.

    PubMed

    Faria, Vítor G; Martins, Nelson E; Paulo, Tânia; Teixeira, Luís; Sucena, Élio; Magalhães, Sara

    2015-11-01

    Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Highly Diverse Morbillivirus-Related Paramyxoviruses in Wild Fauna of the Southwestern Indian Ocean Islands: Evidence of Exchange between Introduced and Endemic Small Mammals

    PubMed Central

    Mélade, Julien; Dietrich, Muriel; Ramasindrazana, Beza; Soarimalala, Voahangy; Lagadec, Erwan; le Minter, Gildas; Tortosa, Pablo; Heraud, Jean-Michel; de Lamballerie, Xavier; Goodman, Steven M.; Dellagi, Koussay

    2014-01-01

    ABSTRACT The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence. PMID:24829336

Top